
AD-AI26 190 GENERATING NATURAL LANGUAGE EXPLANATIONS IN A I/
COMPUTER-AIDED DESIGN SYSTE..(U) CONNECTICUT UNIV

STORRS LAB FOR COMPUTER SCIENCE RESEARCH
UNCCASSIFIED M A BIENKOW SKI ET AL. JAN 8 3 [RCS-83- F/G 9/2 NL

IEEEIIIIEEEII
EhEIhEEEEEEEEE
IIIIIIIIIIIIII
EIIEEEEEEEEIIE
IEEEEEEEEEEEIl
IIIIIIIIIIIIIIl

11111 . 6' 2*8
L32

A..0

l~ 1125
11111 .. LIAOE4 9Ajj L

MICROCOPY RESOLUTION TEST CHART
NA1IONAL BUREAU Of STANDARDSI1963-A

oCOMPUTER SCIENCE
TECHNICAL REPORT

Laboratory for Computer Science Research
The University of Connecticut

COMPUTER SCIENCE DIVISIO 0
~2,9

Electrical Engineering and Computer Science Department
U-157

The University of Connecticut
a& Storrs, Connecticut 06268

- ..,,m "049pinib ub

GENERATING NATURAL LANGUAGE EXPLANATIONS

BY

Marie Bienkowski

Technical Report CS83-1

A!

Accession 7cr

DTIC TAB
t l name1= d 1 ELECTE

,.
u~~eoed .,q

FD SD
Distrblbvionl/
Availability Codes

al and/or
Dist Special

A ______towas

P Generating Natural Language Explanations
in a Cmputer-Aided Design System

M. A. Bienkowski, R. E. Cullingford and M. W. Krueger

Department of Electrical Engineering and Computer Science
The University of Connecticut

Storrs, Cr 06268

ABSIRACT

CA3RELP is a graphics-based computer-aided design system which
contains dotailed knowledge bases intended to support three different
types of 'intelligent'-behavior: (1) the generation of natural-language
explanations concerning the operation of the graphical features, for
use by naive userstUE,81, CULL82]; (2) an animated display f{EIM,821
coordinated with the explanation, simulating the feature's use; and
(3) control of the operation of the WAD system itself, by interpreta-
tion of knowledge structures describing the system's operation.
-tK2JI. This final report is a detailed description of the
knowledge-base summarization and generation methods developed for
(@niLP, which are the basis for the three different sources of
knowledge.

The Explanation Mechanism devised for CAERELP describes the CAD
commands CAEHELP can execute using text and graphical animation. A
unique feature of this system is that neither the text nor the anima-

tion are stored, but are generated from a representation of knowledge
about how to use CAMELP. This representation, called a feature
scrI, is a set of concepts linked by causal relations. Since the
feature scripts developed were very detailed to enable the animator to
work, a means of pruning the script to produce natural-sounding text
was needed. A selector mechanism, called HEEJPCN, was developed to
select concepts for expression from the feature scripts using rules on
how to conduct an explanation. The concepts thus selected are gen-
erated as English sentences by another module called OGEN, which
prunes a concept to express it in a concise form much as HELPCON does. <

To test the explanation methods and generation strategies
developed for CALCELP, a design was produced for an Explanation system
for the Academic Counseling Experiment currently under development.
While the language generator, OGEN, was moved to this new domain with
ease, a new Explainer was needed. This suggested a general model for
the developnent of such language producing systems; a domain-
independent language generator which interfaces with a domain-
dependent concept selection mechanism.

This research was supported by Navy Contract NO0014-79-C-0976.

Selected Pro et Bibliography

[CULL81]
Cullingford, B.E., Krueger, M.u., Selfridge, M.G, and Bienkowski, M.A. 1981.

Towards automating explanations. Proo. 7th Int. Joint Conf. on Artificial
Intelligence. Vancouver, B.C., Canada. (August)

[CULL82]
Cullingford, R.E., Krueger, M.W., Selfridge, M.G., and Bienkowski, M.A.

1982. Automated explanations as a component of a computer-aided
design system. IEEE Trans. SM&C. Special issue on human factors
and user assistance in CAD. Vol. SMC-12, No. 2, Mar/Apr 1982.

[KRUE81]
Krueger, M.W., Cullingford, R.E., and Bellavance, D.A. 1981. Control issues

in a multimodule CAD system containing expert knowledge. Proc. 1981 IEEE
Int. Conf. on Cybernetics and Society. Atlanta, GA. (October)

[NEIM82]
Neiman, D. 1982. Graphical Animation from a Knowledge Base. Proc. 1982

Conf. of the American Artificial Intelligence Society. Pittsburgh, PA.
(August).

Table of Contents

Chapter 1 Introduction
1.1 Generation of Language I

1.2 The Study of Explanations 4
1.3 Domains for Explanations 9
1.4 Outline of the Thesis 13

Chapter 2 Conceptual Generation
2.1 Previous Work in Generation 15
2.2 Representation 18
2.3 The Basic Lexicalization Process 24

2.4 Generation Strategies 31
2.5 Detailed Example * 37

Chapter 3 Explanations in Computer-Aided Design
3.1 Overview of CADHELP ... 0. 47
3.2 Representation of CAD Knowledge 514
3.3 Concept Selection 61

3.4 A Detailed Example 0 0e. ... 66

Chapter 4 Explanations in Academic Counseling
4.1 Introduction 74

4.2 Overview of the Academic Counselor 76
4.3 The Explainer for ACE 78

4.4 A Detailed Example 82

Chapter 5 Conclusions 91

B ibllograpby 96

-V-

List of Figures

2.1 The Representation for "John went to Hartfordm ..".......... 20
2.2 CGEN Dictionary Definition of the Word 'delete' 21
2.3 A Causal Relation Input to CAUZ 34
2.4 The Imperative Rule 35
3.1 CADHELP's Command Summary 49

3.2 Causal Links Used in Feature Scripts 57
3.3 Primitive Actions and States Used in Feature Scripts 58

3.4 Embedded Scripts Used in Feature Scripts 60

4.1 Organization of the Academic Counselor 77
1.2 Organization of the Academic Counselor with Explainer 79

-vi-

CHAPIrR 1

Introduction

1.1 enaiof Lanitualze

Generation of natural language by computer is becoming increas-

ingly important. As computers are used more and more to perform tasks

requiring that they interact with naive users (e.g. as providers of

information on phone numbers, airline reservations, etc) it is neces-

sary that they be able to produce language in a natural and flexible

way. In fact, the most friendly computer interfaces [Hae79], will

have analyzing and gene.,ating programs whose language behavior mimics

that of human beings. For a generation program to model human

language performance, it must be capable of more than mere translation

of some input representation of a sentence into English. Such a pro-

gram must be able to determine what to say in order to communicate

with a user in a natural fashion. Part of this naturalness comes from

knowing what not to say. If a set of knowledge, represented in its

entirety in a program's memory system, is to be communicated, only

part of it need actually be said. Some of it can be inferred ty the

listener or is not important to the communication. In order to build

programs that can make the distinction between useful and useless

information, it i essential to have an understanding of the tech-

niques people use to decide what (and what not) to say.

Language generation tasks can be organized hierarchically accord-

ing to their complexity. Generation of a single sentence with little

surrounding context is simple, but by no means easy.* For example,

sentence I is understandable to people without any additional informa-

[tion, even if the person Jacob is not known, and thus should be easy

for a computer program to generate.

1) Myr friend Jacob was looking for his shoes yesterday.

There are difficulties, however. The first problem is representing,

in computer-usable form, the complicated ideas expressed, namely that

some social relationship exists between two people which is used to

identify the actor of an action, and that this actor did some time in

the past perform the action of looking for shoes that belonged to him.

Once these ideas are represented in some form a program can manipu-

late, this internal representation must be translated into a linear

sequence of words. The complex notion of Possession and use of shoes

is translated into "his shoes" as opposed to "the shoes belonging to

and often worn Lt' Jacob."0 The temporal relationship between the time

of the action and the present time is condensed into the tensed form

of look, i.e. "was looking," and the concept "a person named Jacob who

has the social relationship of friendship with meff becomes "?1j friend

Jacob.'" An important part of the study of language generation is

investigations into how these shorthand forms are produced. It will

be necessary to model these In arw program which is to generate

natural sounding output.

The next level of' complexity in generation can be found in the

production of paragraph length text. Here the individual sentences

3-

must be connected using conventions that tie the sentences together to

form a unit. For example, the sentences given below represent a

oohesive unit.

2) Wb friend Jacob went to by some cooking apples today.
3) Sce of the apples he bought were bad.
4) I told him to take the bad ones back.

Sentences 2 to 4 illustrate some common phenomena occurring in para-

graph length text. Note the different was of referring to the

apples. They first appear in sentence 2 as "some cooking apples."

Next, in sentence 3, the apples are referred to as "the apples he

bought," ignoring what type of apples they are, and informing us that

the apples were in fact obtained. A new item, the group of bad

apples, is introduced in3'3 as a subset of all the apples bought.

Finally, in sentence 4, no explicit mention of the apples bought is

made, they are only implicit in the mention of those that were bad in

"the bad ones." It is also interesting to observe what has been left

out in each sentence, for example, the mention of the store where

Jacob went and bought the apples. This omission might not have

occurred if the intent of the story was to tell someone that some par-

ticular market sells bad fruit. This example illustrates that in more

complex generation tasks what to saV and how to say it are functions

of what has been said before, what the listener can be expected to

infer, and what the intent of the conversation is.

From a knowledge engineering viewpoint, generation of language in

a mixed-initiative conversation is a difficult task for computer pro-

grams (e.g. (Reic78], [Carb7O]). Mixed-initiative conversation, where

either participant can select the topic of discussion, has complica-

tions well beyond that of generation of' single sentences or paragraph

length text. One obvious problem is having to analyze the Input from

the other participant for meaning. Not only does the computer as a

conversationalist have to understand what a speaker is say ing, it must

know how to use that understanding to determine what the speaker knows

about a subject. In a text generation task a program can expect that

the user knows what he has been told, and what he has deduced from

what he has been told. In a conversational system, however, the prob-

lem of deciding what to sey is more complex since more information

about what the user knows is available. For example, an appropriate

answer to question 5,

5) Who has been eating the eclairs?

might be the ellipsed response,

6) John has.

Sentences 5 and 6 illustrate that deciding how much can safely be

deleted from an utterance in a conversation depends upon the preceding

context (i.e. what the user and program say) and how much the program

can assume the user knows about the topic of discussion. It shall be

argued that imposing limitations on these types of knowledge can lead

to a program which is feasible to Implement.

1 .2 =l Stuy L Explanations

For purposes of study, the generation process as described above

can be divided into two subprocesses, one which decides what concepts

to express from a memory structure (e.g. a database), and the other

-5-

which actually says it in a human language (as in [McDo8l], [McKe8O]).

Decisions regarding what to say, however, occur throughout the genera-

tion process, from the time it is decided that something is to be

selected from memory for expression (perhaps requested by a user or

another program) until it is actually expressed in the words of the

language. For this reason, it is most informative to study language

generation by examining problems in both subprocesses. A useful vehi-

cle for this exploration is the study of explanations, for several

reasons. First, explanations can be given as descriptive paragraphs,

and an implementation can be produced without the distracting details

associated with conversational interaction. Such a system, however,

could be expanded to accept input from the user regarding the ongoing

explanation. This limited conversational ability could be used to

clarify or reexplain ary unclear ideas. Secondly, restricting the

task to explanation defines exactly what the system and user can be

expected to know, i.e. the system can be expected to know a lot, -and

the user not too much. This leads to a specification of the pragmatic

information and world knowledge such a program should have regarding

the contents of the user's head. Third, if the domain to be explained

is well-defined, a situational context can be established and used lV

the program to assist in generating natural sounding output. The

situational context refers to the pkisical situation experienced by

the user, and includes things such as the tools commonly used for a

task and actions associated with those tools (which may need to be

initially explained, but then become part of the context). An example

of this use of :;ituational information in explanations is the use of

-6-

specialized terms, e.g. in giving a recipe, one may state

Butter and flour a 9-inch cake pan.
To butter and flour a pan, rub butter

on it then sprinkle flour on it and
shake out any excess flour.

After this short explanation, the verbs butter and flour can be used

without further explanation.

There are mary types of explanations that occur but they can be

distinguished by the kind of information being explained. One clas

deals with describing to someone how a physical process works, a pro-

cess that does not necessarily involve them or another as an actor

(except perhaps to initiate the process). This class would include

things like an explanation of a biological mechanism or a car's igni-

tion system. The explanation of such a system is straightforward to

program, assuming no interferences occur in the sy stem (as in

[Rieg77]). A second class of explanations deals with relating to a

potential actor how to act to affect the physical world in a desired

way. An example of this is how to tune-up a car. Here the explanation

is more complicated since such a system must have knowledge of what

the user knows, and must be able to represent all the things a naive

mechanic could do wrong. A final class are those explanations that

describe the complex interaction of an actor (or actors) with social

institutions. Examples of this category include events like how one

opens and uses a checking account, where physical acts may be involved

(e.g. one has to drive to the bank and sign some papers) but the main

thrust is the complicated notion of banking.

-7-

The class of explanations described above do form a hierarchy,

i.e. solving the first can lead to a solution of the second and so on.

One of the reasons the solutions build upon another has to do with the

representation of~ the Ideas. Once the laws of pktysical causality can

be represented, the notion of actors Influencing this causality can be

also. Representations of actors interacting in social situations,

with underlying pktsical laws, then follow. Representation of meaning

in computer-usable form is difficult, and many representational sys-

tems have been proposed ([Mins75J, [Scha75], and see (Barr~l] for an

overview). As an example of the complexity involved, consider the

examples suggested above. A car's ignition system can be represented

ly a sequence of events, each one enabling or causing another (as in

[Rieg77J). The representation of how to tune-up a car is more compli-

cated, since the behavior of the mechanic must be represented, as well

as the result of that behavior on the car. More complex still is

representing how to open a checking account. Ideas such as money, and

a bank's holding onto your money then paying it out to certain other

people and institutions that you present signed pieces of paper to,

are not easily captured in a form a computer understands.

Once a representation Is decided upon some mechanism f or select-

ing concepts from the entire set of knowledge is needed. There are

mary reasons for representing the knowledge in its entirety, and for

representing it in an abstract form. The strongest reason is that the

same knowledge may be used for a number of tasks: language generation,

story understanding, planning, question answering, etc. If the system

generating explanations will know more than it should say, a selector

-8-

mechanism which embodies a method of examining a piece of knowledge

and selecting from it those concepts to be expressed is needed. The

selector uses rules that are dependent upon several things. One is

the domain being explained. For example, the na.v mechanic must be

explicitly told every step in timing a car, but the person new to the

banking world is helped along by persons operating in their functions

in the bank and need not be told all the details. Another factor

influencing the selector rules is the intent of the explanation, i.e.

"WI does the listener want to know?" If the listener is actually

going to attempt a tune-up, more detail will be given (including pre-

cautions: "Don't get to near the fan when the car's runningw). A

third factor used in the rules is general knowledge of how to conduct

an explanation. These include ideas like: "If you use a potential]y

unfamiliar term, define it," or: "Say things in the order in which

they occur."

The pieces of the total set of knowledge chosen by the selector

must eventually be translated into a language. A good characteristic i
of a language generator is that it be task-independent, and have any

domain dependencies that did exist well specified (see [cDo8l]).

