
D-AL26 858 ALTERATION AND IMPLEMENTATION OP THE CP/M-86 OPERATING 1/2
SYSTEM FOR A MULTI-USER ENYIRONMENT(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA T V ALMOUIST ET AL.

UNCLASSIFIED DEC 82 F/G 9/2 W

smhhhomhh shI
smhhhhhhhhhhh
smhhhhhhhhhhh
smhhhhhhhhhhh
EhohhhhhhmhhhE
mhhhhhhhhmhhhE

- -- -

,-.s I

. k.1-.

_ _ _ _ 1321 1j .

-iU
- -

111W

:!I..
-lll IIIIIIIHn

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

... .

. .- -_-
-

.- --
,

. -
"..

. . . .

NAVAL POSTGRADUATE SCHOOL
*Monterey, California

04

DTICS LECTE
APR1 5198 1

THESIS A

ALTERATION AND L'VLEMENTATION OF THE CP/M-86
OPERATING SYSTEM FOR A MULTI-USER ENVIRONMENT

by

Thomas V. Almquist

and

David S. Stevens

C-,
December 1982

,LU
Thesis Advisor: U. R. Kodres

LAAs

~Approved for public release; distribution unlimited

UNCLASSIFIED
s1CU11m0TV CLAIVICATiN OV TO$i WAG (01640 000 __ _ _ __ _ _ _

REPORT DOCUMANTATION PAGE a I A STIUCNSa. .. v~ sccar.,m *l70 COM4PLZTh(i FORM
V. IAWPORT WNDERm GOV? J14CIESSN '. I-1cl IEVTS CATALOG 1UfNR

4. TITLE (oo amimio) $. TyPE OF 019PORT 6 PCONOO CovlIto

Alteration and Implementation of the Master's Thesis;
CP/M-86 Operating System for a Multi- D cuember 1982

User Environment

7. AuiTNO~q) a. CONTRACT On GRAQT N64,eta[(s)

Thomas V. Almquist
David S. Stevens

-I. PROGRAM IELCMNT PROJECT TAS
9. OCRO9MMING OftaWIZATIO0 MN W AND A001111911111OR UNIT.PGCT TuM AQA06lA & WORIC NIT N4iumeanlls

Naval Postgraduate School
Monterey, California 93940

01. CONTROLLING OFFICE HANS AlNS AOOISS II. REPORT OATS

Naval Postgraduate School December 1982

Monterey, California 93940 Is.Mumor PAGES
160

is. -OweTOR CVNG AGENCY MAUI A AOORESI@(i dWIMM f.- C&I;Of Offloo) IS. SECURITY CLASS. (el le 01 6")

Naval Postgraduate School Unclassified
Monterey, California 93940 5 AcSIS$ICATIw4o1ooWnGRA0oI

I5 OSiISuTION STATEMENT (o thi Rfteof)

Approved for public release; distribution unlimited.

17. OISTRINUTION STATEMENT (e aeeeaee mie 9o 5b. II Ufimme Pen Ripoff)

t9. SUPPLEMENTARY NOTES

It. (KY wOROI ecenmtue w ifee 00 I 08W ae -Iweffet or 161 OmN1b)

CPIM-86, multi-user CPIM-86 system, table-driven CPIM-86 BIOS,
AEGIS "signal processor" emulation, magnetic bubble memory,
REMEX Data Warehouse.

20. ASTRIACT (C- 1e, O . . - ,- 0 Id I0 NO O---;l p ii-in-t bFp Me"0. -1116n

CP/M-86 is a single user microcomputer operating system
developed by Digital Research. This thesis provides a multi-
user "protected" CP/M-86 based disk sharing environment consisting
of four Intel iSBC 86/12A single board computers, a MBB-80 bubble
memory, and the REMEX Data Warehouse 3200 memory storage unit.
The REMEX houses a 14 inch Winchester hard disk and two flexible

