AD-A126 838 ALTERATION AND IHPLEHENTRTION OF THE CP/M-86 OPERATING i/2
SYSTEM FOR R MULTI-USER ENVIRONHENT(U) NAYAL

POSTGRADURTE SCHOOL MONTEREY CR RLHOUIST ET AL.

UNCLASSIFIED DEC 82 F/G 9/2

PUDEY TN W

gk

I

R
ddaa

EEEFEELLTE

=

I

14

I

125

 —e———
e —

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I
=
f

bpA126850

e

DTG FILE COPY

-

AT

PV SRS N S

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

DTIC

ELECTE
APR 151983 -

THESIS b

ALTERATION AND IMPLEMENTATION OF THE CP/M-86
OPERATING SYSTEM FOR A MULTI-USER ENVIRONMENT

by

Thomas V. Almquist
and

David S. Stevens

December 1982

Thesis Advisor: U. R. Kodres

Approved for public release; distribution unlimited

S

.......................
...............

UNCLASSIFIED

FECUMTY CLASNFICATION OF TiiS PAGE (Then Date Sntered)
REPORT DOCUMENTATION PAGE anrtEAD INSTRUCTIONS
[TAUPERY uuBER 3. GOVY ACCEBBION WG] 3. RECIPIENT'S CATALOG nuMBER]
l; D -Rl26350
4. TITLE (and Subtitle)] . S. TYRE OF REPORT & PEMOD COVERED
Master's Thesis;
Alteration and Implementation of the December 1982

User Environment
Y AU THOR e) - ACT OR dnanT NLudTh(e)

Thomas V. Almquist
David S. Stevens

%— . PROGRAM ELEMENT. P T TA
. PERFOMMING ORGANIZATION NAME AND AODRESS AREA & WORK UNIT ..J:?.‘-"Es Thsx

Naval Postgraduate School
Monterey, California 93940

CP/M-86 Operating System for a Multi- ‘mm.—.-—h

12. ARPORT DATE

1. CONTROLLING OFFICE NAME AND ADDRESS
December 1982

Naval Postgraduate School
19. NUMBER OF PAGES

Monterey, California 93940 160
TS woniToMRG AdENCY NAME & AOORESHIT difforant fram Cantrolling Ottice) | 18. SECURITY CLASS. (ot thie rapart)
Naval Postgraduate School Unclassified

Monterey, California 93940 'mgfmouloonanmue
SCHEDULE

6. DISTRIGUTION STATEMENT ref thie i.om

Approved for public release; distribution unlimited.

OISTRIBUTION STATEMENT (of the abetract entored tn Block 20, Il ditforent hem Repeost)

19. SUPPLEMENTARY NOTES

19. X EY WOROS (Continue on reverse side 1] nocossary and iGontify by blesk number)

CP/M-86, multi-user CP/M-86 system, table-driven CP/M-86 BIOS,
AEGIS '"signal processor" emulation, magnetic bubble memory,
REMEX Data Warehouse.

20. AGSTRACT (Continue en reverse slde If ary and identily by bieak manber)

CP/M-86 is a single user microcomputer operating system
developed by Digital Research. This thesis provides a multi-
user ''protected" CP/M-86 based disk sharing environment consisting
of four Intel iSBC 86/12A single board computers, a MBB-80 bubble
memory, and the REMEX Data Warehouse 3200 memory storage unit.
The REMEX houses a 14 inch Winchester hard disk and two flexible

B

|

m—
ronu B 1) eTe
DD ,livs 1473 eoimion oF 1 wov 6813 ossoL UNCLASSIFIED
Q/N ~1°9-014-8601 " RCUT TV CLABY T1Z A 10N OF T- .7 # LAl 7= Dete Enteres

1

a AP IR P S S U Y

PPN I P e B o e, O S . ——lm R G

AR N OSSR Y
B e S N O e PR S)

TN MV CL ASNIICA o Ywis & /Shen Resn Dasarne:

T

(continuation of abstract)

floppy disk drives providing in excess of 20 megabytes of data
storage capacity. The major objective in the design of this

. system was to create a table-driven CP/M-86 Basic Input/Output
System that could be quickly and easily reconfigured to adapt

to any new hardware configuration. Once the system was operational,
the REMEX hard disk could then serve as a "single processor"
emulation for the AEGIS system. By making direct calls to the
appropriate read/write routines, stored "radar data" could be
retrieved from the hard disk for use by the other system processes.

Accession rog

NTIS GRARI)¢
DTIC TAB 0
Unannounced O
Justification . __ |

By
| Distribution/
Availability Codes
"7 Avail and/or
pist ' Special

A

1 0 S

DD Form, 1473 UNCLASSIFIFD | o
3/‘4 0102-014-6601) “C.U..:"“z:;'.OCAN;I—:: ';;:"’2“;; Dete Enteces:

tfk’.-_‘._\.,,n_‘._:_..x- L IPULIPN " b — PP P WP A PN S - LR ST PSP J

Approved for public release; distridution unlimited

Alteration and Implementation of the CP/M-86
Operating System for a Multi-user Environment
by

Thomas V. Almquist
Lieutenant Commander, United States Navy
B.S.A.E., North Carolina State University, 1971
David S. Stevens

Captain, United States Army
3.5.E., United States Military Academy, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 19862

Authors: __---_--Ibm&{V‘_Ma%cH:

—— N . G e W D S M e GRS W A M n T AR G ES en S e me S Y = -

Approved by: ______ Ao . A e Y o

- S Y e - T WD M e W e A W T S G- e e W W e e e
——w wn e s - e > W = s > =y e . e T G an an e W B A e A = e o e

————— —— > = wr b o o wn et I e e . e te . EE an e

Dean of Information and Policy Sciences

(€]

Py . I '*“H. T T

i) a . N - o N
Ry W S N N N MRE VR A VR A A Tt I I T S T e A A A A

\Raan . 2. v Le
Iy .

\ ‘ ABSTRACT

;)CP/M-SG is a single user microcomputer operating system,
developed by Digital Research < This theQIérqff;;EE;;_‘;J
multi-user ’;L“irotected’ﬁkmbP/M-ae based disk sharing
environment consisting of four Intel {SBC 86/12A single
board computers, a MBB-8@¢ bdubble memory, and the REMEX Data
warehouse 3222 memory storage unit. The REMEX houses a 14
inck Winchester hard disk and two flexibdle <floppy disk
drives providirg in excess of 20 megabytes of data storage
capacity. The major objective in the design of this system
was to create a table-driven CP/M-86 Basic Input/Qutput
System that could be quickly and easily recoafigured to
adapt to any nevw hardware configuration. Once the system
was operational, the REMEX hard disk could then serve as a
"signal processor emulation for the AEGIS system. 3y
making direct calls to the appropriate read/write routines,
stored “radar data” could be retrieved from the hard disk

for use by the other system processes.

B B 2

DISCLAIMER
Many terms used in this thesis are registered
trademarks of commercial products. Rather than attempt to
cite each individual occurrence of a tradémcrk. all
registered trademarks appearing in thlis thesis will Dbde
listed below, following the firm holding the trademark.

Intel corporation, Santa Clara, California:

Intel MULTIBUS INTELLEC MDS
Intel 8080 Intel 8¢86 1SBC 86/12A
1SBC 262 1SBC 201

Pacific Cyber/Metrixs Incorporated, Dublin, California:
Bubble-Tec Bubdl-Machine MBB-Bubbl-Board

Digital Research, Pacific Grove, California

CP/M CP/M-80 Cp/M-86
MP/M

EX~-CELL-0 Corporation, Irvine, California

REMEX Data Warehouse

3

A

Dt AU 2 I AR Al

- ..

- v‘wvvv—‘r

IREPR P90

P S P Sy e Bt cisenestiinardh oS oot e

L W wAT oW LT AR A T TR TR Y AT R R TR NN N il R ™Y i I ~
X a¥autra ‘."F;R-s,._J:_~\v."_¢_.'.._,‘?r\ IO R AN LA T T A A T I T TR T L T e e
- - B B TR P I D T TR I Tt A - ~

TABLE OF CONTENTS

I. INTRODUCTION cc¢ccveescccocsccccocsscaccsassssccsee 11
A. BACKGROUND ...ccccececccceccsncoscaccoscosssses 11

B. PUBPOSE .cc.ccceccccesccscsosscassaccssscnssce 11

Il. CP/M=B6 .c.ccceceececaccscocscssscovnsosscscccscncsece 18
A. THE CP/M-86 OPERATING SYSTEM ...cceeceescceces 15

B, LOADING CP/M=B86 .vcivevece coocaccnceccsanscas 16

C. BOOTSTRAPPING TEE ISBC 86/12Accoveeceeves 18

D. THE DISK PARAMETER TABLE ...c.ccovecessoseses 19

E. THE STANDARD BIOS ..cccevececcccsscccocscnsnee 23

P, BIOS ALTERATIONcccceecescccocscannscsncee 26

IIT. HARDWAREccceceeceacncccascesoncccncsosncnnses 91
A. GENERAL HARDWARE CONFIGURATIONcccc00ese 31

B. INTEL 86/12~A SINGLE BOARD COMPUTBR...ccccecee 32

C. MBB-8@ BUBBLE MEMORY STORAGE DEVICE 33

1. General Descriptioncceceeececccncaee 33

2. Read/VWrite Logic .ccceiercicsccncccncncces 34

3. CP/M-86 Compatibility ...cceceececencenses 3E

D. REMEX DATA WAREHOUSEc.cceveececcecsassses 38

10 General Description 9 ¢+ 5 6 9 288 08 e 0T s Be a0 38

»
r
»
4
3
»
3
i
b
/
v

]

2. Command Packet Organizationceveeecee 4@
3. Multidus Interface Card AssSemdly .c.c.cccee 44
4., Command Packet Executioncccceccececee 45

E. 1ICS-8@ INDUSTRIAL CHASSIS +evevvevccoccncnnnee &6

S A s am e o o oL aar

I'. s!srm n!'no’"n“r @ ® 00 880000 ¢O OO0 O OO OO HO PR S *ESe *e

A.

INITIAL EFFORTS seccecccsconcsccnccsancassccone
1. Program Development SyStemcccceeccee
2. VYerifing MBB—~6@ Operations .cc.cccecceccesce
3. Modification of BIOS for Use in ICS-80 ...
4. REMEXI Low Level Routinescccceovecee
S. Table Drivem BIOSccccccecencccnsccsee
INTERFACING TEE REMEX DATA WAREBOUSE
1. Floppy Disk Drive ...ccieecnccccancancnsas
2. Hard Diskcocecececcecccaccsccsccosnaces
3. Initial Multi-iSBC E6/12A Systemcceee
SYNCIRONIZATION AND PROTECTION .cccecececcosccese
1. Synchronization of Read/Write Operations .
2. Common Memory Read/V¥rite Réutines cesacsssae
3. Disk drite Protectioncocececcncccsnccase
STMMARY OF SYSTEM GENERATIONieviencreccen
1. System BICS Creatloneceerececssccancss
2. Setting up the MBB-8J3 in tane MDS System ..

3. System Initialization ...cceevececccacacas

V. RESULTS AND CONCLUSIONS cvc.ce itececccocsonaconcans

A.
B.
c.
APPENDIX
APPENDIX
APPENDIX

GENERAL REOUJLTS .iceceevencecernccesncscennnns
BYALUATION OF THE IMPLEMENTATION ...ccccevccas
RECOMMENDATIONS FOR FUTURE WORKcc00.00
A. PROGRAM DESCRIPTIONSc.ceieeccccococen

94

3. PROGRAM LISTING OF CPMBIOS.A86ce.... 1081

C. PROGRAM LISTING OF CPMMAST.CFG ...cccve... 111

b g I A S e A S S NI N A N R R M AL A P T P P S R PR S A T R PO ARG A T S

y R PR T LA S L A
A, i i A R T P R A A T e A SRR S
o

?

ol

-

R ol 4 -w >
» . o 1
YRR . Nl

APPENDIX L. PROGRAM LISTING OF MBEODSK.AE6 ...c.oce0.. 114
APPENDIX E. PROGRAM LISTING OF RXFLOP.A86 .c.ocovee... 122
APPENDIX F. PROGBAM LISTING OF RXEARD.A86cc0ce0 127
APPENDIX G. PROGRAM LISTING OF CPMMAST.DEF 136
APPENDIX E. PROGRAM LISTING OF CPMMAST.LIB 137
APPENDIX 1I. PROGRAM LISTING OF INTELDSK.A86 141
APPENDIX J. PROGRAM LISTING OF LDCPM.AB6cc.cc0.. 144
APPENDIX K. PROGRAM LISTING OF LDBOOT.A86 147
APPENDIX L. PROGRAM LISTING OF BOOT.A86cccccee.. 150
APPENDIX M. PROGRAM LISTING OF LOGIN.A86c.cc00.. 152
APPENDIX N. PROGRAM LISTING OF SYNC.A86cc0vesee.s 155
LIST OF REFERENCESccocecoccavscscenccsascsosssccscsces 158
INITIAL DISTRIBUTION LIST ..cccececectcccescncencsscacse 159

A e

——— ﬂ‘_, aa

i S A CRCN

- P SO . W W Y S

. b S - L £ - . -~ o . b ol J - al -y
I A AR ."‘»"‘~': ST AR ‘-"-".‘-‘-'- IR AN N “‘)' LB AR .
R el ot G RS S S I S S R A S W R P AALEL. e e e e e W

LIST OF TABLES
3.1 Logical Eardware Conflgurationcecccceeceee.o 32
3.2 REMEX Hard Disk Sector Selectionscceovceee.o 39
3.3 REMEX Error Code@S..cccececcocccccsssncoscsccccnce 42
5.1 REMEX Assembdly Times in Secondscececeveave.. 87
5.2 MP/M Assemdbly Times in Seconds ..cceeeececesccess 87
8.3 REMEX Transfer Times in Secondscccceeeseeses 89
5.4 MP/M Transfer Times in Secondsceeecevsvsseee 90
5.5 REMEX Winchester Disk Skew Times in Seconds 61

A £ MR

T

L AAELSE A A i | 2 -
RO ISt i & A B

S

K 2

a e o e A .« et . -
i WP e ¥ ST N it S S S D G T T WP S TP 2at et e - 7 ’ ‘]
- . —ea — - “- e s - . . - . P

et R e e e
SORRR RS ¥ DO

LIST OF FIGURES
2.1 steps for creatlng cP"'srs ®® 8 & 60 0 ¢ 00 0000 PO s sPe 16
2.2 Steps for Creating Boot LOADER.CMDccc000. 17

.
b
LI
Ve
s

2.3 Format of Disk Definition Statement .cccceccecee 20
2.4 Memory Map of the Standard BIOS ...cecccceevcaas 24

2.5 Path of CCP or BDOS Function Call
1n standard BIOS ® ® 5 5 0 0 OO 0 69 o0 0 e S0 o0 6e S0 B8O S0 25

2.6 Memory Map of Table—-Driven BIOS ...ccecveencccen 27

2.7 Path of CCP or BDCS Function Call
1!1 Table-Dl‘iven BIOS 20 S0 0 8 0860 PP EEOOLIGOEODNOIOOLOGBEOLTS 29

3.1 Physical Hardware Configuration ...cececscccscas 31
3.2 MBB-83 Logical Storage Configurationcec.. 37
3.3 Command Packet Descriptionceccecccccoccnnss 41
3.4 REMEX Read/Write Packet ...c.cceeececcanconcsass 43
4,1 RDW Read/Write LOoZIC .cccevecscvecrvoconavsscncos 55
4.2 Table~Driven BIOS Read Codecececieeeecsn 57
4.3 BIOS Read Table ..coceersecceccocccsccenasncsnns g8
4.4 REMEX Floppy Disk Read PacKetlceceecoccscos 62
4.5 REMEX Hard Disk Read Packetccccecocove.ncen 69
4.6 Common MemoOry MAD ceccecosscoceconsasccnsssseannnse 71

4.7 Sequencer Algorithmceccevecevnveacssssccscce 75

4.8 Common Memory Read Operationc.cevecenccanss 7?

4.9 Common Memory Allocation ...ccievecsctccacccncss 78
r. 4.10 Login Table e ® & @ 0 & F 00 0 0 OO0 P %G Ot . PP OO SO O e e N L e e sz
3 ,
. 4.11 Final Common Memory Configurationccececeens 80
!

12

T TTY Y,
S A
AP

AR

CONLad Ty Ty —
i A RN S .
P . AR A R . -

MRS VMO - SRS

Mo S0 20T unt aurast ahta e g st Sl w4
- vt L s e A

i

ey

| e AAR A
I e .

[

I. INTRODUCTION

3 -4 24 2 PP 24

A. BACEGROUND

One of the most popular operating systems avallabdle for
microcomputers today is the family of Digital Research’s
CP/M operating systems. Tﬁey are single user systems which
can bYe configured to interface with nearly any existing
piece of hardware simply by redesignicg tce Basic
Input/Output System (BIOS) module of CP/M. Since CP/M is a
single user system, protectior from other users 1is not
normally an issue of corcern with thils operating system.

MP/M, also marketed dy Digital Research, is a multi-user
operating system which supports multiprogramming on a
uniprocessor. It 1s basically an expanded version of CP/M.
However, MP/M provides virtually no protectior for user
files and very little protection for memory in the event
that another user’s process crashes. Furthermore, when more
than one user is operatiang under MP/M, system response time

is noticeadly increased.

B. PURPOSE

This thesis presents an implementation of CP/M-8€ which
will permit multiple users, each with kis own
microcomputer, to access the same peripheral devices ia a

manner similar to that of the MP/ operating system, Dbdut

11

L ot Yad S " v " “pial & e WYY .
ey, I S N Fr A N Nl R T M e e P i e i ISP IR Ol A et

LA - - LR AT - -
S T L PO L TP A T L SR o _.;.°“‘.J:L PARE TN N L. PSSR Wl S Rl S,

; with increased user protection. The peripherals used 1in
. this 1mp1ementétion are a 32K cbmmon memory board, a MBB-80
.j magnetic bdudbble memory configured as a floppy disk drive,
§ and a Remex Data Warehouse memory storage unit consisting
- of a Vinchester hard disk and two flexible floppy disk
drives. In addition, computer performance {is not
compromised since e=ach user has a dedicated INTEL 86/12A
iSBC on which to operate.

The standard version of CP/M-86 requires that only the
BIOS be altered to add additlonmal hardware. While this s
an excellent method to interface hardware with CP/M, it
requires that the BIOS be rewritten every time the hardware
configuration 4is changed. This process can become time
consuming and is definitely prone to errors, thus
discouraging frequent system reconfiguration. Therefore, in
the design of this system, a major goal was to develop a
BIOS which could easily be modified if it was necessary to
convert from one hardware configuration to another.

This thesls was Dbased on work accomplished in two
previous theses. Michael Candelor’s thesis entitled
"Alteration of the CP/M Operating System’ (Ref. 1]
initially modified CP/M-86 to interface with the Intel 1201
and 1222 Floppy Disk Controllers. Michael dicklin and
Jeffery Neufeld, in their thesis “Adaptation of the Magnetic
Bubble Memory in a Standard Microcomputer ZEnvironment”,

[Ref. 2] 1interfaced the MB3-82 Budbl-~3oard and the 1222

12

kS

Floppy Disk Controller with the CP/M-86 Operating System.
Although Hicklin and Neufeld claimed that their BIOS was
table~driven, 1t was Nick Hammond who really identified that
the BIOS functions could be truly table-driven [Ref. 3].
This thesis duilds on the ideas contained in each of these
previous works and expands upon them to create a more
practical and versatile operating system which provides
increased protection of the user’s address space and files.

OCnce the system was operational, the REMEX hard disk
could then be used to emulate the “signal proczessor’
functions of the AEGIS system. Direct calls can be made to
the appropriate read/write 4ariver routines to retrieve
stored "radar data from the hard disk for use by the other
emulated processes in the system.

This thesis has been organized into four major sections.
The first section deals with an overview of CP/M-E6 and the
necessary steps required to create a new CP/M-86 system. It
also describves how the BIOS interfaces with the other
modules of CP/M-86 and the peripheral devices. Included in
this section is a description of how the BIOS can Ve
reconfigured into a table-driven operating system wanich will
permit easy alterations to the 3I0S if the hnardware
configuration should be modified.

The second section descrides the hardware configuratioz

utilized {in this thesis. The memory organization of the

MBB-82 3udbbl-Board 1is discussed and the design decisions

13

:
i.
2
b
b
b
L

...... PP Y

.

that wvere made to make the dudbble memory compatidle with
the CP/M operating sytem are treated in some detail. The

-basic functions of the BREMEX Data V¥Warehouse are also

é; described, as well as, the command packet structure and
-> execution.

The third section is concerned with the development of a
é CP/M-86 operating system which will permit four single board
E computers to operate simultaneously while sharing the same
g peripherals. In this design, it is necessary to provide

f_ : protection to common memory during read and write operations

- and to insure that each user’s files are write protected

ff with respect to all other uses.

s T The final section describes the tests that were

' conducted to evaluate system performance. In addition, the

F feasibility of using the REMEX hard disk to emulate the
"signal processor of the AFGIS system was explored.

Measurements were made using direct calls to low-level read

e

routines to determine the optimum skew factor for
consecutive sector access operations. Also, some

recommendations were made for future projects involving the

REMEX Data ¥Warehouse and the multi-user CP/M-86 operating

system,

14

A AEL e A e a1 P Jel e e 2 g Ao
T I R PRI RIS e

b v
e

v
i

L A Chedcd
: -I:-A‘-

R S

ATy WY, LYY
f . - s

T Y
-— , -

T

IT. CP/M-86

A. THE CP/M OPERATING SYSTEM

CP/M=-86 1is an operating system developed for use on a
single INTEL Corporation 86/12A microcomputer. CP/M 1is
supplied with a number of built-in utility commands as well
as transient utilities such as the assembler (ASME6.CMD) and
the Dynamic Machine Language Program Dedugger (DDT86.CMD).
These are described 1in detail 1in Digital Research
publications. [(Refs. &4 - 6]

The CP/M operating system itself 4is modularized to
permit easy adaption of CP/M to any hardware configuration.
The three modules are the Console Command Processor (CCP),
the Basic Disk Operating System (BLOS) and thas user
configurable Basic Input/Output System {BIOS). The first
two modules are supplied by Digital Research as a single hex
file entitled CPM.HS6. This file contains all the code
necessary for processing commands entered at the
console and for handling all 1logical file and disk
management functions. The source code for a skeleton RBIOS
is also provided which the user can alter to suit ials
individual hardware reguirements. Once the BICS has ©been
modified, {t 1is assembled and then concatepated with
CPM . H86. The resulting hex file, CPMSYS.HE6, 1s converted

to an executable file by the use of the CP/M utility program

15

w, .

Adinddl sute Sah gl S b e S0eas St B0 odh S0 PV 2 9 Jnfe Ramen J M Sl At e e R A et i i N M i S i
E.” SN A A S R A RO S . . - RN P LR

- ' 1. USER BIOS.A86 ==)> ASMB86.CMD ==> USER BIOS .H86
%i 2. CPM.HE6 + USER Bl0OS.HB6 ==> PIP.CMD ==> CPMSYS.HE6

3. CPMSYS.HE6 ==) GENCMD.CMD a=> (PMSYS.CMD
(£28@ CODE[A402])

4. CPMSYS.CML ==) PIP.CMD ==) (CPM,.SYS
(rename on newv disk)

Figure 2.1
Steps for Creating CPM.SYS

GENCMD.CMD. Finally, this file is renamed CPM.SYS and placed
on a diskette for use. This process 1s shown in Figure 2.1.
Details concerning the operation of GENCMD.CMD, LDCOPY.CMD
and PIP.CMD can be found in the "CP/M-86 Operating S3System
Guide”. [Ref. 6]

CP/M-E6 supports programs vwritten in three memory

models: the 8082 Model, the Small Model, and the Compact

Model. All three memory models are described in detail in
Reference 5. The model used in this thesis is the 8282
ii Model because 1t supports programs which have code and data
areas 1intermixed and which normally have single segments of

64K bdbytes or less.

:‘.v‘ ey

r 3. LOADING CP/M-86
The file CPM.SYS is too large to fit onto the first two
tracks of a normally-formatted diskette, Thus, a boot
t‘ loader must be placed on these tracks and loaded into memory
E: by the cold start loader. This boot loader program will
L

16

rr.rr ™y
3
p
k
Y
b
r
§
I
r
{
r
f
§
[
r
g

e e T T L e L T e S T L T T T N A N N T e T o N T o .

satatata B L T Y S Rt T U P Tt e LI WP S R g

P AL TR S Y g

then bdring the main CP/M operating system into memory and
pass control to it.

The loader program i{s distridbuted by Digital Research
in three separate médules and is basically a sudbset of the
entire CP/M system. The modules are the Loader C(Console
Command Processor (LDCCP.H86), the Loader Disk Operating
System (LDBDOS.H86), and a user configurable Loader Basic
Input/Qutput System (LDBIOS.A86) which is almost identical
to the system BIOS. The primary differences deal with the
physical memory location of the loader, the interrupt
structure and the BIOS offset address within the CP/M
system. Assembly of the loader BIOS is controlled bdy a
conditional assembdly switch provided in the skeleton BIOS,
which 1is 1listed ia Appendix E of Reference 6. The steps
needed to obdtain a loader BIOS are essentially the same as
for creating the CPM.SYS. The exact steps are shown {in

Figure 2.2,

1. USER LDBIOS.A86 ==> ASM86.CMD ==> USER LDBIOS .REE

2. LDCCP.d€6 + LDBDOS.HE6 + USER LDBIOS.IB6 ==> PIP.CMD
==> LOADER.Hoc6

3. LOADER.H86 ==> GENCMD.CMD ==> LOADER.CMD
(8080 CODE [A490])

4. LOADER.CMD ==> LDCOPY.CMD ==> LOADER.CMD
(load on tracks @ and 1)

Figure 2.2
Steps For Creating Boot LOADER.CMD

7

DA AN

ee

C. BOOTSTRAPPING THE 1SBC 86/12A

From the monitor of the 1SBC 86/12A, the CP/M system
loader program located on tracks @0 and 1 of the disk, can
be accessed via the bdootstrap or cold start loader program.
This program is located in ROM or EPROM on the iSBC E6/12A
board itself. Thus, for each separate device from vhich the
system is to be booted, a new cold start loader program must
be written and then burned into ROM. PFinally, this ROM must
he mounted on the {SBC 86/12A doard where it can be accessed
by the monitor program.

Currently, two cold start loader programs are availabdle
for the 1SBC 86/12A. One allows the system to be booted
from either the single or double density Intel MDS floppy
disk drive system by executing the command GFFD4:2 from the
1SBC 86/12A 957 monitor program. Wwhen this command 1is
executed, the program in tne ROM will go out to tracks @ and
1 of the floppy diskette and attempt to bring into memory
the CP/M system loader program. Once loaded into memory,
the cold start loader will then transfer control to the
loader which in turan will locate the CP/M system (CPM.SYS;
on the disk and load it into memory. Finally, the system
loader will relinquish control to the CP/M operating system.
The source code for this bootstrap program is 1listed in
Appendix C of Reference 1.

The second program allows bootloading from tne MBB-80

bubble memory device by 1issuing the command GFFD4:4.

18

Y LA
.........................

Currently this last command can only bde used when operating

[on the iSBC 86/12A which is labeled #1, as it is the only

computer with an EPROM that contains the cold start loader
for the budble memory. The source code for this program,
wvhich vas developed by Hicklin and Neufeld, can be found in
Appendix D of Reference 2.

This thesis uses the dubble memory to initially bdoot
the system, Therefore, a new cold start loader program or
CP/M system 1loader program did zot have to be developed.
All that s required to change the operating syster that
vill be loaded 1s to place a new CP/M system (CPM.SYS) on
the budbble memory storage device.

The 1loader program placed on tracks @ and 1 of the
budbble memory used for loading the CP/M operating system is
entitled MBSCLDR.CMD. This file is created dy following the
steps 1indicated in Figure 2.2 utilizing MEE@OBICS .AE6 as the
source file with the loader conditional assembly switch set

to true.

