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1. Introduction

Foutz [l] proposed a new goodness-of-fit test for fitting
univariate as well as multivariate distributions. He showed
that the null distribution of the test statistic, Fn' does not
depend on (1) the hypothesized distribution, or (2) the number
of components in the random vector under study. An integral
representation for the null CDF of F  was provided. Closed
form expressions for this null distribution are quite
difficult to obtain, even for small sample sizes. The
alternative has been to approximate the distribution by a

! _se”2)/n;

normal distribution with mean e ' and variance (2e”
this, however, does not appear to provide a good approximation
to the percentiles of the null distribution of Fn for moderate
sample sizes.

The authors({2] compared the Fn-test with the Chi-squared
test and the Kolmogorov-Smirnov test and found that the Fn-test
does have higher power when fitting certain types of distribu-
tions. Another investigation by the authors and Linhart [3]
examined the power of the Fn-test when fitting a multivariate
normal distribution; the test did well in detecting mean shifts
and variance shifts. We therefore believe that the Fn-test
is a definite alternative to the Chi-squared and Kolmogorov-
Smirnov tests when fitting univariate distributions and it is
just about the only available test for fitting multivariate

distributions. However, the test is not very convenient for

applications due to the difficulty in obtaining accurate
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critical values. This paper fills the gap by providing tables

of approximate pecentiles of the null distribution of F.
2. Description of the Fn-Test

The procedure for calculating the test statistic Fn is the

from

following. Given a random sample gi, EQ' 8ok o Kn-l'

a continuous multivariate distribution, the sample space is
partitioned into n statistically equivalent blocks. Let
h,(X), h,X), ..., h,_;(X) be any n-1 "cutting functions”
such that hk(&) has a continuous distribution, k = 1,
2, ««+« , n=1, and let kl' kz, o0 kn-l be a permutation of
1, 2, ... , n=1. Let &(kl) be the sample vector corresponding
to the k,th order statistic of h, (X.), i=1, 2, ... , n-1.

1 kl =i

The initial partition of the sample space into two blocks is

defined by
By = {X|h (X) <h (X(k;))}, and
1 !
c
B, = B;.

The cutting function hk (X) is then used to partition Bl

(if kz @ kl) s Bz (if kz 3 kl) into two subblocks in a similar
fashion. When all the cutting functions are exhausted the
sample space will have been partitioned into n statistically
equivalent blocks, Bl' 82, LG Bn. A convenient choice for
the cutting functions in the univariate case is the identity
function. 1In the multivariate case letting h, (X) = §(j), the
jth component of X (for various j), appears to work well.

More details on partitioning the sample space into statistically

equivalent blocks and some examples can be found in [3].

—
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Once the statistically equivalent blocks are determined, a
computational formula for the test statistic Fn for the
hypothesis that the samples are from a specified distribution
H is

A 1
LI I max [0, £ = Di]’

i=1
where D, = P[X ¢ BiIH]
The integral representation for the null CDF of Fn results

in the following closed form expressions for n = 3, 4, and 5.

5
6x2 0 < x < %
2 2 1 2
- - =0 =
P[F3 < x] =11 3¢ 3 x) 3 <X < x
hl X > %
[‘20x3 Osxs%
« |220%3 EReI L L 1 1
P[F4 < x] =|-20x" + 18x 7¥ + 16 7 <% <3
=
3 3 1 3
1-4(2"}{) §<XSZ
L1 x>%
r70x4 0 < x < %
{
4 3 2 16 1 1 2
| P[F5 < xX] =|-105x + 80x~ - 12x° + 7EX ~ 3% § <xs3
R 4 4 3 228 2 176 31 2 3
45x - 80x +-—5—-x -—-23-x+1-2—- g <xs§
4 4 oy 4
v 1 - 5(3 x) T <xc<g
L 2 x>-§-
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It does not appear to be possible to generate a closed
form expressicn for the CDF of Fn in the general case. Foutz's

large sample normal approximation is given by

-1
(1) PIF_ < x] = ¢ aix -8 ) !
p l:uze T se™n) /2

where ¢ is the standard normal CDF. To check the accuracy of
this approximation in our earlier study (2], we generated
samples of size n-1 = 20, 30, and 50 from a uniform distribution
- on [0,1] and tested the hypothesis that the the samples are imn
fact from that distribution. The empirical significance levels

in 80,000 replications are given in Table 1.

