
AD-A124 872 ANVINTERACTIVE AND RUTOMPIED SOFTWARE DEVELOPMENT 1/4
ENVIRONNENT&J) RIR FORCE INST OF TECH WRIGHT-PATTERSON
RFB OH SCHOOL OF ENGINEERING S M HADFIELD DEC 82

UNCLASSIFIED, AFIT/GCS/EE/82D-1? F/G 9/2 N

p

,~

1601

1.25 . A

11111 '.332 ..

-- L ,. -

.1 ItNII .36

, I.... -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A

,.4.

'V"

- , ,, • .,
.,

'-AN INTI]AC IVE AND AUTOMATED

" SOFTWARE DEVXLOPMENT FNVIRONMENT

'JTl 1 '..S I ,q

!: AFIT/GCS/EF/82D-17 S:toven M. lladfiele

II

AN I Ir1CIVI I) OAT~

S FE~i 2 4 18

L. DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base,

tm pubUc ', '' "d' O ak I
d~itiron Is wl!I " AV

p. •.

AFIT/GCS/EE/82D-17

AN INTERACTIVE AND AUTOMATED

SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS

AFIT/GCS/EE/82D-17 Steven M. Hadfield
2Lt USAF

Approved for public release; distribution unlimited

[, ,

.-..

AFIT/GCS/EE/82D-17

AN INTERACTIVE AND AUTOMATED
SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partical Fulfillment of the

Requirements for the Degree of

Master of Science Aces-ion For

-'C T'

Steven M. by
Steven M. Hadfield, B.S. s-
2Lt USAF

.0 t

Graduate Computer Science
. December 1982 eI!

Approved for public release; distribution unlimited

[-. " ..

-, - S

PREFACE

This report is a result of my effort to accomplish a

high level design and intial implementation of an automated

and interactive software development environment. The

resulting implementation of this thesis investigation is an

easy to use, yet very powerful aid for the development of

software in accordance with accepted software engineering

principles. However, this current inplementation is only a

partical realization of the carefully developed design

specifications for an eventual environment involving a

higher level of sophistication. The last chapter of this

report outlines a progression of follow-on efforts required

to accomplish the eventual and complete realization of the

environment. My hope is to encourage the continued

development of this software development environment,

formally identified as the "Software Development Workbench".

" .I wish to express my sincere appreciation to Dr. Gary

B. Lamont, the advisor of this investigation, for his

professional guidance, insight, and patience throughout the

duration of this effort and to Ric Mayer, Program Manager of

4 the Integrated Computer Aided Manufactoring/Systems

Engineering Methodologies program, for his sponsorship and

direction. I also wish to thank the members of my thesis

* " committee, Major Hal Carter, Ray Rubey, and Major Michael

Varrieur, for their support and patience.

- Finally, I desire to dedicate this document, as well as

the blood and sweat behind it, to my father, who's personal

integrity and continuous support have been a constant source

of inspiration and guidance for me.

Steven M. Hadfield

Page

Preface i

List of Figures vii

Abstract ix

1 ~Introduction1

1.1 Thesis Objective 2
1.2 Backround 2
1.3 Problem Statement 15
1.4 Scope of the Thesis 17
1.5 Assumptions 17
1.6 Approach 18
1.7 Summary 21

2 Requirements Definition 22

2.1 Introduction 23
2.2 Model of the Existing Software

Development Process 25
2.3 SDW Objectives and Concerns 31
2.4 Functional Model of the

Software Development Workbench 48
2.5 SDW Evaluation Parameters and

Criteria 82
2.6 Summary 85

3 Preliminary Design 87

3.1 Introduction 88
3.2 Evolutionary Design Strategy 91
3.3 SDW Configuration Model 95
3.4 Resolution of the SDW Development

Objectives and Concerns 101
3.5 SDW Structure Chart Model 120
3.6 Summary 128

4 Detailed Design 130

4.1 Introduction 131
4.2 SDW Component Selection 132
4.3 Detailed Design of the SDW

Executive 144

4.4 Design of the Project Data Bases 173
4.5 Summary 180

i v

5 The Implementation Stage 182

5.1 Introduction 183
5.2 The Choice of an Implementation

Language for the SDWE 186
5.3 The SDW Implementation Strategy 190
5.4 SDWE Implementation Specifics 192
5.5 SDWE Update to Version 1.1 199
5.6 Summary 203

6 Integration of the Software
Development Workbench 205

6.1 Introduction 206
6.2 Installation of the SDW

Components 206
6.3 Integration of the SDW

Components and the SDWE 207
6.4 Installation of the SDW on the

Central ICAM Development System 209
6.5 Summary 210

7 Operations and Maintenance of
the Software Development Workbench 211

7.1 Introduction 212
7.2 Development of the SDW

Documentation Package 212
7.3 Maintenance Activities on

the SDW 213
7.4 Evaluation of the Software

Development Workbench 215
7.5 Summary 217

8 Conclusion/Recommendations 218

8.1 Introduction 219
8.2 Design Summary 219
8.3 Implementation/Test Strategy 221
8.4 Recommendations for Future

Investigations 222

Bibliography 225

Appendix A: A Model of the Existing
Software Development Process 232

Appendix B: SDW Data Dictionary 255

14 Appendix Cz Specification of Preliminary
Design Modules 265

v

Appendix D: Detailed Requirements
Definition for the SDWE 285

Appendix E: Preliminary Design for
the SDWE 294

Appendix F: Algorithmic Design of the SDWE 311

Appendix G: Listing of SDW Command Codes 319

Appendix H: SDWE File Descriptions 323

Appendix I: SDWE User's Manual 336

Appendix J: SDWE Installation Guide 347

Appendix K: SDWE Maintenance Guide 352

VITA 365

vi

LISTING OF FIGURES

Figure Number Title Page

1 Software Life-Cycle 5

2 SADT Activity Box 28

3 Data Flow Diagram Constructs 48

4 SDW Functional Model Outline 51

5 SDW Functional Model: Top Level 52

6 Perform Software Life-Cycle 53

7 Perform Requirements Definition 57

8 Develop Draft Requirements 59

9 Translate Requirements ipto a
Machine-Readable Form 61

10 Develop Preliminary Design 63

11 Develop a Draft Preliminary Design 6r

12 Validate Preliminary Design 67

13 Develop Detailed Design 69

14 Implement and Test Software System 71

15 Convert to Syntactically Correct Code 73

16 Test Code with Traces and Error
Handling 75

17 Optimize the Code 77

18 Integrate to and Validate on Target
Machine 79

19 Maintain and Operate Software System 81

20Tool Variety Progression Plan 93
21Tool Integration Progression Plan 93

vii

22 SDW Configuration Model 96

23 Sample HIPO Function Chart 121

24 IPO Diagram Sample 122

25 HOS Function Specification 123

26 SDW Structural Model 126

27 A-0 Utilize the SDW 149

28 AO Utilize the Software Development
Workbench 150

29 Al Initialize the SDW 151

30 A4 Execute the User's Command 153

31 A41 Provide Functional Tool Group 155

32 A42 Provide Help Facilities 156

33 A43 Access the Pre-Fab Software
Description Data Base 157

34 SDWE Preliminary Design Model-i 164

* 35 SDWE Preliminary Design Model-2 165

36 Project Data Base Design 179

37 Preliminary Design Top Level 185

viii

ABSTRACT

The purpose of this investigation is to l"rdefine both

the detailed requirements and the preliminary design for an

automated and interactive software development environment,

and -.2)-- develop an initial implementation of that

environment. The specified requirements for this

environment emphasize the need to support the entire

software life-cycle as a continuous and iterative process.

In particular, the concepts of integration, traceability,

flexibility, and user-friendliness are accentuated. The

preliminary design delineates the high level design

specifications, configuration schemes, and generic tool

categories with which the previously mentioned requirements

may be satisf ied.

Detailed designs are developed for the integrating

interface/controller sub-system and the development data

storage scheme for the initial implementation of the

environment. The interface/controller sub-system has been

implemented and tested using the DEC Command Language (DCL)

and PASCAL. This sub-system is integrated with an initial

software development tool set executing on the VAX-11/780

computer using the VMS operating system. This initial

implementation, called the Software Development Workbench

(SDW) , is an extremely effective and easy to use aid for

extending the cognitive and notational powers of the

software developer.

ix

ChaptrJ12 Introductifl

Lj.1 Thesis Objective

The objective of this thesis investigation is to

perform the initial development and implementation of a

* software development environment for the Air Force Institute

of Technology (AFIT). This software development environment

is entitled the Software Development Workbench (SDW) . The

SDW supports the development and maintenance of software

from conception to termination by using automated and

interactive tools that apply the principles of software

engineering.

1.2 Backgiround

A software development environment is an integrated set

of automnated and interactive software development tools that

aid the software engineer to develop quality software

products and documentations. The software products and

documentations that are developed with the use of a software

development environment include requirements definitions;

design specifications; source and executable program codes;

4test plans, procedures and results; as well as other

associated documentation such as guides and manuals for

operations and maintenance of the software.

2

A well planned and implemented software development

environment can effectively assist in the development of

reliable and maintainable computer software. The typical

software development environment includes both hardware and

software tools to aid the software designer/programmer in

the pro~!uction of software. Software development

environments may consist of a minimal set of primative

tools, such as editors and compilers, that support only the

actual coding of software. However, the most effective

environments are those with extensive sets of powerful tools

that support the most modern state-of-the-art methodologies

for dealing with software from its very conception through

its eventual termination (Ref 14) . The methodologies that

are supported by such environments are a result of

investigations in software engineering.

During the past two decades, the discipline of software

engineering has developed in response to increasing problems

with the production and maintenance of computer software.

In particular, the goals of software engineering have been

to improve the software production process and software

quality. The concept of a software life-cycle has been

defined by many different authors in many different ways.

The version of the software life-cycle that is popular with

4 the AFIT software community is composed of six stages (Ref
40:4). This life-cycle is illustrated in Figure 1. The

stages of this life-cycle are requirements definition,

3

preliminary design, detailed design, implementation

(coding), integration, and maintenance. The verification

and validation stage, that is included in many versions of

the life-cycle (Ref 50) , is left out of this version. There

are two important reasons for this. F'irst, the term,

"verification", is not really used correctly in this

context. According to the New American Webster Dictionary,

the word "verification" means "(the act of) ... proving

something to be true" when, in fact, software products are

seldom ever proved to be true. The term "validation", which

means the "supporting of something's validity by facts", is

a much more accurate expression of the actual objectives of

WV software testing.

The reason why the validation and testing activities

are not included as a formal stage in the software

life-cycle is that these activities should actually take

place throughout the entire life-cycle. The definition of

the requirements should be tested both internally and

against the needs of the user. Likewise, each of the other

stages should be tested both internally and against the

6 4

REQU IREMENTS
DEFINITION

PREL IMINARY
DESIGN

TIME DETAILED
DESIGN

____ ____ ____ ____ ___ TESTING1? _ ____ ____ ____ ____ ___AND

IMPLEMENTATION VAL IDAT ION
(CODING)

INTEGRATION

OPERATION &
MAINTENANCE

Figure 1: Software Life-Cycle

products of the earlier stages. Each of the life-cycle

stages have their own objectives and the fulfillment of

those objectives are fundamental to the progression of the

development into the next stage.

The objective of the requirements definition stage is

to formulate an explicit statement of what the proposed

* -~ software system must do. The emphasis of this stage is on

the what the system is to accomplish and not on how the

system will accomplish it. Careful attention should be paid

5

not to constrain the system by specifying system mechanics

(the how) during the requirements definition stage. Several

activities provide means for achieving this objective.

Scoping involves limiting of the objectives to be

accomplished so that the problem statement actually

addressed is solvable with current technology and available

resources. Needs analysis refers to the careful study of

the user's needs for the software system. Often an "As-Is"

* System Definition of how the problem is currently being

addressed helps in formulating the requirements. A certain

level of conceptual design is also useful in determining if

*the stated requirements are actually feasible. The main

*activity of the requirements definition stage is the

development of a functional model that states the exact

functions that must be accomplished with the system. This

functional model is developed from the user's point of view

and is usually in terms of data flows and functions on these

data flows.

The mechanisms of the system structure begin to be

defined during the preliminary design stage. During this

stage, the particular requirement specifications of the

previous stage are allocated to specific design components.

The components may be further specified and broken down into

sub-cormponents if needed. Thus, a hierarchical description

of the software system is formed. Within this hierarchical

description or framework, components and sub-components are

6

realized in terms of functional modules. The functional

modules are, at this stage, just black boxes with defined

inputs and outputs. In many applications, a hierarchical

implementation and test plan is begun to be formulated

during this stage. This plan uses an "incremental" approach

to implementation and testing which uses the hierarchical

structure and facilitates easier system validation.

Each of the components of the preliminary design are

further specified in the next stage refered to as detailed

design, or algorithmic design. During this stage, the

black-box descriptions of the functional modules are

translated into specific algorithms. Many times some of the

functional modules can be satisfied by existing software

packages. Test plans and data for each of the algorithms

are often developed and incorporated into the implementation

and test plan during the detailed design stage.

The implementation stage is the actual coding of the

software system in a particular programming language.

Testing is incorporated into this stage in accordance with

the implementation and test plan.

The goal of the integration stage is to integrate the

software system code to the target hardware and to perform

the independent testing of the software system. During the

L.7 -

development of the software system, there is often an

independent project that is responsible for validating the

7

.- -77

final software product. The use of independent testing and

validation is especially effective because of it's

objectivity. An independent testing agency looks

specifically at how well the software system meets the

specified requirements. This manner of testing most often

employed is called "Black-Box Testing" because it specifies

certain inputs, runs the system, and compares the actual

output with the anticipated output. The mechanics of the

system are not of importance during this type of testing,

thus the test planning can be concurrent with system

development.

The sixth stage of the software life-cycle is that of

operation and maintenance. Operation of the software system

involves the actual usage of the system by the users.

During this time errors may be detected in the software, or

needs for changes in the required functions of the software

may be realized. The modifying of the software system to

resolve errors or additional user requirements is known as

software maintenance. In the event of these occurances,

software must be modified and this is known as maintenance.

In order to support these phases, many methodologies

and tools have been developed. However, these tools often

require a great deal of bookkeeping, illustrating, and

A consistency checking. Many of the contemporary

methodologies have been automated. Thus the massive

8

potential of the computer can be realized. Automation

relieves the burden of the many tedious tasks associated

with the methodologies. In fact, numerous automated tools

presently exist to support each of the phases of the

software life-cycle (Ref 40:1-5). However, almost all of

these tools are disjoint, and they often do not interface to

tools of the other phases of the life-cycle.

A software development environment is a collection and

integration of automated software development tools that

should adequately support the entire software life-cycle.

The universe of potential development environments can be

_realized as a two dimensional space with one dimension being

the number and variety of tools and the other dimension

being the level of integration achieved between the tools.

Most contemporary software development environments have

emphasized only one of the these two dimensions (Ref 67:2).

Those environments that utilize a "tool kit" approach view

the concept of an environment as a collection of many

automated tools that are used disjointly. The "job/union

shop" approach defines an environment to be a limited

collection of tools that are integrated in accordance with a

single development philosophy. As one would expect, the

optimal environment for most applications is found by

extending in both dimensions of the universa potential.

" This requires an environment that has many tools that may be

used separately or integrated to support a life-cycle

0 9

methodology. This approach to a software development

environment provides both the flexibility of the "tool kit"

approach and the integration of the "job/union shop"

approach.

The concept of a Software Development Workbench (SDW)

is a broader perspective that defines not only the

individual tools that are to be incorporated and how they

interface to one another, but also specifies the physical

components required for the environment. That is, a SDW

defines the tools and the framework within which the tools

are used.