D. DISK PARAMETER TABLE
The CP/M-86 operating system as marketed by Digital

Research 1s considered a table driven system since all

characteristics for each I/0 device is placed in & tabdble

called the Disk Parameter Table which can handle up to

RO AA

sixteen separate devices. This table defines the 1logical

organization of the physical storage media for tane BDOS file

e

management functions and must bde included in every RIOS.

16

P PP U

A disk definition statement 1is required for each
physical device and consists of a sequence of wvords which
define the characteristics of a device. Tigure 2.3 shovs
the format of a disk definition statement. These statements

are then used to generate the Disk Parameter Tadle by

executing the utility program entitled GENDEP.CMD [Ref 6,

P.72]. The file created dby this program must be included in

DISK DEF: dmn, fsc, lsc, [skf], dls, dir, cks, ofs, (@]

vhere

dn is the logical disk number (@ to 15)

fsc is the first physical sector number (3 or 1)

1sc 1s the last logical 128 byte sector number

skf 1s the optional skew factor

bls is the data allocation bdlock size

dsk 1s the disk size in bls units

dir is the number of directory entries

cks is the number of checked directory entries

ofs is the track offset to logical track @
(normally 2 as track @ and 1 contain the loader)

(8] Ls the optional 1.4 version compatidility flag

X Figure 2.3

Format of Disk Definition statement

- the BIOS using an "include” statement. The file which
contains the disk definition statements for this thesis 1is

labeled CPMMAST.DEF and used to generate a Disk Parameter

X A o db e gun g i

characteristics for the device must bYe Xxnown. This

Table which 1is 1located in the file <called CPMMAST.LIB.
: These two files can bde found in Appendices G and H.
]
5 To create a disk definition statement for the tadle, the
b

! information is usually located in the technical manuals for

20

t:"-‘_..--\._-,_-_. . PR A.»._,-.,,_.-........,._--_._-e----‘-.---_._J

.......
...

the given device. For example, the disk definition
$ statement used for the REMEXI ¥Winchester hard disk wvas:

2 DISKDEF 3,1,156,0,16384,255,128,0,1.

The first 3" indicates that the hard disk is CP/M’s
logical drive number "3" and can bde accessed via the “D:”
command from within CP/M.

The next two numbers correspond to the first and last
logical sector numbers for the Winchester nard disk as seen
by CP/M. The actual physical sectors for the hard disk are
numbdered from 1 to 39, each coataining 512 -bytes. Since
CP/M requires the number of logical 12& bdyte sectors, 39 is
multiplied by 4 to produce 156 logical sectors of 128 bytes.
The actual mapping from the logical to the physical sectors
is accomplished in the bdlocking and dedblocking subdbroutines
located in the code for the REMEX hard disk (RXBEARD.AS6) and
is described in more detail in the Chapter IV,

The REMEX technical manual does not indicate what the
most effectlive skew factor is, thus zero was chosen because
it wvas required by the dlocking and debdblocking routines.
However, an optimal skew ~factor may be determined
experimentally when the REMEX hard disk is used to emulate
the “signal processor” of the AEGIS system. If so, the
blocking/dedlocking routine will have to bde modified at that

time.

1 21

PRl NI T i At T St S S S R A N e A e
...

.....

The “bls” parameter specifies the numder of bytes
allocated to each data bdlock. This numbder can bde 1224,
2048, 4096, 8192, or 16,384. ‘When larger bdlock sizes are
used, each directory entry can address more data. This
reduces thé amount of work that the BIOS must do, resulting
in reduced system response time. Therefore, a bdlock size of
16,384 was chosen.

The "dsk” specifies the total disk size in terms of data
blocks. It is derived by dividing the total bdyte capacity
of the disk by the data block size. In this implementation,
the Winchester disk contains approximately 20 megabytes of
data storage which {s subdivided Detween four separate
neads. Thus 4,193,280 bytes are allocated to the "D:" drive
and thils f%gure is divided by 16,384 to produce 28% data
blocks.

The next figure, 12€, indicates the number of directory
entries that are permitted on this drive.

The “cks” term determines the number of directory items
to bYe checked on each directory scarn and is primarily used
for detecting changed disks during system operations. As
the winchester disk is permanently mounted, a value oi zero
was chosen for this parameter.

ine “ofs” value determines the number of tracks to be
skipped wha2n acca2ssing the disk. In essence, it reserves
tracks for permanent storage. Tracz 2 1s reserved sizace the

Remex requires it for internal system use and errors wiil

22

e

. e .
LY

occur if an attempt 1s made to access it. On a floppy disk,
this - value is usually two as tracks @ and 1 are normally

reserved for the loader program.

E. THE STANDARD BIOS
The BIOS for CP/M-86 always begins at an offset of 2500
hex from the beginning of the CP/M-86 operating system. At
é this location are twenty-one entry points used by the CCP
2 and the BDOS to gainm access to the BIOS functions. These
b entry points form a jump vector to otier subroutices in the
BIOS which contain the necessary code to interface with each

hardware device.

There are three types of functions in the BIOS: system
initialization/reinitalization, simple character 1I/C ard
disk 1I/0. Several of these functions are normally not
implemented in most microcomputer systems, while others
require extensive and quite different code 1implementations
for each separate device. The BIOS also contains the Disk
Parameter Tables which represent the physical description of
the disk drives. Finally, 1located at the end of the BIJS,
there 1is a scratchpad area for certain BDOS operations.

Figure 2.4 shows the memory map of tme ZIOS.

In order to simply access a diskette, several furctions
located within the BICS may have to be performed. For
. example, to access the directory nf a diskette, the 3RDOS
will require the following functlions to be performed by the

B3I0S: SELDSK, HOME, SETTRX, SETSEC, SETDMA, SxTD™AB and

T Ty .

23

LEh L e

A

B e Ry Yooy I PRI S P R AL LTI RGOS TR T T L) "-\

N N N N AN AN

s

0
M

A
s _x

s

e ¢s, DS, BS, SS:
= CONSOLE COMMAND
R PROCESSOR
| P
9! BASIC DISK OPERATING
- SYSTIM

CS + 25008: B10S JUMP VECTOR

CS + 253FH:
BIOS SUBROUTINES

- N M — - g e - G v

DISK PARAMETER
TABLES

UNINITIALIZED
SCRATCE RAM

Figure 2.4
Memory Map of the Standard BIOS

READ. [Ref. 6: p.6€] For each function executed, the BIOS
will have to determine which physical device 1is being
accessed and then jump to or call the subroutine which

contains the code for that specific device. For example,

suppose a simple READ function is required by the BDOS. It
will initiate a call to the 3BIOS READ entry point wcich in

> -
»

turn will vector the call to the READ subroutine. Eere the
BIOS will determine which physical device corresponds to tae
Ei CP/M’s 1logical drive and then jump to tne appropriate code
to read data from that specific device. (See Figure 2.5)
This procedure is very logical and makes it easy for a

{; user to implement his specific device dependent

24

T —pp— o \ o L I - N
Dl e - N M M Ly b At s S Lt 5 i i "t i o o P e Y

St s ATt Tt ey L T T T R T T R AN A A T - s ag w o - v
- o Vet R P T S O NS N .',"‘-“--.-n".vr,..p.'.,‘..\.".!"-'AL'_\.'_*.L*.Z-_\L;:.!\-‘I '."-:‘.-:'.:‘.:'.s..:‘

cCcPp - .
j====> call to RBIOS to Read Device #2 -=)~—-
BDOS -——- '
Vd v ’
~ Y
|
! BIOS: jmp init
] Jmp write
-——=—=> JMP READ > ,
X i
Jmp wdoot '
]
el <= '
]
H init:
! code for initializing all devices
E ret
]
! write:
' code for writing to all devices
E ret
1
——-——==>~--READ:

determine device

jmp read device #1

JMP READ_DEVICE #2 —-==)-===—-
Jmp read_device #3 |

i

< <-

read_device #1:
code for reading device #1
ret

——— - - -

READ_DEVICE #2:
CODE FOR READING DEVICE #2

A"

RET

read_device #3
code for reading device #3

ret

Figure 2.5
Path of CCP or BDOS Function
Call i{n the Standard BIOS

[th:a

MLV WA G W WL W Sy . —n s B A A

- - ~ M
D T C I G o i P Y P T T P
A D T e e S S T o e S P T
X - R T A L P A P

code. Howvever, problems arise if tne hardware configuration
must be altered. Everytime the configuration changes, the
code for each function in the BIOS must be rewritten. This
can be a time consuming task. In addition, assumptions made
concerning the 1mp1ementation of one configuraiion may lead
to errors in another configuration should those assumptions
no longer be valid. These errors may alsd be extremely
difficult to locate ard correct since all code s wusually
intermized and the exact order that the CCP and BDOS call

various functions in the BIOS 1s not known to the user.

F. BIOS ALTERATION

Hicklin and Neufeld attempted to develop a table driven
BIOS. In a manner of speaxing they succeeded. However, the
only .devices that are permitted in their device table are
additional Intel MDS double density disk drive systers and
MBB-80 Dbubdle memory storage devices. Attempting 1o
integrate anotaer device such as tkhe REMEX Data Warehouse,
leads to the same problems which were mentioned earlier.

To alleviate these problems, a completely table-driven

BIOS was developed in which only minor and straight-forward
changes would have to be made in order to change hardware

configurations. This was accomplished by extracting out all

!
g

v
v
g
-

E the device-dependent functions of the 2I0S {into separate

v files for each unique device. Specifically, these functions

were INIT, SELDSK, HOME, SELTRK, SELSEC, READ, and «RITE.

i g.v

Functions such as WBOOT are not dependent upon a particular

26

Lo oL e P el ot Al R an i 4

r—'—':
3
t

device and do not have to bde extracted, while functions such
as PUNCH and READER are not implemented.

In the hardware configuration for this thesis, three
separate files wvere required. These were MBEB@DSK.A86,
RXFLOP .A86, RXHARD.A86. These files each contain the
necessary code to execute the seven device-specific

functions for the MBB-53 bdudbdle storage device, the Remex

]

]
¢s, DS, BS, SS: {
CONSOLE COMMAND |
PROCESSOR '

& H

BASIC DISK OPERATING |
SYSTEM i

]

Cs + 25004: BIOS JUMP VECTCR

CS + 253FH:
BIOS SUBROUTINES

i

i

i

1

i

i

[}

i

i

1

i

i

!
INCLUDE LABEL TA3LES |
INCLUDE DEVICEZ #1 i
INCLUDE DEVICE #2]
INCLUDE DEVICE #3 \
1

i

I

i

]

|

{

|

|

i

i

I

i

i

]

1

i

i

i

INCLUDE DEVICE #16

DISK PARAMETER
TABLES

UNINITIALIZZD
SCRATCH RAM

- T s o o e Y T o D o e e N S . i (o Y D D o G D D ey ey D D T S e e o D M - Y T -

Figure 2.6
Memory Map of the Table-Driven BICS

Mt S i ons e M Cona Cam I 4

27

M A A et Tt

>

T e T T el T T

~

r
r.
.

...

floppy disk drives, and the Remex hard disk, respectively.
An additional file, CPMMAST.CFG, is also novw required. It
contains tables of labels which correspond to the physical
memory location of the seven functions for each device used
in a given hardwvare configuration. The ladel tables used in
this thesis can be found in Appendix C. Figure 2.6 shows
the memory map of the tadble driven BIOS. In ;he BIOS, thae
assembly language irstruction “include” is used to
incorporate the 1labdbel tables and device-specific code for
the seven functions {nto the system. .

For example, when a call is made to read Device #2 from
the CCP or the BDOS, the call is vectored as was done before
through the jump vector to the READ sudbroutine of the 3IOS.
Sowever, after determining tae physical device to »be
accessed, instead of jumping directly to the desired code, a
call 1is now mad= to the device specific code located in the
included device’s A6 file via the Read Table which 1is
located in the file CPMMAST.CFG. The final address of the
call 1s determined by the offset of device number into the
Read-Table, which provides the labdel or 16-bit address of
the actual code needed for reading Device #2. (See Figure

2.7,

To alter the hardware configuration, only oze line 1in
the 3I0S must now be changed for each device, that being the
corresponding “include” statement. The other changes which

are required, are located in the label tables and the Disx

2E

L

a0

v

[Rarae S A sn 4h G Al 00 48 bl 2¢ o
L et P

Vo Ty —

R
R .

M

CCP & BDOS ~-—=> call to BIOS to Read Device #2 ~—D——-

< <

BIOS: Jmp init
Jmp vrite

——--=> JMP READ -~—-)>-——-—

Jﬁp whoot

!
]
!
!
N\ v
! !
{
|
™

o
]
|

A
!

init:
call ‘to init label table .
ret

write:
call to write label table
ret

”
-
(=

e

determine device

ret

CALL READ_TABLE [offset device #2] -—=D=——-

|
1
[}
\
f
[}
|
\
I
i
]
H
]
|

- e - — ———— o - l

<
INCLUDE LABEL TABLE
init_tabdle:
labels
write table:
ladvels
READ_TABLE:
read device #1

A

---=——=)> —=—=—~—-—-READ_DEVICE #2-—->----

read_device #3

< o <

N
include device #1
code for seven device specific functions

INCLUDE DEVICE #2
init_device #2
code for initializing Device #2
write _device #2
code for writing to Device #2

>e- READ_DEVICE #2
CODE FOR READING DEVICE #2

Figure 2.7
Path of CC? or BDOS Function
Call in Table-Driven BICS

29

A A Al Al bl Bt s It I Sk B AR N B
AN AT At A et ate TN e L.~

LR R W R TR R e, L ee—" L B R T R g e e o
................................

[e 4 S
-

Parameter Tables. For each device included in the 3IOS,
there must bYe a corresponding labdel for an abstracted
function. These 1labels must be correctly ordered and
properly identified. Naturally, when hardware is
implemented into the system for the first time, the initial
code for performing the seven device-specific functlions must
be written. But once written, the new device can be added
or deleted from the operating system with very 1little

effort. The fact that all code for each device is completely

v >
B e Ty
. STt V.
KR . .
P Y B

independent of other devices, aids in detecting, 1locating
and correcting errors. Actual experience has shown that

once the code for a device has bdeen written, goling from one

nardware configuration to another can be accomplished in

under tvently minutes.

LA v ikt Sy
cL . A e .
' AL Lo

PP ——
: a) ‘. .

Y"\
-a .

vy

30

LJ. FIREN ettt et e . - — e o o o

A. GENERAL HARDWARE CONFIGURATION

The bhardwvare configuration wutilized 1in
consists of four 1SBC 86/12A Single Board Computers, a MBB-

8¢ Bubbl-Board, a 32K byte common memory board, and the

REMEX Data VWarehouse memory storage device

Interface Card Assembly. The components are

compatible and were placed in an 1CS-8@ Industrial Chassis

for system operation. PFigure 3.1 depicts

hardware configuration. Table 3.1 describes the logical-to-

physical mapping Ydetween the CP/M representation of the

system and the actual physical hardware.

with Multidus

| 32K COMMON ! ! BUBBLE ! ! REMEX !
! MEMCRY ! | MEMORY ! ! INTERFACE !
11! - ----TT--- 11
[} 11 []
1t [1)
[} [] 11
| MULTI- 3US !
T [] T] l_--- 11 ‘I-T~-
() [] 11 []
] [] [] [|
11 () [] t
i is¢3 | | isc3 | | 4sC3 | ! isC® |
| 86/124 | | 867124 | | €6/12A | | 86/12A |
Figure 3.1

Physical Eardware Configuration

31

this thesis

all Multidus

the physical

Pastc 2. o om s)
- - ’ i o .

SR AA A SIS A0\ g ey SR o 2l

LN 2 ou ane g
-

Table 3.1
Logical Eardware Configuration

CP/M’s Logical | Actual | Actual
Device Numbver ! | Physical Device

: |
]]
']
| |
E ¢ E : i MBB-8@¢ Bubble Memory :
i V<]

' 1 E : E Remex Floppy Disk Drive E
! 1= 1 t
' 2 E C: i Remex Floppy Disk Drive !
: e -1 |
d 3 ' : ! Remex Bard Disk Head 2 |
' -] i
i 4 i E: ! Remex Hard Diskx Head 1 E
1 - ittt e = T 1
' 5 ! : { Remex Hard Disk Head 2 |
]) - —— |]
1 i] .]
h 6 i G: { Remex Hard Disk Head 3 !

B. INTEL 86/12A SINGLE BCARD COMPUTER

The Int2l 1SBC 86/12A Single Board Computer is a complete
computer system constructed entirely ou a single Multibus-
compatible circult board. It is designed to operate as a
standalone system, a bdus master in a single dus master
system, or a bus master in a multiple bus master system.
The board itself contains an Intel €06 16-bit
microprocessor, 64K bytes of dynamic RAM memory, 16K bdytes
of EPROM memory, bdoth serial and parallel I/0 ports, a
programmadble timer and interrupt controller, and a Multidus
interface controller.

Onboard RAM memory is located detween @ and dfffFfh and
the EPROM Dbdetween FFC20h and FFFFFh within the 1-Megabdyte

address space available to the Intel &¢E6 microprocessor.

32

B e O A AN 5
g L . ORI .
s s e P AT]

M

a &

o AEn o m Sun U A A ek b ot At by
. P . . o

T

—

If the local processor attempts to address memory outside of
these ranges, a Multibus access will result. The ondoard
RAM is dual-ported, and therefore is accessible to the local
processor via an internal bdus, as well as, to any external
Multibus master via the Multidus. In this latter case, the
onboard RAM 1{s operating in the RAM-Slave mode. Any
collisions that result when the RAM 1is simultaneoﬁsly
accessed by the local CPU and the Multibus are resolved by
hardware in favor of the local CPU.

While the 1location of RAM relative to the 1local
processor 1is fixed between @ and FFFFh, it can be switch-
and- jumper configured into aay 128K segment of the 1-
Megabyte address space relative to the Multibus. In
addition, mnome or all of the onboard RAM, in segments of
16Kk, may be reserved strictly for local CPU use. Since the
major odjective of this implementation was to produce a
CP/M~-based multicomputer system 1in wvhich each computer
operates totally independently of the others, each 1iSBC
86/12A was configured to make all of the onboard RAM

inaccesidle to the Multidus.

C. MBB-80 3UBBLE MEMORY STORAGE DEVICE
1. Geperal Description
The M3B-80 Bubbl-Board is a complete dubdble memory
storage device designed to be compatible with all 8- and 16-
bit microcomputers that utilize Intel’s Multidus

architecture, The 9doard consists of eight (8, TI32223

33

1
4
[
]
¢
D
A
4
A

__________ e N R S A L ey D — T ————

..............

dbubble devices and the necessary control, bduffering, and
Multidbus interface logic. The host CPU interfaces with the
MBB-€0 <controller via memory-mapped 1I1/0 utilizing any

sixteen (16) consecutive user-defined addresses within the

-Y:T’va*v——vv EECI
DOATERTMEE LN S - e e
. ‘ .
b
K
',
"

1-Megabyte sSystem address space. These sixteen (16)
addresses correspond to the sixteen (16) registers ir the
bubble memory controller that are utilized in support of the

following controller primitive commands:

Fill Buffer Read Multiple Pages
Empty Buffer Initialize

Write Single Page Read Status

Read Single Page Enable/Disadble Interupts
Write Multiple Pages Reset

Read and write operations with the MBB-8J are
accomplished by specifying a particular bubdle device number
and page number (18 bdytes) to read from or write to. The
MB3-8¢ <controller provides the ability to ~ead or write in
either a single- or multiple-page mode dy using a bdyte-bvy-
byte transfer into a FIFO bduffer located on the MBB-8J bdoard

itself. The single-page mode can be implemented in a

straight-fowarq manner without the need for addtional

L
-
"
V-
r.
»

supporting hardware or software, However, the multiple-page

¥ v
-

mode requires that certain timing requirements must bde
adhered to by the host CPU when communicating with the MBB-

L &¢ controller. During a data transfer, the host must

34

0 T T

j—v'
.

T
i
4
3
p
}
1
p

D S S S TSN S P S S Y S S

TSN T L SARNERERIN

respond to {interrupts generated by the MBB-89 every 160
microseconds which signal the completed transfer of one byte
of information in a multi-byte transfer. These {nterrupts
can be generated on the Multibus and handled bdy the
Programmable Interupt Controller (PIC), or the host CPU can
poll the controller interrupt register (offset 2fh) to
determine 1if an interrupt has occurred. The' single~ and
multi-page polled modes wvere implemented by Hicklin and
Neufeld [Ref. 2]. The final version of their system
utilized the multi-page polled mode and tais vas
subsequently employed in this implementation.
3. CP/M-86 Compatibdility

In order to effect a data transfer, the MBB-80
controller must bYe given a device and initial page number to
locate the position where the data will be read from or
written to. On the other hand, CP/M uses a track and sector
number to access data during a disk access. Therefore, a
mapping must be made from the CP/M tracg and sector number
to MBB-83 device and page numbers if the CP?/M operating
system is going to be used to access data on the MBB-80
Bubbl-Board. Hicklin and Neafeld [Ref. 2] decided to use
the bubble page numder as the smallest addressabdle unit for
each 4d4ata transfer and the bdasis for the MBB-E¢ memory
organization. Since each physical dubddble page is eighteen
(18) bytes long, a logical CP/M sector of 128 bdytes consists
of eight (8) bubble pages of which the last sixteen (16,

Y A CN Sy Y WO G W G Y VST S R . Sy

..........................

...

.........................

bytes on the 1last page are not used (i.e. wasted).
Therefore, the 649 bubble pages per device are mapped- into
80 logical CP/M sectors'per device. Futhermore, it was
decided that each MBB-80 "track” would comsist of 26 sectors
which corresponds to the numder of sectors per track omn a
normally—-formatted single-density floppy d4isk. Another
design decision was that all MBB-82¢ tracks would be
completely contained on a sirgle bdudbble device. Since there
are 26 CP/M sectors per track and 8@ sectors per bubble
device, this results in three (3) tracks per bubddle device
with two (2) sectors not used or wasted on each device.
Therefore, based on these design decisions, tae total
capacity of the MBB-8@ Bubbl~Board 1is 78K bytes on 24 tracks
(6 devices x 3 tracks per device) with a total of l4x bytes
wasted. Hicklin and Neufeld’s final memory organization for
the MBB-80 is shown in Figure 3.2. Dispite its
inefficiency, this configuration was adopted for this
implementation since the principal function of the Dbubbdle
memory 1is to provide a conveniznt method of dooting CP/M-86
on our master iSBC 86/12A. Hammond [Ref. 3] has shown that
there is a more efficient way to organize the MBB-80 in his
wors on utilizing the MBB-80 as a snared resource in a
multi-microcomputer system, However, this would have
necessitated the design ani implementation of a new

bootstrap loader vprogram to be placed in the 1SBC 56/12A

o8 T - - N T
-
_....
R
s
k.)
. [
&
L % e o = e e e e e e e e e i e e S T R o e e e
[] | | 1} H " i
. o ! Lol 1w Nl (s I TIN 63)
X = [o - oN i L) [oV T I o V] [a¥] oN Ny)) - -, v
: L] [N | [[] N [} (4¥]] |
p ! - [1] [9 [3 | | & i s« (3 (3 I (5 e U ke | &
P« ') (3] ol ol L i ol o) o v oholo “ oll o|] ©
xﬁ o -t = | =} [3] I 0 o - (3] = 0 o= > (&) PN I
& =Y > o vl o _c_.c % © oh ol o o ol ol o
5 E] vl ol o ol ol o) ohwol o L ol vl o
Ly wt (=] wn wnv | [3] lnnlowm|lon [nwiltwmlwv [l vl on =}
' i] 0 i { o
x - | oo o0 a0 oo | " e oo ae oo 7]] s o0 ae oo]] -t
'“Q- u T T TS T ST T T T A e T T e T T ’.M
rﬂ.. (3] . Y

wd -~
b ~ . «
b 5 -t o
f.w_ [=] . "8
¥ b S
. -t .
s n T e et B &
. | | [} n | [- @
S e [} “6:7 o1 : o0 < | it e] N
" < o - ol NNl N Vol NTe RN IOl | -l @ o
g — 2] ”] <+ [i Te] 0 T
N © o L o) (U0 I I T (T I T I ~ ©
2 o o ofj ol M Il ol o) © A o ol ol M ol o]l o e
wt e o | (3} 1 0 - (3] ol o] ol (33 ol e » v
) - o > ot ol o loh ol o o ohol ol o ol ol o -~
|- ad o vl ol o) lobtoi o £ ol ol @i 3 vl ol o Bre
- (=1 " n i [3] lvnhomniw () nininl [3 nihounlwv L
» o i i il i i il o
r. « [1] [} | oo oo oo o0] /] I oo oo oo 0o n] I o0 oo e { "]] wd
o J e e e e e e e T e e e e e S S ST M S oS —S S s S S = Y
3 . .
P . - A
b © (=] =
- o - e e e e i o e S e e o o T S o P i e e o e w
\ o &] [} | | } " | | [
w.. [~} [O n e QD N S [+ o I | e) [~ m
¥ » [\ -t N NN 3V} [To RN e ['¢] o 0o e 4] m
. n [~] [\ /] -t] N H 3
N o (Y o o e 2 L = =N [g Il Ko L
. = [=1 (3] o [~ M ol o o M ol © [M oW o (=]
a -t o) e (3] O e ge 3 Ll ol I 3] O N e | e
) o ~ > ol o o ool o o ol ol o o Ol ol o
L = [[V] [1) Q [Qoo [V] [N oo Q L] [1IN B T] @
- o .m (=) niw 2] 7] ““ nilwn [172) n v lwvn (2] 72 ““ 0| wn
T... b = os o0 88 g [] ee e 9s se 1] oo s oe o "
* o " L L e e e e L e e e ———— s e e ——— ————
v‘. o ol
. a o
. = L
g
»
.
b

AR O NP (DR L RN

la & aa m A m m A .m oamla .

37

D. REMEX DATA WAREHOUSE
1. General Description

The REMEX Data Warehouse is a mass storage memory
unit containing a <fixed Winchester disk drive, two (2)
flexible diskette drives (single- or double-sided), and a
microprocessor controller that services all drives. The
memory capacity of the fixed disk is approximately 20
megabytes and the flexible diszettes can be formatted to
contain up to two (2) megadytes of storage. IBEM standard FM
encoding 1s wused for the single density floppy diskette
while MFM encoding {is utilized for the doubdle density
diskette and the hard disk.

The fixed disk is a 14 inch enclosed disk utilizing
Winchester technology and 1is composed of two recording
surfaces. Each surface has two (2) recording heads which
can each access a total of 213 tracks. Each track can

contain up to 24K bdytes of information. However, oaly 210

tracks can be referenced for normal read/write operations.

The bhard disk sector size is switch-selectable to either
128, 256, 512, or 1224 bdytes per sector. The total storage

capacity for the varlous sector sizes is shown in Table

r
A
r
3

3.2. In addition, the floppy diskette controllers are also

switch~selectable to handle either single or doudble densit

P3P R i e Bt N -

S8

...

Table 3.2
REMEX Hard Disk Sector Selections

| Sector Size | Sectors/Track | Capacity |
i 128 | 104 | 10.7M bdytes |
' 256 : 67 | 14.4M bytes |
L s12 | 39 | 16.8M byte;--{-
! 1024 ! 21 ! 18.1M bytes |

The REMEX Data Warehouse (RDW) 1is designed to

e R

transfer all data and command structures to and from the
bost computer via direct memory access (DMA). To initiate a

RDW operation, the host computer builds a command packet

T

within 4its 1local memory. This packet contains all the

information necessary to effect an RDW operation. The host

then sends the address of the command packet to the kKDW via
an interface doard utilizing programmed I1/0. When the RDW

is ready to accept packets, 1t inputs the command packet via

DMA, performs the required function, and transfers any data

4

' via DMA. When tke function is complete, the aDW indicates
l

: this by noting it in the command packet status word or by
E‘ Zenerating an interrupt on the Multidus. Packets <can be

s queued in the RDW up to a maximum of eight.
Some other important features of the RDW include:

-- Dynamic data dufferiag (2K x 16 0oit bduffer)

39

allows a continuous transfer under varying CPU
conditions.

