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Abstract

. The formulation of the decision making process of a failure detection algorithm as
-Baayes sequential decision problem provides a simple conceptualization of the

decision rule design problem. As the optimal Bayes rule is not computable, a
methodology that is based on the Bayesian approach and aimed at a reduced
computational requirement is developed for designing suboptimal rules. A numerical
algorithm is constructed to facilitate the design and performance evaluation of these
suboptimal rules. The result of applying this design methodology to an example

4. >, shows that this approach is potentially a useful one. __..........
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1. INTRODUCTION

A failure detection and identification (FDI) process consists of two basic stages:

residual generation and decision making. In the first stage, sensor outputs are

processed to form residuals that typically have distinct characteristics under normal

(no-fail) conditions and under the various possible failures modes. (See 1 for a

discussion of the design of residual generation processes.) The function of the second

stage is to monitor the residuals and make decisions concerning the occurrence and

*. identity of failure modes. The decision mechanism is based on a compromise among

speed of detection, false alarm rates, and identification accuracy, and it belongs to the

extensively studied class of sequential tests or sequential decision rules [2-151. Most

previous works, however, were focussed on either the detection of a single type of

change (failure) [5-91, or the sequential testing of M hypothesis, which is analogous to

the problem of identifying the failure mode given the onset time is known [12-141. In

* this paper, we employ the Bayesian approach to the design of decision rules that

directly confront the problem of detecting and distinguishing the various possible failure

modes which may occur at unknown times.

In Section 2 we describe the Bayes formulation of the FDI decision problem.

Although the optimal rule is generally not computable the structure of the Bayesian

approach can be used to derive practical suboptimal rules. The design of suboptimal

rules based on the Bayes formulation is discussed in Section 3. The approximations

and simplifications that are made in order to obtain these rules make systematic use of

the important features specific to the problem of dynamic failure detection and

consequently allow us to interpret each step in our simplification procedure in terms of
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its implications for failure detection. In Section 4 we report on our experience with

this approach to designing decision rules through a numerical example and simulation.
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2. THU BAYNSIAN APPROACH

In this section we adapt and specialize the standard Bayes Sequential Decision

Problem (BSDP) 1151 to the problem of failure detection. The BSDP formulation of

the FDI problem consists of six elements:

1. 0 : the set of states of nature or failure hypotheses. For simplicity in this

development we assume that only single failures may occur. In general an

element 0 of 0 conveys several pieces of information, namely, the type of failure

mode, its time of occurrence, and probably a variable specifying the severity of

the failure. For example, if a particular failure mode corresponds to the onset of

a sensor bias, the level of this bias could be specified in the corresponding

element of 0. In many applications, however, it suffices simply to identify the

failure type without estimating its severity. Furthermore, what is often done to

eliminate this nuisance parameter completely is to hypothesize a fixed scale for

each failure type corresponding to the smallest deviation from normal behavior

that one would like to detect. For example, this approach was used with great

success for the detection of aircraft sensor failure in [161. We will adapt this

approach here, and consequently elements of 0 are 2-tuples, 0- (i,),

corresponding to the onset of the ith failure mode at time t. We assume that

4 there are M hypothsized failure modes and also denote by (0,-) that element of 0

corresponding to no failure. Thus,

*-{(i,r), i-1,...M, 7-1,2,...) U ((0,-))

2. At : the prior probability mass function (PMF) over the nature set 0. This PMF
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represents the a priori information concerning possible failures, i.e. how likely it is

for each type of failure to occur, and when is a failure likely to occur. Because

this Information may not be available or accurate in some cases, the need to

specify $& is a drawback of the Bayes approach for such cases. Nevertheless, we

will see that it can be regarded as a design parameter in the specification of the

Bayes rule.

In general, . may be arbitrary. Here, we assume the underlying failure

process has two properties: 1) the occurrence of each of the M failure modes is

independent of the other, and 2) the occurrence of each failure i is a Bernoulli

process with (success) parameter Pi, a common model for failure s in physical

components. The independent assumption is also a reasonable one in most

applications. It is straightforward to show that
L~$ G,(iY) --a(i)p (l-p)"-  I i-I ,...,M,, 1,2,...

where

M
-_ ~P- -]'[(I-Pj)

1i-I
a(i) - p, (l-pi)-  pj 0l-pj)

The parameter p may be regarded as the parameter of the combined (Bernoulli)

failure process which specifies the statistics of the occurrence of the first failure;

14 a(i) can be interpreted as the marginal probability that the first failure is of type i.

Note that the present choice of I& indicates that the arrival of the first failure is

memoiyless.
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3. D(k) : The discrete set of terminal decisions available to the decision maker when

the residual-monitoring is interrupted at time k in order to make failure

identification. An element a of D(k) may denote the pair 0,t), i.e. the

declaration of a type i failure to have occurred at time t~k. Alternatively, 3 may

represent an identification of the j-th failure without regard for the failure time, or

-* it may signify the presence of a failure without specifying its type or time, i.e.

simply an alarm. Note that the number of terminal decisions specifying failure

times grow with k (as there are more times at which a failure could have

occurred) while the number of decisions not specifying times will remain the

same. In addition, D(k) does not include the declaration of no-failure, since the

residual monitoring is stopped only when a failure appears to have occurred. It is

worth pointing out that in some application one may not be interested In

estimating failure onset times, there are others in which one is. For example, if a

failed sensor has been used for sometime in a closed-loop filter and control law,

one may wish to estimate how long the failure has been present in order to

compensate for the effect of this erroneous signal. In addition, onset time

estimates are critical in other event detection problems such as electrocardiogram

analysis [17] and maneuver detection [18,191.