Up to the present time, the emphasis on automated

software development environments has been on the

development of specific tools or development of environments

tailored to a specific and narrow domain of application.

This statement is substantiated by a noted expert on the

subject of software development environments, Leon Osterweil

of the University of Colorado.

"Most current tools and tool systems focus
their support on narrow aspects of the
software processes, such as editing and
testinig, and ignore the other areas." (Ref 60:35)

He elaborates further on the fact that environments should

be developed that support the entire life-cycle and that the

issues of integration of the specific tools and ease of

10

teachability and use should be of the utmost concern.

Furthermore, he challenges that:

"Although these environments and their
benefits have been widely discussed, there
has been relatively little research or
actual implementation in this area." (Ref 60:35)

Osterweil is quite correct in his statement that there

has been a great deal of discussion on the subject. A

primary focus of much of this discussion has been the

fundamental concerns to be realized in the establishment of

a software development environment. The list of concerns

resulting from these discussions is lengthy, yet

nevertheless its content is fundamental to the understanding

of the objectives of a software development environment.

The concerns include the concepts of integration,

user-friendliness, life-cycle support, flexibility,

consistency, traceability, explicitness, documentation

4 capabilities, testability, and the capability of updating

(Ref 60:36-37) . These concerns are discussed in the chapter

on requirements definition.

One example of an on-line environment that address

these fundamental concerns is the UNIX* Programmer's

Workbench (Ref 40:345-357) . A product of Bell Laboratories,

the Programmer's Workbench (PWB) is built to operate on the

UNIX* operating system. The Programmer's Workbench provides

for uniform program development and supports remote job

entry, source code control/modification, documentation

preparation and other tasks. The PWB supports the

production of software that will be compiled and run on

non-UNIX* target systems. As a result of being built on the

UNIX* operating system, the environment achieves some

successful integration by utilizing the common command

syntax and generic file structure of the operating system.

*. The PWB does, however, lack capabilities for requirements

analysis and specification, quality assurance, and specific

software methodologies (Ref 40:356).

The design philosophy behind the PWB is to get the

users on the system as soon as possible and let their needs

and experiences drive the design. The designers of the PWB

believe in building software quickly and throwing much of it

away. Many small programs are preferred to a few large ones

and a monitor is used to tract and log user problems. The

UNIX* PWB possess a fairly high degree of integration and is

a prime example of the "union shop" approach to development

environments (Ref 40).

Another interesting and contemporary approach to

developing a Software Development Environment is the Ada

Programming Support Environment (APSE). This environment is

.... much more of a "tool kit" approach than was the PWB. The

requirements for the APSE are stated in the "STONEMAN"

12

requirements (Ref 28). The APSE is an excellent example of

a language-oriented environment. There are actually two

government contracts to build APSEs, one with the U.S.

Army, called the Ada Language System (ALS) and one with the

U.S. Air Force, called the Ada Integrated Environment. The

APSE utilizes a kernal host dependent module for low level

I/O, user interfaces, program execution, and a data base,

with the majority of the environment being host independent.

The APSE is primarily an implementation and integration

oriented environment that provides extensive separate

compilation facilities, configuration managers, and the

addition of simulators and testbeds. However, the APSE also

lacks capabilities for requirements analysis and

specification and specific software design methodologies.

The shortcomings with both the PWB and the APSE is that

they lack facilities for many of the pre-implemenation

software development activities. A study done by TRW found

that sixty-four percent of the errors encountered in a range

of software projects could be traced back to the

requirements definition and design phases of the project

(Ref 86). Thur. there is quite a legitimate case for a

major emphasis to be placed on these phases of the

life-cycle. This was exactly the concern during the

development of the Systems Requirements Engineering

Methodology (SREM), which was developed for the Army's

Ballistic Missle Defense Advanced Technology Center (Ref 3).

13

SREM utilizes the System Specification Language (SSL) to

state requirements in a machine readable form. Automated

tools called the Requirements Evaluation and Verification

System (REVS) and an extended version called EREVS are used

to check requirements stated in RSL for consistency and

completeness, and then produce graphics called R-nets, which

are process flow diagrams. Although the present state of

SREM deals almost exclusively with requirements definition

and preliminary design, major efforts are being initiated to

extend the system to a life-cycle supporting environment.

All of the efforts to develop a software development

environment are major scale projects with on going

objectives and difficult philosophical and methodological

decisions to be made. Osterweil capsulized this fact in his

statement:

"The task of creating effective (development)
environments is so difficult because it is
tantamount to understanding the fundamental
nature of the software process." (Ref 60:36)

The sponsor of this investigation is the Integrated

SComputer-Aided Manufacturing/System Engineering Methodology

(ICAM/SEM) group. They are presently involved with a 15

man-year project called the Integrated Systems Development

* .System (ISDS). This system is a large scale development

environment for the development of not only software

14

systems, but all types of manufacturing systems.

Integration in the ISDS is achieved through a shared

database called the Common Data Module (CDM). The ISDS uses

an approach to the development environment that extends

along both dimensions of the universe of potential for

software development environments. Many types of tools are

used in ISDS and yet a high degree of integration is to be

imposed by the use of the Common Data Module.

1.3 Problem Statement

The Air Force Institute of Technology (AFIT) and the

Air Force software community as a whole have a great need

for a life-cycle oriented software development environment.

AFIT's software community is continuously developing major

software products during thesis investigations and other Air

Force sponsored research. The objective of this thesis

effort is to define AFIT's requirements for a software

development environment and then design and implement a

prototype Software Development Workbench (SDW) to satisfy

these requirements. The SDW is required to support three

categories of user's within the AFIT software community.

These categories are listed below.

15

1) Students enrolled in the AFIT Software
Engineering course.

2) Students and faculty involved in M.S. and
Ph.D. research.

3) Students and faculty involved in other
software related activities.

The target and development machine for the SDW development

effort is the Digital Equipment Corporation's VAX 11/780

utilizing the VMS operating system. This machine and

operating system are chosen for three priiejy re.Lns, 1) it

is available in the AFIT/Digital Engineering Laboratory, 2)

Wit is the target machine for the ISDS development, and 3)

many existing automated tools exist in VAX/VMS compatible

versions.

The objectives of this investigation are not limited to

the development of a software development environment for

AFIT. The sponsoring ICAM/SEM office is greatly concerned

with the issue of tool integration as it applies to the ISDS

Common Data Module. The rehosting of tools for the

VAX-11/780 computer provides ICAM/SEM with greater

flexibility in utilizing these tools on their natin-wide

computer network that will eventually become the ISDS

(Ref 58).

16

. J

1.4 Scope of the Thesis Investigation

As pointed out in the background section of this

chapter, the development of a software development

environment is a very involved effort. This thesis

investigation effort is a first step towards the realization

of such an environment for the AFIT software community. The

requirements definition of the prototype workbench deals

with the identification of functions (tools) and scenarios

(methodologies) to be supported by the environment. The

requirements detinition stage also emphasizes the defining

of the major objectives and concerns that must be satisfied

by the design. Functions present in the stated requirements

that are already available in contemporary systems, such as

REVS, acquired through the sponsoring ICAM/SEM office. The

prototype design consists of a preliminary design of the

workbench, and a detailed design of the SDW executive and

some other needed tools. Implementation is limited to the

coding of the SDW executive and the re-hosting of available

tools.

The implementation of the Software Development

*Workbench prototype is done on the VAX-11/780 computer,

because of the wide availability of software development

17

tools on this system, as well as the availability of the

AFIT/DEL VAX-11/780 as a development computer.

The sponsoring ICAM office had promised to provide

tools, under their control, to the Software Development

Workbench effort.

1.6 ATpoah

This thesis investigation begins with an extensive

K search and review of literature dealing with software

engineering and software development environments. In

particular, this research deals with gaining a thorough

understanding of the software life-cycle, the methodologies

used to support the life-cycle, and how to improve

life-cycle activities using an automated and interactive

development environment. The review of this literature

provides a "sound" backround for the development of a

software development environment.

Utilizing the understanding gained from the literature

review, the thesis investigation moves into the requirements

definition stage of development. The beginning of this

stage introduces and justifies the methodologies used to

K accomplish the objectives of this stage. Then, a model of

the existing sortware life-cycle is developed. Following

this analysis of the existing life-cycle, a comprehensive

18

explanation of the objectives and concerns fundamental to

the development of a software development environment is

*dolivered. These objectives and concerns are the

summarization of those identified in the review of the

literature. Using the model of the existing software

life-cycle and the summarization of development environment

Uobjectives and concerns, the high-level requirements for the

Software Development Workbench are defined. These

requirements take the form of a model of the software

life-cycle as it should be supported by a software

development environment, such as the Software Development

K Workbench. Finally, a set of evaluation parameters and

criteria is established to provide for the judging of how

well the SDW implementation meets the stated requirements.

The preliminary design stage of the SDW developmentp effort is broken down into four sections. The first section
establishes an Evolutionary Design Strategy for the

continuing development of the SDW. The next section

[. develops the SDW Configuration Model that identifies the

major systemic components of the SDW and how they are

connected. The third sections explains how each of the

objectives and concerns of the SDW development are resolved.

Finally, the fourth section uses Structure Charts to portray

the hierarchical framework of the software components of the

SDW. The resulting SDW Preliminary Design defines the

structure of the initial SDW and provides a guideline for

19

:4

the future development of the SDW.

The next stage in the SDW development is the detailed

design stage. This stage involves the detailed development

of a SDW Executive which is to be used as a top-level

interface to and controller of the SDW. The component tools

and capabilities of the initial SDW are selected. A

specific capability for a data base of existing software

products is also delineated. Finally, the initial schema is

established for the SDW data bases that hold the development

data.

Implementation and testing of the initial version of

the SDW deals with the coding and validation of the SDW

Executive sub-system that controls the workbench. Also, the

component tools specified in the detailed design are loaded

onto the AFIT VAX 11/780.

The SDW Executive is integrated to the other SDW

components during the integration stage. The interfaces

between all of these components are also tested at this

time.

The final stage of the initial SDW development effortK is the operations and maintenance stage. The objectives of

this stage are to operate and test the SDW as an operationalK environment. This involves the training of the SDW users

and the resolution of problems found in the systew by the

20

users.

SummaryI

The development of the Software Development Workbench

is an effort to introduce an interactive and automated

K capability for the production of computer software. The SDW

is developed utilizing state-of-the-art software engineering

techniques to support all the stages of the software

life-cycle. The SDW development is geared to supporting the

AFIT software engineering courses and the many thesis and

other software developments with the AFIT software

community.

21

* CHAPTER 2i.. _REDUEMENTS DEFIkITION

22

2,,_l Introduction

Requirements Definition is the complete and explicit

statement of the problem to be solved. Usually this stage

is achieved with a great deal of interaction with the user

of the software system. The end result of this stage is a

Requirements Definition Document that uses graphical and

textual means to unambiguously state the problem to be

addressed. A complete, explicit, and unambiguous statement

of the system requirements is the goal of the requirements

definition stage. The primary component(s) of the

Requirements Definition Document is a functional and/or data

model of the proposed system. These models define the

functional/data specifications for the system. The

*Requirements Definition Document may also include a

description of the fundamental objectives that must be

achieved by the system and the concerns that guide the

4 development of the system. A specification of the target

environment may be included in the Requirements Definition

Document. If the proposed system is to be used by a variety

of users, a description of how each type of user is to view

the system is needed in the Requirements Definition

Document. Often a set of evaluation parameters and criteria

is included in the Requirements Definition Document to

* assist in the testing of the system to meet its specified

.4 23

7.~~ - - -7

requirements. The content of the Requirements Definition

Document are highly dependent on the nature of the proposed

system. However, a great deal of care must be taken to

insure that the document produced specifies the system in

enough depth and from enough viewpoints to allow for its

proper development.

The purpose of this chapter is to develop the system

requirements for the Air Force Institute of Technology's

Software Development Workbench (SDW). However, the system

* requirements for the SDW are not just specific to the AFIT

software community but must also reflect the needs of the

* ICAM/SEM users. First a careful analysis of the generalized

software development process is performed. This is done in

order to establish a sound understanding of the problems to

be addressed by the SDW. A comprehensive set of objectives

and concerns fundamental to the SDW is listed and explained.

With this backround established, the specific high-level

requirements for the SDW are defined. Contemporary software

methodologies are utilized to describe the existing software

development process and define the SDW requirements. These

methodologies employ easy to understand two-dimensional

graphical techniques and are examples of the types of

methodologies to be supported by the SDW. Finally, a set of

evaluation parameters and criteria is established to aid in

assessing the extent to which the SDW development fulfills

its requirements.

24

Numerous software engineering methodologies have been

: developed to facilitate the explicit definition of

requirements (Ref 90). Most of the methodologies used for

*describing requirements utilize some type of graphic medium.

The primary reason for this is that the requirements must be

easily understandable. Graphic techniques are more easily

understood in most instances. Ideally, the requirements are

i- used as a means of communicating with the user to insure the

designer's concept of what is needed is identical to that of

*the user's. Graphic techniques assist those unfamiliar with

- . the rigor of the software community's dialect to quickly

comprehend what the designer has in mind. The methodologies

* used for the SDW development are described in generality to

allow the reader to follow the discussion of this chapter.

*! Much of the detail inherent in these methodologies is

omitted since it is not fundamental to the understanding of

these applications of the methodologies.

AN

2.2 A Model of the Existinq S9 a D Process

Often, the problem to be solved by a proposed software

. system is already being addressed by some other system. The

development of the proposed software system is a result of

inadequacies in this existing system. A careful analysis of

- "this existing system is often necessary before the statement

of requirements for a new system can be established. This

25

analysis of the existing system is facilitated by the

development of an "As-Is" model. This "As-Is" model

describes how the problem to be solved by the new system is

presently being addressed. The understanding gained from

the "As-Is" model helps the designer to develop the

requirements and even the design of the new system.

The ICAM/Systems Engineering Methodologies (SEM) Group

realizes the importance of an "As-Is" model. The ICAM

Systems Life-Cycle (Ref 53:334) formalizes the development

of an "As-Is" model as part of its initial system

development stage called "Needs Analysis". This needs

analysis stage precedes the requirements definition stage.

The objective of the needs analysis stage is to establish a

formal statement of the user's needs for the new system.

The development of an "As-Is" model is a primary vechicle

for achieving the needs analysis objective.

Prior to the developing of the requirements for the

Software Development Workbench, an "As-Is" model of a

generic view of the software development process is created.

This model describes all of the stages that a software

system encounters, from conception to termination. Specific

areas within the model that require the application of

automated interactive tools are identified.

26

* This "As-Is" model of the software development process

is derived from a model o7 the Manufacturing Systems

Development Life-Cycle developed by the Control Data

Corporation for the Integrated Systems Development System

(Ref 58).

Three software engineering techniques are analyzed for

possible use in defining the "As-Is" model of the software

development process. They are the Softech Structured

Analysis and Design Technique (SADT) (Ref 79), the Data Flow

Diagram technique (Ref 90:49), and the IBM Hierarchical

Input Process Output (HIPO) technique (Ref 90:50).

The first technique analyzed is the Softech SADT. This

methodology utilizes two separate types of diagrams to

illustrate the proposed system. The "Activity Diagram" uses

labeled boxes to represent activities and labeled vectors to

represent input data flows, output data flows, control

flows, and mechanisms. The side of an activity box to which

a vector is attached identifies whether it is input, output,"4

control, or mechanism. The Figure 2 illustrates hoi the

vectors are identified.