~- Dynamic buffer protects against data overrun and
underrun preventing loss of data without host
computer intervention.

~—- Allows data transfers in large bdlocks of up to
64k words with a single command. Heads are
automatically advanced as necessary.

~-- Automatically seeks to track(s) required 1in
command packet.

—-= Permits chaining packets together in
noncontinuous memory.

-- Ability to format entire disk with a single
command .

--Automatic verification and assignment of

alternate tracks to cover bad tracks.

Crezanjization

a)
(oY

2. Command

([
(124

ck

The bYasic structure of the command packet is shown
in Figure 3.3. Word @ is composed of a modifiers section, a
function code block , aad a logical unit section. The
function code dlock specifies which of the six (6)
particular REMEX functions 1s to be performed. These
functions are Read, V¥rite, Write ID and Record, Copy,

Format, and Maintenance.

4@

S SR

Bit Numbder
15 ' 8 7 43 2

word O

Modifiers d Function | Logical Unit |

! Status Word d

NN e

: Figure 3.3
ﬁ ‘ Command Packet Description

A program in the RDW interprets the function number

and determines how many words are required for each specific
command packet. The modifiers section contains information
on packet ckhaining, program control interrupts, disadbling of
error routines and an "end” marker which specifies a single
packet or the last packet in a packet string. The logical
unit can be either 4, 1, or 2. A zero always correspoands to
the hard disk. Jowever, the floppy diskette drive can be
operator-configured to respond to either logical unit numbdber
1 or 2. This i1s accomplished by the LCevice Logical Unit
Switch located on the front panel of the RDW.

The status word {s divided 1into the least
significant bits (2-7) and the most significant bits (E-15).

Back of the 1least significant bits, when set to 1),

41

]

e

vd‘ ey

(g v
_".""
\

(N A Mie st umun 2

..... e

.......................

. Table 3.3
REMEX Error Codes

! Bit No.

Description i

Normal Completion ;

Not Assigned

Controller BError

Drive Error i

CRC Error '

Illegal Packet

Bad Track During Format

Not Assigned !

represects a particular status which is indicated in

3.5

Bits 8- 15 represent the hex code that corresponds

Table

to

the =2rror definitions given in Table I-6 of Reference 7.

Words 2

through N are function dependent and the

number of words per command packet varies widely bdetween RDW

operations.

In the version of CP/M developed in this thesis,

only the Read/Write function are implemented and are used to

access and transfer data. However, additional wutility
programs were written which utilize the other functions to
format the hard disk (RXPORMAT.CMD) and to execute the
ouilt-in maintenance programs (RXMAINT.CMD) of the RDV.

The format of the Read/Write packet is shown 1in
Figure 3.4. The description of these two overations s
identical except that in a read operation a one {1; {is

42

‘_:v H oA g

i V‘.......
L . PRI
Sttt

Bit Numbder
15 ’ 8" ’ 4 3 0

Word @ ! Modifiers ! Function | Unit |

] Status Word]

! Track Number |

-

| Head Number ! Sector Number !

' Memory Address of Data (16-bit) f

i] Ext Memory Addr Bits !

- -

! Transfer Word Count (# of 16-dit words) |

o U ¢ LN -

Flgure 3.4
REMEX Read/Write Packet
placed in the <function code dlock of packet word 3 and for
a vwrite operation a two (2) is used. Both operations are
permitted in bdlocks of up to 64X words. Any head switching
or advancing which may be required 1s automatically
performed Yy the RDW disk controller.

RDW track aumders are assigned from 1 to 218 for
normal data transfer operations. Track 9 is always reserved
for a 1loader or system program and can not d»e addressed
during 4 normal read or write operation without generating
an error. Presently, the hard disk is formatted for 512
bytes per sector which corresponds to 39 sectors per track.
Head numbders for tne four RDW heads run from 4 through 3.
Tata addresses are a 24-bit representation of the 20-bit
address structure supported by the iS3C 86/12A and Multibdus

architecture. The transfer word count is the number of 16—

43

.............................

................................

bit words that are to be tramsferred. For accessing the
hard disk, a transfer word count of 1¢6h was placed in the
packet duilt dy CP/M. This figure corresponds to a single
sector (512 bytes) or 256 16-bit words on the hard disk,
which 1s equivalent to the CP/M-86 Operating System view of
512 8-bit words.
3. Multibus Interface Card Assemdly

The command packets are sent to the RDW via a
Multibus Interface Card Assembly. The interface contalns
all the necessary buffers, registers and control 1logic
required for the transfer of data, status, addresses and
commands between the REMEX Data Warehouse and the {53C
86/12A Single Board Computer. Tne interface operates in both
a programmed I/0 mode and a DMA mode. All data, status, and
commrands are transferred by DMA, while packet addresses and
the interface Command/Status information are transferred via
programmed I/0. During these transfers, the Multibus
Interface acts as a bus master in the DMA mode and as a bus
slave in the programmed I1/0 mode [Ref. 8&]. Hegisters are
provided for data, packet address holding, and DMA
addresses. A DMA address counter (20 o5its) allows memory
addressing of up to 1-Megabyte. Control logic for DMA, Ddus
timing, interrupt control and device address selection |is
also provided. Selection switches are available to alter

the interface base address, interrurt priority level, and the

44

s .
Y <n'|'-v T -—ruv Ao AMa S Lang e ~ ——
PR SR A N W B PR R]

rﬁ"rr"vv‘

"

MMM

T T vy

RS B0 /R S 00 S

......

«

.......

DR T L T e T P T A

DMA throttle which governs how long the interface must wait
between DMA transfers.

In the programmed I/0 mode of operation, the
Multibus Inteface responds only to I,0 port addresses.
Switches, as mentioned adbove, are used to set the Ddase
interface port address. The standard addresses for the
Command/Status Register are port address ' d')] (least
significant bdyte) and port address 271 (most significant
byte). The standard addresses for tae Packet/DMA Register
are port addreses 3272 and 273. A more thorough description
of the contents of these registers is given in Table 3-2 of
Reference 7.

The IMA Throttle Select 1s used to select the number
of Multidbus accesses that must be completed between
consecutive DMA transfers by the Multibus Interface. A
selectable range of 2-15 transfers 1s provided. The standard
is 1 host Multibus cycle between interface DMA cycles. This
is contrary to the explanation given in Section 2.3.3 of
Reference 7. In this section, the DMA throttle is presented
in terms of "numbder of processor cyles instead of Multidus
accesses.

4. (ommapd Packet Izecution

To execute an operation contained in a command
packet, the host computer must first test the Packet Address
Ready Flag (port 97@) which indicates whether the RDVW 1{is

ready to accept and process command packets. If tahls flag

is set (1), the host loads the extended address bits (bits

17-2¢) of the command packet 1into the Command /Status

H

L

; Register (port a70). Then the 1least sigaificant bdyte
followed by the most significant byte of the 16-bit address
E of the command packet must be loaded into tae Packet/DMA
,I Register (ports @72 and 473 respectively). This sequence
must be followed exactly because once the most significant
L b>yte 1s loaded into port 273, the interface board signals
!] the RDW that the address is complete and ready to be
|

transferred.

Upon receiving this signal, the RDW will read the

address which was placed in the ports of the interface
board, fetch the command packet located at that address, and
perform the operation specified in the function code Dbdlock

of the packet. #hen the operation is complete, an eantry is

made into the commard packet status word (word @) indicating

* the success or faillure of the operation.

E. ICS-80 INDUSTRIAL CHASSIS
The 1CS-8d Iadustrial Chassis consists of four (4. four-

slot {SBC 504/614 Cardcages, four fans, a power supply, a

Py

control panel and a 19" RETMA (Radio-Electronics-Television
Manufacturers Association) -compatidle chassis. The control

panel <consists of an on/off/locs key switch, interrupt and

RAe i (4 ko o e o

reset pushbuttons, and halt/pwr on/rum LED’s.
The development system was designed to support a modular

E microcomputer-based system, Any combipnation of plug-in

46

...........................

modules which are- Multibus-compatible may bde installed
including single bdoard computers, memory expansion boards
and peripheral interface boards. The 15BC 604 Cardcage can
accomodate four (4) 1SBC circuit boards and has an external
plug which allows additional iSBC 614 Cardcages to be added
to the chassis. The laboratory system used in support of
this thesis 1s composed of a single 1SBC 624 Cardcage aad
three (3) 1SBC 614 Cardcages which allow a total of 16
circuit doard slots. These cardcages comprise a backplane
assembly that conforms to the Intel Multibus specifications
and provides slots for both Mutibpus master and slave boards.
The master slots are odd-numbered and the slave positions
are even-numbered for easy reference.

A master board is one which is capable of acquiring and

controlling the Multibus, while a slave board can only be

Y

referenced Yy commands on the Multidus (i1.e. memory
expansion boards). The 1CS-80 Chassis can be used with
raster boards operating 1in either a serial or parallel
priority resolution scheme. In the serial mode, Multibus

access contention is resolved dy the bdoard placement within

Gl A iaBaBAR e e oo

the cardcage. However, an external priority resolver

v

network 1{is required to implement the ©parallel opriority

scheme., 1In this implementation, a random priority network is

[gl o A g s g

used to arbitrate the coatentions for the Multidbus. Most
importantly, one of the abdove priority resolution schemes

{ must bde implemented or the interaction among the 1SBC Hjoards

47

...

in the cardcages will not be correct. For further

information consult References 9, 19, and 11.

.
d
Mo

-’

Cory Te,vwTe e e

-
A

P
X |

- -

A. INITIAL EFFORTS
1. Program Development 3ystem
During the 1initial stages of this thesis, it was
planned to expand the work done by Hicklin and Neufeld [Ref.

2] to incorporate the REMEX Data Warehouse memory storage

unit. They nad developed a reconfigurable “tadle-driven”
E CP/M-86 BIOS that supported the MBB-8@ Bubbl-Board and the
. Intel 1222 doubdle-density floppy disk coantroller. It was
' initlally believed that other I/0 peripheral devices could
be easily included in this BIQOS with a minimum of effort.

within the proposed development system, the MBB-83 would

serve as the principal storage medium for newly designed

programs and would provide an easy method of Yooting Bicklin
' and Neufeld”s CPM.SYS within the iC3-8@ chassis.

Bowever, this development strategy had several
deficiencies. Utilizing this hardware/operating system

conflguratior, program development would de limited to the

RS B SOt R RO

MDS or i1CS-E0 systems and the CPM-86 utility programs which
they supported. Presently, the only compatibdle text editor

available is the text editor distributed Yy Digital

v

Research, ED.CMD. This editor is very primitive, extremely

hard to use, and completely unsatisfactory for extensive

¥ V{'T"’"'ﬁ v

| IR o Jnm

e - e A A8 8t e et i mtalaa mla A m A a.am A —a M M A A em & _: & x. . = J

........
.............

program development. Therefore, an alternative development
system was required.

It was decided to use the WORDSTAR text editor on
the MP/M Multi-user System to create the needed softwvare

programs. This system provided several advantages over the

MDS system. First, WCRDSTAR offers functions which would

significantly increase productivity and allow errors to be

f guaickly corrected. Second, MP/M-compatible versions of ASM~
? €6 and GENCMD utilities would enable programs to be written,
:. assembled, corrected, and coaverted into executable CMD
é; files prior to their transfer to the bubble memory. Third,
i since the MP/M system is a multi-user system, it did not
i; present the availability problems associated with the
éi single—-user systems such as MLS.

Ultimately, this software development scheme also

proved to ©be unsatisfactory, as numerous steps nhad to be

taken to move an assembled program from the MP/M system to
the MBB-8€ board. Since only MP/M and MDS single density
diskettes were compatible, assembled programs first had to
be transferred from the MDS single density system to the MDS
doudble density system using the laboratory utility program
SDXFER.COM. This required that the MDS doudble density system
be configured with an Intel &@82 processor. Once the
program was transferred to a doudble density diskette, tae
MDS double density system had to be reconfigured for wuse

with the MBB-2Z bubdble board and aa 1SEC E6/12A. After

58

............. ‘a . ala

...............

oy RTR

SO £ SRR

M R

reconfiguring, the program could now be transferred from the
doudle density diskette to the buddble memory. At this point
the ﬁBB-eﬂ was physically moved to the 1CS-80 chassis.
Finally, the operating system could be loaded and the
program executed under DDT&6.

Besides being time consuming, the above process
monopolized much of the laboratory’s equipment. Thuas, if
the equipment needed to make the transfer was iz use,
program testing could not bve carried out. However,
initially, 1t was the only method available and therefore
bad to be employed.

2. Terify M3B-82 Operation

The objective of this section was to verify the
proper operation of the CPM.SYS developed by Eicklin and
Neufeld. The double density MDS system was configured with a
single 1SBC €6/12A (#1), the MBE-&¢ duhble memory, and the
1282 Floppy Disk Controller. The system was successfully
booted from the 957 Monitor ir accordance with the
procedures gslven ino Reference 11 bdy executing the command
GFFD4:¢. However, the budble memory could not bde accessed
asing any of the CP/M duilt-in commands. fter inspection
of the 3I0S, it was evident that the firal version of the
C2/M-€6 BIOS submitted did not support the MBB-£9.
Therefore, the CPM.SYS had to be reconstructed.

The files DKPRM.DEF and CCNFIG.DEF were first

checked to ensure that the desired hardware configuration

.......

was accurately reflected in the Disk Definition Tables, the
Disk Tabdles, and the Bubdble Tables. Once this was completed,
the file MBBIOS.A86 was reassembled and was then
concatenated with CPM.E86 using PIP.COM. The resulting aex

file was then converted to an executable CMD file and

renamed CPM,SYS.

pf To ensure that all possible errors were avoided
; prior to system initialization, t was decided to reformat
!' the MEB-Ed4. The program MBeOFMT.CMD was executed, insertinge

839¢h as the MBB-83 controller base address. Once

formatted, the CP/M loader program MRB8@LDR.CMD was placed on
tracks @ and 1 of the MBB-8¢ utilizing tne LDCOPY.CMD
utility. The reconstructed system was booted and functioned
normally.

3. Modificat he BIOS for Use in the 1CS-€2

[
[[o]

n of

tee

As envisioned 1in the program development process,
new programs would be transferred to the MDS double density
system using a labdoratory utility program. These programs
could then be placed oun the MBB-E9. The MBE-8£ would thnen

have to ©de physically moved to the 1CS-83 chassis. 3y

entering the command GFFD4:4, CP/M-86 could be dooted and
the programs executed under CP’M or TDT86.CMD. Zowever,
since the MB3-80 would be the sole memory storage device in
- the 1CS-82 chassis, a new modlfied 3I0S 1nad <o be

corstructed.

52

The changes that needed to dbe made were located {n
two ma jor areas of the BIOS. First, the file DEPRM.DEF which
contained the disk definition statemeats for each logical
CP/M disk drive had to changed. The number of logical
devices was changed to 1 and the disk definition statement
for the MBB-80 was entered as CP/M logical drive & (Drive
Az) indicating“fhat the MBE-8¢ was tae only "drive” in the
system. The other changes were made to the Disk and 3ubdbdle
Tables contained in the file CONFIG.DEF. Eicslin and
Neufeld had created these tadbles to identify whether CP/M
logical drive numbers where either MBB-8@ devices or 1232
controllers. These tables would support any hardware
configuration of MBB-8@°s and 1202 contollers up a total of

16 disk drives (maximum for CP/M). Eowever, other peripheral

'devices such as the REMEX Data wWarehouse could not be

supported as was initially velieved.

Once these change< nad been made, the BRICS was
reassembled and used to create a rew CPM.STIS which was
placed on the bduddble memory. It was subsequently tested and
it functioned normally.

4. REMEX Low-lLevel Routines

Concurrently with the worz oa the MBB-8¢, low—-level
read/write routines were written and executed wnich accessed
the REMEX Data Warehouse memory storage unit. This work was
accomplished on the 1CS-82 chassis usiag an 1S3C 86/12A

single bdoard computer and the REMEX Multibus Interface Card

N
(&)

" 0

...............

Assembly. At first only the most primitive operations were
verformed, since there was 1o permanent memory in the
system, Using thé S57 Mon;tor program, small programs were
executed to examine the various values contained in tae
interface status registers. Once the new MBB-80 CPM.SYS was
available, more comprehensive programs were writtemn which
could build command packets, transmit command paczet
addresses to the interface d»card, and checx the packet
status word for functlon completion. The dasic logic of tiae
read/write functions was discussed in greater detail 1in
Chapter 3 and the logic diagram is sanowh in Figure 4.1.

A command packet was built which would write a very
simple set of characters to a particular head, track, and
sector aumber of the REMEX rard disx or a trackx and sector
number on the floppy diskette. Using DDT&E6.CMD, the commana
packet was then altered to produce a read operation whica
would retrieve the previous message from the RDW and write
It to a selected wmemory address. LDTE6.CMD was also
extensively wused to monitor packet construction and memory
content. WwWith each successful transfer, larger blocks of

data were transferred uatil it was <corcluded that tne

operations were being correctly performed. Although some
progress was made, the program turn-arouand time resulting
from the lack of an adequate development system definitely

impeded further progress.

w
w»

i
[
]
k.
’v
3
1
-
r.
’-
i
r
.
L.

,"T‘"‘:Yr‘rrv‘v-_Tv

e e it Bt B S,

—— - o -

Ready Flag

]
---—--—)é Check Packet
E

{
)
/\
No /Is\
——==/ it \
\set?/
\ /
\/
i Yes

- T o v - -

3ulld Packet

1
1

- ——— -
-

{
]
Send Packet E
1

[
1

]
1

Check Status Word E(--------)
i

—— -

i
/\

N/

i No
/\
/1s\ No
/ it \-=======-=> Error
\ @12/

} i
[} 1
{ Operation Complete 5
{ - -

1 |

Figure 4.1
RD¥ Read/Write Logic

55

AR ™ VLA P X
1 . . . " . ot . . :-l.

r-rq. L aan o 4
. R

LGl Al i o Sar M I S s .
! i ! N A

—v,..-
-®.

M

S. Tadle-Driven BICS

The development mechaaism that had been used up to
this point was tedious and time-comsuming. The time
required to repair errors discovered while'working on the
iCS-8@0 was too excessive to support cohesive program
modification. It also decame evident that the concepts used
oy Hicklin and Neufeld in the development of their BIOS were
not sufficient to meet the odbjectives of this thesis.
Although it was presented as a model for a very flexible
system, the BIOS actually only supported MRE-8C Dbubdble
memories and 1282 floppy diskette controllers. Inclusion of
additional peripheral devices would have required major
modification to the 3I0S. Furthermore, even 1if these
modifications were made, each time a device was added or
deleted from the system, the code within the BIOJS for tiae
individual function calls would have had to be changed. The
many 1inconveniences of the program development procedure
coupled with the limitations of the Hicklin and Neufeld
approach 1in a varying hardware environment necessitated a
new BIOS design strategy.

Eammond [Ref. 3] had ideatified that certain device
specific code could be extracted from the core of the R®IOS
without affecting function operation. This was accomplished
%y indirectly vectoring EIQOS calls to the proper sudrcutires
via a taole of labels. Hammond had extracted the READ,

WRITE, and INIT BIOS functions and constructed the

56

.
R
A
'-
4
y.
;
b
2
-
b
3

;
3
'.
’.
-
v

appropriate tables 1in a separate file named CONFIG.DEF.

This file was then assembled with the BIOS by means of an
“include” statement.

Next, leat us examine the REAL function in greater

detail to see exactly how this BIOS works. Figure 4.2

contairs the code for the READ function inm the “core” BIOS
for a hardware configuration consisting of an 12¢1 TFloppy
Disk Controller.
read:
xor bx,bx
mov bl,unit
add bx,bx

call readtyl [bx]
ret

Figure 4.2
Table-Driven BI0OS Read Code

This ~controller supports‘ two floppy disg drives
which correspond to CP/M logical drives @ and 1. This
correspondence is set up in the Disk Definition Tables. Also
prior to the BDOS call to the 3BIOS READ function, the
desired drive number has been stored in a RIOS variable
called "unit”. The value of “unit” is first placed in the
"b1” register. Next, it is doudled since each label in the
read _table represents the 16-bit address of the device-
specific read functions. A call 1s now made to tae
read_table using the offset contained in the "bx” register.
This table eatry then indirectly addresses tne appropriate

subroutine for the desired "unit”. For example, if CP/M

57

PR SR Sy

o ﬁ‘—.“H

)

T T T YT
R A
'

logical drive 1 (B:) 1{is selected, the read call s
indirectly addressed to the subroutine label located at an
offset of two (2) in the read_tabdle. The read_tad®le 1is
shown 1in Flgure 4.3. Notice that since both CP/M 1logical
drives are floppy disk drives, the read call is vectored to

the same sudrnutine.

readtbl dw offset 12¢1_read
dw offset 1291_read

Figure 4.3
BIOS Read Tabdle

Through the use of a tadle-driven 3IOS, toe
configuration flexidility needed for this application could
be achieved. The use of the indirect call allows all device
specific code to be isolated in a single file. Therefore, a
separate file can be constructed for each unique peripheral
device and can be included in the BIOS by the use of the
"include” assembly command. An additional benefit of this
type of approach 1s that it allows for the systematic
addition or deletion of hardware devices to or from the
system without disturting the basic RIOS code.

The tabdle-driven concept also provided an improved
program develpment scheme and a more logical aprroach for
the implementation of the REMEX Data Warehpuse memory unic.
Fammond had previously written the code to suppor: the Iantel

{221 Floppy Disk Controller. A spare 12¢1 controller was

58

...

avalilable and was placed in the i1CS-89 chassis. V¥With a few
minor modifications to the BIOS, it was operational in a
very short time. Since both ALTOS and MDS single-density
diskettes were 'fully compatidle, programs could now be

written, assembled, and converted to executable code and

then bve taken directly to the 1CS-80 for execution. This
reduced the amount of time needed to correct errors or
modify a program and greatly facilitated code generation.
Because devices could bYe added to the B10S
1ndépendently. it was decided to utilize the 1221 floppy
fj disk drive as a developmerntal aid and to subsequently
implement the REMEX floppy disk first foilowed by the hard
disk. The MBB-80 would de substituted for the 12C1 once the

REMEX interface was completed. This implementation scheme

is explained in more detail in the following sectiorns.

3. INTERFACING THE REMEX DATA WAREEOTUSE

1. Floppy Disg Drive

- During the testing of the initial REMEX READ/WRITE
y. -

E‘ low-level routines, 1t was observed that the REMEX would
ET only intermittently corplete a packet operation. Wcen it
3; did not complete successfully, the program looped iafinitely
;" checking the packet status word (see Figure 4.1) for a value
4

8 other than a zero, 1indicating that the REMEX had either
f\ completed the operation or that an error had occurred. Wwken
3

El multiple packets were sent out on the Multidbus, completion
4

F_

& 59

&

T

-

4

b

ke oo R . L . -

-
i

codes vwvere occasionally returned in the command packet
status wvord. When DDT86 was used to trace through the Read
routine step by step, the same results were obtained.
However, this procedure did verify that command packets were
being constructed properly and that the packat address was
being transmitted to the Multidbus correctly.

Next, a Multidus Monitor Board was used to odbserve
the action on the Multibus and confirmed that all data was
correct. This 1led to speculation that either the interface
board was not transmitting the correct information to the
REMEX or the REMEX was not processing packets correctly once
it received the 1information from the 1interface ©bdoard.
However, further hardware testing revealed that both the
REMEX and the Interface were functioning normally.

The source of the probdlem was found more dy accident
than by design. Documentation [Ref. 8 : p. 2-4] indicated
that the Interface Assembly would wait from € to 15 host C2U
cycles between consecutive DMA operations. The exact number
of cycles can be jumper selectable by the DMA Throttle.
Therefore, polling the packet status word for a completion
code was thought to provide sufficient CPU cycles to allow
the process to continue. However, when the wiring diagram
of the Interface Card Assembly was examirned, it was
discovered that the DMA Throttle was controlled by the
number of Multidus cycles and not by the number of CPU

cycles. Since the Throttle was set to the factory default

6¢

A o8 in om oa -~ e i - A & M a . @ e e e o - e .

§
L
:
g
L_'

e S 4 4

SIS B PPNl SRl o

PRI AP S Sy Y P L, P T P P ST U - S . a g PP S |

position, one additional Multidus cycle was required vefore
the interface bdoard could execute its pnext DMA operation.
Because there was only a single host computer in the system,
no additional Multidus accesses wvere made. This explains
why marginal success was obtained by sending multiple
pacxkets since this provided the additional Multidbus
accesses. The DMA Throttle jumper was removed which allowed
the Interface Card Assembly to respond immediately wizh a
OMA operation once 1t acquired control of the Multibvus.
Subsequent packet operations were successfully completed.

Once the READ/WRITE driver routines had been
debugged, the next step in the <floppy disk implementation
was to incorporate these routines 1into the table-driven
PIOS. A separate “include” file called RXFLOP1.AEE was
established to contain the necessary device-specific
subroutines. Of the seven BIOS functions that had to DYe
addressed, only the READ and WRITE functions required code
in addition to that contained in the basic BIOS routines.
Baca of the other fuactions were returned directly to tne
main BIOCS.

The command packet was allocated memory space in the
data section of RXFLOP1.A86. Fowever, the packet parameters
had to be supplied from the BIOS variadles in order 1o
access the file requested by the CP/M file manager. Figure
4.4 depicts the RYAD packet for tane REMEX floppy disk drives

used in this implementation.

61

-

Bit Number
87 4¢3 o

word @ ik |1 |} 1/2

[y
-0

Status ¥Yord

Track

29 i Sector

DMA Buffer Offset

' e

D o ¢ N

29 €4h

g v ———
. Lt tee e
P

Figure 4.4
REMEX Floppy Disk Read Packet

" AARAv D s il d
v AL

From Chapter 3, recall that word @ of the command
:; packet 1s composed of a modifiers section, <function code
?. block, and unit id number. The value of 106h in the modiflers
section merely indicates that a siagle packet is being sent
& and that all automatic error routines are in effect. The
!. function code block (1) specifies a READ operation. Since
the REMEX floppy disk drives were chosen to be equlivalent to
- CP/M logical disk drives 1 and 2 (3: and C:) for this
e implementation, the CP/M drive number and the REMEX unit id
for the two floppy disk drives were equivalent. Therefore,
the desired CP/M disk number is directly inserted into the
f@ packet. The 16 -bit BIOS variabdble "track” which contains the
requested track aumher is placed into word 2 of the command

packet. Word 3 which contains the head and selected sector

62

SN R e

.....

T T T W W T W N e e e - g . anged
-

atin

..
...

number 1is formed by inserting a zero in the upper bdyte
indicating that the floppy diskette will only be addressable
on a sicgle side and placing the RBRIOS variabdle "sector” in
the 1lower bdyte. The 20-bit address of the CP/M DMA ©bduffer
which will receive the requested data is computed ffom the
DMA base and offset. The extended address bvits (bits 16-19)
are entered in the lower byte of wo:d 5. For example, 1if
the 1local memory of an iSBC 86/12A is confizured to respond
to Multidus memory segment zero, the extended address bits
will Dbe equal to @¢h. However, 1if the local memory were
configured to respond to Multibus memory segment 180@0, then
the extended bits would be @1h. The remalning 16-bit address
is placed into word 4 of the command packet.