This would allow the generator to apply to almost arn domain with

minor alterations. Another feature desirable for a language generator

is the ability to perform paraphrase (Gold75]. In addition, it should

be easy to model ary observed phenomena of language with a generator,

such as generation of passives or imperatives.

-9-

Using the hierarchy of explanations described above, and keeping

in mind that a computer implementation of an explanation mechanism is

desired, the domains to use for explanations can be selected. The

areas used in this research, and the reasons for their use, are dis-

cussed in the next section.

1.3 Domifl or Explanations

The domain chosen for a study of the explanation process has a

great Influence on the complexity of the system developed. Previous

work on explanations has arisen from the necessity to have computer

programs explain their behavior to users or programmers. The KYCIN

rule-based system [Shor76] explains its conclusions ty describing the

chains of rules that have fired, Including wly a rule did or didn't

fire (the test part) and what conclusion was reached (the action part

of a fired rule). MYCIN contained no explicit attempt to model the

generation ability of an expert, it was more of a convenience for the

developer and user. Swartout (Swar7T] developed a system to explain

the actions and procedures of programs written in OWL to provide digi-

talis therapy. Like MYCIN, Swartout's system explains methods that are

used tV the advisor to reach a conclusion, but can also explain

methods that could potentially be used. In contrast to the explana-

tions of code-like knowledge done by Swartout and Shortliffe, McKeown

(HcKe8O] outlines several principles that could be applied in explain-

ing the contents of a database which is a more static structure. For

example, methods such as comparing and contrasting items, use of anal-

og and illustration through example assist in providing a better

-10-

description. McKeown's work on the description of static information

stored in a database is more in line with the current work.

Systems that frequently need explaining are computer programs

designed to assist a user in accomplishing a task (e.g. operating

systems, editors, etc.). These can conveniently be described as fal-

ling within the second level of the hierarcly described in the previ-

ous section, namely, an actor interacting with the Phy31ical world. In

choosing a computer system to explain, a desirable one Is a system

that offers sufficiently challenging problems in generation of

English, yet is not so complicated that the knowledge an expert has of

the system Is too complex to represent. A computer-aided design (CAD)

domain has both these features. There is a finite set of commands

such a System can perform which can be explained. There is also a

definite ptysical environment experienced byv the user, e.g. graphics

screen, terminal, input devices, which can be represented, and used

for situational context. It is also relatively easy to model the overt

actions of the user and the system during the design process in terms

of simple actions.

There are three types of explanations that can be built into a

CAD sy stem. One is the simple explanation of how to use a command.

This is performed at the request of the user and describes in vary ing

levels of detail how the command is actually performed. Another kind

of explanation is prompting text which guides the user through a com-

plicated feature byv reminding him of his expected behavior, or notify-

ing him of the occurrence of events of interest. A third type is a

-11-

HELP facility, which rescues the user who has made a mistake, and

attempts to describe to him what went wrong.

In most CAD systems [Marc82],[Fenc82], the explanations and

prompts are simply stored text. This becomes tedious for experienced

users, and makes the programing of a HELP facility difficult. If the

text is not stored, but generated from some stored representation, the

explanations given can become more and more laconic as the user gains

experience. In addition, if the system knows how the feature is sup-

posed to be executed, when errors occur, it can determine what they

were in a flexible manner. An additional benefit of having the system

actually know how the features operate is to have the explaxiation of a

feature occur in a modality other than language, for example, to pro-

duoe graphical animation to assist in the explanations.

Considerations such as these led to choosing to develop an expla-

nation program for the use of a system called CADHELP for this

research. Explaining the system consists of describing how each

feature is to be performed (e.g. adding a gate to the design or con-

necting two gates). Each command the CAD system can execute is stored

in a knowledge structure called a feature script. The notion of

script, a stereotyped sequence of actions, is taken from (Cull8la].

Each feature script is a detailed description of the expected behavior

of the user and the response of the system to that behavior during the

execution of a particular command. These feature scripts are detailed

enough to be used as the input for generation of English and the gen-

eration of graphical animation [Neim82]. The exact nature of the

representation and the processes that operate on it to produce text

are discussed in Chapter 3.

Explanations of the use of a CAD Tool suffer from several

shortcomings when used to model computer generation of language. One

is the problem of extensibility, i.e. once all the features have been

explained, only adding additional features produces new generation

tasks and the problems are similar to those experienced in explaining

the other features. Additionally, the CAD explanation system was not

designed to be interactive, (unlike the actual computer-aided design

part), and extending it to be so would be a laborious task. For rea-

sons such as these it was decided to explore the explanation process

in a different domain. A sy stem called ACE (Academic Counseling

Experiment), currently under development at the University of Connec-

ticut, was chosen for study.

ACE models an academic counselor who performs various tasks for a

student such as conducting a preregistration or answering questions

about courses in a mixed-initiative fashion. The task of the

explainer is to describe to a new undergraduate how one goes about

obtaining a degree in Computer Science at the University of Connecti-

cut. This type of explanation deals with an actor interacting with a

complex social organization (the University) to accomplish some goal

(lifetime happiness beginning at 22K). This new domain is different

enough from the CAD domain to present new problems in both language

generation and concept selection.

-13-.

1 .4 OQMutlpe of the Thesis

Chapter 2 presents a model (developed by [Cull~ib]) for an es-sen-

tial part of any explanation sy stem, a generator of English sentences,

which was extended for use in this work. After discussing previous

work on generation, the important topic of the representation of the

meaning of the sentences to be generated is covered. The notation of

Conceptual Dependency is shown to be a suitable one for the purpose,

and examples of its use in representing input as well as word meanings

are given. The actual generation process, implemented in a LISP pro-

gram called CGEN, is then described in two parts. The first deals

with the underlying control cy cle that produces a linear sequence of

words from a Conceptual Dependency (CD) representation. The second

covers the generation strategies that operate on concepts to assist in

the production of natural sounding utterances.

Chapter 3 discusses the development and implementation of an

explanation subsystem for the CAD domain described above. To provide

a framework for the discussions on the explanation strategies used in

this domain, as well as making the examples more understandable, the

actual CAD system is explained. Next, representation is again dis-

cussed, this time for more complex, structured knowledge. The purpose

of these more complex structures is to represent in the computer the

knowledge of the CAD tool an expert has. The knowledge structures used

for the CAD domain were influenced by the decision to generate English

from a CD representation, and are based on CD representation theory.

The discussion then centers on the explanation model for this domain

-14-

as embodied in a LISP program called HELPCON. HELPCON examines the

knowledge structures representing the features of the CAD Tool, and

selects certain concepts for" expression ty CGEN. The chapter ends

with an excerpt from an example of the execution of HELPCON.

The next chapter, Chapter 4, describes a design for a program

capable of producing explanations in a more complicated setting,

namely the academic counseling project described above. The only

parts of this design actually implemented so far are the generation of

some key sentences characteristic of the ACE domain. The chapter

begins with an outline of some extensions that would be useful for a

next-generation explainer, based on experience with the explainer for

the CAD domain. Next, an overview of the ACE system is given. The

exposition following this describes the strategies designed for use

with ACE. The last section then gives a t pothetical example of the

run of this new explanation system. This is followed by a summary and

discussion of extensions in Chapter 5.

CHAPTER 2

Conceptual Generation

2.1 Previous WorIk i Gflel tio

The question of generating sentences from some representation of

their meaning has been the subject of research in artificial intelli-

gence and computational linguistics, and several language generators

exist which are quite capable. Winograd's [Wino72] SHRDLU used canned

phrases, template sentences and a noun phrase generation algorithm for

generating output, and also had a set of dialogue heuristics for I
increasing the naturalness of its responses. Winograd' as stem for

generation, however, is specific to the blocks world application for

which it was designed. A generator that wan also done for a limited

domain was Chester's (ChesT6] EXPOUND. EXPOUND is a Sstem for

expressing predicate calculus proofs in English. Its main focus is the

structuring of the lines of a proof into an English paragraph, and so

has a simplified generator for the actual sentences. Basically, each

logical predicate EXPOUND knows simply has an associated verb and

function words that connect the arguLlents to the predicate.

Simmons and Slocum's work (Simm72], was an early approach to a

more general theory of generation. The input concept to their genera-

tor was in the form of a phrase marker. This input was passed to a

phrase structure grammar (represented using an ATN) which supplied an

ordering for the semantic components of the concept. Simmons and

-1 5-

-16-

Slocum's work was influential for later research on conceptual genera-

tion. In particular, Shapiro's (ZhaP75] work on generation of English

was an attempt to extend their work to provide a generator with the

ability to determine the value of certain attributes that Simmons and

Slocum's generator took as given (e.g. tense and modal specifica-

tions).

Davey [DaveT], like Winograd, adapted Halliday's systemic func-

tional grammar but for use in a generation program rather than a

parser. Davey's program was one of the first to attempt to model the

speaker's use of language (in a specific context) as a communicative

device. He used the simple domain of describing the moves of a tic-

tao-toe game and was able to provide some rationalizations for the use

of particular linguistic forms. For example, the rule for connecting

moves with a coordinate conjunction would only apply if the aspects of

the moves being connected were equal. Unlike previous generators,

Davey's program used domain specific knowledge to justify its use of

the language.

McDonald [McDo8l], in his work on HUMB LE, makes a distinction

between the speaker component of a generation program (decides what to

say) and the linguistic component (decides how to sa it). His argu-

ment for making this division is that it frees the researcher using

the linguistic component, (which lIBLE represents), from having to

worry about a specific input representation. For arV domain, an inter-

face program and dictionary is built to provide the necessary transla-

tions. The interface program translates a message from the speaker's

-17-

internal representation into a surface structure representation, which

is then linearized into a sentence. He has tested his linguistic com-

ponent using six different speaker programs, including the domain of

Chester.

Goldman's model of language generation [Gold753, embodied in the

program BABEL, departs from other theories of generation by beginning

with a conceptual representation of the ideas to be expressed (in Con-

ceptual Dependency format) and producing an English sentence for it.

BABEL selects a verb sense for a concept tV consulting a discrimina-

tion tree attached to the concept's primitive action or state. The

verb sense is represented as a syntax network, modeled after Simmons

and Slocum's marker nets. BABEL fills in the cases of the syntax net

using the conceptual cases of the input concept. The resulting net is

then linearized into an English sentence using an ATN (again following

Simmons and Slocum). Salient features of BABEL are, 1) its strength

in performing paraphrase, 2) its ability to make subtle distinctions

between words with similar meaning, and 3) its generation of German as

well as English from some input concept. BABEL is able to perform all

these tasks since it has some notion of what a word means, unlike

other generation ystems. A generator that was built from BABEL was

used in Heehan's TALE-SPIN (Heeh8l], a program which uses the planning

structures of the Schank and Abelson theory [Scha77] to produce simple

stories. Heehan makes a strong case for needing constant references

to a memory system for producing coherent text, for example, using

pronominalization and conjunctions. The success of BABEL and TALE-SPIN

in generating from a conceptual representation prompted further

-18-

investigations into language generation using this input. In particu-

lar, Cullingford et. al. [Cull8lb] designed a conceptual generator for

use in several sy stems. The design and function of this generator, as

well as additions made to it for the current work, is described below.

2.2 Representation

An important issue for ary generation system is what the

representation of the input will be. Unlike parsing sy stems, where the

input is sentences of the language, the input for a generator can be

aivthing from a phrase marker to a predicate calculus formula. There

were several requirements that motivated the choice of representations

for CGEN, the conceptual generator developed by Cullingford et. al.

One was that, since it was to be initially used in a computer-aided

design domain, other programs would need to manipulate the representa-

tion besides the language generating program. In particular, a system

was under development for producing graphical animation from the

representation, so some notion of what a word means at a basic level

was important. Paraphrasing is also a task that was desirable for the

generator to be able to perform, and if a representation is unable to

capture the underlying similarities among the meaning of words, a pro-

gram using it cannot perform paraphrasing (cDo8l]. In addition, it

appears that the decision of what word to use in expressing a concept

is dependent upon the meaning of the other concepts that are associ-

ated with it. For example, the distinction between i. and walk

depends upon the quickness of the step used, but both are forms of

movement. Also, use of an abstract representation of meaning may pro-

-19-

vide a motivation for the use of linguistic phenomena such as the pas-

sive or relative clauses.

Given these requirements, some theory that used the notion of

semantic primitives was needed. Wilk's system for machine translation

[Wilk76] represents word meanings as sets of descriptive semantic

features that describe the class the word belongs to as well as its

distinguishing characteristics. However, Wilk's semantic formulas for

word-sense meaning are not of sufficient generality to be useful for

several programs, all of which need the knowledge for different pur-

poses, to use. Norman and Rummelhart CNorm75] also developed a seman-

tic primitives based representation but were more concerned with the

psychological reality of their primitives than an actual computer

implementation.

For Cullingford et. al., the theory behind Conceptual Dependency

[Scha75] met the requirements for an input representation for CGEN.

One basic premise of CD theory is that a representation of meaning

should be language free, and should explicate the relationship between

utterances that are close in meaning, but mar have different surface

forms. So, an analyzer parsing into CD format should produce very

similar CD representations for sentences 6 and 7, and a generator

should be able to produce them as paraphrase.

6) I got an A in CS11O.
7) I took CS110 and got an A.

Representing the knowledge of a system in a CD format also enables

generation of output in modalities other than language.

-20-

ArV concept represented in CD format contains a conceptual c

which identifies the underlying action or state the concept expresses,

if the concept is a full conceptualization, or identifies the primi-

tive type of the concept, e.g. person, polity. The rest of the con-

cept is a set of slots and their associated fillers. Every conceptual

class has a unique set of slots, and these slots and their fillers

serve to convey information about the primitive action or state. For

example, one conceptual class is PTRANS (Ptsical TRANSfer). In order

to describe an event which is a PTRANS, the ACTOR, OBJECT, TO, FROM,

and INSTRUMENT slots may be filled. For example, a simple CD

representation of the sentence: "John went to Hartford" is shown in

Figure 2.1. Further discussion of CD representation can be found in

[Scha75).

Deciding to use Conceptual Dependency notation to represent the

input concept to be generated determines, in part, what a dictionary

entry for a word must look like. The base meaning given to a word in

(PTRANS ACTOR (PERSON PERSNAME (John)

SURNAME (nil) GENDER (aasc))
OBJECT (PERSON PERSNAME (John)

SURNAME (nil) GENDER (mast))
TO (POLITY POLNAME (Hartford) POLTYPE (city))
FROM (nil)
INSTRUMENT (nil)
TIME (TIMES TIME1 (past) TIME2 (nil))

The Representation for "John went to Hartford."