4. L(k;G,8) : the terminal decision cost function at time k. L(k;9,8) denotes the

penalty for deciding 8 E D(k) at time k when the true state of nature is 0. It is

assumed to be bounded and non-negative and have the structure:

( ) k, 8IE D(k)
.L(k;,8) ->k, BED(k)

IP
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-" L(k; (0,-)B) Lp

where L(0,r),8) is the underlying cost function for deciding 8 when failure (i,s)

has already occurred. Also, Lp denotes the penalty for a false alarm (note that a

false alarm corresponds to making a failure declaration before one occurs), and It

can be generalized by allowing it to be a function of 8.

The cost function L((ir),B) generally has some additional structure. For

example, a terminal decision cost that indicates the correct failure (and/or onset

time) should receive a lower cost then one with the wrong failure (and/or onset

time) indication. We further assume that the penalty due to an incorrect

identification of the failure time is only dependent on the error in such an

Identification. That is for 8 - (jt),

L(k;(i,0, ),t), - L(i ,j, (t-r))

Note that L(i,i, (t-.)) corresponds to the penalty for an incorrect time estimate of

when the failure type is correctly determined. Again the use and importance of

this cost depends upon the application. Finally, if onset time is unimportant, so

that 8 does not obtain a time specification, we have

L ((i,,),8) - L (i,)

o@ S. r(k) : the m-dimensional residual (observation) sequence. We shall let

p(r(l),...r(k)I i,) denote their joint conditional density when (i,v.) is true. Since

the residual is affected by the failure in a causal manner, its conditional density

has the property
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In this paper, we will assume that the residual is an independent Gaussian

sequence with V (mxm matrix) as the time-independent covariance function and

g(k-,r) as the mean given that the failure (i,7.) has occurred. With the

covariance assumed to be the same for all failures, the mean function g(k-v)

characterizes the effect of the failure (i,r), and it is henceforth called the

signatures of (i,0) (with g/(k-5-) - 0 for 1-0, or r A k). We have chosen to study

this type of residuals because its special structure facilitates the development of

insights into the the design of decision rules. Such a model arises in the case in

which the residuals are generated by a Kalman filter based on normal operation

and in which the failure enter additively in the system dynamics or sensor outputs

[201. While this model is not correct if parametric failure are considered (since in

this case the correlation structure of the residuals is also affected by the failure),

the general concepts we develop for the formulation of a BSDP for failure

detection carry over to the parametric case. Furthermore, as reported in 116,211,

an FDI system based on an appropriate additive-failure model can often work

very well in detecting parametric failures.

6. c(k,(i,7r)) the delay cost function having the properties:

c I c(i,k-,r)>0, r"<k

c(k,(i, .)) - 0, 7k

4 c(i,k 1-vr) > c(i,k2 -vr), k1 >k2 >,r

After a failure has occurred at time 7, there is a penalty for delaying the terminal
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decision until time t r with the penalty an increasing function of the delay

(k-r). In the absence of a failure, no penalty is imposed on residual sampling.

In this paper we will consider a delay cost function that is linear in the delay, i.e.

c(i,k-r) - c(i) (k-ur), where c(i) is a positive function of the failure type i, and

may be used to provide different delay penalty for different types of failures.

A sequential decision rule naturally consists of two parts : a stopping rule

(sampling plan) and a terminal decision rule. The stopping rule is essentially a

detection rule as its purpose is to determine whether monitoring should be interrupted

in order to identify a failure. The terminal decision rule then performs the subsequent

identification. The stopping rule denoted by

- - ( (0) ,(l;r(l)),..., (k;r(1),...,r(k)) ... ) is a sequence of functions of the observed

residual samples, with *(k;r(l),...,r(k)) - 1 or 0. When *(k;r(l),...,r(k)) - 1 (0),

residual-monitoring or sampling is interrupted (continued) after the k-th residual

sample, r(k), is observed. Alternatively, the stopping rule may be defined by another

sequence of functions W - (0),(l;r(l)),..., (k;r(l),...,r(k)),...), where

*(kr(l),...r(k))- 1 indicates that residual-monitoring has not been interrupted up to

and including time (k-i) but will be interrupted when residual samples r(l),...,r(k) are

observed [151. The functions 4 and ' are related to each other in the following way:

4 k-I

S-0

with (0)- (0).

The terminal decision rule is a sequence of functions,

D-(d(0),d(l;r(1)),...,d(k;r(1),...,r(k)),...). The function d(k;r(l),...r(k)) maps the



.' xo-

residual samples r(l),...,r(k) Into the terminal decision set D(k) and represents the

decision rule used to arrive at a failure identification if sampling is interrupted at time

k.

If (i,i') is the true state of nature and If the sequential decision rule (0,D) is used,

then the total expected cost, i.e. the expectation of the sum of the delay and terminal

decision costs is

,: ,,]- ., 1 (k;r(1),...,r(k)) [c(k,(i,-r)) +L(k;(i,),d(k;r(1),...,r(k))) 1)
k-O

where E,, denotes the expectation given that (i,r) is true. The Bayes Sequential

Decision Rule (BSDR) with respect to. & is defined to be the sequential decision rule

(4O,D*) that minimizes the sequential Bayes risk Us(O,D) which is given by

U*(4,D) -E U(i ),(4,D)]}

" - ZP(i,T)U[(i,r),(I,D)J
i-,-I

Now we discuss an interpretation of the sequential Bayes risk for the FDI problem.