DO , 147,, 1473 o I Nov 66 s OBSOLETE UNCLASSIFIED
a C rv C1.A$ 1 "1, T 0 I lr- Date Ir. CLAI


~~~ <7 7_ _.7.*.

NNW9V 6L&0W*#&"f 00 ws Naese* o fn Some.

(continuation of abstract)

floppy disk drives providing in excess of 20 megabytes of data
storage capacity. The major objective in the design of this
system was to create a table-driven CP/M-86 Basic Input/Output
System that could be quickly and easily reconfigured to adapt
to any new hardware configuration. Once the system was operational,
the REMEX hard disk could then serve as a "single processor"
emulation for the AEGIS system. By making direct calls to the
appropriate read/write routines, stored "radar data" could be
retrieved from the hard disk for use by the other system processes.

Acoesslon For

FTIS GRA&I
DTIC TAB Q
Unannounced 0
Just itfiat io

By
Distribution/

Availability Codes

Avail and/or
:Dist Spocial

DD Forin 1473 UNCtASlFIFr'

z/ . 0102-A14-666i g4cV0" 4AMPI6."e or tool$ 044,robo O0eA 6^900091



Approved for public release; distribution unlimited

Alteration and Implementation of the CP/M-86
Operating System for a Multi-user Environment

by

Thomas V. Almquist
Lieutenant Commander, United States Navy

B.S.A.Z., North Carolina State University, 1971

David S. Stevens
Captain, United States Army

B.S.E., United States Military Academy, 1974

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1982

Authors:

Approved by: ..... .. . . . . . . . .
Thesis Advisor

Second Reader.. . --_--. , ----------
Chairman, Department of Computer Science

Dean of Information and Policy Sciences



ABSTRACT

*-CP/M-86 is a single user microcomputer operating system,

developed by Digital Research.- , This thesis provides a

multi-user protected CP/M-86 based disk sharing
m environment consisting of four Intel ISBC 86/12A single

board computers, a MBB-80 bubble memory, and the REMEX Data

Warehouse 3200 memory storage unit. The REMEX houses a 14

inch Winchester hard disk and two flexible floppy disk

drives providing in excess of 20 megabytes of data storage

capacity. The major objective in the design of this system

was to create a table-driven CP/M-86 Basic Input/Output

System that could be quickly and easily reconfigured to

adapt to any new hardware configuration. Once the system

was operational, the REMEX hard disk could then serve as a

signal processor" emulation for the AEGIS system. 3y

making direct calls to the appropriate read/write routines,

stored radar data- could be retrieved from the hard disi

for use by the other system processes.

.44

4:

Il



_77

DISCLAIMER

Many terms used in this thesis are registered

trademarks of commercial products. Rather than attempt to

cite each individual occurrence of a trademark, all

registered trademarks appearing In this thesis will be

listed below, following the firm holding the trademark.

Intel corporation, Santa Clara, California:

Intel MULTIBUS INTELLIC MDS
Intel 8080 Intel 8086 iSBC 86/12A
iSBC 202 iSC 201

* Pacific Cyber/Metrixs Incorporated, Dublin, California:

Bubble-Tec Bubbl-Machine MBB-Bubbl-Board

Digital Research, Pacific Grove, California

CP/M CP/M-80 CP/M-86
MP/M

E-CELL-O Corporation, Irvine, California

REMEX Data Warehouse

L

K.

"= • mm =' ' mlaem d in= a~aeund ~ ml "~lon dmd ~ d m m~mm = ' " " . ..



TABLE OF CONTENTS

I * INTRODUCTION ... e.. .. . ....... • ........... 11

A. 3ACKGROUND ............. .................... 11

3. PURPOSE .... . ..... • ................... . 11

II. CP/M-86 .......................... . .. . ......... 15

A. THE CP/M-86 OPERATING STSTEM ................. 15

3. LOADING CP/M-86 .............................. 16

C. BOOTSTRAPPING TE ISBC 86/12A ................ 18

D. THE DISK PARAMETIR TABLE .................... 19

E. THE STANDARD BIOS ............ ........... . 23

F. BIOS ALTERATION ......................... 26

III. HARDWARE ..................... ... .. . .. . .. . 31

A. GENERAL HARDWARE CONFIGURATION ............... 31

3. INTEL 86/12-A SINGLE BOARD COMPUTER ........... 32

C. MBB-80 BUBBLE MEMORT STORAGE DEVICE .......... 33

1. General Description ...................... 33

2. Read/Write Logic ......................... 34

3. CP/M-86 Compatibility ............... 0.... 35

D. REMEZ DATA WAREHOUSE ......................... 38

1. General Description ...................... 38

2. Command Packet Organization .............. 40

3. Muitibus Interface Card Assembly ......... 44

4. Command Packet Execution ................. 45

E. ICS-ee INDUSTRIAL CHASSIS .................... 46

6



, ,_ .. ..... - '-.. .... .. ... . . . .. . . . .. . .. . ... . . . . . . . . ."_L :L i'/

IV. STSTh DIVRLOPMENT ..... ........ ..... . ....... 49

A. INITIAL EFFORTS . ........... . ............... .. 49

1. Program Development System ............... 49

2. Vetiing MEB-* Operations ............... 51

3. Modification of BIOS for Use in ICS-89 ... 52

4. REMEI Lov Level Routines ................. 53

5. Table Driven BIOS ........................ 56

3. INTERFACING THE REMEZ DATA WAREHOUSE ......... 59

1. Floppy DisK Drive ........................ 59

2. Hard Disk ................. .. ........ ... 65

3. Initial Multi-iSBC 86/12A System ......... 70

C. STNCHRONIZATION AND PROTECTION ............... 72

1. Synchronization of Read/Write Operations . 72

2. Common Memory Read/Write Routines ........ 76

3. Disic Write Protection .................... 79

D. SUMMARY 07 SYSTEM GENERATION ................. 81

1. System BICS Creation ..................... 81

2. Setting up the MBB-80 in tne MDS System .. 83

3. System Initialization .................... 84

V. RESULTS kND CONCLUSIONS .......................... 86

A. GENERAL RE4JLTS ........... . e.............. ... 86

3. EVALUATION OF THE IMPLEMENTATION ............. 8?

C. RECOMMENDATIONS FOR FUTURE WOR[ .............. 91

APPENDIX A. PROGRAM DESCRIPTIONS ..................... 94

APPENDIX 3. PROGRAM LISTING OF CPMBIOS.A86 ........... 101

kPPENDIX C. PROGRAM LISTING OF CPMMAST.CFG ........... il

7



... ... ... ........ .. .. .. .... .. ... .

AL.

APPENDIX D. PROGRAM LISTING OF MRBODS.A6 ........... 114

APPENDIX E. PROGRAM LISTING OF RXFLOP.A86 .......*..... 122

APPENDIX G. PROGRAM LISTING OF RIEARD.A86 ............ 127

APPENDIX G. PROGRAM LISTING OF CPMMAST.DhJ ........... 136

APPENDIX E. PROGRAM LISTING OF CPMMAST.LIB ........... 137

APPENDIX I. PROGRAM LISTING OF INTELDSL.A86 .......... 141

APPENDIX J. PROGRAM LISTING OF LDCPM.86 ............ 144

"APPENDIX K. PROGR&M LISTING 01' LDBOOT..A86 ......... 147

APPENDIX L. PROGRAM LISTING OF BOOT.A86 .............. 150

APPENDIX M. PROGRAM LISTING OF LOGIN.A86 ............. 152

APPENDIX N. PROGRAM LISTING OF STNC.A86 .............. 155

LIST OF REFERENCES .............. 158

INITIAL DISTRIBUTION LIST .............................. 159

iB



LIST OF TABLES

3.1 Logical Hardware Configuration .................. 32

3.2 REMEX Hard Disk Sector Selections ............... 39

3.3 REMIX Error Codes ................................ 42

5.1 REMIX Assembly Times in Seconds ................. 87

5.2 MP/M Assembly Times in Seconds .................. 87

5.3 REMEX Transfer Times in Seconds ................. 89

5.4 MP/M Transfer Times in Seconds .................. 90

5.5 REMEX Winchester Disk Siew Times in Seconds ..... 91

°S



7 7 77. 7 - .. _.. * .. t'*

LIST OF FIGURES

2.1 Steps for Creating CPM.SYS ..................... 16

2.2 Steps for Creating Boot LOAD1R.CMD ............. 17

2.3 Format of Disk Definition Statement ..... ....... 20

2.4 Memory Map of the Standard BIOS ................ 24

2.5 Path of CCP or 3DOS Function Call
In Standard BIOS ................................ 25

2.6 Memory Map of Table-Driven 3IOS ................ 27

2.7 Path of CCP or BDCS Function Call
in Table-Driven 3IOS ........................... 29

3.1 Physical Hardware Configuration ................ 31

3.2 MBB-80 Logical Storage Configuration ........... 37

3.3 Command Packet Description ..................... 41

3.4 REMEX Read/Write Packet ........................ 43

4.1 RDW Read/Write Logic ........................... 55

4.2 Table-Driven BIOS Read Code .................... 57

4.3 BIOS Read Table ................................ 58

4.4 REMEX Floppy Disc Read Packet .................. 62

4.5 REMEX Hard Disi Read Packet .................... 69

4.6 Common Memory Map .............................. 71

4.7 Sequencer Algorithm ............................ 75

4.8 Common Memory Read Operation ................... 77

4.9 Common Memory Allocation ....................... 78

4.10 Login Table .................................... s

4.11 Final Common Memory Configuration .............. 80



" I. X_ _QD!CTI2ON

A. BACKGROUND

One of the most popular operating systems available for

microcomputers today is the family of Digital Research's

CP/M operating systems. They are single user systemrs which

can be configured to interface with nearly any existing

piece of hardware simply by redesigning the Basic

Input/Output System (BIOS) module of CP/M. Since CP/M is a

single user system, protection from other users is not

normally an issue of concern with this operating system.

MP/M, also marketed by Digital Research, is a multi-user

operating system which supports multiprogramming on a

uniprocessor. It is basically an expanded version of CP/M.

However, MP/M provides virtually no protection for user

files and very little protection for memory in the event

that another user's process crashes. Furthermore, when more

than one user is operating under MP/M, system response time

is noticeably increased.

3. PURPOSE

This thesis presents an implementation of CP/M-86 which

will permit multiple users, each with his own

microcomputer, to access the same peripheral devices in a

manner similar to that of the MP/M operating system, but

ii

.4 -" m = .i m r , -- r W - , , ,m m w , ' • ' " -: . . . - - - ' . . .



with increased user protection. The peripherals used in

this implementation are a 32K common memory board, a MBB-80

magnetic bubble memory configured as a floppy disk drive,

and a Remex Data Warehouse memory storage unit consisting

of a Winchester hard disk and two flexible floppy disk

drives. In addition, computer performance is not

compromised since each user has a dedicated INTEL 86/12A

iS3C on which to operate.

The standard version of CP/M-86 requires that only the

BIOS be altered to add additional hardware. While this is

an excellent method to Interface hardware with CPiM, It

requires that the BIOS be rewritten every time the hardware

configuration is changed. This process can become time

consuming and Is definitely prone to errors, thus

discouraging frequent system reconfiguration. Therefore, In

the design of this system, a major goal was to develop a

BIOS which could easily be modified if it was necessary to

convert from one hardware configuration to another.

This thesis was based on work accomplished in two

previous theses. Michael Candelor's thesis entitled

"Alteration of the CP/M Operating System" (Ref. 1)

Initially modified CP/M-86 to interface with the Intel 1201

and 1202 Floppy Disk Controllers. Michael Hictlin and

Jeffery Neufeld, in their thesis "Adaptation of the Magnetic

Bubble Memory in a Standard Microcomputer Environment",

[Ref. 21 interfaced the MBB-80 3ubbl-3oard and the 1202

P1



L Floppy Disk Controller with the CP/M-86 Operating System.

Although Hicklin and Neufeld claimed that their BIOS was

table-driven, it was Nici Hammond who really identified that

the BIOS functions could be truly table-driven [Ref. 3].

This thesis builds on the ideas contained in each of these

previous works and expands upon them to create a more

practical and versatile operating system which provides

increased protection of the user's address space and files.

Once the system was operational, the REMEX har disk

could then be used to emulate the "signal processor"

functions of the AEGIS system. Direct calls can be made to

the appropriate read/write driver routines to retrieve

stored "radar data" from the hard disk for use by the other

emulated processes in the system.

This thesis has been organized into four major sections.

The first section deals with an overview of CP/M-E6 and the

necessary steps required to create a new CP/M-86 system. It

also describes how the BIOS interfaces with the other

modules of CP/M-86 and the peripheral devices. Included in

this section is a description of how the BIOS can be

reconfigured into a table-driven operating system wnich will

permit easy alterations to the 3IOS if the hardware

configuration should be modified.

The second section describes the hardware configiration

utilized in this thesis. The memory organization of the

L
M]B-80 3ubbl-Board is liscussed and the design decisions

1



C.

that were made to make the bubble memory compatible with

the CP/M operating sytem are treated in some detail. The

Sbasic functions of the RRMZI Data Warehouse are also

described, as well as, the command packet structure and

execution.

The third section is concerned with the development of a

CP/M-86 operating system which will permit four single board

computers to operate simultaneously while sharing the same

peripherals. In this design, it is necessary to provide

protection to common memory during read and write operations

and to insure that each user's files are write protected

with respect to all other uses.

* The final section describes the tests that were

conducted to evaluate system performance. In addition, the

feasibility of using the REMEI hard disk to emulate the

signal processor of the AEGIS system was explored.

Measurements were made using direct calls to low-level read

routines to determine the optimum skew factor for

consecutive sector access operations. Also, some

recommendations were made for future projects involving the

REMEX Data Warehouse and the multi-user CP/M-86 operating

system.

14



• .. II. _cL!_:@

A. THE CP/M OPIRkTING SYSTEM

CP/M-86 is an operating system developed for use on a

single INTEL Corporation 86/12A microcomputer. CP/M is

supplied with a number of built-in utility commands as veil

as transient utilities such as the assembler (ASM86.CMD) and

the Dynamic Machine Language Program Debugger (DDT86.CMD).

These are described in detail in Digital Research

publications. (Refs. 4 - 6]

The CP/M operating system itself is modularized to

permit easy adaption of CP/M to any hardware configuration.

The three modules are the Console Command Processor 'CCP),

the Basic Disk Operating System (BLOS) and the user

configurable Basic Input/Output System (BIOS). The first

two modules are supplied by Digital Research as a single hex

file entitled CPM.966. This file contains all the code

necessary for processing commands entered at the

console and for handling all logical file and disk

management functions. The source code for a skeleton BIOS

is also provided which the user can alter to suit his

individual hardware requirements. Once the BIOS has been

modified, it is assembled and then concatenated with

CPM.H86. The resulting hex file, CP.STS.H86, is converted

to an executable file by the use of the CP/M utility program

15



1. USIR BIOS•186 -0 ASMSS.C0D =0 USIR SIOS.H86

2. CPM.e86 + USR BioS.H86 ==- PIP.CMD ==0 CPMSTS.986

3. CPMSTS.186 w-> GINCMD.CMD -> CPMSTS.CMD
(8680 CODZ[A40])

4. CPMSTS.CMI -=n PIP.CMD ==> CPM.STS
(rename on nev disk)

Figure 2.1
Steps for Creating CPM.STS

GENCMD.CMD. Finally, this file is renamed CPM.SYS and placed

on a diskette for use. This process is shown in Figure 2.1.

Details concerning the operation of GENCMD.CMD, LDCOPT.CMD

and PIP.CMD can be found in the "CP/M-86 Operating System

Guide. [Ref. 6]

CP/M-66 supports programs written in three memory

models: the 80e0 Model, the Small Model, and the Compact

Model. kll three memory models are describe In detail in

Reference 5. The model used in this thesis Is the 8080

Model because it supports programs which have code and data

areas Intermixed and which normally have single segments of

64K bytes or less.

4 3. LOADING CP/M-86

The file CPM.STS is too large to fit onto the first two

tracks of a normally-formatted diskette. Thus, a boot

loader must be placed on these tracks and loaded into memory

by the cold start loader. This boot loader program will

16



then bring the main CP/M operating system into memory and

pass control to it.

The loader program is distributed by Digital Research

In three separate modules and is basically a subset of the

entire CP/M system. The modules are the Loader Console

Command Processor (LDCCP.H86), the Loader Disk Operating

System (LDBDOS.R86), and a user configurable Loader Basic

Input/Output System (LDSIOS.A86) which is almost identical

to the system BIOS. The primary differences deal with the

physical memory location of the loader, the interrupt

structure and the BIOS offset address within the CP/M

system. Assembly of the loader BIOS is controlled by a

conditional assembly switch provided in the skeleton BIOS,

which is listed in Appendix E of Reference 6. The steps

needed to obtain a loader BIOS are essentially the same as

for creating the CPM.STS. The exact steps are shown In

Figure 2.2.

1. USER LDBIOS.A86 ==> ASM86.CMD ==> USER LDBIOS.HE6

2. LDCCP.H66 + LDBDOS.H66 + USER LDBIOS.H86 ==> PIP.CMD
==> LOADER.H86

3. LOADER.H86 G=> GENCMD.CMD == LOADER.CMD
(8080 CODE [A4001)

4. LOADER.CMD ==> LDCOPT.CMD ==> LOADER.CMD
(load on tracks 0 and 1)

Figure 2.2
Steps For Creating 3oot LOADER.C, D

17?



C. BOOTSTRAPPING THE IS3C 86/12A

From the monitor of the ISBC 86/12A, the CP/M system

loader program located on tracks 0 and 1 of the disk, can

be accessed via the bootstrap or cold start loader program.

This program is located in ROM or EPROM on the iSBC 86/12A

board itself. Thus, for each separate device from which the

system Is to be booted, a new cold start loader program must

be written and then burned into ROM. Finally, this ROM must

be mounted on the ISBC 86/12A board where it can be accessed

by the monitor program.

* Currently, two cold start loader programs are available

for the 1SSC 86/12A. One allows the system to be booted

from either the single or double'density Intel MDS floppy

disk drive system by executing the command GFFD4:0 from the

iS3C 86/12A 957 monitor program. When this command Is

executed, the program in the ROM will go out to tracks 0 and

1 of the floppy diskette and attempt to bring into memory

the CP/M system loader program. Once loaded into memory,

the cold start loader will then transfer control to the

loader which in turn will locate the CP/M system (CPM.STSi

on the disk and load it into memory. Finally, the system

loader will relinquish control to the CP/M operating system.

The source code for this bootstrap program is listed in

Appendix C of Reference 1.

The second program allows bootloading from tne MBB-80

bubble memory device by issuing the command GFFD4:4.

18



-, ~ ~ ~ ~ 7 7.. .~- .- -

Currently this last command can only be used when operating

on the iS3C 86/12A which is labeled #1, as It is the only

computer with an XPROM that contains the cold start loader

for the bubble memory. The source code for this program,

which was developed by Hicklin and Neufeld, can be found in

Appendix D of Reference 2.

This thesis uses the bubble memory to initially boot

* the system. Therefore, a new cold start loader program or

CP/M system loader program did not have to be developed.

All that is required to change the operating system that

will be loaded is to place a new CP/M system (CPM.STS) on

the bubble memory storage device.

The loader program placed on tracks 0 and 1 of the

bubble memory used for loading the CP/M operating system is

entitled MB8OLDR.CMD. This file is created by following the

steps indicated in Figure 2.2 utilizing MHOBICS.A86 as the

source file with the loader conditional assembly switch set

to true.

D. DISK PARAMETER TABLE

The CP/M-86 operating system as marketed by Digital

Research is considered a table driven system since all

characteristics for each I/O device is placed in a table

called the Disk Parameter Table which can handle up to

sixteen separate devices. This table defines the logical

organization of the physical storage media for the 3DOS file

management functions and must be included In every BIOS.

19



A disk definition statement is required for each

physical device and consists of a sequence of words which

define the characteristics of a device. Figure 2.3 shows

the format of a disk definition statement. These statements

are then used to generate the Disk Parameter Table by

executing the utility program entitled GINDEF.CMD [Ref 6,

p.'727. The file created by this program must be included in

DISK DEF: dn, fsc, lsc, (skf], bis, dir, cks, ofs, (e

where
dn is the logical disk number (0 to 15)
fsc is the first physical sector number (3 or 1)
lsc is the last logical 128 byte sector number
skf is the optional skew factor
bls is the data allocation block size
dsk Is the disk size in bls units
dir is the number of directorY, entries
cks is the number of "checked directory entries
ofs is the track offset to logical track 0

(normally 2 as track 0 and 1 contain the loader)
(o] is the optional .1.4 version compatibility flag

Figure 2.3
Format of Disk Definition statement

the BIOS using an "include" statement. The file which

contains the disk definition statements for this thesis is

labeled CPMMAST.DEF and used to generate a Disk Parameter

Table which is located in the file called CMMAST.LI3.

These two files can be found in Appendices G and H.

To create a disk definition statement for the table, the

characteristics for the device must be known. This

information is usually located in the technical manuals for

20



the given device. Jor example, the disk definition

statement used for the RIMhX Winchester hard disk was:

DISIDRF 3,1,156,,16384,255,128,,1.

The first "3" indicates that the hard disk is CP/M's

logical drive number "3" and can be accessed via the "D:"

command from within CP/M.

The next two numbers correspond to the first and last

logical sector numbers for the Winchester hard disk as seen

by CP/M. The actual physical sectors for the hard disk are

numbered from 1 to 39, each containing 512 -bytes. Since

CP/M requires the number of logical 128 byte sectors, 39 is

multiplied by 4 to produce 156 logical sectors of 128 bytes.

The actual mapping from the logical to the physical sectors

Is accomplished in the blocking and deblocking subroutines

located in the code for the REMEX hard disk (RXHARD.Aa6) and

is described In more detail in the Chapter IV.

The REMEX technical manual does not indicate what the

most effective skew factor is, thus zero was chosen because

it was required by the blocking and deblocking routines.

However, an optimal skew factor may be determined

experimentally when the REMEX hard disk is used to emulate

the "signal processor" of the AEGIS system. If so, the

blocking/deblocking routine will have to be modified at that

time.

21



i--. . - "~~~~ ~~~~~~~~~~~~ ." . ." ,.- . .-. .-L+.  .. ;'- " - . .; .% . • i .- . " . .. . .- . . .

The "bls" parameter specifies the number of bytes

allocated to each data block. This number can be 1024,

204e, 4096, 8192, or 16,384. 'hen larger block sizes are

used, each directory entry can address more data. This

reduces the amount of work that the BIOS must do, resulting

in reduced system response time. Therefore, a block size of

16,384 was chosen.

The "dsk" specifies the total disk size in terms of data

blocks. It is derived by dividing the total byte capacity

of the disk by the data block size. In this implementation,

the Winchester disk contains approximately 20 megabytes of

data storage which is subdivided between four separate

heads. Thus 4,193,280 bytes are allocated to the "D:* drive

and this figure is divided by 16,384 to produce 25- data

blocks.

The next figure, 126, Indicates the number of directory

entries that are permitted on this drive.

The "cks" term determines the number of directory items

to be checied on each directory scan and is primarily used

for detecting changed disks during system operations. As

the Winchester disic is permanently mounted, a value of zeroK
was chosen for this parameter.

.. ae ofs" value determines the number of tracics to be

skipped when accessing the disk. In essence, it reserves

tracks for permanent storage. Track 3 Is reserved since the

Remex requires it for internal system use and. errrs wi£

22



occur if an attempt is made to access it. On a floppy disk,

this value is usually two as tracts 9 and 1 are normally

reserved for the loader program.

1. THE STANDARD BIOS

The BIOS for CP/M-86 always begins at an offset of 2500

hex from the beginning of the CP/M-86 operating system. At

this location are twenty-one entry points used by the CCP

and the BDOS to gain access to the BIOS functions. These

entry points form a jump vector to other subroutines in the

BIOS which contain the necessary code to interface with each

hardware device.

There are three types of functions in the BIOS: system

initialization/reinitalization, simple character I/C and.

disk I/0. Several of these functions are normally not

implemented in most microcomputer systems, while others

require extensive and quite different code implementations

for each separate device. The BIOS also contains the Disk

Parameter Tables which represent the physical description of

the disk drives. Finally, located at the end of the 'IOS,

there is a scratchpad area for certain BDOS operations.

Figure 2.4 shows the memory map of the 2IOS.

In order to simply access a diskette, several functions

located within the BICS may have to be performed. For

example, to access the directory if a diskette, the IDOS

will require the following functions to be performed by the

BIOS: SELDSK, HOME, SETTR[, SETSEC, SETDMA, S TDAB and

23



CS, DS, ES, SS:
"-.CONSOLE COMMAND

PROCESSOR
&

BASIC DISK OPERATING
SYSTtI

CS + 25003: BIOS JUMP VECTOR

BIOS SUBROUTINES

DISK PARAMETER
TABLES

Fig-u-re 2.4UN IN ITIAL IZED
SCRATCH RAM

Memory Map of the Standard BIOS

READ. (Ref. 6: p.6e] For each function executed, the BIOS

will have to determine which physical device is being

accessed and then jump to or call the subroutine which

contains the code for that specific device. For example,

suppose a simple READ function is required by the BDOS. It

4 will initiate a call to the BIOS READ entry point wzich In

turn will vector the call to the READ subroutine. Here the

BIOS will determine which physical device corresponds to the

CP/M's logical drive and then jump to the appropriate code

to read data from that specific device. (See Figure 2.5)

This procedure is very logical and makes it easy for a

user to implement his specific device dependent

24



CCP
---- > call to BIOS to Read Device #2 -- >---BDOS

BIOS: jmp i-it
jmp write

------ > JMP READ---->--..
* I

* I

Jmp vboot

< --- -.------- <-----

init:
code for Initializing all devices

ret

write:
code for writing to all devices

ret

determine device
imp read device #1
JMP READ-DEVICE #2 --->-.....
jmp read-device #3

----- --------- --------------

read device #1:
code for reading device #1

ret

.....- > -------- READ DEVICE #2:
CODE FOR READING DEVICE #2

RET

read-device #3
code for reading device #3

ret

Figure 2.5
Path of CCP or BDOS Function
Call in the Standard BIOS

25



--.. -. . -. .. .. . . . . ... .. - . .

code. However, problems arise if the hardware configuration

must be altered. Everytime the configuration changes, the

code for each function in the BIOS must be rewritten. This

can be a time consuming task. In addition, assumptions made

concerning the implementation of one configuration may lead

to errors in another configuration should those assumptions

no longer be valid. These errors may also be extremely

difficult to locate and correct since all code Is usually

intermixed and the exact order that the CCP and 3DOS call

various functions in the BIOS is .not known to the user.

F. BIOS ALTERATION

Hicklin and Neufeld attempted to develop a table driven

BIOS. In a manner of speaking they succeeded. However, the

only devices that are permitted in their devic'e table are

additional Intel MDS double lensity disk drive systems and

MBB-80 bubble memory storage devices. Attempting to

integrate another device such as the REMEX Data Warehouse,

leads to the same problems which were mentioned earlier.

To alleviate these problems, a completely table-driven

BIOS was developed in which only minor and straight-forward

changes would have to be made in order to change hardware

configurations. Tnis was accomplished by extracting out all

the device-dependent functions of the MOS into separate

files for each unique device. Specifically, these functions

were INIT, SELDSK, HOME, SELTRK, SELSEC, READ, and WRITE.

Functions such as WBOOT are not dependent upon a particular

26



device and do not have to be extracted, while functions such

as PUNCH and READER are not implemented.

In the hardware configuration for this thesis, three

separate files were required. These were MBSDSK.A86,

RXILOP.A86, RXHARD.A86. These files each contain the

necessary code to execute the seven device-specific

functions for the MBB-80 bubble storaCe device, the Remer

CS, DS, ES, SS:
CONSOLE COMMAND

PROCESSOR
&

BASIC DISK OPERATING
STSTEM

---------------------------------
CS 2500H: BIOS JUMP VECTOR

CS + 253FE:
BIOS SUBROUTINES

------------------------- ----- I

INCLUDE LABEL TABLES
INCLUDE DEVICE #1
INCLUDE DEVICE #2
INCLUDE DEVICE #3

I * I

INCLUDE DEVICE #16

------------------------------

DISK PARAMETER
TABLES

UNINITIAI IZD
SCRATCH RAM

Figure 2.6
Memory Map of the Table-Driven BIOS

27



floppy disk drives, and the Remex hard disk, respectively.

An additional file, CPMMAST.CFG, is also nov required. It

contains tables of labels which correspond to the physical

memory location of the seven functions for each device used

in a given hardware configuration. The label tables used in

this thesis can be found in Appendix C. Figure 2.6 shows

the memory map of the table driven BIOS. In the BIOS, the

issembly language instruction include is used to

incorporate the label tables and device-specific code for

the seven functions into the system.

For example, when a call is made to read Device #2 from

the CCP or the BDOS, the call is vectored as was done before

through the jump vector to the READ subroutine of the BIOS.

However, after determining the physical device to be

accessed, instead of jur-ping directlj to the desired code, a

call is now made to the device specific code located in the

included device's A86 file via the Read Table which is

located in the file CPMMAST.CFG. The final address of the

call is determined by the offset of device number into the

Read-Table, which provides the label or 16-bit address of

the actual code needed for reading Device #2. (See Figure

r-. ~2.7,

r
To alter the hardware configuration, only one line in

the BIOS must now be changed for each device, that being the

- orresponding "include" statement. The other changes which

*are required, are located in the label tables and the Disk

2E

__ _



.* " . . . . .. . . . ... o. -. -w - - - .*.. *- .-

CCP & BDOS --- > call to BIOS to Read Device #2 -- >--

BIOS: jmp init
jmp write

.....-> JMP READ ----->-

Jmp vboot

init:
callto Init label table
ret

write:
call to write label table
ret

determine device
CALL READ-TABLE [offset device #21 --- >-...

ret

--------- ---- - --------- - < - ------------ ----------
INCLUDE LABEL TABLE

ni t.table:
labels

write table:
labels

READ-TABLE:
read device #1

-- -> -------- READ-DEVICE #2-->----
read device #3

- ------------ < ------------
include device #1

code for seven device specific functions

INCLUDE DEVICE #2
init-device #2

code for initializing Device #2
write device #2

code for writing to Device #2
- - ------------ READDEVICE #2

CODE FOR READING DEVICE #2

Figure 2.7
?ath of CC? or BDOS Function
Call in Table-Driven BIOS

29

L mk'"



Parameter Tables. For each device included in the BIOS,

there must be a corresponding label for an abstracted

function. These labels must be correctly ordered and

properly identified. Naturally, when hardware is

implemented into the system for the first time, the initial

code for performing the seven device-specific functions must

be written. But once written, the new device can be added

or deleted from the operating system with very little

effort. The fact that all code for each device is completely

Independent of other devices, aids in detecting, locating

and correcting errors. Actual experience has shown that

once the code for a device has been written, going from one

hardware configuration to another can be accomplished in

under twenty minutes.

*30

I

:I



7 7Z 71

A. GENERAL HARDWARE CONFIGURATION

The hardware configuration utilized in this thesis

consists of four iS3C 86/12A Single Board Computers, a MBB-

80 Bubbl-Board, a 32K byte common memory board, and the

REMEX Data Warehouse memory storage device with Multibus

Interface Card Assembly. The components are all Multibus

compatible and were placed In an ICS-80 Industrial Chassis

for system operation. Figure 3.1 depicts the physical

hardware confluration. Table 3.1 describes the logical-to-

physical mapping between the CP/M representation of the

system and the actual physical hardware.

321 COMMON BUBBLE : : REMEX
MEMCRT MEMORT I INTERFACE------

I I I I * I I

f.I I ' I I !L -------- --- - ------- ---- RtEZ

MULTI- BUS DATA
- - ------- - --------------------------- WARE- iI| ! | I I I

HOUSE
--- -- - -- - - - - ---- ---------

II |I |II I I

iSCB iSC3 I B IsCa
I 86/12A e6/12A , 86/12A 86/12A

Figure 3.1
Physical Eardware Configuration

I3

~31

Ii



Table 3.1
Logical Hardware Configuration

CP/M's Logical Actual I Actual
Device Number I Drive Physical Device

0 A: MBB-80 Bubble Memory

1 B: Remex Floppy Disk Drive

2 C: Remex Floppy Disk Drive

3 D: Reme Hard Disk Read 0

4 1: Remex Hard Disk Read 1

5 F: Remex Hard Disk Read 2
I-------- -- -I----------I-----------------------------------

6 G: Remex Hard Disk Head 2

B. INTEL 86/12A SINGLE BOARD COMPUTER

The Intel iSBC 86/12A Single Board Computer is a complete

computer system constructed entirely on a single Multibus-

compatible circuit board. It is designed to operate as a

standalone system, a bus master in a single bus master

system, or a bus master in a multiple bus master system.

The board itself contains an Intel E086 16-bit

microprocessor, 64K bytes of dynamic RAM memory, 161 bytes

of EPROM memory, both serial and parallel I/O ports, a

programmable timer and interrupt controller, and a Multibus

interface controller.

Onboard RAM memory is located between 0 and Offf.h and

the EPROM between FFC30h and FFFFFh within the 1-Megabyte

address space available to the Intel Ee6 microprocessor.

32



If the local processor attempts to address memory outside of

these ranges, a Multibus access will result. The onboard

RAM is dual-ported, and therefore is accessible to the local

processor via an internal bus, as well as, to any external

Multibus master via the Multibus. In this latter case, the

onboard RAM is operating in the RAM-Slave mode. Any

collisions that result when the RAM is simultaneously

accessed by the local CPU and the Multibus are resolved by

hardware in favor of the local CPU.

While the location of RAM relative to the local

processor is fixed between 0 and JFFFh, it can be switch-

and- jumper configured into any 12SK segment of the 1-

Megabyte address space relative to the Multibus. In

addition, none or all of the onboard RAP, in segments of

161, may be reserved strictly for local CPU use. Since the

major objective of this implementation was to produce a

CP/M-based multicomputer system In which each computer

operates totally independently of the others, each ISDC

86/12A was configured to make all of the onboard RAM

inaccesible to the Multibus.

C. MIBB-80 3UB3LE MEMORT STORAGE DEVICE

The M33-80 3ubbl-3oard is a complete bubble memory

storage device designed to be compatible with all 8- and 16-

bit microcomputers that utilize Intel's Multibus

architecture. The ooard consists of eight (8) TI30233

33~



HT

Kbubble devices and the necessary control, buffering, and

Multibus interface logic. The host CPU interfaces with the

MBB-60 controller via memory-mapped I/0 utilizing any

sixteen (16) consecutive user-defined addresses within the

1-Megabyte system address space. These sixteen (16)

addresses correspond to the sixteen (16) registers in the

bubble memory controller that are utilized in support of the

following controller primitive commands:

Fill Buffer Read Multiple Pages
Empty Buffer Initialize
Write Single Page Read Status
Read Single Page Enable/Disable Interupts
Write Multiple Pages Reset

L,.2 . R ea _Lwrl t _. qg i

Read and write operations with the MBB-8 are

accomplished by specifying a particular bubble device number

and page number (18 bytes) to read from or write to. The

M33-60 controller provides the ability to -ead or write in

either a single- or multiple-page mode by using a byte-by-

byte transfer into a FIFO buffer located on the M]B-80 board

Itself. The single-page mode can be implemented in a

straight-foward manner without the need for addtional

supporting hardware or software. However, the multiple-page

mode requires that certain timing requirements must be

adhered to by the host CPU when communicating with the M3B-

80 controller. During a data transfer, the host must

34



respond to interrupts generated by the MEB-80 every 160

microseconds which signal the completed transfer of one byte

of information in a multi-byte transfer. These interrupts

can be generated on the Multibus and handled by the

Programmable Interupt Controller (PIC), or the host CPU can

poll the controller interrupt register (offset Ofh) to

determine if an interrupt has occurred. The single- and

multi-page polled modes were implemented by Hicklin and

Neufeld [Ref. 21. The final version of their system

utilized the multi-page polled mode and this was

subsequently employed in this implementation.

3. CPM-86 Compatibiz

In order to effect a data transfer, the MBB-80

controller must be given a device and Initial page number to

locate the position where the data will be read from or

written to. On the other hand, CP/M uses a track and sector

number to access data during a disk access. Therefore, a

mapping must be made from the CP/M tract and sector number

to MBB-80 device and page numbers if the C?/M operating

system is going to be used to access data on the MBB-80

Bubbl-Board. Hicklin and Neifeld [Ref. 2] decided to use

the bubble page number as the smallest addressable unit for

each data transfer and the basis for the MBB-60 memory

organization. Since each physical bubble page is eighteen

(18) bytes long, a logical CP/M sector of 128 bytes consists

of eight (8) bubble pages of which the last sixteen (16)

35

K . _-- ------- -



o.-7

bytes on the last page are not used (i.e. wasted).

Therefore, the 640 bubble pages per device are mapped into

80 logical CP/M sectors per device. Juthermore, it was

decided that each MBB-8O "track" would consist of 26 sectors

which corresponds to the number of sectors per track on a

normally-formatted single-density floppy disk. Another

design decision was that all MBB-80 tracts would be

completely contained on a single bubble device. Since there

are 26 CP/M sectors per track and 80 sectors per bubble

device, this results in three (3) tracks per bubble device

with two (2) sectors not used or wasted on each device.

Therefore, based on these design decisions, tne total

capacity of the M33-80 Bubbl-Board is 78K bytes on 24 tracks

(8 devices x 3 tracks per device) with a total of 14i bytes

wasted. Hicklin and Neufeld's final memory organization for

the M33-80 is shown in Figure 3.2. Dispite its

inefficiency, this configuration was adopted for this

Implementation since the principal function of the bubble

memory is to provide a convenient method of booting CP/M-86

on our master ISC 86/12A. Hammond [Ref. 3] has shown that

there is a more efficient way to organize the MBB-80 in his

work on utilizing the MBB-80 as a snared resource in a

multi-microcomputer system. However, this would have

necessitated the design and implementation of a new

bootstrap loader program to be placed in the ISC 66/12A

36



EPROM and was not judged to be of significant importance for

this implementation.

Device 0 Device 1 Device 7

Sector I Sector 1I Sector 1
-----I-- -

Sector 2 Sector 2 1 Sector 2
I----------------------------------------

-: Track 0 1 : Track 3 : Track 21 I
I Iz I

"Sector 26 Sector 26 Sector 26"-I. =1'm 
m  

I I. I I. I

-Sector 27 Sector 27/ Sector 27
--------------------------

Sector 28 Sector 28 Sector 26

I I' I ~ I----------------- ,

1: Trc : Trc Tak2

I-----------------I I Im Imm I

Sector 52 Sector 52 Sector 52

gSector 53 Sector 53 Sector 53

--------- ------------------ -- - - - - -" Imi l lI mIlm l

'Sector 54 Sector 54 Sector 54

l . I : I :

1: Track 2 1: Track 5 .: Track 22

; 'Sector 78 Sector 78 Sector 78

'Sector 79 iSector 79 iSector 79

-- - -- - ------------------------- - - - - - -

, Sector eo Sector 521 Sector 5,

'- Figure 3.2
MBB-80 Log'ical Storage OrganSzaton

37



D. REMEIX DATA WAREHOUSE

The REMIX Data Warehouse is a mass storage memory

unit containing a fixed Winchester disk drive, two (2)

flexible diskette drives (single- or double-sided), and a

microprocessor controller that services all drives. The

memory capacity of the fixed disk is approximately 20

megabytes and the flexible diskettes can be formatted to

contain up to two (2) megabytes of storage. IBM standard FM

encoding is used for the single density floppy diskette

while MFM encoding is atilized for the double density

diskette and the hard disk.

The fixed disk is a 14 inch enclosed disk utilizing

Winchester technology and is composed of two recording

surfaces. Each surface has two (2) recording heads which

can each access a total of 213 tracks. Each track can

contain up to 24K bytes of information. However, only 210

tracks can be referenced for normal read/write operations.

The bard disk sector size is switch-selectable to either
r

128, 256, 512, or 1024 bytes per sector. The total storage
L, capacity for the various sector sizes is shown in Table

3.2. In addition, the floppy diskette controllers are also

switch-selectable to handle either single or double density

diskettes. It Is extrenelZj mportant Iha_ these switch

setting,5 gr~re}§Pon a _ily eactual format of the hard

38

i!"- .t..L.. ....... n- ---. -



Table 3.2
REMEX Hard Disk Sector Selections

I Sector Size Sectors/Track Capacity

128 104 10.7M bytes

256 67 I 14AM bytes
• I I

512 39 1 16.8M bytes

1024 21 ' 1e.1M bytes I

disk and diskette for the write o perations to fungtion

correlz.

The REMtX Data Warehouse (RDW) is designed to

transfer all data and command structures to and from the

host computer via direct memory access (DMA). To initiate a

RDW operation, the host computer builds a command packet

within its local memory. This packet contains all the

information necessary to effect an RDW operation. The host

then sends the address of the command packet to the RDW via

an interface board utilizing programmed I/O. When the RDW

is ready to accept packets, it inputs the command packet via

DMA, performs the required function, and transfers any data

via DMA. When the function is complete, the RDW indicates

this by noting it in the command packet status word or by

K generating an interrupt on the Multibus. Packets can be

queued in the RDW up to a maximum of eight.

Some other important features of the RDW include:

-- Dynamic data buffering (2K x 16 bit buffer)

39



allows a continuous transfer under varying CPU

conditions.

-- Dynamic buffer protects against data overrun and

underrun preventing loss of data without host

computer intervention.

-- Allows data transfers in large blocks of up to

641 words with a single command. Heads are

automatically advanced as necessary.

-- Automatically seeks to track(s) required in

command packet.

Permits chaining packets together in

noncontinuous memory.

-- Ability to format entire disk with a single

command.

--Automatic verification and assignment of

alternate tracks to cover bad tracks.
~~~2. _~mmad _?gaket! _rg4;n;_tjon

The basic structure of the command packet is shown

in Figure 3.3. Word 0 is composed of a modifiers section, a

function code block , and a logical unit section. The

function code blocs specifies which of the six (6)

particular REMEX functions is to be performed. These

functions are Read, Write, Write ID and Record, Copy,
fr.

