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ABSTRACT

This report describes algorithms, performance, applications,

and user information associated with a code which solves a memory-

resident single banded symmetric matrix equation on the CRAY-I.

The code is available as part of a library of CAL-coded

equation-solvers l ...

PREFACE

The mathematical software described herein is the result of

experimental research on vector algorithms for the direct solution

of finite element grids arising in structural analysis. It re-

presents what is thought to be the best compromise between vector-

izability, sparsity exploitation, and user convenience for such

problems for the CRAY-I.

.. .. . ... '- •r •. . .'. , , .... "'-' - I



-2-

I. Introduction

When direct methods are used in the solution of equations

associated with 2-D finite element systems, the majority of pro-

duction codes require a "frontal" approach [I], i.e., the finite

elements are assembled and reduced in batches along a front that

moves across the grid. This procedure saves storage of the entire

profile matrix and so conserves memory, a major issue for the scalar

scientific processors of the 1970's with fast storage often less

than 100,000 words. Only relatively small research problems can

be completely assembled and then completely solved in main memory.

The principal difficulty with a frontal solution is programming

complexity due to solution partitioning and to I/O management.

In contrast, vector processors with one- and two-megaword

storage permit the memory-resident solution of the larger problems

commensurate with their speed. Roughly, matrices associated with

square grids three times larger on a side can now be solved by a

vector processor, in the same computation time and at the storage

limit of main memory.

previous study [21 indicated that, for unsymmetric matrices,

profile solution was marginally faster than banded solution on the

CRAY-l. For this small speedup, significant preprocessing is re-

quired to block the profile structure. It was not considered worth-

while to produce a symmetric version of the block profile solution.

*1!
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II. Symmetric Banded Solution

A. Basic algorithm

Consider an nxn symmetric banded matrix A, with half-bandwidth

m. The solution of

AX = B

is performed in two steps, viz, (1) triangular factorization

T DA = UTDU

where D is a diagonal matrix, U is an upper triangular matrix, and

UT is the transpose of U, and (2) forward and backward substitution

Y1 (U T) -1B

Y2 D D-1Y1

X = U1Y2

Asymptotically in n, factorization of a symmetric matrix requires

1/2 the computation of an unsymmetric matrix; the substitution steps

require the same computation.

The performance of the algorithm depends on the vector length

for small bandwidths and on the data flow between the vector

registers and main memory for all bandwidths. Mathematically, the

average vector length is restricted to 1/2 that of the unsymmetric

case. The data flow is minimized - and performance optimized -

when accumulation is made into a single row or column from pre-

viously-factored rows and columns; a poor algorithm creating

excessive data flow would be the common one based on an outer

product of a row or column.

A column-oriented accumulation suggested by Jordan [3] and

modified in [2] could be used with reduced success in the symmetric

case, due to the halved vector length. However, the accumulation
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kernel discussed in [2] suffers, for small bandwidths, from being

instruction-bound and, for large bandwidths, from a shift operation

in the chained sequence of vector innerloop instructions. In

contrast, the following algorithm kernel consists of simply a

vector-matrix multiply, which can be made quite efficient.

The accumulation is represented as being made into a row rather

than a column (Figure 1). The product of the row vector to the left

of the main diagonal and the triangular matrix above the accumulant

to the right of the main diagonal is then added to the accumulant

row. However, this simple kernel is complicated by the need to main-

tain components of both U and DU or UD.

The organization of the accumulation kernel has the following

form (see Figure la). Let

Y be the accumulant row

R be the row vector, initially stored as a column of

DU above the pivot

C (current column) be a column of U to be computed

from and stored over R

D be an appropriate segment of the diagonal, before

the current pivot position

M be the triangular matrix DU above Y and including R

then the reduction kernel has the form

T -- D R

Y <- Y + TM

C -- T

The current column C is a column of U; the accumulant Y is a row

of DU. T is a temporary vector and resides in a vector register.

An illustrative Fortran program incorporating this algorithm

. - . .. Am
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is given in Table 1. This will be exercised later to obtain

performance comparisons with the more efficient assembly code to

follow.

B. Partitioned Solution

When the half-bandwidth is greater than 64, so that vector

lengths must be truncated, it remains efficient to preserve the

concept of a vector-matrix multiply. The oversized matrix is then

Dartitioncd intobandedge and interior matrices, all of maximum dim-

ension 64. Figure lb illustrates this partitioning process in both

the row and column directions. The circled numbersJ C.. 0 represent

the nesting level of the computation, withI being the innermost

loop. Loops 2_ and( relate the order of the block processing; this

ordering is also represented by the circled letters . .f.