Let us define the following notation
'-I'" F( ) B,_ {(k;r (1),..,(k)))

Dm D(k)
kB-O

.- i(k,a) - [[r(1),...,r(k)l: *(k;r(I),...,r(k))-1, d(k;r(1),...,r(k))-8l, 5ED

:I
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Pr((kA)Ii) - f-OW P~()..r(k ,) Ir(1,..r)

whore Pp(r) Is the probability of stopping to declare a failure before the failure occurs

at ti.e. the probability of false alarm when a failure occurs at time r or later. D is

the set of terminal decisions for all times. § (k.8) is the region in the sample space of

the first k residuals where the sequential rule (6,D) yields the terminal decision 8.

Clearly, the S(k,8)'s are disjoint sets with respedt to both k and a. The expressions

16i,r) and P((i,7),fi) are respectively the conditional expected delay and the

conditional probability of declaring a, given a type i failure has occurred at time r and

no false alarm has been signalled before this time. P((i,r) ,B) is called the generalized

cross-detection probability. Using these quantities the sequential Bayes risk can be

written as

U,(4',D) - p i)(p~1+lP() citir+~L(,)8P(i')a1

• -.I c- l 1

Equation (1) indicates that the sequential Bayes risk is a weighted combination of

the conditional false alarm probability, expected delay to decision and cross-detection

probabilities, and the optimal sequential rule (4O*,D*) minimizes such a combination.

From this vantage point, the cost functions (L and c) and the prior distribution (a)

act as the weighting coefficients and hence serve as a basis for specifying the tradeoff

relationships among the various performance issues. The advantage of this approach
4
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is that only the total expected cost instead of every individual performance issue needs

to be considered explicitly in designing a sequential rule. The drawback, however, lies

r: in the need to choose a set of appropriate cost functions (and the prior distribution)

when the physical problem does not have a natural set, as it doesn't in general. In

this case, the Bayes approach is most useful with the cost functions and the prior

distribution considered as design parameters that may be adjusted to obtain an

acceptable design.

The optimal terminal decision rule D" can be easily shown to be a sequence of

fixed-sample-size tests [151. The determination of the optimal stopping rule 0* is a

dynamic programming problem [221. The immense storage and computation required

make 0" impossible to compute, and suboptimal rules must be used.

Despite the impractical nature of its solution, the BSDP provides a useful

framework for designing suboptimal decision rules for the FDI problem because of its

inherent characteristic of explicitly weighing the tradeoffs between detection speed and

accuracy (in terms of its cost structure). A sequential decision rule specifies a set of

sequential decision regions §(kB), and the decision regions corresponding to the

BSDR yields the minimum risk. From this vantage point, the design of a suboptimal

rule can be viewed as the problem of choosing a set of decision regions that would

* yield a reasonably small risk. This is the essence of the approach to suboptimal rule

design that we take in this paper and describe next.

I

I : - • - - :" -' . . . | . . .. .. . '
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2. DESIGN OF1 MUOPTIMAL RULES

81 Buab$lmI 3 ulee Bamod * the M5DR

The Sling Window ApproxiOation

The immense computation associated with the BSDR is partly due W the increasing

number of possible failure times that must be considered as time progresses. The

remedy for this problem is the use of a sliding window to limit the number of failure

onset times to be considered at each time. The assumption made under the sliding

window approximation is that essentially all failures can be detected within W time

steps after they have occurred, or that if a failure is not detected within this time it

will not be detected in the future. Here, the window size W is a design parameter,

and it should be be chosen long enough so that detection and identification of failures

are possible, but short enough so that implementation is feasible [221.

The sliding window rule (Ow,DW) divides the sample space of the sliding window

of residuals r(k-W+l),...,r(k), or equivalently, the space of vectors of posterior

probabilities, likelihood ratios, or log likelihood ratios of the sliding window of faire

hypotheses into disjoint time-independent sequential decision regions So,Sn,..., *N. Bre,

N - M if no failure time indication is involved in the terminal decision, while N -MW

4I if a failure time estimate is also required. Because the residuals are assumed to be

Gaussian variables with variances that do not depend on the hypothesis, it is eay to

check that an equivalent set of sufficient statistics is given by [20,231

4
A (k) - [WO0(k),...,IA 'w-1 (k)]

where for 06"aW-1

IA
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A,(k) - (k; 1'

EdM
A,,, )-

I ";I 00-0

Here a indexes the possible failure onset times measured relative to the present time

k (i.e. a corresponds to a failure onset at time k-w). The quantities A(k;i,o) differ

only by an unimportant constant from the log-likelihood ratios for each hypothesis

versus the no-fail hypothesis. The sliding window decision procedure operates as

follows. At each time k;OW, we form the decision statistics A(k) from the window of

residual samples. If A (k) E S,, for i-1,...,N, we stop sampling to declare 8j; otherwise,

A (k)E So and we proceed without making any immediate decision. The Bayes design

problem is to determine a set of regions S;,SI,... ,S; that minimizes the corresponding

sequential risk UW(Si)) (the expression for which we will describe shortly). This

represents a functional minimization problem that is generally very difcult to solve.