Format, and Maintenance.

' " • -0

Bit Number

15 87 43

word 0 Modifiers Function ILogical UnitI

1 Status Word

21
-- - - --- -- -- - --I

4 - - -- - - - --- - -

I I

N Last Word

Figure 3.3
~Command Packet Description

A program in the RDW interprets the function number

and determines hov many words are required for each specific

command packet. The modifiers section contains information

on packet chaining, program control interrupts, disabling of

~error routines and an "end" markrer which specifies a single

packet or the last packet in a packet string. The logical

unit can be either 0, 1, or 2. A zero always corresponds to

:4 the hard disk. However, the floppy diskette drive can be

.44

operator-configured to respond to either logical unit number

~1 or 2. This is accomplished by the Device Logical Unit

Switch located on the front panel of the EDW.

The status word is divided into the least

si nificant bits (-?) and the most significant bits s-15).

Each of the least sinifiant bits, when set to oi),

41

Table 3.3
REMEI Error Codes

Bit No. D Description

0 Normal Completion

1 Not Assigned

2 Controller Error

3 Drive Error

4 CRC Error

5 Illegal ?acket

6 Bad Track During Format

7 'Not Assigned

represents a particular status which is indicated in Table

3.3 Bits 2- 15 represent the hex code that corresponds to

the error definitions given in Table 3-6 of Reference 7.

Words 2 through N are function dependent and the

number of words per command packet varies widely between RDW

operations. In the version of CP/M developed in this thesis,

only the Read/Write function are implemented and are used to

access and transfer data. However, additional utility

programs were written which utilize the other functions to

format the hard disk (RIFORMAT.CMD) and to execute the

Juilt-in maintenance programs (RXMAINT.CMD) of the RDW.

The format of the Read/Write packet is shown in

Figure 3.4. The description of these two operations is

identical except that in a read operation a one ,1) is

42

Bit Number

15 8? 43 0

Word 0 I Modifiers Function I Unit

• ""1 Status Word

2 Track Number

3 I Head Number B Sector Number

4 Memory Address of Data (16-bit)

5' Ext Memory Addr Bits I
-m ------ ----- --- - -- ---------------- m m m m

6 1 Transfer Word Count (# of 16-bit words)

Figure 3.4
REMEX Read/Write Packet

placed in the function code block of packet word 0 and for

a write operation a two (2) is used. Both operations are

permitted in blocks of up to 641 words. Any head switching

or advancing which may be required is automatically

performed by the RDW disk controller.

RDW track numbers are assigned from 1 to 210 for

normal data transfer operations. Track 0 is always reserved

for a loader or system program and can not be addressed

during a normal read or write operation without generating

an error. Presently, the hard disk is formatted for 512

bytes per sector which corresponds to 39 sectors per track.

Head numbers for the four RDW heads run from 0 through 3.

Data addresses are a 24-bit representation of the 20-bit

address structure supported by the iSBC 86/12A and Multibus

architecture. The transfer word count is the number uf 16-

43

bit words that are to be transferred. For accessing the

hard disk, a transfer word count of l0h was placed In the

packet built by CP/M. This figure corresponds to a single

sector (512 bytes) or 256 16-bit words on the hard disk,

which is equivalent to the CP/M-86 Operating System view of

512 8-bit words.

3. Multibus Interface Card Assembly

The command packets are sent to the RDW via a

Multibus Interface Card Assembly. The interface contains

all the necessary buffers, registers and control logic

required for the transfer of data, status, addresses and

commands between the REMEX Data Warehouse and the ISBC

86/12A Single 3oard Computer. Tne interface operates in both

a programmed I/O mode and a DMA mode. All data, status, and

commands are transferred by DMA, while packet addresses and

the interface Command/Status information are transferred via

programmed I/O. During these transfers, the Multibus

Interface acts as a bus master in the DMA mode and as a bus

slave In the programmed I/O mode [Ref. 81. Registers are

provided for data, packet address holding, and DMA

addresses. A DMA address counter (20 Oits) allows memory

addressing of up to 1-Megabyte. Control logic for DMA, bus

timing, interrupt control and device address selection is

also provided. Selection switches are available to alter

the Interface base address, interrupt priority level, and the

Fd

DMA throttle which governs how long the interface must wait

between DMA transfers.

In the programmed I/0 mode of operation, the

Multibus Inteface responds only to 1/0 port addresses.

Switches, as mentioned above, are used to set the base

interface port address. The standard addresses for the

Command/Status Register are port address 070 kleast

significant byte) and port address 071 (most significant

byte). The standard addresses for tae Packet/DMA Register

are port addreses 072 and 073. A more thorough description

of the contents of these registers is given in Table 3-2 of

Reference 7.

The DMA Throttle Select is used to select the number

of Multibus accesses that must be completed between

consecutive DMA transfers by the Multibus Interface. A

selectable range of 3-15 transfers is provided. The standard

is 1 host Multibus cycle between interface DMA cycles. This

is contrary to the explanation given in Section 2.3.3 of

Reference 7. In this section, the DMA throttle is presented

in terms of "number of processor cyles" instead of Multibus

accesses.

4. CommandA Eggiet Eze9utIo2.

To execute an operation contained In a command

packet, the host computer trust first test the Packet Address

Ready Flag (port 070) which indicates whether the RDW is

ready to accept and process command packets. If this flag

45

b-,

is set (1), the host loads the extended address bits (bits

17-20) of the command packet into the Command/Status

Register (port 070). Then the least significant byte

followed by the most significant byte of the 16-bit address

of the command packet must be loaded into tne Packet/DMA

Register (ports 072 and 073 respectively). This sequence

must be followed exactly because once the most significant

byte is loaded into port 073, the interface board siwnals

the RDW that the address is complete and ready to be

transferred.

Upon receiving this signal, the RDW will read the

address which was placed in the ports of the interface

board, fetch the command packet located at that address, and

perform the operation specified in the function code blocs

of the packet. When the operation is complete, an entry is

-ade into the command packet status word (word 0) indicating

the success or failure of the operation.

E. ICS-80 INDUSTRIAL CHASSIS

The iCS-80 Industrial Chassis consists of four A4, four-

slot ISBC 604/614 Cardcages, four fans, a power supply, a

control panel and a 19" RETMA (Radio-Electronics-Television

Manufacturers Association) -compatible chassis. The control

panel consists of an on/off/loc,- key switch, interrupt and

reset pusbbuttons, and halt/pwr on/run LED's.

The development system was designed to support a modular

,microcomputer-based system. Any combination of plug-in

46

modules which are- Multibus-compatible may be installed

including single board computers, memory expansion boards

and peripheral interface boards. The iSBC 604 Cardcage can

accomodate four (4) iSC circuit boards and has an external

plug which allows additional iSBC 614 Cardcages to be added

to the chassis. The laboratory system used in support of

this thesis is composed of a single iSBC 604 Cardcage and

three (3) iSBC 614 Cardcages which allow a total of 16

circuit board slots. These caricages comprise a backplane

assembly that conforms to the Intel Multibus specifications

and provides slots for both Mutibus master and slave boards.

The master slots are odd-numbered and the slave positions

are even-numbered for easy reference.

A master board is one which is capable of acquiring and

controlling the Multibus, while a slave board can only be

referenced by commands on the Multibus (i.e. memory

expansion boards). The iCS-60 Chassis can be used with

master boards operating in either a serial or parallel

priority resolution scheme. In the serial mode, Multibus

access contention is resolved by the board placement within

the cardcage. However, an external priority resolver

network is required to implement the parallel priority

scheme. In this implementation, a random priority network is

used to arbitrate the contentions for the Multibus. Most

importantly, one of tne above priority resolution schemes

r ust be implemented or the interaction among the iSBC boards

4;

in the cardcages will not be correct. For further

information consult References 9, 10, and 11.

4a

IV.SYST_ PVELOPM NT

A. INITIAL EFYORTS

During the initial stages of this thesis, it was

planned to expand the work done by Hicklin and Neufeld [Ref.

2] to incorporate the REMEX Data Warehouse memory storage

unit. They nad developed a reconfigurable "table-driven"

CP/M-86 BIOS that supported the MBB-80 Bubbl-Board and the

Intel 1202 double-density floppy disk controller. It was

initially believed that other I/0 peripheral devices could

be easily included in this BIOS with a minimum of effort.

Within the proposed development system, the MBB-80 would

serve as the principal storage medium, for newly designed

programs and would provide an easy method of booting icclin

and Neufeld's CPM.STS within the iCS-60 chassis.

"owever, this development strategy had several

deficiencies. Utilizing this hardware/operating system

configuratior, program development would be limited to the

MDS or ICS-EO systems and the CPM-86 utility programs which

they supported. Presently, the only compatible text editor

available is the text editor distributed by Digital

Research, ED.CMD. This editor is very primitive, extremely

hard to use, and completely unsatisfactory for extensive

4;

program development. Therefore, an alternative development

system was required.

It was decided to use the WORDSTAR text editor on

the MP/M Multi-user System to create the needed software

programs. This system provided several advantages over the

rMDS system. First, WORDSTAR offers functions which would

significantly increase productivity and allow errors to be

quickly corrected. Second, MP/M-compatible versions of ASM-

86 and GENCMD utilities would enable programs to be written,

assembled, corrected, and converted into executable CMD

files prior to their transfer to the bubble memory. Third,

since the MP/M system is a multi-user system, it did not

present the availability problems associated with the

single-user systems such as MDS.

Ultimately, this software development scheme also

proved to be unsatisfactory, as numerous steps had to be

taken to move an assembled program from the MP/M system to

the MBB-80 board. Since only MP/M and MDS single density

diskettes were compatible, assembled programs first bad to

be transferred from the MDS single density system to the MDS

double density system ,using the laboratory utility program

SDXF'R.COM. This required that the MDS double density system

be configured with an Intel 8080 processor. Once the

program was transferred to a double density diskette, the

MDS double density system had to be reconfigured for use

with the MBB-_Z bubble board and an iSBC 86/12A. After

50

>'- "._: _.'.:". ."
".

" " .-i.:--.:. .r -r -. "- .-" . --:. . ..--...- . .-*.- - .. -". -.-

reconfiguring, the program could now be transferred from the

double density diskette to the bubble memory. At this point

the MBB-80 was physically moved to the iCS-80 chassis.

Finally, the operating system could be loaded and the

program executed under DDT86.

Besides being time consuming, the above process

monopolized much of the laboratory's equipment. Thas, if

the equipment needed to make the transfer was in use,

program testing could not be carried out. However,

initially, it was the only method available and therefore

had to be employed.

2. Vlerify M1B-8g4 Qpera11on

The objective of this section was to verify the

proper operation of the CPM.STS developed by Eicklin and

Neufeld. The double density MDS system was configured with a

single iSBC 66/12A (#1), the MBB-ee bubble memory, and the

1202 Floppy Disk Controller. The system was successfully

booted from the 957 Monitor in accordance with the

procedures frven in Reference 1i by executinR the command

GFFD4:0. However, the bubble memory could not be accessed

using any of the CP/M built-in commands. After inspection

of the 310S, it was evident that the final version of the

CP/M-e6 BIOS submitted did not support the MBB-ee.

Therefore, the CPM.STS had to be reconstructed.

The files DKPRM.DEF and CCNFIG.DEF were first

checked to ensure that the desired hardware configuration

51

I

was accurately reflected in the Disk Definition Tables, the

Disk Tables, and the 3ubble Tables. Once this was completed,

the file M'BBIOS.AS6 was reassembled and was then

concatenated with CPM.H86 using ?IP.COM. The resulting hex

file was then converted to an executable CMD file and

renamed CPM.STS.

To ensure that all possible errors were avoided
prior to system initialization, it was decided to reformat

the MPB-80. The program MB80FMT.CMD was executed, inserting

3000h as the M3B-83 controller base address. Once

formatted, the CP/M loader program M,80LDR.CMD was placed on

tracks 0 and 1 of the MEB-80 utilizing toe LDCOPT.CMD

utility. The reconstructed system was booted and functioned

normally.

3. Modification of t he IOS for Use in the iCS-S

As envisioned in the program development process,

new programs would be transferred to the MDS double density

system using a laboratory utility program. These programs

could then be placed on the M]B-E0. The MEB-80 would tnen

have to be physically moved to the iCS-80 chassis. 3y

entering the command GFFD4:4, CP/M-86 could be booted and

the programs executed under CP/M or fDT86.CMD. However,

since the MB3-80 would be the sole memory storage device in

the iCS-80 chassis, a new modified KOS had to be

construct ed.

52

..........,. . . "1....

The changes that needed to be made were located in

two major areas of the BIOS. First, the file DKPRM.DEF which

contained the disk definition statements for each logical

CP/M disk drive had to changed. The number of logical

devices was changed to 1 and the disk definition statement

for the MBB-80 was entered as CP/M logical drive 0 (Drive

A:) indicating tat the MBB-80 was the only "drive" in the

system. The other changes were made to the Disk and 3ubble

Tables contained in the file CONFIG.DEI. Eicclin and

Neufeld had created these tables to identify whether CP/M

logical drive numt-rs where either MBB-B0 devices or 1202

controllers. These tables would support any hardware

configuration of MB3-80's and 1202 contollers up a total of

16 disk drives (maximum for CP/M). Bowever, other peripheral

devices such as the REMEX Data Warehouse could not be

supported as was initially believed.

Once these changee had been made, the BICS was

reassembled and used to create a new CPM.STS which was

placed on the bubble memory. It was subsequently tested and

it functioned normally.

* 4. R3 _ Ljg:LeeL Routines

Concurrently with the work on the MIB-80, low-level

read/write routines were written and executed which accessed

the RFMEX Data Wareho.,se memory storage unit. This work was

accomplished on the ICS-80 chassis using an IS3C 86/12A

single board computer and the REMEX Multibus Interface Card

Assembly. At first only the most primitive operations were

performed, since there was no permanent memory in the

system. Using the 957 Monitor program, small programs were

executed to examine the various values contained in tne

interface status registers. Once the new MBB-80 CPM.STS was

available, more comprehensive programs were written which

could build command packets, transmit command packet

addresses to the interface board, and chec. the packet

status word for function completion. The basic logic of the

read/write functions was discussed in greater detail in

Chapter 3 and the logic diagram is snown in Figure 4.1.

A command packet was built which would write a very

simple set of characters to a particular head, track, and

sector number of the REMEX hard disk or a track and sector

number on the floppy disiette. Using DDTS6.CMD, the commana

packet was then altered to produce a read operation which

would retrieve the previous message from the RDW and write

it to a selected -e rory address. DDT86.CMD was also

extensively used to monitor packet construction and memory

content. With each successful transfer, larger blocks of

data were transferred until it was concluded that the

operations were being correctly' performed. Although some

progress was made, the program turn-around tire resulting

from the lack of an adequate development system definitely

Impeded further progress.

54r.

I ,

Start

" Check Packet
I Ready Flag

No /Is\
---------------------- / it\\set?/

Tes

3uIld Packet
I I|

Send Packet
!

Check Status Word <

/\

\ 01?/
/Is\ . eo

/I-t \ --------- > --- r
\0/

I, N
A

Operation Comp~letef I------------------------------

Figure 4.1
RDW Read/Write Logic

55

.1

The development mechanism that had been used up to

this point was tedious and time-comsuming. The time

required to repair errors discovered while working on the

icS-80 was too excessive to support cohesive program

modification. It also became evident that the concepts used

by Hicklin and Neufeld in the development of their BIOS were

not sufflicient to meet the objectives of this thesis.

Although it was presented as a model for a very flexible

system, the BIOS actually only supported MBB-eO bubble

memories and i202 floppy diskette controllers. Inclusion of

additional peripheral devices would have required major

modification to the BIOS. Furthermore, even if these

modifications were made, each time a device was added or

deleted from the system, the code within the BIOS for the

individual function calls would have had to be changed. The

many inconveniences of the program development procedure

coupled with the limitations of the Hicklin and leufeld

approach in a varying hardware environment necessitated a

new BIOS design strategy.

4 Hammond [Ref. 31 had identified that certain device

specific code could be extracted from the "core- of the BIOS

without affecting function operation. This was accomplished

by indirectly vectoring BIOS calls to the proper subroutines

via a table of labels. Hammond had extractel the READ,

WRITE. and INIT BIOS functions and constructed the

56

I

appropriate tables in a separate file named CONFIGDEF.

This file was then assembled with the PIOS by means of an

**include" statement.

Next, let us examine the READ function in greater

detail to see exactly how this BIOS works. Figure 4.2

contains the code for the READ function in the "core" BIOS

for a hardware configuration consisting of an i2el Floppy

Disk Controller.

read:
zor bx,bx
may bl,unit
add bx,bx
call readtbl[bx1
ret

Figure 4.2
Table-Driven 3IOS Read Code

This controller supports two floppy dis, drives

which correspond to CP/M logical drives 0 and 1. This

correspondence is set up in the Disk Definition Tables. Also

prior to the 3DOS call to the BIOS READ function, the

desired drive number has been stored in a 3IOS variable

called "unit". The value of 'unit" is first placed in the

bl" register. Next, it is doubled since each label in the

read table represents the 16-bit address of the device-

specific read functions. A call is now made to the

read-table using the offset contained in the "bx register.

K This table entry then indirectly addresses tae appropriate

H subroutine for the desired "unit". For example, if CP/M

57

* ~ ~~ ~~~ .- .. - - . . --

I

logical drive 1 (3:) is selected, the read call is

indirectly addressed to the subroutine label located, at an

offset of two (2) in the read table. The read table is

shown in Figure 4.3. Notice that since both CP/M logical

drives are floppy disk drives, the read call is vectored to

the same subroutine.

readtbl dw offset i2el read
dw offset i201_read

Figure 4.3
BIOS Read Table

Through the use of a table-driven 3IOS, the

configuration flexibility needed for this application could

be achieved. The use of the indirect call allows all device

specific code to be isolated in a single file. Therefore, a

separate file can be constructed for each unique peripheral

device and can be included in the BIOS by the use of the

include" assembly comimand. An additional benefit of this

type of approach is that it allows for the systematic

:4 addition or deletion of hardware devices to or from the

system without disturbing the basic 'IOS code.

The table-driven concept also provided an improved

4 program develpment scheme and a more logical approach for

the implementation of the REMEX Data Warehouse memory unit.

3ammond had previously written the code to support the Intel

i201 Floppy Disic Controller. A spare i2el controller was

58

4

available and was placed In the iCS-80 chassis. With a few

minor modifications to the BIOS, it was operational in a

very short time. Since both ALTOS and MDS single-density

diskettes were fully compatible, programs could now be

written, assembled, and converted to executable code and

then be taken directly to the ICS-80 for execution. This

reduced the amount of time needed to correct errors or

modify a program and greatly facilitated code generation.

Because devices could be added to the 'IOS

independently, it was decided to utilize the 1201 floppy

disk drive as a developmental aid and to subsequently

implement the REMEX floppy disk first foilowed by the hard

disk. The MBB-80 would be substituted for the i2el once the

REMEX interface was completed. This implementation scheme

is explained in more detail in the following sections.

3. INTERFACING THE REMEX DATA WAREHOUSE

During the testing of the initial REMEX READ/WRITE

low-level routines, it was observed that the REMEX would

only intermittently coirplete a packet operation. Wnen it

did not complete successfully, the program looped infinitely

checking the packet status word (see Figure 4.1) for a value

other than a zero, Indicating that the REMEX had either

completed the operation or that an error had occurred. When

multiple packets were sent out on the Multibus, completion

5

59

codes were occasionally returned in the command packet

status word. When DDT86 was used to trace through the Read

routine step by step, the same results were obtained.

However, this procedure did verify that command packets were

being constructed properly and that the packet address was

being transmitted to the Multibus correctly.

Next, a Multibus Monitor Board was used to observe

the action on the Multibus and confirmed that all data was

correct. This led to speculation that either the interface

board was not transmitting the correct information to the

REMEX or the REMEX was not processing packets correctly once

it received the information from the interface board.

However, further hardware testing revealed that both the

hREMEX and the Interface were functioning normally.

The source of the problem was found more by accident

than by design. Documentation (Ref. 8 : p. 2-4] indicated

that the Interface Assembly would wait from 0 to 15 host CU

cycles between consecutive DMA operations. The exact number

of cycles can be jumper selectable by the DMA Throttle.

Therefore, polling the packet status word for a completion

At code was thought to provide sufficient CPU cycles to allow

the process to continue. However, when the wiring diagram

of the Interface Card Assembly was examined, it was

discovered that the DMA Throttle was controlled by the

number of Multibus cycles and not by the number of CPU

cycles. Since the Throttle was set to tre factory default

position, one additional Multibus cycle was required before

the interfacp board could execute its next DMA operation.

Because there was only a single host computer in the system,

no additional Multibus accesses were made. This explains

why marginal success was obtained by sending multiple

packets since this provided the additional Multibus

accesses. The DMA Throttle jumper was removed which allowed

the Interface Card Assembly to respond Immediately with a

DMA operation once it acquired control of the Multibus.

Subsequent packet ope rations were successfully completed.

Once the READ/WRITE driver routines had been

debugged, the next step in the floppy disk implementation

was to incorporate these routines into the table-driven

?105. A separate "Include" file called RXFLOPl.Ae6 was

established to contain the necessary device-specific

subroutines. Of the seven BIOS functions that had to be

addressed, only the READ and WRITE functions required code

in addition to that contained in the basic BIOS routines.

