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ENTROPY INTERPRETATION OF GOODNESS OF FIT TESTS

Emanuel Parzen
Institute of Statistics
Texas A&M University

ABSTRACT. This paper describes a synthesis of statistical reasoning
called FUN.STAT (because it is fun; functional (useful); based on functional
analysis; estimates functions; and all graphs are of functions). FUN.STAT has
three important components: quantile and density-quantile signatures of
populations, entropy and information measures, and functional statistical
inference. '

A FUN.STAT approach to the problem of identifying the probability
distribution F(x) of a random variable X from a random sample is outlined.
To identify F in the location-scale parameter model F(x) = Fo((x-u)/o). we

estimate entropy difference a = Ho(f) - H(f). H(f) is Shannon entropy and
Ho(f) = log o + H(fo) is entropy of the assumed model (which may maximize
entropy). Estimators H], Hy, H3 of H(f) are defined which are respectively

fully parametric, fully non-parametric, and parametric-select. Significance
levels for A are obtained by Monte Carlo methods. The family of
parametric-select estimators of A may provide optimum tests of Fo (such as
normal or exponential) and estimators of F when one rejects Fo.

KEY WORDS: Entropy-based statistical inference, goodness of fit tests,
test for normality, Shapiro-Wilk statistic, quantile, density-quantile,
quantile-density, autoregressive density estimator.

1. INTRODUCTION. Let x],...,xn be a random sample of a continuous
random variable X with distribution function F(x) = Pr[X<x], -e<x<~, and

quantile function Q(u) = F'](u). O<u<l. Tests of normality or exponentiality
are special cases of a location-scal@ parameter model, which we denote by the

hypothesis
Ho: F(x) = Fo(égﬂ). Qu) =u+o Qo(u)

where Fo(x) fs a specified distribution with quantile function Qo(u). Table 1
Tists Fo and qo for various standard distributions.

Research supported by the U. S. Army Research Office Grant DAAG 29-80-C-0070.
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..; Table 1. STANDARD DISTRIBUTION FUNCTIONS
3 AND QUANTILE FUNCTIONS
)
-'.‘
- Name FO(X) Qo(u)
3 Normal o(x) = [X 8y) dy ; o (u)
- #(x) = (2n) 7 exp - % x2
a3 Exponential 1-¢e% _ log (l-u)']
-x© -is
Weibull, 1-e » X350 log (1-u)
2 Quantile shape c = %
parameter g
-e* -1
" Extreme value 1-e log log (1-u)
‘? of minimum ~o<X<w
s
2 -eX -1
; Extreme value e - log log u
3 of maximum ~m<X<m
3 Log normal ¢(log x), x>0 exp o'l(u)
3
Logistic l-(1+ex)'] log T%;
‘
y




Many statistics have been introduced by statisticians to test the
composite (location and scale parameters unspecified) hypothesis of normality.
A superior omnibus test of normality (in_terms of power) seems to be provided
by a test statistic W = o02/01 , where o1 and o2 are scale estimators defined
as follows: o1 i§ sample standard deviation, while o2 is a linear combination
of order statistics estimator of 0. We call W a statistic of Shapiro-Wilk
type because it is a variant of a test introduced by Shapiro and Wilk (1965)
and Shapiro and Francia (1972).

The question arises: to discover a motivation for the W statistic which
explains the source of its power, and to use this insight to extend W to
other distributions Fo. In this paper we propose that the power of W can be

explained by representing it as an “"entropy difference" test statistic. We
show that the test statistic for normality introduced by Vasicek (1977) is

also an entropy difference statistic, as are test statistics introduced in

Parzen (1979). .

2. INFORMATION DIVERGENCE AND ENTROPY. To compare two distribution
functions F(x) and G(x) with probability densities f(x) and g(x), a useful
measure is information divergence, defined by

1(f;g) = [7_{-1og g{%}& f(x) dx

It can be decomposed into cross-entropy

H(f;g) = [ _{-1og g(x)} f(x) dx
and entropy

H(F) = H(f;f) = [C_{-log f(x)} f(x) dx
by the important identity

0 < I(f;g) = H(f;g) - H(f).