A simplification of this problem is to constrain the decision regions to take on special

shapes, Si(O, that are parameterized by a fixed dimensional vector f of design

variables. A typical choice for these parametrically-specified regions might be in

terms of the relative ordering of the sizes of the L(k;i,r) and a set of threshold levels

which correspond to the components of f (see (3) below). While such a constrained

* structure will lead to a suboptimal solution, the difference between the performance

resulting from using the best constrained solution and that achieved by the optimal

will be small if the constrained structure is chosen carefully. Furthermore, it is our

contention that this performance difference will typically be mostly an artifact of the

idealized problem formulation rather than a reality. That is, the unconstrained

I"
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* . problem seeks to find the best boundaries between decision regions, while the

constrained problem Axes the boundary shapes (e.g. straight lines of polygonal

boundaries). Given that the residual statistical model used to define the problem is

* subjected to error, the extra drop of performance resulting from being able to 'fine

tune' the boundary shapes will generally be dwarfed in the uncertainty arising from

modeling errors.

In the remainder of this paper we focus our attention on a special set of

parameterized sequential decision regions, because they are simple and they serve well

to illustrate that the Bayes formulation can be exploited, in a systematic fashion, to

obtain simple suboptimal rules that are capable of delivering good performance.

These decision regions are:

S(j,t) - { A(k): A (kjtt) > f(j,t),

e - I Gj,t) [A (kj,t)-f(j,t)] > ,' - (i,s) (A (k~i,s)-f(i,s)I, (i,s) - (j,t) }
(3a)

S(,-) - a A(k): A(k;i,s) < f(i,s), i-l,...,M, s-O,...,W-I
(3b)

where S(j,t) is the stop-to-declare-(j,k-t) region and S(O,-) is the continue region. See

Figure I for a pictorial representation of the structure of (3) in the case where there

are only two failure hypothesized failure (j,k-t) and (ik-s). Generally, the a's may

be regarded as design parameters, but here, e(j,t) is simply taken to be the standard

deviation of A (kj,t).

To evaluate UW(f), the Bayes risk due to the use of (3), we need to determine the

set of probabilities, Pr(A(k)ES(j,t),A(k-1)ES(O,-),...,A(W)CES(O,-.) i,vi, kAlW,

j-i1,...,M, t-0,...,W-1, which, indeed, is the goal of many research efforts in so-called
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level-crossing problems [24]. As it stands, each of the probabilities is an integral of a

kMW-dimensional Gaussian density over the compound region

S(O,-) x ... xS(O,-)xS(j,t), which, for large kMW, becomes extremely unwieldy

and difficult to evaluate. A variety of approximations and bounds [25-281 have been

developed for the evaluation of quantities such as this. We have not investigated the

utility of any of these for our problem but rather have developed a systematic

approach which is particularly appropriate for the dynamic FDI problem and which

' greatly simplifies the required calculations.

As a first step in this process, we reduce the dimension of the decision statistic

AW(k) from MW to M. Specifically, we will base our decision process solely on the

values of the log-likelihood ratios for each of the M failures modes assuming an onset

time precisely at o-W-1, i.e. the beginning of the window. Since we are not

estimating failure time in this case, the terminal decision to be made is simply the

identification of the failure modes. The rational behind this simplification has several

aspects. First, in many applications, such as the aircraft sensor FDI problem [161 and

the detection of freeway incidents [211, where the failure time need not be explicitly

identifies, the failure time resolution power provided by the full window of decision

statistics is not needed. Furthermore, even if failure onset time information is

desired, resolution of this time within a block of length W may often be sufficient. If

not, one can imagine a two-level decision-making structure in which one first

determines the failure type (using the procedure to be described) and then estimate

the onset time. Note that this overall system will have decidedly lower complicity

than one based on simultaneous detection, identification and onset time estimation.
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In assuming the utility of the approach just described one must make sure that the

resulting decision algorithm does not have a signiflcantly elevated probability of

incorrectly identifying the failure type. That is, if a failure of type i occurs at a time

before the end of the window and if a detection occurs, one would want the

subsequent Identification to also be I with high probability. Determining whether this

is the case can be done completely in terms of the failure signatures [291. We can

expect good performance if cross-correlation among signatures for failures of the same

type at different times are significantly higher than the cross-correlations of signatures

corresponding to different failure types. We note that this is often the case in practice,

and in fact an often-used goal for the residual generation process is that of producing

signatures which are orthogonal or which at least lie in trivially overlapping subspaces

[1,221.

A decision rule of the type just described consists of sequential decision regions

that are similar to (3) but are only defined in terms of the M components

"i "A (k;i,W- 1), i-l, ...,M:

* . Aw_ 1(k) - [A(k;I,W-I),A(k;2,W-1),...,A(k;M,W-1)]'
(4a)

Sj - AW-1 (k): A(kj,W-1) > fi,

4'-(j,W-l)[A(k;j,W-l)-fj] > j-1(i,W-l)[A(k;i,W-l)-fi1 , j;,i)
(4b)

So - (Aw-(k): A(kj,W-1) 4 fj, j-1,...M )
~(4c)

where S is the stop-to-declare-j region and So is the continue region.