Figure 2.1

-21-

the dictionary is a CD frame, a concept with some of the slots empty

(nil) and some of them filled (see Figure 2.2). The empty slots can

match anything in an input concept, but the filled slots, which

represent restrictions on the slot fillers, must match exactly. For

example, the filler of the ACTOR slot in the definition above is res-

tricted to be the system, whose name is CADHELP. Some restrictions on

" DELETE
{makdef deli

" word for this definition

(delete)
" concept frame representing the meaning

- of the word 'delete'
(MTRANS ACTOR (PERSON PERSNAME (cadhelp) ROLE (fsys))

MCBJ (nil) INST (nil) FOCUS (nil)
MODE (nil) FROM (nil) TO (nil))

" active syntatic predicates for the word delete

(f(actor) [((ACTOR) (pr parent))
((MOBJ) (fo parent) (pr (path FROM)))
((FROM) (fo parent) (fo (path MCBJ))

(fo (fw from)))]}

- passive syntatic predicates for the word delete

((mobj) [((MOBJ) (pr parent)
((FROM) (fo parent) (pr (path ACTOR))

(fo (fw from)))
((ACTOR) (fo parent) (fo (path FROM))

(fo (M by)))]))

- semantic predicates expressing restrictions
- on the fillers

[(eq (conclass (grv '(MCBJ) :input-concept)) '#device)
(equal (grv '(FROM ROLE) :input-concept) '(*design))

(equal (grv '(TO) :input-concept) '(nil))]

CGEN Dictionary Definition of the Word 'delete'

Figure 2.2

-22-

slot-fillers cannot be represented ty a simple pattern, for example,

if the restriction is that a filler must belong to a class of items,

or that two fillers must be equal. In this case, a semantic predicate

is used. Semantic predicates are conditions on slot fillers expressed

as LISP expressions. For example, the word delete in CADHELP is only

Used if the object being manipulated belongs to the class of devices,

i.e. delete-able objects, and if the manipulation on that device is a

transfer from the design to nil (nowhere). This notion is embodied in

the LISP code shown in the final three lines of Figure 2.2.

The final component in a dictionary definition is the specifica-

tion of syntax for sequencing words. Recall that Goldman's BABEL Used

a syntax net associated with a main verb which was run through an ATN

to linearize the concepts. This extra processing appears unnatural and

carries unnecessary overhead. What is needed, at a most basic level, *
is the notion that one word or concept precedes or follows another.

This is precisely the kind of syntatic specification that CGEN uses.

Most words in the dictionary, (e.g. delete from Figure 2.2), are asso-

ciated with a set of precedes and follows predicates. If the word

found is a main verb, then depending upon the value of the FOCUS role

in the input concept, pyntatic predicates that produce either an

active or a passive sentence are chosen. The predicates state where

the parts of the concept that CGEN is trying to express are to be

positioned relative to three things, 1) the word found, 2) the other

concepts to be expressed, and 3) function words that serve to mark the

filler of a particular slot. (Function words are connective words that

are associated with a particular action word and a particular slot.)

-23-

For example, an English summary of the syntatic predicates shown in

Figure 2.2 might be as follows:

If the focus is on the ACTOR, then:

(1) Saq the concept expressing the ACTOR before the parent word,
delete.

(2) Sa the concept expressing the MBJ (mental object) following
the parent word delete, and before the FROM slot.

(3) Sq the concept expressing the FROM slot following the parent

word de, following the expression of the MCBJ filler, and
following the function word from, (an actual lexical item to
be said).

If the focus is on the M(BJ, then:

(1) Sa the concept expressing the MGBJ before the parent word,
delete.

(2) Sa the concept expressing the FROM slot following the parent
word dle, before the ACTOR slot filler and following the
function word fXoM.

(3) Sa the concept expressing the ACTOR following the parent
word delete, following the expression of the FROM filler and
following the function word b.

The input to CGEN, then, is in the form of a Conceptual Depen-

dency structure. The meaning of a word in the lexicon of CGEN is a

Conceptual Dependency frame, with restrictions on the fillers of vari-

ous slots. The ordering of concepts to be expressed is obtained from

syntatic predicates, which are indexed by the filler of the FOCUS slot

for full conceptualizations. In addition to ordering information, the

predicates specify function words. The following sections describe,

in detail, how CGEN uses this information to produce grammatical

English sentences, and describes several modifications made to it for

-24-

the current work.

2.3 I M Bzatio Process

When a concept is given to CGEN represented in CD format, a basic

cycle performs the lexicalization and sequencing. This part of the

generator transforms the input conceptualizations into a string of

English words by repeatedly looking up words and organizing the words

found, the slot fillers not spanned, and arv function words needed

according to the syntax stored with the words.

CGEN's control structure is similar to the Conceptual Analyzer of

Birnbaum and Selfridge [Birn8l]. It has a short term memory, called

the C-LIST (Concept List) which stores concepts that need to be gen-

erated, and words that need to be said. The focus is alwas on the

top of the C-LIST. If the top of the C-LIST is a word, CGEN sq's it.

If it is a concept, it is examined by a set of rules (discussed in the

next section) which may modify the concept and the rest of the C-LIST.

The item on top of the C-LIST is then sent off to a dictionary spe-

cialist.

Words in the dictionary are organized according to the conceptual

class and slots of the CD frame that is their basic meaning. The

entire set of words CGEN knows is stored in a discrimination tree

[Jose83]. The tree orders the dictionary entries from most to least

specific. A dictionary entry matches if it is structurally similar to

the onoept to be expressed. Structurally similar means that the two

have the same slots, and that ary non-nil slot filler in the diction-

-25-

ary entry matches the same filler in the concept to be matched. Once

the structural criteria have been fulfilled, the semantic restrictions

on the slot fillers are checked. If all these restrictions are met, a

word has been found.

The word found may or ma' not span all of the concept to be

expressed (e.g. bachelor spans the male meaning of the unmarried man

concept, making jM& bachelor redundant). Therefore, the next step in

the dictionary lookup is the packaging of those slot fillers that

still need to be expressed along with their syntatic predicates and

function words. The notion of precedes and follows can be used to

describe arv ordering used tV CGEN. In particular, it can be used to

specify syntax where the focus is on ary filler in the concept. Mul-

tiple syntatic rules are stored under each word that constitutes a

main action. When a concept is sent to the generator, it will contain

a property specifying what subpart of the whole concept is to be

focused upon. This focus property is used to index the syntatic rules

specifying the ordering of concepts (as in Figure 2.2). Note that

this focus is not part of the concept proper, it is more of an indica-

tion of the intent of the speaker. It was found to be necessary for

the CADHELP domain (and was thus added as an extension to CGEN) since

explanations which involved the CAD system as actor frequently would

not express the actor (e.g. "The device is deleted from the design*).

Once the proper set of qyntatic predicates has been found, each

non-nil slot filler in the input concept that matched a nil (don't-

care) slot filler in the dictionary entry is given a set of nyntax

-26-

that specifies its position on the C-LIST relative to the word found

and the other fillers. Since the function words associated with a slot

appear inthe set of of syntatic predicates that are associated with a

filler if the filler is not present, they will not be said. The func-

tion words, when encountered, obtain their syntax from the slot they

are associated with, in addition to having a predicate specifying

where they are to be placed relative to the filler of that slot. For

example, the function word _ generated using the dictionary defini-

tion from Figure 2.2, would have the following syntax:

((fo parent) (fo (path MCBJ)) (pr (path FROM)))

Some slot fillers receive special treatment at the hands of the syntax

specifier. These fillers fill surface slots, slots in a concept that

do not contain a substantive concept as a filler, but a lexical item

that can be expressed without further dictionary lookup. Examples of

these are the names of people, names of commands in CAD systems,

numbers and titles of courses, etc. The surface slots for a given

concept can be determined from the conceptual class (e.g. for the

conceptual class PERSON, the surface slots are PERSNAME and SURNAME).

Fillers from slots such as these that need to be expressed are

returned as words to insert onto the C-LIST, not as concepts that need

to be generated.

The dictionary is responsible for selecting the word or words

that span as much of the concept as possible. If the concept sent to

the dictionary contains temporal or modal information, a verb cluster

must be built to express the TIME and MODE slots of the concept. This

information is like the focus information, i.e. it Is not an integral

-27-

part of the meaning of the concept since it expresses auxiliary inf or-

mation. In fact, the three ty pes of information, focus, time and

mods, have to do with issues that are outside the range of the single

concept being generated. The time information expresses the relation-

ship of the time the action or state in the concept occurred, relative

to the time of speech and possibly relative to the time of some other

event. The focus and modal information relate the intentions of the

speaker or hearer. Focus serves to call attention to a particular

part of the concept, and modal information expresses the ability,

intent, obligation, etc. of the speaker. This information is complex

and difficult to represent fully. For example, the modal concept

expressed by shouldg in: "You should take CS 110 next semester." really

refers to the fact that the speaker has some knowledge of what events

would be in the best interest of the listener. This complex notion is

condensed into a single word, should.

Tensing, aspect and modal expression as well as subject-verb

agreement are performed in the lookup routines whenever a main verb is

found to match the concept sent. Subject-verb agreement is done by

examining features of the focused on concept to determine If it is

first person, second person, plural, etc. This information is used by

CGEN to produce the grammatical form for sentences like:

8) Move the stylus to the tablet.
9) The cursor moves.
10) 1 teach CS 110.
11) Dr. Bernard Lovell teaches CS 267.

-28-

The generation of modals is done b translating a given modal

specifier into the corresponding modal word (e.g. urge becomes should,

ability becomes &a). In addition, those modals that can indicate

tense 9 M and shall) do so. If the concept is negated, this is

also specified in the mode slot, and CGEN adds the word n to the

verb cluster immediately preceding the main verb, and following ary

modal word. If the word not is used, and no modal is present that can

carry the tense, then the properly tensed form of .o is added (called

do-support). For example, if the verb found is 3g, the tense is past,

and the mode slot filler is:

MODE (MODES MODEl (negation) MODE2 (ability) MODE3 (nil))

the dictionary lookup routine will return could =ot A2. However, if

the mode slot filler Is:

MODE (MODES MODEl (negation) MODE2 (nil) MODE3 (nil))

and the lookup routine returns =.d =ot Z2.

The third slot in the mode slot filler of a full conceptualiza-

tion, MODE3, is used if the entire conceptualization is being ques-

tioned. If the MODE3 slot does contain the question marker, then

depending upon the tense, aspect, MODEl and 14ODE2 fillers, several

things are done. First, the verb cluster is formed as usual, with the

exception that, if there is no modal specifier in MODE2, and no

aspect, do-3upport is done to carry the tense, since the first auxili-

ary (AA, had, etc., or a modal) will be fronted to form the question.

Recall the definition of delete, given in Section 2.2. This defini-

tion allows CGEN to generate sentences like 12 and 13.

-29-

12) The system deletes a device.
13) The device is deleted by the system.

If CGEN is sent the question form of the above concepts, the

result will be 14 or 15.

14) Does the system delete a device?
15) Is the device deleted by the system?

In sentence 15, the verb cluster " deleted is split and the auxiliary

1s is placed before the focused on entity. In order to do this, in

the case of a question, the first auxiliary is returned as a word to

be inserted into the C-LIST, not as a part of the verb cluster. The

syntax for the auxiliary is formed ty specifIng that it precedes the

focused on concept. In general, the auxiliary that is moved maq be a

modal, a form of do generated by do-support, or the copula of a pro-

gressive or stative (e.g. "Is the chair on the table?").

If only a subpart of the full conceptualization is being ques-

tioned, for example, the identity of the actor is desired, and the

concept is generated in such a way that the questioned part is gen-

erated before anything else (see Section 2.4), the auxiliary must also

be moved. This produces:

16) What course are you taking?

instead of

17) What course you are taking?

In sentence 17, by the time the dictionary is told to look up the case

frame that .ill match the word take, the questioned part of the con-

-30-

cept, wht course has already been said, so are is returned from the

lookup routine with syntax specifying that it is to be placed before

the filler of the ACTOR slot. If, at lookup time, the questioned con-

cept has not been expressed, no fronting of the auxiliary will be

done, and CGEN will generate 18.

18) You are taking what course?

The interaction between tense, aspect, modals, negations, ques-

tions and focus is intricate. In the simplest (and most common) case,

only tense and aspect are specified and these are handled easily

enough. CGEN has a set of morpholog routines capable of adding ",

=nK, s, to words, and stores arW irregular past tense or participle

forMs under the root word. Some examples are shown below.

18) I took CS 100.
19) I am taking CS 110.
20) I had taken CS 110.
21) He has been teaching CS 110.
22) Should he have not been teaching CS 110?

The net result of the dictionary lookup and its associated pro-

cessing is a word or list of words that represent as much of the input

concept as possible. In addition, it returns a (potentially empty)

list of concepts that still need to be expressed, and function words.

After these concepts and words are inserted into the C-LIST using the

specified precedes and follows predicates, CGEN repeats the cycle by

examining the top of the C-LIST.

Reviewing some of the examples given in this section, there

appear to be 3ome phenomena CGEN can produce that wre ttill

-31-

unexplained. For example, what happened to the expression of the

actor in sentence 8 ? How is the filler that is being questioned in a

full conceptualization fronted in sentence 16 ? The processes that

supplement the basic cycle to produce these sentences and others are

discussed in the next section.

2.41 Generation Strateizies

The process described above is not powerful enough to always pro-

duce natural-sounding English. There are a number of conventions

speakers use to produce utterances that are as concise as possible,

without omitting important information. These conventions have been

added to CGEN in an incremental manner, as needed. For a CAD style

domain, where the user is being told how to perform p~ysical actions,

the need for the imperative and expressions of instrumentality become

apparent. Upon changing to the domain of interviewing a student to

perform a preregistration, an important task for the generator was to

produce questions. The conventions for producing these are imple-

mented as a set of rules (sketchifiers) that fire when certain seman-

tic features are present in the concept on top of the C-LIST. These

rules may change the form of the utterance by marking redundant con-

cepts as not to be said, by adding words to the C-LIST, or by modify-

ing the concept _o that certain linguistic conventions are used (such

as the progressive) to express a concept more concisely than the nor-

mal cycle would. It is this set of rules that is responsible for form-

ing the linguistic shorthand used by speakers of English.

-32-

The sketchifiers CGEN uses are arranged according to the type of

concept upon which they operate. One set operates on entities. It

contains a rule which expresses relative clauses to describe an

entity, if need be. If CGEN has received an entity for expression

that contains a relative clause, and if the entity has not been men-

tioned before, the SAYREL sketchifier will remove the relative concept

from the concept representing the entity and place it on the C-LIST

following the entity representation. This could be done in the dic-

tionary just as easily, using some syntatic predicates to order the

expression of the entity relative to the expression of the relative

clause. However, SAYREL remembers that it has expressed the entity

using a relative clause, and will express the relative clause slightly

differently the next time it appears. If the time is present in the

relative clause, and the mode is true, then the connecting pronoun

_t= and the copula that connects the pronoun to the rest of the

clause can be removed. For example, the phrase:

"the device that is in the lower right hand corner of the screen"

can be shortened to:

"the device in the lower right hand corner of the screen."

flote that if the time is not present or the mode is not true this does

not hold, as in:

"the device that was in the corner"

or:

"the device that should be in the corner."

In addition, if SAYREL sees a concept that has a LABEL attribute as

its relative clause, e.g. "the command block labeled 14APK1," it knows

-33-

this can be shortened to a simple expression of the label, MARKM.

The other rules that operate on entities are used to fill defau.-

values in the case frame for an entity. Entities can be referenced in

a variety of was, with definite or indefinite articles, or using pro-

nouns, as well as using the relative clauses described above. In a

system with a sophisticated memory model, arV reference specifications

would be filled by the memory before being sent to the generator or

the generator would keep track of the different ways an entity can be

expressed. One system that has been implemented for use with CGEN is

the paraphrase module for the DSAM story understanding program

[Cull8la], [Unge82]. The DSAM system tracks the expression of people

and when a new person appears, creates a new sketchifier whose

specific task is to determine how that person should be expressed each

time it occurs in a concept. For entities other than persons, the

sketchifier ENTREF was built into CGEN by Cullingford, et. al., and is

responsible for filling in 'he slot that determines how an entity is

to be referenced. That part of the case frame representing an entity

that determines the reference for an entity is the REF slot. ENTREF

is responsible for choosing between three simple types of expression.