Nominal
Significance
Level n=l 20 30 50
0.10 0.0757 0.0800 0.0859
0.05 0.0372 0.0399 0.0428
0.01 0.00822 0.0083 0.0093

Table 1
Empirical Significance Level ﬂ
(Based on 80,000 replications) ‘

It can be seen that the observed significance levels are

consistently smaller than the nominal values by about 10-20%.

We therefore proposed the use of Monte Carlo critical values,

which were based on 25,000 replications. These values are .

given in Table 2 and the corresponding observed significance

levels, base:l on 225,000 subsequent rewetitions, are given in

Table 3.




n-1

Significance
Level 20 30 S0
0.10 0.42714 0.41903 0.40816
0.05 0.44865 0.43553 0.42116
0.01 0.48659 0.46579 0.44487

Table 2
Monte Carlo Critical Values
(Based on 25,000 replications)

Nominal

Significance Brl
Level 20 30 S0
0.10 0.1006 0.9700 0.1003
0.05 0.0486 0.0486 0.0498
0.01 0.0103 0.0101 0.0102

Table 3
Empirical Significance Level
(Based on 225,000 replications)

The above findings lead us into a search for an improved
approximation for determining the percentiles of the null
distribution of Fn. We found that allowing the mean and variance
to be functions of the sample size leads to greatly improved
approximations. While it is difficult to give precise error
bounds on the percentile values, our computational experience
indicates about a four decimal place accuracy. This leads to
rejection rates with errors in the fourth decimal place, usually.
Comparing the error in the rejection rates for the asymptotic
approximation (1) given by Foutz, our approximation is better

by a factor of 10 or more.
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3. Modified Normal Approximation

The data for the approximation of the null distribution of
the Foutz statistic was obtained by Monte Carlo methods. For
a given sample size n~l, sequences of n-1 uniformly distributed
numbers where generated using the IMSL* random number generator
GGUBS. The Foutz statistic was then computed and tabulated
into one of 200 equilength intervals. This process was
replicated 25,000 times. The entire set consists of the
empirical cumulative distribution functions obtained from this
data for 60 sample sizes, n-1l = 2(1)40, 40(2)70, and 70(5)100.
Potentially this yields as many as 12000 pieces of data,
however if only intervals with nontrivial data in them are
counted, this is reduced to about 4700.

A data fitting problem with 4700 points is not easily handled
unless a linear model is accepted. We do not know the behavior
of the distribution as the sample size gets large, so we were
reluctant to impose a form with only linear parameters,
especially in sample size., We decided on attempting a correction
to the asymptotic approximation given by Foutz.

After some experimentation with various types of corrections,
it was decided the most reasonable was to include correction
terms in the argument of the asymptotic approximation. 1In
order to make the computation feasible it was decided to fit the data

in a two pass scheme; first the null distribution for each sample

*International Mathematics and Statistical Libraries, 7500
Bellaire Drive, Houston, TX 77036
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size was approximated as below, and then the parameters in these
approximations were fit by functions of sample size.

The precise form of the approximation was through the
argument of a normal distribution, which was taken to be of

the form

<

(a+b n(x-e-l) + c (x-e-l)z)/ VQZ s Se-z)n.

Because we are strongly interested in the inverse CDF, the data
was weighted at each point by the centered difference from the
Monte Carlo data, which then resulted in a greater weight on
the part of the curve with a large slope. The results of this
least squares process yielded a table of values of a, b, and
c versus sample size (actually we consider them as functions
of n = sample size + 1). We observe that the amount of
scatter increases as n increases. There tends to be even more
scatter with higher powers of (x-e-l). For this reason it was
decided to weight the smaller sample sizes more heavily, and a
weight of 1/n was adopted. Since the data is more dense for
smaller sample sizes this results in considerably less weight
for the large sample sizes, although we feel the trend is still
properly modelled and that our approximation is considerably
better than the asymptotic approximation for very large sample
sizes, say even up to 1000.