Word 6 which contains the transfer word count Faused
the most problems with the floppy disk interface. The major
difficulty encountered was the direct result of poor and
misleading documentation. The REMEX technical manual for
the 1interface board indicates [Ref. 8 : p. 2-4] that the
REMEX can selectively transfer data to the host computer {in
either 8-bit or 16-bit words by setting a single switch.
Since CP/M works with 8-bit words, the switch was set
accordingly and a transfer word count of 128 8-b%it words was
placed in the packet and sent to the REMEX. At first, this
seemed to work correctly because a directory of tne diskette
was read without difficulty and files could be transferred

to ard from the diskette without error. Jowaver, probdlems

63

o e A B . . i Lo e B e e B et Mttt e D e nam tam Cm R m it m Bt % oot mw oAt . oL a4 oo L

................................
...

vere encountered when attempting to execute a file that was
- on the diskette. An error message of FILE NOT FOUND" was
ii displayed intermittently. If a file was found, the progranm
would not execute correctly. In both cases, the system

partially crashed and no other operations could be

hi accomplished, despite the fact that the prompt character
E ' continued to function mormally along with an occasional
i error message.

il The source of the probdlem was not readily appareat,.
The operating system worked correctly until the directory
.ot the REMEX floppy diskette was obtained or a filie was
Ri executed. However, no error code was being generated Ddy
the REMEX. In fact, the success code that was being
'i generated indicated that the operation and data transfer was
B. be’'ng correctly accomplished. Executing the routines using

DDT86 also indicated that the REMEX was functioning

correctly and showed that the data was bveing placed in CP/M

DMA bduffer.

Numerous changes and experiments were made
attempting to locate the cause of this problem. Printouts
of the diskette’s directory were obtained without error.
Hardware was tested and retested with negative results.
Finally, a memory map of the operating system was printed
after obdtalining the directory from a diskette in the MDS
single density disx drive system. This was comrared to a

memory map of the operating system after the directory of

€4

e S S dh Snsetandoond gty Bl oy

.......................................

the same diskette was taken from the REMEX floppy drive. It
vas here that the error was uncovered. The REMEX was
transferring 256 8-bdit vwords into the DMA duffer space, not
the 125 8-bit words as believed. Thus, the extra data was
overwriting portions of the CP/M-86 BI0S causing the system
to partially crash. The problem stems from the fact that
the REMEX wants to koow now many 16-b%it words it should
transfer. This 1s completely independent of a1ow tae REMEX
will <transmit the data. Therefore, since a CP/M sector of
128 dytes is equivalent to 64 or 43h 16-5it words, 40h was
placed in word 6 of the command packet and no further
problems were encountered.
2. Hard Disk

Although the implementatior of the nard <disk was
very similar to the floppy disk drives, there were some
notable exceptions. First, the RZMEX had a sector size that
was a multiple of the standard CP/M sector size of 128
oytes. This necessitated the use of a sector
blocking/deblocking routine to resolve this disparity.
Second, since the REMEX hard disk has four (4) separate
heads, the question of how to divide up the disz had to Y»e
resolved. The most logical and straightfoward method was to
let eacn head represent a separate CP/M logical disx drive.
Tach drive would then be able to address up to 4.5 megabytes
of data. W¥With these ideas in mind, the hard disx interface

wvas begun.

o)}
[$]]

QAR A S SR A e e 2 e I

...

................

Changes had to be made to the Disk Definition and
Configuration Tables. In the file CPMMAST.DEF, CP/M logical
drive numbers 3, 4, S, and 6 were added to the tadble. Each
drive naumber had a disk definition statement that describded
the physical storage capabilities of a single head of the
hard disk. The disk definition variables were determined as
presented in Chapter 3. Now, the BIOS would support a total
of seven (7) peripheral 1/0 devices: an 1201 floppy disx
drive, two REMEX floppy disx drives, and four REMEX hard
disk drives, Lgter. the MBB-S8@ bubble memory would be
substituted for the 1201 disk drive. Also, additional
labels had to be added to the tables in the file CPMMAST.CFG
to vector the 3I0S function calls to the appropriate
subroutines located in the “include” file RXHARD1.AE6.

The most difficult obstacle to overcome in this
portion of the implementation was to determine the REIMEX
hard disk sector size. The sector size can be either 128,
286, 512, or 1¢£24 dytes. Initially, attempt; were made to
reformat the hard disk in accordance with Reference 7.
Switches S1 and 52 located on the Formatter II Card Assembly
were set to configure the hard disk with a 512 byte sector
size. A program was then written which duilt a commangd
packet to execute the REMEX built-in formatting routine
[Ref. 7 : p 3-20]. However, repeated attempis failed to
produce a successful format operation. The REMEX also

supports a built-in malntenance program that tests the Eard

66

.

LA S AASAEE

o

i SrediMITD

. . .. - . v -
P A i, e P S O AP - i e

Disk Format operation. When this program was run, multiple

error messages vwere returned indicating that the format
program vas inoperative.

Since data had bdeen written to and retrieved from
the hard disk during low-level driver testing, 1: wvas
obvious that the REMEX had been previously formatted. The
next sStep was to determine exactly wnat format was used.
This was not as easy as might be expected. During tiae power
up sequence, the REMEX will check the sector size switches
and configure its internal circultry to process sectors of
that size even if the Switch postions do not represent the
actual format of the hard disk. That is precisely why these
switches must match the actual physical sector size in order
for read/write operations to work correctly. Tais fact
caused considerable confusion in the 1nterpretétion of tae
error messages obtalned by attempting to access the Dbhorder
sectors (104, 67, 39, and 21 for sector sizes of 128, 256,
512, and 1024 bytes respectively). However, it was finally
determined that the sector size was 512 bytes.

Since the REMEX sector size was a multiple of the
128-byte CP/M sector size, a sector blocking/dedlocking
routine was needed to coordinate the access of CP/M sectors
with the physical sectors of the hard disk. 1Im this case,
there were four (4) CP/M sectors contained on each hard disk
sector. On each BIOS call, the CP/M-86 BDCS izcludes

information that can be used to provide effective sector

€7

s Vel
PoeL e,

.—{fﬁ,-w o :
St PR . R
. vV 2T R

*H. T——
- 2 o . .
. v

A

v v:r“r-'r_rﬁv‘r—*'. " "
. : : - . P
S ENTARE

N e an e

blocking and dedlocking. The sector bdlocking/dedblocking

routine used in this implementation s distriduted »dy
Digital Research in skeletal form [Ref. 6 : p. 70].

The ©Ddlocking/debdlocking algorithms map all CP/M
sector read and write operations through an intermediate
buffer called “hstbuf . The size of this bduffer is
equivalent to thé RZIMEX sector size (512).' During a read
operation, a S512-bvyte sector of data is read into the
“hstdbuf” or host buffer from the REMEX hard disk. Since the
host bduffer now contains four CP/M sectors, the desired 128-
byte sector 1s obtained dy correctly offsetting into the
host buffer. This data is them transferred to the CP/M DMA
buffer defined by the DMA base and DMA offset variabdles.
Similarly, during a write operation, £four CP/M sectors are
written to the host buffer. The data 1s then transferred to
the REMEX hard disk and stored on a single 512-byte sector.

¥ithin the blocking/deblocking routine itself, the
values and variables which relate to CP/M sectors are
prefixed by “sek”, while those related to the REMEX hard
disk are prefixed by "hst” . The SELDSK, SETTRK, SETSEC,
SECTRAN, and SETDMA entry point routines were transposed
into the REMEX nard disk "include” file. These sudroutines
store vaiues for later use and SECTRAN traamslates CP/M
sector values into the corresponding physical sector. The
READ and WRITE entry point labels were placed 1in the

read_table and write_table respectively, while the actual

6€&

B rom b el PR q 3 i o8 s s & PR AP S S > LA e M e e & . 'A,,*.vJ

REMEX hard disk read and vwrite 1low—-level drivers were
incorporated at the READHST and WRITEHST entry points.

The command packet was constructed fror the
following variables: "hstdsk” which represents the host disk
number, ~“hsttrk” which is the host track number, and
"hstsec” which cooresponds to the host sector. The host disk
number 1is transformed into the appropriate head number and
is entered into the upper dyte of word 3 of <the command
packet. The memory segment and offset of the nost DHuffer
(hstbuf) is translated into a 22-bit address. The extended
Bits (16-19) are entered into the lower dbyte of word 5,
while the remaining 16-bit address is placed in word & of
the command packet. TFor the REMEX hard disz, we want to

transfer 512 bdytes or 286 16-bdit words. Therafore, the

Bit Numbder
1? 8 7 4 3 ?
word 8 § " 1iem U g_—é
1 é Status Word -i
2 3 hsttrk) —§
3 § head # d hstsec _-E
4 § 16-bit addr of hstdu? —-E
g é---— i ext bits --E
6 VT 12¢h - o i
i

Figure ¢.5
REMEX Hard Disk Read Packet

69

b
b
g
b
:
&

VWY ey ey

.............

AN A AT g i A A s S 1.\ RO DR Mt R M T S dird R Rar)
AR T et Tara vt sl aT T e e e

AN U I SR A S P i D N A N
R N L I S

transfer word count (word 6) was set to 1¢@8h. The REMEX bhard

disk Read packet is shown in Figure 4.S5.

3. Ipitial Multi-1SBC £6/12A System

The above implementation produced a CP/M-86 BIOS
that supported the MBB-8Z dbudbble memory and the REMEX Data
Warehouse floppy and hard disk drives. The original master
1SBC 86/12A (#1) was booted from the MBB-82 and had 1its
onbcard memory switch-and-jumper selected to be accessidle
from the Mulitidus bdeginning at memory segment zero. Data
trarsferred from the REMEX would bde put directly into the
CP/™ DMA or Bost Buffers via CMA operations. The next step
was to iatroduce a second i{SBC 86/12A into the syster which
would also utilize the CP/M-86 operating system.

It was decided to use the 32X common memory to hold
a bdootloader program that could be used by the slave 1SBC
86/12A computers to boot the CP/M-86 system. A utility
program, LDCPM.A86, was written to place a copy of CP/M-36
into common memory which was especially configured for the
slave computers. A second utility, LDBOOT.A86, was used to
transfer a copy of the bootloader program (BOOT.AE6) into
common memory. The resulting common memory map is saown {n
Figure 4,6. CPMSLAVE.CMD was identical to the CP/M-u6 system
used for the master iSBC 86/12A except that it supported an
1SBC 86/12A whose local memory was accessible from the
Multidus bveginning at memory segment 1¢9¢h. When initiated

from the i1S3C 86/12A monitor, the bdootloader program would

7¢

PP WY e tem law'a 4’ a’alale a & & olw vl o e

EQ@d:0000 | !
§ BOOT .CMD {
|

1000 l ‘
]
CPMSLAVE.CMD
]]
[} t
14000
i FREE !
/
/
| /
| /
P/
Figure 4.6

Common Memory Map
transfer the CP/M-86 slave system from common memory 1into
local memory beginning at 4€:¢000h. Cnce the transfer was

complete, control would be passed to the 3I0S to initialize

the system. It must noted that all these programs Must
reside on CP/M logigal drive D:.

This scheme, although utilizing the DMA capability
of the REMEX to the maximum extent possible, would require a
different CPMSLAVE.CMD file for each i1SBC €6/12A added to
the system. Each computer’s local memory would have to de
placed in a separate 64K block within the one-megabyte
address space avajiladle to the Multibus and these page
numbers would be have to be entered in the lower bdyte of
word £ in the command packet. This organization is somewhat

awgkward and exhausts a large portion of common memcry 1f

71

PEPRL WA SPUK P P WP W - D . P WO I T PP PTG U - VO S v ke ket e

P Y

s
b
=

. e
E PR AR

MO O 4

L

Do
-

A

several computers are used. Therefore, a more acceptable

alternative was needed.

C. SYNCHRONIZATION AND PROTECTION

1. Synchronization of Read/Write Operatio

]
1]
17

With tvo active i1SBC 86/12A computers in the system,
the synchronization of read/write operations had to bde
addressed. Since the REMEX could queue up to eight (8)
command packets internally, it was initially felt that this
feature would provide adequate synchronization of the 1I/0
requests from the 1independently operating computers.
However, when simultaneous multiple transfers were attempted
between the CP/M hard disk logical drives, sporadic errors
occurred. Inspection of the READ and WRITE routines in the
hard disk "include” file (RXEARD1.A66) revealed that there
was nothing to prevent a clash 3f bdoth 1SBC 86/12A computers
if they simultaneously attempted to send a command Gpacket
address to the REMEX Iaterface Card Assemdbly. Since the
packet addresses were sent in three (3) single-oyte Multidus
transfers, it was indeed possidle for the values sent to the
interface board to decome intermixed. Also, once the most
significant bdyte of the packet address 1is sent, the
interface 1immediately signals the REMEX that ‘tane packet
address is complete and ready to be transferred. However,
this may not be the case. Consider the case where computer
#1 has transferred the extended address and the least

significant bdytes of the packet address to the Packet/IMA

72

........

.........................

Register. Computer #2 then sends the extended bits of {its
packet address. Since each computer’s memory bdegins on a
different page, the extended bdits will be different for each
1SBC 86/12A. Computer #1 now regains control of the Multibdus
and sends its most significant address byte. The Remex will
now read the packet located in computer #2°s address space
rather than the packet in computer #1°s address space. This
will certainly cause severe probdblems.

Initially, the section of code used to send out the
packet address was identified as a critical section. A
semaphore was then defined to control the access to the
critical section. In order that all active 1iSBC &6/12A
computers cculd have access to the semaphore, it was placed
in common memory and could take on a value of either € or 1
indicating that the resource was elther dbusy or free
respectively. If it was a 1, the requesting computer would
set it to 4, send the tkree bytes of the packet address, and
then reset it to 1. If the requestor found that the
semaphore was equal to @, it would delay and then recheck.
This checking process was implemented using the LOCE XCHG
instruction to provide exclusive use of the Multibdus,

when simultaneous multiple file transfers were again
attempted, errors still occurred indicating that thera was
still some interference on the Multi»us. This probably
occured when the registers of the interface were set up for

a DMA data transfer and a packet address was thea writtex

73

P P T S U N S P S L UG S PR ST VT SUIA WP

.............
.............

MIaa IS CAN SNt n M ok aan T 2 on e e
Lot 1 A Lt A AN PO N
S

’r .Y.v'v.rH' T
PR PPN . G N
’ L L L A I

o

into the Packet/DMA register before the data could bde
transfered., At any rate, a more inclusive synchrﬁnization
scheme was required to ensure that a single 1SBC €6/12A
read/vrite operation could bde completed without encountering
contention from the other computers in the system.

Since 1t was desirable to bhave all iSBC 86/12A

computers configured alike, it was decided to adopt a

sof tware approach to the synchronization probdlem rather than

the conventional monitor approach. The method chosen was
based on sequencers and eventcounts [Ref. 12]. This method
is modeled after the “ticket/server system used ia many
stores where services are performed. When the customer
arrives, ne takes a numbered ticket and then waits for bis
number to come up before being served. The sarver works 1in
ticket number order. The implementation of thls scheme |is
very stralghtfoward and nad been previously used by Hammond
(Ref. 3]. Two 16-dit counter variables, ticket and
"server”, were placed in common memory. The value @ was
reserved for the ticket number indicating that another
computer was presently modifying the ticket number.
fxclusive access to the ticket number was provided dy the
LOCK ICHG instruction. An algorithmic language
representation of the sequencer routine i{s given in Figure
4.7. The delay used {n the Await Sudroutines was wused o
prevent Multibus contention. ~Request” is called prior to

each read or write operation to gain exclusive access to the

74

X620 200 0 20620 2 20 2 202 e 208 20 2 2 0 20 200 0 20 2 20208 398 200 0020 20398 08 08 300 208 00 08 20 2 2 2 28 20028 25 28 200 208 20 06 2 8 208 e AR e

Primitive Subdroutines
aeals 346396 3¢ 305 508 28 0625 98 20 208 30 48 20K 08 308 20830630 240 40 230 206 08 o 4K a4 2 20 20 3 540 e o 33 208 2K a4 o 2 a0e 3 g a8 3g 2 o a8 Ko WA e

ticket: sretura a ticket number

customer no. = ticket no.
inc ticket no.
ret

avait: sdelay until customer no. =
tserver number

while customer no. < server
delay
ret

advance: tinc server

inc server
ret

%230 250 36 38 28 %0 303K 3 3 X 30248 36 208 3 30 200 20 348 28 2t 3¢ 240 20 36 248 348 2302308 38 g 30 20 2% 2403 348 33 6 e 2 30 e 4 A0 e AR 3k g WAK KoK R X2 X

Entry Point Routines
e it 30 38 3 e 2 558 5o 3 08 0 6 2 3% 2 02X XE%e 330 08 20 30 38 20 48 08 30 40 402k 200K 290 40 40 46200 48 200 3028 2% 40 RN AR A AR 3

request: yget resource

call ticket
call awalits
ret

release: yrelease resource

-call advance
ret

Figure 4.7
Sequencer Algorithm

e

L

bt B2 A SA LK AN ol AR A< o

A

i

v - ow.wr - - vy
. Sy

Tal™""n o

'Y
.....................
e S o R R R P S S S S R S A RS S R A R i
...................

................

shared resource. Once the operation 1s complete, "release”
is called to free the resource by incrementing the_'server
number vhich allows the next I/0 function to bYe executed.
¥hen the sequencer code was implemented into the read/vwrite
routines for each of the peripheral I/0 devices, no further
errors wvere noted.
2. (Common Memory Read/Write Routines

As alluded to earlier, the CP/M-86 BICS which uses
DMA operations to transfer data between the ISBC 86/12A
computers and the Remex Data Warehouse requires a unique
BIOS for each computer in the system. This places a severe
limitation on further system expansion and complicates the
system configuration control requirements. Futhermore, this
type of implementation requires that at least a portion of
the 1SBC 86/12A°s 1local memory be accessible to the
Multidbus. One of the principal goals of this thesis was to
provide a system in which all computers were isolated from
one another. Obviously, this implementation does not support
this goal. It also results in an awkward Dbdootloader
arrangement in common memory and requires that all vearsions
of CP/M-86 needed for system operation be accurately updated
should any changes or modifications occur. Therefore, a
more acceptable BIOS implementation had to be found.

The resulting 1implementation routed all data
transfers through a common memory buffer. The size of this

buffer was set to correspond to tne largest physical sector

76

S N T R R T R ——7r e, e N T g S T R e T T TS T C R ST AR A g bl
o m e a e e e R s e L B T P A A LA R

i i i
i i i
----- { MEMORY {---—-->! DMA _ |
| | i
} |]

| ! COMMON CP/M

|

E | BUFFER BUFFER
. -

PACKET CONTROL

Figure 4.8
Common Memory Read Operation

" APl uivil 2l i e e 4
. ST T e ey
. . AT
] P I

within the system which was the 512-byte sector of the REMEX
hard disk. The additional code required for each read/write

routine was minimal since its only function was to transfer

a gliven amount of data between local and common memory. A
data flow diagram depicting a typical read operatioa from
the REMEX is shown in Figure 4.8. For illustration, consider
a CP/M initiated read operation from the REMFX hard disk.
The command packet will be constructed as before except that
the 28-b%it common memory bduffer address will replace the
host buffer address in word 4 and the lower bdyte of word 35

of the packet. This will result in the desired data deing

read into the common memory buffer. Whena this operation 1{is

complete, the requesting iSBC 86/12A will then transfer the

v. ng T

data in the common memory buffer to the aost duffer located

in the data section of the CP/M BIOS. This procedure 1is

Y Ty

entirely transparent to the CP/M BDOS. A write operation is
similarly completed. First, the data ia the nhost bduffer is

written to the common memory buffer. Next, a packet is sent

77

. NEEARS i gl i o "-_I [k}

T

r*..-
;',
|
[
i
»
|
?
f
»
b
b

a4 St mtatatal alaesnl il o e e Ba —, e N & m - ,L‘A,A,AJ

...
......................................

to the interface whica transfers the data from common memory
to a specified head, track, and sector of the hard disk. The
required changes were made to the “"include” files for the
MBB-8@ bdudble memory, ttoe REMEX floppy disk drives, and the
REMEX hard disk drives and the flles were renamed

MBEZDSK.A86, RXFLOP.AE6, and RXEARD.AEB6 respectively. These
files appear in Appendices C, D, and E.

The common memory routines produced several
improvements to the overall system design. First, all iS3C
86/12A computers could be completely isolated. Each of the

four computers used in the system was jumper configured so

Y Y

that all onboard memory was reserved totally for local CPU

Lacn g 4

use arnd could not bde accessed from the Multidbus. This

provided the required protection for each computer’s 1local

£E003:2000 | |
iticket |server| i
] |
!]
- 10100 | %
[' CP/M Buffer i
e :3300 | -1
. :gécz : :
- ; BOOT,.CMD i
: :2500 | - ——————|
x) !
. ! !
: i CPMSLAVE.CMD i
. } i
|]
. :3500 | -——-- —— |
i ! '
' e ! FREE |
: ‘ |
f. Figure 4.9
' Common Memory Allocation
‘e

7€

O R P WL T PV S, (TN LU S S S U P S camraliomacsim - N

ad

¥

LA A ot o a v
RABAMPARAD s o,
AR o e

cate L N PRI

LA ST AR R AR A R SEN oo a0 S A g ">

X

_—

..

memory. Second, only a single'copy of the CP/M-86 operating
system was required for all of the slave computers since
data transfers were locally initiated. 1In fact, the only
difference bdetween the slave and master versions involved
the initialization of the synchronization variables and the
log-table. A memory map showing the configuration of common
memory is presented in Figure 4.9.
3. Disk ¥rite Protection

The ticket/server synchronization routine ensures
toat single 1SBC 86/12A read/write operations can bde
completed without interference. However, this {s not
sufficient to provide the necessary write protection to the
shared devices in a system of multiple computers each
running CP/M-86. Consider the case of two processors trying
to write to the same CP, M logical disk. CP/M reads tae disk
directory and constructs an allocation vector in the BIOS
that indicates the logical blocks on the disk that have not
been written to previously. Zach 1SBC &6/12A then proceeds
to write 1ts data file to the wunallocated bdlocks 1in
sequential order. Although the individual write operations
were syncaronized, the result 1s still overvritten and
gardled data. Therefore, this implementation institutes a
read/write strategy that allows all computers to read data
from all the shared devices bdut only write to a single
ievice to prevent files from being overwritten. Moreover,

it was also desiradle to be able to select any of the shared

79

A A a A e e A el e oa

(I PR A e

devices for write operations from each of the four system

console positions.

A logon and logout procedure was developed to
»3 control the write access to the various peripheral devices
through the use of a table located in common memory. This
! tadble bhas a entry for each device 12 the system (Figures
4.12 and 4.11). Before the user is permitted to Dboot

1{ the CP/M he is asked for his console number and the CP/M

I! drive that he wishes to log oato (write to). The CP/M drive
_ A: B: C: D: I F: G:
ﬁ logthl IMBB-8¢ ! FLOP1 |FLOP2 | HARD1 | BARD2{ LARD3 | BARD4 |

Figure 4.12
Lozin Table

E2922:2220 | -

E ticket | server | logthdl E

t |
y 10100 | - \
g] CP/M Buffer |
- 10349 ! d
. ! |
b
" Figure 4.11
- Final Common Memory Configuration
-
& number 1s stored in a local variadle called “user” waicia is
9 used as an offset into the log table. The log table is then
E checked to determine if the desired disk has already been
5 logeged onto. If not, the console number is entered into the
}:I
3
] 8d
3
L'A."._-'.,:.--' : : ot s PO P | s i_aa m et am A m . M mam s & _w . ._ . m oA .

....... At T At T T a T et et Tt et Tt e T e e Tt P i ot e T T T e T e

B i iaetens Lot

I S o 0e oL Se AR SR SL At o

r

log table at an offset corresponding to the given device.
Ctherwise, the user is asked to select another disk. To log
out, the user types the command "logout” which places a zero
(free) {in the 1log table at an offset equal to the user
number. Each CP/M logical disk drive requires its own copy
of the 1log out routine (LOGOUT.CMD) so that it can Dde
executed from every disk drive.

Within the BIOS, when a vwrite operation is
requested, the variadle “user” is compared to the CP/M
logical disk numder. If they are equal, the write operation
is permitted to continue. If not, the user is informed that
write operations are not permitted to that disk drive. This
guarantees' that no two iSBC 86/12A computers can write to

the same shared disk.

D. SUMMARY OF SYSTEM GENERATION

The following descriptions provide step~by-step
procedures on how to create the BIOS for this implementation
of the CP/M-66 operating system, how to Step up the MBB-20
bubdble memory board in the MDS doudle density system, and
10w to start up tae multi-user CP/M-c6 system.

1. System Blos Creation

a. Develop separate files for each I/0 device bdeing

sure to address the seven device specific functions in each.
In tkis code, before any Multidbus access 1include the

command call request” and upon completion of a Multidus

access in:zlude tae command "call release .

81

i o B U B S SRy S L S P S S N Y . vy . _~

PR e o 4 vy rerryY AR il
ST e s L yrr "

b. Ensure that all I/0 is accomplished via the
common memory I/0 dbuffer which extends from EZ0€:100 to
£200:300. Develop a transfer routine for moving data to and
from the common memory bdbuffer and the host computer.

c. Decide upon the logical hardware configuration
as will be seen by CP/M-86. Based on this configuration,
develop the Disk Parameter Table which will bve used as the
source file for GENDEF.CMD to produce a .LI3" file. Also,
using this same hardware configuration and the I/0 device
files, develop the label tables in CPMMAST.CFG for the seven
device specific functions.

d. In the BIOS use the "include” commard for all
1/0 device files, the label table (CPMMAST.CFG), and the
Lisx Parameter Table (CPMMAST.LIB). The files SYNC.AES and
LOGIN.AZE must also be 1included, but require ns
Todifications.

e. Assemdble the BIOS using ASME6.COM. Using
ASMEE.CMD may generate forward reference errors and require
the rearrangemeat of some included files in the BICS. Two
assemblies must be made. The first must be assembled with
the master conditional assembly switch set to true in order
to create the master BIOS. The second must de made with the
switch set to false in order to create the slave BIOS.

f. Concatenate the resulting hex files with CPM.H86
to form CPMMAST.H86 and CPMSLAVE.HEE. Jse the CP/M utility

82

...

command GENCMD.CMD (GENCMD CPMMAST 8080 code(asd]) to
generate the executabdle command files.

g. Transfer CPMMAST.CMD to the MBB-8@ bubble memory
board as CPM.SYS. Transfer CPMSLAVE.CMD to drive D: of the
REMEX. |

2. Setting up the MBB-E€2 ip tbe MDJ System

[a. Remove the Intel 828¢ microcomputer and the

assoclated memory boards from the MDS doudble density system.
:! b. ©On the 1SBC 86/12A #1, place the switches 1-16
- and 8-9 on DIP switch S1 in the closed position. Install a

jumper between pins 127 and 128. I1f there are jumpers {in

place for the clock, pins 123 and 185, remove them.

c. 1Insert the iSBC E6/12A #1 and the MBB-E@ board
w#ith the bdackplane into the MDS chassis.

d. Turn the power to the MDS chassis and the disx
drives on. Once these devices are running, apply power to
the MBB-8@ board by setting the memory protect switch on the
backplane to the "run” positioms. Now, the CP/M-86 operating
system can be booted from a doubdble density diskette by

entering the command GFFD4:0. The system booted saould bde

one that 1is capable of addressing the bubble memory as a

X diskette.

E‘ e. To format the MBB-80 bubdble memory execute tae
- program MBE@FMT.CMD and use E800E as the base address for
tf the controller. Execute LDCOPY.CMD usiag LDRMBEC.CMD as the
f; source fila. This will place tae loader on tracks 2 and 1

. . N i) . N o IS ST SUUE G SUN Y Sy SO WP W PP

.................................

of the MBB-80 bdubdle doard. TFinally transfer CPMMAST .CMD to
the budbble as CPM.SYS.
3. System Injtialization

a. Insert four i1SBC 86/12A computers into the iCS-
80 chassis. One computer must have a jumper on pins 163/104
and 1@25/126. These connections supply the clock for the
Multidus. All computers should have pins 112 and 114
connected by a jumper wire, This ensures that the
computer’s local memory is inaccessable to the Multidus.
Also on all computers, only position 8-9 on DIP switch S1
should be <closed. All other positions should be open.
Finally, 4insert the M33-82 bdudble memory bdoard, tae 32K
common memory board and the REMEX interface board into the
iCS-8¢ chassis.

b. Turn the iCS-52 powver switch on.

