AD-A126 190 GENERATING NATURAL LANGUAGE EXPLANATIONS IN A I/z
COMPUTER’A[DED DESIGN SYSTE..{U)} CONNECTICUT UNIV
ORRS LAB FOR COMPUTER SCIENCE RESEARCH
UNCLASSIFIED M A BIENKOWSKI ET AL, JAN 83 TR-CS-83-1 F/G 9/2

. —

__‘ j
L p2s §os .
fle & i
= P M
L -~

g #

22 s pee

MICROCOPY RESOLUTION TEST CHART
NAMONAL BUREAU OF STANDARDS-1963-A

g

/V/"r)’w/?""('l : ' E

DA126190

Electrical Engineering and Computer Science Department

COMPUTER SCIENCE-
TECHNICAL REPORT

Laboratory for Computer Science Research
The University of Connecticut

COMPUTER SCIENCE DIVISIO DT

U-157
The University of Connecticut
Storrs, Connecticut 06268

oo

I e NSRS |

GENERATING NATURAL LANGUAGE EXPLANATIONS
BY

Marie Bienkowski

Technical Report CS83-1

A / £

[

T’ /36>

Acgession Tor
"TIS GRA&I % | D rl
DTIC TAB O

’ ‘ - < sy AR TSI A AR
L RN TR P e S

Unanneunced N 551-55C31'£:
Jystifica
_’Iﬁilgu_ddlzﬁfiigi;iilii MAR 2 g 1983
. By
A pPistridbuvtion/

m

Availability Codes

vail and/or ' m—
Dist Special

PRI
“

"’ *’ﬁ L B

!
\;
AR
f

'

Gererating Natural Language Explanations
in a Computer-Aided Design System

M. A. Bienkowski, R. E. Cullingford and M. V. Krueger

Department of Electrical Engineering and Computer Science
The University of Connecticut
Storrs, CT 06268

ABSTRACT

\\

" CAIHELP is a graphics-based computer-aided design system which
contains detailed knowledge bases intended to support three different

types of "intelligent® behavior: (1) the generation of natural-language

explanations concerning the operation of the graphical features, for
use by naive userSfculi8l, CULL82]:; (2) an animated display {NEIM82},
coordinated with the explanation, simulating the feature's wuse; and
(3) control of the operation of the CAD system itself, by interpreta-
tion of knowledge structures describing the system's operation,
[KR9EB2}s This final report is a detailed description of the
knowledge-base summarization and generation methods developed for
CAIHELP, which are the basis for the three different sources of
knowledge.

The Explanation Mechanism devised for CAIHELP describes the CAD
commands CADHELP can execute using text and graphical animation. A
unique feature of this system is that neither the text nor the anima-
tion are stored, but are generated from a representation of knowledge
about how to use CAIHELP. This representation, called a feature

script, is a set of concepts linked by causal relations. Since the

feature scripts developed were very detailed to enable the animator to
work, a means of pruning the script to produce natural-sounding text
was needed. A selector mechanism, called HELPCON, was developed to
select concepts for expression from the feature scripts using rules on
how to conduct an explanation., The concepts thus selected are gen-
erated as PBnglish sentences by another module called OGEN, which
prunes a concept to express it in a concise form much as HELPOON does,

NS

To test the explanation methods and generation strategies
developed for CAIHELP, a design was produced for an Explanation system
for the Academic Counseling Experiment currently under development.
thile the language generator, OGEN, was moved to this new domain with
ease, a new Explainer was needed. This suggested a general model for
the development of such 1language producing systems; a domain-
independent language generator which interfaces with a domain-~
dependent concept selection mechanism.

This research was supported by Navy Contract N0OOO14-79-C-0976.

Selected Project Bibliography

[cuLL81]

Cullingford, R.E,, Krueger, M.W., Selfridge, M.G, and Bienkowski, M,A. 1981,
Towards automating explanations. Proc, 7th Int. Joint Conf. on Artificial
Intelligence, Vancouver, B.C., Canada, (August)

[cuLL82]

Cullingford, R.E., Krueger, M.W., Selfridge, M.G., and Bienkowski, M.A.
1982, Automated explanations as a component of a computer-aided
design system, IEEE Trans. SM&C, Special issue on human factors
and user assistance in CAD, Vol, SMC-12, No. 2, Mar/Apr 1982,

[KRUE8 1]

Krueger, M.W., Cullingford, R.E., and Bellavance, D.A. 1981. Control issues
in a multinodule CAD system containing expert knowledge. Proc. 1981 IEEE
Int. Conf. on Cybernetics and Society. Atlanta, GA. (October)

[NEIM82)

Neiman, D. 1982. Graphical Animation from a Knowledge Base., Proc. 1082
Conf, of the American Artificial Intelligence Society. Pittsburgh, PA.
(August).

Chapter
1.1

1.2
1.3
1.4

Chapter
2.1

3.4

Chapter
)".1
4.2
4,3
u.‘l

Chapter

Table of Contents

1 Introduction

Generation of LANGUAEE ..ceccecsvccscnccscccssscnsssansaas
The Study of Explanations ...cccocesceccccsccsccccsacasse
Domains for Explanations ,...cc.ceesvveccccccecsscncnosns
Qutline of the TheSiS cveeecececseccssssscccsccsssscnsens

2 Conceptual Generation

Previous Work in Generation ...cececevccccccescascensanas
Rept‘esentation 0600800 00sT000000000000000800cacdensestsne
The Basic Lexicalization ProcesSs ,.veceveccccecsscccsssns
Generation strategiea I RN YR ENNNENNENNNNNNNENNINNNENNEINNRNRNENNNNRN]
Detailed Emple @ OO 0 POV SO E PP PO SOOI PSR ESNE eSS RRNRNSeas

3 Explanations in Computer-~Aided Design

Overvie“ or cAmELP [EEEEENENEREN NN NN NI NI IS BN B I RN N N NN]
Representation of CAD Knowladge ...cccccecscssccccvsasssee
con“pt selection [N EERENFERNENNNNNENNNNNNNNINWENNNNNENNENNNNNN]
A mtaued Bxample-..‘l...l...‘..ll'l.‘...‘.l’.'l..

4 Explanations in Academic Counseling

IntroductiQn 2 080 000 000 502000000020 %cseOeNsBsRNRsteLIYNERTS
Overview of the Academic CounSelor ...cceceeeocccrscccnans
The Explainer for ACE c.cccecvcccnscscanscccccsnacsncacasae
A Detailed Emple S0P 0000 Q0 AN T OO0 PSP QLEENSOIEERINERINSBLIENIOS

5 ConCllISiOns 006000000 000080000 0808000000008 00800dqes00s0

Bibliog‘apw @ OO L0 PPN LIS BPIP S IEIPEEROEB0LEtRERPEONLIISOIERROIOETNTDRTS

- Y

~“"""-"-l!!!!!!!IllllllllllllllllllIIl-“

a7
54
61
66

ErwWwwww O NN

L4 » L] . [- L] . *

N2 EWN=ETWN -

List of Figures

The Representation for "John went to Hartford."™ ...cecccaveee
CGEN Dictionary Definition of the Word 'delete'ceecee0e
A Causal Relation Input tO CAUZ .ceccevessoncsssoscacosccnancs
The mperative R‘ne R EEEEENEFFEEEEEREENNENE RN N N NI I S N N N N NN NN NN NN N]
CADHELP's Command SUNMAIY <.ecscecssscssscosesossssscsscsscsos
Causal Links Used in Feature Scripts ..ccecvcecssscscncssccnces
Primitive Actions and States Used in Feature Scripts ,.ccce..
Pnbedded Scripts Used in Feature SCripts .cvececccescssccscss
Organization of the Academic CounsSelor ...esesceccosccccecess
Organization of the Academic Counselor with Explainer

PRIV o

CHAPTER 1

Introduction

1.1 Generatjon of Language

Generation of natural language by computer is becowing increas-
ingly important. As computers are used more and more to perform tasks
requiring that they interact with naive users (e.g. as providers of
information on phone numbers, airline reservations, etc) it is neces-
sary that they be able to produce language in a natural and flexible
way . In fact, the most friendly computer interfaces [Haye79], will
have analyzing and gene.:ating programs whose language behavior mimics
that of human beings. For a generation program to model human
language performance, it must be capable br more than mere translation
of 3some input representation of a sentence into English, Such a pro-
gram must be able to determine what to say in order to communicate
with a user in a natural fashion, Part of this naturalness comes from
knowing what not to say. If a set of knowledge, represented in 1its
entirety in a program's memory system, is to be communicated, only
part of it need actually be said, Some of it can be inferred ty the
listener or is not important to the communication. In order to build
programs that can make the distinction between useful and useless
information, 1t i3 essential to have an understanding of the tech-

niques people use to decide what (and what not) to say.

me ——— T

Language generation tasks can be organized hierarchically accord-

ing to their complexity. Generation of a single sentence with little
surrounding context is simple, but ty no means easy, For example,
sentence 1 is understandable to people without any additional informa-
tion, even if the person Jacob is not known, and thus should be easy
for a computer program to generate,

1) My friend Jacot was looking for his shoes yesterday.

There are difficulties, however, The first problem is representing,
in computer-usable form, the complicated ideas expressed, namely that
some social relationship exists between two people which 1is used to
identify the actor of an action, and that this actor did some time in
the past perform the action of looking for shoes that belonged to him,
Once these 1ideas are represented in some form a program can manipu-
late, this internal representation must be translated into a linear
sequence of words. The complex notion of possession and use of shoes
is translated into "his shoes"™ a3 opposed to "the shoes belonging to
and often worn ty Jacob." The temporal relationship between the time
of the action and the present time is condensed into the tensed form
of look, i.e, "™was looking, " and the concept "a person named Jacob who
has the social relationship of friendship with me” becomes "y friend
Jacob." An important part of the study of language generation is
investigations into how these shorthand forms are produced. It will
be necessary to model these 1in ary program which is to generate

natural sounding output,

The next level of complexity in generation can be found in the

production of paragraph length text. Here the individual sentences

ey e e

L

must be connected using conventions that tie the sentences together to
form a unit, For example, the sentences given below represent a
oohesive unit,

2) My friend Jacob went to buy some cooking apples today.

3) Some of the apples he bought were bad.

4) I told him to take the bad ones back.
Sentences 2 to 4§ illustrate some common phenomena occurring in para-
graph length text. Note. the different ways of referring to the
apples. They first aﬁpear in sentence 2 as "some cooking apples."
Next, in sentence 3, the apples are referred to as "the apples he
bought, ® ignoring what type of apples they are, and informing us that
the apples were in fact obtained, A new item, the group of bad
apples, is introduced 1£t3 as a subset of all the apples bought.
Finally, in sentence E, no explicit mention of the apples bought is
made, they are only implicit in the mention of those that were bad in
"the bad ones." It is also interesting to observe what has been left
out in each sentence, for exanble, the mention of the store where
Jacob went and bought the apples. This omission might not have
occurred if the intent of tﬂe story was to tell someone that some par-
ticular market sells bad fruit. This example illustrates that in more
complex generation tasks what to say and how to say it are functions
of what has been said before, what the listener can be expected to

infer, and what the intent of the conversation is,

From a knowledge engineering viewpoint, generation of language in
a mixed-initiative conversation is a difficult task for computer pro-

grams (e.g. [Reic78), [Carb70)). Mixed-initiative conversation, where

P " e . ol

-l

either participant can select the topic of discussion, has complica-
tions well beyond that of generation of single sentences or paragraph
length text. One obvious problem is having to analyze the input from
the other participant for meaning, Not only does the computer as a
conversationalist have to understand what a speaker is say ing, it must
know how to use that understanding to determine what the speaker knows
about a subject, In a text generation task a program can expect that
the user knows what he has been told, and what he has deduced from
what he has been told. 1In a conversational system, however, the prob-
lem of deciding what to say is more complex since more information
about what the user knows is available., For example, an appropriate
answer to question 5,
5) Who has been eating the eclairs?
might be the ellipsed response,
6) John has,

Sentences § and 6 illustrate that deciding how much can safely be
deleted from an utterance in a conversation depends upon the preceding
context (i1.e, what the user and program say) and how much the program
can assume the user knows about the topic of discussion. It shall be
argued that imposing limitations on these types of knowledge can lead

to a program which is feasible to implement.

1.2 Ihe Study of Explanations

For purposes of study, the generation process as described above
can be divided into two subprocesses, one which decides what concepts

to express from a memory structure (e.g. a database), and the other

which actually says it in a human language (as in [McDo81)], [McKe801).

Decisions regarding what to say, however, occur throughout the genera-
tion process, from the time it is decided that something is to be
selected from memory for expression (perhaps requested bty a wuser or
another program) until it is actually expressed in the words of the
language. For this reason, it is most informative to study language
generation by examining problems in both subprocesses. A useful vehi-
cle for this exploration is the study of explanations, ;E‘or several
reasons. First, explanations can be given as descriptive paragraphs,
and an implementation can be produced without the distracting details
associated with conversational interaction, Such a system, however,
could be expanded to accept input from the user regarding the ongoing
explanation. This 1limited conversational ability could be used to
clarify or reexplain ary unclear ideas. Secondly, restricting the
task to explanation defines exactly what the system and user can be
expected to know, i,e. the system can be expected to know a 1lot, .and
the user not too much. This leads to a specification of the pragmatic
information and world knowledge sq,eh a program should have regarding
the contents of the user's head. fhird, if the domain to be explained
is well-defined, a situational context can be established and used Uy
the program to assist in gererating natural sounding output. The
situational context refers to the pméical situation experienced ty
the wuser, and 1includes things such as the tools commonly used for a
task and actions associated with those tools (which may need to be
initially explained, but then become part of the context)., An example

of this use of situational information in explanations is the use of

specialized terms, e.g. in giving a recipe, one may state

Butter and flour a 9-inch cake pan,

To butter and flour a pan, rub butter
on it then sprinkle flour on it and ‘
shake out arny excess flour,

After this short explanation, the verbs butter and flour can be used

without further explanation.

There are mary types of explanations that occur but they can be
distinguished by the kind of information being explained, One class
deals with describing to someone how a physical process works, a pro~
cess that does not necessarily involve them or another as an actor
(except perhaps to initiate the process). This class would ineclude
things 1like an explanation of a biological mechanism or a car's igni-
tion system. The explanation of such a system is straightforward to
program, assuming no interferences occur in the system (as in

[Rieg77]l). A second class of explanations deals with relating to a

] potential actor how to act to affect the plysical world in a desired
f way. An example of this is how to tune-up a car. Here the explanation
is more complicated since such a system must have knowledge of what
the user knows, and must be able to represent all the things a naive

f mechanic could do wrong. A final class are those explanations that

E Vo describe the complex interaction of an actor (or actors) with social
f institutions, Examples of this category include events like how one

opens and uses a checking account, where physical acts may be involved

(e.g. one has to drive to the bank and sign some papers) but the main

thrust is the complicated notion cf banking.

The class of explanations described above do form a hierarchy,
i.e, solving the first can lead to a solution of the second and so on.
One of the reasons the solutions build upon another has to do with the
representation of the ideas, Once the laws of physical causality can
be represented, the notion of actors influencing this causality can be
also. Representations of actors interacting in social situations,
with underly ing physical laws, then follow. Representation of meaning
in computer-usable form is difficult, and many representational sys-
tems have been proposed ([Mins75], [Scha75], and see [Barr81] for an
overview), As an example of the complexity involved, consider the
examples suggested above, A car's ignition system can be represented
by a sequence of events, each one enabling or causing another (as in
[Rieg77]). The representation of how to tune-up a car is more compli-
cated, since the behavior of the mechanic must be represented, as well
as the result of that behavior on the car. More complex still 1is
representing how to open a checking account. Ideas such as money, and
a bank's holding onto your money then paying it out to certain other
people and institutions that you present signed pieces of paper to,

are not easily captured in a form a computer understands.