First, CGEN retains a list of those entities .hat have been expressed

in the current sentence. If an entity appears more than once, the

zeeond time it iu expressed as it. This simple rule allows CGM1! to

produce simple pronominal reference for entities. If the entity has

not been said in the sentence, but has been mentioned in the text or

is a unique entity (one that the listener could be expected to know

from the situational context) it is given a definite reference. The

-34-

default reference is indefinite. Thus, ENTREF will yield the follow-

ing phrases in a run:

a device will appear
move the device
select the device and move it

The next set of rules operates on that class of concepts that

express some relation between full conceptualizations, for example,

causal or time relations. One causal relation that occurred fre-

quently in the CAD domain was one in which the first concept expressed

some goal of the user, and the second concept stated the action the

user had to perform to realize that goal. For example, if the concept

was the intent of the DELETE command, it would look as shown in Figure

2.3. Given this concept, CGEN's basic cycle will produce: "If you

want that you delete a device from the design, then you use the DELETE

(CAUSE PRECON (S-GOAL ACTOR *user
MODE (nil) TIME (nil)
GOAL (M'rRANS

ACTOR (PERSON PERSNAME (cadhelp)
ROLE (*sys))

MCBJ &desr-del-dev
INST (nil) FOCUS (nil)
MODE (nil) FROM *design
TO (nil)))

POSTCOH ($CADFEAT ACTOR *user
FEATNAME (CREATE)
MODE (nil) TIM (nil)))

A Causal Relation Input to CAUZ

Figure 2.3

-35-

command." However, the CAUZ sketchifier will notice this particular

causal relationship and produce: "To delete a device from the design,

use the DELETE command." CAUZ does this by adding the word to to the

C-LIST, followed by the concept filling the GOAL slot of the S-GOAL of

the user and the POSTCON of the CAUSE. This process is shown in more

detail in the example in Section 2.5.

The last set of rules to be discussed has to do with modifica-

tions to concepts that are full conceptualizations. One such

sketchifier is IMP, the imperative rule. IMP demonstrates the com-

plexity of the decisions some of these rules must make before they can

fire. An English version of IMP appears in Figure 2.4. This rule

produces an imperative form whenever all the conditions are true.

Another sketchifier that operates on full conceptualizations, INF, is

responsible for forming an infinitive construction whenever an actor

has a goal for himself, or in certain cases where mental events are

If the concept is a unit action
(i.e. not a state or relation between concepts)..

and If the actor of the action is the other person
in the conversation

and If the time of the action is present
and If the action is asserted, with no negation

or modal specifiers
and If the concept is not a question
and If the focus of the expression is to be on the actor

then suppress the expression of the actor.

The Imperative Rule

Figure 2.4

-36-

occurring. For goals, INF will take a concept that would normally be

expressed as: "Jacob wanted that Jacob go to Hartford" and express it

as: *Jacob wanted to go to Hartford." For mental events such as are

found in the meaning of a sentence like: "Jacob pretended that Jacob

went," the INF sketchifier will produce "Jacob pretended to go,ff but

will skip over a concept that would express "Jacob pretended that

Jacob could go," since the infinitive form does not occur here.

An important feature of the CAD domain was the use of instru-

ments. Concepts would frequently have the actor producing some action

by performing some instrumental action. In concepts such as these,

the instrument can be expressing by suppressing the expression of the

actor in the instrument action (since it can be inferred), then using

the word .y followed by the progressive form of the instrument action.

This causes those concepts which would normally be expressed like: I
"Jacob hit the ball by the instrument that Jacob swung the bat." to be

instead shortened to: "Jacob hit the ball by swinging the bat."

Further uses of this instrument will be shortened to: "Jacob hit the

ball with the bat." provided that the entity serving as the object of

the instrumental conceptualization is being used in its usual manner.

The last rule to be discussed is responsible for forming ques-

tions, and is called the QFOCUS sketchifier. If the entire concept is

being questioned, the dictionary deals with the ordering of words,

etc, as described above. Otherwise, the proper form of a wh-word (for

CGEN's applications, these are who or what) is determined. This is

done ty examining the concept belng questioned to fee if it z3 a Ter-

-37-

son, and that it has a place in the being generated. Then the form

used is who. If who is not enough to completely specify the reference

to the entity being questioned, the word what is used followed by any

information that can be obtained from the concept. For example, if

CGEN was generating a question directed to a user of a program, a

proper form would be: "Who are you?" On the other hand, non-person

entities must be stated in full, e.g. "What courses are you taking?"

CGEN was developed and expanded initially for generating explana-

tions in a CAD domain. In addition, it performed in the story para-

phrase task of DSAM [Unge82]. It was also successfully updated for

use in the Academic Counseling Experiment. Once the basic cycle was

fully developed, CGEN could move from domain to domain by adding new

words to the dictionary, and ty adding new sketchifiers to produce new

forms. This important tool is used in both systems discussed in this

thesis, and thus has had an influence upon their design. Before

further discussions of these sy stems, a full-length example of CGEN'S

operation is shown in the next section.

2.5 Detailed Example

CGEN's generation cycle and rules are here illustrated with an

example. What follows is annotated computer output, edited for reada-

bility, showing the generator expressing a concept which has been

modified by several sketchifiers. The concept to be expressed is an

intent conceptualization of one of CADHELPs commands, the CREATE

mand. In a fully verbose form, with no rules to supplement the basic

cycle, the generator would say:

-38-

"If you want that CADHELP add a device to the design then you use the

CREATE command."

With the rules present, CGEN produces instead:

"To add a device to the design use the CREATE command."

A trace of the generation process is shown below. Comments added in

to clarify the example are set off by horizontal lines, or by tildes

Franz Lisp, Opus 36
-- >(gen 'create-intent)

If there's a concept at the top of the clst, CGEN will print

it before invoking the sketchifiers. The current top of clist
is the input conceptualization, the intent of the CREATE com-
mand. It expresses a causal relation between two events, a
precon and a postcon. The precon concept is that the user has

the goal that the system place a device (which is in the ware-
house) in the design. The system accomplishes this transfer
by means of an mtrans, a mental transfer of information from
the warehouse to the design. The postcon concept is a script,
$cadfeat, used to represent the complex notion of "executing a
CADHELP feature". In this case, the CADHELP feature to be ex-

ecuted is CREATE.

-39-

GEN: top of clist
(cause

precon (s-goal actor *user
mode (nil) time (nil)
goal (mtrans actor *sys

mode (nil) time (nil)
mobj Odisp-dev

inst (nil)
from Owrhouse

to *design
mode (nil)
time (times timel (:pres)))

postcon ($cadfeat actor *user
feat name (CREATE)

mode (nil)
time (times timel (:pres)))))

Now this concept is sent to the sketchifiers. The first one to fire
is the causal sketchifier. This forms the construction "To x, y" from
the concept "If you want that the system x, y." It does this replacing
the precon of the input concept with its goal subconcept, preceded by
the infinitive function word "to." It also marks the actor of this
subconcept as not needing expression, since in this domain the system
can be inferred to be the actor in concepts of this sort.

*cauz
cauz: forming to construction in top of clist

The state of the clist at this point is:

-40-

GEN: clist
("to" " word "to"
(mtrans actor Osys " concept that was goal of

mode (nil) time (nil) - s-goal of the precon
mobj edisp-dev
inst (nil)
from #wrhouse
to *design
mode (nil)
time (times timel (:pres)))

($cadfeat actor *user " postcon concept
featname (CREATE)
mode (nil) time (times timel (:pres))))

CGEN pops the word "to" off of the top of the clist and saves it.
Since the next thing on the olst is a concept, CGEN will print it,
then let the sketchifiers look at it.

GEN: top of clist
(mtrans actor #sys

mode (nil) time (nil)

mobj Odisp-dev
inst (nil)
from *wrhouse
to *design
mode (nil) time (times timel (:pres)))

The concept is sent to the dictionary for lookup. The dictionary re-
turns the lexical item "add", since the direction of the transfer is
from the warehouse to the design. Notice that the actor of the
mtrans, the pystem, is not among the fillers returned, since it was
marked as not to be aaid by the CAUZ zketchifier.

-41-

DICT to match:
(rtrans actor Osys

focus (actor)
mode (nil) time (nil)
mobj Odisp-dev
inst (nil)
from *wrhouse
to Mdesign
mode (nil)
time (times timel (:pres)))

DICT result: (add)

DICT fillers: (Odisp-dev " mobj slot filler
(follows "add")

(precedes to)

*design - to slot filler
(follows "add")
(follows mobJ)

(follows (fw to))) - fw function word

The chiat after insertion is:

GEN: clist 4
("add" - new word, *add"

*disp-dev - mobj filler of the mtrans

"to" - function word "to"
*design - to filler of the mtrans

($cadfeat actor *user " postcon of the causal
featname (CREATE)

mode (nil) time (times timel (:pros))))

The new top of the clist is the device, 'disp-dev. It is shown below
in its expanded form; *disp-dev is a shorthand form.

-42-

GEN: top of clist
(Odevice partof Owrhouse

type &typ
class &cln
posx (1471)

posy (il144)
status (nil)
assoc-txt (nil)
label &label)

The job of the next sketchifier is to track the entities that have
been said, and see to it that they are given the appropriate refer-
ence. In this case, since the device has not been mentioned before, it
is given an indefinite reference.

entref
entref: refizing top of clist

DICT to match:
(#device partof *wrhouse

ref (indef) " indefinite marker
type &typ
class &cls
posx (1471)
posy (144)
status (nil)
assoc-txt (nil)
label &label)

DICT result: (device)
DICT fillers: ((indef) - ref slot filler

(precedes "device"))

The clint after insertion is:

-4I3-

GEN: cllt
((indef) ref slot filler
"device" new word

"to" - function word "to"
9design - to filler of the mtrans

($cadfeat actor *user " postcon of the causal
featname (CREATE)
mode (nil) timle (times timel (:pres))))

The concept indef is found to match the word "a".

GEN: top of clst
(Indef)

DICT to match:
(indef)

DICT result: (a)
DICT fillers: (nil) " no fillers

The clist after insertion is:

GEN: clIzt
("a" " new word

"device"
"to"
*design - to filler of the mtrans
($cadfeat actor *user - postcon of the causal

featname (CREATE)
mode (nil) time (times timel (:pres))))

-44-

The next concept to reach the top is *design, the shorthand way of
naming the design. Entref gives it a definite reference, since it is
a known entity (like "the screen" and "the user"). In the same way as
for "a device", "the design" is generated. We shall skip the details
and go to the generation of the postcon of the causal.

GEN: top of clist
($cadfeat actor *user

featname (CREATE)
mode (nil) time (times timel (:pres))))

Here the imperative sketchifier, IMP, goes off, since the concept at
the top of the clist is a simple declarative. The actor in the con-
cept is marked as not to be expressed.

limp
imp: squashing actor in top of clst

DICT to match:
($cadfeat actor *user

featname (CREATE)
mode (nil) time (times timel (:pros))))

DICT result: (use)

The dictionary has not been able to find a verb which cirectly
expresses the content of the concept above, so it returns the
routral form "nse." "Execute" or "do" are other possibilities.
The only filler returned i: a nominalized form of the ,icadfeat
script. This is used to represent the generic term "command,"
which in this domain is a complex series of events.

L mi..._

-45-

DICT fillers: (($cadfeat actor *user
featname (CREATE)
mode (nom) time (nil))

(follows "use"))

The clist after insertion is:

GEN: clist
("use" - new word
($cadfeat actor *user - nominalized script

featname (CREATE)
mode (nom)))

The nominal form is at the top, and is sent to the sketchifiers. A
rule similar to ENTREF, the entity reference rule, fires. This is
EVREF, the event reference rule. EVREF gives the feature a definite
reference, since the user supposedly knows about the commands.

GEN: top of clist
($cadfeat actor *user nominalized script

featname (CREATE)

mode (nom) time (nil))

Oevref
evref: refiziig top of clist

DICT to match:
($cadfeat actor *user nominalized script

ref (def)
featname (CREATE)

mode (nom))
DICT result: (command)
DICT fillers: ((CREATE) " featname filler

(precedes "command")

(follows ref)

(def) - ref slot filler
(precedes "command")
(follows featname)

Notice in the clist that follows, the filler of the featname slot has
been put on as a word, not as a concept. This is because certain con-
cepts have certain roles that are 'labels' (such as the names of per-
sons and animals), and do not need further lookup.

GENl: clist
((def) - ref slot filler
"CREATE" - featname slot filler
"command") - new word

GEN: top of clist
(def)

DICT to match:
(def)

DICT result: (the)
DICT filler-: (nil)

GEN: cli-;t
("the"
"CREATE"
"command")

UEl result: (to add a device to the desi n use the CREATE command)

CHAPTER 3

Explanations in Computer-Aided Design

3.1 Overview of CADHEL

CADHELP is a computer-aided design system for the design of logic

circuits [Cull8Ic]. As discussed previously, a CAD domain is a useful

vehicle for experiments in explanations. The CADHELP system is

divided into two basic parts, the CAD Tool itself, which performs

graphical operations concerned with the design and the Explanation

Mechanism, which is responsible for providing natural language and

graphical output to the user. The function of the Explanation Mechan-

ism is to explain how a particular feature works, and to assist in the

execution of a feature by generating prompts to guide the user. In

order to facilitate understanding of the examples included in this

chapter, it will be useful to discuss the actual features the CAD Tool

can execute.

CADHELP operates in the task domain of logic circuit design. The

graphics component of CADHELP provides the user. with the ability to

select, place, and orient components on a graphics screen, and to make

connections between devices. A user can also edit a design by adding,

deleting, or moving components and adding, deleting or redrawing

interconnections. The oystem provides a technique for creating con-

nections with right-angle segments, as well as a mechanism for com-

menting or the design n associating text with a particular dcvice or

IT

-48-

a special comment symbol.

The main channel between the user and CADHELP is a 20"x20" data

tablet and its associated pen-like stylus. The surface of the tablet

is divided into a Drawing Area, a Master Control Block, and 64 per-

manently allocated 1"-square Command Blocks. Touching the tip of the

stylus to the tablet communicates coordinate information to the sys-

tem. Additionally, the tip of the stylus contains a switch, which is

turned on if the stylus is pressed sufficiently hard. Pressing the

stylus on the Master Control Block will abort ar ongoing command.

Exiting a command via the Master Control Block, as well as other nor-

mal terminations, returns the user to the top level of the system,

where another coumand ma be selected for execution. The Drawing Area

is used for a variety of input functions, such as drawing interconnec-

tions and moving graphical objects on the screen. The Command Blocks

on the tablet are used to select and control the execution of the

graphical features of the CAD system.

The commands currently implemented and known to the Explanation

Mechanism are outlined in Figure 3.1. It is not at all obvious how

these features are to be operated, especially to new users. The

CREATE command will be described in some detail below cs an illustra-

tion of the complexity of the commands.