27

CONTROL

INPUT- ACTIVITY)OUTPUT

IS

Figure 2: SADT(TM) Activity Box

Each of the SADT Activity Diagrams has one or more Activity

Box. Activity boxes may be described by a separate Activity

Diagram. By describing Activity Boxes with Activity

Diagrams, a hierarchical structure of increasing detail is

constructed.

The other type of diagram in the SADT methodology is

the Data Diagram. These diagrams are very similar to the

Activity Diagrams except the boxes now represent data items

and the vectors are activities involving the data. The

K Activity Diagrams view the proposed system from a functional

(procedural) viewpoint, while the Data Diagrams perceive the

4 system as a collection and transformation of data items.

Ideally, both types of diagrams are used in order to

facilitate multiple perspectives on the system. However, in

practice, usually just one of type of diagram is used

because of time and other constraints. The Activity

28

6

Diagrams are usually chosen over the Data Diagrams. One

justification behind this may be that the Activity Diagrams

more closily resemble the contemporary concept of a "Black

Box". This concept views a system as a set of inputs (data

items, controls) being translated into outputs by some

function described only with the box. Activity Diagrams are

expressed in terms much closer to our own english langauge.

The other techniques analyzed for possible use in

defining the "As-Is" model of the software development

process are Data Flow Diagrams (DFD) and IBM's Hierarchical

Input Process Output (HIPO) technique. The DFD technique

uses circle, sometimes called bubbles, to define processes

or functions. Between these functions are data flows,

represented by labeled vectors, that are the inputs and

outputs for the functions. Each of these functions may be

decomposed into a separate diagram of several other

functions to show greater detail.

The IBM HIPO technique uses a hierarchical structure of

specification modules to describe system functions. Each

specification has three sections, one for inputs, one for

4d outputs, and one for process. Data arrows between these

sections show the relationships between the individual

components of each section.

29

Softech's SADT: Structured Analysis and Design

Technique (Ref 79) is chosen to describe the "As-Is" model

of the software development process. The SADT Activity

Diagram methodology is used to descibe the software

development process because of it's ease of understanding

and facilities for defining mechanisms. Mechanisms are

important for identifying where automated support is

required in the development process. The differentiation

between input and control for the data items is also of

significance when describing the software development

process.

The two other techniques considered for depicting the

"As-Is" model of the software development process were the

Data Flow Diagram (DFD) technique and IBM's Hierarchical

Input Output Process (HIPO) technique. The Data Flow

Diagram technique was not chosen because it lacks the

capability to illustrate where automation and interactive

capabilities need to be applied to the software development

process. The HIPO technique was not selected for this model

because it fails to allow the depiction of complicated flows

of information (data) between processes. Of the three

techiques considered, the SADT was the only one that allowed

both the complicated data flows to be represented and the

application of mechanisms to be specified.

30

The development of the SADT model of the software

development process is fundamental to the understanding of

that process. However, the model is large and used

primarily as backround for the SDW Requirements Definition.

For these reasons, the model and the associated textual

information are included as Appendix A~,

.3~ SD Objectives and Concerns

Prior to developing the functional model of the

Software Development Workbench, an extensive literature

search is conducted to identify the objectives and concerns.

These objectives and concerns must be considered when

developing an automated software development environment.

Especially within the past two years, a number of renowned

computer science researchers have been investigating

automated software development environment concepts

(Ref 59;60;89;33;67;38). These publications have revealed an

extensive list of objectives and concerns that are addressed

by the SDW devel.opment effort. The objectives of a software

development environment depend on the types of activities

that the environment is to support. A certain set of

objectives are fundamental to all software development

environments, while other objectives are more characteristic

of specific types of environments. The objectives of the

AFIT SDW are common to most software development

31

environments. However, they are limited to the technical

development of software and not the managerial objectives

that would be required by an enviroment supporting larger

multiprogrammer development efforts. The objectives of the

AFIT SDW are described in the following paragraphs.

2..1 ThLe Reduin of S war Err. A primary

objective of an automated software development environment

should be the reduction of as many software errors as

possible and the early detection of those that occur. There

are many types of software errors, but those errors that

deal with software reliability are by far of the most

significance here. Software errors have accounted for

tremedous losses of money, equipment, and, most importantly,

human life (Ref 32) . A simple software error was

responsible for the crash and destruction of an early

martian landing vechicle costing billions of dollars

(Ref 22). Software errors in aircraft control software could

cost the lives of air crew members. In a ballistic missle

- detection system, software errors could, theoretically,

result in the worst of all possible disasters, a nuclear

exchange (Ref 12). Within more common software systems,

errors have caused costly budget overruns and schedule

slippage.

*

*32

-

Software errors may be classified in many ways. One

manner of distinquishing them is by the stage of the

software development in which they are detected (Ref 32)

The cost of correcting errors increases exponeiL.1.a'ly as

they are detected later in the development cycle (Ref 57).

Many times the action taken to correct for one error creates

more errors. The likilihood of this occuring also increases

exponentially as the error is detected later in the

development cycle (Ref 57).

Another manner of distinquishing errors is by the stage

of the development in which they are made. Analysis and

* design errors which are made early in the development are

easily corrected if they are detected early. However, if

they are not detected until later in the development effort,

they become the most costly errors to correct (Ref 12:2).

Implementation errors on the other hand occur late in the

development and are usually much less expensive to correct.

The early detection of system software errors is thus of

extreme importance. In many software projects up to 50% of

the budget is spent on maintenance of software errors, while

only 17% of the budget is spent on analysis and design

(Ref 90:29). The logical response to this problem would be to

invest much greater effort on the design and analysis stages

of development in order to discover, isolate, and remedy

*| - errors early in the development cycle. An emphasis on the

design and analysis phases of development, the utilization

33

of state-of-the-art software engineering methodologies and

automated internal and external validation, would assist in

detecting errors much closer to when they occur. Thus, the

cost and risk associated with fixing them would be reduced.

2..2L ResPonsiveness to Change. Even with a very

strong emphasis on the analysis and design stages of

development, errors are likily to occur. The user's

requirements for the software are also likirly to change

either during or after the software's development.

Modifications to a software system are inevitable and

mechanisms to handle them must be built into the SDW.

Changes to the system must be well documented, so as not to

repeat an error previously made, and all system

documentation must be kept consistent as changes occur.

2.3.3 Rapid Assessment~ jf Design~ Alrna~.tves. Du ri ng

the design of a software system, many design decisions must

be made. Often these decisions are made with very little

assessment or understanding of alternatives due to time and

other constraints. An automated interactive software

development environment should provide means of rapidly

* assessing the consequences of different design alternatives.

Contemporary technology offers a variety of simulation tools

(Ref 53:334) , which if properly used, could produce feedback

on design decisions in near real-time.

34

2.3.4 Automated Documentation Support. The production

* . and maintenance of software system documentation has been

* and continues to be a major source of frustration for

* software developers. With current technology, the automated

production and maintenance of this documentation could be

* implemented, thus greatly improving the efficiency of the

software development process.

2.3.5 Software Managerial Capabilities. While not a

primary objective of the initial development of the SDW, the

improvement of software management techniques is of great

importance to the Air Force. Therefore, facilities for

improving the management of software should become

objectives of later versions of the SDW. This could be

accomplished by keeping time and manpower statistics on all

development efforts, thus allowing for the better scheduling

and resource planning of future development efforts.

Facilities that estimate the status of a current development

effort would also be of great benefit to the software

manager.

The objectives of any development effort are of primary

importance and the SDW development effort is no exception.
1*-'

* However, the manner in which the objectives are accomplished

must be guided by a set of concerns that are also

fundamental to the proposed system. The concerns that guide

- the development of the SDW are a summarization of those

F, 35

discussed by leading authorities on the subject of software

development environments. The varied opinions of these

authorities provide quite a list of concerns fundamental to

the development of an environment. However, many of these

concerns overlap or are not of significance to the SDW

development effort. Thus, the list and description of

concerns that follows is a synthesis of the authorities'

opinions and the needs of the AFIT software community:

1- Integration

2- Traceability

3- User-Friendliness

S.4- Testability

5- Pre-Fabricated Programming

6- Support the Entire Software Life-Cycle

7- Flexibility

8- Consistency and Completeness

9- Explicitness and Understandability

10- Documentation Support

11- Updateability

12- Languaqe Independence

13- Early Prototyping

36

2.3.6 Integration. The issue of integration is

considered to be a primary concern of software development

environments that must support the development of software

throughout the entire life-cycle. Automated tools exist to

support every stage of the software life-cycle. Most of

these tools provide very effective means for accomplishing

the objectives of the stage they support. The fundamental

problem has been that these tools are not compatible with

the tools that support the other stages of development

(Ref 89:8). Achieving a fully integrated environment is a very

difficult task. However, integration can be realized at

many levels of detail and is thus not only a concern of the

initial SDW development but also a concern that will drive

the evolution of the SDW in the future.

2.3.7 Traceability. The SDW must support all stages of

software development and to do so the developer must be able

to trace between the development stages. This ability to

trace between development stages is fundamental to the

validation of the later stages products against the results

of the previous stages (Ref 89:8). Both forward and

backward tracing between development stages should be

supported.

2 User-Friendliness. User-friendliness is a term

E often used in computer science circles. Difficulty of use

for both the experienced and the un-experienced user has

37

.constrainted many users from fully realizing the computer's

potential. Within the SDW project, user-friendliness can be

analyzed as two separate concerns. The teachability of the

environment and the human factors engineering of the

environment are the important aspects of the broad concern

of user-friendliness. The emphasis of both of these

concerns should be on tools whose user interface emphasizes

the function of the tool and not how to get the tool to

perform its function (Ref 33:46).

Teachability refers to the level of ease with which an

unexperienced user can become comfortable with and useful on

the system. The primary users of the SDW are to be AFIT

students and professors. Neither of these groups of

individuals have very much time to learn how to use a new

system. The SDW must be easily learnable and possess means

to walk users through its operation.

Human factors engineering is one of the most dynamic

areas within the computer science discipline (Ref 33:52-53).

New and innovative manners of interfacing with the computer

are being developed at an alarming rate. The resulting new

technologies should be used within the SDW to the maximum

extent possible. Interfacing with the SDW should be able to

be accomplished with a variety of means. Easy to learn and

use command languages should be used for both environmental

and tool interfaces. Extraordinary work has been done with

38

Artificial Intelligence in recognizing requests given in

natural language forms (Ref 8) . Interactive graphics

capabilities should be utilized for working with the

graphical software engineering methodologies supported by

the SDW. Advances in Pattern Recognition and Speech

Synthesis could allow the user to interface with the SDW7 by

means of a verbal conversation (Ref 89).

2.3.9 Testability. Testing and validation are often

tedious and time consuming operations. However, the

internal and external validation of the products of each of

the development stages is fundamental to successful software

development. Capabilities for automated and interactive

testing should be available to validate the intermediate and

final products of all of the development stages.

2.3.10 Pre-Fabricated Programming. By the time that

the Preliminary Design has been established, many of the

functional modules, whose algorithms have not yet been

developed, may be satisfied with already written modules

(Ref 80) . Studies have shown that, for business

applications, as much 40 to 60 percent of the required

4 modules already existed (Ref 50) . The SDW should provide

means to utilize existing algorithms and codes within

development efforts. Such a facility could significantly

reduce development time for many software systems.

39

7-3-11. Su~ppor L J= Et ntire~ This concern

has already been stated, but is important enough to

re-emphasize exclusively. Automated and interactive tools

should be present to support each and every phase of the

software development from conception to termination.

Furthermore, these tools should be interfaced in manners

that will allow them to properly support the entire

life-cycle.

2.3W.1 Flexibility. The concern of flexibility within

the context of an automated software development environment

takes on a variety of dimensions (Ref 89) . The environment

must support many types of software developments including

mathematical or scientific applications, real-time and

control applications, and data base developments to name a

few. Each of these application types requires some set of

specialized tools. The environment must be able to support

Kdevelopment projects of different sizes. Facilities for

handling more than one version of a system must be present.

4 The environment must support several programming languages

in order facilitate the choice of a language that is best

suited for the particular application. Each language

requires specific compilers, debuggers, and other language

specific tools. Some languages require additional testing

tools to perform testing that is done by compilers in other

languages. One example of this is the DAVE tool that checks

FORTRAN programs for data anomalies that are automatically

4 40

check for in Pascal programs by the compiler (Ref 38) . The

tools that compose the environment must be tailorable to fit

the needs of users with different experience and skill

levels (Ref 33).

2.313~ Consistency and Completeness. Automated tools

must provide for the automatic checking for errors,

ommissions, ambiguities, and redundancies (Ref 2).

Facilities are needed for checking the consistency of data

names, data types, ad at uns. Checking of module

interfaces for consistency could also be automated. Items

such as the number of parameters, their types, and their

order would be of importance here (Ref 13) . Consistency

should be automatically maintained between stages of the

development life-cycle. By using the shared data base with

a common data format, only one copy of the data exists,

instead of separate copies for each of the tools. This

elimination of redundancy is imperative in maintaining

consistency.

Completeness testing is also fundamentally important

during software development. Automated facilities could

check for modules that have been referenced but not

specified, or insure that all previous stage components have

been satisfied by later stage components. Completeness

checking is also important from a managerial point of view

in order to assess the status of the project at any

41

r~I

particular time.

2.314 Exo~licitness and Understandability. Products of

each stage should be as explicit as possible in order to

avoid misinterpretations (Ref 2) . The products should also

be easily understandable to those with limited backround

with the system. This makes the concern similar to a

double-edged sword. Often the rigor of explicitness

severely limits the general understandability. For example,

mathematical symbology is very explicit and precise, yet it

lacks an understandability to the mass of society. In

addition to explicitness for the human reader, the product

must be explicit to the computer which requires perhaps even

a more rigorous format (Ref 83).

2.3.1 Documentation Supot Documentation support is

a primary concern of any software development environment

because software only exists in its documentation. A major

reason that the tools of software engineering are not fully

4 utilized is that they often require a significant amount of

additional documentation. This documentation must be

generated using development resources, namely personnel.

4 Automation of the documentation involved would allow its

production to be less costly and thus more generally

utilized. Automated documentation support should use data

from the data base to produce both hard and soft copy

documentation upon demand (Ref 59) . By using the data

ri 42

directly from the data base the problems of saving and

updating the documentation are automatically taken care of.

The environment should have capacities to produce an

extensive variety of documentation (Ref 89) . Both hard and

soft graphics capabilities should be present in the

environment. Hard graphics refers to printed graphical

illustrations, while soft graphics are illustrations

presented on a CRT device that are easily altered. In the

past, documentation has been the weak link in system

development (Ref 83) . The environment's documentation

facilities should include mechanisms for developing scripts

for a variety of activities (Ref 89) and for the continuing

development of user's manuals.

2.3.16~paeaiiy The development of most software

systems is an iterative process (Ref 83) . There is often

needs to update previous development data in a precise and

consistent manner (Ref 33) . Besides just recording the

modifications that were made, it is important to record why

they were made to avoid repeating the error (Ref 83) . Often

a ;'py of the previous version of the module comes in handy

4 if the correction proves to be less optimal than the

K original. The development environment should support the

modification and justification of development data in a

simple and consistent manner.

4 43

2.3.17 Language Independen _Q. Many programming

languages are presently available to the software developer.

Each of these languages has its own set of characteristics

and features that make it desirable for a particular set of

applications. Tn most software development scenarios, the

selection of a programming language is not required until

the actual Implementation stage or, at the very least, the

Detailed Design stage. Requirements Definition and

Preliminary Design should be accomplished prior to selection

of the language and the tools used for these stages be

independent of any particular programming language. Thus,

the selection of the language can be made only after a sound

understanding of the system being developed has been

established (Ref 33) . Language independence can be realized

in the later development stages also with generic tools that

require only a description of the language constructs.