The risk for using (4) is
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1-1 V-y+I k-V )-I

M M
+ " is(40 [c() (k-v)+L(ij)lPr[A.l_ (k) ESj,.(k-l) ,r)

i"IfI Jk-auzfWv|-

where So is the event defiand below:

So(k) - (Aw-,(k)ES,, ... , A^w-.(W)ESO)

The first term in the expression for UW(0) represents the portion of the risk due to

false alarms. The key expression here is Pr(Aw_.(k)ESj,So(k-i)jo,-), which is the

probability that no detections have been made before time k but that an identification

for a type j failure is made a time k, given that no failure has occurred. The

remaining portion of UW(f)represents that part of the risk corresponding to detection

delay and the possibility of incorrect identification. Here the key quantity is the

probability Pr(Aw-.(k)ESj,S0(k-)ji1,,), which is the probability that a detection is

first made at time k and that the failure is identified as being of type j given that a

type i failure occurred at time rk. The calculation of these probabilities is specified

by the following recursions:

Pr(Aw 1 ,(k+l) E-SjI So(k),i, r.1

f - [fP(Aw- 1(k)ISo(k-),i,) dAw-, (k) 1 X
S.

fp(Aw- (k+1) I Aw- (k), So (k- 1),i,,r) p(Aw_, (k) S0(k- 1),i,r) dAw., (k),
k. >(

k >W (5)
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PrAw-. (k) E S, S0 (k- 1)J il)

- 0Pr(S(k-i)IO,-) P(Aw, (k)ISO(k-),i,r)dAwn(k), J-1,..., M
(6)

with

Pr lAw.(W) ESji,,) - fp(Aw-(W)I ,) dAw-I(W)
Sj (7)

Note that in essence what we are calculating in (S)-(7) are several different level

" crossins probabilities, and as we have just shown, it is these calculations that are the

-" central elements to be determined in evaluating the performance of an hypothesized

detection rule. For M small, numerical integration of (5)-(7) becomes manageable

assuming that the required integrands are available.

Unfortunately, the transition density, p(Aw,(k+l)IAw.l(k),So(k-1),i,T),

* required in (5) is difficult to calculate, because AwI (k) is not a Markov process. In

order to facilitate the computation of these probabilities, we use an approximation for

. ithis transition density obtained by developing an approximate Markovian model for

-" .o the evolution of Aw-1 (k). A simple, but quite useful approximation is an an M-

dimensional Gauss-Markov process (k) that is defined by

K(k+1) - A)(k) + C (k+1)
* (Oa)

cov (k(t) - 8,

(8b)

where A is an MxM constant matrix, and C is a white Gaussian sequence (with

covariance equal to the (MxM) mitrix r) uncorrelated with (k). The conditional

mean of C(k) will be specified shortly. The reason for choosing this model is twofold.
0
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First, just as AW_. (k), 1(k) is Gaussian. Second, k) is Markov so that its transition

density can be readily determined. In order to have the evolution of 1(k) match that

of Aw_1 (k) as closely as possible, we choose the matrices A and r and the conditional

mean E,,(C(k)) of C(k) under the hypothesis (i,,.) so that

E1,,{((k)) k-,,Aw_!(k))
. (9a)

E0,_ {1(k) PWk) }-Eo,_ {Aw-I (k) A'w_ (k))}
(9b)

Eo -(k)'(k+l)) - Eo_. Aw I (k)A'wt, (k+l)I

(9c)
That is, we have matched the marginal density and the one-step cross-covariance of

1(k) to those of Aw_ (k). A straightforward calculation shows that (8)-(I0) uniquely

specify

"" A " VIV,"

(lOa)

r o ;- z',zj'z,1
(10b)

EF.,(C(k+l)) - EirfAw_(k+l)) - AEi,{lAw_I(k))
(10c)

where

" Eo.(Aw-t(k)A'w-t(k)) - 1GV - G't

t-0

W-2ii ][2 "~ Eo,-[Aw-.t(k)A'w-I..(k+l)) " t!VI'

t-.0

I
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0-121 -

EkJw_1k) YOG-V (t), kg-k-W+1-Tr 4 0

w -
).tVZC1g0 t), k - k-W+-r > 0

2-

. Clearly, Zj- exists if the failure signatures i(),...,g,(W-1)J, i- 1,...M, are

linearly independent. This condition is equivalent to the statement that there is

sufficient information in a window of length W to distinguish among all of the M

possible failure modes, assuming that if one of these failures has occurred, it did so in

the beginning of the window. A sufficient condition for A to be stable, i.e. the

magnitude of all its eigenvalues are less than unity, and F be invertible is that either

O or GW_1 is of rank M. (See the appendix for a discussion of the necessary and

sufficient conditions for the invertibility of r and the stability of A.)

As an alternative to the model specification just given it is possible to choose other

dMarkov approximations for Aw.n(k). For example, one could match the n-step

cross-covariance (1 <n < W) instead of matching the one-step cross-covariance as in

(10). The suitability of a criterion for choosing the matrices A and r, such as (9) and

* (10), depends directly on the failure signatures under consideration and may be

examined as an issue separate from the decision rule design problem. Also, a higber

order Markov process may be used to approximate Aw.n(k). However, the increase

In the computational complexity may negate the benefits of the improved

"h - approximation. Finally, we emphasize that the statistics /(k), as we have described it
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here, is not an observable quantity. That is, it cannot be computed from the residuals.

Rather, i(k) is an artificial process introduced in order to obtain approximations for

the calculation of the statistics of Aw_ (k). Later in this section we will describe a

suboptimal test statistics to replace Aw_ I(k) which is computable from the residuals

and which is also Markov.

Using the model we have developed for I(k) we can approximate the required

probabilities by substituting (k) for AW I (k) in the calculations. That is,

'i:":" Pr{Aw-1(k),ESj, 8o(k-l)l i,5'} Pr{/(k) E Sj, So(k-l)lJi,,'}, j-0,1,...,M, k> W

and

Pr((k)ESj,So(k-I)ji,,) - PrISo(k-l) i,,)fp((k)ISo(k-l)i,T)dl(k)

Assuming r-' exists, we have

p(/(k+l) I So(k),i,')

- p((k) ISo (k- l),i,-r)dl(k) 1- 1 x
-" S.

f [ p( Q (k+l) - (l(k+ 1) -A l(k)) I i,,')p (l(k) So (k- 1),i,,') I d1(k)

s. (12)

where p( Q(k)Ii,,) is the Gaussian density of 4(k) under the failure (i.). The key

simplification that results from using the Markovian approximation is

p(I(k+l) 1(k),Bo(k-l),i,,r) - p((k+l)) 1 (k),ir)

- p((k+1)-Kk+ 1)-A A(k) I i,,)

Because of this, the integrands in (12) are readily obtained (the first comes from the
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previous step of the recursion) and thus the integrals in (12) can be calculated more

eily.