Once a representation is decided upon some mechanism for select-
ing concepts from the entire set of knowledge is needed, There are
mary reasons for representing the knowledge in its entirety, and for
representing it in an abstract form, The strongest reason is that the
same knowledge may be used for a number of tasks: language generation,
story understanding, planning, question answering, etc. If the system

generating explanations will know more than it should say, a selector

f mechanism which embodies a method of examining a piece of knowledge |
and selecting from it those concepts to be expressed is needed. The
selector wuses rules that are dependent upon several things. One is

the domain being explained. For example, the na.ve mechanic must be

explicitly told every step in timing a car, but the person new to the
banking world is helped along by persons operating in their functions
'in the bank and need not be told all the details., Another factor
influencing the selector rules is the intent of the explanation, 1{.,e.
"ty does the listener want to know?" If the listener is actually
going to attempt a tune-up, more detail will be given (including pre-
cautions: "Don't get to near the fan when the car's running®). A
third factor used in the rules is general knowledge of how to conduct
an explanation, These include ideas like: "If you use a potentially
unfamiliar term, define it," or: "Say things in the order in which

they occur.”

The pieces of the total set of knowledge chosen by the selector
must eventually be translated into a language. A good characteristic i
of a language generator is that it be task-independent, and have ary

domain dependencies that did exist well specified (see [McDo81]).

This would allow the generator to apply to almost ary domain with

minor alterations. Another feature desirable for a language generator
is the ability to perform paraphrase [Gold75]. 1In addition, it should
be easy to model arny observed phenomena of language with a generator,

such as generation of passives or imperatives.

Using the hierarcly of explanations described above, and keeping
in mind that a computer implementation of an explanation mechanism is
desired, the domains to use for explanations can be selected. The
areas used in this research, and the reasons for their use, are dis-

cussed in the next section.
1.3 Domains for Explanations

The domain chosen for a study of the explanation process has a
great influence on the complexity of the sy stem developed, Previous
work on explanations has arisen from the necessity to have computer
programs explain their behavior to users or programmers. The MYCIN
rule-based system [Shor76) explains its conclusions by desecribing the
chains of rules that have fired, including why a rule did or didn't
fire (the test part) and what conclusion was reached (the action part
of a fired rule), MYCIN contained no explicit attempt to model the
generation ability of an expert, it was more of a convenience for the
developer and user, Swartout [Swar7T] developed a system to explain
the actions and procedures of programs written in OWL to provide digi-
talis therapy. Like MYCIN, Swartout's system explains methods that are
used bty the advisor to reach a conclusion, but can also explain
methods that could potentially be used, In contrast to the explana-
tions of code-like knowledge done bty Swartout and Shortliffe, McKeown
[McKe80] outlines several principles that could be applied in explain-
ing the contents of a database which is a more static structure, For
example, methods such as comparing and contrasting items, use of anal-

ofy and illustration through example assist in providing a better

«10=

description, McKeown's work on the description of static information

stored in a database is more in line with the current work.

Sy stems that frequently need explaining are computer programs
designed to assist a user in accomplishing a task (e.g. operating
sy stems, editors, etc.). These can conveniently be described as fal-
ling within the second level of the hierarcly described in the previ-
ous section, namely, an actor interacting with the physical world. 1In
choosing a computer system to explain, a desirable one is a system
that offers sufficiently challenging problems in generation of
English, yet is not so complicated that the knowledge an expert has of
the system is too complex to represent. A computer-aided design (CAD)
domain has both these features., There is a finite set of commands
such a system can perform which can be explained. There is also a
definite plysical environment experienced ty the user, e.g. graphics
screen, terminal, input devices, which can be represented, and used
for situational context, It is also relatively easy to model the overt

actions of the user and the system during the design process in terms

of simple actions.

There are three types of explanations that can be built into a
CAD sy stem. One 1is the simple explanation of how to use a command.
This is performed at the request of the user and describes in varying
levels of detail how the command is actually performed. Another kind
of explanation is prompting text which guides the user through a conm-
plicated feature by reminding hin of his expected behavior, or notify~

ing him of the occurrence of events of interest, A third type is a

rv : -.

-11=

HELP facility, which rescues the user who has made a mistake, and

attempts to describe to him what went wrong.

In most CAD systems ([MarcB2],[Fenc82], the explanations and
prompts are simply stored text, This becomes tedious for experienced
users, and makes the programming of a HELP facility difficult, If the
text is not stored, but generated from some stored representation, the

explanations given can become more and more laconic as the user gains ¥

experience, In addition, if the system knows how the feature is sup-
posed to be executed, when errors occur, it can determine what they
were in a flexible manner. An additional benefit of having the sy stem
actually know how the features operate is to have the explanation of a
feature occur in a modality other than language, for example, to pro-

duce graphical animation to assist in the explanations.

Considerations such as these led to choosing to develop an expla-
nation program for the use of a system called CADHELP for this
research. Explaining the system consists of describing how each
feature 1s to be performed (e.g. adding a gate to the design or con-
necting two gates). Each command the CAD system can execute is stored
in a knowledge structure called a feature script. The notion of
script, a stereotyped sequence of actions, is taken from (Cullfta].
Each feature script is a detailed description of the expected behavior
of the user and the response of the sy stem to that behavior during the

execution of a particular command. These feature scripts are detailed

enough to be used as the input for generation of English and the gen-

E . eration of graphical animation [NeimB82]). The exact nature of the
:

e e

representation and the processes that operate on it to produce text

are discussed in Chapter 3.

Explanations of the use of a CAD Tool suffer from several
shortcomings when used to model computer generation of language. One
is the problem of extensibility, i.e. once all the features have been
explained, only adding additional features produces new generation
tasks and the problems are similar to those experienced in explaining
the other features. Additionally, the CAD explanation system was not
designed to be interactive, (unlike the actual computer-aided design
part), and extending it to be so would be a laborious task. For rea-
sons such as these it was decided to explore the explanation process
in a different domain. A system called ACE (Academic Counseling
Experiment), currently under development at the University of Connec-

ticut, was chosen for study.

ACE models an academic counselor who performs various tasks for a
student such as conducting a preregistration or answering questions
about courses in a mixed-initiative fashion. The task of the
explainer is to describe to a new undergraduate how one goes about
obtaining a degree in Computer Science at the University of Connecti-
cut, This type of explanation deals with an actor interacting with a
complex social organization (the University) to accomplish some goal
(lifetime happiness beginning at 22K). This new domain is different
enough from the CAD domain to present new problems in both language

generation and concept selection,

e

B ST,

13-

1.4 Qutline of the Thesis

Chapter 2 presents a model (developed bty [Cull81b]) for an essen-
tial part of ary explanation sy stem, a generator of English sentences,
which was extended for use in this work., After discussing previous
work on generation, the important topic of the representation of the
meaning of the sentences to be generated is covered., The notation of
Conceptual Dependency 1s shown to be a suitable one for the purpose,
and examples of its use in representing input as well as word meanings
are gilven. The actual generation process, implemented in a LISP pro-
gram called CGEN, is then described in two parts, The first deals
with the underlying control gycle that produces a linear sequence of
words from a Conceptual Dependency (CD) representation, The second
covers the generation strategies that operate on concepts to assist in

the production of natural sounding utterances.

Chapter 3 discusses the development and implementation of an
explanation subsystem for the CAD domain described above, To provide
a framework for the discussions on the explanation strategies used in
this domain, as well as making the examples more understandable, the
actual CAD system is explained. Next, representation is again dis-
cussed, this time for more complex, structured knowledge, The purpose
of these more complex structures is to represent in the computer the
knowledge of the CAD tool an expert has. The knowledge structures used
for the CAD domain were influenced by the decision to generate English
from a CD representation, and are based on CD representation theory,

The discussion then centers on the explanation model for this domain

R, | 1

i
i

- o e A e e L aa

~14=

as embodied in a LISP program called HELPCON, HELPCON examines the
knowledge structures representing the features of the CAD Tool, and
selects certain concepts for: expression by CGEN. The chapter ends

with an excerpt from an example of the execution of HELPCON.

The next chapter, Chapter U4, describes a design for a program
capable of producing explanations in a more complicated setting,
namely the academic counseling project described above. The only
parts of this design actually implemented so far are the generation of
some key sentences characteristic of the ACE domain, The chapter
begins with an outline of some extensions that would be useful for a
next-generation explainer, based on experience with the explainer for
the CAD domain, Next, an overview of the ACE system is given., The
exposition following this describes the strategies designed for use
with ACE. The last section then gives a hypothetical example of the
run of this new explanation sy stem., This is followed by a summary and

discussion of extensions in Chapter 5,

CHAPTER 2

Conceptual Generation

2.1 Previoua Work in Generation

The queation of generating sentences from some representation of
their meaning has been the subject of research in artificial intelli-
gence and computational linguistics, and several language generators
exist which are quite capable. Winograd's [Wino72] SHRDLU used canned
phrases, template sentences and a noun phrase gensration algorithm for
generating output, and also had a set of dialogue heuristics for
increasing the naturalness of its responses. Winograd's system for
generation, however, is specific to the blocks world application for
which it was designed. 4 generator that ﬁas also done for a limited
domain was Chester's [ChesT6] EXPOUND. EXPOUND is a system for
expressing predicate calculus proofs in English. Its main focus is the
structuring of the lines of a proof into an Engiish paragraph, and so
has a simplified generator for the actual sentences, Basically, each

logical predicate EXPOUND knows simply has an associated verb and

function words that connect the argunents to the predicate.

Simmons and Slocuﬁ's work [Simm72], was an early approach to a
more general theory of generation., The input concept to their genera-
tor was in the form of a phrase marker. This input was passed to a
phrase structure grammar (represented using an ATN) which suppiied an

ordering for the semantic components of the concept, Simmons and

;‘
|
3
|
!

Slocum's work was influential for later research on conceptual genera-
tion. In particular, Shapiro's [Shap75] work on genex:ation of English__ _
was an attempt to extend their work to provide a generator with th;
ability to determine the value of certain attributes that Simmons and

Slocum's generator took as given (e.g. tense and modal specifica-

tions).

Davey [Dave74], like Winograd, adapted Halliday's systemic func-
tional grammar but for use in a generation program rather than a
parser. Davey's program was one of the first to attempt to model the
speaker's use of language (in a specific context) as a communicative
device. He used the simple domain of describing the moves of a tic-
tac-toe game and was able to provide some rationalizations for the use
of particular linguistic forms, For example, the rule for connecting
moves with a coordinate conjunction would only apply if the aspects of
the moves being connected were equal. Unlike previous generators,
Davey's program used domain specific knowledge to Jjustify its use of

the language.

McDonald (McDo81], in his work on MUMBLE, makes a distinction
between the speaker component of a generation program (decides what tc
say) and the linguistic component (decides how to say it). His argu-
ment for making this division is that it frees the researcher using
the linguistic component, (which MUMBLE represents), from having to
worry about a specific input representation. For ary domain, an inter-
face program and dictionary is built to provide the necessary transla-

tions. The interface program translates a message from the speaker's

-

-17-

|
l internal representation into a surface structure representation, which
k
| —_ is then linearized into a sentence. He has tested his linguistic com-

ponent using six different speaker programs, including the domain of

Chester,

Goldman's model of language generation (Gold7s5], embodied in the
program BABEL, departs from other theories of generation bty beginning

with a conceptual representation of the ideas to be expressed (in Con-

s

ceptual Dependency format) and producing an English sentence for it.
BABEL selects a verb sense for a concept ty consulting a discrimina-

tion tree attached to the concept's primitive action or state. The

verb sense 13 represented as a gsyntax network, modeled after Simmons

and Slocum's parker nets, BABEL fills in the cases of the syntax net

using the conceptual cases of the input concept. The resulting net is
then linearized into an English sentence hsing an ATN (again following
Simmons and Slocum). Salient features of BAEL are, 1) its strength
in performing paraphrase, 2) its ability to make subtle distinctions
between words with similar meaning, and 3) its generation of German as
well as English from some input concept., BABEL is able to perform all
these tasks since it has some notion of what a word means, unlike
other generation systems., A generator that was built from B ABEL was
used in Meehan's TALE-SPIN [Meeh81], a program which uses the planning
structures of the Schank and Abelson theory [Scha77] to produce simple
stories. Meehan makes a strong case for needing constant references
to a memory gystem for producing coherent text, for example, using
pronominal ization and conjunctions, The success of BABEL and TALE-SPIN

in generating from a conceptual representation prompted further

-18-

| investigations into language generation using this input. In particu-

lar, Cullingford et., al, [CullB1b] designed a conceptual generator for
use in several systems., The design and function of this generator, as

well as additions made to it for the current work, is described below.

2.2 Representation

An important issue for ary generation system is what the
representation of the input will be, Unlike parsing sy stems, where the
input is sentences of the language, the input for a generator can be
anything from a phrase marker to a predicate calculus formula. There
were several requirements that motivated the choice of representations
for CGEN, the conceptual generator developed bty Cullingford et., al,
One was that, since it was to be initially used in a computer-aided
design domain, other programs would need to manipulate the representa-
tion besides the language generating program. In particular, a system
was under development for producing graphical animation from the
representation, so some notion of what a word means at a basic level
was important., Paraphrasing is also a task that was desirable for the
generator to be able to perform, and if a representation is unable to
capture the underlying similarities among the meaning of words, a pro-
gram using it cannot perform paraphrasing [(McDo81]. In addition, it

appears that the decision of what word to use in expressing a concept

is dependent upon the meaning of the other concepts that are associ-
! ated with {t, For example, the distinction between prun and walk
depends upon the quickness of the step used, but both are forms of

. movement, Also, use of an abstract representation of meaning may pro-

vide a motivation for the use of linguistic phenomena such as the pas-

sive or relative clauses,

Given these requirements, some theory that used the notion of
semantic primitives was needed. Wilk's system for machine translation
[Wilk76] represents word meanings as sets of descriptive semantic
features that describe the class the word belongs to as well as its
distinguishing characteristics. However, Wilk's semantic formulas for
word-sense meaning are not of sufficient generality to be useful for
several programs, all of which need the knowledge for different pur~
poses, to use, Norman and Rummelhart [Norm75] alsc developed a seman-
tic primitives based representation but were more concerned with the
psy chological reality of their primitives than an actual computer

implementation,

For Cullingford et. al., the theory behind Conceptual Dependency
{Scha75] met the requirements for an input representation for CGEN.
One basic premise of CD theory is that a representation of meaning
should be language free, and should explicate the relationship between
utterances that are close in meaning, but may have different surface
forms. So, an analyzer parsing into CD format should produce very
similar CD representations for sentences 6 and 7, and a generator
should be able to produce them as paraphrase,

6) I got an A in CS110.
7) I took CS110 and got an A,

Representing the knowledge of a system in a CD format also enables

generation of output in modalities other than language,

-20-

Ary concept represented in CD format contains a gonceptual ¢lass
which identifies the underly ing action or state the concept expresses,
if the concept is a full conceptualization, or identifies the primi-
tive type of the concept, e.g. person, polity. The rest of the con-
cept is a set of slots and their associated fillers, Every conceptual
class has a unique set of slots, and these slots and their fillers
serve to convey information about the primitive action or state. For
example, one conceptual class is PTRANS (Physical TRANSfer). In order
to describe an event which is a PTRANS, the ACTOR, BJECT, TO, FROM,
and INSTRUMENT slots meay be filled. For example, a simple CD
representation of the sentence: "John went to Hartford" is shown in
Figure 2.1, Further discussion of CD representation can be found in

[SchaTs].

Deciding to use Conceptual Dependency notation to represent the
input concept to be generated determines, in part, what a dictionary

entry for a word must look like. The base meaning given to a word in

(PTRANS ACTOR (PERSON PERSNAME (john)
SURNAME (nil) GENDER (masc))
B JECT (PERSON PERSNAME (Jjohn)
SURNAME (nil) GENDER (masec))
TO (POLITY POLNAME (Hartford) POLTYPE (city))
FROM (nil)
INSTRUMENT (nil)
TIME (TIMES TIME! (past) TIME2 (nil))

The Representation for "John went to Hartford."