2.3.18 Early Prototvping. The use of proposed system

prototyping has proven a major break through in developing

systems that can accurately meet the needs of the user and

thus gain full acceptance upon completion (Ref 24).

Prototyping of the user interface allows the user to get a

feel for the system very early in the develop effort.

Functional prototyping insures that the system being

developed is what is needed to satisfy the needs of the

user. However, the user often does not fully understand

what his needs are. A prototype allows the user to gain

44

familiarity with the proposed system. Thus, the experiences

of the user actually drive the design of the system. Rapid

and early prototyping is useful in validating the

requirements and preliminary designs of the proposed system

by illustrating inadequacies and descrepencies (Ref 74).

2.3.19 AFIT Specific Objectives and Concerns. The

objectives and concerns of the SDW development are very

general and characteristic of any good software development

environment. However, the SDW development is specifically

geared for use by the AFIT software community. Specific

needs and requirements exist for this community, many of

which fall into the previously stated categories, but some

that do not. A description of the requirements of the SDW

that are specific to the AFIT software community is included

to help insure that the SDW is developed in a manner that is

of benefit to this community.

The SDW is intended for use by two categories of users

within the AFIT software community. First, the SDW is to be

used by students enrolled in the AFIT Software Engineering

course (EE 5.93). The SDW is also to be used by students

and faculty involved in thesis and other extensive software

development efforts. Each of these two categories of users

have particular requirements for the SDW development. The

students enrolled in the Software Engineering course are to

use the SDW as a pedogigical tool to learn and gain

45

experience with the classical Software Engineering

methodologies. Examples of these Software Engineering

methodologies would include Data Flow Diagrams, HIPO charts,

SADT(tm) diagrams, Data Structure Diagrams, Structure

Charts, Structured English, etc... The interactive tools

within the SDW that support these methodologies should be

easy to learn and to demonstrate. Furthermore, both the SDW

executive and the component tools should provide on-line

training facilities. The component tools should stress the

principles of the supported methodologies and not the

operations of the tools.

The other category of SDW users is the students

involved in thesis research and the students and faculty

involved in other extensive software development efforts. A

variety of many different types of software developments

take place with the AFIT software community. The SDW must

provide means to support the full range of these development

efforts. Examples of the types of software development

efforts currently underway include efforts to develop

relational data base management systems, to develop

interactive graphics languages, to implement concurrent and

distributed software systems, and to develop numerical

calculation software for the study of control systems. As

the SDW development progresses in follow-on thesis efforts,

the SDW could be extended to a systems development

environment, that supports the hardware, software, data base

46

and other components of a system's development. For the

near term, the SDW must provide for a number of distinct,

yet concurrent, developments to be supported with proper

security and separation of development data. Since many of

the software development efforts within AFIT are part of a

continuing series of developments on a single software

system, the capability to archive the development data for

future use must be provided. The documentation produced by

the SDW should be of a very high quality to allow for its

inclusion into the formal reports and thesis manuscripts.

Additionally, the SDW and the component tools must be easy

to learn and use to allow the SDW users to concentrate on

their particular development effort and not on the operation

of the SDW.

The primary difference between the SDW and other

software development environments is that the SDW does not

require capabilities to assist t.he managers of software

development efforts. The development activities within the

AFIT software community are limited to one or two person

efforts, thus the need for extensive managerial capabilities

is not present.

44

2,4~. Functional Model o2f the Software Development, Workbench

With the AsI"model of the software life-yl

provided by Appendix A and the preceding list of SDW

objectives and concerns, a sufficient background has been

* established for the development of a definition of the SDW

functional requirements. A variety of methodologies exist

for defining and describing requirements. From this

variety, the Data Flow Diagram technique is used to define

the requirements for the SDW. Data Flow Diagrams, often

W refered to as "Bubble Charts", illustrate operations on data

items by circles or bubbles and flows of data between the

operations by labeled vectors as shown in Figure 3.

INPUT DATA OPERATION OUTPUT DATA
! FLOWFLOW

Figure 3: Data Flow Diagram Constructs

A data flow is an abstract data item that moves from a

4source to a destination. Sources may be inputs to the

system or outputs of operations that produce the data item.

Destinations may be outputs for the system or inputs to

A operations that alter the data item. Each Data Flow Diagram

may contain several operations and data flows. Operations

48

on a diagram may be broken down into separate diagrams, thus

forming a hierarchical structure of increasing detail

(Ref 89).

Data Flow Diagrams are especially useful in describing

requirements for systems which specify a complex array of

data flows. The SDW is this type of system. Mechanisms, or

the "hows" behind the operations, are left out of the Data

Flow Diagrams, as they should be when specifying

requirements. Data Flow Diagrams are easily translated into

Preliminary Design Structure Charts by using techniques such

as Transaction Analysis and Transform Analysis (Ref 89).

Data Flow Diagrams provide for flexibility by allowing

* . multiple levels of detail to be illustrated. For these

reasons the Data Flow technique is used to specify the

requirements of the SDW.

The Data Flow diagrams used to describe the

requirements for the SDW are explained in textual

*supplements. Each textual supplement makes references to

the data flows and operations of the corresponding diagram.

The titles of these data flows and operations are

4i capitalized to allow the reader to identify them more

easily.

[I

4' 49

The functional model for the SDW utilizes DFDs in a

hierarchical structure that extends down four levels. Each

DFD has an accompanying textual description to aid the

reader in understanding the diagram. Both the data flows

and the operations are capitalized when mentioned within the

".textual supplements. The data flow in each diagram are

described in the SDW Data Dictionary that is included as

Appendix B. The diagram outline below (Figure 4) is

provided to assist the reader in understanding the breakdown

of the model.

5

,50

Functional Mod~.el Ouln

Figure Diagram
Number Title

5 0- SDW Functional Model: Top Level
6 1- Perform Software Life-Cycle
7 1.1- Perform Requirements Definition
8 1.1.1- Develop Draft Requirements
9 1.1.2- Translate Requirements into

Machine-Readable Form
10 1.2- Develop Preliminary Design
11 1.2.1- Develop a Draft Preliminary

Design
12 1.2.2- Validate Preliminary Design
13 1.3- Develop Detailed Design
14 1.4- Implement and Test the Software System
15 1.4.3- Convert to Syntactically

Correct Code
16 1.4.4- Test Code with Traces and

Error Handling
17 1.4.5- Optimize the Code
18 1.5- Integrate to and Validate on Target

* Machine
19 1.7- Maintain and Operate Software System

Figure 4: SDW Functional Model Outline

51

CONCEPTRTERM

SYSTEM CONCEPT IFE TERMINATED SOFTWARE
CL SYSTEM

Figure 5: SDW Functional Model: Top Level

2.4.1 The SDW Functional M Tl:T Level. This top

level diagram of the SDW requirements illustrates the scope

of the SDW investigation. The System Concept is a vague and

m.. ambiguous idea for a software system. The Perform Software

Life-Cycle operation is the process of developing,

operating, and maintaining the software system. The

requirements within this operation are what the SDW must

satisfy. The SDW must support this Perform Software

Life-Cycle Operation until the software system is no longer

L-a needed, at which pointed it is terminated.

L.

52

I--

I <i

.J a 4

x Ld

001.

44
4- (Sn

0 _____________ 5

au
5- ~-.--cf.

2.4.2 Perform Software Life-Cycle. This level of the

SDW Functional Model is a breakdown of the Perform Software

Life-Cycle operation of Figure 5. The breakdown is

accomplished by dissecting the life-cycle into its component

stages. The six stages of the life-cycle are represented as

operations with their input and output data flows shown

accordingly. Perform the Requirements Definition is the

first scage (operation 1.1). This operation translates the

vague System Concept into a detailed Requirements Document.

Requirements Update Requests are also inputs to the Perform

Requirements Definition operation. This illustrates the

possibility that experience gained later in the development

cycle may require the existing Requirements Document to be

updated.

Developing the Preliminary Design is the next operation

(operation 1.2). Inputs to this operation are the

Requirements Document and Design Modification Requests,

which again demonstrate the requirement for modifiability.

Likewise, the Develop Detailed Design operation (operation

1.3) translates the Preliminary Design Document into a

Detailed Design Document and accepts reports of Erroneous

Algorithms as input. These reports require a modification

to the Detailed Design Document. Both the Preliminary and

Detailed Design operations may output Requirements Update

Requests if the present Requirements Document is not

sufficient.

54

The Detailed Design Document is translated into a

* * Hosted Software System by a sequence of two operations

(operations 1.4, 1.5) that implement, test, integrate, and

validate the software system. Software Problem Reports may

be generated by these operations if the previous development

products prove to be insufficient. The Integrate to and

Validate on Target Machine operation (operation 1.5) accepts

a Black-Box Test Plan. This test plan is utilized for

independent validation. The Black-Box Test Plan is a

product of the Develop Independent Validation Procedures

operation (operation 1.6) that occurs concurrently and

independently of the rest of the system development. The

_ Hosted Software System is accepted by the Maintain and

Operate Software System operation (operation 1.7) . The

output of this operation is either a Terminated Software

System or a Software Problem Report. The Software Problem

Reports are feed to the Trace Problem to Development Stage

operation (operation 1.8). This operations decides at which

stage the problem should be remedied. The inclusion of this

operatio.n in the SDW Functional Model illustrates a major

difference between the existing software life-cycle shown in

Appendix A and the life-cycle supported by the SDW. The

existing life-cycle emphasizes the idea of "quick fixes" to

the software, whereas the life-cycle supported by the SDW

* promotes the re-development of the software from the point

of error occurance. The approach taken by the SDW greatly

4 55

reduces the chances for the introduction of new errors and

improves the overall reliability of the software.

56

L.Ju

"7r

<XC

w-

Ix-

a C'n

(AJ
(1. L.

w Z:

w~~ ~ &-0 CEc

Of T- -

A2.4.3 Prfgrm Requirements Definition. The Perform

Requirements Definition operation specifies that the System

Concept be used to develop the Draft Requirements (operation

1.1.1). The resulting Draft Requirements are translated

into a machine-processible form (operation 1.1.2). These

Machine-Readable Draft Requirements are checked for

consistency and completeness (operation 1.1.3). If

Requirements Voids/Inadequacies are discovered, the Draft

Requirements are updated (operation 1.6). Requirements

Update Requests are also processed by operation 1.1.6. The

Updated Requirements are then be check for consistency and

completeness again (operation 1.1.3). If the stated

requirements are consistent and complete, they are defined

as the Requirements Document. Before this document is

passed on to the next stage, it may be translated into a

Simulation Model for further internal validation (operation

1.1.4). Running of this Simulation Model (operation 1.1.5)

may reveal Requirements Voids/Inadequacies. These

Voids/Inadequacies are processed by the Update Requirements

operation and the Requirements Document is re-compiled.

58

w a
L4)
ck4)

ujC
m E-44A <rC

<L L&
I0: w i t

w ,L

0.1

I0

'76

2.4.4 Develop Draft Requirements. Developing the Draft

Requirements is a very important function that requires a

knowledge of the System Concept and, possibly, User Input.

The first step (operation 1.1.1.1) is to carefully analyze

the System Concept and User Input to gain a Problem

Understanding. With this Problem Understanding an "As-Is"

System Definition may be developed (operation 1.1.1.2),

similar to Appendix A of this thesis investigation. An

analysis of the Target Environment (operation 1.1.1.3) may

also be necessary if the Target Environment possess uncommon

attributes. The Problem Understanding, "As-Is" System

Definition, and Target Environment Specification are all

used to Formulate the Functional and Data Requirements for

the software (operation 1.1.1.4). The result is a set of

Draft Requirements that may be enhanced with a set of

Performance Criteria (from operation 1.1.1.5) if the

particular system requires.

*6

4

~60

LL--

tnt

x0

037

K. 0 :
C) Ot4-r-Cl w I- uj

t.- 'M
M xt

tA IX a

0.usr

US u (3 (

Fix

2.4.5 T Drf Requirements irto a

Machine-Readable Form. The Draft Requirements could be

entered using either graphic or textual mediums. Most

Requirements Definition tools only accept textual inputs and

thus textual input must be supported (operation 1.1.2.2).

However, since most Requirements Definition methodologies

utilize graphics for understandability, the ability to enter

the graphical representations directly (operation 1.1.2.1)

greatly simplifies the process. If graphics are used, they

must be translated to a textual format for computer

processing (operation 1.1.2.3). The translation of the

textual statement of the requirements into a graphic form

(operation 1.1.2.4) allows the easier validation of the

exact stated requirements against the user's or developers

perception of the System Concept (operation 1.1.2.5). This

process is often refered to as verification within the

computer science community. Generically stated in terms of

the computer science community, verification is simply the

checking that what the designer/programmer has told the

computer to do is what he meant to tell the computer to do.

62

ww

LLA t- r(
z a

o* of
a
La

zz
0

VId

(z <t

U))

w C, I

V) Ix

>A

Lil

II

63I- IC

2.4.6 Develop Preliminary Design. The developing of a

Draft Preliminary Design could be accomplished by using any

one of a number of design techniques (operation 1.2.1).

Ideally, several different design techniques are supported

by the SDW to allow the SDW user to choose the technique

best fitted to his individual development effort. The Draft

Preliminary Designs are validated against the previously

stated Requirements Document (operation 1.2.2). This

operation is elaborated on in the next diagram. The output

of operation 1.2.2 is either Design Modification Requests,

Requirement Update Requests, or a statement of the

Preliminary Design. Design Modification Requests is routed

to the Update Preliminary Design operation (operations

1.2.3). Updating of the design requires re-validation of

the Modified Designs. Once a statement of the Preliminary

Design has been developed, it is fed into the Develop Test

and Implementation Strategy operation (operation 1.2.4).

The Test and Implementation Strategy developed by this

operation is included as part of the Preliminary Design

Document. This strategy is an incremental plan for

implementing and testing of the software system according to

a hierarchical design of increasing detail (Ref 89).

64

Ld

a wj

La
I-
kn u4

> 0

I- op- i

I.- <L tn

UU)
w 1--

f- CL

6/) E.fl w

-

6-n *1.- 0
>/ fl C..

i
0- r

17-1

j, o L

4-)

Z U) -

Lft

U)/

LLir
C(7-

0 L)

Li 0

Pa

65

2 4 7 Deyqo A Draf t Preliminary Design. The

Development of a Draft Preliminary Design is an iterative

process. The Requirements Document specifies the software

system to be designed. The System/Sub-System Components are

then identified (operation 1.2.1.1). The System/ Sub-System

Components Specification are then established (operation

1.2.1.2) and the interfaces between the components are

defined (operation 1.2.1.3). The System/Sub-System

Component Specifications that are not down to a single

function level are broken down into further Sub-System

Components and the process is continued. Once all of the

System/Sub-System Component Specifications are down to just

a single function, the Draft Preliminary Design is

completed.

66

LL

Z: 0

a LI a

EE Q Ix in i

>i 7) C Di
a " v VP

kn

0 Lw -.

, - z3

Id , 0

win i

o 0 0 3(

a w

n L w
0 03

I- -

I. i .

CI-d

0w

2:X 1.-

w Zi~ic (U (

a ~~ wLA
tx ri 0 0.

2.4. Validate Preliminary Design. Validation of the

Preliminary Designs must be done both internally, checking

for the completeness of the design, and externally,

comparing the designs to the statement of requirements.