To estimate entropy it is useful to express it in terms of the quantile
density function q(u) and density-quantile function fQ(u) defined by

Accession For

a(u) = Q' (u), fQ(u) = £(Q(u)) = {q(u))”!

NTIS GRA&I 5
By making the change of variable u = F(x) one can show that BTIC TAB
nannounced ]
Justification_‘__
H(F) = J) - log fQ(u) du
. By.
1 _Distribution/
[o 109 q(u) du. Availability Codes

JAvail ard/or
Dist Speeial
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Under the hypothesis Ho that F(x) = Fo((X-u)/o). a location-scale model,
q(u) = oq (u) and

H(f) = log ¢ + H(fo).

.3. ENTROPY DIFFERENCE TO TEST GOODNESS OF FIT. To test the hypothesis
Ho we propose to investigate (and eventually escablish how to use optimally)

test statistics which are entropy-difference statistics

= a(f) = H(f) - H(f)
i; where H°(f) is a parametric evaluation of the entropy of f, evaluated under
h the assumption that it obeys H,, defined by
- HO(f) = log o + H(f),
while H(f) is a non-parametric evaluation of d(f), usually most conveniently
obtained by

H(f) = [l log q(u) du .

To estimate H(f) we have three types of estimators which we call

ﬁ] fully parametric estimator,

j= =4

2 fully non-parametric estimator,

ﬁ3 smooth or parametric select estimator

Similarly to estimate H°(f) we have several types of estimators depending on

the estimator &j we adopt for o; thus

N ﬁoj = log SJ + H(f,)
%hree important possibilities for GJ are:
o, maximum 1ikelihood estimator,
o, optimal linear combination of order statistics estimator

o3 estimator of score deviation o3 = I; foQo(u) q(u) du.

Under Ho these estimators are all asymptotically efficient estimators of o.

......................
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While one can conceive of about 9 possible estimators of the entropy
difference A, we discuss only three estimators which we denote 4;,, 4,,,

-nd 333 .

4. ENTROPY-DIFFERENCE JNTERPRETATION OF SHAPIRO-WILK STATISTIC
To test the hypothesis Hj: X is N(u,02), a test statistic W of

Shapiro-Wilk type is of the form

N=g,+a
where ;1 is the sample standard deviation and

. n . Y
g g {J10 epar]

Gy =
J

ne~13

1

is an asymptotically efficient estimator of ¢ based on linear combinations
of the order statistics X(])< ...<x(n) of the random sample. The first step

in the entropy interpretation of W is to consider instead the statistic

311 = - log W = log 81 - log ;2 = ﬁ? - H]

where [with fo(x) é(x) = (zu)'* exp -(%) x2, and H(fo) =-% (1 + log 2n)]

ﬁ? = log o; + H(fo)
is an estimator of HO(f) based on 31, and ﬁ] is a purely parametric estimator
of H(f) based on the parametric estimator o,; note H; = HJ,

Significance levels for the entropy-difference statistic 311 = - log W
are obtainable from tables of the W statistic [for example, Filliben (1975)].
An example of 5% significance levels (for accepting normality) are
20
50

31141 0.05, for sample size n

311_§ 0.023, for sample size n

5. ENTROPY-DIFFERENCE INTERPRETATION OF VASICEK STATISTIC
To test the hypothesis H : X is N(u,0¢) Vasicek (1977) proposes a
statistic which is equivalent™ to )

~ ‘o -~
Alz = Hl - HZ

where ﬁ? is an estimator of the parametric evaluation H°(f) of entropy, and
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H, is a fully non-parametric estimator of H(f) based on the gap or leap (of
order 2v) estimator

av(iif) = ﬂ;% {X(j+v) - x(j-v)} » JEvHl, ... ,n-v

of q(j/(n+1)), and
~ ] n-v - __j_
Hp = 1 q (=5)
n- 2\’ j =V+] v n+]
Some significance levels of 312 are given in Table 2; they are transformations

of the significance levels given by Vasicek (1977) and obtained by Monte-Carlo
simulation.