Figure 2.1

-2~

the dictionary is a CD frame, a concept with some of the slots empty
(nil) and some of them filled (see Figure 2.2). The empty slots can
match arything in an input concept, but the filled slots, which
represent restrictions on the slot fillers, must match exactly. For
example, the filler of the ACTOR slot in the definition above is res-

tricted to be the sy stem, whose name is CADHELP. Some restrictions on

~ DELETE
{makdef dell
~ word for this definition
(delete)
~ concept frame representing the meaning
=~ of the word 'delete’
(MTRANS ACTOR (PERSON PERSNAME (cadhelp) ROLE (%sys))
M®BJ (nil) INST (nil) FOCUS (nil)
MODE (nil) FROM (nil) TO (nil))

~ active syntatic predicates for the word delete
({(actor) [((ACTOR) (pr parent))
((MB J) (fo parent) (pr (path FROM)))
((FROM) (fo parent) (fo (path MBJ))
(fo (fw from)))]}

~ passive syntatic predicates for the word delete
{(mob)) [((M®BJ) (pr parent)
((FROM) (fo parent) (pr {path ACTOR))
(fo (fw from)))
((ACTOR) (fo parent) (fo (path FROM))

(fo (fw by)})1}H)

~ semantic predicates expressing restrictions
=~ on the fillers
[(eq (conclass (grv '(MOBJ) :input-concept)) '#device)
(equal (grv '(FROM ROLE) :input-concept) '(%design))
(equal (grv '(TO) :input-concept) '(nil))]

CGEN Dictionary Definition of the Word 'delete!

Figure 2.2

——————————

slot-fillers cannot be represented by a simple pattern, for example,
if the restriction is that a filler must belong to a class of items,
or that two fillers must be equal. In this case, a semantic predicate
is used, Semantic predicates are conditions on slot fillers expressed

as LISP expressions, For example, the word delete in CADHELP is only
used if the object being manipulated belongs to the class of devices,
i.e. delete-able objects, and if the manipulation on that device is a
transfer from the design to nil (nowhere), This notion is embodied in

the LISP code shown in the final three lines of Figure 2.2.

The final component in a dictionary definition is the specifica-
tion of syntax for sequencing words. Recall that Goldman's BABEL used
a syntax net associated with a2 main verb which was run through an ATN
to linearize the concepts. This extra processing appears unnatural and
carries unnecessary overhead. What is needed, at a most basic level,
is the notion that one word or concept precedes or follows another,

This is precisely the kind of syntatic specification that CGEN uses.

Most words in the dictionary, (e.g. delete from Figure 2.2), are asso-

ciated with a set of precedes and follows predicates. If the word

found is a main verb, then depending upon the value of the FOCUS role
in the input concept, Jsyntatic predicates that produce either an
active or a passive sentence are chosen, The predicates state where
the parts of the concept that CGEN is trying to express are to be
positioned relative to three things, 1) the word found, 2) the other
concepts to be expressed, and 3) function words that serve to mark the
filler of a particular slot. (Function words are connective words that

are assoclated with a particular action word and a particular s3lot.)

=23-

For example, an English summary of the syntatic predicates shown in

Figure 2.2 might be as follows:

If the focus is on the ACTOR, then:

(1) Say the concept expressing the ACTOR before the parent word,
delete.

(2) Say the concept expressing the M®BJ (mental object) following
{ the parent word delete, and befure the FROM slot. i

(3) Say the concept expressing the FROM slot following the parent
word delete, following the expression of the MBJ filler, and
following the function word from, (an actual lexical item to
be said).

If the focus is on the MBJ, then:

(1) Sa the concept expressing the MBJ before the parent word,
delete.

(2) Say the concept expressing the FROM slot following the parent
word delete, before the ACTOR slot filler and following the
function word from.

(3) Say the concept expressing the ACTOR following the parent
word delete, following the expression of the FROM filler and
following the function word by. -

The input to CGEN, then, is in the form of a Conceptual Depen-

Conceptual Dependency frame, with restrictions on the fillers of vari-

dency structure, The meaning of a word in the lexicon of CGEN is a

ous slots., The ordering of concepts to be expressed is obtained from

syntatic predicates, which are indexed by the filler of the FOCUS slot ‘
4

for full conceptualizations. In addition to ordering information, the

precicates specify function words. The following sections describe,

in detail, how CGEN uses this information to produce grammatical

English sentences, arnd describes several modifications pade to it for

L.‘, | —— o

-2l

the current work.

2.3 Ihe Basic Lexicalization Process

When a concept is given to CGEN represented in CD format, a basic
ycle performs the lexicalization and sequencing, This part of the
generator transforms the input conceptualizations into a string of
English words bty repeatedly looking up words and organizing the words
found, the slot fillers not spanned, and ary Cfunction words needed

according to the syntax stored with the words,

CGEN's control structure is similar to the Conceptual Analyzer of
Birnbaum and Selfridge [Birn81], It has a short term memory, called
the C-LIST (Concept List) which stores concepts that need to be gen-
erated, and words that need to be said. The focus is always on the
top of the C-LIST. If the top of the C-LiST is a word, CGEN says 1it,
If it is a concept, it is examined by a set of rules (discussed in the
next section) which wmay modify the concept and the rest of the C-LIST,
The item on top of the C-LIST is then sent off to a dictionary spe-

cialist.

Vords in the dictionary are organized according to the conceptual
class and slots of the CD frame that is their basic meaning. The
entire set of words CGEN knows is stored in a discrimination tree
{Jose83]. The tree orders the dictionary entries from most to least
specific. A dictionary entry matches if it is structurally similar to
the ooncept to be expressed. Structurally similar means that the two

have the same slots, and that ary non-nil slot filler in the diction-

-25-

ary entry matches the same filler ir the concept to be matched. Once
the structural criteria have been fulfilled, the semantic restrictions
on the siot fillers are checked. If all these restrictions are met, a

“ word has been found,

The word found may or may not span all of the concept to be
expressed (e.g. bachelor spans the male meaning of the unmarried man
concept, making male bachelor redundant). Therefore, the next step in

the dictionary 1lookup 4is the packaging of those slot fillers that

still need to be expressed along with their syntatic predicates and
function words, The notion of precedes and follows can be used to

describe any ordering used ty CGEN. In particular, it can be used to {

.

specify syntax where the focus is on amy filler in the concept. Mul-

tiple syntatic rules are stored under each word that constitutes a

main action. When a concept is sent to the generator, it will contain

W TR S PSP S

a property specifying what subpart of the whole concept is to be

focused upon. This focus property is used to index the syntatic rules
specify ing the ordering of concepts (as in Figure 2.,2). Note that
this focus is not part of the concept proper, it is more of an indica-
tion of the intent of the speaker, It was found to be necessary for
the CADHELP domain (and was thus added as an extension to CGEN) since
explanations which involved the CAD system as actor frequently would

not express the actor (e.g. "The device is deleted from the design®).

Once the proper set of gyntatic predicates has been found, each
non=nil clot filler in the input concept that matched a nil (don't-

care) slot filler in the dictionary entry 1s given a set of syntax

that specifies its position on the C-LIST relative to the word found
and the other fillers. Since the function words associated with a slot
appear in the set of of syntatic predicates that are associated with a
filler if the filler is not present, they will not be said., The func-
tion words, when encountereq, obtain their syntax from the slot they
are associated with, in addition to having a predicate specifying
where they are to be placed relative to the filler of that slot, For
example, the function word from generated using the dictionary defini-
tion from Figure 2.2, would have the following syntax:
((fo parent) (fo (path MBJ)) (pr (path FROM)))

Some slot fillers receive special treatment at the hands of the syntax
specifier, These fillers fill syrface slots, slots in a concept that
do not contain a substantive concept as a filler, but a lexical item
that can be expressed without further dictionary lookup. Examples of
these are the names of people, names of commands in CAD systems,
numbers and titles of courses, etc. The surface slots for a given
concept can be determined from the conceptual class (e.g. for the
conceptual class PERSON, the surface slots are PERSNAME and SURNAME).
Fillers from slots such as these that need to be expressed are
returned as words to insert onto the C-LIST, not as concepts that need

to be generated.

The dictionary 1s responsible for selecting the word or words
that span as much of the concept as possible., If the concept sent to
the dictionary contains temporal or modal information, a verb cluster
must be built to expresa the TIME and MODE slots of the concept, This

information is like the focus information, i.e. it is not an integral

ol . ot PN b e 0w

-27T=-

part of the meaning of the concept since it expresses auxiliary infor-

mation, In fact, the three types of information, focus, time and
mode, have to do with issues that are outside the range of the single
concept being generated. The time information expresses the relation-
ship of the time the action or state in the oconcept occurred, relative

to the time of speech and possibly relative to the time of some other

event. The focus and modal information relate the intentions of the
speaker or hearer, Focus serves to call attention to a particular
part of the concept, and modal information expresses the_ ability,
intent, obligation, etc, of the speaker. This information is complex
and difficult to represent fully. For example, the modal concept
expressed by should in: "You should take CS 110 next semester." really
refers to the fact that the speaker has some knowledge of what events
would be in the best interest of the listener., This complex notion is

condensed into a single word, should.

‘ Tensing, aspect and modal expression as well as subject-verd
agreenenf. are performed in the lookup routines whenever a main verb is
found to match the concept sent. Subject-verb agreement is done Uty

examining features of the focused on concept to determine if it is

first person, second person, plural, ete. This information is used ty

CGEN to produce the grammatical form for sentences like:

8) lMove the stylus to the tablet.

9) The cursor moves,

10) I teach CS 110.

11) Dr. Bernard Lovell teaches CS 267.

-28-

The generation of modals is done by translating a given mnodal
specifier into the corresponding modal word (e.g. urge becomes should,
ability becomes cap). In addition, thsse modals that can indicate
tense (gan and shall) do so. If the concept is negated, this is
also specified in the mode slot, and CGEN adds the word not to the
verb cluster immediately preceding the main verb, and following ary
modal word., If the word not is used, and no modal is present that can
carry the tense, then the properly tensed form of do is added (called
do-support). For example, if the verb found is go, the tense is past,
and the mode slot filler is:

MODE (MODES MODE1 (negation) MODE2 (ability) MODE3 (nil))

the dictionary lookup routine will return gould not go. However, if
the mode slot filler is:

MODE (MODES MODE1 (negation) MODE2 (nil) MODE3 (nil))

and the lookup routine returns did not go.

The third slot in the mode slot filler of a full conceptualiza-
tion, MODE3, 1is used if the entire conceptualization is being ques-
tioned, If the MODE3 slot does contain the question marker, then
depending upon the tense, aspect, MODE1 and MODE2 fillers, several
things are done. First, the verb cluster is formed as usual, with the
exception that, If there 1s no modal specifier in MODE2, and no
aspect, do=-support is done to carry the tense, since the first auxili-
ary (is, had, etc., or a modal) will be fronted to form the question.
Recall the defirnition of delete, given in Section 2.2, This defini-

tion allows CGEN to renerate sentences like 12 and 13,

12) The system deletes a device.
13) The device is deleted ty the system.

If CGEN is sent the question form of the above concepts, the

result will be 14 or 15,

14) Does the sy stem delete a device?
15) Is the device deleted ty the system?

In sentence 15, the verb cluster is deleted is split and the auxiliary
A3 1is placed before the focused on entity., In order to do this, in
the case of a question, the first auxiliary is returned as a word to
be 1inserted into the C-LIST, not as a part of the verb cluster. The f
syntax for the auxiliary is formed by specifying that it precedes the
focused on concept. In general, the auxiliary that is moved may be a
modal, a form of do generated bty do-support, or the copula of a pro-

gressive or stative (e.g. "Is the chair on the table?"),

If only a subpart of the full conceptualization is being ques-
tioned, for example, the identity of the actor is desired, and the
concept 13 generated in such a way that the questioned part is gen-

erated before anything else (see Section 2.4), the auxiliary must also

be moved, This produces:
16) VWhat courase are you taking?
instead of
17) what course you are taking?
In sentence 17, by the time the dictionary is told to look up the case

frome *het will match the word take, the questioned part ot the corn-

-30-

cept, what course has already been said, so are is returned from the
lookup routine with gyntax specifying that it is to be placed before
the filler of the ACTOR slot. If, at lookup time, the questioned con-

cept has not been expressed, no fronting of the auxiliary will be

done, and CGEN will generate 18.

18) You are taking what course?

The interaction between tense, aspect, modals, negations, ques-
tions and focus is intricate, In the simplest (and most common) case,
only tense and aspect are specified and these are handled easily
enough, CGEN has a set of morphology routines capable of adding ed,
Aing, 8, to words, and stores any irregular past tense or participle
forms under the root word. Some examples are shown below,

18) I took CS 100.

19) I am taking CS 110.

20) I had taken CS 110.

21) He has been teaching CS 110,
22) Should he have not been teaching CS 1107

The net result of the dictionary lookup and its associated pro-
cessing 1s a word or list of words that represent as much of the input
concept as possible. In addition, it returns a (potentially empty)
list of concepts that still need to be expressed, and function words.
After these concepts and words are inserted into the C-LIST using the
specified precedes and follows predicates, CGEN repeats the cycle by

examining the top of the C-LIST.

Reviewing some of the examples given in this section, there

appear to be 3ome phenomena CGEN can produce that are «till

— | , N

-31-

unexplained. For example, what happened to the expression of the
actor in sentence 8 ? How is the filler that is being questioned in a
full conceptualization fronted in sentence 16 ? The processes that

supplement the basic cycle to produce these sentences and others are

discussed in the next section.

2.4 Generation Strategies

The process described above is not powerful enough to always pro-
duce natural-sounding English, There are a number of conventions
speakers use to produce utterances that are as concise as possible,
without omitting important information, These conventions have been
added to CGEN in an ilncremental manner, as needed. For a CAD style
domain, where the user is being told how to perform pltysical actions,
the need for the imperative and expressions of instrumentality become
apparent. Upon changing to the domain of interviewing a student to
perform a preregistration, an important task for the generator was to
produce questions. The conventions for producing these are imple-
mented as a set of rules (sketchifiers) that fire when certain seman-
tic features are present in the concept on top of the C-LIST. These
rules may change the form of the utterance lty marking redundant con-
cepts as not to be sald, by adding words to the C-LIST, or ty modify-
ing the concept o that certain linguistic conventions are used (such
as the prosressive) to express a concept more concisely than the nor-
mal cycle would. It is thic set of rules that is responsible for forme-

ing the linguistic shorthand used ty speakers of English,

S —

-32-

The sketchifiers CGEN uses are arranged according to the type of
concept upon which they operate. One set operates on entities, It
contains a rule which expresses relative clauses to describe an
entity, 1if need be. If CGEN has received an entity for expression
that contains a relative clause, and if the entity has not been men-
tioned before, the SAYREL sketchifier will remove the relative concept
from the concept representing the entity and place it on the C-LIST
following the entity representation, This could be done in the dic-
tionary just as easily, using some syntatic predicates to order the
expression of the entity relative to the expression of the relative
clause. However, SAYREL remembers that it has expressed the entity
using a relative clause, and will express the relative clause slightly
differently the next time it appears, If the time is present in the
relative clause, and the mode is true, then the connecting pronoun
that and the copula that connects the pronoun to the rest of the
clause can be removed. For example, the phrase:

"the device that is in the lower right hand corner of the screen"
can be shortened to:

"the device in the lower right hand corner of the screen."
Note that if the time is not present or the mode is not true this does
not hold, as in:

"the device that was in the corner"
or:

"the device that chould be in the corner.,”

In addition, if SAYREL cees a concept that has a LABEL attribute as

its relative clause, e.g. "the command tlock labeled MARK1," it knows

this can be shortened to a simpie expression of the label, MARK1.