¢. Power up the REMEX in accordance with Ref. 7 and
turn the MBB-8@ memory protect switch to "on . This switch
is located in the rear of tne iCS5-80 chassis.

d. When the REMEX hard disk has timed out and the
readi light is on, enter the command GFFD4:4 from the
console attached to 1SBC 86/124 #1 to boot CP/M-8€ from the
MBB-5@. The synchronization varlables and the 1log table
entries will bve initialized in common memory.

e. Select drive D:

g4

NI S . S T . M -). W S [Py Wy A e

o = L <
..........................

......

f. Execute LDCPM located on drive D:. This will
load the file CPMSLAVE.CMD into common memory starting at
£000:500.

€. Execute LDBOOT located on drive D:. This will
Ef place the file 300T.CMD into common memory Starting at
p B000:400.
E h. Now, CP/M-86 can be booted on any iSBC 86/12A
: computer by entering the command GE@OE:€490 from the monitor.
j {. When a session is completed, enter the command

LOGCUT to logoff the system.

V. BRESULTS AND CONCLUSIONS

A. GENERAL RESULTS

The ultimate goal of this thesis was to develop a multi-
computer protected” CP/M-86-based system that shared memory
storage devices. This goal was accomplished and the
resulting code 1is located ir the Appendices. The major
product produced by this thesis is a completely operational
malti-user development station. The CP/M BICS is completely
table-driven and can be reconfigured for different hardware
configurations in urder twenty minutes. ' This feature alone
is a significant improvement over the standard BIOS marketed
by Digital Research. In addition, it should be quite easy
to expand the current system to permit more users or add
additiornal 1/0 devices.

The system provides user protection in several forms.
No user, once logged onto the system can destroy, either bdy
design or by accident, anothers user’s files or 1local CPU
memory. However, any single computer can destroy common
memory, but it is a simple matter to restore it.
furthermore, the logon and logout procedures prevent two
users from simultaneously logging onto and writing to the

same CP/M loglcal disk drive.

. ~
s T E N . N . - . L LR . e s
L A > S U O e .. L St

..

B. EVALUATION OF THE IMPLEMENTATION

To evaluate system performance, two tests vere
conducted. The first test involved assemdling a 3K and then
a 24K file with a single computer logged onto the system.
The éssembly time was recorded using a conventional
stopwatch. Next, two computers were used to simultaneously
assemble the same file, followed by taree and then four

computers. The results of the test are shown 1o Tabdble 5.1.

Table 5.1
REMEX Assembly Times In Seconds

FILE ONE TWO THREE FCUR
SIZE COMPUTER COMPUTERS COMPUTERS COMPUTERS
3K 12.9 22.1 25.1 28.8
24K 211.1 246 .7 257.3 275.5

Table £.2
MP/M Assembly Times In Seconds
FILE ONE WO THREE FGOR
SIZE USER USERS USERS USERS
3K 22.3 X X X
24K 323.2 X X X

One might expect that two computers would take twice as
long to assemble the same program and three computers taree
times as long. Sowever, except for the initial contention
for the I/0 devices, all computers could assemble the files

in parallel. This accounts for the fact that there is not a

87

L)

AL A
(", RN -

Rl A 4
R

Ol Ay

.t ev .

linear relationship betwveen the naumder of computers
operating in the system and the assemdbly times.

To provide a means of comparison, an attempt was made
to run the same test under the MP/M operating system:
However, MP/M would not permit more than one file to Yde
assembled at the same time. In fact, on several attempts,
the entire system crashed. The results of this test are
shown in Table 5.2.

The second test involved a file transfer utilizing the
CP/-86 utility PIP.CMD. Since all operations were 1I/0
intensive, this test represented a worse case scenario. The
first run consisted of transferring a 16K file with only one
computer operating in tae system and recording the time it
took to complete the operation. Then two and finally three
computers were used to execute the identical PIP command at
the same instant. The time it took for all computers to
complete the task was recorded. The results of these tests
are shown in Table 5.3. The "Xs indicate that it was not
possible to make the transfer because there was an
insufficient numbder of destination type devices. (i.e. Two
computers cannot transfer files to a single bdbubble device at
at the same time.)

To provide a comparison for the adove results, tae same
test was run on the MP/M system. Altaough tne two system
configurations are different, they do offer some bdasis for

comparison. dowever, 1in the MP/M system, only operations

age

..........................
..

a®"a'a'a

e "o tatatatntas At mt'mtaTat At wta e w e,

.....

Table 5.3
REZMEX Transfer Times In Seconds

\ 10 § HARD BUBBLE FLOPPY
\ DISK DEVICE DISK
FROM \ |
SINGLE COMPGTER EXECUTING PIP)
EARD DISK 2.5 5.6 8.1
3UBBLE DEVICE 5.6 8.2 11.6
FLCPPY DISK 7.3 c.6 12.0
TWO COMPUTEZRS EXECUTING PIP)
HARD DISK 5.9 X 54.4
BUBBLE DEVICE 11.3 X 54.6
FLOPPY DISK 29.1 | X X
o TEREE COMPUTERS EXECUTING PIP -
EARD DISX 10.6 X X
BUBRLE DEVICE 18.4 X X
FLOPPY DISK 49.7 X X

between the hard disk and floppy disk were possible. The
results of this test are shown in Taodle 5.4.

From these results, it can be seen that the multi-user
CP/M-86 system has a slight performance advantage for slngle
user disx operations. When more than one user is operating

in the system, this performance advantage becomes very

89

e - L P o - A S S Sl r - -
P NDANON A Nt Mg Il i S I/ S M AN A e T o~ - --f

3; MP/M Transfer Times In Seconds

\
\ TO ! EARD FLOPPY
\ | DISK DISK
FROM \ |
ONE USER EXECUTING PIP UNDER MP/M
EARD DISK 7.3 12.0
FLOPPY DISK 11.2 14.8

TWO USERS EXECUTING PIP UNDER MP/M
HARD DISK 17.4 26.2
FLOPPY DISK 26.3 X

TEREE USERS EXECUTING PIP UNDER MP/M
HARD DISK 23.7 X
FLOPPY DISK 36.9 I

siganificant for transfers made between areas on the hard
disk. However, the REMEX floppy disk drives are slower.
Since the REMEX hard disk can be used to emulate the
"signal processor functions of the AEGIS system, a third
test was conducted tc determine the optimum skew factor for
consecutive read operations. A low-level routine was
#ritten to continuously read sectors from the hard disx into
common memory. After each read operation, a counter was

incremented. When five read operations had been completed, a

,.r!rw.rrrvr.
oo .l.l‘l.l".

character was pricted to the CRT screen. The time it took

to print 80 <characters to the CRT 1is recorded and

8@

PERT WA SO AP SR URL YPTULIT SULAP S SN SN SR ST W ; S L s_ TN S LA S VA S S-S U SO S TP a__L_L_“_A_J

Tadle 5.5
REMEX Vinchester Disk Skew Times

in Seconds
SKEW TOTAL SKEV TOTAL
FACTOR TIME FACTOR TIME
] 10.00 29 5.25
1 19.35 21 5.55
2 10.55 22 5.60
3 12.95 23 6.18
4 11.25 24 6.35
5 11.45 - 25 6.60
6 11.7¢ 26 6.85
? 11.95 27 7.1
8 12.29 28 7.35
9 12.55 29 7.55
19 12.75 30 7.80
11 13.85 * 31 §.05
12 13.40 32 E.30
13 13.45 33 8.65
14 13.70 34 8.85
158 4,20 35 S.20
16 4.35 36 9.45
17 4.55 37 9.65
18 4.285 38 9.85
19 5.05 ’

approximates the time it took to conduct 400 separate read
operations. During the first run, the skew factor was set
to zero. Therefore, no sectors were skipped between read
operations. Iz the subsequent rums, the skew factor was
incremented by one for each successive test. lae results are
shown in Tabdle 5.5 and indicate that a skew factor of 15 is

optimal for reading data from the REMEX hard disk.

C. RECOMMENDATIONS FOR FUTURE WORK
There are several possible opportunities for future

projects involving the REMEX hard disk and the multi-user

91

WA DU GET VI WA S P R T A TR DR Vg TN P

Ta

-

- v .
MRE BRI T
. T
~ . _“'-"'»'r‘l- .0 . * *

e

S S o 000 0 S0) 00 o0 g
- :

LI A g S Ay ot o ncann e avcaus)
Lt e e - o

R i R N R A

.........................

..

...

CP/M-86 system. The first and foremost is the use of the
system to emulate the AEGIS system. Several AEGIS system
modules bhave already Ddeen developed and could de run on
dedicated iSBC 86/12A computers using the REMEX hard disk to
supply simulated radar data. In the present hardware
configuration, four system modules could be run concurrently.

Eovever, there-are other smaller support projects which
would 1increase the capabdility and utility of the system.
There is an urgent need for a more sorhisticated text editor
or word processor. Without one, the system will not bde used
to 1its full capadilities. Translating the 8983 assemdbly
language code of BTED.COM into 80w6 assembly language would
provide a more usable text editor than the one currently
provided by Digital Research - ED.CMD.

Another possible project is to develop a boot loader
program for the REMEX Data Warehouse. As the system |is
currently designed, the CP/M operating system must be
initially loaded from either the MBB-80 or from tae MDS
single density system. This would allow CP/M to dbe Ddooted
from any of the memory storage devices currently 4in the
system,

A more ambitious project would ose to design a Mhoot
loader which permitted the user to bdoot not only the master
CP/M-86 operating system directly from the REMEX Data
Warehouse, but the slave CP/M-86 operating system as well.

This would relieve the master system of the task >f loading

92

.............

the CP/M slave system and the boot loader program into
common memory prior to booting the other §1ave computers.
Furthermore, it would free a larger portion of common memory
for general use and decrease the number of system variabdles
that would have to bde reconstructed should common memory be
destroyed. The programs LDCPM.A86, LDBOOT.A86 and BOOT.A86
which are already written could be combined to form the
pucleus for such a program. Once operatiﬁg correctly, the
program would have to be loaded into ar iSBC &6/12A EPROM
waere it would bde accessible to the monitor.

The final project could alter the CP;M-BS BIOS to
include the Micropolis Winchester hard disk, the MDS doubdle
density disk drive system, and the nevly acquired 256K
hubble memories. The code for the Micropolis hard disk and
the MDS double density disk drive system has already been'
written and only needs to be put into the table-drivem BICS
format. The 1implementation of the new bdudbdle memories

should bde very similar to that of the MBE-8¢.

e e

APP
PROGRAM D

I. MBB-€0 BUBBLE MEMORY FILES

A. MBS8OPMT.CMD: This program 1s used to initially
format the MBB-8@ bdubbdle storage device as a single density
Eﬁll disk drive. Whén the prograﬁ is executed it will prompt the
P user for a segment address. The address of €¢€€ must de
E. entered. The program will then set the controller Dbase

address to 86€¢€0h and write the correct byte patterns on the

jf buddle memory system to give 1t the appearance of a
' diskette. [Ref. 2 : p. 88 and p. 159]

B. MREPROM.AB6: This file contains the source code
necessary for Dbootlstrapping tae system from the bubdle
memory device. It has been loaded into an EPROM and placed
on the motherboard of the iSCB €6/12A computer labeled #1.

It 1s executed by eatering the command GFFD4:4 into the

monitor of the computer. The program will then place the
system loader into memory aad transfer control to it. [Ref.
2 : p. 187]

C. LDRMBB@.CMD: This i1s the loader program that must

Dbt 25 00 e 2 o am ue e
- Lt e T T T Ty
|
e v

be placed on the dubdle’s tracks 0 and 1. It will locate
the file CPM.SYS on the buddble memory device, 1load it into
memory and then transfer control to the operating system.
The BIOS for this program is created using MBBIOS.A8€ with

the loader conditional assembly switch set to true.

" Baaok S0 SIS0 AR M Sk SN 5 A e) A GRS RS
R ,I 4 “ aea ! i B
., R BN :
. R L AN [

34

I S0 T T WP S AL VL WA Y T W U U S Y 1 PRI - LA U . Al e N U Py ._.l

D. MBBIOS. A&E6: This file contains the source code
used to create the BIOS for doth the CPM.SYS and the
LDRMB8G.CMD The CP/M.SY5 BIOS is created with the . loader
conditional assembly switch set to false. [Ref. 2 : p. 166])

E. DKPRM.DEF: This file contains the hardvare
configuration tables for arranging up to 16 MBB-84 Ddubdle
memory devices or Intel MDS double density disk drive
systems 1in any combination. It was »sed by Hicklin and’
Neufeld in their 1implementatior of a table driver” 3I0S.
However, different I/0 devices (i.e. REMEX Data Warehouse)
may not be added to their table. [Ref. 2 : p.95]

F. CONFIG.DEF: Contained 1in this file are the disk
definition statements used by Hicklin and Neufield to
generate the Disk Definition Tables for their BICS. The
file gepnerated is labeled CONFIG.L]I3 and is included 1into
MBBIOS .A8F when assembled. (Ref. 2 : p. 82] and {Ref. &

p. 67]

11. REIMEX DATA WAREHOUSE FILES

A. CPMBIOS.A86: This file is the basic table driven
BIOS wused 1in this thesis. By setting the MASTER/SLAVE
conditional assembly switch to either true or false, two
different CPM.SYS’s can de created. The only difference in
the two is that the CPMMAST.CMD system <contains code to
initialize the synchronizatlon and login variables 1located
in common memory. The resulting MASTER file should be

renamed to CPM.SYS and placea on the bubble memory storaee

88

S e P SV S R SIS SUNE TR ST AN ata ey - tmaralataiatatalala e n e

"~ AD-A126 858 ALTERATION AND IHPLENENTRTION OF THE CP/N 86 OPERHTING 272
SYSTEM FOR_A MULTI-USER ENVIRONNENT(U) NAVA
POSTGRADUARTE SCHOOL MONTEREY CR T V ALNQUIST ET RL
UNCLASSIFIED DEC 82 F/G 8

R

i

g E i i
¢ M [J20

[l

25 it B

==
=

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i
.

MM
PV SR W Py

Y Ty

device. Entering the comand GFFD4:4 from the iSRC £6/12A

computer labeled #1 will bdoot the system.
When the MASTER/SLAVE conditional assembly switch |is

set to false, a slave system will be created. This system

- should be named CPMSLAVE.CMD. It is this file that 1{is

eventually loaded into common memory via the command
LDCPM.CMD. |

After the slave system has been 1loaded 1into common
memory, the command LDBOOT.CMD must also be executed in
order to place the loader program into common memory. Once
these two commands have been executed, all other computers
can issue the command GEQP@:400 to the computer monitor and
the CP/M operating system will be loaded for each.

B. CPMMAST.CFG: This file contains the label tables
for the seven I1/0 device-specific functions which are
extracted out of the BIOS. These functions are INIT,
SELDSK, BHOME, SELTRK, S3ELSEC, SETDMA, and SETDMAB. A
conditional assembly switch is located in the INIT tabdle.
When the master switch is set to true, two extra labdels are
included which permit the initialization of the
synchronization and login variadbles in common memory.

c. MB8ODSK .A86: Located 1in this file is the code
necessary to read and write to the MBB-E¢ Bubbl-Board. It is
assembled into the CPMBIOS.A86 file by an include’

statememt,

36

ARG

D. RXIFLOP.A86: This fille contains the code for
reading and writing to the REMEX Data Warehouse’s two floppy
disk drives. It is assembled into the CPMBIOS.A86 file by

the use of an "include” statement. Command packets for the
REMEX are bduilt in common memory and all DMA is accomplished
through common memory.

The file labeled RXFLOP1.A86 is almost identical to
RIFLOP.A8S. The difference is that common memory 1is not
used for DMA or packet bduilding. Insteaa the REMEX directly
accesses the host”s on board memory. Thus RXFLOP1.AG6 will
anly work for a computer which has its local memory address
space between 992¢0h and OFFFFh. To permit additional
computers to use this code, the packet addresses bdbuilt in
this BIOS will 1ave to be changed to correspond to the
computer’s memory address space within the system’s
addressable memory space of 1 Megaodyte.

E. RXEARD.AE6: This file contains the code necessary
to access the Remex Data Warehouse’s Winchester hard disk.
It also contains the blocsing and dedblocking code required
for mapping the REMEX’s 512 byte sectors to CP/M°s 126 byte
logical sectors. It 1s assembled into the CPMBIOS .A€6 file
by an include” statement. Command packets for the REMEX
are built in common memory and all DMA 1is accomplished
through common memory.

The file RXBARD1.A86 1is almost identical to RXEARD.AE6.

The difference bdelng that common memory is not used for DMA

AR

MR 1

or packet bduilding. See RIFLOP.AE6 for more detail, as

changing RXEARD1.A86 to accomodate more than ome user
requires the same changes as RXFLOP1.A86.

F. CPMMAST.DEF: This file contains the CP/M-86 disk
definition statments used in this thesis. It is the source
file for GENDEF.CMD which produces the file CPMMAST.LIB.

G. CPMMAST.LIB: fhis file 1is assemdled into the
CPMBIOS.A86 via an "include” statement. It contains the Disk
Parameter Tables created by the CP/M utility program
GENDEF.CMD, using the file CPMMAST.DEF as.the input file.

H. INTELDSK .A86: While this file is not iancluded in
the final hardware implemeantation of this thesis, it
contains the code necessary for accessing the Intel MDS
single density disk drive system. It was used extensively
in the early developmental phases of this thesis because it
provided an easy method of hooting a new CPM.SYS. If this
£1le 1is 1included into the CPMBIOS, the CP/M-56 operating
system can bde bdooted Yy issuing the command GFFD4:2 to tne
monitor.

I. LDCPM.AB6: This program must be executed in order
to load CPMSLAVE.CMD 1into common memory beginning at
Tgee:c00.

J. LDBOOT.A86: This program must be run before the
slave CP/M system .can be loaded by the other computers.
“hen executed, the program 300T.CMD will bve placed iz common

memory beginning at EQOQ:400.

98

P POSETN NS _ S o PR W e e “‘.L.Lg.A PP a e AP R P 3 Al e e .

e] gy A s e aned
L : B I I
. : PRI N

]

g

LA Zn8 man . ae g
'z‘ C e
e

Ranat Sl e e 2 g SV i gn S o

K. BOOT.CMD: This is the loader program used bdy all

dbut the initial computer to boot the CPMSLAVE operating
sysiem from common memory. It is executed by entering the
command GE00@:42¢ from the monitor after the programs'
LDCPM.CMD and LDBOOT.CMD have bdeen run.

L. RXFORMAT.A86: When an I/0 device 1is first
initialized for use under the CP/M operating system, the
nex code E5°s must be writtenm on the tracks which will
contain the directory, otherwise the error 'NO DIRECTORY
SPACE” will occur. This program will write E5°s on the
necessary tracks for each head of the Hinchestef hard disk.
Since executing this program will erase all files accessible
to the different heads, it will prompt the user for
permission to procede in order to insure that tne files are
not erased by mistake. Normally this program will not be of
any use unless a new hard disk is installed or a directory
track is inadvertently destroyed.

M. RXMAINT .AE6: The REMEX Lata Warehouse contains
numerous Juilt-in error checking and maintenance programs
which can be implemented by bduilding and then sending
maintenance packets to the REMEX. This program prompts the
user to choose one of these built-in malntenance programs
and then runs the test. If an error is encountered, tae
error code is printed. The meanings of the error codes can
be found in the REMEX tecanical manual. [Ref. 9 : p. 3-19]

N. LCGIN.A8B6: This file contains the code necessary to

provide protection from more than ome user logging on to the
same area of the hard disk or the MBB-87 board at the same
time. .

0. SINC.A86: This file must bde included in the BIOS
vhen more than one computer is going to operate on the
Multidus. It contains the code which prevents more than one
computer from accessing shared resources vhile another 1s

conducting a read or write operation through common memory.

100

A P o P S I P G T UL P Ly W M T S WU . A S

——

ISR S NS WVAY O TRl LA EMLGLN, P A A AN

B
CPMBIOS .A86

It requires a separate include file for
each different 1/0 device.

SE S EEEE SRR PSR E RS S EE L R RS S R XSRS ER R E 5 6 SRR E S E S E R S ERE FEESEE S

EQUATES
R EEEHES FRREEERRE SR EE SR T ES S EERE SRS S E S SRR RS R XS X SRR S G ERR S

iProg Name : CPMBIOS.AG56 (Master/Slave CPM Bios)
iModified ¢ Inclusion of Syanchroaization Routine
;Date ¢ 7 Octoder 1982

siritten by : Tom V. Almquist and David S. Steveans
ifor ¢ Thesis (ARGIS Modeling Group)

sAdvisor ¢ Professor Kodres

sPurpose : This BIOS is for use with the 13B86/12A.

tree equ -1

false equ not true

cr equ @dh scarriage retarn

1§ 4 equ Jah sline feed

error equ Offth seeneral error indication
master equ true sset for master/slave BIOS

1system addresses

bdos_int equ 22¢ sreserved 3D0OS interrapt
ccp_offset equ #39dn istart of CCP code
bdos_offset equ 9B66h »2D0S entry point
bios_offset equ 250dh istart of 3I0S code

sconsole via tke 18251 USAR?T

cstat equ $dah
cdata equ 2ds8h
themsk egqu 1
rdamsik equ 2

cseg

org ccpoffset
ccp:

org bios_offset

sstatus port

sdata port

stransmit buffer empty
sreceive data availaole

; FEXREE TR LR R R EXE R EEE SR X SR XXX SR XX SRR S AR E E R X X E R XX E XX FEES

dtos:

;JUMP VECTORS

; FE XN R LR EEE RS XXX R KR X R KX FE X R XA S X TR LR B R XX R K R XXX XX SRR X

Jmp INIT

;Bater from 3007 ROM or LOADER

131

T
AN

CRE AL A AT LRI DA AER LWL S

Jmp WEBOOT sArrive here from BDOS call @
Jmp CONST ireturn console keyboard status
Jmp CONIN sreturn console keyboard char
Jmp CCNOU?T .swrite char to console device
Jmp LISTOUT swrite character to list device
Jmp PUNCEH swvrite character to punch device
Jmp READER sreturn char from reader device
Jmp HOME imove to trk 8@ on sel drive

Jmp SELDSK sselect disk for next rd/write
Jmp SETTRK jset track for next rd/vwrite

jmp SETSEC sset sector for next rd/vrite
Jmp SETDMA jset offset for user bduff (DMA)
Jmp READ yread a 128 bdyte sector

Jmp WRITE swvrite a 12€ bvyte sector

Jmp LISTST yreturn 1ist status

Jmp SECTRAN sxlate logical->physical sector
Jmp SETDMAB ;set seg vase for duff (DMA)

Jmp GETSZGT sreturn offset of Mem Desc Tabdle
Jmp GETIOBF sjreturn I/0 map bdyte (iodyte)
Jmp SETIOB?F ;jset I/0 map dyte (iodyte)

§ A8 2R 2o A 2 2 2 A AR AR SO AR KRR 2020 R K2 K A 22 20 2 o A 2 2 3
Entry Point Routines

§ 290308 25 2 20 2 2 20 324 00 2 3 20 28 20256 K 2 e 2K 28 2295 28 286 2 28 e 236 2 33 23 23 e 30x 26 2 X e 290200 2 28 20 2 22 28 2 20 R0 0 WA A

include login.aEé6 snecessary for malti-users

sprint signon message and initialize hardware
t1and software

[R 1)
-4
3
oo

swe entered with a JMPF
$S0 use cs: as initial
1segment values

mov ax,cs
mov S$S,ax
mov ds,ax
mov es,ax
mov sp,offset stkbase juse local stack
mov lodyte,?d iclear iobdyte

push ds

push es

cld sset interrupt @ vector to
mov ax,2d y address trap routine

mov ds,ax
mov es,ax
mov iatéd_offst,offset int trap
mov intd_segment,Ccs
mov di,4
mov si,@
mov c¢x,314

rep movs ax,ax
mov bdio,bddos_offset
Pop es

spropagate to remaining vectors

scorrect bdos int vector

132

Lo PP S

L Y ST VR UL R SO P

call con_init sinitialize console
xor bx,bx seet mass storage
inil:)

mov ax,intbl {bx] sinitlization tadle

or ax,ax rquit 1f end of tabdle

Jz ini2

push bdx

call ax 7call init entry

pop bx

inc bdx sStep to next entry

inc bx

Jmp inil t1loop for next

ini2:

call login

mov bx,offset signon yprint sigzn on msg

call pmsg

mov cl,user rdefault to a: on coldstart

Jmp ccp sJump to cold entry of CCP
;——
WBCOT: yenter CCP at command level

Jmp ccp+6
;--—— -~ -
CONST: jreturn console status

in al,cstat

and al,rdamsk

jz conl

or al,oefth sreturn non-zero if rda
conl: ret
;__ -
CONIN: jget a character from console

‘call CONST

Jz CONIN swalt for RIA

in al,cdata

and al,?fh syread data & remove parity bdit

ret
y— -
CONCUT: ysend a character to console

in al,cstat

and al,themsk 'r€et console status

123

Jz CONOUT

mov al,cl _

out cdata,al sixmit dbuff is empty
ret ythen return data

; -

LISTOUT: s send character to list device
ynot yet implemented

ret

;-—

PUNCEH: swrite character to puach device
snot implemented

ret

’ n

READER: ;get character from reader device
ynot implemented

mov al,1lah jreturn eof
ret

’

HOME: imove selected disk to trg €0

’ one of seven device specific functions

mov track,@®

xor bx,bdx

mov bl,unit 18et offset to actual device
add bx,bdx .

call hmtol [bx] jcall device code via tables
ret

’

H

]

SELDSK: tone of seven device specific functions
sreturn pointer to appropriate ‘disk
jparameter block” (zero for bad unit no)
tNOTE: nunits is defined iz toce .cfg file

mov unit,cl 1save unit number

mov bx,9@¢é¢Ch sready for error retura

cmp cl,nunits yreturn {f bveyond max unit
jnb sell

mov bl,unit jget offset 1o actual device
add bx,bx

call dsktbpl [dbx] scall device code via tables
xor bx,d

194

\ VL S S S W Y | CRE SR N W S N 3 A& a2 L .- 4 & .a._&a's2 .ma'a _a

‘ e T — o R e e W W TR ._u‘ 1.. B
S NS DAL S AR SN SIP I A JJ..A._J._.I._. it Yol) -M'....-.L.-.._. 2,

bl,unit bx = cl * 16
mov cl,4
shl b®x,cl
mov cX, offset dpdase ;bx += Sfdpbase
add Ddx,cx
sell:

ret

: .