Internal checking is facilitated by translating the

preliminary design into a simulation model and running the

model (shown in operation 1.2.2.3 and 1.2.2.4). External

validation against the stated system requirements involves

the tracing of the design units back to a specific

requirement and then checking that all of the stated

requirements have been satisfied by at least one design unit

(operations 1.2.2.1 and 1.2.2.2). The tracing of design

units to requirements should be done in both directions to

facilitate later bi-directional movement between the stages.

68

00)

(D

C., r' m4!

00 In 0

rC -

-o ; -4 ;n

.4, -0

C:7 r r

--l D- 0

Cp'
tC>

in m~ 2q

In r- M

:3!0 fn~

r-1-

,l
Ci

ril

Ii 0'~) :1

-2.4. DeveloP Detailed Design. As defined in the first

*-chapter, the Detailed Design stage deals with the

* . development of functional algorithms for each of the system

modules. Many times, these algorithms may already have been

developed and perhaps even coded. Operation 1.3.1 searches

for the existance of already developed and coded algorithms

to satisfy the the requirements of system modules. Those

system modules left unsatisfied must be developed by the

* programmer/software developer as shown by operation 1.3.3.

-- Acknowledging the iterative nature of the software

life-cycle, there may exist erroneous algorithms that

require correcting (operation 1.3.2). Once the Module

- Designs have been established, they are validated against

the system's requirements and checked for consistency both

internally and with the Preliminary Design (operation

1.3.4). If inadequacies are discovered, they are passed to

the proper stage in the form of a Requirement Update Request

or a Design Modification Request. Otherwise, the

specifications of the Detailed Design are used to enhance

the Test and Implementation Strategy to include meaningful

sets of test data and detailed modular test plans that

execute all of the logical paths of the modules (operation

1.3.5).

70

Q ~r

- U

I~0o-

ww

cr.i

C3-

L)~

CA: 0

-4 LA 4 L

0 I'i
I- ca

C 0'

4A
ELE

V 4-

7I1K'I~

.4.10 Imlmn An Test. Softwar Sytm I nor de r to

implement the software system, a suitable programming

language must be chosen (operation 1.4.1) . Many programming

language exist today and each one possess features that make

it attractive fo~r use in solving a particular class of

programming problem. Careful selection of a programming

language can significantly simplify the task of coding. The

SDW must support as many languages as possible to provide

the software developer the needed flexibility to code his

software efficiently. The SDW should possess facilities for

only allowing sy7ntactically correct code to be entered

(operation 1.4.3). Other facilities of the SDW may provide

for some automatic coding by using the products of the

Detailed Design stage.

The Test and Implementation Strategy is then broken

down into the designated stages (operation 1.4.2) and the

objectives of each stage are used to direct the coding

operation (operation 1.4.3). The coded section of the

system is then tested according to the plans recorded in the

Implementation and Test Strategy (operation 1.4.4) . After

the entire system has been coded and tested according to the

4 Implementation and Test Strategy, the coded system may be

optimized as required by an stated performance requirements

(operation 1.4.5)

72

0
VU

L.A

k-A

or o

L.IA

Ld w

CV

V 0

aLH

IAIx

9L

C)

0

41 4

I- Or

2: L.A

I. -

.4.1 Convert Jo Syntactically Correct Code. The

K first step in the conversion of the Detailed Design into

code is to convert the Implementation Stages into an

Un-Entered version of Code in the selected Programming

Language (operation 1.4.3.1). The Un-Entered Code is then

entered into the host computer (operation 1.4.3.2) and the

result is the Source Code for that Implementation Stage.

The Source Code is then compiled (operation 1.4.3.4) which

produces the executable Object Codes and detects any Syntax

Errors. If Syntax Errors are detected they are corrected

(operation 1.4.3.3) and then the Modified Source Code is

re-compiled. The result of this entire process is a set of

Object and Source Codes for the particular Implementation

Stage.

474

-I-

w w
cce-

ii) L))

tmf L L L

t.1 LU

L,~

CL L

hL. '

LILA

.LJ CO

hii

Lf I--

WU
w.

QI

co)

4 75

2.4.1,2 Test Code with Traces and Error Handling. The

first step in the testing of the code for each

Implementation Stage is to merge together the necessary

object codes (operation 1.4.4.1). The resulting Un-Tested

Software is then tested using either just Dynamic Analysis

techniques (operation 1.4.4.3) or Static Analysis techniques

(operation 1.4.4.2) together with the Dynamic Analysis. If

Coding Errors are detected, they are corrected (by operation

1.4.4.4) and then re-linked and re-tested. Other tests may

also need to be run in accordance with the Test Plans

(operation 1.4.4.5). A Software System results once all

tests have been passed. If an error is detected that is

from a source other that the coding activity, a Software

Problem Report is issued.

76

LiA

0

Lan

0

Lda

('

0

= L

C)

'- r- .

La t.

ci

LJ
>

00
in

77

.4.1 31 Optimize the Coe Often the coded Software

System does not execute within the Performance Criteria

established for it. If this is the case, the code must be

optimized. The first step is to Monitor the Time and

Spacial Performance of the Software System (operation

1.4.5.1) . This identifies the Software Bottlenecks, which

are the areas of the code where the greatest gains in

performance can be realized. These areas of the code are

then modified (operation 1.4.5.2) and the resulting

Un-Tested Code is re-tested (operation 1.4.5.3). The result

of this phase is a tested version of Optimized Code.

78

. . - . . .

£j@-
LI: s ji
t- -

(: i
a, I

U.L. Lu oa
of CL 0 L

a. L)

.j 0j~a

LAJ

IC.-

00

C) C)

Cal

IxI

> C,

o 4-)

>-
Lnl

2.4.14 Intgrate to and Validate on t_ Target Machine.

The integration of the Software System involves either the

Mating of the Software with the other Components of it's

host system (operation 1.5.1) or the installation of the

Software System on to the Target Machine (operation 1.5.2).

The result of either of these operations is an On-Line

version of the Software. This version of the Software is

* -then tested with the independently developed Black-Box Test

Plans (operation 1.5.3) and User Acceptance of the Software

is achieved. If errors are detected during this operation,

Software Problem Reports are issued, otherwise a Hosted

Software System has been achieved.

-0

I

' 80

wW

I--

IV

00
i)

ft f

I-.

I-.

0X 0

U) Cd
ft

.1.

I--

wC

6) :j

C) U)

2.4.15 Maint and Operate S System. Once the

Hosted Software System has been delivered, the Finalization

of the Operating Manuals takes place (operation 1.7.1).

These Operating Manuals are used to Instruct the Users of

the Software System (operation 1.7.2). The result of this

operation is a set of Qualified Users. These Qualified

Users operate the software (operation 1.7.3). If errors are

detected in the software or additional requirements for the

software are realized, a Software Problem Report is issued.

Once the software system is no longer of operational

usefulness, it is archived as a Terminated Software System.

2~SDW Evaluation Paramgter AD- Crieri

In order to measure the success of any software system

in satisfying its requirements, a set of evaluation

parameters and a criteria for these parameters must be

established prior to implementatio, and measured following

implementation. The evaluation of the SDW is a rather

subjective matter. Thus, the criteria for the evaluation

parameters is also rather subjective. Evaluation parameters

for the SDW are established for two different levels of the

SDW implementation. Evaluation parameters for the system

level of the SDW determine the SDW's merit as an integrated

software development environment. Evaluation parameters for

the tool level of the SDW help determine which components of

82

the SDW should be kept, which should be modified, and which

should be discarded.

There are several system level evaluation parameters

for the SDW. The first is the average time spent in

learning how to effectively use the SDW. This parameter

varies with the individual user and the type of development

effort he is involved with. The general and subjective

criteria for this parameter is minimization, most probably

in the range of five to ten days. Another evaluation

parameter for the SDW is the level of integration achieved

as measured by the life-cycle methodologies supported by the

SDW using a sequential application of tools that share data.

The initial criteria for this evaluation parameter is the

support of the methodologies taught in the AFIT Software

Engineering course. The time and effort spent on the

software development, as well as, the reliability and

quality of the software produced is a third evaluation

parameter. The criteria for this parameter is to lessen the

time and effort spent on the development while improving the

reliability and quality of the software as compared to

estimates of these parameters if the SDW was not utilized.

A fourth system level evaluation criteria for the SDW is how

easily the software product can be updated in response to

detected Lrrors or new requirements. The criteria for this

parameter is also an estimate of the difficulty involved in

the activity if the SDW had not been utilized.

83

A separate set of evaluation parameters and criteria

exist for the tool level of the SDW. The first parameter at

- - this level is the tirtie required to learn the function and

operation of the particular tool. The criteria should be 1

to 5 days depending on the complexity and usefulness of the

tool. The next parameter is the user's response to the

usefuilness of the tool in his development effort. As long

as some users find the tool useful in their development

efforts, the criteria for this parameter is met. The final

parameter for the tool level of the SDW is the quality of

the tool's output. The criteria for this parameter is

determined by the type of the tool. If tLe tool is used for

notational purposes, the output must be of a high enough

quality to be included in a formal manuscript. If the tool

is used to detect errors in the development, it must

demonstrate some level of effectiveness in achieving its

goal.

The preceding discussion of the evaluation parameters

6and criteria for the SDW is not meant to be exhaustive, but

rather just a guideline to assist in calculating the benefit

of the SDW and in pointing out areas of future improvement.

84

2~Suman

The AFIT Software Development Workbench specified in

this chapter i-s to be the realization of an automated

software development environment that interactively assists

the software developer in producing highly reliable and

maintainable software. Capabilities to assist in software

development management and to simplify the production arnd

maintenance of many varieties of software production help to

reduce the high costs associated with software development.

Specific concerns such as integration, user-friendliness,

flexibility, testability, etc... are fundamental to the

development of a useful software development environment.

These concerns are used to direct the design and

implementation of the SDW. The previously stated functional

model of the SDW demonstrates that the SDW must support

software development in all of its development stages and be

able to do so in a variety of ways. Firally, a set of

evaluation parameters and criteria is established to aid in

the analysis of the SDW upon initial completion.

The preceding statement of requirements for the AFIT

SDW is purposely limited to higher level requirements. This

is done because may of these high level requirements are

satisfied by existing software packages. The required

functions that are not adequately satisfied by existing

packages must be provided by software packages that are

85

ADI-RI24 872 AN INTERACTIVE AND AUTOMATED SOFTWARE DEVELOPMENT 2/4
ENVIRONMENT(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON

U C~~ APiED R OH SCHOOL OF ENGINEERING S M HADFIELD DEC 92

UNCLASSIFIED AFIT/GCS/EE/82D-i7 F/G 9/2 , NEhhhhhh0hiEhhhhhhhhhhhhE
smhhhhhhhhhhh
smhhhhhhhhhhh

..0

A ._ -

S 12.2

U.__ .
~-K. .i

Ll

11W 1.1 L

1.25l 1.4 111it1.6

I"

MICROCOPY RESOLUTION TEST CHART

N B O . I .

-achieved by a recursive application of the Software

Development Life-Cycle.

The concerns and objectives of the SDW, as well as the

functional model, stated in this chapter formulate the

Requirements Definition Document for AFIT's Software

Development Workbench. The goals of this Requirement's

Definition Document are very optimistic. The design and

realization of these goals is planned to be accomplished

incrementally. Initial designs and implementations of the

SDW are limited in order to achieve some degree of

operational status as soon as possible. The experience

gained from using the initial versions of the SDW provides

* for later improvements to the design and implementation.

86

CHAPTER 3~~lLPRELIMINARY DESIGN

87

Li. eliming~xy~ Design:. Introduction

Within the Software Development Workbench (SDW)

development effort, the term "preliminary design" refers to

the software development stage during which the functional

framework of the software system is developed (Ref 90) . The

preliminary design of a software system is much like the

structural framework of a building. The walls and braces

that compose the framework of the building are built first

with the details of the building's interior left for later.

The interior of the building is where most of the activity

(for which the building is being constructed) is to take

place. However, without a sound framework, the building is

not able to support the activities it was designed for.

Likewise, the preliminary design designates the framework

within which the functional algorithms for the software

system are to operate. Without this structure, the

functional algorithms would not be able to become a useful

part of the entire software system. Thus, the establishment

of a sound framework for the software system is the

objective of the preliminary design stage.

d Just as the constructor of a building has a standard to

use in building the framework of their buildings, the

software engineer has a standard to use in developing the

preliminary design for his software. This standard is most

usually a hierarchical framework of managerial and

88

functional modules. This framework begins with a single

high level module at the top which calls/uses other modules.

These modules many, in turn, call/use still other modules.

Some modules are tasked with managing the lower modules,

while the other modules are tasked with other functions

required by the software system. The modules are linked

together by calls or usage relationships. They may also

pass data or control information back and forth. Each of

the modules are defined in terms of their purpose or

function as well as their inputs and outputs.

The result of the prelimirnary design stage is a

Preliminary Design Document. This document usually includes

the a two-dimensional graphic representation of the

hierarchical framework of the software system with all

relationships and information interfaces between the modules

stated explicitly. Structure Charts and HIPO diagrams are

common tools used for protraying the software's structure

(Ref 90:50,139) .

The Preliminary Design Document may also contain other

information about the software system. A configuration

model is often included in this document. The configuration

model specifies the software system and the hardware, data

bases, and other components that are required for the

software's operation. Besides identifying the individual

hardware, software, data base, and other components, the

89

configuration model also illustrates the interconnections of

these components.

The Preliminary Design Document must state how the

requirements, previously stated, are to be satisfied by the

software system. This is usually done at a high, rather

abstract level during the preliminary design stage and

refined by the following detailed design stage. Ideally,

the satisfaction of the requirements is accomplished by

tracing each of the requirements to a module of the

preliminary design's hierarchical framework.

The preliminary design for the SDW includes all of the

above stated features of a preliminary design. The SDW is a

major development effort that is only being initially

addressed in this thesis. Anticipated later development on

the SDW requires that en evolutionary design strategy be

established. This evolutionary design strategy is provided

as a guide for these later development efforts. A

configuration model of the SDW is developed to establish how

the various component hardware and software systems and data

bases are to interface with one another. A high level

4 description is provided to state how the objectives and

concerns of the requirements definition chapter are to be

resolved by the SDW development effort. This includes a "by

function" identification of the tools required by the SDW.

Finally, a Structure Chart model is developed of the

d 90

* framework for the SDW. This model emphasizes "functional

cohesion" for each module and "data coupling" between the

modules (although some control coupling is also required).

Functional cohesion and data and control coupling are

defined in the SDW Development Data Dictionary included as

Attachment 2. The preliminary design of the SDW includes

these sections in order to provide a sound framework, not

only for the initial SDW development, but also for later

follow on efforts.

1,2 The. Evolutionary Design Strateg

The SDW is designed as a software development

environment to serve the AFIT software community. The

accomplishment of the SDW objectives requires an extensive

development effort that will span many thesis

investigations. The experienced gained in each of these

follow-on investigations provides for enhancements to the

SDW in later follow-on efforts. Thus, the SDW takes on an

evolutionary nature. This evolutionary nature is visible

through the study of two SDW parameters. One parameter is

the number and functional variety of tools. This parameter

measures the degree to which the SDW achieves the goals of a

"tool kit" approach. The "tool kit" approach, as defined in

Chapter 1, is characterized by many single function and

distinct tools. The benefit of this approach is that it

91

provides for a great deal of flexibility in supporting

software development. The other parameter used to measure

the evolution of the SDW is the level of integration of the

resident tools. The level of integration is of concern in

the "job shop" approach to software development

environments. The "job shop" approach emphasizes a smaller

tool set that is highly integrated. These individual tools

can be interfaced to provide automated support for

life-cycle methodologies. The benefit of the "job shop"

approach is that it provides support for and enforcement of

* software development methodologies. In theory, both of the

these approaches can be supported by a single software

development environment. A large and varied number of tools

within the environment would provide the flexibility of the

"tool kit" approach, while the integration of a selected

subset of these tools would accomplish the "job shop"

approach goals. The eventual objective of the SDW

development is to achieve the goals of both of these

approaches.