The other rules that operate on entities are used to fill defau.*
values in the case frame for an entity. Entities can be referenced in
a variety of ways, with definite or indefinite articles, or using pro-
nouns, as well as using the relative clauses described above. 1In a
sy stem with a sophisticated memory model, any reference specifications
would be filled by the memory before being sent to the generator or
the generator would keep track of the different ways an entity can be
expressed. One system that has been implemented for use with CGEM is
the paraphrase module for the DSAM story understanding program
[Cull81a], [UngeB2]. The DSAM system tracks the expression of people
and when a new person appears, creates a new sketchifier whose
specific task is to determine how that person should be expressed each
time it occurs in a concept. For entitieé other than persons, the
sketchifier ENTREF was built into CGEN bty Cullingford, et. al., and is
responsible for filling in “"he slot that determines how an entity is
to be referenced. That part of the case frame representing an entity
that determines the reference for an entity is the REF slot, ENTREF
is responsible for choosing between three simple types of expression,
First, CGEN retains a list of those entities “hat have been expressed
in the current sentence. If an entity appears more than once, the
second time it is expressed as jt. This simple rule allows CGTH to
produce simple pronominal reference for entities. If the entity has
not been said in the sentence, but has been menticoned in the text or
is a unique entity (one that the listener could be expected to know

from the situational context) it is given a definitc reference. The

default reference is indefinite. Thus, ENTREF will yield the follow-

iang phrases in a run:

a device will appear
move the device
select the device and move it

The next set of rules operates on that class of concepts that
express some relation between full conceptualizations, for example,
causal or time relations, One causal relation that occurred fre-
quently in the CAD domain was one in which the first concept expressed
some goal of the user, and the second concept stated the action the
user had to perform to realize that goal. For example, if the concept
was the intent of the DELETE command, it would look as shown in Figure
2.3. Given this concept, CGEN's basic cycle will produce: "If you

want that you delete a device from the design, then you use the DELETE

(CAUSE PRECON (S-GOAL ACTOR #*user
MODE (nil) TIME (nil)
GOAL (MTRANS
ACTOR (PERSON PERSNAME (cadhelp)
ROLE (%*sys))
M@BJ &desr-del-dev
INST (nil) FOCUS (nil)
MODE (nil) FROM ®design
TO (nil)))
POSTCON ($CADFEAT ACTOR *user

FEATNAME (CREATE)
MODE (nil) TIME (nil)))
A Causal Relation Irput to CAUZ

Figure 2.3

-35-

command. ™ However, the CAUZ sketchifier will notice this particular
causal relationship and producz: "To delete a device from the design,
use the DELETE command." CAUZ does this bty adding the word to to the
C-LIST, followed by the concept filling the GOAL slot of the S-GOAL of
the user and the POSTCON of the CAUSE. This process is shown in more

detail in the example in Section 2.5,

The last set of rules to be discussed has to do with modifica-
tions to concepts that are full conceptualizations. One such
sketchifier is IMP, the imperative rule. IMP demonstrates the com-
plexity of the decisions some of these rules must make before they can
fire. An English version of IMP appears in Figure 2.4. This rule
produces an imperative form whenever all the conditions are true,
Another sketchifier that operates on full conceptualizations, INF, is
responsible for forming an infinitive construction whenever an actor

has a goal for himself, or in certain cases where mental events are

7 e g

If the concept is a unit action
(i.e. not a state or relation between concepts).
and If the actor of the action is the other person -
in the conversation
and If the time of the action is present
and If the action is asserted, with no negation
or modal specifiers
and If the concept is not a question
and If the focus of the expression is to be on the actor
then suppress the expression of the actor.

The Imperative Rule

Figure 2.4

-36-

occurring. For goals, INF will take a concept that would normally be
expressed as: "Jacob wanted that Jacob go to Hartford™ and express it
as: "Jacob wanted to go to Harfford." For mental events such as are
found in the meaning of a sentence like: "Jacob pretended that Jacob
went, " the INF sketchifier will produce "Jacob pretended to go,"™ but
will skip over a concept that would express ®“Jacob pretended that

Jacob could go,™ since the infinitive form does not occur here,

An important feature of the CAD domain was the use of 1instru-
nents., Concepts would frequently have the actor producing some action
bty performing some instrumental action. In concepts such as these,
the instrument can be expressing ty suppressing the expression of the
actor in the instrument action (since it can be inferred), then using
the word by followed ty the progressive form of the instrument action,
This causes those concepts which would nbrmally be expressed like:
"Jacob hit the ball ty the instrument that Jacob swung the bat.™ to be
instead shortened to: ™Jacob hit the ball ty swinging the bat."
Further uses of this instrument will be shortened to: "Jacob hit the
ball with the bat," provided that the entity serving as the object of

the instrumental conceptualization is being used in its usual manner,.

The last rule to be discussed is responsible for forming ques-
tions, and is called the QFOCUS sketchifier, If the entire concept is
being questioned, the cictionary deals with the ordering of words,
etc, as desaribed above, Otherwise, the proper form of a wh-word (for
CGEN's applications, these are who or what) is determined. This 1is

done Lty examining the concept bteinsg questioned to rcee if it is a rer-

-37-

son, and that it has a place in the being generated, Then the form
used is who. If who is not enough to completely specify the reference
to the entity being questioned, the word what is used followed bty ary
information that can be obtained from the concept. For example, if
CGEN was generating a question directed to a user of a program, a
proper form would be: "Who are you?" On the other hand, non-person

entities must be stated in full, e.g. "What courses are you taking?"

CGEN was developed and expanded initially for generating explana-
tions in a CAD domain., In addition, it performed in the story para-
phrase task of DSAM [Unge82). It was also successfully updated for
use in the Academic Counseling Experiment, Once the basic oycle was
fully developed, CGEN could move from domain to domain by adding new
words to the dictionary, and bty adding new sketchifiers to produce new
forms, This important tool is used in both sy stems discussed in this
thesis, and thus has had an influence upon their design. Before
further discussions of these systems, a full-length example of CGEN's

operation is shown in the next section.

2.5 Detajled Example

CGEN's generation wycle and rules are here illustrated with an
example. What follows i1s annotated computer output, edited for reada-
bility, showing the generator expressing a concept which has been
modified bty several sketchifiers. The concept to be expressed is an
intent conceptualization of one of CADHELPs commands, the CREATE ...~
mand. In a fully verbose form, with no rules to supplement the basic

cycle, the generator would say:

-38-

"If you want that CADHELP add a device to the design then you use

CREATE command, "

With the rules present, CGEN produces instead:

"To add a device to the design use the CREATE command."

A trace of the generation process is shown below.

to clarify

nvn

Franz Lisp, Opus 36
-=>(gen 'create-intent)

If there's a concept at the top of the clist, CGEN will print
it before invoking the sketchifiers. The current top of clist
is the input conceptualization, the intent of the CREATE con-
mand, It expresses a causal relation between two events, a
precon and a postcon. The precon concept is that the user has
the goal that the system place a device (which is in the ware-
house) in the design. The sy stem accomplishes this transfer
ly means of an mtrans, a mental transfer of information from
the warehouse to the design. The postcon concept is a script,
$cadfeat, used to represent the complex notion of "executing a
CADHELP feature®. 1In this case, the CADHELP feature to be ex-
ecuted 1s CREATE.

the

Comments added in

the example are set off by horizontal lines, or by tildes

GEN: top of clist
(cause
precon (s=-goal actor #*user
node (nil) time (nil)
goal (mtrans actor #*sys
mode (nil) time (nil)
nobj #disp-dev
inst (nil)
from #wrhouse
to *design
rode (nil)
time (times timet1 (:pres)))
postcon ($cadfeat actor #¥*user
featname (CREATE)
. mode (nil)
tine (times time1 (:pres)))))

Now this concept is sent to the sketchifiers. The first one to fire
is the causal sketchifier. This forms the construction "To x, y" from
the concept "If you want that the system x, y." It does this replacing
the precon of the input concept with its goal subconcept, preceded by
the infinitive function word "to." It also marks the actor of this
".subconcept as not needing expression, since in this domain the system
can be inferred to be the actor in concepts of this sort.

®cauz
cauz: forming to construction in top of clist

The state of the clist at this point is:

=40-
GEN: clist

{"to" ~ word "to"

(mtrans actor ®#sys “ concept that was goal of

' node (nil) time (nil) ~ s=goal of the precon
mobj ®disp-dev
inst (nil)
from #wrhouse
to #design
mode (nil)
time (times time1l (:pres)))

($cadfeat actor #*user ~ postcon concept

featname (CREATE)
mode (nil) time (times timet1 (:pres))))

CGEN pops the word "to" off of the top of the clist and saves it.
Since the next thing on the clist is a concept, CGEN will print it,
then let the sketchifiers look at it.

GEN: top of clist

(ptrans actor %sys
mode (nil) time (nil)
mobj #disp-dev
inst (nil)
from *wrhouse
to ®design
mode (nil) time (times timel (:pres)))

The concept ic sent to the dictionary for lookup. The dictionary re-
turns the lexical item "add", since the direction of the transfer is
from the warehouse to the design. Notice that the actor of the
mtrans, the gystem, 1is not among the fillers returned, since it was
marked as not to be said by the CAUZ sketchifler.

. At -

-41-

DICT to match:

(mtrans actor #sys
focus (actor)
mode (nil) time (nil)
mobj #disp-dev
inst (nil)
from ¥*wrhouse
to %design
mode {nil)
time (times time1 (:pres)))

DICT result: (add)

DICT fillers: (%*disp~dev ~ mobj slot filler
(follows "add")
(precedes to)

*design ~ to slot filler
(follows ™add")

(follows mobj)

(follows (fw to))) ~ fw = function word

The clist after insertion is:

GEN: clist

(radd" ~ new word, "“add"
*digp-dev ~ mobj filler of the mtrans
fto™ ~ function word "to"
%design “ to filler of the mtrans

($cadfeat actor #user
featname (CREATE)
mode (nil) time (times timel (:pres))))

postcon of the causal

The new top of the clist is the device, ¥*disp-dev., It is shown below
in its expanded form; *disp-dev is a shorthand form.

-"2-

GEN: top of clist

(#device partof #wrhouse
type &typ
class &cls
posx (1471)
posy (144)
status (nil)
assoc=-txt (nil)
label &label)

The job of the next sketchifier is to track the entities that have
been said, and see to it that they are given the appropriate refor-
ence, In this case, since the device has not been mentioned before, it
is given an indefinite reference.

Sentref
entref: refizing top of clist

. DICT to match:
(#device partof ®rhouse
ref (indef) ~ indefinite marker

type &typ
class &cls

posx (1471)
posy (144)
status (nil)
assoc-txt (nil)
label &label)
DICT result: (device)
DICT fillers: ((indef) ~ ref slot filler
(precedes "device™))

The clist after insertion is:

r T

=43~
GEN: clist
((1ndet’) ~ ref slot filler
"device" “ new word
"to" “ tunction word "to"
8desiygn ~ to filler of the mtrans

($cadfeat actor #user
featnanme (CREATE)
mode (nil) time (times timet (:pres))))

postcon of the causal

The concept indef is found to match the word "a",

GEN: top of clist
(indef)

DICT to match:

(indef)
DICT result: (a)
DICT fillers: (nil) ~ no fillers

The clist after insertion is:

GEN: clist

("an ~ new word

"device"

nton

fdesign ~ to filler of the mtrans
($cadfeat actor *uger ~ postcon of the causal

featname (CREATE)
mode (nil) time (times timei1 (:pres))))

-4l

The next concept to reach the top is #*design, the shorthand way of
naming the design. FEntref gives it a definite reference, since it is
a known entity (like "the screen®™ and "the user®™). In the same way as
for ma device", "the design"™ is generated. We shall skip the details
and go to the generation of the postcon of the causal,

GEN: top of clist
($cadfeat actor #user
featname (CREATE)
node (nil) time (times time1 (:pres))))

Here the imperative sketchifier, IMP, goes off, since the concept at
the top of the clist is a simple declarative. The actor in the con-
cept is marked as not to be expressed.

®imp
imp: squashing actor in top of clist .

DICT to match:
(4cadfeat actor *user
featname (CREATE)
mode (nil) time (times timel (:pres))))
DICT result: (use)

The dictionary has not been able to find a verd which airectly
expresses the content of the concept above, so it returns the

reutral form "use." "Execute" or "do" are other possibilities.
The only filler returned ic a nominalized form of the &5cacfeat
seript. This is used to represent the generic term "command, "
which in this domain is a complex series of events,

~U45-

DICT fillers: ((3cadfeat actor ®user

featname (CREATE)

mode (nom) time (nil))
(follows PMusen))

The clist after insertion is:

GEN: clist
("use" -
($cadfeat actor ®*user

featname (CREATE)
node (nom)))

new word
~ nominalized script

The nominal form is at the top, and is sent to

rule similar to ENTREF, the entity reference rule, fires. This is
EVREF, the event reference rule, EVREF gives the feature a definite
reference, since the user supposedly knows about the commands,

the sketchifiers, A

GEN: top of clist
($cadfeat actor #*user -
featname (CREATE)
mode (nom) time (nil))

nominalized script

fevref
evref: refizing top of clist

36~

DICT to match:
($cadfeat actor ¥*user ~ nominalized script

ref (def)
featname (CREATE)
mode (nom))

DICT result: (command)

DICT fillers: ((CREATE) ~ featname filler ‘
(precedes "command™)
(follows ref)

(det) ~ ref slot filler
(precedes M"command")

(follows featname)

Notice in the clist that follows, the filler of the featname slot has
been put on as a word, not as a concept. This is because certain con-

cepts have certain roles that are 'labels' (such as the names of per-
sons and animals), and do not need further lookup.

GEN: clist

((def) ~ ref slot filler
"CREATE" “ featname slot filler
“conmand™) ~ new word

GEN: top of clist
(def)

DICT to match:
(def')

DICT result: (the)

DICT fillercs: (nil)

GEN: clist
("the"
"CREATE™"
"conmand"®)

GEM result: (to add a device to the design use the CREATE command)

CHAPTER 3

Explanations in Computer-Aided Design

3.1 Qverview of CADHELP

CADHELP is a computer-aided design system for the design of logic
circuits [CullBic]. As discussed previously, a CAD domain is a useful
vehicle for experiments in explanations, The CADHELP system is
divided into two basic parts, the CAD Tool itself, which performs
graphical operations concerned with the design and the Explanation
Mechanism, which is responsible for providing natural language and
graphical output to the user., The function of the Explanation Mechan-
ism is to explain how a particular feature works, and to assist in the
execution of a feature by generating prompts to guicde the wuser. In
order to facilitate understanding of the examples included in this
chapter, it will be useful to discuss the actual features the CAD Tool

can execute,

CADHELP operates in the task domain of logic circuit design. The
graphics component of CADHELP provides the usen'yith the ability to
select, place, and orient components on a graphics s;reen, and to make
connections between devices. A user can also edit a design by adding,
deleting, cor noving components and adding, deleting or redrawing
interconnections, The oy stem provides a technique for creating con-

nections with right-angle segments, as well as a mechanism for com~-

menting or the cesign by associating text with a perticular cevice cr

K.

-4 8-

a special comment symbol,

The main channel between the user and CADHELP is a 20"x20" data
tablet and its associated pen-like stylus. The surface of the tablet
is divided into a Drawing Area, a Master Control Block, and 64 per-
manently allocated 1"-square Command Blocks. Touching the tip of the
sty lus to the tablet communicates coordinate information to the sys-
tem. Additionally, the tip of the stylus contains a switeh, which is
turned on if the stylus is pressed sufficiently hard. Pressing the
stylus on the Master Control Block will abort ary ongoing comnand.
Exiting a command via the Master Control Block, as well as other nor-
mal terminations, returns the wuser to the top level of the system,
where another coumand may be selected for execution. The Drawing Area
is used for a variety of input functions, such as drawing interconnec-
tions and moving graphical objects on the screen. The Command Blocks
on the tablet are wused to select and control the execution of the

graphical featurec of the CAD systen.