In the event that r is not invertible, the density for 4(k) is degenerate and (12) Is

more difficult to evaluate. As discussed in the appendix, the invertibility of r is

related to the distinguishability of the M failure modes. Consequently, in any well-

posed failure detection problem, W will be chosen so that the invertibility of r is

assured.

Non- Window Sequential Decision Rules

Here we describe another simple decision rule that has the same decision region as

the simplified sliding window rule (4), but the vector, z, of M-dimensional statistics is

obtained differently as follows:

z(k+l) - Az(k) + Br(k+l)
(13)

where A. is a constant stable M x M matrix, and B is a M x m constant matrix of rank

M. Unlike the Markov model (k) that approximates Aw. (k), z(k) is a realizable

Markov process driven by the residuals. The advantages of using z(k) as the decision

statistics are: 1) less storage is required, because residual samples need not be stored

as necessary in the sliding window scheme, and 2) since z(k) is Markov, the required

probability integrals are of the forms (11) and (12) so that the same integration

algorithm can be directly applied. Of course, z(k) is a suboptimal decision statistic.

One could, if desired, use a higher-order model for z(k) so that it more nearly equals

Aw-I (k), but the added computational complexity may negate the advantages.
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U In order to form the statistics z(k), we need to choose the matrices A and

When the failure signatures under consideration are constant biases and M4fim, i can

simply be set to equal GOV" (provided o Is of rank M), and I can be chosen to be

al, where O<a<l. Then, the term ir in (13) provides the correlation of the

residuals with the signatures as in (2), while the time constant a-1 characterizes the

memory span of z(k) just as W characterizes that of the sliding window statistics.

More generally, If we consider the case where failure signatures are not constant

biases, rank(G0) <M, or re<M, the choice of A may still be handled in the same way

as In the previous case, but the selection of i is more involved. With some insights

into the nature of the signatures, a reasonable choice of B can often be made in order

to have distinct components of z(k) respond primarily to the corresponding failure.

To illustrate how this may be accomplished, we will consider an example with two

failure modes (M -2) and an m-dimensional residual vector. Let
Z- p

• | ~s, (k-,r) -

- 2(k-r) - p2 (k-i+l)

That is, g is a constant bias, and g2 is a ramp. If fi and 82 are orthogonal a simple

choice of B is available:

This choice may often be acceptable even when 01'z2*0. It is clearly not of any use

when fi1 and 0 2 are multiples of the same vector 8, or when they are scalars

(corresponding to m-1), as the rank of B is less than 2. In these cases we can

: , .- .I -.- -... _ -. ...... . . . - -- - - . - , , ., -. i
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consider processing groups of residuals. For example, suppose we batch process every

two residual samples together, i.e. we use the augmented residual sequence

f (k) - [r(2k-l),r'(2) , i-1,2,.... In this case we can set B to be

Thus, this B is of dimension M x 2m and has rank M (-2). The first and second rows

of B captures the constant bias and ramp nature g, and g2 , respectively. The use of

the modified residual f(k) in this case causes no adverse effect, since it only lengthens

slightly the interval between times when terminal decisions can be made. Clearly one

can consider further augmentation and batch processing of the residuals, and in

* general the logical choice of B is one in which each row of B contain in sequence the

initial values of the corresponding failure signature. In this case the mean values of

z(k) will exactly equal that of Aw_1 (k) for a number of time steps following a failure

equal to the level of augmentation used. The utility of this approach clearly depends

on the temporal structure of the failure signatures. For problems where the signatures

vary drastically as a function of the elapsed time and the distinguishability among

failures depends essentially on these variations, the effectively of using z(k)

diminishes. In such cases the sliding window decision rule should provide better

performance, although it should be noted that in this case one would typically have to

use a comparatively long window in order to obtain an adequate degree of

distinguishability.

6Q
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3.2 Risk Ealuation

An algorithm based on 1-dimensional Gaussian quadrature formulas [30,311 has

been developed to compute the probability integrals of (11) and (12) for the case

M-=2. (It can be extended to higher dimension with an increase in computation.)

The details of this quadrature algorithm is described in 1221. Its accuracy has been

assessed via comparison with Monte Carlo simulations (see the numerical example in

Section 4). With this algorithm we can evaluate the performance probabilities and

risks associated with the suboptimal decision rules described above.

In the absence of a failure, the conditional density for 1(k) (12) has been observed

in numerous examples to essentially reach a steady-state at some finite time T> W.

Assuming this is the case, we have for kOrlT,

Pr l(k) ESjIS(k-1),0,-) -
(14)

Pr([(k),ESj, (k-1),ESo,...,()E So ISo (r -l),i, - bj(k-r Ii) (15)

That is, once steady-state is reached, only the elapsed time since failure is

important. Generally, failures occur infrequently, and decision rules with low false

alarm probability are employed. Thus, it is reasonable to assume 1) p<< , i.e.