Each of the other functions were returned directly to tne

main BIOS.

The command packet was allocated memory space in theK

data section of RXFLOP1.A86. Eowever, the packet parameters
had to be supplied from the BIOS variables in orler to

access the file requested by the CP/M file manager. Figure

4.4 depicts the RAD packet for the RZMEX floppy disk drives

used in this implementation.

K 61

L

.7,

Bit Number

15 87 43 0
-------- ---- -

word 0 10h 1 1 1/2

1 Status Word

2 Track
------------------- --- 1

3 1 00 Sector

4 DMA Buffer Offset

5

6 00 64h

Figure 4.4
REMEX Floppy Disk Read Packet

From Chapter 3, recall that word 0 of the command

packet is composed of a modifiers section, function code

block, and unit Id number. The value of 10h in the modifiers

section merely indicates that a single packet is being sent

and that all automatic error routines are in effect. The

function code block (1) specifies a READ operation. Since

the REMEX floppy disk drives were chosen to be equivalent to

CP/M logical disk drives 1 and 2 (3: and C:) for this

implementation, the CP/M drive number and the REMEX unit id

for the two floppy disk drives were equivalent. Therefore,

the desired CP/M disk number is directly inserted into the

packet. The 16 -bit IOS variable "track" which contains the

requested track number is placed into word 2 of the command

packet. Word 3 which contains the head and selected sector

62

number is formed by inserting a zero in the upper byte

indicating that the floppy diskette till only be addressable

on a single side and placing the BIOS variable sector" in

the lower byte. The 20-bit address of the CP/M DMA buffer

which will receive the requested data is computed from the

DMA base and offset. The extended address bits (bits 16-19)

are entered in the lower byte of word 5. For example, if

the local memory of an iSIC 96/12A is confl'ired to respond

to Multibus memory segment zero, the extended address bits

will be equal to 00h. However, if the local memory were

configured to respond to Multibus memory segment 1000, then

the extended bits would be 01h. The remaining 16-bit address

is placed into word 4 of the command packet.

Word 6 which contains the transfer word count caused

the most problems with the floppy disk interface. The major

difficulty encountered was the direct result of poor and

misleading documentation. The REMEX technical manual for

the interface board indicates [.Ref. 8 : p. 2-41 that the

REMEX can selectively transfer data to the host computer In

either 8-bit or 16-bit words by setting a single switch.

Since CP/M worms with 8-bit words, the switch was set

accordingly and a transfer word count of 128 8-bit words was

placed in the packet and sent to the REMEX. At first, this

r seemed to work correctly because a directory of the diskette

was read without difficulty and files could be transferred

to and from the diskette without error. 3owever, problems

63

were encountered when attempting to execute a file that was

on the diskette. An error message of "FILE NOT FOUND" was

displayed intermittently. If a file was found, the program

would not execute correctly. In both cases, the system

partially crashed and no other operations could be

accomplished, despite the fact that the prompt character

" continued to function normally along with an occasional

error message.

The source of the problem was not readily apparent.

The operating system worked correctly until the directory

of the REMEX floppy diskette was obtained or a file was

executed. However, no error code was being generated by

the REMEX. In fact, the success code that was being

generated indicated that the operation and data transfer was

be'ng correctly accomplished. Executing the routines using

DDT86 also indicated that the REMEX was f'Inctioning

correctly and showed that the data was being placed in CP/M

DMA buffer.

Numerous changes and experiments were made

attempting to locate the cause of this problem. Printouts

i4 of the diskette's directory were obtained without error.

Hardware was tested and retested with negative results.

Finally, a memory map of the operating system was printed

*4 after obtaining the directory from a diskette In the MDS

single density disk drive system. This was compared to a

memory map of the operating system after the directory of

I'4

K~i the same diskette was taken from the REMEX floppy drive. It

was here that the error was uncovered. The REMEX was

transferring 256 8-bit words into the DMA buffer space, not

the 126 8-bit words as believed. Thus, the extra data was

overwriting portions of the CP/M-86 MOS causing the system

to partially crash. The problem stems from the fact that

the REMEX wants to know now many 16-bit words it should

transfer. This is completely independent of how the REMEX

will transmit the data. Therefore, since a CP/M sector of

128 bytes is equivalent to 64 or 40h 16-bit words, 40h .was

placed in word 6 of the command packet and no further

problems were encountered.

2. Hard Disk

Although the implementatiorn of the hard d.isk was

very similar to the floppy disk drives, there were some

notable exceptions. First, the REMEX had a sector size that

was a multiple of the standarl CP/M sector size of 128

bytes. This necessitated the use of a sector

blocking/deblocking routine to resolve this disparity.

Second, since the REMEX hard disk has four (4) separate.4

heads, the question of how to divide up the disZ had to be

resolved. The most logical and straightfoward method was to

let each head represent a separate CP/M logical disk drive.

t- Each drive would then be able to address up to 4.5 megabytes

of data. With these ideas in mind, the hard diskc interface

was begun.

65

4"

Changes had to be made to the Disk Definition and

Configuration Tables. In the file CPMMAST.DEF, CP/M logical

drive numbers 3, 4, 5, and 6 were added to the table. Each

drive number had a disk definition statement that described

the physical storage capabilities of a single head of the

hard disk. The disk definition variables were determined as

presented in Chapter 3. Now, the BIOS would support a total

of seven (7) peripheral I/0 devices: an i201 floppy disk

drive, two REMEX floppy dis' drives, and four REMEX hard

disk drives. Later, the MB]-80 bubble memory wo:ald be

substituted for the 1201 disk drive. Also, additional

labels had to be added to the tables in the file CPMMAST.CFG

to vector the MIOS function calls to the appropriate

subroutines located in the 'include" file RIHARDI.AE6.

The most difficult obstacle to overcome in this

portion of the implementation was to determine the RIMEX

hard disk sector size. The sector size can be either 128,

256, 512, or 1024 bytes. Initially, attempti were made to

reformat the hard disk in accordance with Reference 7.

Switches S1 and $2 located on the Formatter II Card Assembly

were set to configure the hard disk with a 512 byte sector

size. A program was then written which built a command

packet to execute the REMEX built-in formatting routine

[Ref. 7 : p 3-20]. However, repeated attempts failed to

produce a successful format operation. The REMEX also

supports a built-in maintenance program that tests the Hard

66

Disk Format operation. When this program was run, multiple

error messages were returned indicating that the format

program was inoperative.

Since data had been written to and retrieved from

the hard disk during low-level driver testing, i, was

obvious that the REMEIX had been previously formatted. The

next step was to determine exactly wnat format was used.

This was not as easy as might be expected. During the power

up sequence, the REMEX will check the sector size switches

and configure its internal circuitry to process sectors of

that size even if the switch postions do not represent the

actual format of the hard disk. That is precisely why these

switches must match the actual physical sector size in order

for read/write operations to work correctly. This fact

caused considerable confusion in the interpretation of tae

error messages obtained by attempting to access the border

sectors (104, 67, 39, and 21 for sector sizes of 128, 256,

512, and 1024 bytes respectively). However, it was finally

determined that the sector size was 512 bytes.

Since the REMEX sector size was a multiple of the

128-byte CP/M sector size, a sector blocking/deblocking

routine was needed to coordinate the access of CP/M sectors

with the physical sectors of the hard disk. In this case,

there were four (4) CP/M sectors contained on each hard disk

sector. On each BIOS call, the CP/M-66 3DCS irncl'ides

information that can be used to Drovide effective sector

67

blocking and deblocking. The sector blocking/deblocking

routine used in this implementation is distributed by

Digital Research in skeletal form [Ref. 6 : p. 70].

The blocking/deblocking algorithms map all CP/M

sector read and write operations through an intermediate

buffer called "hstbuf". The size of this buffer is

equivalent to the REMEX sector size (512). During a read

operation, a 512-byte sector of data is read into the

"hstbuf" or host buffer from the REMEX hard disk. Since the

host buffer now contains four CP/M sectors, the desired 128-

byte sector is obtained by correctly offsetting into the

host buffer. This data is then transferred to the CP'M DMA

buffer defined by the DMA base and DMA offset variables.

Similarly, during a write operation, four CP/M sectors are

written to the host buffer. The data is then transferred to

the REMEX hard disk and stored on a single 512-byte sector.

Within the blocking/deblocking routine itself, the

values and variables which relate to CP/M sectors are

prefixed by "sek", wile those related to the REMEX hard

disk are prefixed by "hst". The SELDSK, SETTRK, SETSEC,

SECTRAN, and SETDMA entry point routines were transposed

into the REMEX nard disk "include" file. These subroutines

store values for later use and SECTRAN translates CP/M

sector values into the corresponding physical sector. The

READ and WRITE entry point labels were placed in the

read table and write table respectively, while the actual

6E

IJ

R1MEX hard disk read and write low-level drivers were

incorporated at the READEST and WRITEHST entry points.

The command packet was constructed from the

2ii following variables: "hstdsk" which represents the host disk

number, "hsttrk" which is the host track number, and

"hstsec" which cooresponds to the host sector. The host disk

number is transformed into the appropriate head number and

is entered into the upper byte of word 3 of the command

packet. The memory segment and offset of the host buffer

(hstbuf) is translated into a 20-bit address. The extended

bits (16-19) are entered into the lower byte of word 5,

while the remaining 16-bit address is placed in word 4 of

the command packet. For the REMEX hard disk, we want to

transfer 512 bytes or 256 16-bit words. Therefore, the

Bit Number

15 8? 43 a

word 0 10h I 1

1 Status Word

2 hsttrk

3 head # 1 hstsec
I--------------------------

4 16-bit addr of hstbuf
--- I

5 Iext bits

-----------------------------------6 li@0h

Figure 4.5
REMEX Hard Disk Read Packet

69

transfer word count (word 6) was set to 109h. The RIMEX hard

disk Read packet is shown in Figure 4.5.

The above implementation produced a CP/M-86 BIOS

that supported the MBB-80 bubble memory and the REMIX Data

Warehouse floppy and hard disk drives. The original master

iSBC 86/12A (#1) was booted from the MBB-80 and had its

onboard memory switch-and-jumper selected to be accessible

from the Mulitibus beginning at memory segment zero. Data

transferred from the REMEX would be put directly into the

CP/M DMA or Rost Buffers via DMA operations. The next step

was to introduce a second iSBC 86/12A into the systeir which

would also utilize the CP/M-86 operating system.

It was decided to use the 321 common memory to hold

a bootloader program that could be used by the slave iSBC

e6/12A computers to boot the CP/M-86 system. A utility

program, LDCPM.A86, was written to place a copy of CP/M-a6

into common memory which was especially configured for the

slave computers. A second utility, LDBOOT.A86, was used to

transfer a copy of the bootloader program (BOOT.A66) into

common memory. The resulting common memory map is snown in

Figure 4.6. CPMSLAVE.CMD was identical to the CP/M-66 system

used for the master iSBC 86/12A except that it supported an

iSBC 86/12A whose local memory was accessible from the

Multibus beginning at memory segment iO0eh. When initiated

from the S3C 86/12A monitor, the bootloader program would

70
V

-.. r -00.....0.... .

-. ~~~ 7- 7..- U

BOOT.CMD I

I

":"C PMSL.VE .CMD

° I .

:4000

FREE

Figure 4.6
Common Memory Map

transfer the CP/M-86 slave system from common memory into

local memory beginning at 40:0000h. Once the transfer was

complete, control would be passed to the 3IOS to initialize

the system. 1_t M2..11 _notge tIha_ l 11 he~e progra~nm ust

resldt 2g g-PL-- 1_ogza~l drive D:.

This scheme, although utilizing the DMA capability

Iiliiof the REMEX to the maximum extent possible, would require a

different CPMSLATE.CMD file for each iSBC E6112A added to

the system. Each computer's local memory would have to be
placed in a64K bloc within the one-egabyte

I aIear t

Fd address space available to the Multtbus and these page

~numbers would be have to be entered in the lower byte of

Iiillword 5 in the command packet. This organization Is somewhat

Ii awkward and exhausts a largre portion of common memory If

I 1

several computers are used. Therefore, a more acceptable

alternative was needed.

C. STNCHRONIZATION AND PROTECTION

1. SYchronizaton of ftadLWrite Operations

With two active iSBC 86/12L computers in the system,

the synchronization of read/write operations had to be

addressed. Since the REMIX could queue up to eight (8)

command packets internally, it was initially felt that this

feature would provide adequate synchronization of the I/0

requests from the independently operating computers.

However, when simultaneous multiple transfers were attempted

between the CP/M hard disk logical drives, sporadic errors

occurred. Inspection of the READ and WRITE routines in the

hard disk "include" file (RIARD1.A86) revealed that there

was nothing to prevent a clash of both ISBC 86/12A computers

if they simultaneously attempted to send a command packet

address to the REMEX Interface Card Assembly. Since the

packet addresses were sent in three (3) single-byte Multibus

transfers, it was indeed possible for the values sent to the

interface board to become intermixed. Also, once the most

significant byte of the packet address is sent, the

interface immediately signals the REMEX that tae packet

address is complete and ready to be transferred. However,

this may not be the case. Consider the ase where computer

#1 has transferred the extended address and the least

significant bytes of the packet address to the Packet/LA

72

Register. Computer #2 then sends the extended bits of its

packet address. Since each computer's memory begins on a

different page, the extended bits will be different for each

iSBC 86/12A. Computer #1 now regains control of the Multibus

and sends its most significant address byte. The Remex will

now read the packet located in computer #2's address space

rather than the packet in computer #1's address space. This

will certainly cause severe problems.

Initially, the section of code used to send out the

packet address was identified as a critical section. A

semaphore was then defined to control the access to the

critical section. In order that all active iSBC 86/12A

computers cculd have access to the semaphore, it was placed

in common memory and could take on a value of either 0 or 1

indicating that the resource was either busy or free

respectively. If it was a 1, the requesting computer would

set it to 0, send the three bytes of the packet address, and

then reset it to 1. If the requestor found that the

semaphore was equal to 0, it would delay and then recheck.

4 This checking process was implemented using the LOCK ICHG

instruction to provide exclusive use of the Multibus.

When simultaneous multiple file transfers were again

attempted, errors still occurred Indicating that there was

still some interference on the Multibus. This probably

occured when the registers of the interface were set up for

a DMA data transfer and a packet address was then written

73

into the Packet/DMA register before the data could be

transfered. At any rate, a more inclusive synchronization

scheme was required to ensure that a single iSBC 86/12A

read/write operation could be completed without encountering

contention from the other computers In the system.

Since It was desirable to have all iSBC 86/12A

computers configured alike, it was decided to adopt a

software approach to the synchronization problem rather than

the conventional monitor approach. The method chosen was

based on sequencers and eventcounts [Ref. 121 This method

Is modeled after the "ticket/server" system used in many

stores where services are performed. When the customer

arrives, he takes a numbered ticket and then waits for his

number to come up before being served. The server works in

ticket number order. The implementation of this scheme is

very straightfoward and had been previously used by Hammond

(Ref. 31. Two 16-bit counter variables, "ticket" and

server", were placed in common memory. The value 0 was

reserved for the ticket number indicating that another

computer was presently modifying the ticket number.

Exclusive access to the ticket number was provided by the

LOCK XCHG instruction. An algorithmic language

representation of the sequencer routine Is given in Yigure

4.?. The delay used in the Await Subroutines was used to

prevent Multibus contention. "Request" is called prior to

* each read or write operation to gain exclusive access to the

74

L

Primitive Subroutines

ticket: ;return a ticket number

customer no. = ticket no.
inc ticket no.
ret

await: ;delay until customer no. =
;server number

while customer no. < server
delay

ret

advance: ;inc server

Inc server
ret

Entry Point Routines

request: ;get resource

call ticket
call await
ret

release: ;release resource

.call advance
ret

Figure 4.7
Sequencer Algorithm

[i 75

I-

shared resource. Once the operation is complete, "release"

is called to free the resource by incrementing the server

number which allows the next I/0 function to be executed.

When the sequencer code was Implemented Into the read/write

routines for each of the peripheral I/0 devices, no further

errors were noted.

2. Common MemorZ aLZrite _gu~ts

As alluded to earlier, the CP/M-86 BIOS which uses

DMA operations to transfer data between the iSBC 86/12A

computers and the Remex Data Warehouse requires a unique

BIOS for each computer in the system. This places a severe

limitation on further system expansion and complicates the

system configuration control requirements. Futhermore, this

type of implementation requires that at least a portion of

the iSBC e6/12A's local memory be accessible to the

Multibus. One of the principal goals of this thesis was to

provide a system in which all computers were isolated from

one another. Obviously, this implementation does not support

this goal. It also results in an awkward bootloader

arrangement in common memory and requires that all versions

- of CP/M-e6 needed for system operation be accurately updated

should any changes or modifications occur. Therefore, a

more acceptable BIOS implementation had to be found.

The resulting implementation routed all data

transfers through a common memory buffer. The size of this

buffer was set to correspond to tne largest physical sector

b 7 6

,+A

I I II

I I COMMON I CP/M
RIM-- MEMORY ------ >I DMA

,BUFFER BUFFER

I II II

PACKET CONTROL

Figure 4.8
Common Memory Read Operation

within the system which was the 512-byte sector of the REMEI

hard disk. The additional code required for each read/write

routine was minimal since its only function was to transfer

a given amount of data between local and common memory. A

data flow diagram depicting a typical read operation from

the REMEX is shown in Figure 4.8. For illustration, consider

a CP/M initiated read operation from the REME hard disk.

The command packet will be constructed as before except that

the 20-bit common memory buffer address will replace the

host buffer address in word 4 and the lower byte of word 5

of the packet. This will result in the desired data being

read into the common memory buffer. When this operation is

complete, the requesting ISBC 66/12A will then transfer the

data in the common memory buffer to the host buffer located

In the data section of the CP/M 3IOS. This procedu:e is

entirely transparent to the CP/M PDOS. A write operation is

similarly completed. First, the data in the host buffer is

4I written to the common memory buffer. Next, a packet is sent

77

to the interface which transfers the data from common memory

to a specified head, track, and sector of the hard disk. The

required changes were made to the "include" files for the

MBB-80 bubble memory, the REMEI floppy disk drives, and the

S. REMEX hard disk drives and the files were renamed

MBeDSK.A86, RXFLOP.A86, and RXHARD.A86 respectively. These

files appear in Appendices C, D, and E.

The common memory routines produced several

improvements to the overall system design. First, all iS3C

86/12A computers could be completely Isolated. Each of the

four computers used in the system was jumper configured so

that all onboard memory was reserved totally for local CPU

use and could not be accessed from the Multibus. This

provided the required protection for each computer's local

E00:0000---
-ticket iserverlI I
i-------- -----------

:0100 -- - - - - - - - - - - -
V.' ' CP/M Buffer

:0400 -
BOOT.CMD

CPMSLAVE.CMD

:3500

'4 FREE

Figure 4.9
Common Memory Allocation-4

78

I

memory. Second, only a single copy of the CP/M-86 operating

system was required for all of the slave computers since

data transfers were locally initiated. In fact, the only

difference between the slave and master versions involved

the initialization of the synchronization variables and the

log-table. A memory map showing the configuration of common

.memory is presented in Figure 4.9.

3. Disk Wrijte ?rotection

The ticket/server synchronization routine ensures

that single iSBC 86/12A read/write operations can be

completed without interference. However, this is not

sufficient to provide the necessary write protection to the

shared devices in a system of multiple computers each

running CP'M-86. Consider the case of two processors trying

to write to the same CP;M logical disk. CP/M reads the disk

directory and constructs an allocation vector in the BIOS

that indicates the logical blocks on the disk that have not

been written to previously. Each iSBC 66/12A then proceeds

to write its data file to the unallocated blocks in

sequential order. Although the Individual write operations

were synchronized, the result is still overwritten and

garbled data. Therefore, this implementation institutes a

read/write strategy that allows all computers to read data

from all the shared devices but only write to a single

levice to prevent files from being overwritten. Moreover,

it was also desirable to be able to select any of the shared

79

14

devices for write operations from each of the four system

console positions.

A logan and logout procedure was developed to

control the write access to the various peripheral devices

through the use of a table located in common memory. This

table has a entry for each device in the system (Figures

4.10 and 4.11). Before the user is permitted to boot

the CP/M he Is asked for his console number and the CP/M

drive that he wishes to log onto (write to). The CP/M drive

A: 3: C: D: 1: F: G:
--------------------- ------------ --- ------------- -

logtbl 1MBB-80IFLOP11FLOP2! ARD11ARD2hARD35EARD4I

Figure 4.10
Login Table

E33:0000---- ---------------------
ticket I server logtbl

-:0100 --- ----------------

CP/M Buffer
:0300 - --------------------

Figure 4.11
Final Common Memory Configuration

number Is stored in a local variable called user which is

used as an offset into the log table. The log table is then

checked to determine If the desired disk has already been

logped onto. If not, the console number Is entered Into the

80

. . . .

log table at an offset corresponding to the given device.

Otherwise, the user is asked to select another disk. To log

out, the user types the command "logout" which places a zero

(free) in the log table at an offset equal to the user

number. Each CP/M logical disk drive requires its own copy

of the log out routine (LOGOUT.CMD) so that it can be

executed from every disk drive.

Within the BIOS, when a write operation is

requested, the variable "user" is compared to the CP/M

logical disk number. If they are equal, the write operation

is permitted to continue. If not, the user is informed that

write operations are not permitted to that disk drive. This

guarantees that no two iSC 86/12A computers can write to

the same shared disk.

D. SUMMARY OF SYSTEM GENERATION

The following descriptions provide step-by-step

procedures on how to create the BIOS for this implementation

of the CP/M-66 operating system, how to step up the MBB-80

bubble memory board in the MDS double density system, and

'how to start up the multi-user CP/M-E6 system.

1. SZ5s1geM Dio~s Creation

a. Develop separate files for each I/O device being

sure to address the seven device specific functions in each.

In this code, before any Multibus access include the

command "call request" and upon completion of a Multibus

access in-lude tne command %;all release".