CREATE is used to select a device from CADHELP's database of dev-

ices, cplled the warehouse, and po.;ition it on the screen. This is how

raw devices art! added to the aesirn. First, the user peruses the

warehouse, looking for the device to be createa: The perusal procesu

- i19-

SELECT
This is CADHELP's top level. Any command can be initiated by
touching the stylus to the Command Block labeled with its name.

CATALOG
allows the user to peruse CADHELP's database of logic devices.

CREATE
select a device and position it in the design area.

CONNECT
draw a connection between devices containing right-angle seg-
ments. This feature uses a simple extension of the graphical
operation called rubber-banding, in which a line segment appears
to stretch away from an origin in response to stylus movements.

DELETE
delete a device from the design.

DISCONNECT
delete an interconnection.

DRAG
move an existing symbol.

ROTATE
orient a device symbol left, right, up or down

ANNOTATE
associate text with particular device or comment symbol.

READ
read text associated with a logic component or comment symbol.

CADHELP's Command Zummary

Figure 3.1

iz Implemented by a feature called CATALOG. To catalog, the user

touches the :tylus on the Drawing Area ot the tablet. The CAD Tool

responds Ly urawing a device in a dedicated area of the uisplqy, the

catalog area. :f the us,-r now moves the stylus horizontally in the

-50-

Drawing Area, a new device will appei-a which is of the same class as

the device \currently being displaye!, but of a different type (e.g.,

2-input vs. 3-input NAND gates). To view a member of a different

class (e.g., a counter vs. an OR gate), a vertical movement of the

stylus is made.

When the device the user wants to create finally appears in the

catalog area, he informs the CAD Tool of his choice by pressing the

stylus on the command block labeled MARKi. Pressing with some force

is necessary to activate the switch in the stylus which means: "attend

to this command." The Tool then makes the device being displayed mov-

able. Now the user must position the device in the design. To enable

the user to locate the device with the stylus, the system draws a cur-

sor which moves on the screen as the user moves the stylus on the

drawing area. The user moves the stylus, and thus the cursor, in the

direction of the device to be added. When the device and the cursor

overlap, the device also begins to move as the stylus moves. By nov-

ing the stylus appropriately, the user positions the device. When the

device has reached the desired spot, the user informs the system of

his decision by pressing the MARK1 command block.

CADHELP uses the Explanation Mechanism to describe features such

as CREATE both when the user SLECTs the command EXPLAIN and through

prompts during normal operation of a feature. After chcosing to exe-

cute EXPLAIN, the user will be asked to press the command block that

is labeled with the name of the feature to be described. He will .lo

be askea to select the i..,vel of explanation desirec ty touchirg one of

-51-

the blocks labeled SUIMARY, NORMAL or ERRORS.

In a summary level of explanation, the intent of the command is

given. The intent of a command is the result that execution of that

command will produce. For example, the intent or goal for CREATE is:

To add a device to the design, use the CREATE command.

The normal mode of explanation provides the user with a step-by-

step description of his expected behavior and the response of the CAD

Tool to that behavior. In addition, system features and components

that have not been mentioned in other explanations are described (e.g.

the catalog area in the output shown below). For example, the first

time the user requests a NORMAL explanation of the CREATE command,

CADHELP responds with:

To add a device to the design,
use the CREATE command.

Move the stylus to the tablet.
Touch the stylus on the drawing area.
A device that is in the catalog area will become visible.
The catalog area is in the lower right hand corner of
the screen.

Repeat the following until the device in the catalog area
is of equal type to the device that you want to add to the
design.

Move the stylus horizontally.
A new type of device will become visible.

Repeat the following until the device in the catalog area
is of equal class to the device you want to add to the
design.

Move the stylus vertically.
A new class of device will become visible.

rove the !tylus to the command block that is labeled I!ARKI.
2ress the stylus on the commano block labeled MARKI.

-52-

A prompt will become visible.
A cursor will become visible.
The cursor is in the lower right hand corner of the screen.

Move the stylus to the tablet.
Touch the stylus on the lower right hand corner of the
drawing area.

Repeat the following until the cursor is
over the device in the catalog area.

Move the sty lus to a new location.
The cursor will move to a new location.
The new location will correspond to the location of
the stylus in the drawing area.

Repeat the following until the device is at a screen
location that you want that the system record.

Move the stylus to a new location.
The device will move to a new location.

Move the stylus to the MARKI command block.
Press on MARKI.
The device will be added to the design.

An ERRORS explanation is like a NORMAL one, except that the

Explanation Mechanism also describes what can go wrong during the exe-

cution of the feature. For details on the ERRORs mode of explanation,

see [Phel82]. For example, while the user is moving the cursor toward

the device in CREATE, he may move the stylus outside of the Drawing

Area. The Explanation Mechanism will explain this potential error as

follows:

Repeat the following until the cursor is
over the device in the catalog area.

Move the stylus to a new location.
The cursor will move to a new location.
"'he new location will correspond to the location of
the L-tylus in the drawing area.
If you move the sty lus out of the crawin area

-53-

the location of the stylus on the tablet will not
correspond to a location on the screen.
The cursor will not move.

The actual use of the graphical features during design is accom-

panied in CADHELP by prompts which are intended to lead the user

step-by-step through the operation. The prompts are very much like the

NORMAL mode of explanation illustrated above. Unlike the prompts pro-

vided with existing CAD systems, however, these are not canned. They

are generated from the knowledge structure each time they are

expressed. Thus, the system is verbose with a new user but becomes

more and more laconic as it gets out of the way of the experienced

designer.

For example, the first time the user operates the CREATE command,

the Explanation echanism provides the CAD Tool with a sequence of

prompts which is nearly identical to the NORMAL explanation shown

above, minus the first sentence which expresses the intent concept.

The only difference is that the EXPLAIN command produces the future

tense in expressing the actions of' the CAD Tool, whereas the prompting

mechanism uses the present tense, since the system's actions are

occurring in real time. If the user operates CREATE a second time,

CADHELP generates a more abbreviated prompt "equence:

love the stylus to the tablet.

To see the warehouse move the stylus horizontally and
move the stylus vertically.

-54-

To tell the system to add the device to the design
press the stylus on 14ARK1.

Move the stylus to the lower right hand corner of
the drawing area.

To move the cursor move the stylus.
To move the device move the stylus.

To tell the system to record the screen location
press on MARKI.

The third time CREATE is used, CADHELP generates the following simple

prompt sequence:

Move the stylus horizontally and move the stylus vertically.
Press on MARKI.
Move the cursor with the stylus.
Move the device with the stylus.
Press on MARKI.

Thus CADHELP's explanations become more brief as the user gains

experience.

In order to generate language and graphical animation for CADHELP

features as complicated as CREATE, a complex representation of the

command as an expert sees it is needed. This representation and the

mechanism that operates upon it, are discussed in the following sec-

tions.

3.2 Representation of CAD Knowledge

In order to explain a command as complex as CREATE in CADHELP,

the Explanation Vechani-m must have knowledge of the execution of the

command as an expert uer of' the system sees it. This viewpoint (a-

opposes to the expert Vnowledge the ceveloper of the :ystem ,.as) will

-55-

yield the best explanations. The knowledge an expert user has about a

system such as CADHELP is best represented in terms of the give and

take between the user and the system. Several theories exist for

structuring knowledge. Artificial Intelligence programs with large

databases containing both declarative and procedural knowledge have

found the production system approach useful [Shor76]. Production sys-

tems consist of sets of rules represented as test-action pairs. The

test part of a rule stands for conditions (the declarative knowledge)

which, if satisfied, will perform some action (the procedural

knowledge). Since the knowledge CADHELP's Explanation Mechanism used

was to be more declarative than procedural, a representation that

reflected the static aspects of knowledge was desired.

For the reasons outlined in Chapter 2, the set of concepts

comprising the CAD expertise were to be represented using Conceptual

Dependency format. However, these concepts needed to be causally con-

nected to exhibit the stereotypical behavior of a user of the system.

One theory for structuring complex, stereotyped knowledge is the

frame-system proposed by Minsky [Hins75]. Charniak [Char77] used the

notion of frames in implementing a language comprehension system

called Its. Malaprop. Ms. Malaprop :,pecialized in understanding stories

about mundane painting tasks. Charniak uses the frame representation

to liLt goals that can be achieved by realizing subgoals, but is not

explicit about the actions involved in realizing the subgoals or the

causal connection between events in a frame, both of which are neces-

sary for the luvel of detail to be rn:presentea here.

-56-

A similar knowledge structuring technique was used by Cullingford

[Cull8lal in his SA story comprehension system. Cullingford's SAM

understands stories about stereotyped events using a knowledge

representation called scripts [Scha77]. A script is a causally con-

nected set of concepts (in CD format), which models the knowledge peo-

ple have of stereotyped situations, such as eating in a restaurant or

riding on the subway. While scripts have the advantage here since

they are based on CD format, the scripts that SAM used for understand-

ing were not fine-grained enough for representing the use of the com-

mands of CADHELP.

Detailed knowledge is represented best in the commonsense algo-

ritmis of Rieger [Rieg77). The primitive concepts of Conceptual

Dependency, linked into a script ty the links of the Common Sense

Algorithms, provide a static representation that is fine-grained

enough to permit a graphical animation system to use them, and not so

fine-grained that a language system is caught up in unnecessary

details.

Each command in CADHELP is represented as a separate feature

3cript stored in LTM. (Long Term emory). A feature script is composed

of the CD representations of the physical and mental actions ana

states of the user and the system, causally linked together. The

links used are listed in Figure 3.2. Detailed discussion of the links

is deferred until the next nection. Figure '3.3 shows the primitive

actions and states used in the feature scripts. In addition to those

primitive ietions libted, some primitive embedded jcripta were usen

-57-

OSE:
a state one shot enables an event; it must be present once for
the event to occur

OSC:
an event one shot causes some states; it need not continue to be
performed in order for the states to still exist

CC:
one state is causally coupled to another; the two are causally
connected but the exact nature of the causality is not specified

INITIATE:
an event (usually a perception of some state in the world) ini-
tiates another event (ususally a mental event)

REASON:
a mental event is the reason for another (ususally physical)
event

IR:
this blurs the distinction between an REASON and an INITIATE
link, when this information is not useful

RUT:
repeat links until threshold (satisfaction condition) becomes
true

TRNPT:
indicates a turning point in the script, a set of mutually ex-
clusive paths which can be followed

SR:

performing the acts comprising a script leads to some important
states

GRC:
the overall goal of the script (a state) is linked by this to the
action that caused it

ANTAG:
.in antagoni-m between two ttates exists

Causal Links Used in Feature Scripts

Fik;ur(3.2

-58-

PTRANS:
the physical transfer of location of an actor or entity by an ac-
tor

MTRANS:
the communication of concepts between actors or the acquisition
of knowledge from a sensor

M UILD:
construction of a decision out of pre-existing information, re-
trieved from memory or a sensor

PROPEL:
application of force to an object with another object

MKNOW:
the state of having some information in memory

S-CHANGE:
a change of some state of an actor or entity

S-EQUIV:
a equivalence between entities

P-CONFIG:
specifies the physical configuration between two entities

A-CONFIG:
-pecifies an abstract configuration between two entities

Primitive Actions and States Used in Feature Scripts

Figure 3.3

(see Figure 3.4). These occurrea in two cases. Firn't, if several

feature scripts shared common actions and 2;tates (Crerhaps differinFI

only in the entities manipulatea), these coumon concepts could be

represented once, and used ty all feature scripts. Tis naes the

feature zcripts more concise, ind maKes for ,asier development of new

.,cripts. For ,.xample, .*,ne common sequence ij; ttaL of pressan; the

-59-

stylus on a command block on the tablet, and this is represented as

the $PRESS embeaded script. Hence, arny feature script needing to

express this feature could refer to $PRESS. Since there are several

command blocks that could be pressed with the stylus, the $PRESS

script uses a script variable, &omdblk, to represent the command block

to be pressed, and ary feature script using it will instantiates

&cmdblk with the actual occurrence of a command block, for example

tMARK1. The notation *AARK1 is a convenient shorthand for the compli-

cated concept representing the MARKI command block on the data tablet.

It is expanded when encountered in ary concept to its full form.

The embedded script representation is usually used for those

actions performed by the user. There is a similar embedded script

representation for those actions performed by the system. These are

represented in the same wa as the user scripts, but are not expand-

able into a causal chain of actions and states. This shortening is

done for several reasons. Firstly, the view of the CAD features

modeled in CADHELP is the expert user's view, and the expert user is

aware that the Lystem performs complicated actions in the form of

code, but is not aware of the exact details. The expert user is only

aware of the consequences of those actions, and this is represented

explicitly. Secondly, the graphical animation expert using the

representation did not need to know the details either, if this expert

knew the desired result, it used its own code to depict that result or.

a graphics t:creen. A third point concerns whether or not to simply

:.iake these scripts primitive actions in the system. This was not done

jecause ui" u wish to emphasize the complex nature of the action, and

-60-

Non-expandable embedded scripts:

$Prompt
the system executes this to cause a prompt to appear on the
screen

$clone
used to make a copy of a device or other graphic object

$draw
the system makes a line or device visible on the graphics display
with this script

$undraw
the system makes a line or device invisible on the graphics

disply with this script

$makemap
the system forms a correspondence between two objects

$cadfeat
this script is used to refer to arw other CADHELP feature,
without necessari]y specifying wnich.

Expandable embedded scripts:

$press
used to informn the system of a user intention by the user press-

ing the stylus on a command block

$move
used to move a graphical object on the screen by moving the
stylus along the corresponding points in the drawing area.

$viewrhs
used to view the contents of the warehouse y moving the sty lus
in the drawing area

Embedded Scripts Used in Feature Scripts

Figure 3.4

also to leave open the possibility that in an extension of the system,

these scripts may become expandable.

-61-

CADHELP's LTH, then, contains a knowledge base of feature

scripts, one for each command CADHELP knows. In addition, CGEfl can

express the feature scripts in English. The resulting output would be

difficult to understand, because of all the unnecessary detail

present. The next section outlines the interface program between LTM

and CGEN which alleviates this problem.

3.3 Concept Selection

The rules that occur in CGEN are decision rules, they decide,

based on the semantic features of the concept being expressed, what

linguistic form to use to communicate the idea in the most economical

fashion. There are also other rules that are distinguished from

CGEN's in that they examine higher-level knowledge structures, the

feature scriots, to select concepts to be sent to CGEN. The knowledge

structure level decision process is implemented in CADHELP by a module

called HELPCON, programmed in Franz LISP [Fode80]. An entire feature

script is input to HELPCON and it is responsible for traversing the

links of the feature script and selecting concepts for expression by

COEN. The traversal of the script provides the main control for HELP-

CON, and at each link, HELPCON applies a particular rule which decides

whether or not to express the link and the concepts it connects.

There is one rule per link (see Figure 3.2) making HELPCON data-driven

and easily expandable.

HELPCONs rules ue several types of information to deciae whether

to express a concept or not. One is the type o1 link. A rule that

fires because i certain lirk ic present may do nothing more than

-62-

suppress expression of the link and the concepts that it connects.

For example, CC is a rule that looks at causal couplings of states.

In this domain, causal coupling can be inferred by the user, e.g. if

the stylus is in a new location, the tip of the stylus, which is part

of the stylus, is in a new location also. This type of information is

domain-specific. In domains where the causal coupling of states may

be less transparent, the CC rule could be reformulated to explain the

coupling the first time it was encountered, then expect the user to be

able to infer it.