(-p)-=1, and 2) Pr{S0(T)I0,-)'1. The sequential risk associated with (4) for

M -2 can be approximated by

2 2
Uw (f) -- PFLF + (I-PF) Za(i) Y [c(i) + L(ij)] bj(tI i)

I-I j-1 1-0 (16)

where

Unfortunately, we have not been able to prove such convergence behavior using elementary
techniques. More advance function-theoretic methods may be necessary.

6e
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(1-p)(1-bp)

Pp is the unconditional false alarm probability, i.e. the probability of one false alarm

over all time.

Next, we seek to replace the infinite sum over t in (16) by the finite sum up to

t-Q plus a term approximating the remainder of the infinite sum. Suppose we have

ben sampling for Q steps since a failure occurred. Define

Pi0 1i) - Pr ((t)ESjI So(t-l),i,O), j-0,1,2

If we stop computing the probabilities after Q, we may approximate

Ptijli) = PQOji), j-0,1,2, t>Q

(17)

That is we assume that after a detection delay of Q steps the condidonal probability of

detection at any time given no detection at any previous time reaches a constant

steady-state value. This is the same as assuming that beyond Q steps of delay, the

additional detection delay is exponentially distributed. This assumption is reasonable

for constant failure signatures or signatures that reach steady-state. While the

assumption may not be valid for signatures which continue to vary, the effect of this

approximation is generally quite small, since for all i and j one typically can choose Q

* so that

bj(tli) =: 0, t>Q

* That is, for each failure mode the probability of a detection delay greater than Q steps

Is negligible.

I
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Substituting (17) in (16), we obtain

2 2

uW0- P L, + (i-Pr) a(i)c(i) + IL(ij)P ij)]
i,-I i-I (18)

where

t1  2 itb,(I)+Qb0(QIi)+
i-1,-0 I-PQ(Oi) (19)

P(ij)- Jbj(tJi)+bo(QJi)

..-...o IPQ(Oli) (20)

Here, % is the conditional expected delay to decision, given that a type i failure has

occurred, and P(jI i) is the conditional probability of declaring a type j failure, given

that failure i has occurred. From the assumption that Pr(So(T)I0,-)I' and the

steady-state condition (14), it can be shown that the mean time between false alarms

is simply (I-be) - . Now all the probabilities in (18)-(20) can be computed by using

our quadrature algorithm. Note that the risk expression (18) consists only of finite

sums and it can be evaluated with a reasonable amount of computational effort. With

such an approximation of the sequential risk, we are able to consider the problem of

determining the decision regions (i.e. the thresholds fl's) that minimizes the risk.

It should be noted that we could consider choosing a set of thresholds that

minimizes a weighted combination of certain detection probabilities (P(ij)), the

expected delay t), and the mean time between false alarms (1-b 0)- I . Although

such an objective function will not result in a Bayesian design in general, it is a valid

design criterion that may be useful for some applications.

...4 . ............. . . ., _ .-. .= _ -. .L _ , . - • . - • : • _ • _ _ _ : " . . .. , "
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3.3 Risk Mniaimmtlom

The risk minimization has two features that deserves special attention. First, the

sequential risk is not a simple function of the threshold f, and its derivatives with

respect to f Is not readily available. Second, calculating the risk is a computationally

intensive task. Therefore, the minimum-seeking procedure to be used must require

few function evaluations, and it must not require derivatives. For these reasons we

chose to use the Sequence-of-Quadratic-Programs (SQP) algorithm studied by

Winfield [321 to solve this problem, because it does not need any derivative

information and it appears to require fewer function evaluations than other well-

known algorithms [321. Furthermore, the SQP is simple, and it has quadratic

convergence. Very briefly, the algorithm consists of the following. At each step of

the iteration, a quadratic surface is fitted to the risk function locally using the

preceding guesses at the optimal value of f and the corresponding risk function

evaluations. The resulting quadratic model is minimized over a constrained region

(hence the name SQP). The risk function is evaluated at this minimum and is used in

the surface fitting of the next iteration. The details of the application of SQP to risk

minimization is reported in [221.

0,.

Se

S
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4. NUKRICAL IXAMPL

Now we discuss an application of the suboptimal rule design methodology

developed In this paper. We consider the detection of two possible failure modes

(without identifying the failure time). The residual is a 2-dimensional vector, and the

vector failure signatures, gi(t), 1-1,2, as functions of the elapse time t are shown in

Table 1. The signature of the first failure is simply a constant vector. The first

component of g2 (t) is a constant, while the second component is a ramp. We have

chosen to examine these those types of signatures because they are simple and

describe a large variety of failure signatures that are commonly seen in practice. For

simplicity, we have chosen V, the covariance of r, to be the identity matrix.

Both a simplified sliding window rule (that uses Aw-i) and a rule using the

Markov statistic z were examined. The parameters associated with Aw.t, 1 and z are

shown in Table 2, and the cost functions and the prior probability are shown in Table

3. To facilitate discussion, we introduce the following terminology. We refer to a

Monte Carlo simulation of the sliding window rule by SW, a simulation of the rule

using the Markov statistic z as Markov Implementation (MI), and a simulation of the

non-implementable decision process using the approximation I as Markov

Approximation (MA). (All simulations are based on 10,000 trajectories.) The

" •notation Q20 refers to the results of applying the quadrature algorithm to calculate the

various performance indices of the sliding window rule while using I to approximate

Aw.. (12).