81

b. Ensure that all I/O is accomplished via the

common memory I/0 buffer which extends from EOO0:lB to

2E00:3h. Develop a transfer routine for moving data to and

from the common memory buffer and the host computer.

c. Decide upon the logical hardware configuration

as will be seen by CP/M-e6. Based on this configuration,

develop the Disk Parameter Table which will be used as the

source file for 0,ENDEF.CMD to produce a .LI3" file. Also,

using this same hardware configuration and the i/0 device

files, develop the label tables in CPMMAST.CFG for the seven

device specific functions.

d. In the BIOS use the "include" command for all

I/O device files, the label table (CPMMAST.CFG), and the

Disc Parameter Table (CPMMAST.L1IB). The files SYNC.A86 and

LOGIN.Aa6 must also be included, but require no

Tod if icat ions.

e. Assemble the BIOS using ASMB6.COM. Using

ASME6.CMD may generate forward reference errors and require

the rearrangement of some Included files in the BIOS. Two

assemblies must be made. The first must be assembled with

the master conditional assemblj switch set to true in order

to create the master IOS. The second iust be made with the

switch set to false in order to create the slave BIOS.
4

f. Concatenate the resulting hex files with CPM.H86

to form CPMMAST.H86 and CPMSLAVE.HE6. Use the CP/M utility

8

82

command GENCMD.CMD (GENCMD CPMMAST 8096 code(a40]) to

generate the executable command files.

g. Transfer CPMMAST.CMD to the M3B-80 bubble memory

board as CPM.STS. Transfer CPMSLAVE.CMD to drive D: of the

2EMEX.

a. Remove the Intel 8080 microcomputer and the

associated memory boards from the MDS double density system.

b. On the iSBC 86/12A #1, place the switches 1-16

and 8-9 on DIP switch Si in the closed position. Install a

jumper between pins 127 and 128. If there are jumpers in

place for the clock, pins 103 and 105, remove them.

c. Insert the iSBC 66/12A #1 and the MBB-EO board

with the backplane into the MDS chassis.

d. Turn the power to the MDS chassis and the disk

drives on. Once these devices are running, apply power to

the MBB-80 board by setting the memory protect switch on the

backplane to the "run" position. Now, the CP/M-86 operating

system can be booted from a double density diskette by

entering the command GFFD4:0. The system booted should be

one that is capable of addressing the bubble memory as a

diske t te.

e. To format the MBB-80 bubble memory execute tne

program M38OFMT.CMD and use 6000H as the base address for

the controller. Execute LDCOPT.CMD using LDRMBE.CMD as the

source file. This will place the loader on tracks 0 and 1

L8

of the MBB-80 bubble board. inally transfer CPMMAST.CMD to

. the bubble as CPM.SYS.

~~3. SZs§~Ign 41alzltion

a. Insert four iSC 86/i2A computers into the iCS-

80 chassis. One computer must have a jumper on pins 10/104

and 105/106. These connections supply the clock for the

Multibus. All computers should have pins 112 and 114

connected by a jumper wire. This ensures that the

computer's local memory is inaccessable to the Multibus.

Also on all computers, only position 8-9 on DIP switch S1

- should be closed. All other positions should be open.

Finally, insert the M13-80 bubble memory board, tne 32K

common memory board and the REMEX interface board into the

iCS-e8 chassis.

b. Turn the iCS-60 power switch on.

c. Power up the REMEX In accordance with Ref. 7 and

turn the M33-80 memory protect switch to "on". This switch

is located In the rear of the iCS-80 chassis.

d. When the REMEX hard disk has timed out and the

ready light is on, enter the command GFID4:4 from the

. console att ched to iSBC 86/12A #1 to boot CP/M-86 from the

M33-80. The synchronization variables and the log table

entries will be initialized in common memory.

e. Select drive D:

84

f. Execute LDCPM located on drive D:. This will

load the file CPMSLAVE.CMD into common memory starting at

. ESSO -500.

g. Execute LDBOOT located on drive D:. This will

place the file)OOT.CMD into common memory starting at

100 :400.

b. Now, CP/M-86 can be booted on any iSBC 86/12A

Computer by entering the command OF009:0400 from the ironitor.

1. "When a session is completed, enter the command

LOGCUT to logoff the system.

V. RSULTS AND CONCLUSIONS

A. GENERAL RESULTS

The ultimate goal of this thesis was to develop a multi-

computer "protected" CP/M-86-based system that shared memory

storage devices. This goal was accomplished and the

resulting code is located in the Appendices. Tae major

product produced by this thesis is a completely operational

multi-user development station. The CP/M BICS is completely

table-driven and can be reconfigured for different hardware

configurations in under twenty minutes. This featare alone

is a significant improvement over the standard RIOS marketed

by Digital Pesearch. In addition, It should be quite easy

to expand the current system to permit more users or add

additional I/O devices.

The system provides user protection in several forms.

No user, once logged onto the system can destroy, either by

design or by accident, anothers user's files or local CPU

memory. However, any single computer can destroy common

memory, but it is a simple matter to restore it.

zurthermore, the logon and logout procedures prevent two

users from simultaneously logging onto and writing to the

same CP/M logical disk drive.

;4

B. EVALUATION O TEX IMPLEMENTATION

To evaluate system performance, two tests were

conducted. The first test involved assembling a 3K and then

a 24K file with a single computer logged onto the system.

The assembly time was recorded using a conventional

stopwatch. Next, two computers were used to simultaneously

assemble the same file, followed by three and then four

computers. The results of the test are shown in Table 5.1.

Table 5.1
REMEX Assembly Times In Seconds

FILE ONE TWO THREE FOUR
SIZE COMPUTER COMPUTERS COMPUTERS COMPUTERS

3K 12.9 22.1 25.1 28.8
24K 211.1 246.? 257.3 275.5

Table 5.2
MP/M Assembly Times In Seconds

FILE ONE TWO THREE FOUR
SIZE USER USERS USERS USERS

3K 22.3 1 1 I
241 323.2 X 1 z

One might expect that two Computers would take twice as

long to assemble the same program and three computers three

times as long. However, except for the initial contention

for the I/0) devices, all computers could assemble the files

in parallel. This accounts for the fact that there is not a

87

linear relationship between the number of computers

operatine in the system and the assembly times.

To provide a means of comparison, an attempt was made

to run the same test under the MP/M operating system.

However, MP/M would not permit more than one file to be

* assembled at the same time. In fact, on several attempts,

the entire system crashed. The results of this test are

shown in Table 5.2.

The second test involved a file transfer utilizing the

CP/M-66 utility PIP.CMD. Since all operations were I/O

intensive, this test represented a worse case scenario. The

first run consisted of transferring a 16K file with only one

computer operating in the system and recording the time it

took to complete the operation. Then two and finally three

computers were used to execute the identical PIP command at

the same instant. The time it took for all computers to

complete the task was recorded. The results of these tests

are shown in Table 5.3. The "Is" indicate that it was not

possible to make the transfer because there was an

insufficient number of destination type devices. (i.e. Two

computers cannot transfer files to a single bubble device at

at the same time.)

To provide a comparison for the above results, tae same

test was run on the MP/M system. Altaough tae two system

configurations are different, they do offer some basis for

comparison. However, in the MP/M system, only operations

88

Table 5.3
RZMEI Transfer Times In Seconds

\ TO I HARD BUBBLE FLOPPY
DISK DEVICE DISK

FROM \ I

SINGLE COMPUTER EXECUTING PIP

HARD DISK 2.5 5.6 8.1

3UB3LE DEVICE 5.6 8.0 11.6

FLOPPY DISK 7.3 9.6 12.0

TWO COMPUTERS EXECUTING PIP

HARD DISK 5.9 1 54.4

BUPBLE DEVICE 11.3 1 54.6

FLOPPY DISK 29.1 1 X

THREE COMPUTERS EXECUTING PIP

HARD DISK 10.6 X x

BUBBLE DEVICE 18.4 X I

FLOPPY DISK 49.7 X I

between the hard disk and floppy disk were possible. The

results of this test are shown in Taole 5.4.

From these results, it can be seen tnat the multi-user

CP/M-86 system has a slight performance advantage for single

user disk operations. When more than one user is operating

In the systera, this performance advantage becomes very

Table 5.4
MP/M Transfer Times In Seconds

\TO ,ARD FLOPP!
DISK DISK

FROM \

ONE USER EXECUTING PIP UNDER MP/M

HARD DISK 7.3 12.0

FLOPPY DISK 11.2 14.8

TWO USERS EXECUTING PIP UNDER MP/M

HARD DISK 17.4 26.2

FLOPPY DISK 26.3 1

THREE USERS EXECUTING PIP UNDER MP/M

HARD DISK 23.?

FLOPPY DISK 36.9 1

significant for transfers made between areas on the hard

disk. However, the REMEX floppy disk drives are slower.

Since the REMIX hard disk can be used to emulate the

signal processor" functions of the AEGIS system, a third

test was conducted to determine the optimum stew factor for

consecutive read operations. A low-level routine was

4written to continuously read sectors from the hard disk into

common memory. After each read operation, a counter was

incremented. When five read operations had been completed, a

character was prirted to the CRT screen. The time it took

to print 80 characters to the CRT is recorded and

90I

Table 5.5
REMIX Winchester Disk Skew Times

in Seconds

SKEW TOTAL SKEW TOTAL
FACTOR TIME FACTOR TIME

*-0 10.00 20 5.25
1 1 10.35 21 5.55
2 10.55 22 5.EO
3 10.95 23 6.10
4 11.25 24 6.35

- 5 11.45 25 6.60
*"- 6 11.70 26 6.85

7 11.95 27 7.10
8 12.20 28 7.35
9 12.55 29 7.55

10 12.75 30 7.eo
11 13.05 31 8.05
12 13.40 32 8.30
13 13.45 33 8.65
14 13.70 34 8.85
15 4.20 35 9.20
16 4.35 36 9.45
17 4.55 37 9.65
18 4.85 38 9.85
19 5.05

approximates the time it took to conduct 400 separate read

operations. During the first run, the skew factor was set

to zero. Therefore, no sectors were skipped between read

operations. In the subsequent runs, the skew factor was

incremented by one for each successive test. 1he results are

shown in Table 5.5 and Indicate that a skew factor of 15 is

optimal for reading data from the REMEX hard disk.

C. RECOMMENDATIONS FOR FUTURE WORK

There are several possible opportunities for future

projects involving the REMEX hard disk and the multi-user

;• 91

6i

.- .. " . '. ' . A . . • - -- - .- - - .- - - = - .- -N -. -j i . . . , - .

CP/M-86 system. The first and foremost is the use of the

" system to emulate the AEGIS system. Several AEGIS system

modules have already been developed and could be run on

dedicated iSBC 86/12A computers using the REMEIX hard disk to

supply simulated radar data. In the present hardware

configuration, four system modules could be run concurrently.

Eowever, there are other smaller support projects which

would increase the capability and utility of the system.

There is an urgent need for a more sophisticated text editor

or word processor. Without one, the system will not be used

to its full capabilities. Translating the 8080 assembly

language code of BTED.COM into 80b6 assembly language would

provide a more usable text editor than the one currently

provided by Digital Research - ED.CMD.

Another possible project is to develop a boot "loader

program for the REMEX Data Warehouse. As the system is

currently designed, the CP/M operating system must be

initially loaded from either the MBB-80 or from the MDS

single density system. This would allow CP/M to be booted

from any of the memory storage devices currently in the

system.

A more ambitious project would ae to design a boot

loader which permitted the user to boot not only the master

4 CP/M-86 operating system directly from the REMEX Data

Warehouse, but the slave CP/M-86 operating system as well.

This would relieve the master system of the task of loading

92

I°

7 777 W'. ;7.

the CP/M slave system and the boot loader program into

common memory prior to booting the other slave computers.

Furthermore, it would free a larger portion of common memory

for general use and decrease the number of system variables

that would have to be reconstructed should common memory be

destroyed. The programs LDCPM.A86, LDBOOT.A86 and BOOT.A86

which are already written could be combined to form the

nucleus for such a program. Once operating correctly, the

program would have to be loaded into at iSBC 86/12A EPROM

where it would be accessible to the monitor.

The final project could alter the CP/M-86 BIOS to

include the Micropolis Winchester hard disk, the MDS double

density disk drive system, and the newly acquired 256K

bubble memories. The code for the Micropolis hard dlisk and

the MDS double densIty disk drive system has already been

written and only needs to be put into the table-driven BICS

format. The implementation of the new bubble memories

should be very similar to that of the MBE-80.

9

a

"' 93

6-

I ..-

APZ3jDj A
PROGRAM DIscRIPTIONS

I. Mn-eO BUBBLE MEMORY FILES

A. MB80FMT.CMD: This program is used to Initially

format the MBB-80 bubble storage device as a single density

disk drive. When the program is executed it will prompt the

user for a segment address. The address of E000 must be

entered. The program will then set the controller base

address to 8600h and write the correct byte patterns on the

bubble memory system to give it the appearance of a

diskette. [Ref. 2 : p. 88 and p. 1591

B. MISOROM.A86: This file contains the source code

necessary for bootstrapping the system fro. tne bubble

memory device. It has been loaded into an EPROM and placed

on the motherboard of the ISCB 86/12A computer labeled #1.

It is executed by entering the command GFFD4:4 into the

monitor of the computer. The program will then place the

system loader Into memory and transfer control to it. [Ref.

2 : p. 1871

C. LDRMB80.CMD: This is the loader program that must

be placed on the bubble's tracks 0 and 1. It will locate

the file CPM.STS on the bubble memory device, load it into

memory and then transfer control to the operating system.

The BIOS for this program is created using MBBIOS.A86 with

the loader conditional assembly switch set to true.

.9

D. 3BBIOS.A86: This file contains the source code

used to create the BIOS for both the CPM.STS and the

LDRMB8O.CMD The CP/M.STS BIOS is created with the loader

conditional assembly switch set to false. [Ref. 2 : p. 1661

E. DKPRM.DEF: This file contains the hardware

conf4guration tables for arranging up to 16 MBB-80 bubble

memory devices or Intel MDS double density disk drive

systems in any combination. It was '"sed by Hicklin and

Neufeld in their implementatior, of a "table driven" BIOS.

However, different I/O devices (i.e. REMEX Data Warehouse)

may not be added to their table. [Ref. 2 : p.95]

F. CONFIG.DEF: Contained in this file are tne disk

definition statements used by Hicklin and Neufield to

generate the Disk Definition Tables for tneir BIOS. The

file generated is labeled CONFIG.L13 and is included into

MBBIOS.ASF when assembled. [Ref. 2 :p. 921 and (Ref. 6

p. 67]

II. REMEX DATA WAREHOUSE FILES

A. CPMBIOS.A86: This file is the basic table driven

3IOS used in this thesis. By setting the MASTER/SLAVE

conditional assembly switch to either true or false, two

different CPM.STS'v3 can be created. The only difference in

the two is that the CPMMAST.CMD system contains code to

initialize the synchronization and login variables located

in common memory. The resulting MASTER file should be

renamed to CPM.STS and placea on the bubble memory storage

95
I

rAD-A126 858 ALTERATION AND IMPLEMENTATION OF THE CP/M-86 OPERATING 2/2
SYSTEM FOR A MULTI-USER ENVIRONMENT(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA T V ALMQUIST ET AL.

UNCLASSIFIED DEC 82 *F/G 9/2 NL

Ehhhhh//aiE/EhhlhlhhlhhhhE
EIhhhhhhhIhhhE
EhhhhhhhhhhhhE
EEEEEEEEllI

- 6 -. . -.~ .*. . .>.

'1i

N!

'll' 2
111W1~o 1. .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-13-A

ISI
__ E20- I.....,

1.1 I--u

device. Entering the comand GFFD4:4 from the iSIC 66/12A

computer labeled #1 will boot the system.

When the MASTER/SLAVE conditional assembly switch is

set to false, a slave system will be created. This system

should be named CPMSLAVE.CMD. It is this file that is

eventually loaded into common memory via the command

LDCPM. CMD.

After the slave system has been loaded into common

memory, the command LDBOOT.CMD must also be executed in

order to place the loader program into common memory. Once

these two commands have been executed, all other computers

can issue the command GEOOO:400 to the computer monitor and

the CP/M operating system will be loaded for each.

B. CPMMAST.CFG: This file contains the label tables

for the seven IO device-specific functions which are

extracted out of the BIOS. These functions are INIT,

SELDSK, HOME, SELTRK, SELSEC, SETDMA, and SETDMAB. A

conditional assembly switch is located in the INIT table.

When the master switch is set to true, two extra labels are

included which permit the initialization of the

synchronization and login variables in common memory.

C. MB80DSK.A86: Located in this file is the code

necessary to read and write to the MBB-eO Bubbl-Board. It is

assembled into the CPMBIOS.A86 file by an include"

statememt.

I

D. RXFLOP.A86: This file contains the code for

reading and writing to the REMEX Data Warehouse's two floppy

disk drives. It is assembled into the CPM3IOS.A86 file by

the use of an "include" statement. Command packets for the

°. REMEX are built in common memory and all DMA is accomplished

*through common memory.

The file labeled RXFLOP1.A86 is almost identical to

RXYLOP.A86. The difference is that common memory is not

used for DMA or packet building. Insteaa the RMEX directly

accesses the host's on board memory. Thus RIFLOP1.A66 will

only work for a computer which has its local memory address

space between 00000h and OFFFFh. To permit additional

computers to use this code, the packet addresses built in

this BIOS will have to be changed to correspond to the

computer's memory address space within the system's

addressable memory space of 1 Megaoyte.

E. RZEARD.A86: This file contains the code necessary

to access the Remex Data Warehouse's Winchester hard disk.

It also contains the bloccing and deblocking code required

for mapping the REMEX's 512 byte sectors to CP/M's 126 byte

logical sectors. It is assembled into the CPMBIOS.AE6 file

by an "include" statement. Command packets for the REMEX

are built in common iremory and all DMA is accomplished

through common memory.

The file RXEARD1.A86 is almost identical to RIBARD.AE6.

The difference being that common memory is not used for DMA

97

or packet building. See RKULOP.A86 for more detail, as

changing RXHARDI.A86 to accomodate more than one user

requires the same changes as RIJLOP1.A86.

T. CPMMAS?.DRF: This file contains the CP/M-e6 disk

definition statments used in this thesis. It is the source

file for GENDUJ.CMD which produces the file CPMM&ST.LIB.

G. CPMMAST.LIB: This file is assembled into the

CPMBIOS.A86 via an "include" statement. It contains the Disk

Parameter Tables created by the CP/M utility program

GENDEF.CMD, using the file CPMMAST.DEF as. the input file.

H. INTELDSK.A86: While this file is not Included In

the final hardware implementation of this thesis, It

contains the code necessary for accessing the Intel MDS

single density disk drive system. It was used extensively

In the early developmental phases of this thesis because it

provided an easy method of booting a new CPM.SYS. If this

file is included into the CPMBIOS, the CP/M-66 operating

system can be booted by issuing the command GFIhD4:0 to the

monitor.

I. LDCPM.A86: This program must be executed in order

to load CPMSLAVE.CMD Into common memory beginning at

J. LDBOOT.A86: This program must be run before the
14

slave CP/M system *can be loaded by the other computers.

When executed, the program OOT.CMD will be placed in common

memory beginning at EOOO:40.

98

1. JOOT.CMD: This is the loader program used by all

but the initial computer to boot the CPMSLATI operating

system from common memory. It is executed by entering the

command GE999:400 from the monitor after the programs

LDCPM.CMD and LDBOOT.CMD have been run.

L. RIFORMAT.A86: When an I/0 device is first

initialized for use under the CP/M operating system, the

hex code Z5's must be written on the tracks which will

contain the directory, otherwise the error "NO DIRECTORY

SPACE" will occur. This program will write E5's on the

necessary tracks for each head of the Winchester hard disk.

Since executing this program will erase all files accessible

to the different heads, it will prompt the user for

permission to procede in order to insure that tne files are

not erased by mistake. Normally this program will not be of

any use unless a new hard disk is installed or a directory

track is inadvertently destroyed.

M. RXMAINT.A66: The REMEX Data Varehouse contains

numerous built-in error checking and maintenance programs

which can be implemented by building and then sending

maintenance packets to the REMEI. This program prompts the

user to choose one of these built-in maintenance programs

and then runs the test. If an error is encountered, the

error code is printed. The meanings of the error codes can

be found in the REMEX tecanical manual. [Ref. 9 : p. 3-19)

N. LCIN.A86: This file contains the code necessary to

4

provide protection from more than one user logging on to the

same area of the hard disk or the MBB-80 board at the same

time.

0. STNC.A86: This file must be included in the BIOS

when more than one computer is going to operate on the

Multibus. It contains the code which prevents more than one

computer from accessing shared resources while another is

conducting a read or write operation through common memory.

I

10

14

PROGUAM LISTING OF CPMBIOS.A86

;Prog Name : CPMIOS.A86 (Master/Slave CP1 Dios)
;Iodified : Inclusion of Synchronization Routine
;Date : 7 October 1982
;vritten by : Tom V. klaiuist and David S. Stevens
;For : Thesis (UIGIS Modeling Group)
;Advisor : Professor Kodres
;Purpose : This IOS is for use vilh the I1B86/12k.

: It requires a separate include file for
: each different I/0 device.