6. ENTROPY-DIFFERENCE INTERPRETATION OF PARZEN GOODNESS OF FIT PROCEDURE

To test the general nypothesis HO: X is Fo(lll), Parzen (1979) proposes
forming raw estimators d{u) of o

d(u) = L £ .0 (u) q(u) ,
(4]

where o = ]; fooo(t) q(t) dt. To form a(u) and ;o we replace q(u) by the
least smooth gap estimator 62 (u). Smooth estimators dm(u) of d(u) are
formed by the autoregressive method. From estimators of the pseudo-correlations

p(v) = f; eZniuv d(u) du, v=0,#1,...,+m

one estimates the coefficients of the autoregressive order m approximator
i ] =2
dm(U) = Km I 1+ um(]) eZwiu "”""“m("‘) e21num

to d(u). The coefficient Kn plays an important role in entropy calculations
since

f; - log dm(u) du = -log K

can be regarded as an estimator 333 = fl - log a(u) du of A.

This formula, which we prove below, provides an entropy-difference
interpretation of the goodness of fit procedures in Parzen (1979).

To prove this interpretation of 433, write

- log d(u) = log %y - log foqo(u)-log q(u)




Therefore

fl - log d(u) du = HO(f) - H(f)

is an entropy-difference.

The autoregressive estimator am(u) of d{(u) provides a parametric
select estimator of q(u) by A

q(u) = oy dp(u) q5(u)
A parametric select estimator of H(f) is

Hy = jl log q(u) du

[; log d_(u) du + HS

where

HY = log ;o + H(f))

is an estimator of H°(f) based on ;o‘
The parametric select entropy-difference test statistic zaashould be
denoted A3, m because it depends on the order m of the autoregressive
~d ~
estimator d _(u) of d(u). Significance levels of A33 _ derived by a very

approximate Monte Carlo simulation (in the case of testing for normality)
are given in Table 2. They show that the parametric select estimators of A
provide a smooth progression of significance levels from the fully parametric
estimators of A to the fully non-parametric estimators. In practice, we
recommend adaptive determination of the order m by the data, rather than
choosing a fixed order m.

It may be useful to use a rough approximation to the 5% significance
levels of A3; m which is provided by 2m/n. A criterion for accepting HO: X

i XMy 4o:
is F (Z=5) is:
;33 m = - ]09 im_(_g:l s, M=1,2,...
One rejects Ho if there exists a value of m for which the Akaike-type criterion

AIC(m)=£%'—+log‘I§“iO 5
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the value of m which minimizes AIC(m) is chosen as an "optimal" value m.
A? gp%imal paramecric-select estimator of the true quantile-density function
q{u) is

G (u) = a_ da(u) qp(u) .

7. CONCLUSION

We believe that the interpretation given in this paper of powerful
goodness of fit procedures as entropy-difference statistics provides a
striking demonstration of the FUN.STAT synthesis of statistical reasoning.
In addition to elegance of the theory, very practical and implementable
procedures are obtained.

The parametric select estimators 333 m of entropy-difference test
L]

statistics for goodness of fit have for m=1 approximately the properties of
fully parametric estimators (such as Shapiro-Wilk a,,) and have for large
values of m approximately the properties of fully non-parametric estimators
(such as Vasicek A;,). Thus it appears the series Aj; m provide all the test-
statistics requireé. Further the autoregressive approdch provides
non-parametric estimators of the true distribution when one rejects the null
hypothesis Ho'

One may find that a sample passes the goodness of fit procedure for two
null hypotheses. An appealing procedure, whose properties remain to be
investigated, is to choose that null hypothesis for which A33 _ is always less
than the corresponding statistic for the other hypothesis. °*

The entropy-difference statistics 333 m 2T implemented in our one-sample

univariate data analysis computer program ONESAM. Table 3 1ists auto-
regressive estimates of entropy-difference when testing for normality data
sets in Stigler (1977). An asterisk indicates a data set which is not
normal in our judgement.