SETTRK: sset track address

H one of seven device specific functions
mov track,cl
xor bdx,bdbx
mov Dbl,unit 1get offset to device
add bx,bx
call triktdl [bx] jcall device code via tabdles
ret

§ -

SETSEC: ;set sector mumber

H one of seven device specific functions

" mov sSector,CL
xor bx,bdx

mov bl,unit iget offset to device
add bx,dx
call sectdl[dbx] jcall device code via tables
ret
;__

SETDMA: yset DMA offset given by cx

mov dma_adr,cx
ret

READ: syread selected unit, track, sector to dma addr
sread and write operate dy an indirect call

2
'\ -
¥
L

s through the appropriate taovle contained in
ythe configuration file. It is the programmers
sresponsidility to ensure that the entry points
N tin these tabdles match the upnit type
ﬁ xor bx,bdx
- mov bl,unit
. add bx,bx
e call rdtdl(bx] scall device code via tabdles
- ret
H
E.
198

oL 5 . - . . - Tt el el - N . . - el e e ... N
Semcanl S - il et e co o, ol CIP .) -ltea fbt m) -la ‘aia s ,J_A._-_.j

e

T Ta o e

ﬁf'r..‘

S

9
WRITE:

swrite from dma address to selected P
syunit, track, sector

bx, bx

bl,unit

bx, dx

wrtbl [bx] jcall device code via tables

’
LISTST:

' poll list device status
snot implemented

al,effh sreturn ready anyway or

1system may hang up

’
SECTRAN:

sel:

stranslate sector cx by table at ldx]
+NOTE: this routine is not adequate for
sthe case of >= 256 sectors per track
7still 1t°s better than DR"s which is not
radequate for the no table case either

ch,?

bx,cx

dx, 0 scheck for no table case
sel

bx,dx radd sector to table addr
bvl, [bx] ;eet logical sector

’
SETDMAB:

}set DMA segment given by cx

dma_seg,cx

’
GETSEGT:

sreturn addr of physical memory tabdle

bx,offset segtable

GETIOSF:

sreturn lobyte value
rnote - this function and SZTICEF

126

. ..
R S T

.................................
......

sare OK but to implement the function
¢t the character 10 entry point routines
imust dbe modified to redirect IO
sdepending on the value of iobyte

mov al,iodbyte
ret

— —— -—— e o

’
SETIOBF: yset fobyte value

mov iodyte,cl
ret

o308 33200 2 24 3 336 308 256 36 30 236 300 3¢ 3 ke a4 208 348 350 2 246 330 3 356 2 Ak e 256 e 46 28 e 30 200 906 236 3¢ a8 2 2 e ke e e 3l 6 e e 2k s age A A oe 4K X

SUBROUTINES
000 20 20 338 e 20 400 2830 200 3 20600 2 00 3 08 e o6 20 Ko 0 et a4 0 0200 54 o e o o e 48 o e e o o e e o ek e oo 3K

-9 we WO

int_trap: sinterrupt trap - non interrupt

:i jdriven system so should never get
& there - send mesage and halt

I

ﬂl cli idlock iaterrupts

: mov ax,cs

- mov ds,ax yzet our data segment

- mov bx,offset int_trp

[| call pmsg

él hlt yhardstop

;=

. con_{init: sinitialize console driver

o yactually done by the 1S2BC66/12a mornitor
e ret

kj-

3 — -~

= pmsg: jsend a message to the console

F ¢ mov al, [bvx] jget next char from message
o test al,al

o Jjz pmsi 3if zero retura

. mov cl,al

s call CONOUT yprint it

- inc Dbx

4 Jmps pmsge snext character aad loop
-

3 167

f;

4

-

»

}

S

iLLA 2, 2a S . L\ e e a4 aom UL ST O W S

Py

p_ <

ARl ARl afh eh o)
[)

Lath ot od ong SR ost
.

TV Yy
tad A4 .
+ d

rflf-
'
>,
+
14
}
i
)
»
}
»
]
[}
I

ret

3 030 e 0 2 e e 348 e e a8 2 2 2 e 28 2 e 2 e e e 26 2 2 e 2 e e e e afeae 5 2o 2 202 e 00 e e e 0 48 e e e e s ageage ko o o

‘ DISK SPECIFIC FUNCTION LABEL 7ABLES
'**#**##*********#*****####**##*#*#***#*****#*#***###*####**

;The included .cfg file bdelow maps unit numbdber to disk
tdevice type. It provides tadles of entry poiat
jaddresses for use dy init, seldsk, seltrk selsec, home,
sread and write. These addresses must appear in the
sappropriate include file for the particular device type

include cpmmast.cfg jread in label tadles

‘#*#**#****#*********#*#*******************************#****

; DISK INCLUDE FILES
'*****###**#*#************#*#**********#*#*********#********

;For each 1/0 device to be accessed by the operating
;jsystem a separate file must be {ncluded. Wwithin each file
;seven functions must ve addressed and are the same ones
ymentioned in CPMMAST.CFG. The labels used to access these
;functions must be properly order in CPMMAST.CFG.

include mbEGdsk.a&€ yMBB~EL bdudbdble memory
include rxflop.a€&é t REMEX flopyy disks
include rxhard.a86 yREMEX hard disk

2 3k e 24 e 3 e 35 34 242 200 390 390 3 e 34 30 33 3¢ 238 23¢ e e aie s e 3¢ 2342 3 3 ¢ %6 20 3k X 3o e 3 3 30 250 K 30 30 e R A Ko Ne X A AR RS KKK ¥

’
’ RESOURCE ALLOCATION
§ 090 5 e RRAEAE 38 3050 2 8 20 e N A 56 40 R 6 K S8 26 6 0E 20 30 36 000 M A 30 30 0 8 e a0 o R Rk R AR 3K

;Low-level synchronization of access to the shared
sdevice. <{sync.a86> must iaclude the entry
spoints defined in the cfg.files. These are
jcalled on initialization and bdefore and after
jaccessing the resource respectively.

include sync.a&b

;******#****#*******#***********************##**************

’ DATA & LOCAL STACZ ARZA
890 5000 o 2K K00 6 M 6 20 0 E 0 RE 0o 36 A X040 O 8 400 o0 %0 0 FHE SR 40 e e e RN e R s e X

cseg %

siznon db cr,1f,cr,1f
db cr,1f,1f,” :
i master

DNCSINL

2l

(Y]

5

S~ - X

PR PR . Y. WO . Lo . : o) . . " -
PGPS i P VP L s PRI W I W W R Wl L IR W P W IPRCIPRE TR S N Sl

. e v) .
AR ML LA ARSI KA LS

do ‘CPM/E6 Master ‘
endif
if not master
abd ‘CPM/€6 Slave’
endif
dab cr, 1£,12,° Modified °
dv 6 October 1982 vy’
dd cr,lf,17,” Tom V. Almquist’
av ‘ and David S. Stevens’,cr,1f,1¢
dv ’ For use with a Bubble Memory and °
ab “the REMEX Dataware House’
abd cr,1t,0
int_trp dbd cr.lf
db ‘Interrupt Trap Halt”
dd cr,1lf,e¢
iobyte rbd 1 srcharacter 1/0 redirection bdyte
upit rd 1 sselected unit
track rb 1 sselected track
sector rb 1 rselected sector
dma _adr rw 1 ‘selected DMA address
dma_seg rw 1 sselected DMA segment
loc_stk rw 32 tlocal stack for initialization
stkbase euyn offset $

1system memory segment table

segtabvle iv 1 'l segment
dw tpa_seg yl1st seg starts after BIOS
dw tpa_len yané extends to top 0f2 TPA
dw 2340H
dw 2¢@¢H

e e e 24 358 24s 3 e 3e 2 00 2290 246 248 e 28 78 e 4 28 2 2348350 230 e K 24 X000 38 < e 23 24¢ e 24 3 e 3¢ 3¢ 200 306 3 3¢ e 3k 2 e A 2Re e K0 Re e ek

DISK DEFINITION TABLES
% 203 23 4% e 34 20 39 28 36 20€ 30 308 36 3k 3¢ 246 3¢ 248 e 36238 33 20 ¢ 3% 248 3¢ 3530 NE 23E 3¢ 303 236 348 e 3% 0 30 4R 3¢ 30 3% e 28 e e K e Ne e A KA
sThe included .1ib file contains disk definition
rtables detailing disk characteristics for tae ddos
y.11b files are generated by GENDEF from definition
sfiles and must comply with the allocations made in
ithe corresponding configuration file. (Lable Tadles)

iaclude cpmmast.libd sread in disk ief tables

9 X% 20 2 e 3 340 28 248 6 340 X 2 20 3 e 3¢ e 20 30 0 3 e 2 56 e e e e e A 8 A0 AR 0K NERE e He eI - e e ewe Ko ewe Re e e

H END OF BIOS
-*****#****#a***********#*******##*m*************4***4#****#

lastoff equ offset $
tpa_seg equ (Lastof2+042@h+18) / 16
tpa_len equ 1400h - tpa_seg

123

Fff'fT:ra

3 e e igate i ageals o deate Aeade ol e ot e e 2K 202 2 28 200 A CAE AR KA AR e 0 xRl 0 20 o e AR e e 2 2 xR A

PAGE ZERO TEMPLATE
't#**#**#***##*t*******#*****#***##*#*###*t#t#*t***#*#****tt

int@_offst
int¢_segment

bdio
bdis

end

dseg
org
v
rv
v
rv
rv

2
9
1
1

sabsolute lov memory
; (interrupt vectors)

2*(bdos_int-1)

1
1

sbdos interrupt offset
1bdos interrupt segmeant

1123

L ANan -
.....
DA g

APPENDIX C
PROGRAM LISTING OF CPMMAST.CFG

tProg Name CPMMAST.CFG (Master Counfiguration for CPM)

iDate :t 13 September 1882

jUritten by : Tom V. Almquist and David S. Stevens

iFor : Thesis (AEGIS Modeling Group)

sAdvisor ¢ Professor Kodres

iPurpose : This code is an include file w/in CPMBIOS.AES.
’ It contains the device tadles for access to

’ initialization, read, & write routines.

; - -

’ DEFINE nunits

nunits db» 7 stotal number of mass storage units

INITIALIZATION TABLE

’
’
’
;intdl contains a sequence of addresses of initialization
yentry points to be called by the BIOS on entry after
7a cold bdoot. The sequence is terminated by a zero entry
intdl dw offset mb8@dsk_init jinitialize Bubdbdle
dw offset rxflop_init sinitialize Remex
if master
dw offset 1initsync yinitialize syrnc variables
dw offset init_login yinitialize login
endif ? procecures
dw 2 1end of table

READ TABLE

-e we

syrdtbl ard wrtbl are sequences of length nunits, containing
tthe addresses of the read and write entry point routines
srespectively which apply to the unit numbver corresponding
sto the position in the sequence. These and the eatry pts
yfor initialization must correspond to those contained in
'the appropriate include files containing code specific

yto the devices,

rdthl dw offset mb8Adsk_read jA:
dw offset rxflop_read 13
dw offset rxflop read 1C:

S a dbuddble memory
s Remex floppy disx 1
s Remex floppy dis« 2

Pute pube oo

dw
dw
dvw
dvw

offset
offset
offset
offset

rxhard read

rxhard read

rxhard_read
rxhard_read

is Remex hard
is Remex hard
is Remex hard
is Remex hard

-e we

vrthbl

dw

dvw
dw
dw
dvw
dw

WRITE TABLE

offset
offset
offset
offset
offset
offset
offset

mbY82d sk_vrite
rxflop_vwrite
rxflop_vwrite
rxhard_write
rxhard_write
rxhard_vwrite
rxhard_write

dw
dw
dw
dw
dw
dw
dw

offset
offset
offset
offset
offset
offset
offset

HOME TABLE

mbd8@d sk_home
rxflop_home
rxflop_home
rxhard_home
rxhard _home
rxhard_home
rxhard_home

-e we

dsktbl

dw
dw
dw
dw
dw
dw
dw

offset
offset
offset
offset
offset
offset
offset

SELDSK TABLE

mb8Ad sk_seldsk
rxflop_seldsx
rxflop_seldsk
rxhard_seldsk
rxhard_seldsx
rxhard_seldsk
rxhard_seldsk

-e wae

trgtbl

dw
dw
dw
dw
dw
iw
dw

offset
offset
offset

ffset
offset
offset
offset

SETTRE TABLE

mbdeedsL_settrk
rxflop_settirk
rxflop_settrk
rxhard_settrk
rxhard_settrk
rxnard_settrik
rxhard _settrk

112

PR P R U S S

T b o P —— . d
. - - - - - Y . - - . A Dt 3 \" e Ve Ve '\V—ﬁ"_i.-'\‘* ‘~ -

e B Al ool . oy
D I T A R I A T L I L R AL L I P P N '..u.'.-'.;._..n...magwﬁﬁmbm:a::gb:L:'z."'1

SETSEC TABLE

sectdl dw offset mb8ddsk_setsec
dv offset rxflop_setsec
dw offset rxflop_setsec
dv offset rxhard_setsec
dv offset rxhard_setsec
dv offset rxhard_setsec
dw offset rxhard_setsec

TITTTTT

113

2 b e s ad 4

——r s, m PG - 1 SR SN _-_,k_,_J

et e *in P M ety By,
et af g R, n® Tl

MBS@DSKA86 (BUBBLE MEMORY DISK)

s Prog Name

iDate : 24 Aug 19€2

tModified dy : Tom V. Almquist and David S. Stevens

s¥For ¢ Thesis (AEGIS Modeling Group)

sAdvisor : Professor Kodres

sPurpose ¢ This code is an include file v/in CPMBIOS.A86

It contains the code necessary to access the
bubdble memory as a disk drive,

ettt rtrtrrbttrbtbrrttdt EQUATES +++++ttstbtdttttrirttitets+

’ Miscellaneous equates

mdb_contbase equ 80@09H scontroller dase
addr_high_ram equ @f@dH shigh para user avalil RAM
bdos_int_type equ 224 sreserved BDOS interrupt
sector_size equ 128 +CP/M logical dsk sector size
j==e=—=—— Magnetic budble characteristics (MBB-83) —=——————
mb_bduflen equ 144 sbuffer length for MBE sector
mb_mazxdevs equ 7 ibubdble devices are #0-#7
mb_maxpages equ 641 +# of pages on each device
mb_maxsectors equ 879 y# of log. sectors on each dev
mbdb_pages_sec equ 8 '# of pages per logical sector
mb_pagesize equ 18 ybudbble device page size

md_skew equ 12 yskew factor for page xlation

}-—=--— Magnetic bdbubdbdle command dytes and masks (MBB-8@) —-—-

mb_chkdusy_cmd equ 320E ;is controller dusy ? status
mb_chikint_mask equ 380E jmask to chk for MEE interupt
mo_inhint_cmd equ 3828 jinterrupt inhidit/reset mask

. Th init_cmd equ €1E jinitialize the controller
. mb_mpage_cmd equ 2128 ;multi-page mode operation cmd
4 mb_read _cmd equ 212H jmulti-page read command
' mb_reset_cmd equ 240E jreset the controller
F mb_write_cmd equ 214 ;multi-page write commard
: ’
P CSEG $
.
b
114

v -
AR VAL IR |

| s
P
["._
4

y

,
»

!

P

b

b

b

HE S Y R AL E S et B & 1 2 L 2T TR R e

’ DEVICE SPECIFIC ACCESS CODZ

HE e it e e bt B T T e b X B e s

?

sinitialize dubddle ycalled from INIT
iparm in - none
sparm out - none

md80dsk_init:

push es

init_mbdbboEa:
mov ax,mb_contbhase scontroller dase
mov es,ax raddress to es reg
mov ax,mb_maxpages ypes per bduddble dev

mov es:mbp_loopsize_los,al

mov es:mdp_loopsize_hi,AE

mov es:mbp_Dgsize_reg,mb_pagesize
yissue reset! command to the controller

mov al,mb_reset_cmd yreset mask bdbyte
mov es:mbp_cmnd_reg,al rissue reset cmd

sinitialize each bubble device

push cx isave cx, outer counter

mov c¢x,mb_maxdevs+1l scourt for loop-# of devs

mov al,?d ydevice # to initialize
For_each:

mov es:mbp_select bub,al jselect each device
mov es:mbp_cmnd_reg,mb_init_cmd yinit device
push ax!push cx!push es jsave bub#,counter,es

call mbbhEe_wait ywait for controller
pop es! pop cx! pop ax yreset es,cnter ,MBB#
iac al ynext device number
loop for_each ydec cx, loop not zero
pop cx yreset cx, outer cnter
pop es yrestore register
Pevice_ret:
ret
; —— - - - — - ———— - - - —— o — — — g -
yBOME BUBBLE tcalled via home table
mb8ddsk_aome:
xXor ¢x,Cx 1set track to zero
call Settrk
ret
113

''''''

CRA AT R A
SIS ORI

PRSI ey dad
AN

Y. a_ 8 _w . .. - S .-.‘ - ?\‘ A " !‘\) _n“:.m") ata - ‘- -.‘...‘ ‘:-:-i L"AE.':_'.J': T aa -"'::'..-::\': "\ -
'
$SELECT BUBBLE DISK scalled via seldsk tabdle
mb8ddsk_seldsk: tno special action required
ret
’
SELECT BUBBLE TRACK scalled via seltrxz tabdle
mb8ddsk_settri:
call mbb8O_track_xlat
ret
’
$SET BUBLE SECTOR scalled via setsec table
mb8gdsk_setsec: yno special action required
ret
7MBB8@_READ called via read table
yreads a sector from bubdle
sparm ir - none
sparm out -~ status of the op in al.
» 0¢= 0K, FF= unsuccessful
mb8@dsk_read:
call request jget resource (SYNC.A85)
push es ysave register
call mbb80_sector_xlat jcompute 1st page# of sect
mov ax,mb_contdase taddr of coatroller bdase
mov es,ax vload 2s to address bdubdole
mov es:mbp_cmnd_reg,mb_mpage_cmd jmultipage cmd
mov ax,mb_page_no ycurrent page number
mov es:mbp_pagesel_lo,al jpage select lo byte
mov es:mdbp_pagesel _hi,AE jpage select hi dyte
yset number of pages to transfer = pages/sector
mov es:mbdp_pagecnt _lo,mb_pages_sec ;#pages xfer
mov es:mop_pagecnt_hi,2 ;hi oyte of # is 3
1set up dma address to receive data
mov cx,mb_buflen scount for loop-buffer size
push ds isave CP/M°s ds
mov ax,dma_seg yret dma segment
push ax *save dma segment ds
116

...........

;read enough from bubbdle

cmp
jnz Read_one
pop ds

mov

readdr dma area

mov bx,dma_adr yoffset of dma area
sselect buddble device and issue read command

. mov al,md_bdubd_no scurrent dubdble numbder
pop ds slocal,
mov es:mbp_select_bdud,al jselect current dev #
mov es:mbp_cmnd_reg,mb_read_cmd jread from FIFO

Read_int:

mov al,es:mbp_int_flag jsget interrupt status
and al,md_chkint_mask siaterrupt set ?
Jz Read_int yi1f zero, keep checking

sector to f£ill dma area?

cx,{mb_buflen ~ sector_size) jxfer erough?

+1f not, read another bdyte
;srestore CP/M’s as

bx,offset mb_overflow jreset dest to ovrflow

sread from MBB FIFO buffer into dma area

Read_one:

mov al,es:mbp_rdata_reg jread a byte into accam

mov [bx],al ;load accum into dma area
inc bx yincrement index

loop Read_int ydec cx, loop if not zero
push es rsave es for call

call Mb»bhee_Wwai:r ywait for coatroller

PopP es jrestore es after call
mov es:mbp_cmnd_reg,mb_lzokint_cmd jclear int

mov al,? tindicate no error

push ax ysave status of read

call release ;free resource (SYNC.AG6)
pop ax yrestore registers

pop es

ret

we we

MBBEQ _WRITE called via write tabdle

ywrites a sector to dubddle

yparm in - none

sparm out - status of the op in al

700 = OK, ¥7F unsuccessful

TbE8ddsk_write:

mov al,® 1bubble logical drive

cmp al,user 115 user logged in on mb8@
jnz mbdwrt_err

call request y2et resource (SYNC.Ac6H)
push es ysave register

il7

.......................

call Mbb8¢_Sector_IXlat jget 1st page# of sector

mov ax,mb_contbase saddress of controller base
mov es,ax 1load es to address bubbdle
mov es:mbp_cmnd_reg,mb_mpage_cmd;multpg mode cmd
mov ax,mdb_page_no scurrent page number
mov es:mbp_pagesel_lo,al ipage select lo bdyte

mov es:mbp_pagesel_hi,AH jpage select hi bdyte
sset number of pages to transfer = pages/sector

mov es:mbp_pagecnt_lo,mb_pages_sec ;#pages to xfer
mov es:mbp_pagecnt_hi,d hi byte of # is zero

yset up dma address for transfer

mov c¢x,mbd_bduflen-1 scount for loop-write
push ds ysave CP/M"s ds

mov ax,dma_seg rget dma segment

push ax ysave dma segment ds

mov bx,dma_adr yaddress of dma area

t1select budbble device and issue write cmd

mov al,md_bdud_no scurrent bdbubdble numbdber
mov es:mbp_select_dub,al jselect current dev #
pop ds syreaddr dma area

mov al, [bvx] 7load first ayte

mov es:mdp_wdata_reg,al swrite byte to M3B buff
iac Ox sincrement index

mov es:mbp_cmnd_reg,mb_write_cmdjsend write to MBB
ywalt for interrupt from controller

Write_int:

B mov al,es:mbp_int_flag yget interrupt status

- and al,mb_chgint_mask sinterrupt set ?

= Jz wWrite_ int ;1f zero, keep checxing

i; swrite into MBB FIFO buffer from dma area

B mov al, [bx] tbyte from dma to al

“ mov es:mbp_wdata_reg,al j;write »yte to MRB bduff
inc OHx yincrement index

3 loop Write_int vdec cx, loop 1f not zero

¥ pop ds jrestore CP/M’s ds

-4 push es jsave es for call

i call Mbbh8O _Wait ywalt for controller

. pop es jrestore es after call
mov es:mbdp_cmnd_reg,mb_inhint_cmdiclear contint
mov al,o® sreturn success code

" push ax ysave success code

F call release ;free resource (SYNC.AE6)

3

a 118

p

b

Ty

-

RN 4

ww v,

-

R |

yrestore register

jerror returned to CP/M

pop ax
pop es
Jmp mbdwrt_ret
mbvwrt_errs
moy bx,offset. mbwrt_msg
call pmsg
mov al,@ffth
mdwrt_ret:
ret

HE s i 2 e L xR0 2 2 L Y e S O GV S A G A S S R R

H BUBBLE SUBROUTINES

HE e B R D o L T o S T Y arururapras ey

y

yMB38@_SECTOR_XLAT called from: Mbb8@ _Read, MbLEZ _Write.
scomputes 1st page# for a given sector
syon a single chip. Based on 82 sectors
son each chip - sector = 128 bytes.
sparm in - none, works on sector
yparm out - none, updates mb_page_no

MbbEP_Sector_Xlat:
xor ax,ax
Xor o©x,CX
mov CL,sector

xor DXI,DX

mov DL,mbd_sector
add cx,DX

dec CL

hEA MbHb8O_sx _exit
Add_skew:

add ax,md_skew

clc

sbb ax,md_maxpages

Jae Dec_sector

add ax,mb_maxpages
Dec_sector:

loop Add_skew
MbbEOG_sx_exit:

mov Mmbd_page_no,ax

ret

+1set ax to @ to hold page#
tclear cx for counter

sctr for translation loop
iclear DX

ssect# for 1st sect on trk
1yadd 1st sect# to log sect#
ssubtract 1 for the loop
1sect 1 is page 3, no xlat

sadd skew between pages
sclear carry

ymod to # of pages

tjump if positive (CF=2)
ywent (-), add back #pages

ydec sector#,add skew again

ystore paze number

MBBE@_TRACK_XLAT

called from: SETTRK.

scomputes bubble # from track #. Gets
sfirst bdubhle sector {(1-8¢; for that
ytrack for later conversion to pare 4.
sparm in - none, wOrks 9n tracxg.

s prm out - loads mb_duo_no,mb_sector

119

e P

MbbE@_Track_Xlat:

T0r bx,bdx tclear b®x for add
mov BL,track sload track - index
add 3BL,3L jdouble track# for index
mov ax,mb_track_table[bx] jget word from tahle
mov mbd_bub_no,AH ilow byte = bubd device#
mov mb_sector,al y0igh bdyte = 1st sector#
ret
; - S e " e S e G s s e S . S T A I T @ U S U " D S SHGE S G
yMBBEO _WAIT called from: MbbE@_Init, MbLBE_Read,

yMbb82_Write.
schecks status of MBR cont for dusy
skeeps checking (wait) until not 3usy
yparm in - none
s parm out - npone

Mbo8@ _Wait:

mov ax,mdb_contbhase yaddress of cont bdase
mov es,ax syload es to addr bubdbdle
See_zero:

mov al,es:mbp_status_reg jget status register

and al,mb_chkbusy_cmd yks it all zeros ?

Jz See_zero 'if so, keep checking
Cont_bdusy:

mov al,es:mbp_status_reg jg&et status register

and al,mb_ch&busy_cmd ysee if busy, apd to mask

jnz ‘Cont_busy }if dusy, check again

ret

T D T T e et e ol = e T T PR e e

’ DATA SEGMENT AREA

HE B T A et ann s St L DR R S T LT S

y—— Bubble Variladvles————-=—————-—-=-o-——co———
Tbwrt _msg ad cr,lf, Write Access Not Permited’

db ° On This Ddrive.’,?
mb_dbud_no rb 1 ybubble device numbder 2-7
mb_overflow rb> (Mb_buflen - sector_size, jread overflw
mdb_page_no rv 1 ybubdble page zumber
mb_sector ry 1 ;buddle sector numbder {(1-89)

yZach entry in the track table corresponds to one of the
724 tracks on the MBB-8€. The 1lst bdyte in each extry is the
tbubble number; the 2nd byte in each entry is the starting
ssector number for that track on that bdubdble device.
mb_track_table dw 0@@0CH,201aH,2034H,01.08,211ad,913<H

12¢

.................
P A R L i I T e

dw 2200H,221aH,8234H,0390H,031aE ,0334E
dwv ©400H,041aH,3434H,2530H,051aE ,0534E
dw 062¢H,061aH,0634H,0700H,271a8,08734H

’ []
esEG _
?
rbp_pagesel lo rbv 1 s1s byte for page select, (@) h
mdp_pagesel_hi rbv 1 jms 2 bits for page select, (1)
mbp_cmnd_reg rb 1 jcommand register, (2)
mbp_rdata_reg rb 1 jread data register, (3)
mbp_wdata_reg rd 1 jwrite data register, (4)
mop_status_reg rb 1 jstatus register, (5)
mbp_pagecnt_lo rd 1 ;1s byte for page counter, (6)
mbp pagecnt_hi rb» 1 sms 2 dits for page counter, (7)
mbp_loopsize_lo rd» 1 71s hyte for minor loop size, (&}
mop_loopsize_hi rd 1 sms 2 »its for min .o00p size,(3)
rv 1 sinternal use{page pos,, (A,B)
mbp_pgsize reg rd 1 ipage size register, (C)
rv 1 ;71 use only, (D,E)
mbp_select_bdbud rd 1 jtwo uses: select budble dev (F;
mbp_int_flag equ mop_select_bdbub j;interrupt flag (F)
!
121

APPENDIX E
PROGRAM LISTING OF RXFLOP.AS6

;Prog Name RXFLOP.A86 (AEMEX PLOPPY DISK
; ACCESS CODE)

sDate ¢ 9 October 1982
sWritten by : Tom V. Almquist and David S. Stevens
s¥or : Thesis (AEGIS Modeling Group)
rAdvisor ¢ Professor Kodres
L yPurpose : This code is an include file w/in CPMBIOS.A86.