Two vector-matrix multiply kernels are now required: one for

triangular bandedge matrices and one for rectangular (interior)

matrices. The later kernels can achieve very high performance with

short vector lengths. For vector lengths (VL) greater than 8, the

execution rates are given by

MFLOPS = 160 VL

i.e., a rate of 80 MFLOPS for VL = 8 and 142 MFLOPS for VL = 64.

ZMI
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Figure 1. Organization and terminology of a reduction step
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S11 LUST FTIVE 'YYETPC RANCED EQUATION SCLVER
U~AR:ITqNED*, FCW STCRAOE ONLY

DIMENSION A(100, B(100), TEMP(100)
C**** M IS HALF-BANDWIDTH; N IS NUMBER OF EQUATIONS

10 READ (5,20,END:90) M, N
20 FORMAT (2110)

MP1 M + 1
M2 2 * M + 1
DO 30 I 1, N

30 B(I) = 0.
C**** FORMULATE EQUATIONS AND RHS TO HAVE SOLUTION B(J)=J

DO 50 I = 1, MP1
DO 50 J = 1, N

40 IX = I + (J - 1) * MP1
A(IX) = 0.
M1 = MAXO(1,M - I + 2)
IF (J .GE. Ml) A(IX) = -1.
IF (I .EQ. MP1) A(IX) = M2
IY = I + J - M - 1
IF (IY .GT. 0 .AND. I .NE. MP1) B(J) = B, + (IY) * A(IX)
IF (IY .GT. 0) B(IY) = B(IY) + (J) * AIX)

50 CONTINUE
C**** TRIANGULARLY FACTOR MATRIX

CALL FACTOR(A, TEMP, M, N)
C**** FORWARD AND BACK SUBSTITUTE

CALL SOLVE(A, B, M, N)
DO 60 J = 1, N

AJ = J
IF (ABS(B(J) - AJ) .GT. 1.E-6) GO TO 70

60 CONTINUE
GO TO 10

70 WRITE (6,80) J, (B(I),I=I,N)
80 FORMAT (' FIRST WRONG SOLUTION VARIABLE IS', 15/(5E12.4))
90 STOP

END
SUBROUTINE FACTOR(A, TEMP, M, N)
DIMENSION TEMP(1), A(1)
MP1 = M + 1
A(MP1) = 1.EO / A(MP1)
DO 50 J 2, N

JM1 J - 1
M1 MAXO(1,J - M)
ID M1 * MP1 - MP1
IX M1 + J * M - 1

CDIR$ IVDEP
DO 10 1 = M1, JM1

IX = IX + 1
ID = ID + MP1

10 TEMP(I) = AIX) * A(ID)

Table 1. Simplified Fortran version of code

.. . ..*1- . - .. ..
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DO 30 I = MI, JMI
IX = I - J + J * MP1
US = TEFIP(V)
IZ = f.INO(U,M + I)
IL = I + J * M - M
LJ = J * MP1 - M

CDIR$ IVDEP
DO 20 L = J, IZ

LJ = LJ + M
IL = IL + M

20 A(LJ) = A(LJ) - A(IL) US
30 CONTINUE

IX = J * M + M1 - 1
CDIR$ IVDEP

DO 40 I = M1, JM1
IX = IX + 1

40 A(IX) : TEMP(I)
JJ J * MPl

50 A(JJ) = 1.EO / A(JJ)
RETURN
END
SUBROUTINE SOLVE(A, B, M, N)
DIMENSION A(1), B(1)
MP1 = M + 1
NM1 = N - 1
DO 10 I = 1, NM1

IPI I + 1
IL = I * MP1
MI : MINO(flI + M)

CDIR$ IVDEP
DO 10 L = IP1, M1

IL = IL + M
10 B(L) = B(L) - A(IL) * B(I)

CDIR$ IVDEP
II = 0
DO 20 I = 1, N

II = II + MP1
20 B(I) = B(I) * A(II)

DO 30 L = 1, NM1
LL = N - L + 1
LLM1 = LL - 1
M1 MAXO(1,LL - M)
ILL M1 + LL M - 1

CDIR$ IVDEP
DO 30 I = M1, LLMI

ILL = ILL + 1
30 B(I) = B(I) - AILL) * B(LL)

RETURN
END

Table 1. Continued
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III. Software Description

A. Storage Options

It is common to store the diagonal and the U matrix in com-

pressed form in an array of dimension N*(M+l) . Figure 2 illus-

trates eight possible regularly-addressed storage patterns; in

each case, u.. may be replaced by e.. to represent the storage of

L(=U-) rather than U. Fortunately, all of these cases may be ac-

commodated by defining suitable parameters of the argument lists

of the following routines. The key to the generality is the pass-

ing of the (1,1) position of the matrix rather than the first ele-

ment of the matrix storage array; all indexing is then performed

off of this base.