EQUATES

true equ -1
false equ not true
cr equ 4h ;carriage return
if equ Nah ;line feed
error equ *ffh ;eneral error indication
master equ true ;set for master/slave BIOS

;system addresses

bdos-int equ 224 ;reserved BDOS interrupt
ccp offset equ *aIft ;start of CCP code
bdos-offset equ *396h ;A.DOS entry point
bios-offset equ 25eh ;start of 3IOS code

;console via the 18251 USART

cstat equ 9dah ;status port
:data equ 3d8h ;4ata port
tbeask equ 1 ;transmit buffer empty
rdamsk equ 2 ;receive data available

c seg
org ccpoffset

ccp:
o rg blosoffset

bios: ;JUMP VECTORS

' Jmp IIT ;Inter from 300T ROM or LOADER

l11

jmp M3OT ;Arrive here from BDOS call 8
jmp CONST ;return console keyboard status
jmp CONIN ;return console-keyboard char
jmp CCNOUT .;write char to console device
imp LISTOUT ;write character to list device
jmp PUNCH ;write character to punch device
jmp RZADIR ;return char from reader device
jmp HOME ;move to trk 6S on sel drive
imp SELDSK ;select disk for next rd/vrite
imp SETTRK ;set track for next rd/write
jmp SETSEC ;set sector for next rd/vrite
jmp SETDA ;set offset for user buff (DMA)
jmp RZAD ;read a 128 byte sector
imp WRITE ;write a 126 byte sector
jmp LISTST ;return list status
imp SECTRAN ;xlate logical->physical sector
imp SKTDMAB ;set seg base for buff (DMA)
jmp GETSIGT ;return offset of Mem Desc Table
jmp GETIO37 ;return I/0 map byte (lobyte)
jmp SETIOBF ;set I/0 map byte (lobyte)

Entry Point Routines

include login.a66 ;necessary for multi-users

INIT: ;print sipnon message and Initialize hardware
;and software

mov ax,cs ;we entered with a JMPF
mov ss,ax ;so use Cs: as initial
mov ds,ax ;segment values
1mov es,ax
mow sp,offset stkbase ;use local stack
mow Iobyte,8 ;clear Iobyte
push ds
push es
cld ;set interrupt 0 vector to
mov a, ; address trap routine
mov ds,ax
mov es,ax
mov ittoffst,offset int trap
mov intZseient,cs
mow di,4 ;propagate to remaining vectors
mov si,O
mov cx,510

rep movs ax,ax
mov bdio,bdos offset ;correct bdos mt vector

* pop es

13~2

i-i

pop ds
call con-init ;initialize console
xor bxbx ;get mass storage

inil:
mov ax,intbl[bx] ;inltlizatlon table
or axax ;quit If end of table
jz in12
push bx
call ax ;call lnit entry
pop bx
Inc bx ;step to next entry
Inc bx
jmp inil ;loop for next

inI2:
call login
mov bx,offset sienon ;print sign on msg
call pmsg
mov cl,user ;default to a: on coldstart
imp ccp ;Jump to cold entry of CCP

WBOOT: ;enter CCP at command level

jmp ccp+6

CONST: ;return console status

in al,cstat
and alrdamsk
jz conl
or al,offh ;return non-zero if rda

conl: ret

CONIN: ;get a character from console

-call CONST
jz CONIN ;wait for RDA
in al,cdata
and al,7fh ;read data & remove parity bit
ret

CONCUT: ;send a character to console

in al,cstat
and al,tbemsk ;get console status

133

jz CONOUT
mov alcl
out cdata,al ;xmit buff is empty
ret ;then return data

LISTOUT: ;send character to list device
;not yet Implemented

ret

PUNCH: ;write cnaracter to punch device
;not implemented

ret

READER: ;get character from reader device
;not implemented

mov al,lah ;return eof
ret

HOME: ;move selected disk to trx 00
one of seven device specific functions

mov track,B
xor bxbx
mo bl,unit ;get offset to actual device
add bx,bx
call hmtbl[bx] ;calf device code via tables
ret

------------------------------- --------------------------
SELDSK: ;one of seven device specific functions

;return pointer to appropriate 'disk
;parameter block' (zero for bad unit no)
;NOTE: nunits is defined in tne .cfg file

mov unit,cl ;save unit number
mov bx,00 0h ;ready for error return
cmp cl,nunits ;return if beyond max unit
jb sell
mov bl,unit ;get offset to actual device
add bxbx
call dsktbl[bx] ;call device code via tables

* xor bx,bx

104

6i

mov blunlt ;bz = cl * 16
mot cl,4
s hl bxcl
mo cz, offset dpbase ;bx - &dpbase
add bx,cx

sell:
ret

SETTRI: ;set track address
one of seven device specific functions

mo track,cl
zor bx,bx
rov bl,unit ;get offset to device
add bx,bx
call trktblfbx] ;call device code via tables
ret

SETSEC: ;set sector number
one of seven device specific functions

mov sector,CL
zor bx,bx
mov bl,unit ;get offset to device
add bx,bx
call sectbl[bx] ;call device code via tables
ret

SETDMA: ;set DMA offset given by cx

may dma-adr,Cz
ret

---------- ------- -------------------------------- -- -
READ: ;read selected unit, track, sector to dma addr

;read and write operate by an Indirect call
;through the appropriate taole contained in
;the configuration file. It is the programmers
;responsibility to ensure that the entry points
;in these tables match the unit type

zor bx,bx
mov blunit
add bx,bx
call rdtbl(bx] ;call device code via tables
ret

105

4 4 , 4--. ! , a, i, lm IODO,~~i i - , lq~ .4 * . - 4li *. ,nK, * -im *ii 4i * * -. * .

WRITE: ;write from dma address to selected
;unit, track, sector

zor bx,bx
mov bl,unit
add bx,bx
call wrtbltbx] ;call device code via tables
ret

------------------------ ----------------
- LISTST: ;poll list device status

;not implemented

or alSffh ;return ready anyway or
ret ;system may hang up

---------------------------- ------
SECTRAN: ;translate sector cx by table at Ldx]

;NOTE: this routine is not adequate for
;the case of >= 256 sectors per track
;still it's better than DR's which is not
;adequate for the no table case either

mov ch,O
Smov bxcx
cmp dz,0 ;check for no table case
je sel
add bx,dx ;add sector to table addr
mov bl,[bxl ;get logical sector

sel.:
ret

SETDMAB: ;set DMA segment given by cx

mov dma seg,cx
ret

--------- -- ------------------------------

GETSEGT: ;return addr of physical memory table

mov bx,offset segtable
ret

GETIOIF: ;return lobyte value
;note - this function and SZTICBF

;are OK but to implement the function
;the character 10 entry point routines
;must be modified to redirect 10
;depending on the value of iobyte

mov al,lobyte
ret

SETIOBl: ;set iobyte value

mov iobyte,cl
ret

SUBROUTINE3

tin _trap: ;interrupt trap - non interrupt
;driven system so should never get
;here - send tresage and halt

cli ;block interrupts
mOV aX,cs
mov ds,ax ;get our data segment
mov bi,offset Int trp
call pmsg
hlt ; hardstop

con _int: ;initialize console driver
;actually done by the ISBC66/12a monitor

* ret

pmsg: ;send a message to the console

* mov al,(bxl ;get next char from message
test al,al
jz pmsl ;if zero return
mov cl,al
call CONOUT ;print It
inc bx

4 Jmps pmsR ;next character and loop

lk 7

4"

pmsl:

ret

DISK SPECIFIC FUNCTION LABEL TABLES

;The included .cfg file below maps unit number to disk
;device type. It provides tables of entry point
;addresses for use by Init, seldsk, seltrk selsec, home,
;read and write. These addresses must appear in the
;appropriate include file for the particular device type

include cpmmast.cfg ;read in label tables

DISK INCLUDE FILES

;For each I/O device to be accessed by the operating
;system a separate file must be included. Within each file
;seven functions must be addressed and are the same ones
;mentioned in CPMMAST.CFG. The labels used to access these
;functions must be properly order in CPMMAST.CFG.

include mb8odsk.aS6 ;MBB-8i bubble memory
include rxflop.a86 ;REMEX flopyy disks
include rxhard.a86 ;REMEX hard disk

RESOURCE ALLOCATION

;Low-level synchronization of access to the shared
;device. <sync.a86", must include the entry
;points defined in the cfg.files. These are
;called on initialization and before and after
;accessing the resource respectively.

include sync .aE6

DATA & LOCAL STACK AREA

cseg $

signon db cr,lf,cr,lf
db cr,lf,lf,
if master

db 'CPM/E6 Master
endif
if not master
db 'CPM/86 Slave'
endif
db cr,lf,lf,' Modified
db 6 October 1982 by'
db cr,lf,1f,' Tom V. Almquist'
db ' and David S. Stevens',cr,lf,lf
db , For use with a Bubble Memory and
db "the REMEX Datavare House'
db crlf,@

int trp db cr,lf
db 'Interrupt Trap Halt'
db cr,lf,,

iobyte rb 1 ;character i/o redirection byte
unit rb 1 ;selected unit
track rb 1 ;selected track
sector rb 1 ;selected sector
dma adr rw 1 sielected DMA address
dma seg rw 1 ;selected DMA segment
loc-stk rv 32 ;local stack for initialization
stkbase equ offset $

;system memory segment table

segtable db 1 ;1 sement
dw tpaseg ;1st seg starts after BIOS
dw tpa len ;and extends to top of TPA
dw 2300H
dw 2000H

DISK DEFINITION TABLES

;The included .lib file contains disk definition
;tables detailing disk characteristics for the bdos
;.lib files are penerated by GENDEF from definition
;files and must complj with the allocations made in
;the corresponding configriration file. (Lable Tables)

" include cpmmast.lib ;read in disk ief tables

END OF BIOS

lastoff equ offset
tpa seg equ (iastoff 04J h-15) / 16
tpa len equ 100h - tpaseg

.4

PAGE ZERO TEMPLATE
" :; *********************************** I***

dseg a ;absolute low memory
org 0 ;(Interrupt vectors)

into-offst rw 1
I, l_segment rv 1

. rv 2*(bdosint 1)
bdio rv 1 ;bdos interrupt offset
bdis rv 1 ;bdos interrupt segment

end

110

-- - - - - -

PROGRAM LISTING Of CPMMAST.CFG

;Prog Name : CPMMAST.CFG (Master Configuration for CPM)
;Date : 13 September 1982
;Written by : Tom V. Almquist and David S. Stevens
;For : Thesis (AEGIS Modeling Group)
;Advisor : Professor Kodres
;Purpose : This code is an include file w/in CPMBIOS.AE6.

It contains the device tables for access to
initialization, read, & write roatines.

---- --- --- --- ---- -- --- --- -- - --- --- -------

DEFINE nunits

nunits db 7 ;total number of mass storage units

INITIALIZATION TABLE

;intbl contains a sequence of addresses of initialization
;entry points to be called by the BIOS on entry after
;a cold boot. The sequence is terminated by a zero entry

intbIl dw offset mb80dsk init ;initialize Bubble
dw offset rxflopinlit ;initialize Remex

if master
dw offset initsync ;initialize sync variables
dw offset init login ;initialize login

endif ; procedures
dw 0 ;end of table

READ TABLE

;rdtbl and wrtbl are sequences of length nunits, containing
;the addresses of the read and write entry point routines
;respectively which apply to the unit number corresponding
;to the position in the sequence. These and the entry pts
;for initialization must correspond to those contained in
;the appropriate include files containing code specific
;to the devices.

rdtbl dw offset mb80dsk read ;k: is a bubble iremorj" dv offset riflo;_read ;3: is Remex floppy disk 1
dw offset rxflop read ;C: is Remex floppy disk 2

Sofe C is

dv offset rzhard read ;D: is Remez hard disk 0
dv offset rxhard read ;3: is Renex hard disk 1
dv offset rxhard-read ;F: Is Remex hard disk 2
dv offset rxhard-read ;G Is Remex hard disk 3

/S

WRITE TABLE

vrtbl dv offset mbSdstvrite
dv offset rxflop..vrite
dv offset rzflopvrite
dv offset rxhard vrite
dv offset rihardwrite
dv offset rxhard-vrite
dv offset rxnard-vrite

HOME TABLE

hmtbl dv offset mbSOdsk home
dw offset rzflophome
dw offset riflop home
dw offset rxhard-home
dw offset rxhar4 home
dw offset rxhard home
dw offset rxhard home

SELDSK TABLE

dsictbl dw offset mb80dsxseldsk
dv offset rzflopseldsk
dv offset rzflop seldsk
dw offset rxhardlseldsk
dw offset rxhard-seldsk
dw offset rzhard seldsk
dv offset rxhard seldsk

SETTRI TABLE

- tritbl dw offset mb8edszsettrk
dw offset rzflopsettrk
dv offset rzflopsettrl
dw offset rxhard settrk
dw offset rxhard-settrk
dw offset rznard settrt

* dw offset rzhard-settrk

112

i%

SETSBC TABLE

sectbl dv offset mbS~dsk-setsec
dw offset rxflop..setsec
dv offset rxflopsetsec
dv offset rxbard-setsec
dw offset rxhard-setsec
dv offset rxhard-setsec
dw offset rihard-sets'ec

113

.

PROGRAM LIST ING O MBWDSL.A86

;Prog Name : MBSODSKA86 (BUBBLE MEMORY DISK)
;Date : 24 Aug 1982
;Modified by : Tom V. Almquist an. David S. Stevens
;For : Thesis (AEGIS Modeling Group)
;Advisor : Professor Kodres
;Purpose : This code is an include file v/In CPMBIOS.A86

It contains the code necessary to access the
bubble memory as a disk drive.

.;.+++++++++++ +-. .+++++ EQUATES +++++++++++++++...+++++++++.

-- Miscellaneous equates -----.. --

mb contbase equ 8000H ;controller base
addrhigh_ ram equ OfO0K high para user avail RAM
bdosInttype equ 224 ;reserved BDOS interrupt
sector-size equ 128 ;CP/M logical dsk sector size

Magnetic bubble characteristics (MBB-80)

mb buflen equ 144 ;buffer length for MDB sector
mb maxdevs equ 7 ;bubble devices are *0-#?
mb maxpages equ 641 # of pages on each device
mb maxsectors equ 80 ;# of log. sectors on each Aev
mo pagessec equ 8 ;# of pages per logical sector
mb pagesize equ 18 ;bubble device page size
mb-skew equ 12 ;skew factor for page Ilation

Magnetic bubble command bytes and nasks (M3B-80)

mb chcbusycmd equ 320HE ;is controller busy ? status
mb-chcint-mask equ 380H ;mask to chi for MBB interupt
mo inhint cmd equ a80E ;interrupt inhibit/reset mask
mrb init-cmd equ lH ;initialize the controller
mb-mpage_cmd equ 010H ;multi-page mode operation cmd
mb-read-cmd equ 312H ;multi-page read command
mb reset cmd equ 040H ;reset the controller
mb_vrite-cmd equ 014H ;multi-page write command

114

DEVICE SPECIFIC ACCESS CODZ

;initialize bubble ;called from INIT
;parm in -none
;parm out none

mb80dsk-in it:
push es

init-mbb80:
mov ax,mbcontbase ;controller base
mov es,ax ;address to es reg
may ax,mb_maxpages ;pgs per bubble dev
mov es:mbploopsizelo,al
mov es:mbp_loopslze_hi,AE
mov es:mbppgslze_reg,mbpagesize

;issue reset command to the controller

mo al,mb-reset-cmd ;reset mask byte
mov es:mbpcmnd reg,al ;issue reset cmd

;initialize each bubble device

push cx ;save cx, outer counter
mov cx,mbmaxdevsl ;count for loop-# of devs
mov al,J ;device * to initialize

For-each:
mov es:mbpselect..bub,al ;select each device
mov es:mbp_cndreg,mbinitcmd ;init device
push axlpush cxlpush es ;save bub#,counter,es
call mbbeOwalt ;wait for controller
pop es! pop cx! pop ax ;reset es,cnter,MBB#
inc al ;next device number
loop for each ;dec cx, loop not zero
pop cx ;reset cx, outer cnter
pop es ;restore register

Device ret:
ret

;HOME BUBBLE ;called via home table

mbSdsk home:
xor cx,cx ;set track to zero
call Settrk
ret

115a

* -i-...S-'.-

;SELECT BUBBLE DISK ;called via seldsk table

mb80dsk-seldsk: ;no special action required
ret

;SELECT BUBBLE TRACK ;called via seltrk table

mbS0dsk-settrk:
call mbbSgtrackxlat
ret

;SET BUBLE SECTOR ;called via setsec table

mb~edsk-setsec: ;no special action required
ret

;M3380_READ called via read table
;reads a sector from bubble
;parm in - none
;parm out - status of the op in al.

00= OK, FF- unsuccessful

mb8Odsk-read:
call request ;get resource (STNC.A86)
push es ;save register
call mbb80_sector xlat ;compute 1st page* of. sect
mov ax,mbcontbase ;addr of controller base
mov es,ax ;load es to address bubble
mov es:mbp_cir.ndreg,mbmpage cmd ;multipawe 3md
mov ax,mbpage_no ;current page number
mov es:mbppagesel lo,al ;page select lo byte
mov es:mbppageselhi,AE ;page select hi byte

;set number of pages to transfer = pages/sector

mov es:mbppagecnt lo,mbpagessec ;#pages Ifer
mov es:moppagecnt hi,O ;hi oyte of # is 0

;set up dma address to receive data

mov cx,mbbuflen ;count for loop-buffer size
push ds ;save CP/M's ds
mov ax,dmaseg ; et dma segment

* push ax 'save dma seement ds

116

4

mow bx,dlmaadr ;offset of dma area

;select bubble device and issue read command
may al,mb bub no ;current bubble number
pop ds ;local, readdr dma area
mov es:mbp select bub,al ;select current dav #
may es:mbpcmndreg,mbreadcmd ;read from FIFO

Read int:
mo ales:mbp_intflag ;get interrupt status
and al,mb chintmask ;interrupt set ?
jz Read int ;if zero, keep checking

* ;read enough from bubble sector to fill Ima area?

cmp cx,(mb-buflen - sector size) ;xfer enough?
jnz Read one ;if not, read another byte
pop ds ;restore CP/M's ds
mov bx,offset mb-overflow ;reset dest to ovrflow

;read from M3B FIFO buffer into dma area

Read-one:
mov al,es:mbp_rdatareg ;read a byte into accaim
mo [bxl,al ;load accum into dma area
inc bx ;increment index
loop Readint ;dec cx, loop if not zero
push es ;save es for call
call MbbeOWait ;wait for coatroller
pop es ;restore es after call
mov es:mbp cmnd reg,mbinbhint cmd ;clear mt
mov al,0 ;indicate no error
push ax ;save status of read
call release ;free resource (STNC.A66)
pop ax ;restore registers
pop es
ret

;MBB WRITE called via write table
;writes a sector to bubble
;parm in - none
;par-n out - statis of the op in al
;00= OK, FF = unsuccessful

rrb8ds _write:
mo al,O ;bubble logical drive

* cmp al,user ;is user logged in on mb80
jnz mbwrt err
call request ;get resource 1STNC.AC6)
push es ;save register

117

- . . •*.*

call Mbb8eSectorlIlat ;get ist page# of sector
mo. ax,mbcontbase ;address of controller base
mo es,ax ;load es to address bubble
mov es:mbpcmndreg,mbmpagecmd;multpg mode cmd

_ov ax,mbpageno ;current page number
mov es:mbppagesello,al ;page select 1o byte
may es:mbppagesel_hi,AH ;page select hi byte

;set number of pages to transfer = pages/sector

moy es:mbppagecntjlo,mbpages sec ;#pages to zfer
mov es:mbppagecnt_hi,S ;hi byte of # is zero

;set up dma address for transfer

mov cx,mb-buflen-1 ;count for loop-write
push ds ;save CP/M's ds
mov az,dmaseg ;get dma segment
push ax ;save dma segment ds
mov bx,dma adr ;address of dma area

;select bubble device and issue write cmd

mo al,m-b_bub no ;current bubble number
mov es:mbp_select-bub,al ;select current dev #
pop Is ;readdr dma area
mov al,[bxl ;load first byte
mov es:mbp_wdatareg,al ;write byte to MSB buff
inc bx ;increment index
mov es:mbp cmnd reg,mb write cmd;send write to MEB

;wait for interrupt from controller

Write Int:
mov al,es:mbp_int flag ;get interrupt status
and al,mb cniint mask ;interrupt set ?jz Writejnt ;iP zero, Xeep checsing

;write into MEB FIFO buffer from dma area

mov al,Cbx] ;byte from dra to al
mov es:mbpwdatareg,al ;write byte to MBB buff
Inc bx ;increment Index
loop Writeint ;dec cx, loop if not zero
pop ds ;restore CP/M's ds
push es ;save es for call
call MbbB0_Wait ;wait for controller
pop es ;restore es after call
mov es:mbpcmndreg,mbinhintcmd;clear contint
mov al,0 ;return success code
push ax ;save success code
call release ;free resource (STNC.A86)

118

pop ax
pop es ;restore register
jmp mbvrtret

mbvrterrs
.O bxoffset mbvrt msg

* call pmsg
mov al,Iffh ;error returned to CP/M

"bvrt-ret:
ret

.. . .+ .-++ . ++..+ .. " ..+ .. +. 6+++++-p+ ++++46+ .'+ . +++++t++ .+ ... +++...

;U33L. SUBROUTINES
-°.... 4 +.++++++++-+4.++.+++++..++. -.++++++++,.+++++++-+++++

;M3380SECTOR_3LAT called from: Mbb80 Read, Mbb0 Write.
;computes 1st page# for a given sector
;on a single chip. Based on 80 sectors
;on each chip - sector = 128 bytes.
;parm in - none, works on sector
;parm out - none, updates mbpageno

MbbeO Sector flat:
xor ax,ax ;set ax to 0 to hold page#
xor cx,cx ;clear cx for counter
mov CL,sector ;ctr for translation loop
zor DX,DI ;clear DX
mov DL,mb sector ;sect# for 1st sect on trk
add cx,DX ;add 1st sect# to log sect#
dec CL ;subtract 1 for the loop
Jz Mbb80_sxexit ;sect 1 is page 3, no xlat

Add-skew:
add ax,mbskew ;add skew between pages
cc ;clear carry
sbb ax,mbmaxpages ;mod to # of pages
Jae Dec sector ;jump if positive (CF=O)
aid ax,mb maxpages ;went (-), add back #pages

Dec-sector:
loop Add_skew ;dec sector#,add skew again

MbbeIsxexit:
mov mb_page_no,ax ;store page number
ret

-- ----------- -------------- -

;MIB6OTRACKXLAT called from: SETTRK.
;computes bubble # from track #. Gets
;first bubble sector (1-60) for that
;track for later conversion to page a.
;parm in - none, works on track.
;prm out - loads mb buo no,mb sector

119
.- I1

Mbb60_TrackIlat:
xor bx,bx ;clear bx for addmo BL,track ;load track - Index

add BL,3L ;double track# for index
mov ax,mb track table[bx] ;get word from ta, le
mow mb-bub-no,AH ;low byte - bubb device#
mov mb-sector,al ;nigh byte = 1st sector#
ret

;MBBSOWAIT called from: Mbb80_Init, MbbSRead,
;Mbb80_Wri te.

;checks status of MB? cont for busy
;keeps checking (wait) until not busy
;parm in - none
;parm out - none

Mbb80_Wait:
mov ax,mbcontbase ;address of cont base
mov esax ;load es to addr bubble

Seezero:
may ales:mbp_status_reg ;get status register
and al,mbchkbusy-cmd ;its it all zeros ?
jz See-zero ;if so, keep checking

Cont busy:
mov al,es:mbpstatusreg ;get status register
and al,mbchicbusycmd ;see if busy, and to mask
jnz "Cont busy ;if busy, check again
ret

DATA SEGMENT AREA

- ----- -------- Bubble Variables ------------------
4bwrtmsg db cr,lf,'Write Access Not Permited'

db " On This Drive. ,0
mb bub no rb 1 ;bubble device number 0-7
vnb overflow rb (Mb buflen - sector size) ;read overflw
mb pageno rw 1 ;bubble page number
mb_ sector rb 1 ;bubble sector number (1-80)

;Each entry in the track table corresponds to one of the
;24 tracks on the MBB-80. The 1st byte in each entry is the
;bubble number; the 2nd byte in each entry is the starting
;sector number for that track on that bubble device.
mb-track table dw O00eH, 01aH,0034H, 01cOl0H,IlaH,013,H

1 20

•7 7.