Other link types that merely suppress the link and its concepts

are THEN, IR, REASON, INITIATE. Since HELPCON is only concerned with

the overt physical actions of the user, ary mental actions or states

are ignored in the explanation. Links connecting mental actions and

states, whether those actions were by the system or the user, would be

important if CADHELP was programmed to attempt to describe in detail

user mistakes, or teach the user how to design, or even to debug

feature scripts. For example, something like:

I thought that the prompt would cause (initiate) you to decide to
delete a particular device and that would be the reason you would
move the stylus.

coula be generated to explain why the system had waited for the stylus

to tie moved, when the user wasn't expecting to have to move it. Like

the rules for riental links, the THEN rule also suppresses expression

of the THEI link and the concepts it connects, .Ance it does not

really have rnoui;n infornation to cicice it' a concept Ltloulc be -aid

1.r rot.

I I I : " I I I I

-63-

Two rules corresponuing to links used in the CADHELP feature

zcri~t are responsible for ,3electir:g important user actions and for

focusing upon important states. These are OSE and OSC, respectively.

The OSC rule operates upon one-shot-causal relationships, where an

action causes a state. The action may be performed by the system or

the user, and if it is performed by the system it and the resulting

state are ignored. If the action is performed by the user, and it is

an overt physical action (i.e. not a mental event) then OSC decides

that this is something the user should be told. The state one-shot-

caused by the action is not expressed, since the user is assumed to be

able to infer the consequences of his actions. In a more complicated

HELP situation, an explainer may want to tell the user the conse-

quences of his actions, especially if they are in error.

The OSE link mainly serves to call attention to states the system

expects the user will notice. In CADHELP, these are events like

prcmpts appearing, objects blinking or devices appearing on the graph-

ics display. Since the script describes the expected behavior of' the

user, these important states are ropresentea as the object of user

MTRANSs (mental transfers). Basically, OSE will select a state to be

expressed if' it .ees that the statc one-shot-cnables the user to

mtrans that state. HELPCON selects the state, rather than the user

ntrans of the state, to avoid constructs like:

You will see z, prompt appear on the screen.

Lne representation of these t1TRAMIs explicitly is useful in pinpoint-

ing 'mportant ,ventz; to be anirnatea ty the animator, inl could rrcve

,seful in explir.ing how to (etect jotuntial errors, :cr example:

-6 4-

If you do not see the prompt appear,
press the button or turn up the
intensity of the graphics device.

Another set of rules HELPCON uses aid in the traversal of the

feature script. TRIJPT is one of these. Feature scripts are organized

temporally, but are not necessarily linear. At certain points in a

script, there may be mutually exclusive paths that can be followed.

For example, in CADHELP, the user can lengthen a connection or shorten

a connection during the CONNECT command, but not both simultaneously.

TRNPT is responsible for assuring that, when one of these turning

points is reached, each path is traversed in turn. The user is

assumed to know about the exclusiveness of the different paths, and no

introduction like: "Do one of the following" is used.

An important property of parts of a feature script is that they

can be repeated any number of times until some termination condition

is reached, called RUT, for Repeat Until Threshold. This is useful

for expressing segments of a script that are performed ty the user in

an incremental fashion until some desired state of the design is

reached. For example, drawing a connection between two devices can be

thought of as the process of drawing connected horizontal and vertical

setpents until the connection is complete. RUTs may be embedded, foi

example, each ,e;g7ent is the sum of many movements in a straight line.

A RUT is flefired by a satisfaction condition, which expresses the

state thLt will cause the RUT to terminate, as well as . ;et cf

nausally linked states and acticn! that .re to be repeateu. PUTz are

r~andlea t7J expressing the :;ati:faction oonoition ,mtedded in tn,;

-65-

construct: "Repeat the following until... ", then subjecting the

actions and states to be repeated to the HELPCON process.

Another property of feature scripts is that they can share large

portions of standardized actions, e.g. moving a device using the

stylus, using embedded scripts. The rule SR is responsible for decid-

ing what to do with these scripts. The feature scripts used by

CADHELP are represented so that the actual expansion of the embedded

script is not inserted when it is called, but a pointer to an instan-

tiated version is established. In the main path of the outer feature

script is inserted a reference to the script, along with values for

some script variables. This reference is causally linked to one or

more states via SR, scriptal result. These states are the important

conditions that are true in the world after the embedded script is

executed.

The first time a reference to a script appears, HELPCONs SR rule

expands it, i.e. it places all the actions and states making up that

script into the mainstream of processing, where they are traversed.

However, SR is sensitive to the number of times it has expanded an

embedded script, so when it reaches subsequent references, it will say

the intent of the script, then the main concept of the script. The

intent of the script is goal concept, or the reason it is used, for

example, ore uses the $PRESS script to inform the system of some event

In the design process. The main concept of the script is the (usu-

ally) single action that nlummarizes what the user is to do, in thc

CADHELP domain, it is usually 2umrarized best ty one :erb ana one

-66-

instrument, e.g "Press the stylus on the tablet", or: "Move the device

with the stylus. " Like SR, several of HELPCONs other rules are sensi-

tive to previous explanations, namely OSE, OSC and RUT. The succes-

sively simpler explanations this process produces can be found in sec-

tion 2.1.

HELPCONs rules use several kinds of information. Some use gen-

eral knowledge of the users ability to make inferences and to remember

what he has been told. Knowledge of the types of links that can con-

nect concepts as well as the nature of the concepts in the script, is

also used. In addition, keeping track of what has been said in a

explanation aids in making subsequent explanations brief and to the

point. Interesting extensions to this system are also possible, for

no information relevant to describing the execution of a graphical

feature has been thrown away in the feature script representation. To

clarify this process, a small segment of a feature script going

through HELPCON's pruning is shown in the next section.

3.4.A Detailed Example

The script to be examined ty HELPCON is the embedded script,

$move. Tis script is called from a main script by the following two

concepts, linked ty an SR:

-67-

($move actor *user - the call to the move script,
drag-obj *cursor - where the object to be
obj *stylus moved is the cursor.
to &new-dev-srloc " it is to be moved until it
loc &newcurs-srloc overlaps the device the user
sat-cond (p-config conl *cursor - has chosen to create.

con2 &desr-cr-dev
confrel (overlaps)
mode (nil)
time (nil)))

(p-config coni 'cursor - the important result after
con2 &desr-cr-dev " doing the script
confrel(overlaps) mode(nil))

The script variables for $move are listed below. The call as shown

above will instantiate these with the appropriate fillers. Notice

that the stylus is not a script variable, since moving the stylus is

the only wa a graphical object can be moved in the CAD Tool.

Variables

(1) @drag-obj: the object that is to be moved, in this case, the
cur sor.

(2) @sat-cond: the satisfaction condition for the repeat until
threshold

(3) @boc: the location that is going to be changing, in this
case, the location of the cursor.

(4) @toloc: the location to which the moved object is going, used
to decide if the RUT is finished.

The main concept and the intent of the script are also accessible

to ;R, in case it chooses a less verbose expression for the script.

In this example, the script ,move will be expanded, but the intent and

main concept for tmove are shown below in their uninstantiated form.

-68-

The main concept for $move: "Move some object with the stylus"

(ptrans actor 'user
obj @drag-obj
to (nil) from (nil)
via (nil) mode (nil) time (nil)
inst (ptrans actor fuser

obj *stylus
to (nil) from (nil)
via (nil) inst (nil)
mode (nil) time (nil)))

The intent concept for $move: "To move some object, use the stylus

(cause precon (s-goal actor *user
mode (nil) time (nil)
goal (ptrans actor *user

obj @drag-obj
to (nil) from (nil)
mode (nil) inst (nil)
focus (actor) via (nil)
time (nil)))

postcon (ptrans actor *user
obj 'stylus
to (nil) from (nil) mode(nil)
inst (nil) focus (actor) via (nil)
time (nil)))

What follows is the actual expansion of $move, assuming it was

called as above. The script is instantiated (by substituting in for

each of the script variables) and each link will cause the appropriate

rule in HELPCON to fire. The numbered commentu indicate what is hap-

pering to the immediately preceding and following concepts at e ach

ztep. In addition, an English version of each Conceptual Dependency

representation precedes each concept and is indicated by a tilde, ""

-69-

The user maps the location of the device (which is where he
wants to move the cursor to) to a location called &endpnt,
which is the desired ending point.
($makemap actor *user

conl &new-dev-srloc con2 &endpnt
maprel(corresp))

(1) The SR rule disregards both of these, since they are per-
formed by the system. This level of detail is needed so the
graphical animator can mimic what the user is doing.

The result of the mapping is an abstract configuration, i.e.,
the user knows that the &new-dev-srloc is the desired ending
location of the cursor.
(a-config conl &new-dev-srloc con2 &endpnt

confrel(corresp))

-- - OSE ----

(2) The OSE rule ignores ary user mental action.

- This enables the user to decides where he is going to move
the stylus.
(mbuild actor "user mobj &dltaloc)

REASON ----

(3) The REASON rule ignores the mbuild and the mknow, but the an-
imator has niow presumably picked out a destination point and
knows it.

The decision above is the reason he knows where the stylus is
going to be moved.
(mknow actor *user tiobj &dltaloc)

-70-

RUT ----

(4) This link begins the RUT. The RUT rule expresses the satis-
faction conoition of the RUT, prefaced by the introduction
("Do the following until the cursor is over the device you
want to add to the design.")

This is the beginning of the RUT. It points to all the fol-
lowing concepts, which are embedded in the RUT.
(rut sat-cond (p-config conl *cursor

con2 &desr-cr-dev
confrel(overlaps) mode(nil))

-INITIATE ----

(5) This rule allows HELPCON to ignore mental events that ini-
tiate user actions.

The fact that the user knows where to move the stylus ini-
tiates him to move the stylus. This is also the beginning of
the RUT.
(ptrans actor *user obj *stylus

to &dltaloc from &sty-daloc
via (nil) inst (nil) mode (nil) time (nil))

---- OSC ----

(6) The OSC rule notices that the user has performed some physi-
cal action resulting in some state, so it causes the action
to be expressed ("Move the stylus to a new location") but ig-
nores the state resulting from the action.

The movement of the stylus has caused the location of the
stylus to change.

(s-change actor *stylus
node (nil) time (nil)
attr (loc val &newsty-daloc dir (to)))

-7 '1-

---- CSE - -

(7) The OSE rule sees that the state is enabling a system action,
not a user one, so it deems the state and the action unimpor-
tant, and neither is expressed.

The change enables the system to notice the change in loca-
tion of the stylus.
(mtranz actor #sys

nobj (s-change actor *stylus
mode (nil) time (nil)
attr (foc val &newsty-daloc dir (to)))

from (nil) to (4cp# part fsys)
mode (nil) time (nil) inst (nil))

INITIATE ----

(8) The INITIATE rule ignores both the system perception and the
mental action it initiated.

The perception event on the part of the system initiates it
to realize that the user has the goal of moving the cursor.
(mbuild actor *sys mode (nil) time (nil)

mobj (s-goal actor *user mode (nil) time (nil)
goal ($draw actor *sys obj *cursor

loc &newcurs-srloc
mode (nil) time (nil)))

REASON ----

(9) The REASONf rule ignores the system's reason and actions.

The sqstem's realization is the reason that the cystem at-
tempts to form a correspondence between the location of the
stylus on the tablet, and a location for the cursor on the
screen
($makemap actor *sys

conl &sty-daloc con2 &newcurz-srloc
maprel (corrt:sp)

mode (nil) time (nil))

-72-

(10) The SR ignores the result of the embedded non-expandable
script.

The result of the makemap script is an abstract configuration
between the location of the stylus on the tablet and a point
on the graphics display.
(a-config conl &sty-daloc con2 &newcurs-srloc

confrel (corresp)
mode (nil) time (nil))

OSE ----

(11) OSE will ignore aw system actions.

Knowing the point on the graphics display enables the system
to draw the cursor at that point.
($draw actor *sys obj *cursor

loc &newcurs-srloc mode (nil) time (nil))

(12) The result of the execution of the $draw script is unimpor-
tant, from the point of view of SR.

The result of the redrawing is a new location for the cursor.
(s-change actor *cursor

attr (foc val &newcurs-srloc dir (to))
mode (nil) time (nil))

7 -31

-73-

---OSE
--

(13) Since the state occurrirg is explicilty see by the user, it
is deemed important, and the state is selected Ly OSE for ex-
pression ("The cursor moves to a new location"). The actual
perception of the event by the user is ignored.

The change in location of the cursor enables the user to
detect the change.
(mtrans actor *user

mobj (s-change actor *cursor
attr (foc val &newcurs-srloc dir (to))
mode (nil) time (nil))

to (*cp* part *user) from (nil) inst (nil)
mode (nil) time (nil))

INITIATE / REASON

(14) INITIATE/REASON ignores user mental actions/states.

- The user perception presumably led to an mbuild which then
led to this mknow, but the initiate/reason link has allowed
us to skip all that. Here the user either 1) knows that the
cursor and the device he has decided to create overlap (since
their locations overlap) and the $move script ends, or the
two do not overlap, so the satisfaction condition is not met,
and the RUT begins again.
(mknow actor *user

mobj (p-config conl 4cursor
con2 &desr-cr-dev
confrel (overlaps)
mode (nil) time (nil)))

CHAPTER 4

Explanations in Academic Counseling

4.1 Introduction

The experience with CADHELP, as well as an examination of an

actual explanation of the Computer Science curriculum at The Univer-

sity of Connecticut, suggested several improvements which a next-

generation explainer should incorporate. Several of these improve-

ments have to do with shortcomings that are a consequence of the

domain used. CADHELP's explanations describe to an actor how to act

to effect a computer-aided design. The user is assumed to have one

goal, to change the state of the design. In domains where the actor

is dealing with the social world also, the goals are more complex, one

goal ma lead to a series of 3ubgoals, and plans for realizing those

goals must be explained. These goal episodes can be used, however, to

drive the explanation process, much as they are used to aid in under-

standing [Vile8l1.

A feature that wasn't critical for the domain in CADHELP, but is

essential for brevity in more complicated domains is the use of exam-

ples. In the explanation studied the explainer would frequently

invent a person with some -et of characteristics in order to focus on

, critical combination of traits, and then refer to thiZ hypothetical

person during the follcwing sertences. An explainer utilizing such a

feature woulo reeu tu know whien an cxample :houlu be L.sea, .nu how to

-7Th-

-75-

create an entity which focuses on the desired characteristics.

There is an aspect of explanations that the CAD domain simply dia

not allow us to investigate, the previewing and reviewing summariza-

tion process. Previews and reviews are used to provide a framework

for the listener for what is to follow and to capture the important

points of the previous discussion, respectively. CADHELP does imple-

ment a primitive form of previewing, when it explains the object or

goal of the feature being explained first. However, a goal-oriented

explanation utilizes these summarizations frequently. In the sample

explanation the explainer previewed five paragraphs of information by

saying: "You have to learn some programming," and reviewed at the end

by stating: "So, at the end of this, you will have learned your intro-

ductory programming. " This explanation technique arises naturally in

an explanation that is goal dri'-n, since the preview and review

statements can be thought of as summaries of goals that are either

about to be explained, or have just been explained.