B. Calling Sequences

Factorization

CALL SDAN7 (N,M,A(Nll),NDIAG,NDROW)

where

N is the number of equations

M is the half-bandwidth (not including the
diagonal)

A(NlI) is the (1,1) element of the matrix

NDIAG is the storage increment between successive
diagonal elements

NDROW is the storage increment between successive
column elements

Substitution

CALL SPANS (N,M,A(Nll),NDIAG,NDROW,Y)

See following discussion for symbol definitions

o11



d 1  U 1 2  U1 3  U11 4  U 1 4  U 1 3  U 1 2  d I

d2  ' 2 3  U 2 4  U 2 5  UI2 5  U 2 4  11 2 d 2

d 3 35 U36 U36 U35 u 3 5  d 3

d 4  U 4 5  U46 U46 LI45 d4

d 5  U15 6  U * 
5 6  d 5

(a) Nil =1;NDROW-- (N-i); (c) Nll-N*M+liNDROW-N.1?

NDCOL-N; NDIAG-1
NDCOL--N ;NDZAG. 1

d 1 d 1

d 2  U 1 2  * * 
1 2  d 2

d 3  U 2 3  UD 1 U U 1 3  U 2 3  d 3

d 4  U 3 4  U24 U14 U14 U24 U34 d4

d 5  U 4 5  U35 U25 U25 U35 U45 d5

d 6  U 5 6  U46 U36 U36 U46 U56 d 0

(b) N11.1;NDROW.-N; (d) NII-N*M+1:NDROW-N:

NDCOL-N+1;NDIAG-1 NDCOL--(N-i) ;NDIAG-1

Figure 2. Permitted compressed storage; d. is ith
3.

diagonal element; replace u by when

L is stored; NDCOL dL)IAG-NDROW.
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where

N...NDROW are defined above, except that A(Nll) is the
(i,1) element of the factorized matrix

Y is the right hand side on entry and the solution
on exit.

C. Comments

1. Let NDCOL = NDIAG-NDROW be the distance between successive

elements in a row. When IDCOT is a multiple of eight,

performance of both the factorization and foward substi-

tution step is severly degraded by a factor approaching

four. When INDROWI or INDIAGI are multiples of eight, some

degradation will also be noted for small bandwidths.

2. The dimension of Y must be at least N + M + 1.

3. The storage of the matrix may have to be increased to assure

that certain data outside the normal matrix storage can be

operated upon as floating point numbers. These positions

are indicated by asterisks in Figure 1. For example, in

Figure l(a), the solver will access the data "above" the

normal matrix storage, use it as operands for floating point

add and multiply, but will not store the results. In this

case additional storage need not be allocated, since these

operands will simply be fetched from the preceding column.

Only when this fetched data represents a fixed point or in-

struction format can floating point exceptions be expected.

D. Driver Program

Appendix A contains a listing of a Fortran driver program that

formulates equations that are diagonally dominant and that are stored

*77
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so that neither INROWL, JNDCOLJ, or INDIAGI are multiples of eight,

thus avoiding memory bank conflicts.

IV. Performance

Table 2 gives the measured solution times and execution rates

associated with solving 1024 equations on the CRAY-I. Among the

more interesting results are the rates for solving small-bandwidth

cases, in comparison with the unsymmetric solver of [2] that has

twice the average vector length. For half-bandwidths of 8, 16, and

32, the unsymmetric factorization executes at 18, 44, and 88 MFLOPS,

respectively. From Table 2 the corresponding rates are 13.4, 34.0,

and 68.9 MFLOPS. The asymptotic rates are similar for both solvers.

It should be pointed out that the timings in [2] were obtained

on the COS operating system; CTSS was used to produce the results of

Table 2.

*1WL1.IkglL
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Half-

Bandwidth Factorization Substitution

4 .00508/5.03 .00122/14.2

8 .00616/13.4 .00122/27.6

16 .00865/34.0 .00122/54.1

32 .0160/68.9 .00201/64.7

64 .0401/105. .00323/78.9

65 -10554/78.7 .00406/63.7

68 .0559/85.1 .00449/60.2

80 .0687/95.0 .00450/70.1

96 .0894/104. .00468/80.2

128 .139/117. .00552/89.2

129 .164/101. .00624/79.4

132 .165/105. .00667/75.9

144 .189/108. .00674/81.4

160 .218/115. .00686/88.1

196 .328/113. .00886/82.0

197 .328/114. .00886/82.3

200 .335/115. .00886/83.5

Table 2 .Execution time (sec) and rate (MFLOPS) to solve 1024 equations

JilI11111111
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Appendix A

Listing of Driver Program
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