The commands currently implemented and known to the Explanation
Mechanism &re outlined in Figure 3.1. It is not at all cbvious how
these features are to be operated, especially to new users, The

CREATE command will be described in some detail below &s an illustra-

tion of the complexity of the commands.

CREATE is used to select a device from CADHELP's database of dev-
ices, called the warehouse, and position it on the screen. This is how

rew devices are added to the desism., First, the user peruses the

warehouse, looking for the device to te createa! The rerusal process

- AT TR . MR

-49-

SELECT

This i1s CAPHELP's top level, Ary command can be initiated by
touching the stylus to the Command Block labeled with its name,

CATALOG
: - allows the user to peruse CADHELP's database of logic devices.

CREATE
select a device and position it in the design area,

CONNECT
draw a connection between devices containing right-angle seg-
ments. This feature uses a simple extension of the graphical
operation called rubber-banding, in which a line segment appears
to stretch away from an origin in response to stylus movenments,

DELETE
delete a device from the design.

DISCONNECT
delete an interconnection.

DRAG
move ahn existing symbol.

ROTATE
orient a device symbol left, right, up or down

ANNOTATE ,
associate text with particular device or comment symbol.

READ
read text associated with a logic component or comment symbol.

CADHELP's Command Cummary

Figure 3.1

is implemented ty a feature called CATALOG. To catalog, the user
“ouches the :tylus on the Drawinpg Area ot the tablet, The CAD Tool
responds wy drawing a device in a cedicated arca of the «duisplay, the

catalog area. If the user now moves the stylus horizontally in the

| ~50-

Drawing Area, a new device will apus~ i which is of the same class as
the device ‘currently being displayed, but of a different type (e,g.,
2-input vs, 3-input NAND gates). To view a member of a different
class (e.g., a counter vs. an OR gate), a vertical movement of the

stylus is made.

When the device the user wants to create finally appears in the
catalog area, he informs the CAD Tool of his choice ty pressing the
sty lus on the command block labeled MARK1. Pressing with some force
is necessary to activate the switch in the stylus which means: mattend
3 to this command.™ The Tool then makes the device being displayed mov=~
able., Now the user must position the device in the design., To enable
the user to locate the device with the stylus, the system draws a cur-
sor which moves on the screen as the user moves the stylus on the
drawing area. The user moves the stylus, énd thus the cursor, in the
direction of the device to be added. When the device and the cursor
overlap, the device also begins to move as the stylus moves. By nov-

ing the stylus appropriately, the user positions the device. When the

device has reached the desired spot, the user informs the system of

his decision bty pressing the MARK1 command block.

CACHELP uses the Explanation Mechanism to describe features such
} as CREATE both when the user SELECTs the command EXPLAIN and through
proupts during normal operation of a feature, After chcosing to exe-
cute EXPLAIN, the user will be asked to press the command block that
is labeled with the name of the feature to be described. He will c<l:co

he asked to select the luvel of explanation desirec bty touchirng ore cf

e L

-51=

the blocks labeled SUMMARY, NORMAL or ERRORS.

In a summary level of explanation, the intent of the command is
glven, The intent of a command is the result that execution of that
command will produce. For example, the intent or goal for CREATE is:

To add a device to the design, use the CREATE command.

The normal mode of explanation provides the user with a step-by-
step description of his expected behavior and the response of the CAD

Tool to that behavior. In addition, system features and components
that have not been mentioned in other explanations are described (e.g.
the catalog area in the ocutput shown below)., For example, the first

time the user requests a NORMAL explanation of the CREATE command,

CADHELP responds with:

To add a device to the design,
use the CREATE command.

love the stylus to the tablet,

Touch the stylus on the drawing area.

A device that is in the catalog area will become visible.
The catzlog area is in the lower right hand corner of

the screen.

Repeat the following until the device in the catalog area

is of equzl type to the device that you want to add to the
design.

[MHove the sty lus horizontally.
A new type of device will become visible.

Repeat the following until the device in the catalog area
is of equal class to the device you want to add to the
design.

Move the sty lus vertically.

4 new class of cevice will become visible.

t'ove the sty lus to the command block that is lebeled ['ARK1.
Jress the stylus on the commana block labeled MARK1.

e ot g

-52~

A prompt will become visible,
A cursor will become visible.

The cursor is in the lower right hand corner of the screen.

Move the stylus to the tablet,

Touch the stylus on the lower right hand corner of the
L drawing area.

Repeat the following until the cursor is
over the device in the catalog area,

Move the stylus to a new location,

The cursor will move to a new location,

The new location will correspond to the location of
F the stylus in the drawing area,

Repeat the following until the device is at a screen
location that you want that the system record.

Move the stylus to a new location.

The device will move to a new location.

Move the stylus to the MARK1 command block.
Press on MARK1.

The device will be added to the design.

An ERRORS explanation is like a NORMAL one, except that the
Explanation Mechanism also describes what can go wrong during the exe-
cution of the f'eature, For details on the ERRORs mode of explanation,
see [Phel82]. For example, while the user is moving the cursor toward
the device in CREATE, he may move the stylus outside of the Drawing

Area. The Explanation Mechanism will explain this potential errcr as

follows:

Repeat the tollowing until the cursor is
over the device in the catalog area.
Hove the stylus to a new location,
The cursor will move to a new location.
The rew location will correspond to the location of
the «tylus in the drawing area.
If you move the sty lus out of the arawing area

s e S g =

~53=

the location of the stylus on the tablet will not
correspond to a location on the screen,
The cursor will not move,

The actual use of the graphical features during design is accom-
panied in CADHELP by prompts which are intended to lead the user
step-by-step through the operation. The prompts are very much like the
NORMAL mode of explanation illustrated above. Unlike the prompts pro-
vided with existing CAD sy stems, however, these are not canned. They
are generated from the knowledge structure each time they are
expressed. Thus, the system is verbose with a new user but becomes
more and more laconic as it gets out of the way of the experienced

designer,

For example, the first time the user operates the CREATE coumand,
the Explanation Mechanism provides the CAD Tool with a sequence of
prompts which is nearly identical to the NORMAL explanation shown
above, minus the first sentence which expresses the intent concept.
The only difference is that the EXPLAIN command produces the future
tense in expressing the actions of the CAD Tool, whereas the prompting
mechaniém uses the present tense, since the system's actions are

occurring in real time, If the user operates CREATE a second time,

CADHELP generates a more abbreviated prompt cequence:

tiove the stylus to the tablet.

To uee tht warehouse pmove the sty lus horizontally and
rnove the stylus vertically.

~5k=

To tell the system to add the device to the design
press the stylus on MARK1.

Move the stylus to the lower right hand corner of
the drawing area.

To move the cursor move the stylus,
To move the device move the stylus,

To tell the sy stem to record the screen location
i press on MARK1.

The third time CREATE is used, CADHELP generates the following simple

prompt sequence:

Move the stylus horizontally and move the stylus vertically.
Press on MARK1.

fove the cursor with the stylus.
Move the device with the stylus.
Press on MARK1.

Thus CADHELP's explanations become mnore brief as the user gains

experience,

In order to generate language and graphical animation for CADHELP

features as complicated as CREATE, a complex representation of the

conmand as an expert sees it is needed, This representation and the

mechanism that operates upon it, are discussed in the following sec-

tions.

3.2 Representation of CAD Knowledge

In order to explain a command as complex as CREATE in CADHELP,
the Explanation Mechanism must haeve knowledge of the execution ot the
command as an expert uter of the system sees it, This viewpoint (ac

npposed to the expert knowledge the ceveloper of the :ystenm rus) will

-5he

yield the best explanations. The knowledge an expert user has about a
gystem sSuch as CADHELP is best represented in terms of the give and
take between the user.and the system. Several theories exist for
structuring knowledge. Artificial Intelligence programs with large
databases containing both declarative and procedural knowledge have
found the production sy stem approach useful [Shor76)], Production sys-
tems consist of sets of rules represented as test-action pairs, The
test part of a rule stands for conditions (the declarative knowledge)
which, if satisfied, will perform some action (the procedural
knowledge). Since the knowledge CADHELP's Explanation lechanism used
was to be more declarative than procedural, a representation that

reflected the static aspects of knowledge was desired.

For the reasons outlined in Chapter 2, the set of concepts
comprising the CAD expertise were to be represented using Conceptual
Dependency format., However, these concepts needed to be causally con-
nected to exhibit the stereotypical behavior of a user of the system.
One theory for structuring complex, Stereotyped knowledge 1is the
frome-sy stem proposed by Minsky [Mins75). Charniak [Char77] used the
notion of frames 1in implementing a language comprehension system
called Ms, Malaprop. Ms. Malaprop specialized in understanding ctories
about mundane painting tasks. Charniak uses the frame representation
to liut poals that can be achieved bty realizing subgoals, but is not
explicit about the actions involved in realizing the subgoals or the
causal connection between events in & frame, hoth of which are reces-

sary for the level of detail to be representea here,

_56..

A similar knowledge structuring technique was used by Cullingford
[Cull81a] 4in his SAM story comprehension system. Cullingford's SAM
understands stories about stereotyped events using a knowledge
representation called scripts [Scha77]. A script is a causally con-
nected set of concepts (in CD format), which models the knowledge peo-
ple have of stereotyped situations, such as eating in a restaurant or
riding on the subway. While scripts have the advantage here since
they are based on CD format, the scripts that SAM used for understand-
ing were not fine-grained enough for representing the use of the com-

mands of CADHELP.

Detailed knowledge is represented best in the commonsense algo-
ritlms of Rieger [Rieg77]. The primitive concepts of Conceptual
Dependency, linked into a seript ty the links of the Common Sense
Algorithms, provide a static representation that is fine-grained
enough to permit a graphical animation system to use them, and not so
fire-grained that a language system is caught up in unrecessary

details,

Each command in CADHELP is represented as a separate feature
seript stored in LTM (Long Term lemory). A feature script is composed
of the CD representations of the physical and mnental actions and
ctates of the wuser and the system, causally linked together. The
links used are licted in Figure 3.2, Detailed discussion of the links
is deferred until the next nection, Figure 3.3 shows the primitive

actions and states used in the teaturc secrirts. In addition to those

srimitive .ctions listed, Gcome primitive embedded scripts were usea

OSE:
a state one shot enables an event; it must be present once for
the event to occur

0sC:

an event one shot causes some states; it need not continue to be
performed in order for the states to still exist

CcC:
one state is causally coupled to another; the two are causally
connected but the exact nature of the causality is not specified

INITIATE:
an event (usually a perception of some state in the world) ini-
tiates another event (ususally a mental event)

REASON:
a mental event is the reason for another (ususally physical)
event

IR:
this blurs the distinction between an REASON and an INITIATE
link, when this information is not useful

RUT:
repeat links until threshold (satisfaction condition) becomes
true

TRNPT:
indicates a turning point in the script, a set of mutually ex-
clusive paths which can be followed

SR:
performing the acts comprizing a script leads to some important
states

GRC:
the overall goal of the script (a state) is linked by this to the
action that caused it

ANTAG:

an antagoniczm between two states exists

Causal Links Used in Feature Scripts

Fisure 3.2

-58-
PTRANS:
the physical transfer of location of an actor or entity by an ac-
tor
MTRANS:

the communication of concepts between actors or the acquisition
of knowledge from a sensor

MBUILD:
construction of a decision out of pre-existing information, re-
trieved from memory or a sensor

PROPEL:
application of force to an object with another object

MKNOW :
the state of having some information in memory

S-CHANGE :
a change of some state of an actor or entity

S=~-EQUIV:
a equivalence between entities

P-CONFIG:
specifies the physical configuration between two entities

A-CCNFIG:
cpecifies an abstract configuration between two entities

Primitive Actions and States Used in Feature Scripts

Figure 3.3

FICST WSS WP RN

(see Figure 2,4)., These occurred in two cases. Firat, 1if several
feature scripts shared common actions and states (perhaps differing
only in the entities manipulatea), these coumon concepts coula be

represented once, and uced ty all fecature scripts. This nekes the

feature scripts more concise, and maxkes for easier development of rew

~

seripts, Tor wxample, owne common sequence i that of pressing the

I

-5Q9-

stylus on a coumand block on the tablet, and this is represented as
the $PRESS embedded script. Hence, ary feature script needing to
express this feature could refer to $PRESS. Since there are several
conmand blocks that could be pressed with the stylus, the $PRESS
script uses a script variable, &omdblk, to represent the command block
to be pressed, and ary feature script using it will instantiates
&cmdblk with the actual occurrence of a command block, for example
"ARK1. The notation ®MARK!1 is a convenient shorthand for the compli-
cated concept representing the MARK1 command block on the data tablet.

It is expanded when encountered in ary concept to its full form.

The embedded script representation is wusually used for those
actions performed bty the user, There is a similar embedded script
representation for those actions performed ty the system, These are
represented in the same wa@ as the user scripts, but are not expand-
able into a causal chain of actions and states, This shortening is
done for several reasons. Firstly, the view of the CAD features
nodeled in CADHELP is the expert user's view, and the expert wuser is
aware that the system performs complicated actions in the form of
code, but ic not aware of the exact details. The expert user is only
aware of the consequences of thoce actions, and this is represented
explicitly. Cecondly, the graphical animation expert using the
representation did not need to know the details either, if this cxpert
knew the desired result, it used i{ts own code to depict that result on
a graphics ccreen, A third point concerns whether or not tc¢ simply
m1ake these scripts primitive actions in the system, This was not done

secause of < with to emphasize the complex naturc orf the action, and

-60-

Non-expandable embedded scripts:

$prompt
the system executes this to cause a prompt to appear on the
screen

$clone

used to make a copy of a device or other graphic object

$draw

the system makes a line or device visible on the graphics display
with this script

$undraw

the system makes a line or device invisible on the graphics
display with this script

$makemap
the system forms a correspondence between two objects

$cadfeat

this script is used to refer to any other CADHELP feature,
without necessarily specifying whnich,

Expandable embedded scripts:

$press

used to inform the system of a user intention by the user press-
ing the stylus on a command block

$move
used to move a graphical object on the screen Lty moving the
stylus along the corresponding points in the drawing area.

$viewrhs
used to view the contents of the warehouse by moving the stylus
in the drawing arca

Embedded Scripts Uced in Feature Scripts

Figure 2.4

also to leave open the possibility that in an extension of the system,

these scripts may tecome expandatle.

‘ ~61-

CADHELP's LTM, then, contains a knowledge base of feature
scripts, one for each command CADHELP knows. In addition, CGEMN car

express the feature scripts in English, The resulting output would be

difficult to understand, because of all the unnecessary detail

present. The next section outlines the interface program between LTM

and CGEN which alleviates this problem.
3.3 Concept Selection

The rules that occur in CGEN are decision rules, they decide,
based on the semantic features of the concept being expressed, what
linguistic form to use to communicate the idea in the most economical
fashion, There are also other rules that are distinguished from
CGEN's in that they examine higher-level knowledge structures, the
feature scriots, to select concepts to be sent to CGEN., The knowledge
structure level decision process is implemented in CADHELP ty a module
called HELPCON, programmed in Franz LISP [Fode80]. An entire feature
script is input to HELPCON and it is responsible for traversing the
links of the feature script and selecting concepts for expression by
CGEN. The traversal of the script provides the main control for HELP-
COM, and at each link, HELPCON applies a particular rule which decides
whether or not to express the 1link and the concepts it connects,

There is one rule per link (see Figure 3.2) making HELPCON data-driven

and easily expandable.

HELPCOMNS rules use several types of information to decice whether
to express ua concept or not. Cne is the type of link. A rule that

fires because a certain link 18 present cuay do rothing nore Lthan

-

suppress expression of the 1link and the concepts that it connects.