It contains the code necessary to accesS the
Remex floppy disk drives. I/0 dore through
common memory. Tals configuration is set for
CP/M logical drives 1 (B:) and 2 (C:). To
alter, change code in READ and WRITE routines.

r . - e
P PP
e Wwe we we

HE e e R s DTS TR S L e e L L L D R L L

f
F’ ;j——= Disk Controller command bytes and masks (REMEX) —

dk_rdy_mask equ @¢&H

dk_rd_cmdl equ 1011RH yread command
dk_rd_cmd2 equ 1€12H
dk_wr_cmdl equ 12218 ywrite command
dg_wr_cmd2 equ 1922H -
tries equ 1@
drive2 equ 2 +CPM logical dsk # for
ydrive 2
$ —=—==——=—~ REMEX Interface Controller Ports
cmd_reg equ 7¢E jctrler’s base in CP/M-86
status_reg equ 71H
p_addr_lo equ 72H
p_addr_hi equ 73E

B b e b B T R R R Y P R LR L LR R R e R R
CPM DEVICE SPECIFIC CODT
entered via label tadles in CPMMAST.CFG

HE R s B o i b 2 A A e i i b o b T S

cseg $

.—- D e G W S G S G e D e G G S R " —
?

rxflop_init:

122

T I VRIS TS Y M SO TP STV S v SN S N SR S e - A A e M A XAl . A 2. ! - J

e B A i R M P S U ST e T N g e e T L T S o .
) P T St el R e - PN e S RS A N DR NS L N

ret 'yno special action required

?
rxflop_home:
ret yno special action required

’
rxflop_seldsk:
ret yno special action required

;.— — -

rxflop_settrik:
ret yno special action reguired

?
rxflop_setsec:
ret yno speclial action required

; -— - —— = . o~ - ——-—

rxflop_read:

mov rwdir,?
call request jeet resource (SYNC.AE€E)
cmp unit,drive2 yCP/M logical disk No. for
Jjz rdl sRemex floppy drive 2 {C:)
mov bx,dk_rd_cmdl jset up to read drive 1 (E:)
Jmps rd2

rdl:
mov bx,dk_rd_cmd2 yset up to read drive 2

rd2:
call build_packet
call sead_packet sperform the read
call xfr_bduffer yXxfr CPM bduffer iato memory
call release ;free resource (SYNC.AE6;
mov al,result jreturn success/failure code
ret

.-- - _—
s

rxflop_write: \

mov rwdir,1

call request yrequest ticket numder

cmp unit,drive2 yCP/M logical disk No. for
Je wrtl yRemex floppy dirive 2 (C:)

123

mov bx,dk_wr_cmdl
Jmps wrt2

wrtl:

mov bx,dk_wr_cmd2

wrt2:

call build_packet
call xfr_bduffer
call. send_packet
call release

mov al,result

ret

;setup write to drive 1 (B:)

sset up to vrite drive 2

sfree resource (SYNC .AE6)
yreturn success/failure code

R b R e i s D o e i b o T T A R e e b

’ REMEX FLOPPY DISK SUBROUTINES

HE S b B 2 L e Rl et s D T PR T RS

bui ld _packet:

push es ysave es register

mov ax,cmemseg 1set up es to address common
mov es,ax ymemory E@08:

mov p_modifiers,bx jenter read code in packet
mov p_status,d sclear packet status word
mov ax,0e¢ox sclear register

mov al,track yeet track #

mov p_track_no,ax senter track # in packet
mov ax,gee098 tset nead no. to ¢

add * al,sector 1set sector no.

mov p_head_sect ,ax jput head & sec # in packet
mov p_mem_addr,€100h j;address of CPM buffer
mov p_msb,2@0eh yCPM duffer msd

mov p_word_count ,64 ;# of 16 bdbit words

pPop es

ret

send _packet:

mov ax,cmemseg
mov dk_cnt,tries

in al,status_reg
and al, dk_rdy _mask

out cmd _reg,al

out p_addr_lo,el

push es

mov es,ax
sendl:

cmp al, o288

jne sendl

mov al, icd

mov ax,00c4c

mov al,ah

ycommon memory segement = E20¢

yload count for retries

ycheck interface ready
yis it ready?
+1f not ready repeat

tload extended address

rpacket offset
stransfer low Yyte out

124

....................

....... RN e Site e puti e S e S) ~ S S AN A S e AT A
B e AP P R RS TR ITR TN, VA ST WU W S i T N Pl P

mov a&x,

cld

pop ds
ret

?

- out p_addr_hi,al stransfer hi bdyte out
check_result:
mov ax,p_status yload status word
cmp ax,0001HE scheck for success ‘
Je success_read
cmp ax,390008 sycheck for failure
Jne retry
Jmps check _result
retry:
mov dk_err_code,al jsave error code
B mov ax, sclear status word
- dec dk_cnt yreduce retry count
- jnz send_packet 11f <O @ try again
- mov result, OFFH yreturn fallure code
[jmps dk_execute_ret
[. success_read:
o mov result, 0k jreturn success code
o dk_execute_ret:
[pop es
1 ret
;.— - -
xfr_bduffer: ieet data from common memory
rand load into local memory
push es ! push ds

mov es,dma_seg
mov di,dma_adr

cmemseg

mov ds,ax

mov si,81@@h
mov c¢x,64

cmp rwdir,9

Jz xfr

xchg si,di

mov ax,ds

mov es,ax

mov ds,dma_seg

rep movs ax,ax

! pop es

D b b s sl et s et s D A R o T e

Data Area
R R I Il e L e L e e e P e T P R L R R L L

.
’
.
?

L

- .

PP—

eseg

Remex Interface Packet -
packet located in common mTemory at EZ2€e:¢0¢C4

1set up for write operation

ymove as 16-bhit words

A N e i e
.~ m v W

Y
P N LY

RS TRy

o org 9004k joffset of packet
2 p_modifiers v 1 ifunction & logical unmit
t' p_status rv 1 ireturned status
, p_track_no rv 1 iselected track numbder
b P_head_sect rv 1 iselected head/sector numder
L p_mem_addr rw 1 jbuffer address
t, p_msb rv 1 jextended bdits of bduffer address
. p_word_count rv 1 jsize of data dlock
’ -Misc Variadles
cseg $
dk_err_code do 398 yTeturned Remex arror code
dk_cnt db @¢E
result rb 1
redir ry 1 9 = read § 1 = write
He
P
. 126
¥

e ——— — e - - —
o T T T R T T T T Ty T T i o o F
- - - - - - - - - " - - LI S AV — - v - - - - . - - - LA l"- - "o ‘e ‘e “ E

L_A.J.' PSPPI L S PV S R S S T . - g PSPPI S | e a A A AN A M . Al mms e A A wle e T

sProg Name
iDate
yModified
s¥iritten by
sFor
yAdvisor
sPurpose

-e We $O WO w

APPEND
PROGRAM Ltgriﬁclgrrxxunn.ws

RYHARD2.A66 (REMEX HARD DISK ACCESS CODE)
13 October 1982
Transfer Thru Common Memory/Ticket Sync

Tom V. Almquis

t and David S. Stevens

Thesis (AEGIS Modeling Group)

Professor Kodres

This code is an include file w/in C?MBIOS.AS6.
It contains the code necessary to access tne
REMEX hard disk drive.

o8 (

| RO P T P SO

s - -
bytes and masks (REMEX) -
sread commanrnd
ywrite command
tCP/M logical dsk# for nead
10 of REMEX hard 4isk
yprint string function

Controller Ports —=—=——receceeee-

sctrler’s base in C?/M-86

g/Deblocking——-

(3X] jsname for bdyte at BX
+yCP/M allocation size
yhost disk sector size
rhost disk sectors/trk

28 3CP/M sects/host bduff
tlog2(hstdlk)

equ hstblk * hstspt ;CP/M sectors/track

g Equate

. 3 == Disk Controller command

ti hdg_rdy_mask equ @8H
hdg_rd_cmd equ 1319H
hdk_wr_cmd equ 102¢h
hdk_tries equ 19

. head? equ 3

b pstrf equ 9

f? j=——=—==——— REMEX Interface

- hdk_CMD_reg equ 728

II hdk_status_reg equ 71H

L hdk_addr_lo equ 72K

- ndk_addr_nai equ 738

h

E‘! ’ -=EBlockin

[una equ byte ptr

= blksiz equ 163€4

L hstsiz equ 512

- hAstspt equ 3S

: hstblk equ hstsiz/1

r-. secsh? equ 2

- cpmspt

.- secmsk equ astblk-1

. wrall equ 2

E wrdir equ 1

£ wrual equ 2

b

5

4

ysector mask

ywrite to allocated
ywrite to directory
ywrite to unailocated

127

I i S i eI

.
?
°
?
.
’
.
’

T T T N R R e e o o b 2 T = T2 R S A A Ay s

DEVICE SPECIFIC -CODE

entered from the main CPMBIOS via label tadles
+htrtt bbbt tbrbtbt bt bbb bbb rbrbrbrrbbhrbbr bbb d bbbt bbbt et

CSEG $
s INIT 7called from INIT
rxhard_init:
ret
;-— - - -
yBOME entered via nome label tabdble
Rxhard_nome:
mov al,hstwrt rcheck for pending write
test al,al
joz bomed .
mov hstact,€ yclear host active flag
homed :
ret

y -

ySELECT DISK
Rxhard seldsk:

entered via seldsk label table

.

.mov cl,unit

mov sekdsk,cl

test dl,1 tlst activation of disk?

jonz contl yno

mov hstact,d yyes

mov ucacnt,d

contl:

ret
'SELECT TRACK enterd via seltrk ladel table
Rxhard_settrk:

mov sektrk,cx

ret
; —————— S > S S Y G T G G S S WA & G - o - - e - = e G - GE e e G G - - = S G o e S
ySELECT SECTOR entered via selsec laJel table
Rxhard_setsec:

mov seksec,cl

ret

128

...............................
...

.............

PR—
'READ

Rxhard_read:

mov
mov
mov
mov

Jmp

entered via read label table

iread selected CP/M sector

unacnt,? sclear unallocated counter
readop,1 sread operation

rsflag,l smust read data
wrtype,vwrual streat as unalloc

rvoper yto perform the read

SWRITE

’

Chkuna:

Rxhard _write:

mov
mov
cmp
Jnz

mov
mov
mov
mov
mov
mov
mov

enter via write label tabdle

twrite selected C2/M sector

readop,¢ ywrite operation
wrtype,cl

cl,vrual swrite unallocated?
chicuna scheck for unalloc

swrite to unallocated, set parameters
unacnt, (»lksiz/128) jnext unalloc recs

al,sekdsk ydisk to seek
unadsk,al yunadsk = sekdsk
ax,sektrk

unatrk,ax yunatrk = sektrk
al, sekxsec

unasec,al junasec = seksec

e i h sk it a2 R e R e e bbbt T L R L

BLOCKING & DEBLOCKING SU3BROUTINES

HE e o T e Rt i Bt S P R PR e e P

scheck for write to unallocated sector

mov bx,offset unacntipoint "INA" at UNACNT
mov al,una
test al,al sany unalloc remain?
Jz alloc yskip if not
;more unallocated records remain
dec al yunacnt = unacant-1
mov una,al
mov al,sekdsk ;1same disk?
mov hx,0ffset unadsk
cmp al,una ysekdsk = unadsk?
Jnz alloc yskip 1f not
ydisks are the same
mov AX, unatrk
cmp AX, sektrk
[jnz alloc yskip if not
“ jtracks are the same
S
é
3 129
E.
d
| @
L
L e . |

mov al, seksec ysame sector?
mov bx,offset unasec jpoint una at unasec
cmp al,una iseksec = unasec?
Jnz alloc sskip if not

imatch, move to next sector for future ref
inc una junasec = unasec+l
mov - al,una send of track?
cmp al,cpmspt scount CP/M sectors
Jb noove yskip 1f bvelow

3 yoverflow to next track

I mov una,o yunasec = @

8 inc unatrk junatrk=unatrk+1

¥ noovf: ymatca found, mark as unnecessary read

(] mov rsflag,d irsflag = @

N jmps rvoper sto perform the write

f alloc: snot an unallocated record, requires pre-read
mov unacnt,?d yunacnt = 2
mov rsflag,l srsflag =1

;jdrop through to rwoper
sCommon code for READ and WRITE follows

rwoper: jenter here to perform the read/vwrite

mov erflag,? jno errors {yet)
mov al, sexkseé ycompute host sectar
sub al,1
mov cl, secsaf
shr al,cl
mov sekhst,al yhost sector to seek
sactive host sector?
mov al,1
xcheg al,hstact ralways bhecomes 1
test al,al ywas it alreedy?
Jz filhst ;£111 host if not
rhost buffer active, same as seei bHuffer?
mov al,sekdsk
cmp al,hstdsk ysekdsk = hstdsk?
Jnz nomatch
ysame disk, same track?
mov ax,hsttrk
o cmp ax, sektrk shost trk same as seex trX
yo Jnz nomatch 1

. ysame disik, same track, same bvuffer?
e mov al,sexhst

-

.7

13¢@

X '

Fa—s" —.- g

PR Shme A g . A s

.
- N

~ cmp al,hstsec 1 sekhst = hstsec?
. Jz match 1skip 1 £ match
:
- nomatch: jproper disk, but not correct sector
' mov al, hstwrt -
LP test al,al y dirty Dduffer ?
Jz filhst sno, don’t need to write
call vritehst jyes, clear host bduff
- filhst: imay have to fill the host buffer
. mov al,sexdsk ! mov hstdsk,al
mov ax, sektrk ! mov hsttrk,ax
- : mov al,sekhst ! mov hstsec,al
- mov al,rsflag
- test al,al yneed to read?
< Jz filhstl
u’ call readhst
filhstl:
mov hstwrt,? yno pending write
match: ' 5
scopy data to or from buffer depending on readop
mov: al, seksec smasik bduffer number
sub al,1
and ax, secmsk t1least signif bdits masked
mov cl,? sshift 1sft 7
shl ax,cl ;(* 128 = 2%%7)

74X has relative nost buffer offset

add ax,offset hstbuf j;ax has buffer address
mov si,ax rput in source index reg
mov di,dma_adr yuser buff is dest if readop
push DS '
push ES ssave segment registers
mov ES,dma_seg 1set destseg to the user seg
'»SI/DI and DS/ES is swapped
»1f write op
mov cx,128/2 jlength of move in words
mov al,readop
- test al,al ywhich way?
o jnz rvmove yskip if read
a swrite operation, marx and switch direction
mov hstwrt,1 snstwrt = 1 (dirty bduffer)
xche si,di jsource/dest index swap
mov ax, DS
mov ES,ax
mov DS,dma_seg ysetup LS,ES for write
rvmove:

131

PR S W S UPUPAPNPP AP U IS WP P, S T S TS T SRy

o ey -y
. AR ..
' . i gerer aset L

e L SN

‘ e
PR P

Py

e " N pay
DS SO SR A NS C N T

B e L S T R S ey
- L. - . . NI - “ .

L)

14
14

cld
rep movs AX,AX ymove as 16 bit words

pop ES

pop DS srestore segment reglsters
7ydata has been moved to/from host duffer

cmp vrtype,wrdir swrite type to directory?

mov al,erflag sin case of errors

Jnz return_rv tno further processing
jclear host vuffer for directory write

test al,al serrors?

Jonz return_rv 1skip if so

mov hstwrt,? thuffer written

call writehst

mov al,erflag

return_rw:
ret
P — -
read_hst:

mov hdk rwdir,©@

call request seet resource (SYNC.A86)

mov bx,hdk_rd_cmd

call ndk_bduild_packet

call ndg_send paczet jperform the read

call hdk_xfr _bduffer

call release ;free resource (SYNC.A86)

mov al,ndk_result sret success/fallure code

ret

’
write_nst:

mov
mov
cmp
jnz
call
mov
call
call
call
call
mov
Jmp

wrt_err:
mov
call

hdk_rwdir,1

al,hst_dsk

al,user

wrt_err

request seet resource (SYNC.A8E)
bx,hdk_wr_cmd yset up write to hard disk

hdk_bui ld_packet
hdk_xfr_buffer
hdk _send_packet

release ;free resource (SYNC.AE6)
al,bdk_result yret success/fallure code
wrt_ret

bx,0ffset wrimsg
pmsg

132

= s ow o ie ko e m o+ oa e e A

mov
wvrt_ret:
ret

Y e T o
.

?

al,effh

sreturn error to CP/M

L e e ad Ll s D L T SRR R S AP

REMEX HARD DISK

SUBROUTINES

R Dl o L o 2 2 o e e e S oo L

hdk_bdbuild_packet: s packet dui

push

mov
mov
mov
mov
mov
mov
mov
mov
mov
sud
mov
add
mov
mov
mov
mov
pop
ret

es
ax,cmemseg
es,ax

hdk _modifiers,d

1t in common memory

x senter read code {n packet

hdk_status,d94@H jclear packet status word

AX,2000E
ax,hst_trk
hdk_track_no,AX
AX, 09008)
ah,hst_dsk
ah,head ¢
AL,nst_sec

ax,1

1clear register

yget track no.

senter track no. in paciket
tclear register

sdetermine head #
yset sector #

hdk_head_sect ,AX jload in pacget
hdk_mem_addr,d120n jaddress of CP/M dbuffer

hdk _msb,¢@deh
hdk_word_cnt,25
es

jcommon memory seg
6 74 of 16 bit words

’
hdk_send_packet:

push

mov
mov
mov

es

ax,cmemseg
es,ax

hdk _cnt ,hdk_tri

send_hdk_packet:
AL,ndk_status_reg

in

and
cmp
jne
mov
out
mov
out
mov
out

AL,hdk_rdy _mask
AL, 28H
send_ndx_packet
al,1lch
hdk_cmd_reg,AL
ax,0@¢4n

hdk _addr_lo,AL
AL,AH
ndk_addr_ni,AL

check_hdk_result:

mov
cmp

ta SP RPN

ax,hdk_status
AX,2¢¢1kt

es j3load count for retries

scheck interface ready
vis 1t ready?

tif not ready repeat
}load extended address
stransfer low bdyte out
stransfer hi byte out
yload status word
scheck for success

133

T NS UL U VAU WSO VDU SO)

N ’-I.-IF AN AN AN S ‘1
BRI . o -

......

Je hdk_success_read
cmp AX ,00008 scheck for failure
Jne hdk_retry

Jjmps check_hdk_result
hdk_retry:

mov hdk_err_code,AL jsave error code
mov hdk_status,? 1clear status word
dec hdk_cnt yreduce retry count
Jnz send_hdk_packet jif <> @ try again
mov hdk_result ,2FFd jreturn failure code
jmps hdk_execute_ret
hdk_success_read:
mov hdk_result,d935 yreturn success code
kdk_execute_ret:
por es
ret
; - - - ———— - — — — — G —— - —
hdk_xfr_bduffer: ytransfer data from common

imemory to local memory

push es ! pusa ds

mov ax,cs |
mov es,ax
mov di,offset hsthuf
mov ax,cmemseg
mov ds,ax
mov si,2120h
mov cx,256 .
cmp ndk_rwdir,®
Jz hdk_xfr
xchg si,di
mov ax,ds
mov es,ax
mov ax,cs
mov ds,ax
hdk_xfr:
cld
rep movs ax,ax
pPop ds ! pop es
ret

HE R B b b i D R et b e S L R s

H Data Segment Area
RS R LI I T P et e L P L PR P L L Dl DL bl S L R R Rl L L Bl L Y il Lt L

y - -— Remex Interface Packet-----——---=-m———--
ypacZet built in common memory at E22¢:23404

eseg

org 9204h ,offset of packet

Bl el el -y el . e stemindh . - A - J
PR P L - - - P P S S S

é;
2
}
b
E.
E
i

FTT"""TY'"'f' o
: .-

3

p

3

p

y

h,

Misc

syfunction & logical unit
yreturned status

iselected track numbder

yselected head/sector number
ybuffer address

sextended bits of duffer address
1slze of data dlock

Variables
sreturned Remex error code

ssuccess/fallure code

yseek disk number
yseek track numbder
iseek sector numbder
thost disk numbder
yhost traci numbder
yhost sector number
yseek shr secshf
rhost active flag
shost written flag
sunalloc rec cat
rlast unalloc disk
slast unalloc track
ylast unalloc sector
serror reporting
rread sector flag

71 if read operation
swrite operation type
ylast dma offset
shost buffer

cr,lf,’Write Access Not Permitted On This”

hdk_modifiers rv 1
hdk_status rw 1
hdk_track_no r 1
hdk_head_sect rw 1
hdk_mem_addr rw 1
hdk_msh rv 1
hdk_word_cat rv 1
cseg $
;—-
hdk _err_code dd @¢fH
hdk_cnt db 0Q@H
hdk_result rd> 1
adk_rwdir rb 1
sek_dsk rbd 1
sek_trk rv 1
sek_sec rb 1
hst _dsk rd 1
pst_trk rw 1
hst_sec rb 1
sek_hst rbd 1
ast_act rd 1
nst_wrt rb 1
una_cnt rb 1
una_dsk rb 1
una_trk rw 1
una_sec rbd 1
erflag rb 1
rsflag b 1
readop rb 1
wrtype) 1
dma_off rw 1
hstbuf rb hstsiz
wrtmsg 4db
dd»

 Drive’,@

135

T TE" B " SO
e . . VI
. Gt .

¢ g

PROGRAM LISTING OF CPMMAST.DEF

APPENDIX G

The following disk definition statements were used 1in

this thesis. The command "GENDEF CPMMAST.DEF”~ 1is

executed

to produce CPMMAST.LIB which must be assembled into the BIOS

using an “include” command.

disks 7?7
diskdef 3,1
diskde?f 1,1
diskdef 2,1
diskdef 3,1
diskdef 4,3
diskdef 5,3
diskdef 6,3
endef

PRSP PO N G U

126,0,1024,71,32,90,2
126,6,1024 ,243,64,64,2

v156,8,16384,275,128,2

136

W1

A B & _a

..........

..................

.....
................

APPENDIX H
PRCGRAM LISTING OF CPMMAST.LIR

When GENDEF is executed usi
file, CPMMAST.LIB is created.
the code generated by GENDEF an

B10S with an "include” command.

’ DISKS 7
dpbase equ $
dped dw x1t9,3000h
dw 69906h ,0600h
dvw dirduf,dpve
dw csvd,alvd
dpel dw x1tl,¥0060
dw Q0eoh ,8006h
dw dirduf,dpbl
dw csvl,alvl
dpe2 dw x1t2,3000h
dw @290h ,00080h
dw dirbuf,dpd2
dvw csv2,alv2
dped dw x1t3,3920h
dw 00€¢6h ,0000h
dw dirduf,dpdd
dw csv3,alvd
dpe4 dw xlt4,00800h
dw @000h ,2000h
dw dirduf,dpde
dvw cSv4,alve
dped dw x1t5,0000h
dw ¢Jd@09h ,2900h
dw dirbuf,dpbdbS
dw csvS,alvs
dpeé dw x1t6,0€C00h
dw 9000h ,0000h
dw dirdbuf,dpoo
dw csv6,alvé
’ DISKDEF @,1,26,9
dpb@ equ offset $
dw 26
do 3
dbp 7
1

o A A i
. M ﬂ BN :\ LA e
LIPS DA N R .S,"....";.,‘...‘ AR RN

cg CPMMAST.DEF as the source
The listing which follovw is

d must be assembled into the

sBase of Disk Parameter Blocks
yTranslate Table
sScratch Area

s Dir Buff, Parm Block
s;Check, Alloc Yectors
yTranslate Tabdle
sScratca Area

+Dir Buff, Parm Block
yCheck, Alloc Vectors
syTranslate Table
trScratch Area

iDir Buff, Parm 3lock
sCheck, Alloc Vectors
;Translate Tadle
1Scratch Area

:Dir Buff, Parm Block
;Check, Alloc VYectors
syTranslate Table
y3cratch Area

$Dir 3Buff, Parm Block
sCheck, Alloc VYectors
yTranslate Taole
yScratch Area

yDir Buff, Parm Block
iCheck, Alloc Vectors
yTranslate Table
;Scratch Area

;Dir Buff, Parm Block
yCheck, Alloc VYectors
,1024,71,32,0,2

t1Disk Parameter 3Rliock
iSectors Per Track
yBlock Shift

t3lock Mask

37

ML i i 4

™ Onss 3

ANt LGN Sk ga

L) g & SN DAL

xlto

also
css@d

’
aphl

xltl

alsl
cssl
’

dpb2
als2

css2
x1t2

’
dpb3

......

0 yExtat Mask
70 '»Disk Size - 1
31 'Directory Max
128 tAllocO
9 sAllocl
0 1Check Size
2 70ffset
offset $ sTranslate Table
192’3,4
5,6,7,8
9,192,11,12
13,14,15,16
17,18,19,290
21,22,23,2¢
25,26
9 sAllocation Vector Si:ze
2 ' Check Vector Size
DISKDEF 1,1,26,6,1324,243,64,64,2
offset $ 'y Disk Parameter Block
26 : ’Sectors Per Track
3 sBlock Shift
7 7Block Mask
2 sExtnt Mask
242 yDisk Size - 1
63 ;Directory Max
132 sAlloco
e yAllocl
16 s Check Size
2 yCefset
offset $ yTranslate Table
1,7,13,18
25,5,11,17
23,3,9,13
21,2,8,14
20,26,6,12
18,24,4,12
16,22
31 tAllocation Vector Size
16 tCheck Vector Size
DISKDEF 2,1
dpbl yEquivalent Parameters
alsl ySame Allocation Vector Size
cssS1 ySame Checksum Vector Size
xitl ySame Translate Table
DISKDEF 3,1,156,9,16384,275,128,49,1
offset $;Disk Parameter Block
156 ySectors Per Track
7 tBlock Shift
127 yBlock Mask
7 yExtat Mask
274 yDisk Size - 1
127 s Directory Max
138

x1t3

als3
c5s3d

L
dpb4
als4
554
xlt4

offset §
1,2,3,4
5,6,7,8
9,10,11,12
13,14,15,16
17,18,19,2¢
21,22,23,24
25,26,27,28
29,39,31,32
33,34,35,36
37,38,39,490
41,42,43,44
45,46 ,47 ,48
49,50,51,52
53,54,55,56
57,58,55,69¢
61,62,63,64
65,66,67,68
69,76,71,72
?3,74,75,76
?7,78,79,80
£1,82,83,84
85,86,87 .58
89,90,91,92
93,94,95,96
97,968,99,100
121,122,123 ,124
185,106,187 ,108
129,118,111,112
113,114,115,116
117,118,116,12¢
121,122,123,124
125,126,127,128
129,130,131,132
133,134,135,136
137,138,139,1492
141,142,143,144
145,146,147 ,148
149,152,151,152
153,134,155,156
35

2

DISKDETF 4,3
1pb3

als3

css3

xlt2

DISKDEF 5,3

4
*

7Alloc@
tAllocl
.sCheck Size
30ffset

" ;Translate Table

sAllocation Vector Size
yCheck Vector Size

yEquivalent Parameters

ySame Allocation Vector Size
ySame Checksum Vector 3ize
ySame Translat= Table

133

E? : dpds

i alss
e cssS
B x1ltS

’

dpb6
alsé€
cssé
xlt6

-e 0d we

begdat
dirduf
alva
csvd
alvl
csvl
alv2
csv2
alvd
csvd
alv4
csvé
alvs
csvs
alvé
csvé
enddat
datsiz

........
.............

equ dpbd3 sEquivalent Parameters
equ alsl ;Same Allocation Vector Size
equ css3 sSame Checksum Vector Size
equ x1t3 ;Same Translate Table
DISKDEF 6,3 :
equ dpb3 s3quivalent Parameters
equ alsd ;Same Allocation Vector Size
equ cssd ;Same Checksum Vector Size
equ x1t3 ;Same Translate Table
ENDET

Uninitialized Scratch Memory Follows:

equ offset $ sStart of Scratch Area
rs 128 tDirectory Buffer

re alsd sAlloc VYector

rSs css@ ;Check Vector

rs alsl t$Alloc Vector

rs cssl tCheck Vector

rs als2 t1Alloc Vector

rs css2 sCheck Vector

rs als3 tAlloc Vector

rs css3 ;Check Vector

rs als4 tAlloc Vector

rs cssS4 tCheck Vector

rs alss tiAlloc Vector

rs ¢555 yCheck Vector

rs alss sAlloc Vector

rs cssé sCheck Vector

equ offset $ s2nd of Scratch Area
equ offset $-beedat ;Size of Scratch Area
dd» 2 sMarxs End of Module

14¢

APPEND .I- I .
PROGRAM LISTING OF INTELDSK.A86

INTELDSK.A86 (MDS S. Density Floppy Routines)
9 Aug 1982

Jim John, SMC 1277, 649-86592

Tom V. Almguist and David Stevens

Thesis (AEGIS Modeling Group)

Professor M.L. Cotton

This code is an include file w/in CPMBIOS.A86.
It contains the routines for using the MDS
Single Density Floppy Disk. It is configured
for a single iSCB E6/12A and does not use
common memory for I1/0.

sProg Name
sDate
Written bdy
1Modified by
sFor
sAdvisor

' Purpose

-e wo OO we

’— EQUATES

sport addresses

base equ 278h y1SBC221 port address bhase
rrtport equ base+l sread result type (input)
rryport equ base+3 ;read result bdyte (input)
resport equ base+7 jreset 1SBC221 (output)
dstport equ base sread subsystem status

; (1nput)
ialport equ base+l ywrite iopd addr low

; (output)
iahport equ base+2 swrite iopb addr high

{ (output)
ycommand codes & masks

rdcode equ 4 sread command code
wrcode equ 6 swrite command code
cwcode equ 82H ichannel command code
inthit equ @4h interrupt bit mask

retries equ 12 yfor disk 1i/0, before error

HE R R b o s it s R R R T e e R

’ ENTRY POINT ROUTINES

HEat S e B T e R e L R b a s B e

inteldsk init: Jinitialize disk coantroller
sactually done dy iSEC86/12 monitor

ret

141

inteldsk_home:
ret

’
inteldsk_seldsk:
ret

;.—
inteldsk_settrk:
ret

inteldsk_setsec:
ret

inteldsk_read: jread sector from disk

mov cl,4

mov al,unit ycombine disk selection

sal al,cl swith opcode

or al,rdcode s to make 1o command for read
mov 1o_com,al sset it in comd word of iopd
call dsk_1io rand execute it

ret

;—-
inteldsx_write: j;Write to disk

mov cl,4 screate 10 command for write
mov al,unit

sal al,cl

or al,wrcode

mov 1o_com,al

call dsk_1io ygo do 1t

ret

HE o R R e S R T S e L L L L

’ SUBROUTINES

R R R S R e e L LSRR L e R D L L X

?

dsx_io: rexecute disk read or write function for
$1153C291 controller. Sets up remainder of
7yiopd ard sends its addr to the controller
sthen polls for a response and checks for
yerror zoaditions.

mov lo_chw,cwcode yset no wait code for channel

142

pu - aten LA VP S S 0 GO AL W WP TG YU, W e \ L3 L A o . e d

ki ey 0
i' S R
. P T

Aandee Sl o 04
. -

s Jutech ath e o e)
- '

diol:

dio2:

di103:

dio4:

d106:

iopd

io_chw
lo_com
fo_nsc
fo_trk
lo_sec
1o0_adl
1o_adh
try cat

mov io_nsc,1
mov al,sector
mov io_sec,al
mov al,track
mov 1o_trk,al
mov cl,4

mov ax,dma_seg
sal ax,cl

add ax,dma_adr
mov io_adh,ah
mov io_adl,al

......
...

ytransfer 1 sector
yset up i1opd trk and sect

srecombine dma seg and addr

sset it in addr word of iopd

mov try_cat,retries

in al,rrtport
{in al,rrbdport
mov ¢cl,4
mov ax,cs
sal ax,cl

tclear coatroller

et address of iopd

add ax,offset iopd

out lalport,al
mov ¢cl1,8

sar ax,cl

out iahport,al
in al,dstport
and al,intbit
Jz dio2

in al,rrtport
or al,al

Jz di03

ia al,rrbport
Jmps dio4

ian al,rrdport
or al,al

jz 4106

dec try_cnt
jonz diol

or al,error
ret

sand send it out

ywalt for contrler interrupt

jcheck completion code

sstatus chgd, ignore result
sand retlry
ycheck 1o result

iret with al=@ if no error
yerror 1f we got here
ydecmt count and try again
stry again if any left
yset permanent error code

i i a2 b b b R R R L T T T T X VA ARy

PRIVATE DATA ARZA

R b ok i b 2 T T S o A P R R ST S SRR P S

rh> 7

equ iopbd

equ iopdh + 1
equ {opd + 2
equ ispb + 3
equ iopd + 4
equ iopb + 5
equ lopb + 6
rb 1

11/0 parameter block

7iopd channel bdyte

scommand byte

ssectors to xfer (always 1,
sselected track

1selected sector

yphysical address for S3C201 IMA

tdisk error retry counter

143

N

MO LA LS o 00 S0 U0 ol Skt cie
‘ T SR e,
A A

M A5k S ane A 2ad s o Sl & e

A

v WYY vTewws
e

NI RAY

el
Alu AL

A O A S NN o P I e e M L e e e

il At e

L.l-\‘!——1-‘.“.-_!..AMA“;.‘..“J»..A,'., — -~ P PP P e Bt N .