The accomplishment of both the "tool kit" and the "job

shop" goals in the SDW development is very optimistic,

especially when considering the other objectives and

requirements of the SDW. For this reason, an evolutionary

design strategy is established to allow for the gradual

realization of the "tool kit" and "job shop" goals. This

Evolutionary Design Strategy is described by the two figures

92

*below.

NUMBER/
VARI ETY
OF

TOOLS

TIME ->

Figure 20: Tool Variety Progression Plan

LEVEL
OF
INTEGRA-
TION

TIME -*

Figure 21: Tool Integration Progression Plan

Figure 20 illustrates that the intial development of the SDW

93

.* is to be involved with the inclusion of many component tools

in to the SDW. The acquistion of additional tools then

levels off as the required SDW functions are satisfied.

During the intensive initial acquistion of tools, the level

of integration between tools is not emphasized, as

illustrated by Figure 21. However, after a comprehensive

tool set has been obtained, the level of integration within

the tool set is stressed.

The justification behind this evolutionary design

strategy is that many of the tools to be incorporated into

the SDW are already in existence as stand-alone systems.

The early incorporation of these tools into the SDW allows

the SDW to become operational very early in the development

cycle. This benefits the continued development of the SDW

in two ways. First, by using and analyzing these existing

tools within an operational version of the SDW, the

familiarity with the tools that is achieved aids in the

later integration of the tools. Secondly, the experiences

of the SDW users with these tools can assist in evaluating

which tools should be kept, replaced, or discarded. Thus,

the integration of the tool set occurs only after the tool

set composition has stabilized. The concept of an

evolutionary design is by no means unique to the SDW

development effort. Evolutionary design is a characteristic

4 of many software development projects. In fact, William

Riddle of the University of Colorado in Boulder recommends

94

that all software development environments be developed

using some type of evolutionary design strategy (Ref 67).

His justification for this advice is that the user's

requirements for the environment may not be fully understood

until some experience with an operational environment has

been obtained. Furthermore, if the tools to be included in

the environment are being or have been developed outside of

the environment's development, their usefulness within the

environment must be evaluated.

%.jDpW Configuration Moe

3.31 IA Configuration Moe Objectives. With the

objectives of the SDW Preliminary Design stated and an

evolutionary design strategy established, a model of the SDW

components and their inter-relationships is developed. This

model is refered to as the SDW Configuration Model and it

defines the overall structure of the SDW. The objectives of

this model are to establish the systemic structure for the

SDW in terms of all of its hardware, software, and data base

components, The model also identifies all of the data and

control interfaces between SDWV system components. The SDW

Configuration Model is illustrated in Figure 22.

.

0
0

00 0

.J.~

W CL

CA I-i(

tL a
0I

ix

w CL
4z g

U,:

-3I

Ix > I)

w I- CA

z I

96

3.3.2 Configuration Model Dasr.iTLion and

Justification. The SDW Configuration Model is provided as a

framework for the SDW software components and as a guide for

the implementation of the SDW. At the top level of the

model is the SDW Executive. The SDW Executive is a software

component and provides the interface between the SDW user

and the SDW itself. The SDW Executive manages and controls

all of the other SDW components.

The other software components of the SDW are the

Interface to the Pre-Fab Software Description Data Base, the

Interface to the Project Data Bases, and the actual

automated and interactive tools. The Interface to the

Pre-Fab Software Description Data Base allows the SDW user

to search the Pre-Fab Software Description Data Base for

descriptions and locations of already written software

modules and programs that he may require.

The Interface to the Project Data Bases allow both the

SDW user and the SDW tools to access the Project Data Bases

where all of the software development data and documentation

are stored. The Interface to the Project Data Bases also

provides for a software transfer link between the Project

Data Bases and the Pre-Fab Software Product Data Base, where

the already constructed software modules and programs are

stored.

97

The final software component of the SDW is the actual

tool set. The individual tools within this tool set are

classified by function into three categories. These

categories are cognitive tools, notational tools, and

augmentive tools (Ref 67). The cognitive tools extend the

intellectual capabilities of the SDW user by provided

automated and interactive facilities to support Software

Engineering methods and techniques. The notational tools

assist the SDW user in developing, producing, updating, and

maintaining development information. The augmentive tools

utilized the computational speed of the computer to check

the consistency, precision, and completeness of the

development products with great rigor. The SDW tool set is

capable of selectivily interfacing to other SDW components

through data paths. Some tools within the SDW tool set

interact with the Interface to the Pre-Fab Software

Description Data Base. Most all of the tools communicate

with the Interface to the Project Data Bases. Some tools

receive software products directly from the Pre-Fab Software

Product Data Base. The Notational and Cognitive tools

especially use the three input/output (I/O) hardware devices

(the hard copy graphics device, the soft copy graphics

device, and the letter quality printers).

98

I

The remaining components of the SDW Configuration Model

include three distinct types of data bases and four hardware

1/0 devices. The first type of data base is the Pre-Fab

Software Description Data Bases. This data base holds the

descriptions and locations of existing software packages.

This data base assists the SDW user in locating existing

software packages that are similar to or may solve part of

his particular development project. The Pre-Fab Software

Product Data Base is where the actual software packages,

described by the Pre-Fab Software Description Data Base, are

stored. The last type of data base component in the SDW

Configuration Model is the Project Data Base. There exists

a separate Project Data Base for each development effort

being supported by the SDW. These Project Data Bases hold

all of the development documentation and data for the

developments being supported by the SDW.

The hardware components of the SDW Configuration Model

are all 1/0 devices. There are four of these hardware 1/0

devices. They are a hard copy graphics device, a soft copy

graphics device, a letter quality printer, and a standard

interactive video terminal. The hard copy graphics device

is required for the production of on paper copies of the

graphical illustrations of the development efforts supported

by the SDW. The soft copy graphics device is required for

the displaying and editing of these graphical illustrations

on a video display. The letter quality printer is used for

99

producing copies of software development documentation. The

* high level of quality is required because this documentation

*must be included in formal manuscripts such as theses. The

last hardware 1/O device that is identified by the SDW

Configuration Model is the standard interactive video

terminal, realized in the model as the component labeled

User. This component is refered to as User because it is

the usual device used to interface with the SDW. Of course,

separate terminals are required for each concurrent User of

the SDW.

The SDW Configuration Model provides a framework for

the developing of the software and data base components of

the SDW. These are the components that are the emphasis of

this initial development effort of the SDW. However, the

model also specifies the required SDW system structure that

must be present to satisfy the objectives and concerns of

the SDW development effort as stated in Chapter 2. The next

section of this chapter (Chapter 3) explains how each of

these objectives and concerns are addressed by the SDW

design. References are made in that section to the SDW1

Configuration Model and how its components are used to

4 satisfy these objectives and concerns.

4

100

Reso.lution.QLftha DW v.l.Ment Objeives and Concerns

The SDW Configuration Model establishes the baseline

configuration of the SDW as viewed as a total hardware,

software, and data base system. The configuration model,

however, does not state the detail of how each of the

* specific requirements for the SDW are addressed. In order

to specify the mechanics of how each requirement is

resolved, each requirement is taken individually and the

components of the SDW that address that requirement are

established. The first requirements to be resolved are the

developmental concerns and objectives of the SDW. They are

discussed in the order presented in chapter 2. Each

statement of an objective or concern (in chapter 2) is

referenced by the paragraph(s) that describes its resolution

(in chapter 3). Discussions of how each objective/concern

is resolved detail both the initial mechanisms used and

those to be incorporated into the SDW in follow-on efforts.

3.4.1 Th Reduction o oftware Errors (Resolves

2.3.1). Several mechanisms are introduced into the SDW in

order to reduce the occurrence of software errors. First,

the SDW utilizes a variety of software engineering

!7 methodologies supported by interactive and automated tools

to encourage software development in accordance with the

established software engineering practices and principles.

* -The SDW Preliminary Design calls for such tools to support

101

activities in all of the software development stages. For

requirements definition, the SDW Preliminary Design calls

for tools to support the development of Data Flow Diagrams

(Ref 90), Structured Analysis and Design Technique (SADT)

(Ref 79), and other english-like requirements languages such

as the Requirements Statement Language (RSL) and the System

Specification Language (SSL) (Ref 2;3). Preliminary design

and detailed design are supported by tools for such

methodologies as HIPO (Hierarchical Input Process Output)

(Ref 90:139), Structure Charts (Ref 90:50), and Structured

English. Other methodologies, such as Nassi-Scniederman

Charts and N-Squared Charts may be supported in later

versions of the r;. . The implementation and integration

stages of development are supported by facilities for

developing and recording of top-down implementation and test

plans (Ref 90:210). The implementation and integration

stages involve a great deal of specialized code testing

tools. These tools are discussed in greater detail in the

section dealing with "Testability".

While the tools used for testing during the

implementation and integration stages do support software

engineering testing principles, they are also considered a

variety of "augmentive tools". Augmentive tools are the

automated tools that utilizing the speed and computational

power of the computer to test for completeness and

consistency of intermediate and final software products.

102

- ~ .. ~ ..

*These augmentive tools form an important aspect of the SDW

in the effort to reduce software errors. Augmentive tools

are designed into the SDW to test the products of all stages

of software development. These tools enable the developer

to test his products with great rigor which allows many

errors to be detected very early in the development cycle.

Ultimate plans for the SDW call for all development

data to be stored in an unified data base. This would

eliminate much of the potential for consistency errors

occuring when not all of the development data from different

data bases is updated to reflect a requirments, design, or

software change. The use of an unified data base is not

WV implemented in the initial version of the SDW. A stabilized

tool set for the SDW is required prior to the establishment

of the unified data base.

3.4.2 Responsivenes- to Change (esls 2.3.2). As

pointed out earlier, software is a dynamic entity. Errors

found during development or operation must be corrected with

changes to the software. Changes in the user's requirements

also require modifications to the software. Thus, the

software development data must be changeable. The SDW

supports the modification and updating of development data

by utilizing three types of mechanisms. First, all of the

SDW components provide for both the building and modifying

. of their outputs by updates to their inputs. These outputs

103

I °

are all stored in a common data area. This common data area

is the Project Data Base (3.3). Initially, the Project Data

Base is simply a directory structure of individual files.

Later, the Project Data Base is to be an unified data base

that joins these individual files.

The Project Data Base also stores the test cases used

to validate the software system. Once a modification has

been made, these test cases may be called up to validate the

modified software. The final mechanism to facilitate ease

of software modifications is the enforcement of a tracing

relationship between corresponding components of the

different development stages products. An example of this

type of mechanism is the tracing of requirements to design

and code modules. Such a mechanism would allow a change of

requirements, for example to be taken through only the

design and code modules that it is related to. Initially

this mechanism is done manually with the use of comments in

the intermediate products. However, with the use of an

unified Project Data Base, the traceability mechanisms could

be built directly into the data base conceptual schema. The

achievement of traceability is further discussed in 3.4.7.

3..3 Rapid Assessment of. Design A nelnativeg (Resolves

2.3.31.. The software developer is often faced with design

decisions that must be made with little knowlege of the

alternatives and their effects on the software system. The

104

SDW assists the developer in this problem by providing

prototyping and simulation tools. These types of tools

allow the developer (SDW user) to model his software system

very quickly. The model of the system is then run through a

simulation of the system load and feedback is produced for

the model. The model is then easily modified to reflect

another design alternative and the model is again run

through the simulation and the produced results are

compared. The SDW supports prototyping and simulation is

three fashions. First, the SDW provides tools for

independent prototyping and simulation. Second, it provides

translation interfaces for converting requirements and

designs into simulation models. Thirdly, many of the

Requirements Definition and Design tools have built-in

simulation capabilities. The ideal of the prototyping and

simulation capability of the SDW is to provide near

real-time feedback on different design alternatives.

3.4.4 Automated Documentation Support (Resoles 2.3.

The genesis of the SDW development effort was to provide

automated tools to assist in the production of the

documentation associated with software development.

Automated documentation support is still of major

significance. The SDW Preliminary Design calls for the

inclusion of many tools to support the various software

engineering methodologies that utilize two-dimensional

graphics. These tools must be capable of producing hard

a 105

* *copy outputs in, addition to the video outputs. An

interactive graphics editor is also included in the SDW

Preliminary Design. This editor allows the SDW user to

* * develop his own customized documentation and even develop

his own graphical development methodologies. A text editor,

most favorably a screen-oriented text editor, is 'ncluded in

the SDW Preliminary Design for use by the SDW user in

creating and modifying the textual documents associated with

the development. A word-processor program is also called

for to assist in the development of the textual information.

All of these "notational tools" are supported by the

four hardware components of the SDW Configuration Model.

These components are the video terminal, the letter-quality

printer, the hard copy graphics device, and the soft-copy

graphics device.

3.4.5 Software Maaera Capabilities (Resolves

2..LLLI. Although not addressed by the initial version of

the SDW, later investigation!; could use the SDW as an

excellent test bed for developing software managerial

capabilities. Such capabilities may be the automating of

status reports on an individual software development effort,

or the interactive development and maintenance of plans and

schedules for the development. The incorporation of

.7software managerial capabilities into a development

environment is of extreme importance when the number of

106

developer/programmers gets much over a half-dozen or so.

Such capabilities are not easily developed, but if properly

developed they could be of great significance.

Besides the specific objectives of the SDW development,

the requirements definition chapter (Chapter 2) establishes

a set of concerns that must be addressed by the development.

The following paragraphs provide explanations of how these

concerns are addressed in both the initial and the follow on

SDW development efforts.

3.4.6 Integration (Resolves 2..6). The first concern

listed is that of integration. The term, integration, can

be used with a variety ol meanings within the discussion of

software development environments. Within the SDW

development effort, this conflict of semantics is resolved

by discussing levels of integration, with each of these

levels taking on a distinct meaning.

The highest level of integration is simply that all

components of the SDW are located on a single machine. This

level is achieved by hosting all of the SDW components on

the target machine (the DEC VAX 11/780) . The next level of

integration deals with how the SDW components are accessed.

A single common interface is provided to the SDW components

through the SDW Executive illustrated in the SDW

Configuration Model (3.3). The third level of integration

is the use of a common data storage area for all of the

107

development data from a single development project. This is

achieved using the Project Data Bases, again illustrated in

the SDW Configuration Model. Within the Project Data Bases,

a separate and independent schema exists for the data from

each of the development stages.

The last two levels of integration are by far the most

interesting, however, they are left to be implemented by

later SDW follow-on development efforts. The first of these

last two levels is the actual integration of specific

components of the tool set. This could be done either by

interface routines that reformat the output of one tool to

be the input of a next tool or by the design and

implementation of an original tool set that is integrated by

design. The first approach, using the interface routines,

is probably the easiest to realize given the evolutionary

design strategy (3.2). However, integration by design has

proven most effective as it has been realized in the

University of California at San Diego's P-System (Ref 87)

for the development of software written in Pascal. The

P-System uses a similar command syntax for all of its

components and allows its different tools to call each

other. The ultimate goal of this level of integration is to

enforce consistency of intermediate and final development

products through strict tool set integration. This is

accomplished by using previous development products as

constraints on the production of later products. The

108

mechanisms used for accomplishing this are discussed in the

section on Consistency and Completeness (3.4.13).