For example, CC is a rule that looks at causal couplings of states.
In this domain, causal coupling can be inferred ty the user, e,g. if
the stylus is in a new location, the tip of the stylus, which is part
of the stylus, is in a new location also. This type of information is
domain-specific, In domains where the causal coupling of states may
be less transparent, the CC rule could be reformulated to explain the
coupling the first time it was encountered, then expect the user to be

able to infer it.

Other link types that merely suppress the link and its concepts
are THEN, IR, REASON, INITIATE. Since HELPCON is only concerned with
the overt physical actions of the user, ary mental acticns or states
are ignored 1in the explanation, Links connecting mental actions and
states, whether those actions were ty the system or the user, would be
important if CADHELP was programmed to attempt to describe in detail
user mistakes, or teach the user how to design, or even to debug
feature scripts, For example, something like:

I thought that the prompt would cause (initiate) you to decide to

delete a particular device and that would be the reason you would
rove the stylus,
could be generated to explain why the system had waited for the stylus
to bLe moved, when the user wasn't expecting to have to move it., Like
the rules tor mental links, the THEN rule also osuppresses expression
of *he THEN 1link und the concepts it connects, csince it does not

really have enouyn information to decice it a conecept zhoulc be caid

wr rot,

e A Ao S 8 o

e ooy e

e LA

Two rules corresponding to links uced in the CADHELP feature
serifts are responsible for selecting important user actions and for
focusing upon important states. These are OSE and 0SC, respectively.
Trhe OSC rule operates upon one-shot-causal relationships, where an
action causes a state., The action may be performed by the system or
the wuser, and 1f it is performed by the system it and the resulting
state are ignored. If the action is performed by the user, and it is
an overt physical action (i.e. not a mental event) then 0SC decides
that this is something the user should be told. The state one-shot-
caused ty the action is not expressed, since the user is assumed to be
able to infer the consequences of his actions., In a nore complicated
HELP situation, an explainer may want to tell the user the conse-

quences of his actions, especially if they are in error.

The OSE link nainly serves to call attention to states the system
expects the user will notice, In CADHELP, these are events like
prcnpts appearing, objects blinking or devices appearing on the graph-
ies display. Since the seript describes the expected behavior of the
user, these important ctates are rcpresentea as the object of user
MTRANSs (mental ‘trancfers), Basically, OSE will select a state to be
expreszed 1f it sees that the ostate one-shot-cnables the wuser to
mtrans that ctate, HELPCON celects the state, rather than the user
mtrang ot the state, to aveoid constructs like:

fou will zee o prompt appear on the screen,
ine representation of these MTRANSs explicitly is user'ul in pinpoint-
ing rmportant covents to be aninatea y the animator, and could trove

wseful ir expluining how to detect potentizl errors, or example:

-6 4

If you do not see the prompt appear,
press the button or turn up the
intersity ot the graphics device,

Another set of rules HELPCON uses aid in the traversal of the
feature script. TRNPT is one of these. Feature scripts are organized
temporally, but are not necessarily linear. At certain points in a
script, there ‘may be mutually exclusive paths that can be followed.
For example, in CADHELP, the user can lengthen a connection or shorten
a connection during the CONNECT command, but not both simultaneously.
TRNPT is responsible for assuring that, when one of these turning
points is reached, each path is traversed in turn. The user is
assumed to know about the exclusiveness of the different paths, and no

introduction like: "Do one of the following™ is used.

An important property of parts of a feature script is that they
can be repeated any number of times until come termination condition
is reached, called RUT. for Repeat Until Threshold. This is useful
for expressirg sepments of a script that are pertformed bty the user in
an incrementzl fashion until some desired state of the design is
reached, For example, drawing a connection between two devices can be
thought of as the procecs of drawing connected horizontal and vertical
cegments until the connection is complete. RUTs may be embedded, fto
example, cach cegment is the sum of many movements in a straight line.
A RUT 1is defired bty a satisfaction condition, which expresses the
ctate that will cause the RUT to terminate, as well as & set of
rausally linked cstateu and acticne that .re to be rcreated. PUT: are

nanclea by expressing the catisraction conaition -mbedded in the

-65+

construct: "Repeat the following until...", then subjecting the

actions and states to be repeated to the HELPCON process.

Another property of feature scripts is that they can share large
portions of standardized actions, e.g. moving a device using the
stylus, using embedded scripts. The rule SR is responsible for decid-
ing what to do with these scripts, The feature scripts used ty
CADHELP are represented so that the actual expansion of the embedded
script 1is not inserted when it is called, but a pointer to an instan-
tiated version is established. 1In the main path of the outer feature
seript is inserted a reference to the script, along with values for
some script variables. This reference is causally linked to one or
more states via SR, scriptal result., These states are the important
conditions that are true in the world after the embedded script is

executed.

The first time a reference to a script appears, HELPCONs SR rule

expands it, i.e. it places all the actions and states making up that

seript into the mainstream of processing, where they are traversed.
However, SR 1is =sensitive to the number of times it has expanded an
embedded script, so when it reaches subsequent references, it will say
the intent of the script, then the main concept of the seript. The
intent of the seript is goal concept, or the reason it is used, for
example, one uses the $PRESS script to inform the system of some event
in the design process. The main concept of the script is the (usu-
ally) cingle oction that summarizes what the user is to do, in the

CADHELP domain, it ic usually “ummarized best Ly one verbt ancd ore

-66-

instrument, e.g "Press the stylus on the tablet", or: "ove the device
with the stylus." Like SR, several of HELPCONs other rules are sensi-
tive to previous explanations, namely OSE, 0SC and RUT. The succes-
sively simpler explanations this process produces can be found in sec-

tion 2.1.

HELPCONs rules use several kinds of information. Some use gen-
eral knowledge of the users ability to make inferences and to remember
what he has been told. Knowledge of the types of links that can cone
nect concepts as well as the nature of the concepts in the script, is
also used., In addition, keeping track of what has been said ir a
explanation aids in making subsequent explanations brief and to the
point. Interesting extensions to this system are also possible, for
no information relevant to describing the execution of a graphical
feature has been thrown away in the feature script representation. To
clarify this process, a sma2ll segment of a feature script going

through HELPCON's pruning is shown in the next section,
3.4 A Detailed Example

The seript to be examined ty HELPCON is the embedded seript,

tmove, This script is called from a main script by the following two

concepts, linked by an S5R:

-67-

($move actor *user ~ the call to the move script,
drag=-obj #cursor ~ where the object to be
obj #stylus ~ moved 1s the cursor.
to &new=dev=-srloc ~ it is to be moved until it
loc¢ &nevwcurs-srloc ~ overlaps the device the user

sat-cond (p~-config cont #*cursor =~ has chosen to create.
con2 &desr-cre~dev
confrel (overlaps)
mode (nil)
time (nil)))

m—ae SR —ee=
(p-config coni #cursor ~ the important result after
con2 &desr-cr-dev ~ doing the script

confrel(overlaps) mode(nil))

The script variables for $move are listed below. The call as shown
above will instantiate these with the appropriate fillers. Notice
that the stylus is not a script variable, since moving the stylus {is

the only way a graphical object can be moved in the CAD Tool.

Variables

(1) @8drag-obj: the object that is to be moved, in this case, the
curaor.

(2) 6sat-cond: the satisfaction condition for the repeat until
threshold

(3) €loc: the location that is going to be changing, 1in this
case, the location of the cursor.

(4) 6Atoloc: the location to which the moved object is going, used
to decide if the RUT i3 tiniched,

The main concept and the intent of the script are also accessible
to 4R, 1n case it chooses a less verbose expression for the script.
In this example, the script Smove will be expanded, but the intent and

maln concept for tmove are shown below in their uninstantizted form,

-6 8-

The main concept for $move: "Move some object with the stylus"®

(ptrans actor *user

obj @drag-obj

to (nil) from (nil)

via (nil) mode (nil) time (nil)

inst (ptrans actor #%user
obj #stylus
to (nil) from (nil)
via (nil) inst (nil)
mode (nil) time (nil)))

The intent concept for $move: "To move some object, use the stylus

{(cause precon (s-goal actor *user
mode (nil) time (nil)
goal (ptrans actor %®user
obj @drag-obtj
to (nil) from (nil)
mode (nil) inst (nil)
focus (actor) via (nil)
time (nil)))
postcon (ptrans actor %*user
obj #stylus
to (nil) from (nil) mode(nil)
inst (nil) focus (actor) via (nil)
time (nil)))

What follows is the actual expansion of $move, assuming it was
called as above. The script is instantiated (by substituting in for
ecach of the script variables) and each link will cauce the appropriate
rule in HELPCON to fire., The numbered comments indicate what is hap-
pening to the immediately preceding and following concepts at cach
step. In addition, an English version of #ach Concegtual Dependency

representation precedes each concept and is indicated bty a tilde, "™".

(1)

(2)

(3)

-69~

The user maps the location of the device (which is where he
wants to move the cursor to) to a location called &endpnt,
which is the cesired ending point,
($makemap actor #user
conl &new-dev-srloc con2 &endpnt
maprel(corresp))

ee== SR —ea=

The SR rule disregards both of these, since they are per-
formed bty the system. This level of detail is needed so the
graphical animator can mimic what the user is doing.

The result of the mapping is an abstract configuration, i.e.,
the user knows that the &new-dev-srloc is the desired ending
location of the cursor.

(a-config conl &new-dev-srloc con2 &endpnt
confrel(corresp))

—=== OSE ===-
The OSE rule ignores ary user mental action.

This enables the user to decides where he is going to mnove
the stylus.
(mbuild actor %®user mobj &dltaloc)

~=== REASON --=-

The REASCN rule ignores the mbuild and the mknow, but the an-

imator has now presumably picked out a destination point and
knows it.

The decision above it the reason he knows where the stylus is
going to be moved,
(mknow actor #user nc¢bj &dltaloc)

]

=7 0=

-~== RUT =---

(4) This link begins the RUT. The RUT rule expresses the satise
faction conaition of the RUT, prefaced by the introduction
("Do the following until the cursor is over the device you
want to add to the design.")

- This is the beginning of the RUT., It points to all the fol~
lowing concepts, which are embedded in the RUT.
(rut sat-cond (p-config conil ¥cursor
con2 &desr-cr-dev
confrel(overleaps) mode(nil))

----- INITIATE ----

(5) This rule allows HELPCON to ignore mental events that ini-
tiate user actions,

= The fact that the user knows where to move the stylus ini-
tiates him to move the stylus. This is also the beginning of
the RUT.

(ptrans actor %user obj #*stylus
to é&dltaloc from é&sty-daloc
via (nil) inst (nil) mode (nil) time (nil))

——=e 0SC ===

(6) The 0SC rule notices that the user has performed some physi-
cal action resulting in some state, so it causes the action
to be expressed (™ove the stylus to a new location®) but ig-
nores the state resulting from the action.

- The movement of the stylus has caused the 1location of the
stylus to change,
(s-change actor %stylus
node (nil) time (nil)
attr (loc val &newsty-daloc dir (to)))

(1)

(8)

(9)

-71-

ew=e CSE --==

The OSE rule sees that the state is enabling a system action,
not a user one, 50 it deems the state ana the action unimpor-
tant, and neither is expressed,

The change enables the sy stem to notice the change in loca-
tion of the stylus,
(ntrans actor fsys
nobj (s=change actor #stylus
mode (nil) time (nil)
attr (loc val &newsty-~daloc dir (to)))
from (nil) to (%cp* part fsys)
mode (nil) time (nil) inst (nil))

-—== INITIATE ----

The INITIATE rule ignores both the system perception and the
mental action it initiated.

The perception event on the part of the system initiates it
to realize that the user has the goal of moving the cursor.
(mbuild actor #sys mode (nil) time (nil)
mobj (s-goal actor ®user mode (nil) time (nil)
goal ($draw actor *sys obj #cursor
loc &newcurs-srloc
mode (nil) time (nil)))

~==« REASQN ===-
The REASGN rule ignores the system's reason and actions.

The sy stem's realization is the reason that the system at-
tempts to form a correspondence between the location of the
stylus on the tablet, and a location for the cursor on the
sereen
(¢makemap actor *sys

conl &sty-daloc con2 &newcurs~srloc

maprel (corresp)

node (nil) time (nil))

© A AL

ceem SPB acea

(1¢) The SR ignores the result of the embedded non-expandable

(11)

(12)

script.

The result of the makemap script is an abstract configuration
between the location of the stylus on the tablet and a point
on the graphics display.
(a-config coni &sty=-daloc con2 é&newcurs-srloc
confrel (corresp)
mode (nil) time (nil))

—=== CSE =ce-
OSE will ignore ary system actions.

Knowing the point on the graphics display enables the system
to draw the cursor at that point.
($draw actor ?#*sys obj Fcursor
loc &newcurs-srloc mode (nil) time (nil))

emee SR ===

The result of the execution of the &draw script 1is unimpor-
tant, from the point of view of SR.

The result of the redrawing is a new location for the cursor.
(s=change actor #*cursor
attr (loc val &newcurs-srloc dir (to))
rnode (nil) time (nil))

-ee= QOSE ===

(13) Since the state occurrirg is explicilty see by the user, it

is deemed important, and the state is selected Ly OSE for ex-
pression ("The cursor moves to a new location"), The actual
perception of the event by the user is igrored.

The change in location of the cursor enables the user to
detect the change.
(mtrans actor #user
mobj (s-change actor *®cursor
attr (loc val &newcurs-srloc dir (to))
mode (nil) time (nil))
to (%cp* part tuser) from (nil) inst (nil)
mode (nil) time (nil))

~=== INITIATE / REASON ~---

(14) INITIATE/REASON ignores user mental actions/states.

The user perception presumably led to an mbuild which then
led to this mknow, but the initiate/reason link has allowed
us to skip all that, Here the user either 1) knows that the
cursor and the device he has decided to create overlap (since
their locations overlap) and the $move seript ends, or the
two do not overlap, so the satisfaction condition is not met,
and the RUT begins again.
(mknow actor #*user
nobj (p-config coni1 *cursor

con2 &desr-cr-dev

confrel (overlaps)

mode (nil) time (nil)))

r — Ty

CHAPTER 4

Explarations in Academic Counseling

4.1 Introduction

The experience with CADHELP, as well as an examination of an

actual explanation of the Computer Science curriculum at The Univer-
sity of Connecticut, suggested several improvements which a next-
generation explainer should incorporate. Several of these improve-
ments have to do with shortcomings that are a consequence of the
domain used. CADHELP's explanations describe to an actor how to act
to effect a computer-aided design. The user is assumed to have one
goal, to change the state of the design. In domains where the actor
is dealing with the social world also, the goals are more complex, one
goal may lead to a serics of subgoals, and plans for realizing those
goals must be cxplaired. These goal episodes can be used, however, to
drive the explanation process, much as they are used to aid in under-

standing [Vile81].

A feature that wasn't critical for the domair in CADHELPF, but is
essential for brevity in more complicated domains is the use of exam=
ples, In the explanation studied the explainer would frequently
invent a person with some tet of characteristics in order to focus on
4 critical combiration of traits, and then refer to thiz hypothetical
person during the tollowing sentences. An explainer utilizing such a

teature woula reeu to know when an e¢xample choulu be used, .nd how to

-7TlLa

I - |

~75=

create an entity which focuses on the desired characteristics.

There is an aspect of explanations that the CAD domain simply dia
not allow us to investigate, the previewing and reviewing summariza-
tion process. Previews and reviews are used to provide a framework
for the 1listener for what is to follow and to capture the important
points of the previcus discussion, respectively. CADHELP does imple-
ment a primitive fom of previewing, when iéxexplains the object or
goal of the feature being expleined first, However, a goal-oriented
explanation utilizes these summarizations frequently. 1In the sample
explanation the explainer previewed five paragraphs of information ty
saying: "You have to learn some programming," and reviewed at the end
by stating: "So, at the end of this, you will have learned your intro-
ductory programming.” This explanation technique arises naturally in
an explanation that is goal dri-cn, since the preview and review
statements can be thought of as summaries of goals that are either

about to be explaired, or have just been explained.