In Table 2 w@ report significance levels for le obtained (by Monte Carlo
calculations) by Dudewicz and van der Muelen (1981) in the case of testing for
uniformity rather than normality.

The closeness of the Dudewicz-van der Muelen levels to the Vasicek
levels suggests a conjecture, which remains to be proved, that the entropy-
difference statistics have distributions which are approximately the same

for all null hypotheses H : X s Fo(5§!).

A final noteworthy feature is that the autoregressive method of
estimating quantile-density functions and density-quantile functions,
introduced in Parzen (1979), can be shown to have a maximum entropy
property [compare Parzen (1982)].
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Table 2. 5% SIGNIFICANCE LEVELS FOR ENTROPY DIFFERENCE STATISTICS
f Accept HO: X is N(u,02) for some » and o if entropy difference is less than
\ threshold given.
! o 833 812
P . Autoregressive order m Vasicek gap estimator q (u)
5 Sample | Shapiro- Monte Carlo 5% level (Dudewicz-van der Mueleﬂy ‘
g Size n | Wilk (rough approximation 2m/n) _
! T [ w2 [ w3 | med [mes | V> veh v=3 vz v
g
; 20 - .05 .141 .235( .299| .378] .393 .40 .40 .43 .61
: {(.10) }(.20)}(.30)((.40)!{(.50) (.43 .43 .47 .66)
? 50 .023 .045 { .081] .126] .153f .176 | .21 .21 .23 1
I(.o4) (.08){(.12)|(.16) {(.20) | (.22 .22 .24)

Shapiro-Wilk and Vasicek levels are based on Monte Carlo simulation of norma];'
Dudewicz-van der Muelen levels are based on Monte Carlo simulation of uniform.

One can conjecture a relation between gap order 2v and autoregressive order
m for tine corresponding estimators to have similar distributions and therefore
similar significance levels:

(2v) m = n = sample size

To understand what this conjecture is alleging note that for n=20, m=4 is
similar to 2v = 6; for n=50, m=6 is similar to 2v = 8.

When one uses gap estimators of q(u), and thus of entropy, cne has the
problem of determining the order 2v. One can more easily develop criteria
for determining the order m of autoregressive estimators of q(u).
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{}E Table 3. ANALYSIS OF STIGLER (1977) DATA SETS BY ONESAM PROGRAM
¢
ﬁg 15(v)]2 533 AIC(m) ot |
h Stigler Sample
r‘;-jj Data Size ) ) ) - |
. Set v=l  v=2 v=3 =1 m=2 m-3 m=1 m=2 m=3 m
- ‘ —
1 18 | .042 .025 .057 .04 .08 .17 .07 - .15 .7 0
*2 17 193  .030 .042 21 .27 .34 -0 -.03 .02 1
3 18 .108  .027  .047 1 08 7 -.00 .08 .16 0
4 2 .057  .159 .04 .06 .20 .21 .04 -.01 .08 2
5 21 146,015 .04 A6 17 .22 -.06 .00 .07 1
6 21 | .047 .102 .002 .05 .13 .15 .05 .06 .14 0
7 21 .041  .046 .040 .04 .11 .18 .05 .08 .M 0
8 2 .079 .047 .OM .08 .18 .27 .01 .01 .02 0
*9 20 .285 .235 .124 .34 .42 .42 -.28 -2z -.12 1
10 20 .027  .059  .045 .03 .09 .15 0 M as | o
n 26 .046 .006 . .033 .05 .06 .M .03 .09 .12 0
12 20 .107  .001 .023 1 13 3 -.0t .07 .7 ]
13 20 .084 .027 .063 .09 .16 .20 .01 .04 .10 0
*14 20 .162.  .094 .130 8 .22 .39 -.08 -.02 -.09 3
15 20 .066 .. .006 .001 .07 .09 .09 03 .11 .2 0
*16 20 .080 .056 .093 .08 .17 .44 .01 .03 -.14 3
17 23 .065 .014 .038 .07 .11 .4 .02 .07 .12 0 ;
19 29 .002 .019 .008 .00 .02 .03 .07 .12 .8 0
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