The second of these last two levels of integration

involves the use of a shared data base to hold all of the

development data for a single project. This type of data

base would realize the relationships between each of the

separate data schemas that exist for each of the development

stages. The use of this shared data base is further

discussed in the next section that deals with traceability,

which is the major benefit of this level of integration.

3..7 Traceabiy (tResolve,% 2.,3.7X. Traceability

refers to the use of relationships or mappings to track

between units of the products of each of the different

development products. In particular, traceability involves

the mapping of requirements specifications to design units,

of design units to code modules, and code modules to updates

* of that code module. Changes to the software are easily

maintained using these mappings.

In the initial version of the SDW, traceability is

handled manually by referencing requirements in the design

specifications and the design specification in the comment

areas of the code. Later versions of the SDW are to use

integration mechanism to achieve an automated traceability

capability. The particular integration mechanism is a

shared data base. This shared data base is actually a

109

distinct schema added to the top of the Project Data Bases

referenced in the SDW Configuration Model. This added

schema is refered to as a Common Data Model (CDM). The

schema defined as the CDM establishes and preserves all of

the relationships between the different schemas of the

Project Data Base. By utilizing these stored relationships,

the mappings between requirements, design, implementation,

and maintenance units are automatically provided for

traceability.

User-Frjnd iness (Rsolves 2.38).

User-Friendliness is a fundamental concern of the SDW

development because of its direct influence on the eventual

acceptance of the SDW by the AFIT software community. Menus

are provided at each level of the SDW Executive, as well as

help files that are integrated into the VMS Help facility.

A primary criteria for the selection of specific tools

during the detailed design stage is the tool's user

interface. Automated, on-line teach capabilities are

designed into the SDW to assist the new users. Fail soft

error recovery (Ref 60) is provided for in the design so

that users are not left helples due to an erroneous input.

As the state-of-the-art in artificial intelligence, speech

synthesis, and pattern recognition advances: later version

of the SDW may utilize an intelligent talking front end.

This would allow SDW users to develop software by conversing

with the SDW in normal english.

J.l0

3..9 Testability (Resolves 2..9). Utilizing the

potential of the computer to help detect development errors

* is a major emphasis of the SDW for the achieving of the SDW

objective to help eliminate software errors (3.4.1) . The

augmentive tools referenced by the SDW Configuration Model

are included in the SDW Preliminary Design for this purpose.

They provide automated and interactive mechanisms to test

and validate the products of each step of the software

life-cycle. During the requirements definition and design

stages of software development, the augmentive tools are

built into the cognitive tools. Some simulation

capabilities are included to round out the validation

*functions for these stages. A variety of specialized

testing and validation tools exist to support the

implementation, integration, and maintenance/operation

stages of the software life-cycle. The specific types of

these tools that are incorporated into the SDW Preliminary

Design are listed and explained below.

* -Static code evaluators perform code evaluation
that does not require the execution of the code
(Ref 12:42) . The purposes of this type of
testing are the insuring of:

--Consistent language usage

--Consistency of redundant informationi

--- Type declarations

--- Physical dimensions
4

--- Assertions

--Consistent variable setting and usage

--Consistent code structuring

-Dynamic code structure evaluators require the actual
execution of the code (Ref 59:7). Three general
types of these evaluators are commonly recognized.

--Execution monitors check for and stop
at error conditions (in a manner similar
to the Ada Exception Handling capability
(Ref 1).

--Software monitors allow for the stating of
assertions in the code and the testing of
those assertions during execution.

--Dynamic debuggers provide trace and dynamic
code and data updating capabilities.

-Code instrumenters provide means for collecting data,
either conditionally or unconditionally during the
execution of the software (Ref 12:40).

-Test case generators provide for automatic or semi-
lautomatic production of input data (Ref 12:43).

-Symbolic execution tools ana±yze software along a
given path within the software and determine a set
of input data that causes that path to execute
(Ref 61)

-Test analyzers are algorithms for estimating the
degree of "testedness" of a program (Ref 12:44).

-Performance monitors insert additional code into the
software that calculates the time spent in each
software module to locate the areas where the greatest
gains from optimization can be realized (Ref 89).

3.4.10 Pre-Fabricated PQx/a n.n jia (R esolves

pre-fabricated programming is a term coined to refer to the

use of existing software systems and modules to satisfy

requirements and design specifications within developing

software systems. The use of pre-fab:icated programming can

112

1 "" |i i i i i i i i i ti l i " ('

significantly benefit many software development efforts by

eliminating the need to design, code, and test many

functions and subfunctions. The SDW Preliminary Design uses

the Pre-fab Software Description Data Base and the Pre-Fab

Software Product Data Base to support the concept of

pre-fabricated programming. These two data bases are

referenced by the SDW Configuration Model in section 3.3.

The Pre-Fab Software Description Data Base records the

existance of many existing software modules and programs. A

description of the software unit, an associated list of

keywords, the author(s), and the software unit's location

are stored in this data base for each existing piece of

software. . The Pre-Fab Software Product Data Base is simply

a collection of the actual software units (in either code,

design, or both). The Pre-Fab Software Product Data Base

may be distributed over many locations with some units being

resident on system disks and some archived on other disks,

tapes, cards, etc. More detailed descriptions and models of

these data bases are provided in the next chapter on

detailed design.

3.4.11 Svort -th Elntire Softwarg Life-CyQ.1e (Pesolv

S23 JJI. A major principle of software engineering is the

view of software as possessing a life-cycle. The SDW is

required to support this entire life-cycle. This concern is

addresscd in two fashions. First, the SDW tool set is

113

-4 -

I

design to provide capabilities to support each of the

software life-cycle stages. Second, the SDW stores all of

the development data associated with each of the life-cycle

stages in a common data area for each development effort,

the Project Data Bases.

3.4.12 Flexibility (Resolves 2.3.12). The SDW is an

evolving environment that is designed as both a pedogigic

tool and a creative tool, since the development of software

is a creative effort. Thus, a certain degree of flexibility

is required to support the SDW as a creative tool. In order

to achieve this flexibility, the SDW provides for an

evolving tool set. The SDW Executive is design to be easily

modifiable to incorporate new tools or discard old ones. By

utilizing the "tool kit" approach to the initial SDW

development (section 3.2), there is no set order or

restrictions on the operations of the different SDW tools.

The initial design of the Project Data Bases is a loose file

structure that is easily updated to support new tools.

Language-specific tools are provided for a variety of

programming languages to provide the SDW use flexibility in

choosing a language. Many of the SDW component tools

utilize languages and conventions that are expandable to fit

individual requirements. Finally, an interactive graphics

editor capability is designed into the SDW to allow SDW

* users to create their own original graphics and graphical

methodologies.

" 114

3.4.13 Consistency and Completeness (Resolves 2.3,13).

During the development of large and complex software, the

software developer may quite easily forget or overlook the

specification of some development details. Additionally,

several references to a particular software detail may not

of been made consistently amidst the complexity of the

entire system. Such problems are not easily found by the

human eye, however, a computer could exhaustively search for

such problems in a much more economical fashion. The

augmentive tools previously mentioned in the SDW

Configuration Model are used by the SDU to insure

consistency and completeness of the software development

products. Most of the augmentive tools used to check for

consistency and completeness are built into the cognitive

tool that produces the particular development product that

is being analyzed. These augmentive tools thrive off the

same sub-schema of the Project Data Base that is used by the

associated cognitive tool. Some of the development details

that are analyzed by these augmentive tools are the

consistency and completenss of functional requirements

specifications, of design specifications, and of code

modules. The explicit interfaces between code and design

modules are checked by interface checkers. These tools

check the rumber, type, and order of parametErs that are

passed accross the interfaces. A units checking capability

*is also employed to insure that assignment statements are

115

dimensionally correct.

The previously mentioned mechanisms deal primarily with

internal consistency and completeness checking. External

consistency and completeness checking insures the proper

translation of development data between the different

development stages. Interfaces between the SDW component

tools use the output of one tool to constrain the input of

the next tool. Consider for example the development of a

design for a software system. The requirements are already

specified. A syntax-directed editor is used to state the

design in some particular design language. The

syntax-directed editor accepts both the Backus Normal Form

tP (BNF) description of the design language and the previously

stated requirements as inputs. Using these inputs, the

editor only permits the creation of design specifications

that are consistent with both the design language rules (the

BNF description) and the stated requirements. An attempt to

state a design specification that is not traceable to a

requirements specification is either not allowed until the

re-quirements document has been updated or is allowed with

the system automatically updating the requirements document

to reflect the design addition. If the second alternative

is used, the update to the requirements document is recorded

as an unapproved requirements modification. This helps the

* developers and users to identify where modifications to the

requirements have been made. A similar type of scenario can

116

be employed when moving from the design specification into

the actual code. Such a capability is a major advance in

maintaining consistent development documentation.

3.4.14 Explicitness and Understandability. The need

for explicitness and understandability is common to many

aspects of the SDW. The SDW components utilize graphics

extensivily to improve the understandability of the produced

documentation. Furthermore, the languages used to provide

* inputs for the tools are selected based upon a criteria of

both explicitness and understandability.

3S.15 Documentation S (Resolve 2.3,15. The

i .resolution of the requirement for automated documentation

support is addressed in a previous paragraph (3.4.4). The

requirement for automated documentation support is addressed

both as an objective and a concern of the SDW development.

As a concern of the SDW development, automated documentation

support is resolved by the inclusion of software notational

tools and hardware output and storage devices into the SDW

Preliminary Design. The production of high quality

documentation and the archiving of that documentation for

later reference are also specific requirements of the AFIT

software community (refer to 2.3.19).

117

_ °: "-....... .. • _• . ..

3.4.16 Updateability (R v 2.16). The commonly

realized dynamic nature of software dictates the requirement

for updateability within the SDW. Updateability is achieved

by designing the Project Data Base to store both previous

and current versions of the development data. The

notational and cognitive tools are utilized to actually

modify the data. The notational tools include the text and

graphics editors.

3.4.17 Language Independence (Resolves 2.3,71. As

stated in the SDW requirements (2.3.17), the selection of a

particular programming language for a development effort is

not required until the Detailed Design or the Implementation

Wry stage of development. For this reason, all of the SDW

component tools that support pre-implementation activities

are programming language independent. These tools may

utilize specific specification or design language to

operate, but the tool specific languages do not limit the

choice of application language for the eventual

implementation.

3.4.18 Early P iS Is-lves 2.3,18). By

prototyping a software system very early in its development,

design alternatives can be analyzed. Furthermore, user

experience with the prototype can help to drive the design.

The SDW uses stand-alone simulation tools to achieve the

requirement for early prototyping. However, the simulation

118

tools may be driven by the requirements and designs develop

by the cognitive tools. This is facilitated by translation

routines that convert requirements statements and designs

into simulation models that prototype the software system.

3.4.19 AFIT Specific Objectives and Concerns (Resolvs

2.3,19. Besides being a general investigation of software

development environments, the SDW development effort is

directed at achieving an operation environment for the Air

Force Institute of Technology (AFIT) software community. As

a result, the SDW development effort specified the

particular requirements of the AFIT software community for

the actual SDW. The APIT users of the SDW are categorized

in two groups. One set of SDW users are those students

enrolled in the software engineering course (EE 5.93). The

other set is the faculty and thesis students using the SDW

for major software developments.

Students in the software engineering courses use the

SDW as a pedagogical tool for learning the classical

principles of software engineering that are supported by the

cognitive tools of the SDW. Facilities for on-line teaching

are designed into both the cognitive tools and the SDW

Executive.

119

D7

The faculty and thesis students that compose the rest

of the SDW users have a different set of specific

requirements that are resolved by the SDW design. The many

separate projects of this set of users are handled in a

secure manner by using the distinct Project Data Bases

illustrated in the SDW Configuration Model (3.3.2). The

Project Data Bases also provide for the archiving of

development data if the development is a continuing one.

The last specific requirement for this class of users is the

need for high quality documentation support. This is

achieved by the hard copy graphics device and the

letter-quality printer specified in the SDW Configuration

Model.

3. SDW Structural Mode

The objective of the SDW Structural Model is to

illustrate the hierarchical compositions of the SDW

components into a functional environment. The individual

components of the SDW are included into the structural model

in order to satisfy the requirments for such components as

4stated in the SDW Functional Model (2.4).

3-5-1 forUiized LQx the Structura More 1.

Three separate design techniques are candidates for

illustrating the structural model of the SDW. These

120

techniques are IBM's HIPO (Hierarchy plus Input Process

Output), Higher Order Software's HOS technique, and the

classical Structure Chart technique. Each of these

techniques utilize a hierarchy of design modules. They each

* specify the inputs and outputs of each module (sometimes

* refered to as a function) as well as a titles of modules.

The differences in the techniques are realized at the more

detailed levels of illustration.

The HIPO technique uses a special digraph called a tree

to illustrate it's Function Chart (Ref 90:139). An example

of a Function Chart is realized in Figure 23.

4A

Figure 23: Sample HIPO Function Chart

The root of the tree is the main module that calls all of

the other modules either directly or indirectly. In Figure

23. module A is the main module and it calls modules B and

C. Each module is described in more detail by the IPO chart

121

that specifies the exact inputs, processes, and outputs of

each module. The IPO (Input Process Output) diagrams use

three block as shown in Figure 24.

I Input I I Process I I Output I

Para- Algoritmic Para-
meters -- Description -* meters

Figure 24: IPO Diagram Sample

The HIPO technique does not, however, specify an

ordering or conditions on the calling of subordinate modules

nor does it specify the passing of parameters between

modules. The HOS technique originated to aid in the

development of software designs for the NASA's Apollo and

" " SkyLab programs (Ref 34:72). The HOS technique utilized a

hierarchical structure of mathematical functions. This

structure is similar to the Function Chart of Figure 23.,

*i however each box represents a function with the inputs to

the function state immediately to the left of the box and

the outputs immediately to right. This modified use of the

boxes is illustrated in Figure 25.

122

Input(s) Function Name Output(s)

Figure 25: HOS Function Specification

The HOS technique uses an implied left to right ordering of

subordinate modules. This ordering may be augmented by

special codes at the immediately superior function that

specify if the calls are conditional, iterative, or

recursive.

The HOS technique does not, however, differentiate

between control and data parameters. The Structure Chart

method (Ref 90:141) that has been utilized since the late

1960s does differentiate between control and data

parameters. The Structure Chart method also utilizes the

basic Function Chart hierarchy shown in Figure 23 and has

conventions for illustrating conditional and iterative calls

of modules. Parameters are shown as vectors with inputs to

a module pointing down to the subordinate module and outputs

pointing back up to the calling module. Data parameters are

shown with vectors that originate with an unshaded circle.

The vectors illustrating control parameters originate Wi~n a

shaded circle. There is no implied ordering to the

subordinate modules, however, the proper input parameters to

123

a module must exist before the module can be called.

The HOS and Structured Chart techniques are especially

useful in illustrating the parametric relationships between

modules. However, this facility is not of great

significance to the SDW Structural Model. The HOS technique

views components in terms of functions. The components of

the SDW are tools and aids which are not properly expressed

in terms of mathematical functions. Of the three candidate

techniques for the SDW Structural Model, the HIPO technique

seems best suited because of its treatment of modules as

distinct units invoked by other units. The components of

the SDW are best described as such distinct units because

many of them exist as stand-alone systems already.

The HIPO technique does have its drawbacks in terms of

the SDW Structural Model. The major problem is that the IPO

part of the technique describes the process associated with

the module in a psuedo-algorithmic manner. The components

of the SDW need only to be described in general terms at the

level of detail involve in this preliminary design. The IPO

part of the technique is thus replace by a simple formatted

textual module specification. This module specification

includes the title or type of the component tool, the

calling module (tool), any subordinate modules (tools), the

inputs and outputs, a functional description of the tool, a

comment area, and a special entry that traces the module

124

I

(tool) to the specific requirement(s) that it satisfies.