-" ". dv a20H,@21aN,0234H,0300H,031aH,0334H
dv 0460H,041aR,0434H, 500E,051aE ,0534H
dv 06001,06laH,0634R,0?7IH,OTlaH ,0734H

esi.G

mbppagesel-lo rb 1 ;ls byte for page select, (0)
mbppagesel-hi rb 1 ;ms 2 bits for page select, (1)
mbp cmnd reg rb 1 ;command register, (2)
mbprdata_reg rb 1 ;read data register, (3)
mbp_wdaa_reg rb 1 ;write data register, (4)
mbp_statusreg rb 1 ;status register, (5)
mbppagecnutlo rb 1 ;ls byte for page counter, (6)
mbppagecnt-hi rb 1 ;ms 2 bits for page counter, (7)
mbp_loopsize-lo rb 1 ;ls byte for minor loop size,(8)
iimbp_loopsize hi rb 1 ;ms 2 bits for min oop size,(9)

rv 1 ;Internal use(page pos (A,B)
mbppgsizereg rb 1 ;page size register, (C)

rw 1 ;TI use only, (D,E)
mbpselect-bub rb 1 ;two uses: select bubble dev 'Fj

mbpintflag equ mbp_selectbub ;interrupt flag (7)

121

'I.

PROGRAM LISTING OF RIFLOP.A86

;Prog Name : RUFLOP.A86 (iEMEI FLOPPT DISK
ACCESS CODE)

;Date : 9 October 1982
;Written by : Tom V. Almquist and David S. Stevens
;For : Thesis (AEGIS Modeling Group)
;Advisor : Professor lodres
;Purpose : This code is an include file w/in CPMBIOS.A86.

It contains tne code necessary to access the
Remex floppy disk drives. I/O done through
common memory. Tnis configuration is set for
CP/M logical drives 1 (3:) and 2 (C:). To
alter, change code In READ and WRITE routines.

;+.........++...++++. Equates +..++ .+++.+++.++++ -+*+

Disk Controller command bytes and masks (REMEX) --

dkrdymask equ 0SH
dk-rd-cmdl equ 1011H ;read command
dkrdcmd2 equ 1012
dk wrrncndl equ 10211 ;write command
di wr-cmd2 equ 1022H
tries equ 10
drive2 equ 2 ;CPM logical dsk # for

;drive 2

REMEX Interface Controller Ports --------

cmd_reg equ 70H ;ctrler's base in CP/M-86
status-reg equ 713
p_addrlo equ 72H
p_addr-hi equ 73E

CPM DEVICE SPECIFIC CODE
entered via label tables in CPMMAST.CFG

csep $

rxflopinit:

122

ret ;no special action required

rxf lophome:
ret ;no special action required

- -- ----------------------- - ---------- ---- a-

rxf lop seldsk:
ret ;no special action required

rxflopsettrk:
ret ;no special action required

riflopsetsec:
ret ;no special action required

rxflopread:

mo v rwdir,0
call request ;zet resource (STNC.AE6)
cmp unit,drive2 ;CP/M logical disk No. for
jz rdl ;Remex floppy drive 2 (C:)
mov bx,dkrd_cmdl ;set up to read drive (F:)
jmps rd2

rdl :
mov bx,dlc-rd-cmd2 ;set up to read drive 2

rd2:
call build_ packet
call sendpacket ;perform the redd
call xfr buffer ;xfr CPM buffer Into Temory
call release ;free resource (STNC.AE6,
mov al,result ;return success/failure code
ret

* ----- -- ------------------------------------

rxf lopwri te:

mov rwdir,1
call request ;request ticket number
c.np unit,drive2 ;CP/M logical disk No. for

* jz wrtl ;Remex floppy Irive 2 (C:1

123

I'

Mov bldk wr cmd1 ;setup write to drive 1 (3:)
Jmps vrt2

wrtl:
mov bx,dk.wr-cmd2 ;set up to write drive 2

wrt2:
call buildpacket
call xfr buffer
call- send pacet
call release ;free resource (SYNC.AE6)
mov al,result ;return success/failure code
ret

REMEX FLOPPY DISK SUIROUTINES. ; ++-...............-... + + r+++r+ t

build_packet:
push es ;save es register
mov axcmemseg ;set up es to address common
mov es,ax ;memory E0OO:
mov p-modifiers,bz ;enter read code in packet
mov pstatus,O ;clear packet status word
mov ax, 000H ;clear register
mov al,track ;get track A
mov ptrackno,ax ;enter track # in packet
mov ax,OeOOH ;set head no. to C
add al,sector ;set sector no.
mov p_head-sect,ax ;put head & sec # in packet
mov pmemaddr,0l10h ;address of CPM buffer
mov pmsb,OOOeh ;CPM buffer msb
mov pword count 64 ;# of 16 bit words
pop es
ret

send packet:

push es
mov ax,cmemseg ;common memory segement = ZOO@

4 mov es,ax
mov dicnt,tries ;load count for retries

sendi:
in al,status reg
and al, dic rdymask ;check interface ready
cmp al,08H ;is it ready?
jne sendi ;if not ready repeat
M o v al,icH
out cmd reg,al ;load extended address
mov ax, 004 ;packet offset
out Daddr-lo,.l ;transfer low byte out
mov al,ah

124

out paddrjhi,al ;transfer hi byte out
check-result:

mov ax,pstatus ;load status word
cMp ax,010lf ;check for success
Je success read
cmp ax,06009 ;check for failure
Jae retry
Jmps check-result

retry:
mov dk err code,al ;save error code
mov axO ;clear status word
dec dk cnt ;reduce retry count
Jnz sendpacket ;if > 0 try again
mo result,0FFH ;return failure cole
Jmps dk execute-ret

success read:
mow result,00E ;return success code

dk execute ret:
pop es
ret

xfr buffer: ;get data from common memory
;and load into local memory

push es ! push ds
mov esdmaseg
mov didma adr
mo axcmemseg
mov dsax
mov si,0100h
mov cx 64
cmp rwdir,O
jz xfr
xchg si,di ;set up for write operation
mov ax,dis
mo es,ax
mo ds,dmase.

xfr:
, cld

rep movs ax,ax ;move as 16-bit words
pop ds ! pop es
ret

; Data Area
++-++4++++++++ +*+++++ ++ q.+++-++++

------------ Remex Interface Packet ------------------
;packet lo-cated in common memory at EG:Ce4

eseg

125"

org 0004h ;offset of packet

p modifiers rv 1 ;function & lotrical unit
pstatus rv I ;returned status
p_track no rw 1 ;selected track number
p_head sect rv I ;selected head/sector number
p_mem addr rv 1 ;buffer address
p msb rv 1 ;extended bits of buffer address
pywordcount rv 1 ;size of data block

,;.--.- ------ Misc Variables---------------

cseg

'k err code db OJH ;returned Remex error code
di cnt db OOE
result rb 1
rwdir rb 1 ;= read ; 1 = write

I"'

126
b A

A P 3NDIZ
PROGRAM L!ST ~F RXHARD.A86

;Prog Name : RIHARD2.AS6 (REMNX HARD DISK ACCESS CODE)
;Date : 13 October 1982
;Modified : Transfer Thru Common Memory/Ticket Sync
;Written by : Tom V. Almquist and David S. Stevens
;?or : Thesis (AEGIS Modeling Group)
;Advisor : Professor Kodres
;Purpose : This code is an include file w/in CMBIOS.A86.

It contains the code necessary to access the
REMEX hard disk drive.

----------------- . Equates

Disk Controller command bytes and masks (REMEX)

hdx rdymask equ 08H
hdrrd cmd equ 1310H ;read command
hdkwr cmd equ 102E ;write command
hdk tries equ 10
headO equ 3 ;CP/M logical dsk, for head

;@ of REMEX hard disk
pstrf equ 9 ;print string function

--------- REMEX Interface Controller Ports--------------

hdkCMD reg equ 70H ;ctrler's base in C?/M-86
hdk status reg equ 71H
hdkaddr-lo equ 72H
ndicaddr hi equ 73H

-------------------- Blocking/Deblocing ------------------

una equ byte ptr (31) ;name for byte at BX
blksiz equ 16384 ;CP/M allocation size
hstsiz equ 512 ;host disk sector size
hstspt equ 39 ;host disk sectors/trk
hstblk equ hstsiz/128 ;CP/M sects/host buff
secshf equ 2 ;log2(hstblk)
cpmspt equ hstblk * hstspt ;CP/M sectors/tract
secmsk equ hstblk-1 ;sector mask
wrall equ 0 ;write to allocated
wrdir equ I ;write to directory
wrual equ 2 ;write to unallocated

127

DEVICE SPECIFIC -CODE
entered from the main CPMBIOS via label tables

; r + --.-.,++*4....-.......++ V-......

CSIG

; INIT ;called from INIT
rxhard init:

ret

;HOME entered via home label table

Rxhard-nome:
mov al,hstwrt ;check for pending write
test al,al
jnz homed
mov hstact,e ;clear host active flag

homed:
ret

;SELECT DISK entered via seldsk label table
Rxhard seldsk:

.inov clunit
rnov sekdsk,cl
test dl,i ;Ist activation of disk?
jnz contl ;no
mov hstact,O ;yes
mov unacntt,

contl:
ret

;SELECT TRACK enterd via seltric label table
Rxhard settrk:

rnov sektrk,cx
ret

* ;SELECT SECTOR entered via selsec laael table

Rxhard setsec:
'nov seksec,cl
ret

1 2E

6A

;READ entered via read label table

Rxhard read: ;read selected CP/M sector
mov unacnt,B ;clear unallocated counter
mov readop,1 ;read operation
mov rsflag,1 ;must read data

- mov wrtype,wrual ;treat as unalloc
-. jmp rwoper ;to perform the read

;WRITE enter via write label table

Rxhardwrite: ;write selected C?/M sector
mov readop,O ;write operation
mov wrtype,cl
cip cl,wrual ;write unallocated?

- .jnz chkuna ;check for unalloc

;write to unallocated, set parameters
mov unacnt,(blksiz/128) ;next unalloc recs

. mov al,sekdsk ;disk to seek
mov unadskal ;unadsk = sekdsk
mov ax,sektrk
mov unatrk,ax ;unatrk = sektrk
mov al,seksec
mov unasec,al ;unasec = seksec

BLOCKING & DEBLOCKING SU3ROUTINES
.......... ';.-++

Chkuna: ;check for write to unallocated sector
mov bx,offset unacnt;point "UNA" at UNACNT
mov al,una
test al,al ;any unalloc remain?
jz alloc ;skip if not

;more unallocated records remain
dec al ;unacnt = unacnt-1
moV una,al
mov al,seicdsk ;same disk?
mow bx,offset unadsk
cmp al,una ;seedsk = unadsk?
jnz alloc ;szip if not

. ;disks are the same
mov Al, unatrk
cmp AX, sektrk
jnz alloc ;skip if not

;trackcs are the same

129

mov al,seksec ;same sector?
mov bx,offset unasec ;point una at unasec
cmp aluna ;seksec = unasec?
jaz alloc ;skip if not

;match, move to next sector for future ref
inc una ;unasec = unasec+1
mov al,una ;end of track?
crop al,cpmspt ;count CP/M sectors
jb noovf ;skip if below

;overflow to next track
mov una,O ;unasec = 0
Inc unatrk ;unatrk=unatr+l

noovf: ;match found, mark as unnecessary read
mo rsflag,O ;rsflag = 0
imps rwoper ;to perform the write

alloc: ;not an unallocated record, requires pre-read
mov unacnt,0 ;unacnt =
mov rsflag,i ;rsflag = 1

;drop through to rwoper

;Common code for READ and WRITE follows

.woper: ;enter here to perform the read/write
moy erflag,O ;no errors (yet)
mow al, sekset ;zompute host sector
sub al,1
mO cl, secshf
shr al,cl
mo sekhst,al ;host sector to seer

;active host sector?
mov al,1
Xchg al,hstact ;always becomes 1
test al,al ;was it alreedy?
jz filhst ;fill host if not

;host buffer active, same as seek buffer?
mov al,sekdsk
cmp al,hstdsk ;sekdsk = hstdsk?
.jnz nomatch

;same disC, same tra.k?
mow ax,hsttrk
cmp ax,sektrk ;host trk same as seek trk
jnz nomatch

;same disk, same track, same buffer?
mow al,sekhst

130

" --. 1-0

cmp al,hstsec ;sekhst = hstsec?
J2 match ;skip if match

nomatch: ;proper disk, but not correct sector
Mov al, hstwrt
test al'al ;"dirty" buffer ?
jz filhst ;no, don't need to write
call writehst ;yes, clear host buff

filhst: ;may have to fill the host buffer
MoT altsekdsk I MoT hstdskal
mow ax,sektrk I mov hsttrkax
mow alsekhst I mow hstsecal
mow al,rsflag
test alal ;need to read?
j z filhstl
call readhst

filhstl:
mov hstwrt,O ;no pending write

match:
;copy data to or from buffer depending on "readop"
mow al,seksec ;masic buffer number
sub all
and ax,secmsk ;least signif bits masked
mow cl,7 ;shift lsft 7
shl ax,cl ;(* 128 = 2**?)

;ax has relative nost buffer offset

add ax.offset hstbuf ;ax has buffer address
mov si,ax ;put in source index reg
mow di,dma-adr ;user buff is dest if readop
push DS
push ES ;save segment registers
mow ES,dmaseg ;set destseg to the user seg

;SI/DI and DS/ES is swapped
;if write op

mow cx,128/2 ;lentth of move in words
mow al,readop
test al,al ;which way?
jnz rvmove ;skip if read

;write operation, mark and switch direction
mow hstwrt,1 ;hstwrt = 1 (dirty buffer
xchg si,di ;source/dest index swap
mow ax,DS
mOT ES,ax
mow DS,dmase. ;setup DS,ES for write

rwmo ve:

131I!

cld
rep movs AX,AI ;move as 16 bit words

pop ES
pop DS ;restore segment registers

;data has been moved to/from host buffer
cmp wrtype,wrdir ;write type to directory?
mow al,erflag ;in case of errors
Jnz return rw ;no further processing

;clear host b'ffer for directory write
test alal ;errors?
jnz return rv ;skip if so
mov hstwrta ;buffer written
call writehst
mov al,erflaR

return rw:
ret

---- ------- ---- ---------------- ----------------------------
read-hst:

mov hdk-rwdir,O
call request ;get resource (SY.C.A86)
mov bx,hdi rd cmd
call hdkbulId_packet
call hadlsendpacxet ;perform the read
call hdk zfr buffer
call release ;free resource (STNC.A86)
mov al,ndk result ;ret success/failure code
ret

write hst:

-ov hdk_rwdir,1
mo al,hst-dsk
cmp al,user
jnz wrt-err
call request ;get resource (SYNC.A86)
mov bx,hdk Iwr cmd ;set up write to hard diskc
call hdk_ build_packet
call hdk xfr buffer
call hdk sendpacket
call release ;free resource (SYNC.A66)

4 mov al,hdK result ;ret success/failure code
imp wrt-ret

wrt err:
mow bx,offset wrtmsg
call pmsg

132

moV alOffh ;return error to CP/M
vrt ret:

ret

REMEIX HARD DISK SUBROUTINES

; +....+...+.+.......* +..+++..+++.

hdk build packet: ;packet built in common memory

push es
mov ax,cmemseg
mov es,ax
mov hdk modifiersbx ;enter read code in packet
may hdk-status,a@OH ;clear packet status word
mov Al, 00E ;clear register
mov ax,hsttrk ;get track no.
mov hdk track no,AX ;enter track no. in packet
mov Ax,0000H ;clear register
mov ah,hst.dsk
sub ah,headO ;determine head #
mov AL,hst sec ;set sector #
add ax,1
mov hdk head sect,AX ;load in pacKet
mov hdkmem addr,0100h ;address of CP/M buffer
mov hdk-msb,0@eh ;common memory seg
mov hdk word-cnt,256 ;# of 16 bit words
POP es
ret

hdksendpacket:

push es
mov ax,cmemseg
mOV es,ax
may hdk cnt,hdk-tries ;load count for retries

sendhdkpacke t:
in AL,ddstatusreg
and AL,hdlcrdy mask ;check interface ready
cmp AL,08H ;is It ready?
jne send_ dkpacket ;if not ready repeat
mov al,lch
out hdk-cmd-reg,AL ;load extended address

A mov ax,004h
out hdk addr-lo,AL ;transfer low byte out
mov ALAH
out ndk addrni,AL ;transfer hi byte out

check-hdk result:
may ax,bdk status ;load status word
cmp AX,000B1 ;check for success

133

.,"

:. J • hdk success-read
cup AX,00OH ;check for failure
jne hdk retry
imps check-hdk-result

hdkretry:
mov hdk err code,AL ;save error code
mov hdk-status,O ;clear status word
dec hdk cnt ;reduce retry count
jnz sendhdkpacket ;if 0 0 try again
mov hdk-result,@FFH ;return failure code
jmps hdk execute-ret

hdk success read:
mov hdk-result,0OH ;return success code

hdk execute ret:
pOp es
ret

hdk-_xfr buffer: ;transfer data from common
;memory to local memory

push es I push ds
mov axcs

mOV esax
mov dioffset hstbuf
mov axcmemseg
mov dsax
mov si,31Oh
mov cz,256
cmp lidt _rwdi r, 0
jz hdk xfr
xchg si di
mov axds
mov esaz
mov axcs
mov dsax

hdk-xfr:
cld
rep movs axtax
pop ds I pop es

- ret

Data Segment Area

------------- Remex Interface PacKet -----------------
;packet built in common memory at E00:3044

eseg
org 0004h ;offset of packet

K137,4

1k3

..

hdk modifiers rw 1 ;function & logical unit
bdk status rw 1 ;returned status

L-: hdk track no rv 1 ;selected track number
hdk head sect rw 1 ;selected head/sector number
hdk mem addr rw 1 ;buffer address
hdk msb rw 1 ;extended bits of buffer address
hdk word cnt rw 1 ;size of data block

cseg $

------- ----- - --- Misc Variables------------

hdk-err code db SH ;retu-rned Remex error code
hdk _cnt db 00E
hdk result rb 1 ;success/failure code
adk-rwdir rb 1

sek dsk rb 1 ;seek disk number
sek trk rw 1 ;seek track number
sek sec rb 1 ;seek sector number
hst-dsk rb 1 ;host disk number
hst trk rw 1 ;host traci number
hst-sec rb 1 ;host sector number
sek-hst rb 1 ;seek shr secshf
nst act rb 1 ;host active flag
hst wrt rb 1 ;host written flag
una cnt rb 1 ;unalloc rec cnt
una _dsk rb 1 ;last unalloc disk
una-trk rw I ;last unalloc track
una sec rb 1 ;last unalloc sector
erflag rb 1 ;error reporting

: rsflag rb 1 ;read sector flag
readop rb 1 ;1 if read operation
wrtype rb 1 ;write operation type
dma _off rw 1 ;last dma offset
hstbuf rb hstsiz ;host buffer

wrtmsg db cr,lf,'Write Access Not Permitted On This'
db " Drive',O

.4

I

15

....,. .l.d. a. .,, ,,nl.....................................

APPENDIX G

PROGRAM L!SING OF CPMMAST.DEF

The following disk definition statements were used in

this thesis. The command "GENDEF CPMMAST.DUF" is executed
p'.

to produce CPMMAST.LIB which must be assembled into the BIOS

using an "include" command.

disks 7
diskdef 0,1,26,0,1024,71,32,0,2
diskdef 1,1,26,6,1024,243,64,64,2
diskdef 2,1
diskdef 3,1,156,0,16384,275,128,0,1
diskdef 4,3
diskdef 5,3
diskdef 6,3
endef

:

H 36

APPENDIX H
PRCGRAM119I10 O7 CPMMAST.LIE

When GINDEF is executed using CPMMAST.D1F as the source

file, CPMMAST.LIB is created. The listing which follow is

the code generated by GENDEI and must be assembled into the

BIOS with an "include" command.