CADHELP's model of explanations allows the user no chance to
interrupt the explanation and ask questions in a mixed-initiative
fashion (as in [Clan79], [Coll175]). This may become a problem since
CADHELP's assumes that the user remembers everything he is told, and
so hecomes more and more laconic as the explanations continue. This
feature ngy te essential to allow a system to deal with very naive
users, !loreover, in addition to assisting the user, recording and exa-
mininy the questions asked provides a good measure of the clarity of

the explanations produced,

~___

-76=

The phenomena described above must be incorporated into any prec-
cess that attempts to perform complicated explanations. In orager to
provide the user with a framework of cohesive text, reviewing, and
reviewing must be performed., In addition to these, the explainer can
economically focus on an object's desired characteristics using exam-
Dles. Finally, if the explanation is to be flexible enough for a
computer-naive user, the process must allow interruptions. These

features are part of a model of the explanation process designed for

use in the system described below,

4,2 Qverviewy of the Academic Counselor

A system is being developed called ACE (Academic Counseling
Experiment) for research in conversational interaction and knowledge

acquisition [Cull82). ACE models an academic counselor who performs

various tasks for a student such as conducting a preregistration or
answering questions about courses. Part of the design of ACE was
motivated by previous work in conversational systems. The GUS system
of Bobrow et, al., [Bobr77], performs a constrained conversational
task, which ic mixed-initiative but attempts to retain control of the

conversation, In GUS, the focus of control is on an zttempt to fill

out a trame for a user making an airplane trip., In a similar fashion,
3 the conversational cy stem for ACE focuses on filling out a next semes-
ter course cchecule for a Gtudent, tut 1t3 desifn is more rabust,

(3]

.Rey it 2llows the ucer to ask questions during the conversation.

~CE was cecsirned to te an evolvirny system, and cone that woulce e

“orkea on 7 .overcal [ersons, 1t consists of rousnly A experts 2.

. |

=TT~

shown in Figure 4.,1. The module labeled KBAM (Knowledge Base Acquisiw
tion Mechanism) is responsible ror the learning part of ACE. Expert
users explain facts about courses and scheduling to KBAM, which
updates and mnodifies the knowledge in AIB (academic database). The
AlB contalns facts about particular students, the curriculum, and

rules for distributing courses over four years of study, and contains

a deductive ret-iever modeled after [Char80].

The part of the system responsible for conducting a preregistra-
tion for a student is labeled STRAT, for strategist. The strategist
interacts with the user through the NLP module, which contains APE (4
Parsing Expert) ([Cull80], and CGEN, the conceptual generator. STRAT
contains the conversational control for the task of filling out a
next-semester schedule for a student. It asks the student questions

(e.g. "Who are you?", ™/hat courses are you taking?") and the answers,

[TSI ¥ |y —— '
: - i
1] []
] i]
J]]
t 1]
! TACTmmmmD |
g | H
v v v
ADBC===>QAer—m= SNLP
[]]
I}]
! KB AN wm e g

Organization of the Academic Counselor

Fipure 4.1

-78-

as parsed by APE, are filtered through the TACT (tactician) module,
The tactician is responsible for seeing that the information requested

by STRAT is in fact present in either the student's answer, or the

past history of the interaction. Designing this tactician as a
separate module was motivated by the observation that people normally

give too little or too much information in response to questions,

TACT may also discover that the user, rather than answering a
question, has asked one of his own, Questions from the student are
passed directly to the module Q/A. Q/A queries the AIB for answers to
the student's questions, and gives the response through the NLP inter-
face. Q/A is designed to answer simple slot-filler type questions
atout such things as who is teaching a course and prerequisite infor-
mation. After the Q/A module answers the user's question, however,
STRAT regains controul and attempts to elicit more information from the
student., When STRAT has sufficient information about who the student
is and what courses he has taken in the past (or is currently taking),
it requests that the AIB use it's knowledge of course requirements and
scheduling to propose the next semester schedule., This ends the

preregistration cycle,

4.3 The Explainer for ACE

Ynlike the &7 module controlling the preregictration task, the
Explainer is not aitempting to obtain information, but is attempting
to give information., For this rcason, the control for the explairer
should be more rlexible. The model for the explainer for ACE produces

axplenations hty descriting a set or ;0ale, .nd rules fi'er ichieving

«7 Q=

those goals. Some of the rules the explainer uses can be shared
between it and STRAT. This explainer differs from other rule-based
system explairers (e.g. [Shor7€]) in that it does not explain those

rules that have fired, but explains those rules that could fire. For

this reason, it can be operated independently of the actual system.
Indeed, ore could imagine hooking up this explainer to any rule-tased
system and then asking it: ™What do you know?" This 1is similar to
Swartout's approach in explaining rules that could potentially fire to

describe a system [Swar77].

The Explainer for ACE fits into the system as shown in Figure
4.2, It functions in ACE like the modules STRAT and TACT, i.e. as a
controller, The Explainer irnterfaces directly with the user via the
NLP module, Questions asked by the wuser that cannot be directly
answered ty the Explainer on the basis of previous context are sent to
the Q/A nodule. The AIB is used by the Explziner to provide the

specifics of the explanation of a rarticular curriculum.

s

Crganization ot the Academic Counselor with Explciner

Figurc 4.2

-80~

The Explainer generates a serles of goals represented in CD form,
Goals can be realized by subgoaling, Rules for subgoaling exists as
rules for goal realizations, The top-level goal is: "™Explain how to
get a bachelor's degree in EECS at UConn." This goal is broken into a
series of subgoals, which, performed sequentially, realize the top~

level goal.

As an example of this, suppose that the system has the goal of
explaining the group distribution requirements, A rule for realizing
this goal will cause the system to have goals for:

1) Explaining the Group 1 requirement
2) Explaining the Group 2 requirement
3) Explaining the Group 3 requirement
These three explanations can then be done directly. This will produce

a sequence like the following.

You have to fulfill =ome distribution requirements.
There are three distribution groups,
Group one ic the technical course group.
You need 18 credits from these.
Group two ic the Social Science group.
You need 9 credits from these,
Group three is the Fine Arts group.
You need 9 credits from these,
Those are the group distribution requirements,

Note that bLefore realizing the goal of telling the user about the dis-
tritution requircments, the cystem previeys the topic to come ty ctat-

ing the object ot the the goal, The :ystem remembers what goals it is

tryirg to realize, snd at the end of the sub-explanation, peviews 1ts

roals.

-81~

The explainer generates examples when the situation requires
reference to a person meeting some special requirements, Otherwise,
the user is addressed directly, as in the example above, Since the

domain of ACE does not have mary dissimilar entities (in fact, there

are only a few) and courses and teachers are pretty much statie, most
example generation is done on students, A student progressing through
four years of college is the focus, and the examples needed are stu-
dents at given times in this four years, perhaps with other special
requirements. The initial idea used in the explainer for ACE 1s to
have a module that tracks all known entities and produces a known

entity or makes one up as requested,

The most difficult portion to model is allowing interruptions ty
the user. This is partly due to the fact that little is known about
the kinds of queations a student using ACE ma ask. However, there
are two general types that could occur., Ore is the fill-in-the-slot

ty pe question which can be identified by the question focus (usually

what type questions). Questions of this form can be handled in the
[same manner as TACT handled them, ty passing them off to the Q/A
b
: module. Another other type of questions are the why questions, which
j

ask the explainer wly it said (or omitted) certain information, Ques-

tions asking about thinps that have becen said can be answered y trac-
ing up the goal :stack, and dJetermining what caused certain rules to
fire. Jome why questions, however, ask about matericl the explainer
has yet to deseribe, The uverheaa involved in tracing out possible
;athé in the large number of goals and rules ACE has Is high and tfcr

now, these are test 1;/noreq.

- — |

r—

~82-

This chapter concludes with a sample explanation this new model
explainer could produce, The processes of previewing, reviewing,
question answering and example generation are outlined in enough

detail to demonstrate that the model is feasible tu implerent,

4.4 A Detailed Example

Below is an explanation fragment describing a typical technical

course schedule for a freshman/sophomore.

Explainer:

(1) This schedule is a lower division schedule for technical
courses.

(2) A first semester freshman will take Computer Science 110,
Math 133 and Chemistry 127.

(3) A second semester student will take Computer Science 111,
Math 134 and Chemistry 128.

Student :

(4) Why can't I take a Physics course the first semester?

Explainer:
(5) To take Physica 151 you must know Differential Equations,
(6) Differential FEquations are taught in Math 200.

(7) Math 123 and Math 134 are prerequisite for Math 200.

This example illustrates the uce of previewing, and response gen-
eration for questions, The preview on line | descrites the intent of
the explanation and is pertormea since a poal track is teginning. The

student's questicn is answered by gescribing the rules the scneauler

-83-

used to determine the correct schedule., Lines § through 7 describe
the prerequisite information contained in the curriculum structure

which contributed to the choice,

A fairly detailed explanation of the process by which the above
fragment may be produced is in order., VWhile this has not been imple~
mented, the following should give some ideé of how such an implementa~
tion should proceed. The Explainer is currently attempting to fulfill
the goal of explaining the EECS curriculum to a new undergraduate,
One of the subgoals for fulfilling this is to explain the lower divie
sion (freshman and sophmore years) courses. The rule for this expla-
nation will lead to two new goals, to explain the nontechnical and
technical courses, Thus, at some point, a rule fires that looks 1like
the following:

(1
(explain-courses type (technical) sem (lcwer))
This will match against the following rule, with the variables indi-
cated by '&°'.
(2)
(to conl (explain-courses type &type sem &sen)
con2 (and coni (explain-content
course-ty pe &ty pe
semester &sem)
con2 (explain~schedule

courcc=-ty pe &ty pe
semester &sem)))

Rule two .tates that in order to eyplairn ary set of courses, you
r.ust rultill -he fgoals of explazining their content ana when they frit

into the scuedule, If we acsume that tne explanation ot their noutent

~Bl—

has occurred, we arrive at the point where the fragment under study
begins. First, the Explainer must perform a preview of what it 1is
going to do next, since it has just finished the somewhat unrelated
task of telling what information each course teaches, and is starting
the next part of 2, 3o, sentence 1 is generated from the CD represen-

tation shown in 3.

(3)

"This schedule is a lower division schedule for technical courses,"™

(a-config

confrel (equiv)
con1 (infostruc ity pe (schedule)
course-ty pe (technical)
semester (lower)
coursel (nil)
course? (nil)
course3l (nil)
coursel (nil)
ref (imm))
con? (infostruc itype (schedule)

course-ty pe (technical)
semester (lower)
course! (nil)
course? (nil)
coursel (nil)
cowsed (nil)
ref (indef)))

The Explainer then proceeds to explain a proposed schedule for the

courses. The rule that tells it how to do this 1s as follows.

-85-

(%)
(to conl {explain-schedule course-type &ty pe
senester 4sem)
con2 (and (replace
stro (gen-student
semester-standing (1) ,
background (nil))) ’ i

(replace
stro0 (explain (propose-sched
course~ty pe &ty pe
student stro0)))
(replace
str1 (gen-student
semester-standing (2)
background stro0))
(replace
stro1 (explain (propose-sched
course-ty pe &ty pe
student stri1)))
(replace
str2 (gen-student
semester-standing (3)
background str01))
(replace
stro2 (explain (propose-sched
course-ty pe &ty pe
student str2)))
(replace
str3 (gen-student
semester-standing (&)
background stro2))
(replace
str03 (explain (propose-sched
course-ty pe &ty pe
student str3)))))

In order to propose the scheaule for a student at ary given time, the
scheduler is called, via 'propcse-sched'. The only information the
scheduler needs is the student's background and semester standing. A
typical first, cecond, etc, semester student is generated by the call
to 'gen-student', and iz given more background each time, This is
done so that successive applications of the rule 'propose-sched' gen-
erate a scheaule for a new student, The results of the vuropose-cched

(which recomes a call to the scheduling expert, ADB) :re then shippea

e

-836 -

to explain, which calls CGEMN with the concept shown in 5,

(s)
"A first semester freshman will take Computer Science 110, Math 133
and Chemistry 127."%
(simul coni ($course actor (person persname (nil)
surnane (nil)
ref (indef) convrole (nil)
eprole (&fresh))
student &fresh
teacher (nil)
obj {infostruc
ity pe (acad-ks)
ecno (110)
dept (org orgname (CS)
orgty pe (acad-dept)
orgocc (S8course)))
mode (modes modet (:t))
time (times timel (:futr)))
con2 ($course actor &fresh
student &fresh
teacher (nil)
obj (infostruc
itype (acad-ks) cno (133)
dept (org orgname (Math)
orgtype (acad-dept)
orgocce ($course)))
mode (modes model (:t))
time (times time1l (:futr)))
zcon3 ($course actor &fresh
student &fresh
teacher (nil)
obj (infostruc
itype (acad-ks) cno (127)
dept (org orgname (Chem)
orgty pe (acad-dept)
orgoce ($course)))
riode (modes model (:t))
time (times timel (:futr)))
compnum (3))

The concept chown in five represents the simultaneous occurrence
of three instances of the execution of the 3Scourse script. Each of the
instances of “course has an actor, ctudent and teacner. If the acter

ind the .tudent are the sume, the jenerator uses take, otherwise if

the actor and ‘'~ teacher are the same it uses teach. The result of
this generation is senterce 2. The concent &fresh is used as a short-
hand in the representation, it should be thought of as being replaced
with the first actor (i.e, &fresh really means (person persnanme ...)

Sentence 3 is generated from a similar representation, shown in 6.

(6)
"A second semester student will take Computer Science 111,
Math 134 and Cheristry 128."
(simul coni ($course actor (person persname (nil)
surname (nil)
ref (def) convrcle (nil)
eprole (&soph))
student é&soph
teacher (nil)
obj (infostruc
ity pe (acad-ks) cno (111)
dept (org orgname (CS)
orgty pe (acad-dept)
orgoce ($course)))
mode (modes model (:t))
tinme (times timet (:futr)))
con2 ($course actor &soph
student &soph
teacher (nil)
obj (infostruc
itype (acad-ks) cno (134)
dept (org orgname (Math)
orpty pe (acad-dept)
orroce (3course)))
mode (modes model (:t))
time (times timel (:futr)))
con? (4course actor &soph
student &soph
teacher (nil)
obj (infostruc
itype (acad-ks) cno (128)
dept (org orrname (Chenm)
orpty pe (acad-dept)
orpocae ($course)))
mode (modes model (:t})
time (tiges tirel (:futr)))
compnum (2))

ntter lentence @ Hus been generatedg, the lictener irterrupts with 1

-88~

question, The question is parsed by APE, and results in the concept

shown in 7.

n
"Why car't I take a Physics course the first semester?©
(cause precon (:q)
postcon ($course
actor (person persname (nil)
surname (nil)
ref (def)
convrole (*other)
eprole (nil))
student (person persname (nil)
surname (nil)
ref (def)
convrole (*other)
eprole (nil))
teacher (nil)
obj (infostruc
itype (acad-ks) cno (nil)
dept (org orgname (Physics)
orgty pe (acad-dept)
orgoce ($course)))
ref (indef)))
rode (modes model (:neg) mode2 (:pntnt))
time (times time1 (:pres))
abstime (cur durtype (sem)
val (1))))

Because the question refers to the antecedent of a cause, the
Explainer mnmust find a case where such a cause exicts., This is in the
rule3 used by the AIB. The Explcinrer first cxamines the rules used by
the AIB to propose the schedule ror the tirst and second semesters, to
see if a Physics course was proposed and eliminated for a reason which
could be explained, It happens that Physics 151 was a2 cancidate, but
was thrown cut y the curriculum xnowledge. This refers to the fact
that wince Plycics 151 teaches Jntroductory Ply sics, kncewledge of Dir-

ferential fguvations ic necessary vetore taidng 1t. The i‘xploirer then

examines the AIB curriculum knowledge to see where Differential Equa-
tions are taught. This turns out to be Math 200, Since the question
is answered, the Explainer could stop, but it checks to see if it's
mentioning ary thing new, Physics 151 is new, but is ruled out since
the student had mentioned it in the question., Math 200 is new, so the
Explainer checks its prerequisites, and tells the student what they
are, So, this first reason becomes the three concepts shown in 8

through 10.