CADHELP's model of explanations allows the user no chance to

interrupt the explanation and ask questions in a mixed-initiative

fashion (as in [Clan79], [Co1l75]). This may become a problem since

CADHELP's aasumes that the user remembers everything he is told, and

so becomes more and more laconic as the explanations continue. This

feature nsy Le essential to allow a system to deal with very naive

users. Moreover, in addition to assisting the user, recording and exa-

minir the questions asked provides a good measure of the clarity of

the explanations produced.

-76-

The phenomena described above must be incorporated into any pro-

cess that attempts to perform complicated explanations. In oraer to

provide the user with a framework of cohesive text, previewing, and

reviewing must be performed. In addition to these, the explainer can

economically focus on an object's desired characteristics using exam-

ples. Finally, if the explanation is to be flexible enough for a

computer-naive user, the process must allow interruptions. These

features are part of a model of the explanation process designed for

use in the system described below.

4.2 Overview of the Academic Counselor

A system is being developed called ACE (Academic Counseling

Experiment) for research in conversational interaction and knowledge

acquisition [Cull82]. ACE models an academic counselor who performs

various tasks for a student such as conducting a preregistration or

answering questions about courses. Part of the design of ACE was

motivated by previous work in conversational systems. The GUS system

of Bobrow et. al., [Bobr77], performs a constrained conversational

task, which is mixed-initiative but attempts to retain control of the

conversation. In GUS, the focus of control is on an attempt to fill

out a frame for a user making an airplane trip. In a similar fashion,

the conversational ystem for ACE focuses on filling out a next semes-

ter course sctieGule for a ;tudent, but its LiesiFn is more robust,

".o., it allows the user to ask questions during the conversation.

*ACE ,.as uezirnea to Lc an evolvin soystem, aind one that woulc be

..orkeo me n x'vrai ;erson3. .t consists of rou;:rly 6 expert- a.,

-77-

shown in Figure 4.1. The module labeled MBAM (Knowledge Base Acquisi-

tion Mechanism) is responsible for the learning part of ACE. Expert

users explain facts about courses and scheduling to FBAM, which

updates and modifies the knowledge in AEB (academic database). The

AEB contains facts about particular students, the curriculum, and

rules for distributing courses over four years of study, and contains

a deductive ret-iever modeled after [Char8O].

The part of the system responsible for conducting a preregistra-

tion for a student is labeled STRAT, for strategist. The strategist

interacts with the user through the NLP module, which contains APE (A

Parsing Expert) [Cull80], and CGEN, the conceptual generator. STRAT

contains the conversational control for the task of filling out a

next-semester schedule for a student. It asks the student questions

(e.g. "Who are you?", "What courses are you taking?") and the answers,

> .. . S'2R AT ------

S I I

I TACT< -- ->:

V V V
ADB<--->QA ---- >1LP

A AI<

Organization of the Academic Counselor

Fijgure 4.1

-hII I I II I ll - - i z "

-78-

as parsed by APE, are filtered through the TACT (tactician) module.

The tactician is responsible for seeing that the information requested

by STRAT is in fact present in either the student's answer, or the

past history of the interaction. Designing this tactician as a

separate module was motivated by tne observation that people normally

give too little or too much information in response to questions.

TACT may also discover that the user, rather than answering a

question, has asked one of his own. Questions from the student are

passed directly to the module Q/A. Q/A queries the AE for answers to

the student's questions, and gives the response through the NLP inter-

face. Q/A is designed to answer simple slot-filler type questions

about such things as who is teaching a course and prerequisite infor-

mation. After the Q/A module answers the user's question, however,

STRAT regains control and attempts to elicit more ir'ormation from the

student. When STRAT has sufficient information about who the student

is and what courses he has taken in the past (or is currently taking),

it requests that the AME use it's knowledge of course requirements and

scheduling to propose the next semester schedule. This ends the

prcregistration cycle.

4.3 The Explainer for ACE

UJnlike the m' ' nodule controlling the preregistration task, the

Explainer is not attempting to obtain information, but is attempting

to give inforration. For this reason, the control for the explainer

;hould be more f'lexible. -he model for the explainer for ACE produces

explanationz ty descriting a set of ;'oals, . nd rul(s for _chievrng

-79-

those goals. Some of the rules the explainer uses can be shared

between it and STRAT. This explainer differs from other rule-based

system explainers (e.g. [Shor76]) in that it does not explain those

rules that have fired, but explains those rules that could fire. For

this reason, it can be operated independently of the actual system.

Indeed, one could imagine hooking up this explainer to ary rule-based

system and then asking it: "What do you know?" This is similar to

Swartout's approach in explaining rules that could potentially fire to

describe a system [Swar77].

The Explainer for ACE fits into the system as shown in Figure

4.2. It functions in ACE like the modules STRAT and TACT, i.e. as a

controller. The Explainer interfaces directly with the user via the

NLP module. Questions asked by the user that cannot be directly

answered by the Explainer on the basis of previous context are sent to

the Q/A module. The AM is used by the Explainer to provide the

specifics of the explanation of a particular curriculum.

- EXPL< ----

I I

V V V
AB<.--.->QA ----- >NLP

(;rganizafion of' the Academic Counselor with Explainer

Figure 4.2

-80-

The Explainer generates a series of goals represented in CD form.

Goals can be realized by subgoaling. Rules for subgoaling exists as

rules for goal realizations. The top-level goal is: "Explain how to

get a bachelor's degree in EECS at UConn." This goal is broken into a

series of subgoals, which, performed sequentially, realize the top-

level goal.

As an example of this, suppose that the system has the goal of

explaining the group distribution requirements. A rule for realizing

this goal will cause the system to have goals for:

1) Explaining the Group 1 requirement

2) Explaining the Group 2 requirement

3) Explaining the Group 3 requirement

These three explanations can then be done directly. This will produce

a sequence like the following.

You have to fulfill some distribution requirements.
There are three distribution groups.
Group one is the technical course group.

You need 18 credits from these.
Group two is the Social Science group.

You need 9 credits from these.
Group three is the Fine Arts group.

You need 9 credits from these.
Those are the group distribution requirements.

Note that before realizing the goal of telling the user about the dis-

tritution requirements, the cystem previews the topic to come ty -tat-

ink the object of the the goal. The :,ystem remembers what goals it is

trying to realize, and at the t-nd of the sub-explanation, reviews its

,,oals.

-81-

The explainer generates examples when the situation requires

reference to a person meeting some special requirements. Otherwise,

the user is addressed directly, as in the example above. Since the

domain of ACE does not have mary dissimilar entities (in fact, there

are only a few) and courses and teachers are pretty much static, most

example generation is done on students. A student progressing through

four years of college is the focus, and the examples needed are stu-

dents at given times in this four years, perhaps with other special

requirements. The initial idea used in the explainer for ACE is to

have a module that tracks all known entities and produces a known

entity or makes one up as requested.

The most difficult portion to model is allowing interruptions by

the user. This is partly due to the fact that little is known about

the kinds of questions a student using ACE may ask. However, there

are two general types that could occur. One is the fill-in-the-slot

type question which can be identified by the question focus (usually

what type questions). Questions of this form can be handled in the

same manner as TACT handled them, by passing them off to the Q/A

module. Another other type of questions are the wyX questions, which

ask the explainer why it said (or omitted) certain information. Ques-

tions asking about things that have been said can be anzwered by trac-

ing up the goal :;tack, and determining what caused certain rules to

fire. Some why questions, however, ask about material the explainer

has yet to ,escribe. The overhead involvea in tracing out 1xossiblo

ath3 ir, the l,rtge numbe r uf f oalz and rules ACE has is hiFh and for

now, these are test i;gnoreo.

-82-

This chapter concludes with a sample explanation this new model

explainer could produce. The processes of previewing, reviewing,

question answering and example generation are outlined in enough

detail to demonstrate that the model is feasible tu implement.

4.4 A Detailed Example

Below is an explanation fragment describing a typical technical

course schedule for a freshman/sophomore.

Explainer:

(1) This schedule is a lower division schedule for technical
courses.

(2) A first semester freshman will take Computer Science 110,
Math 133 and Chemistry 127.

(3) A second semester student will take Computer Science 111,
Math 134 and Chemistry 128.

Student:

(4) Why can't I take a Physics course the first semester?

Exp ai ner:

(5) To take Physics 151 you must know Differential Equations.

(6) Differential Equations are taught in Math 200.

(7) Math 133 and Math 134 are prerequisite for Math 200.

This example illustrates the uze of previewing, and response Len-

eration for questions. The prcvicw on line I descrites the intent cf

the explanation ana is performeu since a goal track is teginning. The

ztuaent's que:sticn is answere o t! iescribing the ruifu the L cneuleor

-83-

used to determine the correct schedule. Lines 5 through 7 describe

the prerequisite information contained in the curriculum structure

which contributed to the choice.

A fairly detailed explanation of the process by which the above

fragment may be produced is in order. While this has not been imple-

mented, the following should give some idea of how such an implementa-

tion should proceed. The Explainer is currently attempting to fulfill

the goal of explaining the EECS curriculum to a new undergraduate.

One of the subgoals for fulfilling this is to explain the lower divi-

sion (freshman and sophmore years) courses. The rule for this expla-

nation will lead to two new goals, to explain the nontechnical and

technical courses. Thus, at some point, a rule fires that looks like

the following:

(1)

(explain-courses type (technical) sem (lcwer))

This will match against the following rule, with the variables indi-

cated by IM.

(2)
(to conl (explain-courses type &type sem &ser)

con2 (and conl (explain-content
course-type &type
semester &:3em)

con2 (explain-schedule
couroc-type &type
s~emester I-sere)))

Rule two .tates that in order to explair. art set of cour3es, you

i..ust fulfill *he goals of txplainni. their content ana when they fit

into the ! ciedule. If we as.sune that the explanation of their ion|tent

-S4-

has occurred, we arrive at the point where the fragment under study

begins. First, the Explainer must perform a preview of what it is

going to do next, since it has just finished the somewhat unrelated

task of telling what information each course teaches, and is starting

the next part of 2. So, sentence 1 is generated from the CD represen-

tation shown in 3.

(3)
"This schedule is a lower division schedule for technical courses."
(a-config

confrel (equiv)
conl (infostruc itype (schedule)

course-type (technical)
semester (lower)

coursel (nil)
course2 (nil)
course3 (nil)
course4 (nil)
ref (imm))

con2 (infostruc itype (schedule)
course-type (technical)
semester (lower)
course? (nil)
course2 (nil)
course3 (nil)
course4 (nil)
ref (indef)))

The Explainer then proceeds to explain a proposed schedule for the

courses. The rule that tells it how to do this is as follows.

I -85-

(4)
(to conl (explain-schedule course-type &type

senester &sem)

con2 (and (replace
strO (gen-student

semester-standing (I)
background (nil)))

(replace
strOo (explain (propose-sched

course-type &type
student strO)))

(replace
stri (gen-student

semester-standing (2)
background strOO))

(replace
strOl (explain (propose-sched

course-type &type
student stri)))

(replace
str2 (gen-student

semester-standing (3)
background str01))

(replace
str02 (explain (propose-sched

co ur se- type &ty pe
student str2)))

(replace
str3 (gen-student

semester-standing (4)
background str02))

(replace
strO3 (explain (propose-sched

course-type &type
student str3)))))

In order to propose the scheoule for a student at any given time, the

scheduler is called, via 'propose-sched'. The only information the

scheduler needs is the student's background and semester standing. A

typical first, zecond, etc. semester student is generated by the call

to 'gen-student', arid is given more background each time. This is

done "so that successive applications of the rule 'propose-sched' gen-

crate a ucheaule for i new student. The results of thie propo-e-sched

(which tbecomies a call to the scheduling expert, ADB) .-re then .hippea

-86-

to explain, which calls CGE with the concept shown in 5.

(5)
"A first semester freshman will take Computer Science 110, Math 133
and Chemistry 127. "

(simul conl ($course actor (person persname (nil)
surname (nil)
ref (indef) convrole (nil)
eprole (&fresh))

student &fresh
teacher (nil)
obj (infostruc

itype (acad-ks)
cno (110)
dept (org orgname (CS)

orgtype (acad-dept)
orgocc ($course)))

mode (modes model (:t))

time (times timel (:futr)))
con2 ($course actor &fresh

student &fresh
teacher (nil)
obj (infostruc

itype (acad-ks) eno (133)
dept (org orgname (Math)

orgtype (acad-dept)
orgocc ($course)))

mode (modes model (:t))
time (times timel (:futr)))

2on3 ($course actor &fresh
student &fresh
teacher (nil)
obj (infostruc

itype (acad-ks) eno (127)
dept (org orgname (Chem)

orgty pe (acad-dept)
orgoce ($course)))

mode (modes model (:t))
time (times timel (:futr)))

compnum (3))

The concept chown in five represents the simultaneous occurrence

of three instances of the execution of the $course script. Each of the

instanees of T course hns an actor, student and teachier. If tho actor

ind the ;tucent ;,re the ,;ame, the penerator uses taji, otherwise if

-87-

the actor and -- teacher are the same it uses teach. The result of

this generation is 3entence 2. The concept &fresh is used as a short-

hand in the representation, it should be thought of as being replaced

with the first actor (i.e. &fresh really means (person persname ...)

Sentence 3 is generated from a similar representation, shown in 6.

(6)
"A second semester student will take Computer Science 111,

Math 134 and Chemistry 128."

(simul conl ($course actor (person persname (nil)
surname (nil)

ref (def) convrole (nil)

eprole (&soph))
student &soph

teacher (nil)
obj (infostruc

itype (acad-ks) eno (111)
dept (org orgname (CS)

orgtype (acad-dept)
orgocc ($course)))

mode (modes model (:t))

time (times timel (:futr)))

con2 ($course actor &soph

student &soph
teacher (nil)
obj (infostruc

itype (acad-ks) cno (134)
dept (org orgname (Math)

org type (acad-dept)

orgocc ($course)))
mode (modes model (:t))

time (times timel (:futr)))

con, (1courne actor &soph
student &soph

teacher (il)
obj (infostruc

itype (acad-ks) eno (128)

dept (org origname (Chem)
orlgtype (acad-dept)

orioco ($course)))
mode (modes model (:t))

time (times timel (:futr)))
compnum (u))

AlZ ter Serntence " r;as been generatea, the iL~tener interrupt. 4ith

-88-

question. The question is parsed by APE, and results in the concept

shown in 7.

(7)
"WIV can't I take a Physics course the first semester?"
(cause precon (:q)

postcon ($course
actor (person persname (nil)

surname (nil)
ref (def)
convrole (*other)
eprole (nil))

student (person persname (nil)
surname (nil)
ref (def)
convrole (*other)

eprole (nil))
teacher (nil)
obj (infostruc

itype (acad-ks) cno (nil)
dept (org orgname (Physics)

orgty pe (acad-dept)
orgocc ($course)))
ref (indef)))

mode (modes model (:neg) mode2 (:pntnt))
time (times timel (:pres))

abstime (dur durtype (sem)
val (1))))

Because the question refers to the antecedent of a cause, the

Explainer must find a case where such a cause exists. This is in the

rules used by the AM. The Explainer first examines the rules used by

the AEB to propose the schedule for the first and second semesters, to

see if a Pty sics course was proposed and eliminated for a reason which

nould be expl.Aned. It happens that Ptysics 151 was a oanidate, but

was thrown out by the eurriculum knowledge. Thin3 refers to the fact

that Lince Ply: ics 151 teaches jTrtroductor Phy sIcs, knlcwledge of Dif-

'ereritiJ. >-squations i5 nece:*sary ,'efore taiang it. Th Cxplc.iner then

-89-

examines the AlB curriculum knowledge to see where Differential Equa-

tions are taught. This turns out to be Math 200. Since the question

is answered, the Explainer could stop, but it checks to see if it's

mentioning ar thing new. Physics 151 is new, but is ruled out since

the student had nentioned it in the question. Math 200 is new, so the

Explainer checks its prerequisites, and tells the student what they

are. So, this first reason becomes the three concepts shown in 8

through 10.