DISKS ?
dpbase equ ;Base of Disk Parameter Blocis
dpeG dw xltaasoeh ;Translate Table

dv 099I@@Goh ;Scratch Area
dw dirbuf,dpb9 ;Dir Buff, Parm Block
dw csva,alv@ ;Check, Alloc Vectors

dpel dw xlt,1@9@6h ;Translate Table
dw 6090h ,IB gh ;Scratch Area
dw dirbuf,dpbl ;Dir Buff, Parm Block
dw csvl,alvl ;Check, Alloc Vectors

dpe2 dw xlt2,9009h ;Translate Table
dw 906h,Sa0*h ;Scratch Area
dw dirbuf,dpb2 ;Dir Buff, Parm 3loc~r
dv csv2,alv2 ;Check, Alloc Vectors

dpe3 dw xlt3, Jfh ;Translate Table
dw 000h,906gJh ;Scratch Area
dw dirbuf,dpb3 ;Dir Buff, Parm Block
dw csv3,alv3 ;Check, Alloc Vectors

dpe4 dw xlt4,6009h ;Translate Table
dw 9900h,899Qh ;Scratch Area
dw dirbuf,dpb4 ;Dir Buff, Parm Block
dv csv4,aIv4 ;Check, Alloc Vectors

dpe5 dw xlt5,0000h ;Translate Taole
dw eO00h,3000h ;Scratch Area
dv dirbuf,dpb5 ;Dir Buff, Parm Block
dw csv5,alv5 ;Check, Alloc Vectors

dpe6 dw xlt6,0000h ;Translate Table
d" 0000h,000h ;Scratch Area
dw dirbuf,dpob ;Dir Buff, Parm Block
dw csv6,alv6 ;Check, 'lloc Vectors

DISKDEF 0,1,26,0,1h24,7l,32,0,2
dpbO equ offset $;Disk Parameter 1iock

dw 26 ;Sectors Per Track
do 3 ;Block Shift
db 7 ;3lock Mask

137

db 0 ;Extnt Mask
dw 70 ;Disk Size - 1
dw 31 ;Directory Max
db 128 ;AllocO
fib 0 ;Allocl
dw 0 ;Check Size
dw 2 ;Offset

zxtS equ offset $;Translate Table
db 1,2,3,4
db 5,6,7,8
db 9,10,11,12
.db 13,14,15,16
fdb 17,18,19,20
db 21,22,23,24
fib 25,26

also equ 9 ;Allocation Vector Size
css0 equ a ;Check Vector Size

DISKDEF 1,1,26,6,1324,243,64,64,2
apbl equ offset $;Disk Parameter Block

dw 26 ;Sectors Per Track
db 3 ;Bloc' Shift
db 7 ;Block Mask
db . ;Extnt Mask
dw 242 ;Disk Size - 1
dw 63 ;Directory Max
db 192 ;Alloco
db 0 ;Allocl
dw 16 ;Check Size
dw 2 ;Offset

Iltl equ offset $;Translate Table
db 1,7,13,19
- b 25,5,11,17
db 23,3,9,15
fdb 21,2,8,14
db 20,26,6,12
fdb 18,24,4,la
fdb 16,22

alsl equ 31 ;Allocation Vector Size
cssl equ 16 ;Check Vector Size

DISKDEI 2,1
dpb2 equ dpbl ;Equivalent Parameters
als2 equ alsl ;Same Allocation Vector Size
css2 equ cssl ;Same Checksum Vector Size
xlt2 equ xltl ;Same Translate Table

DISKDEF 3,1,156,3,16384,275,128,0,1
dpb3 eqi offset $;Disk Parameter Block

dw 156 ;Sectors Per Track
db 7 ;Mlock Shift
db 127 ;Blocc Mask
Ib 7 ;Extnt Mask
dw 274 ;Disk Size - 1
dw 127 ;Dlrectory Max

138

-i7

db 128 ;Alloce
d b 0 ;Allocldv 0 ;Check Size

dv 1 ;Offset
xlt3 equ offset $;Translate Table

db 1,2,3,4
db 5,6,7,8
db 9,10,11,12
db 13914,15,16
db 17,18,19,20
db 21,22,23,24
db 25,26,27,28
db 29,30,31,32
db 33,34,35,36
db 37,38,39,40
db 41,42,43,44
db 45,46,47,48
db 49,50,51,52
db 53,54,55,56
db 57,58,59,60
db 61,62,63,64
db 65,66,67,68
db 69,70,71,72
db 73,74,75,76
db 77,78,79,80
db 81,82,83,84

db 85,86,87.88
db 89,90,91,92
db 93,94,95,96
db 97,98,99.100

;db 131,102,133,104;

db 105,106,107,108
"db 129,110,111,112
db 113,114,115,116
db 117,118,119,120
db 121,122,123,124
db 125,126,127,128
db 129,130 , 131,132
db 133,134,135,136
db 137,138 139,140

I db 141,142,143,144
db 145,146 147,148
db 149,150,151,152
db 153,154 155,156

als3 equ 35 ;Allocation Vector Size
css3 equ 0 ;Check Vector Size; DI SKDEF 4,3
dpb4 eqa Ipb3 ;Equivalent Parameters
als4 eqi als3 ;Same Allocatiot Vector Size
css54 equ css3 ;Same Checksum Vector Size
xlt4 equ xlt"3 ;Same Translate Table
; DISKDEF 5,3

139

- --

.

dpb5 equ dpb35 ;Equivalent Parameters
als5 equ als3 ;Same Allocation Vector Size
css5 equ css3 ;Same Checksum Vector Size
xlt5 equ xlt3 ;Same Translate Table

DISIDEY 6,7?
dpb6 equ dpb3 ;3quivalent Parameters
a~s6 equ als3 ;Same Allocation Vector Size
css6 equ css3 ;Same Checksum Vector Size
xlt6 equ zlt3 ;Same Translate Table

ENDEF

Uninitialized Scratch Memory Folos:

begdat equ offset $;Start of Scratch Area
dirbuf rs 128 ;Directory Buffer
alvO rs alsO ;Alloc Vector
csvO rs cssS ;Check Vector
alvi rs als2. ;Alloc Vector
csvl rs cssl ;Check Vector

*alv2 rs als2 ;Alloc Vector
csv2 rs css2 ;Check Vector
alv3 rs als3 ;Alloc Vector
csv3 rs css3 ;Check Vector
alv4 rs als4 ;Alloc Vector
csv4 rs css4 ;Check Vector
alv5 rs als5 ;Alloc Vector
csv5 rs css5 ;Check Vector
alv6 rs als6 ;Alloc Vector
csv6 rs css6 ;Check Vector
eiiddat equ offset $;End of Scratch Area
datsiz equa offset $-beedat ;Size of Scratch Area

db ;Marics End of Module

, . .. ~~~°- * -. .'° - . .°"..o_ . ° "

APP|NDIZ I
PROGRAM LISTING 01 INTILDSI.A86

;Prog Name : INTELDSK.A86 (MDS S. Density Floppy Routines)
;Date : 9 Aug 1982
;Written by : Jim John, SMC 1277, 649-0592
;Modified by: Tom V. Almquist and David Stevens
;For : Thesis (AEGIS Modeling Group)
;Advisor : Professor M.L. Cotton
;Purpose : This code is an include file v/in CPMBIOS.A86.

It contains the routines for using the MDS
Single Density Floppy Disi. It is configrured
for a single iSCB E6/12& and does not use
common memory for I/O.

---------------------- QUATS----- --------

;port addresses

base equ 078h ;iSBC201 port address base
rrtport equ base+1 ;read result type (input)
rrbport equ base+3 ;read result byte (input)
resport equ base+? ;reset iSBC201 (output)
dstport equ base ;read subsystem status

; (input)
lalport equ base+1 ;write iopb addr low

; (output)
iahport equ base+2 ;write iopb addr high

;(output)

;command codes & masks

rdcode equ 4 ;read command code
wrcode equ 6 ;write command code
cwcode equ 8 OH ;channel command code
intbit equ 04h ;interrupt bit mass

retries equ 10 ;for disk i/o, before error

ENTRT POINT ROUTINES
; - -+ - --+ +-++ -- -+ --++-- + * - + - -. - + --

inteldsk-init: ;initialize disk controller
;actually done by iSBC86/12 monitor

ret

141

K.

inteldsk-home:
ret

inteldsk seldsk:
ret

inteldsksettrk:
ret

inteldsk-setsec:
ret

inteldsk read: ;read sector from disk

mov cl,4
mov al,unit ;combine disk selection
sal al,cl ;with opcode
or alrdcode ;to make io command for read
mov io-com,al ;set it in comd word of iopb
call dskio ;and execute it
ret

I-- ---- a----------

inteldsk write: ;write to disk

mov cl,4 ;create io command for write
mov al,unit
sal al,cl
or al,vrcode
mov Io-com,al
call dsk to ;go do it
ret

; ..+++...++4 . 4 + -+ +.....4+-.4-. ..-. . . .+.......

SUBROUTINES

d dsk lo: ;execute disk read or write function for
;iS3C201 controller. Sets up remainder of
;iopb and sends its addr to the controller
;then polls for a response and checks for
;error conditions.

- mov lo-chw,cwcode ;set no wait code for channel

142

I

mo io-nsc,1 ;transfer 1 sector
mov alsector ;set up iopb trz and sect
mov io_secal
mO al,track
mov io trcal
mov cl4 ;recombine dma seg and addr
mov axdma seg
sal ax,cl
add axtdma adr
mov io adh,ah ;set it In addr word of iopb
mov io adl,al
mov try cntretries

diol: in alrrtport ;clear controller
in al,rrbport
Mov cl,4 ;get address of iopb
mOV axcs
sal ax,cl
add ax,offset iopb
out ialport,al ;and send it out
mov cl,8
sar axcl
out iahport,al

dio2: in al,dstport ;wait for contrler interrupt
and al,intbit
jz dio2
in al,rrtport ;check completion code
or al,al
jz dio3
in al,rrbport ;status chgd, ignore result
jrps dio4 ;and retry

dio3: in al,rrbport ;check lo result
or al,al
jz dio6 ;ret with al=@ if no error

diod: ;error if we got here
dec trycnt ;decmt count and try again
jnz diol ;try again if any left
or al,error ;set permanent error code

dio6: ret

PRIVATE DATA AREA

iopb r5 7 i/o parameter block
iochw equ iopb ;iopb channel byte

* io com equ iopb + 1 ;command byte
ionsc equ iopb + 2 ;sectors to xfer (always 1;
io trk equ iopb + 3 ;selected track
io sec equ iopb + 4 ;selected sector
io adl equ iopb + 5 ;physical address for SBC201 DMA
io_adh equ iopb + 6
try..cnt rb I ;disk error retry counter

143

rI

APPINDII J
PROGRAM LISTING OF LDCPM.A86

;Prog Name : LDCPII.A86
;Written by : T.V. Almquist and D. Stevens

: This program reads the file entitled
: CPMSLAVE.CMD into common memory beginning at
: location 1000:5S0.

"-. csetv

org l09h
jmp start

Equates

cr equ Udh ;carriage return
if equ gah ;line feed
drive equ 0004h ;target C?/M drive #
bdos-int equ 224 ;interupt vector
pstrf equ 9 ;print string function
seldskf equ 14 ;select disk function
opetf equ 15 ;oden file function
readf equ 20 ;read function
d raf equ 26 ;set dma offset function
dmabf equ 51 ;set dma base function

Subroutines

seldisk: ;select target disk #

mov cl,seldskf
mov dx,drive
jmp sysvec

openfnc: ;open file denoted In fcb

* mov cl,openf
mov d x,offset fcb
jmp sysvec

----------------------------- ---- ---------- ------------ -

144

4

setdiuab: ;set dma base address

mov cl,dmabf
imp sys~vec

setdma: ;set dma, offset

mov cl,dmaf
imp sys-vec

read: ;real 12E bytes from file
;in fcb

may dz,offset fcb
mov cl,readf
ip sys-vec

*msr: ;print a character string
;end of string denoted by 0

m ov cl,pstrf
imp sys-vec

sysvec: ;execute bdos function call

int bdos-int
ret

Main Program

start:
call sellisk ;select desired dIsX
call openfnc ;open file
cmp al,255 ;if file not found
Jne cant
may dx,otfset nofile
call msg ;print error msg
imp stop

* cont:*
mov dx,cs ; save 1st page in local
call setdmab ;memory
mov dx,offset pagel
call etdma
call read ;read 1st page

145

,. ,, ° ++. +- +-. . . .,. ," + w. ++.- , , ,..,., +... ... °

;read file into iommom memory

mov dx,OeOIh ;set dma base to common
call setdmab ;memory
mov dx,050@h ;desired offset

readfile:
call setdma
push dx
call read ;read 126 byte page
cmp al,0lh ;read complete ?
Je done
cmp al,00h ;repeat
je contread
mov dx,offset rerr ;otherwise print read error
call msg
jmp stop

contread:
pop dx
add dx,080h ;increment dma offset for
jmp readfile ;next page

done:
mov dx,offset frsg ;print completion msg
call msg

stop:
mov cl,00h ;return to CP/M
Mov 11,00h
int bdosInt

Data

nofile db cr,lf,'CPMSLAVE.CMD Not Found On This Disk$'
rerr db cr,lf,'Read Error$'
fmsg db cr,lf,'CPMSLAVE.CMD Loaded into Common

db "emory"

fcb) d j 04, CPMSLAVE" ,"CMD',0,0,0,0,; q,, , ,,,,

db 0,9,0,0,0,0,0,0,0)
pagel rs 128

db
* end

146

AIIDI I
PROGRAM LITING O LDBOOT.A86:

;Prog Name : LDBOOT.A86;Written by : T.¥. Almquist and D. Stevens

: This program loads the boot loader into
: common memory and is used by slave 86/12As.

cs eo
org 0100h
imp start

Equates

cr equ Odh ;carriage return
if equ iah ;line feed
drive equ 0004h ;target CP/M drive #
bdos int equ 224 ;interupt vector
pstrf equ 9 ;print string function
seldskf equ 14 ;select disk function
openf equ 15 ;open file function
readf equ 20 ;read function
dmaf equ 26 ;set dma offset function
dmabf equ 51 ;set dma base function

Subroutines

seldisk: ;select target disk #

inov cl~seldskf
mov dz,drive
imp sys-vec

----------------------------- ----- -----------------------
openfnc: ;open file denoted in fcb

mov cl,openf
mov dx,offset fcb
J"np sys.vec

147

-. A A
.

. 'AA" - -

setdmab: ;set dma base address

mov cl,dmabf
imp syss_vec

setdma: ;set dma offset

mov cl,dmaf
imp sys_vec

read: ;read 128 bytes from ftile
;in fcb

mov dz,offset fcb
mov cl,readf
imp sysvec

msg: ;print a character string
;end of string denoted by 0

may cl,pstrf
jmp sysvec

sys_ vec: ;execute bdos function call

.nt bdos int
ret

Main Program

start:
call seldisk ;select desired disic
call openfnc ;open file
cmp al,255 ;if file not found
Jne cont
mov dx,offset nofile
call msg ;print error msg

. imp stop

*O cont:
Mov dx,cs ;save 1st page in local
call setdmab ;memory

" " mov dx,offset pagel
call setdma
call read ;road 1st page

148

;read file into commom memory

mov dxGeS0@h ;set dma base to common
call setdmab ;memory
mov dx,0400h ;desired offset

readflie:
call setdma
push dx
call read ;read 125 byte page
cmp al,01h ;read complete ?
je done
cmp al,00h ;repeat
je contread
mov dx,offset rerr ;otherwise print read error
call msg
jmp stop

contread:
pop dx
add dx,080h ;increment dma offset for
jmp readftile ;next page

done:
mov dx,offset fmsg ;print completion msg
call msg

stop:
mov cl,00h ;return to CP/M
mov dl,@Oh
tnt bdos int

Data

nofile do cr,lf,'BOOT.CMD Not Found On This Disks'
rerr 1b crlf.'Read ZrrorW"
fmsg db cr,lf,'BOOT.CMD Loaded into Common Memory$'
fco db 04,'BOOT

d.b 0 ,,0 0000 ,
pagel rs 128

db 0
end

149

PROGRAM LISTING OF BOOT.A86

;Prog Name :BOOT.A86
;Written by : T.Almquist and D. Stevens
;Date : 16 October 19e2

: This program is the boot loader used by
:slave 86/12As to load CP/M-86.

Equates

load addr equ 0400h
cpm..addr equ 0500h

Main Program

cseg

call request ;get ticket number
May ax,J344h ;set es to CP/M segment*
may es,ax
may di,00h ;set desired offset
may ax,0eZa00h ;set ds to common memory
may dsa ;segmnent #
may si,cpm-addr ;CPM.SLAVE offset
mov cx,1a30h ;num~ber of bytes to move
cid ;from common memory to

rep movs ax,ax ;local memory
call release ;increment server #
jmpf dword ptr bios offset + load addr

;transfer to CP/M

Include File

include sync.a86 ;for sharing common memory

Data

bios offset dv 2500h ;C?/M jump vector
biosseg dv

°.5

4

db a
end

151

PROGRAM LISTING O1 LOGIN .A86

;Prog Name : LOGIt4.A86
;Date : 15 October 1982
;Written by : T. Alaiquist and D. Stevens

: This program contains the code necessary to
: permit only one user at a time to be logged
: on to any I/0 storage device.

Equates

busy equ Offh ;busy indicator
ndsks equ 7 ;number of CP/M disks

Subroutines

cseg

login:

push es ;set up to address Comrmon
mov ax,cmemsee ;memory
mov es,ax

logo:
mov bx,offset logmsg2 ;get console number
call pmsg
call conin ;ret console number in a].
cmp al.,31h ;ensure response is between
Jl logo ;1 and 4
cmp al,34h
jg logo
mov console,al ;save console number

logi:
mov bx,of+.set logmsg1 ;inital login msg
call pmsg ;print message
call conin ;get login disk

*cmp al,41h ;within range defined by
.11 logi ;CPMMAST. DEF
cinp al,40h + ndsks ;greater than g:
j j log'1
and al,Zfh ;strip upper nibble
sub al,1 ;normalize to zero

*may user,al ;save login user disk

152

a

. -... 4 -"

;determine if disk is free

xor bx,bx
mov blal ;set up to index logtbl
mov al,busy
lock xchg allogtbl[bx]
test al,al ;is disk free?
jz log2 if so, enter console #
cmp al,console ;is console already logged
jnz restore ;if not, restore logtbl

log2:
xor bx,bx ;clear bx
mov bl,user ;offset in logtbl
mov al,console
lock xchg al,logtbl[bxj ;enter console number
jmp logret

restore:
lock xchg al,loetbl[bx ;restore logtbl entry
mov bxoffset logmsg3 ;request another disk #
call pmsg
jmp logi

log_ret:
. ,pop es

ret

intlogin: ;initialize logtbl entries

push es ;address common memory
mov axcmemseg
mov esax
xor bx,bx
xor cx,cx
mov cl,ndsks ;entry for each disk

again:
mov logtbl(bxl.O ;initialize elements of
Inc bx ;logtbl to 0
loop again
pop es
ret

Data Area

user rb 1
console rb 1
logmsgl db cr,lf,'Enter Login Disi Letter (A,D,E.F,G)'

db crlf,O
* logmsg2 db cr,lf,'Enter Console Number (1,2.3,4)'

153
,,.65

db cr,lf 90
1og~msg3 db crlf, Disk In Use --- Reselect'.cr,lf,g

e seg
org 20h

logtbl rb ndsks ;allot memory for logtbl

cseg

;end login.a86

154

AIP~ NDjI N
PROGIA LISt 0 'SNC.A86

;Prog Name :Synch.A86
;Date :7 October 1982
;Vritten by :Nick Hammond
;odifled by :T. Almquist and D. Stevens
;For :Thesls
;Advisor :Professor lodres
;Purpose :Provide synchronizations of CPM/86 read

and vrite operations to the MBB-80 bubble
memory board and the REMEX Data Warehouse.

Synchronization Routine

Equates

cmemseg equ 0e0b ;segment address of
;common memory

dcount equ 106 ;bus contention time delay

; Suoroutines

cseg $

ticket: ;return the next ticket number in
;bx

xor ax,ax ;set reserved value
lock xchg ax,next ;get ticket number
test azax
jz ticket ;repeat if reserved
mov bxax ;return next ticket
inc ax
jnz ticl
Inc ax ;stip reserved value

ticl: mov next,ax ;increment ticket number
-

155

IA

ret

avait: ;vait for server number to match
;the customers ticket number passed
;in bx To reduce bus contention, a
;delay is used between periodic
;checks of the server number

cmp bx,server ;if ticket - server
je ava2 ;continue process
mov cx,dcount ;if not, insert delay

awal: dec cx
jnz awal
jmp await ;cbeck server again

awa2: ret

advance: ;increment server number to next
;value

Inc server ;server=server+1
jnz advi
Inc server ;skip reserved value

advi: ret

request: ;get a ticket number and wait to be
; served

push es
mov axcmemseg ;set es to address common
Imov es,ax ;memory
call ticket ;get ticket number
call await ;wait to be served
pop es
ret

release: ;adv server number on completion
;of read or write operation

push es
mov ax,cmemseg ;set es to address common
mov es,ax ;memory
call advance ;inc server number
pop es
ret

* initsync: ;initialize sequencer variables

156a.,

push es
mov ax,cmemseg ;set es to address common
mov es,ax ;memory
mov ax,1 ;server=next=1
mov serverax
mov next~ax
pop es
ret

Data

eseg ;only one set of sequencer variables
;exist in common memory; accessed
;via es

server rw 1
n ext rv 1

cseg $

;end synch.a86

15?

C-. -. - -J . t. . .

LIST OP RIZJINCES

~~1. Canclalor, M. B.9 A111ertolg of .Igg ;.?ZM-.§ gpril_ _n
ay &ftm, Masters Thesis, Naval Postgraduate School,
Monterey California, 1981.

2. Hicklin, M. S. and J. A. Neufeld, Aa4_gaRton of

Zn!Jrn_ u.t, Masters Thesis, Naval Postgraduate
School, Monterey California, 1981.

3. Hammond, Nick, _bra 2f a i per.1PhT1 Py1_9 W___u
Processors, CS 3509 Project, Naval ?ostgraduateSchool, Monterey, CA, 1982.

4. Digital Research, ASM-6: The CM-e6 Assembler UCsEr's
Guide, 1981.

5. Digital Research, PPT=J§1 Th.S 1GrmZ
Tool for the _6 ser _id, 1981.

6. Digital Research. CPLM-86 Qpralg _1§em Guid.i'" 1981.

7. E Z-CELL-o Corporation, R1MI Technical Manual for Data
Warehguse Model Rp 310, PDW 3200,1979.

e. EI-CELL-O Corporation, R30E Tecnical Manual for theM*_ _bu _I!.~fa:_ 4} ' !41l' I 198g.

9. Intel Corporation, i.. e@ Jndustiral Chassis Hardware
Refermeic _Na!a, 1979.

10. Intel Corporation, i3C 64_/6§4 gardyar Reerence
a 1979.

11. Intel Corporation, SC 640 Power Supply ardware
Referen_.c _4n§a 1979.

/

12. Reed, D.P. and Kanodia, R.K., SyxnCrp1g aon _ej11
' CEm_ Counters and Seq uencers, CACM VOL 22, 40 2,
1979.

156

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Defense Logistic Studies Information Exchange 1
U. S. Army Logistics Manaement Center
Fort Lee, Virginia 23801

3. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

4. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

5. Associate Professor Uno R. Kodres, Code 52Kr 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

6. Lcdr. Ronald Modes, USN, Code 52Af 2

Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

7. Cdr. John Pfeiffer, USN, Code 37 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93940

8. Lcdr. Thomas V. Almquist, USN 2
12555 Mclntire Court
Woodbridge, Virginia 22192

9. CPT David S. Stevens, USA 2
2205 Deckman Lane
Silversprings, Maryland 20906

10. Daniel Green (Code N20E) 1
Naval Surface Warfare Center
Dahlgreen, Virginia 22449

159

b07

11. CDR J. Donegan, USN
PMS 40035
Naval Sea Systems Command
Washington, DC 20362

12. RCA AEGIS Data Repository
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, New Jersey 08057

13. Library (Code B33-05) 1
Naval Surface Warfare Center
Dahlgreen, Virginia 22449

14. G. Lute 1
Fleet Systems Department
Applied ?hysics Laboratory
Laurel, Maryland 20810

15. Robert Coates 1
5840 Avienda Jinette
3onsall, California 92003

160

I-F'I'L M E D.'

8-3

4A :,4 -:1 if

of T'l C Al