(8)
"To take Physics 151 you must know Differential Equations."
(cause precon
(s-goal actor %other
mode (modes model (:t))
time (times timel (:pres))
goal (&%course actor ®sther
stud - #other
teac...r (nil)
obj (infostruc
ity pe (acad-ks)
cno (151)
dept (org orgname (Physics)
orgty pe (acad-dept)
orgocc (3$course))
ref (def))
mode (modes model (:t))
time (times time1l (:pres))))
postcon (mknow actor *other
mobj {infostruc
ity pe (acad-ks)
subj (ks type (Math)
value (DiffEq))
cno (nil)
dept (org orgname (Math)
orgty pe (acad-dept)
orpoce (&Scourse))
ret (def))
time (times timel (:pres))
mode (rodes model (:t) moce?2 (:oblig))))

pumarac smanndtrs, orrmadicid

-90-

(8)

"Differential Equations are taught in Math 200."
(cause

precon (s-goal
actor %“other
mode (modes model (:t)) time (times timel (:pres))
goal ($course
actor PTother
student #*other
teacher (nil)
cbj {infostruc
itype (eacad-ks) cno (200)
dept (org orgname (Math)
orgty pe (acad-dept)
orgoce (3$course))
ref (def))
mode (modes model (:tf))
time (times timel (:pres))))
postcon (mknow actor *®*other
mobj (infostruc itype (acad-ks)
subj (ks type (Math)
value (DiffEq))
cno (nil)
dept (org
orgname (Math)
orgty pe (acad-dept)
orgoce (Scourse))

ref (*ef))
time (times timetl (:pres))
mode (modes model {(:t) mode2 (:oblig))))

AD-A126 190 GENERATING NATURAL LANGUAGE EXPLANATIONS IN A 1/z
COMPUTER-AIDED DESIGN SYSTE..(U) CONNECTICUT UNIV
STORRS LAB FOR COMPUTER SCIENCE RESEARCH

UNCLASSIFIED M A BIENKOWSKI ET AL. JAN 83 TR-CS-83-1 F/G 9/2

| END |

oare |
FILMED.

a-83
oTic

10 Bk Kz
has £
o HE

L

2l ne

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS:1963-A

-91-

(9)
eMath 133 and Math 134 are prerequisite for Math 200."

{(a=config
confrel (prereq)
con{ (simul
compnum (2)
conl ($course
actor (person persname (nil)
surname (nil)
ref (def) convrole (nil)
eprole (&student))
student &student
teacher (nil)
obj (infostruc itype (acad-ks) cno (133)
dept (org orgname (Math)
orgty pe (acad-dept)
orgoce ($course)))
mode (modes mode1 (:t))
time (times timet (:pres)))
con2 ($course
actor &student
student &student
teacher (nil)
obj (infostruc itype (acad-ks) cno (134)
dept (org orgname (Math)
orgty pe (acad-dept)
orgoec ($course)))
mode (modes model (:t))
time (times time1l (:pres))))
con2 ($course
actor &student
student é&student
teacher (nil)
obj (infostruc itype (acad-ks) cno (200)
dept (org orgname (Math)
orgty pe (zcad-dept)
orgoce ($course)))
niode (modes model (:t))
tine (times time1 (:pres))))
1

If the course had falled for scheduling reasons (e.g. both Chemistry
127 and Computer Science 110 are lab cources and ore can't take niore

than two lab courses per semester), the Explainer would have explaired

those reasons also,

CHAPTER 5

Conclusions

Language generation has been studied Ly mary researchers to
enhance the friendliness of computer systems., A useful way to study
relatively complicated generation tasks is through explanations of the
knowledge stored and used bty a given program. This knowledge may be
in any form, but the most flexible and natural-sounding text will be
produced if the program has some 1dea of the meaning of any piece of
the knowledge structure, In addition to the increased naturalness of
the text, the explanation may be produced in a different modality than

a language,

Explanations werer found to fall 1n£o three broad categories.
The simplest was explanation of a physical process, the next category
arose when the physical process yas acted upon bty an actor, The most
complex explanations were those explaining the interactions of actors
in zocial situations, This breakdowh was mainly due to the different
types of domains that could be explained. It was shown that the
information a computer program would need to know could be represented
in a wusable form. This one done with both a set of goals and rules,

and CD 3tructures connected with causal and enablement links,

The generation process was implemented in this work with two
basic wnodules, One is CGEN, a system which will generate an English

sentence from a CD representation of that sentence. CGEN wuses a CD

-92-

~-93-

structure to select a word, then expresses those concepts not covered
bty the word. The concepts not covered are placed relative to the word
chosen by syntatic predicates expressed using precedes and follows,
In addition to the basic gyecle of finding words, CGEN uses a set of
sketchification rules to modify the concepts being expressed to pro-
duce natural-sounding text. The sketchifiers represent domain
independent knowledge, and are added to CGEN as needed. The only
domain specific knowledge CGEM has is about words and their meanings.

New words are added to CGEN to enable it to handle new domains.

The other module is a concept selection mechanism (embodied 1in
HELPCON or ACE's explainer) which applies a set of rules to a
knowledge structure and generates the most economical means of
expressing it, The rules used here are more domain specific than
CGEN's, but for any expla.ineh, certain exblanation strategies can be
found, such as "If you mention a new word or phrase, describe it",
The knowledge these explainers examine is frequently used ty other
modules for other purposes, so they must be flexible, Making them

data=-driven 13 one way to accomplish this.

The first concept selector studied was designed to select con-
cepts from a feature script for expression by CGEN. This module,
called HELPCOMN, was part of the Explanation Mechanism of the
Computer-Aided design system, CADHELP. HELPCON selected concepts to
be used as prompts or as part of the text of an explanation, given

with graphical animation. Zach command CADHELP could execute was

reprecented as a reaturc script, & sequence of concepts represented in

-Qlje

Conceptual Dependency, connected by causal 1inks. HELPCON traversed a
given feature script, choosing concepts based on, 1) what the user was
assumed to know, 2) what the user had previously been told by HELPCON
and 3) what the user could be assumed to be able to infer from his
knowledge of the world and the causal mechanisms that operate in it.
This type of selection could occur because HELPCON represented the

meaning of a feature in the feature scripts.

The explanation process was further studied in the domain of an
Academic Counseling program., A sample explanation was studied, and a
module was designed which would fit in with the existing system, ACE,
and explain the undergraduate EECS curriculum at The University of
Connecticut, This module consisted of a set of goals, and means for
achieving those goals (through more goals or rules). Some of the more
common rules could be shared with the module conducting an interview
to perform preregistration, STRAT. The Explainer for ACE was an
improvement over HELPCON, since it performed previewing, reviewing,
generated examples, and allowed for scme interruptions. While this
Explainer was not implemented in ACE, an example with enough detail to

suggest an implementation was given.

This thesis investigated the important issue of,natural language
generation in two domains which were sufficiently -dissimilar to demon-
strate that 1) the conceptual generator, CGEN, was sufficiently gen-
nral to be used with both uystems, and 2) the process of concept
selection ic important enoupgh to be studied separate from the Cenera=

tion conponent., It may turn out that the two types of decisions ixaae

in each of these processes is of such a similar nature that they can

be conveniently implemented as one, but designing them separately

eases the task for the developer.

[Barr81}

[Birn81]

[Bobr77]

[Carb70]

{Chary: .

(Char8o]

{Ches76]

[C1anT9]

Bibliography

Barr, A. and Feigenbaum, F.A., Eds., The Handbook of Artifi-
cial JIntelljigence. Los Altos, CA: William Kaufman, Inc.,
1981.

Birnbaum, L. and Selfridge, M., "Conceptual Analysis of

Natural Language, " In Inside (Computer Understanding.
Schank, R., and Riesbeck, C.,, Eds., Hillsdale, NJ: Lawrence
Erlbaum, 198:.

Bobrow, D. et. al., "GUS - A Frame-Driven Dialog System."
Artificial Intelligence, Volume 8, 1977.

Carbonell, J. R., "AI in CAI: An Artificial 1Intelligence
Approach to Computer-Aided Instruction,® IEEE Transactions
on Man-Machine Systems, Volume MMS-11, 1970.

Charniak, E., "™Ms Malaprop, A Language Comprehension Pro-

gram," Prog, Sth International Joint Conference on Artifi-
cial Intelligence, Cambridge, MA, 1977.

Charniak, E., Riesbeck, C. and McDermott, D., Artificiaj

Intelligence Programming. Hillsdale, NJ: Erlbaum Press,
1980.

Chester, D., "Translating Mathematical Proofs into English,"
Artificial Intelligence, Volume 6, 1976.

Clancey, W, J., "™ialogue Management for Rule-Based Tutori-
als," ?roc. Sixth International Joint Conference on Artifi-
cial Intealligence, Tokoyo, 1979.

[Col175]

[Cull8o]

[Cull81a]

[CullB8ib]

[Cull8te)

[Cull82]

{DaveTl]

[Fenc82)

{FodeB0]

-97T-

Collins, A,, Warnock, E., H., and Passafiume, J. Jey
"Analysis and Y nthesis of Tutorial Dialogues," Psychology
of lLearning and Motivation, Volume 9, 1979.

Cullingford, R.EF,, and Pazzani, M,J., "ord meaning selec-
tion 1in multiprocess language processing programs®", EE&CS
Department TR-80-12A, The University of Connecticut, Storrs,
CT, 1980.

Cullingford, R. 1981. "Script Application." In Schank, R.,

and Riesbeck, C. (eds.), Inside Computer Undgerstanding.
Erlbaum, Hillsdale, NJ.

Cullingford, R. E., Krueger, M. W., Selfridge, M., and Bien-
kowski, M., A., "Towards Automating Explanations,” Proc. Tth
Irternational Joint Conference on Artificial Intelligence,
Vancouver, B.C, 1981.

Cullingford, R, E., Krueger, M, W., Selfridge, M., and Bien-
kowski, M. A., "Automated Explanations as a Component of a

CAD system, ™ IEEE Transactions on Systems, Man and Cybernet-
ilg¢s, Vvolume SMC-12, Number 2, 1982.

Cullingford, R.E., and the UConn Intelligent Systems Group,
"Purposive Conversation with ACE: An Academic Counseling
Experiment, " IEEE Proc. of the International Group Confer-~
ence on (ybernetics & Society, Secattle, WA, 1982.

Davey, A., Discourse Production, Edinburgh, UK: Edirburgh
University DPress, 1974,

Fenchel, R. 5., and Ectrin, G., "Self-Describing Systen

ucing Integral Help," IEEE Trapsactions on Systems, Man and
Cybernetics, Volume SMC-12, Number 2, 1982.

Foderato, J.; "The FRANZ LISP Manual.™ In Volume 2¢ of Dogu-~

pents tor the DPerkeley UNIX Time-Sharing System. Dept. of
EE&CS, Univ. of California, Berkeley, 1980.

(Gold75]

{Hay eT9]

[Jose83]

[Marc82]

[McDo811]

[McKe80]

[Meeh81]

[(HinaTs)

(lleim82]

Goldman, N., "Conceptual Generation," in Conceptual Infor-

patjon Processing, R. Schank, Ed. New York, NY: North Hol-
land, 1975.

Hayes, P. and Reddy, R., "Graceful Interaction in Man-

Machine Communication,™ Proc. 6th International .Joint
Conference on Artificial Intelligence, Tokyo, Japan, 1979.

Joseph, L., "A Heuristically Optimal Knowledge Base Organi-
zation Technique®, EE&CS Department TR-83-2, The University
of Connecticut, Storrs, CT, 1983.

Marcus, R. S., "User Assistance in Bibliographic Retrieval
Networks through a Computer Intermediary," JEEE Transactions

on Systems, Man and Cyberneties, Volume SMC-12, Number 2,
1982«

Mc¢Donald, D. D.. "Natural Languvage Generation as a Computa-
tional Problem: an Introduction,™ COINS Technical Report
81-33, University of Massachusetts at Amherst, Amherst, Ma,
1981.

McKeown, K. R., "Generating Relevant Explanations: Natural
Language Responses to Questions about Database Structures,"
Proceedings of the First Annual Hational (Conference on
Artificial Intelligence, AAAI-80, Stantford, CA, 1980.

Meehan, J,, "Tale-Spin," In Insjde (Computer Understanding.
Schank, R., and Riesbeck, C., Eds., Hillsdale, NJ: Lawrence
Erlbaum, 1981,

Minsky, M., "A Framework for Representing Knowledge, ™ in The

Poychology Computer JYVision. P. H. Winston, Ed. New
York, NY: McGraw-Hill, 1975.

lleiman, D., "Graphical Animation trom Knowledge," Proceed-

dngs of the lational Conference on Artificial Intelligence,
AAAI-82, Stantord, CA, 1982,

rsilaas . 2

i

ORI

i aviitn

(Norm75]

[Phel82)

[Reic?78)

[Rieg77]

[Scha75]

(Scha7T]

[Shap75]

{ShorTé6]

(Siom72]

{SwarT7]

{Unge82]

=QQ-

Norman, D.A. and Rumelhart, D.E., Explorations in Cognition.
San Francisco, CA: W.H. Freeman & Co., 1975.

Phelps, D., "Help Protocols in a Self-Explanatory CAD & s-
tenm, " EE&CS Department TR-82-10, The University of Connecti-

~ eut, Storrs, CT, 1982,

Réichman, R., "Conversational Coherengy," Cognitive Scjence,
Volume 2, Number 4, 1978.

Rieger, C. and Grinberg, M., "The Declarative Representation
and Procedural Simulation of Causality in Plysical Mechan-

isms, " Proc. Fifth International Joint Conference on Artifi-
Lial Intelligence, Cambridge, MA, 1977.

Schank, R. C., Ed., Conceptual Informatiop Processjng. New
York, NY: North Holland, 1975.

Schank, R. and Abelson, R., Scripts, Plans, Goals and Under~
Atanding, Hillsdale, NJ: Lawrence Erlbaum, 197T7.

Shapiro, S, C., "Generation as Parsing from a Network onto a

Linear String," American Journal of Computational Linguis-
Lics, Microfiche 33:45, 197S5.

Shortliffe, E.H., Computer-Based Medical Copnsultations:
MYCIN, New York: Elsevier/North Holland,

Simmons, R. and Slocum, J., "Generating English Discourse

from Semantic Networks,™ Communications of the ACM, Volume
15, Number 10, 1972.

Swartout, W., "A Digitalis Therapy Advisor with Explana-

tions." Proc. Ath International Joint Conference on Artifi-
oial Iatelligence, Cambricge, MA, 1977.

Unger, R., "Maintaining Context for Story Understanding,"

Unpublished Masters thesis, The University of Connecticut,
Storrs, CT, 1982.

{wile81]

(Wilk761]

{Wino72]

-100-

Wilensky, R., "PAM", In Inside Computer Understanding.
Schank, R., and Riesbeck, C., Eds., Hillsdale, NJ: Lawrence
Erlbaum, 1981.

Wilks, Y., "A Preferential, Pattern-Seeking, Semantics for

Natural Language Inference,” Artificial Intelligence, Volume
6, 1976.

Winograd, T., Understanding Natural Language. New York, NY:
Academic Press, 1972.