(8)
"To take Physics 151 you must know Differential Equations."
(cause precon

(s-goal actor *other
mode (modes model (:t))
time (times timel (:pres))
goal ($course actor 4other

stud *other
tea.. r (nil)
obj (infostruc

itype (acad-ks)
cno (151)
dept (orC orgname (Physics)

orgtype (acad-dept)
orgocc ($course))

ref (def))
mode (modes model (:t))
time (times timel (:pres))))

postcon (mknow actor 4other
mobj (infostruc

itype (acad-ks)
subj (ks type (Math)
value (DiffEq))
cno (nil)
dept (org orgname (Eath)

orgty pe (acad-dept)
orgocc ($course))

ref (def))
time (times timel (:pres))
moc (iniodes model (:t) riooe2 (:oblig))))

-90-

(8)
"Differential Equations are taught in Math 200."

(cause
precon (s-goal

actor *other
mode (modes model (:t)) time (times timel (:pres))
goal ($course

actor *other
student *other
teacher (nil)
obi (infostruc

itype (acad-ks) cno (200)

dept (org orgname (Math)

orgty pe (acad-dept)

orgocc ($course))
ref (def))

mode (modes model (:tf))

time (times timel (:pres))))
postcon (mknow actor *other

mobj (infostruc itype (acad-ks)
subj (ks type (Math)

value (DiffEq))

cno (nil)
dept (org

or gname (Math)

orgty pe (acad-dept)
orgocc ($course))

ref ('ef))
time (times timel (:pres))
mode (modes model (:t) mode2 (:oblig))))

I A-l2 90 GENERATING NATERAL LANGUAGE EXPLANATIONS IN A 2
26 COMPUTER-AIDES DESISN SYSTE..U) CONNECTICUT UNIS

STORRS LAB FOR COMPUTER SCIENCE RESEARCH

111 1.0 12

fIII'25 111'~ If..L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

-91-

(9)
"Math 133 and Hath 134 are prerequisite for Math 200."
(a-config
confrel (prereq)

con1 (simul
compnum (2)

coni ($course
actor (person persname (nil)

surname (nil)
ref (def) convrole (nil)
eprole (&student))

student &student
teacher (nil)

obJ (infostruc itype (acad-ks) eno (133)
dept (org orgname (Math)

orgty pe (acad-dept)
orgocc ($course)))

mode (modes model (:t))
time (times timel (:pres)))

con2 ($course
actor &student
student &student
teacher (nil)
obj (infostruc itype (acad-ks) eno (134)

dept (org orgname (Math)
orgtype (acad-dept)
orgooe ($course)))

mode (modes model (:t))
time (times timel (:pres))))

con2 ($course
actor &student
student -&student
teacher (nil)
obj (infostrue itype (acad-ks) eno (200)

dept (org orgname (Math)
orgtype (acad-dept)
orgoec ($course)))

mode (modes model (:t))
time (times timel (:pres))))
I

If the course had failed for scheauling reasons (e.g. both Chemistry

127 and Computer Science 110 are lab courses and ore can't take more

than two lab courses per semester), the Explainer would have explaired

those reasons also.

CHAPTER 5

Conclusions

Language generation has been studied by mary researchers to

enhance the friendliness of computer systems. A useful wq to study

relatively complicated generation tasks is through explanations of the

knowledge stored and used by a given program. This knowledge ma be

in arv form, but the most flexible and natural-sounding text will be

produced if the program has some idea of the meaning of arv piece of

the knowledge structure. In addition to the increased naturalness of

the text, the explanation may be produced in a different modality than

a language.

Explanations werer found to fall into three broad categories.

The simplest was explanation of a physical process, the next category

arose when the physical process was acted upon by an actor. The most

complex explanations were those explaining the interactions of actors

in social situations. This breakdown was mainly due to the different

types of domains that could be explained. It was shown that the

information a computer program would need to know could be represented

in a usable form. This one done with both a set of goals and rules,

and CD 3tructures connected with causal and enablement links.

The generation process was implemented in this work with two

basic modules. One is CGEN, a system which will generate an English

jentence from a CD representation of that sentence. CGEN uses a CD

-92-

-93-

structure to select a word, then expresses those concepts not covered

by the word. The concepts not covered are placed relative to the word

chosen by syntatic predicates expressed using precedes and follows.

In addition to the basic cycle of finding words, CGEN uses a set of

sketchification rules to modify the concepts being expressed to pro-

duce natural-sounding text. The sketchifiers represent domain

independent knowledge, and are added to CGEN as needed. The only

domain specific knowledge CGEN has is about words and their meanings.

New words are added to CGEN to enable it to handle new domains.

The other module is a concept selection mechanism (embodied in

HELPCON or ACE's explainer) which applies a set of rules to a

knowledge structure and generates the most economical means of

expressing it. The rules used here are more domain specific than

CGEN's, but for arW explainer, certain explanation strategies can be

found, such as "If you mention a new word or phrase, describe it".

The knowledge these explainers examine is frequently used by other

modules for other purposes, so they must be flexible. Making them

data-driven is one way to accomplish this.

The first concept selector studied was designed to select con-

cepts from a feature script for expression by CGEN. This module,

called HELPCOll, was part of the Explanation Mechanism of the

CcAputer-Aided design aystem, CADHELP. HELPCOU selected concepts to

be used as prompts or as part of the text of an explanation, given

with Graphical animation. Each command CADHELP could execute was

represented as a feature script, z sequence rC noncepts representea in

-94-

Conceptual Dependency, connected ty causal links. HELPCON traversed a

given feature script, choosing concepts based on, 1) what the user was

assumed to know, 2) what the user had previously been told by HELPCON

and 3) what the user could be assumed to be able to infer from his

knowledge of the world and the causal mechanisms that operate in it.

This type of selection could occur because RELPCOtN represented the

meaning of a feature in the feature scripts.

The explanation process was further studied in the domain of an

Academic Counseling program. A sample explanation was studied, and a

module was designed whioh would fit in with the existing system, ACE,

and explain the undergraduate EECS curriculum at The University of

Connecticut. This module consisted of a set of goals, and means for

achieving those goals (through more goals or rules). Some of the more

common rules could be shared with the module conducting an interview

to perform preregistration, STRAT. The Explainer for ACE was an

improvement over HELPCON, since it performed previewing, reviewing,

generated examples, and allowed for some interruptions. While this

Explainer was not implemented in ACE, an example with enough detail to

suggest an implementation was given.

This thesis investigated the important issue of natural language

generation in two domains which were sufficiently-dissimilar to demon-

3trate that 1) the conceptual generator, CGEN, was sufficiently gen-

o.ral to be used with both 4 stems, and 2) the process of concept

zelection is imPortant enoug.h to be studied separate from the Zenera-

tion component. It may turn out that the two types of deciziors uaae

Mwkw

-95-

in each of these processes is of' such a similar nature that they can

be conveniently implemented as one, but designing them separatelyr

eases the task for the developer.

BibliograpW

[Barr8i] Barr, A. and Feigenbaum, E.A., Eds., The Handbook ofArtifi-
cial Intellience. Los Altos, CA: William Kaufman, Inc.,
1981. I

[Birn81] Birnbaum, L. and Selfridge, M., "Conceptual Analysis of
Natural Language," In Inside Computer Understanding.
Schank, R., and Riesbeck, C., Eds., Hillsdale, NJ: Lawrence
Erlbaum, 198'.

[Bobr77] Bobrow, D. et. al., "GUS - A Frame-Driven Dialog System."
Artificial Intelligence, Volume 8, 1977.

[Carb70] Carbonell, J. R., "AI in CAI: An Artificial Intelligence
Approach to Computer-Aided Instruction,* IE Transactions
onflk.a-Maohine Sys , Volume 1MS-11, 1970.

[Char7 - Charniak, E., "Ms Malaprop, A Language Comprehension Pro-
gram," ZEoc. nth nernational-joi Conference on Artifi-
s-W Int eligen, Cambridge, MA, 1977.

(Char80] Charniak, E., Riesbeck, C. and McDermott, D., Artificial
Intellience Prorgmn. Hilladale, NJ: Erlbaum Press,
1980.

[Ches76] Chester, D., "Translating Mathematical Proofs into English, "

Artificial Intelienc, Volume 6, 1976.

[Clan79] Clancey, V. J., "Dialogue Management for Rule-Based Tutori-
als," 'roe. Sixth International Joint Conference on Artifi-
cial Intelligence, Tokoyo, 1979.

-97-

[Col 175] Collins, A., Warnock, E. H., and Passafiume, J. J.,
"Analysis and 4nthesis atf Tutorial Dialogues," Pscoot
g~f Learning an Motivation, Volume 9, 1979.

[Cull8OJ
Cullingford, R.E., ard Pazzani, 1.J., '"W'ord meaning selec-
tion In multiprocess language processing programs", EM&S
Department TR-80-12A, The University of Connecticut, Storrs,
CT, 1980.

[Cull8la] Cullingford, R. 1981. "Script Application." In Schank, R.,
and Riesbeck, C. (eds.), Inside Computer Understanding.
Erlbaum, Hillsdale, NJ.

[Cull8lbJ Cullingford, R. E., Krueger, M4. W., Selfridge, M4., and Bien-
LCowaki, M. A., wTowards Automating Explianations," Proc. 7th
Irternational Joint Conference on Artificial Intelligence,
Vancouver, B.C, 1981.

[Cull81o] Cullingford, R. E., Krueger, M. W., Selfridge, M4., and Bien-
kowaki, M4. A., "Automated Explanations as a Component of a
CAD system," j= Transactions .gj Sytes Han ja.0 Cybernet-
JM, Volume SMC-12, Ntnber 2, 1982.

[Cull82] Cullingford, R.E., and the UCon' Intelligent Systems Group.
"Purposive Conversation with ACE: An Academic Counseling
Experiment," IEEE Proc. of the International Group Confer-
ence on Qrbernetics & Society, Seattle, WA, 1982.

[Dave7I4] Davey, A., pia00urse Production, Edinburgh, UK: Edinburgh
University Press, 1974.

(Fanc82l Fenchel, R. S., and Ezstrin, G., "Self-Describing System
uzing Integral Help," = Transactions 9_n ases Man and
(Qrbernetics, Volume StIC-12, Nlumber 2, 1982.

C.ode80] Foderato, J., "The FRANZ LISP Mlanual." In Volume 2c of Dou
ment fo Ih Berkeley =~fl fl-II.mhrng'st . Dept. of

EM&S, Univ. of' California, Berkeley, 1980.

-98-

[Gold75] Goldman, N., "Conceptual Generation," in Conceotual Infor-
matio Processin , R. Schank, Ed. New York, NY: North Hol-
land, 1975.

[Hae79] Haes, P. and Redd', R., "Graceful Interaction in Man-
Machine Communication," I=. tUh International Jint
Conference oM A . li&2nee, Tolyo, Japan, 1979.

[Jose83] Joseph, L., "A Heuristically Optimal Knowledge Base Organi-
zation Technique", EE&CS Department TR-83-2, The University
of Connecticut, Storrs, CT, 1983.

[Marc82] Marcus, R. S., "User Assistance in Bibliographic Retrieval
Networks through a Computer Intermediary," I=E Transactions
.n Systems, Man and _ Cbernetics, Voltume SMC-12, Number 2,
1982.

[MoDo8l] McDonald, D. D.. "Natural Language Generation as a Computa-
tional Problem: an Introduction," COINS Technical Report
81-33, University of M]assachusetts at Amherst, Amherst, MA,
1981.

[McKe8O] McKeown, K. R., "Generating Relevant Explanations: Natural
Language Responses to Questions about Database Structures,"
Proeedings of Ike L Annual National Conference on
ArtifIcial Intelligence, AAAI-30, Stanford, CA, 1980.

[Mech8l] Meehan, J., "Tale-Spin," In Inside Comouter Understanding.
Schank, R., and Riesbeck, C., Eds., Hillsdale, NJ: Lawrence
Erlbaum, 1981.

[[4ins75] Minsky, 1., "A Framework for Reprcsenting Knowledge," in The
o.9 Compute Vision. P. H. Winston, Ed. New

York, NY: McGraw-Hill, 1975.

[Neim821 Nelman, D., "Graphical Animation from Knowledge," Proceed-
Iu W a Nial Conference on figal Intellgence,
AAAI-82. Stanford, CA, 19e2.

-99-

[Norm75] Norman, D.A. and Rumelhart, D.E., Exlorations An Cognition.
San Francisco, CA: W.H. Freeman & Co., 1975.

[Phel82] Phelps, D., "Help Protocols in a Self-Explanatory CAD :*s-
tern," EE&CS Department TR-82-10, The University of Connecti-
cut, Storrs, CT, 1982.

[Reic78] Reichman, R., "Conversational Coherency," Cognitive Science,
Volume 2, Number 4, 1978.

[Rieg77] Rieger, C. and Grinberg, M., "The Declarative Representation
and Procedural Simulation of Causality in PItsical Heehan-
isms, " Z=or. Fifth Internation Joint Conference on Artifi-
X.a Intellgnce, Cambridge, MA, 1977.

[Scha75] Schank, R. C., Ed., Conceptual I Processing. New
York, NY: North Holland, 1975.

(Scha??] Schank, R. and Abelson, R., SritM, Plans, Goals an Under-
standing. Hillsdale, NJ: Lawrence Erlbaum, 1977.

[ShaP75] Shapiro, S. C., "Generation as Parsing from a Network onto a
Linear String,* America Journal gf Comutational LinstuJif
I,=, Microfiche 33:45, 1975.

[Shor76] Shortliffe, E.H., Computer-Based Medleal Consultations:
MYCI, New York: Elsevier/North Holland.

[Sinm72] Simmons, R. and Slocum, J., "Generating English Discourse
from Semantic Networks," Communiations of the AM, Volume
15, Humber 10, 1972.

[Swar7] Swartout, W., "A Digitalis Therapy Advisor with Explana-
tions." Z=. = laternat!Ji Joint Conference _0 Ar
SWaJ Itnlu nQ, Cambridge, MA, 1977.

[Unge82] Unger, R., "Maintaining Context for Story Understanding,"
Unpublished Masters thesis, The University of Connecticut,
Storrs, CT, 1982.

-100-

(wile8l] Wilensky, R., "PAM", In Inside Comouater Understandin.
Schank, R., and Riesbeck, C., Eds., Hillsdale, NJ: Lawrence

Erlbaum, 1981.

EWilkc761 Wilics, Y., "A Preferential, Pattern-Seeking, Semantics for

Natural Language Inference,ff ArtificAl Int i-n , Volume
6, 1976.

[WinO72J Winograd, T., Understaniding Natural Language. New York, NY:

Academic Press, 1972.