PROGRAM LDCPM.AB6

LDCPM.A8B6

T.V. Almquist and D. Stevens

This program reads the file entitled
CPMSLAVE.CMD into common memory beginning at
location E@Q0:500.

3Prog Name
i¥ritten by

0 eo ¢9 ¢o 00

cseg
org 2190h
Jjmp start

3 #8200 e 2x 208 248 228 3 08 33038 36 76 340 31 2C KeAC FEAE 3¢ 30 2023 2303000 2K 2020 A0 298208 200 2R 08 20 e e 240 2k Ak 28 20 oA A g 2 Ak 2k e

H Equates
§ 200200 20 20 e ol 48 2 004030 58 20 40 9800 2 005 X028 00 20608200 40 020 000 050 A8 00 a0 o8 e e e o e gl e o

cr equ €dh scarriage return

1¢ equ @ah 'line feed

drive equ 92%4L ytarget CP/M drive #
bdos_int equ 224 sinterupt vector

pstrt equ 9 'print string function
seldsk? equ 14 yselect disk function
opernf equ 15 roven file function
readf equ 20 yread function

dmaf equ 26 1set dma offset function
dmab? equ 51 rset dma dvase function

§ 300 30k e e e e feale e a0e 2 40 e 2 033 e XOAR e 2620 e AR AR 2 K 240 2528 0028 e 34e e K N0 HE K 2 26 e A X N AR IR A

’ Subroutines
;********##****#*#*#**#********#*#***#*#******#**##********

seldisk: 1select target disc #
mov cl,seldskf
mov dx,drive
Jmp sys_vec
; -
openfnc: yopen file denoted in fcb
mov cl,opent
mov dx,offset fch
Jmp sys_vec
; P - - e
144

......................

setdmab:

1set dma base address

mov cl,dmabdt
Jmp sys_vec
;_-
setdma: yset dma offset
mov cl,dmat
Jmp sys_vec
read: yread 128 bdytes from file
tin fcd
mov dx,offset fcb
mov cl, readf
Jmp sys_vec
msg: yprint a character string
yend of string denoted by @
mov cl,pstrf
Jmp sys_vec
;_- ___________
sys_vec: yexecute bdos function call
int hdos_int
ret

3 %0 260 2 e 3 x e 26 24 e 240 40 2 3¢ 2 e 246 38 ¢ 20 4e 348 38 23 230 3¢ 25¢ 2 4006 3¢ 1 3448 e 28 e N0 e e 40 08 e e e 2 e e e 5 X e AR

’
§ 0% % (8 e e aeake 33 e e N e Rexe e

start:

call
call
cmp
Jne
mov
call

JWP

cont:
mov
call

; mov
call
call

seldisk
openfnc
al,25%
cont

dx,offset nofile

msg
stop

dx,cs
setdmabd

dx,offset

setdma
read

Main Program
2033 338 38 202 38 3K e 2K 3% 20 3% 390 3 30 3¢ 252 30 2K ¢ e 28 e e 0 3e L 2k 2k 12X AAK R XN WX AK AL

pagel

sselect desired disk

yopen file
2ile not found

it

ypriat error msg

ysave 1st page in local

ymemory

yread 1st paee

145

sl st

sread file into <commom memory

mov
call
mov

readfile:
call
push
call

cmp

Je

cmp

: Je
- mov

o e

o contread:

pop
add

Jmp

done:
mov
call

stop:
mov
mov
int

-e we -

nofile db

rerr dd

fmsg dd

dby

9 fcbd dd
2 db
o pagel rs
= b
& end

dx,Pe@@0h
setdmabd
dx, 3500h

setdma

ax

read

al,21h

done

al, oeh
contread
dx,offset rerr
msg

stop

dx
dx,2806h
readfile

dx,offset fmsg
msg

cl,d¢h
i1, 06h
bdos_int

1set dma bdase to common
ymemory
t1desired offset

yread 126 dyte page
yread complete ?

jrepeat

yotherwise print read error

tincrement dma offset for
inext page

yprint completiorn msg

sreturn to CP/M

#2208 % 3 302 36 e 242 36 25 230 3 30 3 20 3 348 240 206 348 208 348236 3 2 38 30 20 28 200 X8 K KWK 246 2K X 240 e A0 AC 08 e K R RE X RO RAE XX AT NN

Data
a8 386288 38500 6 30 246 230308 342 48 3¢ 36 2383 238 K 242 38 34K 23638 2 348 280 308 26 2 28 3K 2 B3k 2903 2 a4 8¢ e e 240 e e 2 2k a0 0 e e o e e e 3k

cr,12, CPMSLAVE.CMD Not Found On This Disks$”’
cr,1f, Read Errors$”’
cr,1f, CPMSLAVE.CMD Loaded ianto Common

‘Memory$”’

@4, ‘CPMSLAVE’,°CMD’,0,0,0,0,2,2,2,2,2,2,0,2
0.@.%.6.5,2'0,0'”

128
2

bV TN S, WU SRRt

146

P S S S R L. .

R4

g l‘rfx‘.ﬂ"-
S TR

...........

5"“'5 K
PROGRAM LISTING LDBOOT.A86:

LDBOOT.A86

T.V. Almquist and D. Stevens

This program loads the doot loader into
common memory and is used by slave E6/12As.

sProg Name
s¥iritten by

o9 #S® oe oo

3 29ale o e e e e e o 364 e e e 2 a0 28 208 20830 356 20 3 e 00 2 20 35 e 20 a4t e e e e e e 2 o el e 8 e 3 2 e e e e e e e e e e

cseg
org @122h
jmp start

a4 XX sfe 2k e 240 202 38 248 248 250 340 35 3 300 200 390 236 340 38 298 30 33 3¢ 3K 242 290 330 34¢ 22 206 3¢ 398 238 25 336 248 208 246 230 30 2 ¢ 20 38 240 46 ¢ 20 X XX 3x KA A AR KK

’
H Bquates
§ 60 RN 2 A 208 A0 0 080 X5 0 0 K0 60 A o 26 R A A AR

cr equ 4dh ycarriage return

1f equ dah 'line feed

drive equ 0024h starget CP/M drive #
bdos_int equ 224 yinterupt vector

pstrf equ g sprint string function
seldsk? equ 14 yselect disk function
openf equ 15 yopen file function
readf equ 20 sread function

dmaf equ 26 sset dma offset function
dmabvt equ 51 yset dma base function

4 SR 2o e ate e 3 4 2 e 40 300 46 e e e e e o 3o 2k e e e ok e 3 o 56 e e 2 e 06 o e o 2 e 3 3 e 2 250 e e e o e N R

’ Sudroutines
3 30 5 00K e 50 38 38 5620 30608 0 0000 A0 8 0 000 K0 0200 00 KR 0 000 {0 K0 o o8 A R R AR A AR

seldisk: jselect target disk #
mov cl,seldsk?
mov dx,drive
Jmp sys_vec
; -— - o
openfnc: ropen flle denoted in fcbd
mov cl,openf
mov dx,o0ffset fch
Jmp sys_vec
; ——— - ——
147

WY N W SO SN SR SRS S S W S S S S W S Ss BT NPT ST Y G S R S A A m a A s a . P

> et

setdmabd:

sset dma base address

mov cl,dmadf
Jmp sys_vec
;...—. - —- -
setdma: 1set dma offset
mov cl,dmat
Jmp sys_vec
; ——n
read: sread 128 dytes from file
iin fcbd
mov dx,o0ffset fcd
mov cl,readf
Jmp sys_vec
; —— - -— - o
msg: sprint a character string
send of string denoted by 2
mov cl,pstrf
jmp sys_vec
; - ——— - —— e > G G S e - - G e S - - - - - e = - -
sys_vec: yexecute bdos function call
int bddos_int
ret

3 S e 33 o ol e ik o 30 o e e e e 46 20 e e o e 36 e e e 30 350 8 200 30 00 2 e 290 20 26 X6 30 300 20 X6 e 20 3 0 20 e N e e 3 Ao A

Main Program

5 03 2 2 e e e e 40 K e e e 3 e 0 00 2 00 340 R 2 {0 AK 38240 e 26200 00 00 246 2 ke 2502 0 e e a2 200 K0 0 K 30 00 A 1 ek A0

start:
call
call
cmp
Jne
mov
call

Jmp

cont:
mov
call
mov
call
call

seldisk jselect desired disk
openfanc sopen file

al,255 31f file not found
cont

dx,offset nofile

mse yprint error mseg
stop

dx,cs ysave 1st page in local
setdmao ymemory

dx,offset pagel

setdma

read iread 1st page

Y

R WP I T

148

e 4

bl i A A a om s o

..........
......................................

sread file 1n§o commom memory

mov dx,%ed@2%h yset dma base to common

call setdmab imemory

mov dx,2400h ydesired offset

readfile:

call setdma

push dx

call read yread 125 byte page

cmp al,@1in sread complete ?

Je done

cmp al,26h jrepeat

Je contread

mov dx,offset rerr jotherwise print read error

call msg ’

jmp stop

contread:
e pop dx
T add dx, 380h jincrement dma offset for
e Jmp readfile ynext page
L done:
o mov dx,offset fmsg ;sprint completion msg
i- call msg
stop: :

mov cl,oeh syreturn to CP/M

mov dl,@8h

int bdos_int

;*********##*&******************#**#***##*#***#********#***

L 3
’ Data
;*********#****#******#*#**#****#*##*##***###**#***##*##***

nofile dbo cr,1£,°B00T.CMD Not Found On This Disks’
rerr id cr,12, Read Errors’
fmsg db cr,1f, BOOT.CMD Loaded into Common Memory$’
fco db 44, “BOOT ‘,’cmMp’,2,2,9,2,2,2,2,9,2,2,2,3

ib» ¢,0,0,0,0,0,0,2,¢
pagel rs 128

dbd 2

ead

i
149

I PRI U . G e S PR T S W DR, W S . V.

APPENDIX L
 PROGRAM LISTING OF BOOT.A86

BOOT.AE6

T.Almquist and D. Stevens

16 October 1982

This program is the boot loader used by
slave 86/12As to load CP/M-86.

sProg Name
jWritten by
yDate

w
-e we

- 3 o0 o e 2 R ek e 3 36 3 40 NN 20 40 e 3¢ o e e X8 20 AW 2 3R KR 3 e R0 02N 0 3¢ 48 0 N 0058 20 20 e e e e e e e N

: ’ Equates
1] '***#***#*#**#******#**#***#**#***#**#*#*##***#*#********#*

load_addr equ 2430h
cpm_addr equ 95¢0h

5 3003t e e 2 e e 3 afe ik s o e s e o ke e e e e e 2 e e 4e 48 e K6 a2 e 336 2 2 ae s e 0 e 2 2 24 e e X 2k e e e e 3

H Main Program
-*#************#*#****###*###***#*#***##*##**#**#***#**#***

cseg
call request yget tickxet number
mov ax,Jdd43h yset es to CP/M segment #
mov 2s5,ax
mov di,2022%h yset desired offset
mov ax,2%ed3%h 1set ds to common memory
mov ds,ax ysegment #
mov si,cpm_addr yCPM.SLAVE offset
mov cx,laddh snumber of bytes to move
- cld y2rom common memory to
- rep movs ax,ax ylocal memory
- call release sincrement server #

jmpf dword ptr bios_offset + load addr
ytransfer to CP/M

F ;#*******#**##****#****#****#***#**#*#*##***t***#*###******
a ; Include File

- § 2008 0 e 00 S 8 S0 e 0 0 e S XA A0 20 A0 A S0 8 0 R e o e e AN o R
%

b, .

k4 include syac.agé6 sfor sharing common memory

§ X0 A0 R A e e 2R AR A3 26 340 246 318 e e e Nk 0 e A e e e e e e e 3¢ 3 0 e A 3 e 2p 26 3 N AR AR AR 2N

' Data
: **##*##* 2850256 2% 3 53X X 30 3 3 39 34¢ 348 238 % 34¢ 2% 348 2 336 230 398 200 i e K 2 8 32 20e 3¢ 3k K 2 X K 2 XK 2X 2g 3¢ 20 2 HK e X AK Ke AR

i ""Y

bios_offset dw 28ddn yC2/M jump vector
blos_ser dw €240h

L T Ty Ve B S NP U P SPURT VPSP T P S S LIPS L NP SR IS ERUPC R &l . P - U SN VU SRR WAUOr S

.........................

(APPENDIX M
. . PROGRAM LISTING OF LOGIN.A86

LOGIN.AB6

15 October 1982

T. Almguist apd D. Stevens

This program contains the code necessary to
permit oaly one user at a time to be logred
on to any I/0 storage device.

t1Prog Name
sDate
sdritten dy

-e Wwe W

3 0o e A e 0 00 A0 e o 20000 0 03046 e KO 02 o e 6 A0 R0 o o 8 A 8 2 00 e XA e A
’ Equates
’

02 {835 e 2 024 58 e 38e 2e 246 3 3 53 308 a8 o 30 33 2 2040 38 9K 3 30 a4 e e 3¢ a3 48 e 2 e e 58 e 20 2 20 8 e 20 29 208 9 e e e e ag X AR
S busy equ 0ffh sbusy indicator
- ndsks equ 7 ynumoper of CP/M disks
~§ § 2000 000 R R 8283030830040 0 050 4200 90 0 0 020 28 2030 98 060 HE0E 20 8 28 02 00 20 20 00 R 2 2 40 2 e A
[S ’ Subroutines
B '**#*###**#**#*#****#*#**#**#*#****#*##***#*#**#***#*#*#**#
o cseg $
: login:
t
g push es yset up to address comrmon
: mov ax,cmemseg ymemory
- mov es,ax
2 log@:
- mov bx,offset logmsg2 ;j;get console number
call pmsg
call conin yret coasole number in al
¢cmp al,31h rensure response is between
J1 logd '1 and ¢
cmp al,34h
Je log@d
mov console,al ysave console numoer
logl:
mov bx,offset logmsgl ;inital login mseg
call pmseg yprint message
- call conin iget login disk
;‘ cmp al,4lh ywithin range defined bdHy
h J1 logl y CPMMAST . DEF
- cmp al,48h + ndsks t&reater than g:
Je loel
and al,d%h ystrip upper nibddle
p sub al,l1 yaormalize to zero
~i mov user,al ysave lozin user disk
- 152
[|

- s m P P SR S 1 .L_A.__.J

.Tﬁl o
v Ceteta
. e

et

(2 2y T T - T Yy

. o e A
o IR TATARS . PRI
S R et e e

.
PR

......

ydetermine 1f disk 1s free

xor bx,bdx
mov bl,al sset up to index logtbdl
mov al,busy
lock xchg al,logtdl [bx]
test al,al 11s disk free?
Jjz log2 1if so, enter console #
cmp al,console ?1s console already logged
Jnz restore ’if not, restore logthl

log2:
xor bx,bx sclear b®x
mov bYl,user roffset in logthl
mov al,console
lock xchg al,logtbl[bx] j;enter console number
Jmp log_ret

restore:
lock xchg al,logtdl[bx] jrestore logtbl entry
mov bx,offset logmsg3d srequest another disk #
call pmsg
Jmp 1logl

log_ret:

. bpop es
ret
; - -
init_login: yinitialize logtdl entries

push es taddress common memory
mov ax,cmemseg
mov es,ax
xor bx,bx
xXor c¢x,cx
mov cl,ndsks sentry for each disk

again:
mov logtdl[bvx] .0 jinitialize elements of
inc »Ox vlogtbl to @
loop again
pop es
ret

9
3 e o X e R 6 A R AR K

3 203 250 e e 4c 20 e e afe 2 200 250 208 8 2 246 00 2 00 e 29030 26 X 0 00 NN 2R e 2 O e 2 2 XA A R AAWAK KON R R

Data Area
24x 3 240 %0 248 3K 238 36 300 6 30 3K 232 36 3% 352 24 e 6 0 2 30K e Xe 3 e XK X 3 N KLHL T X

user ry 1

console ro 1

logmsgl db c¢r,1f, Enter Login Disc Letter (A,D,E,F,G)’
i ¢r,lf2,2

logmsg2 d» cr,1f, Eater Console Number (1,2,3,4)°

183

PP PSP S . S VI WO WS A P . - P G WY S WY Ry L. P S T A

D T AT N N Y N N A i

...............
........

dd cr.lf.ﬂ
logms g3 d» cr,12,’Disk in Use ---- Reselect’,cr,1?,¢

eseg
. org 20h

logthl . rd ndsks sallot memory for logtbol

cseg $

yend login.abb

154

T SN T S B N P S a

PYT SR S S

PO P TP U UL SN U SO ST ST SN |

=tid>

PEND
gl‘%ﬂé%r SINC.A86

PROGRAM L

sProg Name :Synch.A86

sDate t?7 October 1982

jiritten bdy tNick Hammond

tModified by :T. Almquist and D. Stevens

yFor tThesis
sAdvisor :Professor Lodres
yPurpose :Provide synchronizations of CPM/86 read

and write operations to the MBB-83 buddle
memory board and the REMEX Data Warehouse.

2005 240 350 240 208 208 235 34 240 200 3 300 200 200 208 20 308 246 34C 36 2K 8 346 208 2R 2 6340 2 20k 6 083 338 30 20¢ 206 208 3K 30 2 08 s 356 2fe ¢ K (8 e K A% NS AR e

Synchronization Routine
25200 20820 2 20K 20008 02 8300 350200 38 208 3200 2K 08 36 X6 26 20K 0E 28 28 308 205 3 208 08 48 606 3 20838 38 3¢ 3 208 ok ko o e e o o 2k 2 AR AN

e We BE We s VL we W

§ %8 200 x 26000 200 3c 200 24 2 6200 30 2 206 200 206 2 28 3K 206 206 200 28 e 2 46 00 36 2 90 360 2 6 208 08 3 e e e 00 e AR 20 30 e 3 e e o 2 ek e e

’ Equates
'**#************#**#*#*****#**####**##**#********####*#****

cmemseg equ deddodh ssegment address of
jcommon memory
dcount equ 190 sbus contention time delay

§ 0008 2200 20 20 200300 200 K206 00 206 308 200208 2K 200 25 20 260 08 33 205300 6820 200 26 208 28 200 246 26398 208 208 300 e 390 200 200 248 23 30 2 o e e N8 e 2 W IR AX AR AR

H Sudoroutines
't****t#***t*t****#****t***#*#*###***&**###***#*#***t**t***

cseg $

ticket: sreturn the next ticket number in
1R 3

x0r ax,ax iset reserved value

lock xchg ax,next rget ticket aumber

test ax,ax

Jz ticket srepeat if reserved

mov Dbdx,ax sreturn next ticket

inc ax

Jnz ticl

inc ax iskip reserved value
ticl: mov next,ax yincrement ticget number

1585

I Rt — - - < RPN Wik " W W W Dl DRETY DL JUR GUEII D P pon T G DAL S SN IPAL DAL L 0P WP G

14

LA § A b) bt
T " RRE BAAOMPOAI
5 PR PRl ‘.'.'v‘ B

N A 4 ey oA
[N N .
R fate

L2 I B e
. .

X 38

S IR g O S as 4

’_(.,:*_-l "v,]'..' RN

ret

’
avait:

tvait for server numbder to match
ythe customers ticket number passed

’in brx.
sdelay
schecks

cmp bdx,server

Je awvaz2

mov cx,dcount
awal: dec c¢x

Jnz awal

jmp await

awaz: ret

To reduce dus contention, a
{s used bdetween periodic
of the server number

7if ticket = server

scontinue process
+if not, insert delay

ycheck server arain

advance:

sincrement server numbder to next

svalue
inc server s server=server+l
jnz advl
inc server 15kip reserved value
advl: ret
;.._ ——————
request: rget a ticket number and wait to be
sserved
push es
mov ax,cmemseg 1set es to address common
mov es,ax ymemory
call ticket yeet ticket number
call awalit ywalt to be served
POop es
ret
’
release: »adv server numder on completion
yof read or write operation
push es

Mov ax,cmemseg

mov e€es,ax

call advance

pop es
ret

yset es to address common
ymemory
yinc server number

inftsync:

1initia

lize sequencer variabdles

156

P B IR A B AR "Bt RN I SR e e Jorae s

push es

mov ax,cmemseg 1set es to address common
mov es,ax imemory .

mov ax,l yserver=next=1

mov server,ax
mov next,ax
pPop es

ret

3 A e ale 2 eale 20 5c 200 300 0 48 28 2 240 28 2 0 e 2 3ge g e 20 200 200 4 2 23 92 2 2 39e A0 28 300 o0 2 2 0 20 48 ek o0 e AR o

H Data
5 w3 teads abe e ek 32 ik a0 e a9 a0 a6 4 2 56 4 420 26 52 20 20 96 2 2 2 206 200 06 2 200 2 2 50 240 2 e 48 e 8 06 X e e o6 o e AR o 0

aseg yoaly one sat of sequencer variables
iexist in common memory; accessed
yvia es
server rw 1
next rv 1
cseg $
yend synch.a&é ’

1357

PP S 2, s s N e eaa Al o i et ta e m—a Ra — am_ A& s - -

. A A . K Pl A et -
B I e N S L R A T R A IR

s N M AR Y T N Rl Pl g
.........

LIST OF REFERENCES

Candalor, M. B., Alteration of t
0

0
System, Masters Thesis, Naval P
Monterey California, 1981.

he
st

BEicklin, M. S. and J. A. Neufeld, Adaptation of

Magnetic Bubble Memory ip a Stapdard Microcomputer
Inviropmept, Masters Thesis, Naval Postgraduate
School, Monterey California, 1981.

Eammond, Nick, Sharipe of a Peripheral Device RBetween

- TS s e

School, Monterey, CA, 1682,

Digitel Research, ASM-§6: The CP/M-t6 Assembler User’s
Guide, 1981.

Digital Research, DDI-g6: The CP/M-E6 Dynamic Debugging
Tool for the 8086 User’s Guide, 1981.

Digital Research. CP/M-86 Operating System Guide,

1681.

EX-CELL-0 Corporation, REMEX Technical Manual for Data
Warehouse Models RDW 3123, RDW 3289,1979.

EX-CELL-0 Corporation, REMEX Technical Manpual for the
Multibus Igterface Assy £14415-221, 196880.

—— A e - am & AL e e Eame -

Intel Corporation, i13BC 604/614 Hardware Reference
Mapual, 1979.

S amcr e cCdmes = Tam—- X

Reed, D.P. and Kanodia, R.K., Synchronization wita
Event C(Counters and Sequencers, CACM VOL 22, NO 2,
1979.

136

..............

Yk TN A AL B ! T P hTy
e T N e e A e e e e

INITIAL DISTRIBUTION LIST

No. Copies.
l. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22314

2. Defense Logistic Studies Information Exchange 1
U. S. Army Logistics Manaement Center
Fort Lee, Virginia 23801

3. Liorary, Code 9142 2
Naval Postgraduate School
Monterey, California S3940

- 4. Department Chairman, Code 52 2
- Department of Computer Scilence

- Naval Postgraduate School

:i Monterey, California 93940

- 5. Associate Professor Uno R. Kodres, Code 52Kr 2 ’
& Department of Computer Sclence
' : Naval Postgraduate School

- Monterey, California 93342

E! ¢ 6. Ledr. Ronald Modes, USN, Code 52Mf 2
Department of Computer Science

Naval Postgraduate School

Monterey, California 93949

Cdr. John Pfeiffer, USN, Code 37 1
Department of Computer Science

Naval Postgraduate School

Monterey, California 93540

B ey
~3
.

1

|F YIS
®

Ledr. Thomas V. Almguist, USN 2
12558 McIntire Court
Woodbridge, Virginia 22192

9. CPT David S. Stevens, USA 2
2205 Deckman Lane
Silversprings, Maryland 28596

0. Soaann

i6. Daniel Green (Code N2€E) 1
Naval Surface Warfare Center
Dahlgreen, Virginlia 22449

L2 28 MAC R nt sarant)
-ttt

139

Ty e
AT |

LIPSO BTSN TPRC. S SR ISP SUP TR PRSP TGP YU WP SIPUIE SO YU T ST P WA W PO) ‘L\E_“‘_;,\—“‘L,“L'Lj

11.

12.

13.

14.

15.

.......

CDR J. Donegan, USN

PMS 400385

Naval Sea Systems Command
Washington, DC 2€362

RCA AEGIS Data Repository

RCA Corporation

Government Systems Division
Mail Stop 127-327
Moorestown, New Jersey ¢8@57

Livrary (Code E33-95)
Naval Surface Warfare Center
Dahlgreen, Virgiania 22449

G. Luke

Fleet Systems Departmernt
Applied Physics Laboratory
Laurel, Maryland 2¢€1¢

Robert Coates

£84¢ Avienda Jinette
Bonsall, California 92003

160