The results of SW, MA, and Q20 for the thresholds [8.85, 12.051 are shown in

Figures 2-6 (see (15) for the definition of notation). The quadrature results Q20 are
6

.. V.eA ~ -
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very close to those obtained by Monte Carlo simulations for MA, indicating the

excellent accuracy of the quadrature algorithm. In comparing SW with MA, it is

evident that the Markov approximation slightly under-estimates the false alarm rate of

the sliding window rule (SW). However, the response of the Markov approximation

to failure is very close to that of the sliding window rule. In the present example,

Aw- 1 is a 7-th order process, while its approximation I is only of first order. In view

of this fact we can conclude that I provides a very reasonable and useful

*. approximation of Aw I.

*The successive choices of thresholds by SQP for the sliding window rule are
plotted in Figure 7. Note that we have not carried the SQP algorithm so far that the

successive choices of thresholds are, say, within .001 of each other. This is because

near the optimum the expected risk is relatively insensitive to small changes in f.

This implies that fine scale optimization is not generally worthwbile. This conclusion

is supported by the fact that the residual signature models used in designing failure

detection systems are typically idealizations, and thus minor improvements in Bayes

risk is generally an artifact of the mathematical formulation. Furthermore, it should

be remembered that the use of the Bayes formulation is simply for the purpose of

providing a mechanism for determining high-performance decision rules, and thus the

precise optimization of the Bayes risk is not the central issue. In fact, the cost

parameters L, c, &, and W should be used as design parameters. In the event that the

optimal thresholds resulting from a particular choice of Bayes risk do not provide the

_@ desired detection performance, the design parameters may be adjusted and the SQP

may be repeated to get a new design. A practical alternative method is to make use of
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the list of performance Indices (e.g. P(ij)) that are generated in the risk calculation,

and choose a pair of thresholds that yields the desired performance tradeoff.

The performance of the decision rule using Aw_ 1 and z as determined by SQP are

shown in Figures 8-12. (The thresholds for Aw-1 are [3.85, 12.05] and those for z are

[6.29, 11.691.) We note that MI has a higher false alarm rate than SW. The speeds of

detection for the two rules are similar. While MI has a slightly higher type I correct

detection probability (Ibl(s l)) than SW, SW has a consistently higher type 2
8--0

* correct detection probability (yb 2(812) than MI. By raising the thresholds of thei-: 8-*0

rule using z appropriately, we can decrease the false alarm rate of MI down to that of

SW with an increase in detection delay and slightly improved correct detection

probability for the type 2 failure. Thus the sliding window rule is slightly superior to

the rule using z in the sense that when both are designed to yield a comparable false

alarm rate, the latter will have longer detection delays and a slightly lower correct

detection probability for a type 2 failure. In view of the fact that a decision rule using

z is much simpler to implement, it is worthy of being considered as an alternative to

the sliding window rule.

In summary, this example illustrates the utility of our approach. The quadrature

0 algorithm has been shown to be accurate and useful, and the Markov approximation

of Aw_1 by I is a valid one. The simplicity and usefulnes of the SQP algorithm have

also bean demonstrated. Finally, the Markov decision statistic z has been shown to be

a worthy alternative to the sliding window statistic Aw- t .

L . . .... . ...- - -
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5. CONCLUSION

A computationally feasible methodology based on the Bayesian approach has been

developed for designing suboptimal sequential decision rules for FDI. This

methodology was applied to a numerical example, and the results indicate that it is a

potentially useful design approach.

I
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. APPUNDIX

Theorem

Consider the Gauss-Markov process I(k) specified by (8)-(10) in Section 3.1. r von

B[Aw-I(k)A'w-.(k)-%o> 0, A has at least one unity eigenvalue and F is semi-

positive definite if and only if there exist M-vectors apO and p0 such that

a'G- P'G+,, i-0,...,W-2
(A1)

a'Gw-1 - 0 (A2)

and

0,G I0 (A3)

Proof

Let

i-,-{,,_,,+i)J[Aw_<,I(k),Aw_,(k+)1 - 1

Using the transformation T

T - _ 1

we obtain

TZT'4 -J

Since T is full rank and %o>0, I and r are semi-positive definite if and only if there

are non-zero M-vectors a and 8 such that

4i



- 35 -

a'Aw-t (k+1) -- P'Aw_ (k)
(A4)

Recall

W-1
A W_ W t- G$V-'r(k-W+l+s)

3-

Therefore, (A4) is equivalent to the conditions (AI)-(A3). From (8), we obtain

10 - AXoA'+ r

It follows that A only has eigenvalues of magnitudes less than or equal to unity, and it

*-: has at least one unity eigenvalue if and only if r is semi-positive definite.

Q.E.D.

Suppose all signatures vanish for elapse times greater than W-1, i.e. gj(t)-O, for

t>W-l, and i-,...M. Then, (AI)-(A3) are equivalent to the condition that it is not

*possible to distinguish between a failure occurring at a certain time and failures

occurring one time step earlier or later. Moreover, (AI)-(A3) indicate that only a

. special class of failure signatures would satisfy this indistinguishability condition for all

value of W. Generally, it is possible to choose a sufciently large W so that this

situation is avoided.

4,

1-
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.( - ,2g(t) " 25+.2StJ' V -[ J

Table 1. Failure Signatures.

[1 8.sJ 1.826 .051 [2.32 2.011
- 18.5 14.75]' A- 1.116 .8371' r - 12.01 4.58j

[.875 0 -

Table 2. Parameters for Aw_.I, and z.

c-c - 1

L(1,2) - L(2,1) - 10, L(Il) - L(2,2) - 0, L - 9

T- 8, - , p-.0002

• (ii.) - .Sp(1-p)' - n, i - 1,2

Table 3. Cost Functions and Prior Probability.

d'

oI
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