In the second stage of the process the coefficients a, b,
and c was chosen to allow a rate of decay ({(or growth) of the
coefficients to be dictated by the data. Thus we fit a, b and

c with functions of the form A + Bnc.

S R ST~ =




For the terms which are constant and linear in (x-m-l) the
exponent was negative, however, for C(n) the exéonent was
positive, indicating that the term grows (somewhat slower than
linearly) with sample size. We do not consider this as
bothersome, however, since the linear term in (x-e-l)
has already (due to the form of the asymptotic approximation)
been included with a factor that grows linearly with sample
size.

The overall result of this nonlinear least sguares

approximation is the approximate CDF involving the nine

parameters,

20 plE_<x] ¢ Lgx/ V2 et -5 e Hml,

where glx) = a(n) + b(n) n (2-e ) + c(n) (x-e"Y)2, and

a(n) = 0.2089 + 0.1876 n_1-4416,
B o) & LGB =0 Gee 2 T B
c{n) = 0.3049 - 0.5912 n0- 8927,

In order to test our results, two different approaches
were taken. First, the number of rejections for previously run
tests were available for sample sizes of n-1 = 20, 30, and 50,
at (approximately) the 0.10, 0.05, and 0.0l levels. By
computing the derivative of the approximate CDF, equation (2),
and making a correction along the tangent line, we were able to
estimate the anticipated rejection rate that would occur with
our present approximation. This data was accumulated over

225,000 replications, and is given in Table 4. The main entry
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is the anticipated rejection rate when using the results of our
approximation, above. As a point of comparision with Foutz's
asymptotic approximation, we include the corresponding rates
for it in parenthesis. Second, to test the approximation for

a smaller, as well as an intermediate sample size, we computed
the Toutz statistic for 300,000 uniformly distributed samples
of sizes 10 and 40, and tabulated them at intervals of .0001 in
the range of interest. The results of these calculations are

shown in Table 5 for the 0.10, 0.05, and 0.0l levels.

Nominal R
Significance
Level 20 30 SC

0.10 0.0994 0.1002 0.1007
(0.0764) (0.0801) (0.0840)

0.05 0.0496 0.0500 0.0505
{(0.0385) (0.0402) (0.0420)

0.01 0.0098 0.0095 0.0098

(0.0085) (0.0086) (0.0088)

Table 4
Anticipated Rejection Rates
From Approximate Critical Vvalues
(Based on 225,000 replications)

Nominal n-1
Significance
Level 1o 40
0.10 0.0989 0.0998

(0.0687) (0.0824)

0.05 0.0481 0.0491
(0.0349) (0.0087)

0.01 0.0086 0.0098
(0.0069) (0.0087)

Table 5
Empirical Significance Levels
(Base on 300,000 replications)

9
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As is shown by the tables, we expect the error in the
rejection rates due to use of our approximate percentiles to
be smaller by a factor of 10-20 for the 0.20 to 0.05 level
than they are for Foutz's normal approximation. At the
extreme tails, our approximation is not as good as at the more
moderate levels, but is still a worthwhile improvement over the
asymptotic approximation.

Table 6 lists some upper percentiles of the approximate
CDF given by Equation (2) for sample sizes 5(1)100, 100(10) 200,
and 200(100)1000. The exact values are given for n-1 = 2, 3,
and 4. Since we expect the entries to have about 4 digit
accuracy, linear interpolation for intermediate sample sizes
will have comparable accuracy. Linear interpolation in the
percentiles is not accurate, and other percentiles should be
calculated from equation (2). It is interesting to observe the
"surface"” of the null CDF in a perspective plot, as in Figure
1. Of course, only discrete slices exist; the cross section
lines in the direction of sample size are an artifact of the
plotting package. The convergence toward a sharp rise of the
CDF in the vicinity of x - e"l as sample size increases is very

apparent.

10
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