3-5-2 The Actual EM Structu -l)a. The SDW

Structural Model is a specification of the major components

of the SDW. Most of these components are designed to aid in

the development of software by supporting and enforcing the

use of Software Engineering methodologies. However, some of

the components are utilities to support the other tools or

facilities to aid in the actual use of the SDW. The SDW

Structural Model identifies each of these components and

illustrates its position in the SDW hierarchy.

The SDW, being a software development environment, is

more of a collection of individual tools (that may or may

not be integrated) than it is a software system per se. As

a result, the calling relationships illustrated by the

vectors -.-r the model may not be formal calls as one would

realize in most software programs. Rather, they represent

that the modules are used by the SDW user as part of the

environment and are referenced by the SDW Executive.

However, the calling relationships between the subordinate

modules do take on the usual meaning.

The actual SDW Structural Model is illustrated in

Figure 26. Each of the SDW components referenced in the

model are describe in greater detail in Appendix C.

125

CL Q. 2- 12j

'I Li L. @--

4Z

kA Lr

Z, Qo

LLL)

Q) tn.C4 l4r *.

W1 o

14 U

44A

lEA. 4 64

La C
04L

1)!6
4-3

XC) V) 0 .. 0

-1 (n >-

44z II a
a. c, C) -)

X c.1
Ill,4~L Ul w0

La w

F-~ 6(:4

r~

4 7

4.l

a

In accordance with the evolutionary design strategy

(2.2) , the SDW Structural Model is to be implemented

incrementally. Each block of the model is marked with one

or more asterisks to indicate it's relative significance to

the SDW. The semantics of these asterisks are as follows:

* -means the module is of immediate importance

to the SDW as should be implemented as soon
as possible.

** -means the module is important but not critical
to the inital implementation of the SDW.

* -means the module would be nice to have in the
SDW but can be done without.

The modules specified with a single asterisk (*) are

the SDW components that are of fundamental importance to the

initial implementation of the SDW because they provide the

basic development facilities common to most environments, a

user-friendly interface and framework for the SDW per se, or

aid in the pre-implementation stages of software

development. The pre-implementation stages are given

greater significance because errors made during these stages

tend to be much more expensive to correct (Ref 2).

Modules marked with two asterisks (**) are deemed to be

of the next level of importance to the SDW because they do

not meet the criteria for primary importance, but are

necessary for a truly state-of-the-art environment.

4

"i| 127

The final set of modules, identified with three

asterisks, are those facilities that are nice to have in a

development environment but are not of critical

significance. The inclusion of these tools into the SDW

does not effect the further investigation of the advanced

topic associated with the SDW project.

Summar

The purpose of this chapter is to define the

preliminary design for the AFIT Software Development

Workbench. In order to define this preliminary design, an

evolutionary design strategy is established. This design

strategy calls for the initial versions of the SDW to

emphasize the inclusion of many independent tools into the

SDW. Later versions of the SDW are to investigate the

integration of these tools into specific methodologies

according to the design strategy.

A configuration model of the hardware, software, and

data base components of the SDW is included in the chapter.

This model defines the SDW as a multi-faceted system.

The many objectives and concerns of the SDW development

are resolved with specific approaches to the development

effort both initially and for later efforts.

128

0

. The culmination of the preliminary design is the

presentation of the SDW Structural Model. This model

*-- illustrates the many components of the SDW, describes the

* components, and specifies the significance of the component

to the SDW.

The preliminary design that is presented in this

chapter is a guideline for the continuing development of the

SDW. As a guideline, it is carefully orchestrated to

resolve the requirements, objectives, and concerns of the

SDW development. The rest of this thesis investigation

focuses in on particular aspects of the SDW. The

justification behind this narrowing of scope is to allow the

initial implementation of the SDW within -he time frame of

this investigation. The next chapter deals with the

detailed design of several components of the SDW. That

chapter identifies specific existing and available tools to

satisfy some of the design specifications of this chapter.

129

CH~APTER 4. sDw Deailed Design

130

.i.Introduction

The detailed design stage of the software life-cycle

deals with the development of the functional algorithms

required by each design module specified during the

preliminary design (Ref 10:7) . In larger developments, some

of the design modules of the preliminary design may be

extensive sub-systems. The detailed design of this type of

module involves a recursive application of the software

life-cycle. That is, the requirements for that design

module must be explicitly defined, a sub-system Preliminary

Design developed, and then the algorithms for that

preliminary design may be stated.

When implementing a top down implementation and test

plan, the Detailed Design stage often overlaps with the next

stage, implementation. The top level modules are often

designed in detail and coded prior to the algorithmic design

of the lower modules. This strategy is followed because

testing of the implementation of the top level modules may

reveal the need for modifications that affect the lower

modules.

The algorithms developed during the detailed design

stage must be both concise and precise. In most cases, the

algorithms can be developed independent of any

implementation language.

J. 31

The detailed design stage of the Software Development

Workbench (SDW) has several important aspects which are

described in this chapter. The first is the selection of

component tools for Version 1.0 of the SDW. This aspect

involves establishing a set of criteria for selection and

then making and justifying the selections. The next aspect

is the development of the SDW Executive sub-system

structure. This development involves the defining of a set

of detailed requirements, as well as, a preliminary design

and algorithmic design of the SDW Executive. The final

aspect is the detailed design for the Project Data Bases

files. A simple directory structure is used for the initial

Project Data Base design. However, a high level design for

later versions of the Project Data Bases is also suggested.

The detailed design stage of the SDW development is a

most significant part of this thesis investigation because

it deals with the realization of the concepts developed

during the earlier theoretical activity.

The Software Development Workbench (SDW) can be

realized as two distinct classifications of components. The

first is the Software Development Workbench Executive (SDWE)

and the second is the SDW component tools. The selection of

132

SDW component tools is very fundamental to the effectiveness

of the environment to support the development of software.

Prior to the selection of component tools, an apriori set of

criteria must be established as a basis for the selections.

The first part of this section deals with the definition of

this set of criteria. The second part specifies and

justifies the selections of component tools for Version 1.0

of the SDW.

4.2.1 Selection Criteria for the Mf1~ CmPonent. The

selection criteria for the SDW components is realized within

three categories. The first of these is the ability of the

component option to meet the design specifications

established in the SDW Preliminary Design. The second is

the availability of the component option to the Air Force

Institute of Technology/Electrical Engineering Department.

The final is a result of the limited time and resources

available to this thesis investigation. Since, only a few

new components may be installed on the SDW during this

investigation, due to limited installation time and limited

disk storage space, some type of ordering criteria must be

established for deciding which types of tools must be given

first priority for incorporation in to the SDW.

The ability of the component option to meet the design

specifications of the SDW Preliminary Design is an obvious

criteria for component selection. However, just because it

133

* is obvious, does not mean it could not of been overlooked.

For this reason, each of the SDW components selected for

incorporation into the SDW must be referenced back to a

specific design module specification in the Specification of

SDW Preliminary Design Module (Appendix C).

As an academic-institution, the Air Force Institute of

Technology is not able to spend a large amount of money on

the purchase of an automated software development tool for

the SDW. Furthermore, with the abundance of suc- tools in

the public domain or under the propriety of the U.S. Air

Force, AFIT should not have to purchase these component

tools. Thus, the selection criteria that all SDW component

tools must be available to AFIT free of cost is established.

Under this criteria, there exist three manners in which

components may be obtained for the SDW. Potential SDW

components may be either public domain software, Air Force

proprietary software, or available to AFIT on some type of

academic loan arrangement.

Since, there is also a serious shortage of manpower to

work on the development of the SDW, there is an additional

criteria imposed on the selection of SDW components that

deals with the availability of component options. The

manpower constraints on the SDW development do not permit a

great deal of time to be spent on the installation of SDW

components. As a result, it is strongly suggested that all

134

SDW components be available in VAX-11/780 (the SDW target

computer) compatible format. Thic eliminates the timely

re-hosting of foreign software systems. However, this

criteria may be overlooked in the event of a component

option who's potential merit to the SDW outweighs the cost

of re-hosting.

The final category of selection criteria for the SDW

components is previously mentioned in section 3.5.2 of this

document. This criteria deals with the relative importance

of the component to the realization of the SDW. Each

functional category of SDW components is given a measure of

importance to the SDW in Figure 26 of Chapter 3. These

measures of importance reflect the significance of members

of the tool group to the establishment of an effective

software engineering environment. In order to obtain the

highest measure of importance, the tool groups must be

required to provide the minimal capabilities common to all

software development environments or must be needed to

provide support to the pre-implementation stages of software

development. More details on this set of criteria is

provided in section 3.5.2.

In accordance with this just established set of

criteria, potential SDW components must be able to satisfy

the design specifications of the SDW Preliminary Design,

.* available to AFIT free of charge and in a VAX-11/780

135

compaitable version, and of significance to the initial

version of the SDW as measured by the criteria set forth in

section 3.5.2. With this set of criteria defined, the

component tools for Version 1.0 may be selected.

4.2.2 Selection of the DK Components. The greatest

constraint on the selection of SDW components is that

imposed by the limitations of manpower and time. As a

result of this constraint, only those design specifications

for tools that are specified to be of highest priority to

the initial realization of the SDW are satisfied by SDW

component selections for Version 1.0. Each of these most

significant design specifications are listed below with the

specific tools that will be used to satisfy them.

Design Specification Specific SDW
Deemed to be of Greatest Component
Significance to the SDW Selection

Compilers VMS PASCAL
VMS FORTRAN
VMS BASIC
VMS COBOL

Consistency Checkers Requirements
Engineering and
Validation System

Extended Requirements
Engineering and
Validation System

CIDEF
AIDES

Debuggers VMS DEBUGGER

Functional Design Tools CIDEF
Interim AUTOIDEF

136

AIDES

Graphics Editors AFIT Graphics Editor
SYSFLOW

Help Facility Built into SDW Executive

Information-Oriented Interim AUTOIDEF
Design Tools

Linkers/Loaders VMS Linker

Requirements Definition Tools Requirements
Engineering and
Validation System

Extended Requirements
Engineering and
Validation System

CIDEF
Interim AUTOIDEF

Simulators Integrated Decision
Support System (IDSS)

Teach Routines Built into SDW Executive

SDW User Manuals

Text Editors VMS EDT Editor
VMS SOS Editor

Wora Processors RUNOFF Text Processor

These particular software development tools are chosen

for incorporation into the initial version of the SDW

because they meet all of the requirements imposed upon the

selection process by the previously stated criteria. All of

these SDW component selections are available to AFIT from

one of two sources. The first source is the existing

VAX-11/780 VMS environment located in the AFIT Digital

Engineering Laboratory. The second source of components is

137I

the sponsoring Integrated Computer-Aided

Manufacturing/Systems Engineering Methodologies Group. The

tools available from these two sources are quite

satisfactory for the accomplishment of the primary

Preliminary Design Module Specifications. Thus, no other

- sources are required in order to complete the initial

implementation of the SDW.

Each of the specific SDW component selections satisfies

the functional requirements of it's design specification

tool group in a distinct manner. Thus, the selection of

each SDW component requires a certain degree of

justification. The following paragraphs provide this

justification for each of the design specification tool

groups.

The Compilers. The theoretical analysis of software

engineering environments, provided in Chapter 2 of this

document, points out that such environments must be able to

support a variety of programming languages in order to allow

the software developer to choose a language that most

effectively meets his needs. To this end, four distinct

languages are provided compiler support in the SDW. Each of

the languages has its own merits and disadvantages. Thus,

the software developer is given a greater deal of

flexibility in language selection. Only the four languages

.- -are given compiler support because they are the only

138

languages supported by the AFIT/Digitial Engineering

Laboratory (DEL) VAX-Il/780.

Consistency Checkers. The term, consistency checkers,

spans a large variety of software tools. Consistency

checkers are available to support products of almost all of

the stages of the software life-cycle. The consistency

checkers selected for the SDW are all embedded' within

Requirements Definition and Design tools. They provide

specific support for the analysis of the products of these

particular tools. The Requirements Engineering and

Validation System (REVS) and the Extended Requirements

Engineering and Validation System (EREVS) are used to

develop and analyze system (software system) requirements.

They store these requirements within internal data bases and

the consistency checkers are used to analyze these

requirements and report any consistency or completeness

anomalies. The CIDEF tool is used to produce and analyze

requirements or designs. This tool uses a subset of the

IDEFO methodologies and explicit data item definitions to

describe requirements and/or designs. The IDEFO diagrams

and the data item definitions are then analyzed by an

internal consistency checker for completeness and

consistency. The CIDEF tool also has the capability to

automatically generate FORTRAN 77 code from the complete

IDEFO models and data item definitions. The AIDES tool is

provided by Hughes Aircraft through the ICAM/SEM office.

139

AIDES is a structured design tool that is used for the

development and analysis of structure charts. AIDES has two

i. distinct components. The first is a structure chart editor

*used to develop the models and the second is a consistency

checker used to analyze the consistency and complexity of

" the structured chart models.

The Debugger. The VAX-11/780 VMS environment possess a

symbolic debugger facility that is essentially

language-independent. This debugger is thus a very powerful

tool for the dynamic analysis of software code. As a part

of the VAX-1/780 VMS environment means, this debugger is

already the property of AFIT/DEL and is more than powerful

enough to satisfy the debug requirements of the SDW.

The Functional Design Tools. Each of the three

functional design tools approaches the concept of automated

and interactive design is a different manner. CIDEF uses a

subset of the IDEFO methodologies and explicit data item

definitions to describe the design for a software system.

CIDEF has very powerful analytical capabilities. Not only

does the tool provide for the production and analysis of

design, but there is also a capability to generate FORTRAN

77 code from the completed designs.

140

I,

I

The Interim AUTOIDEF tool is a prototype of a more

extensive tool to be released at a future date. The Interim

* -. AUTOIDEF tool supports the drafting of IDEFO, functional

design models; IDEFI, information models; and IDEF2,

dynamic models. The Interim AUTOIDEF tool only recognizes

its products as drafted diagrams, whereas the later AUTOIDEF

will provide more analytical capabilities.

The AIDES Structured Design tool is provided to AFIT on

academic loan from the Hughes Aircraft Co. This tool

supports the development of functional designs as realized

in Structure Charts. The tool provides two specific

capabilities. First, a Structure Chart editor is used to

enter and draft the models, then, an analyzer is used to

check the models for completeness and complexity. The AIDES

tool is a very powerful facility that is undergoing

continued development and enhancement.

The Graphics Editors. Two distinct graphics editors

are planned for inclusion in the SDW. One is a result of

current thesis investigation in the AFIT/DEL being done by

Capt. Kevin Rose. The other is called "SYSFLOW". This

4 graphics editor is being re-hosted for the VAX-11/780 by

ASD/AD and should be available for inclusion in the SDW by

Fall 1982. Both tools provide interactive graphics

capabilities and the AFIT editor also supports the use of

color graphics.

141

1l"

The Help Facility. Most of the component tools provide

there own on-line and off-line help facilities. However,

the SDW user requires higher level help information on what

tool are supported by the SDW and how to access them. This

information is provided in the help facilities of the SDW

Executive and the supporting off-line documentation.

The Information-Oriented Design Tools. The only

specific information-oriented design tool is the Interim

AUTOIDEF. This tool provides the capability to draft IDEFI

information models. Interim AUTOIDEF is purely a drafting

tool, no analytical capabilities are provided. The graphics

editors may also be used to draft other types of information

models, if necessary.

The Linkers/Loaders. The VAX-11/780 VMS environment

provides a resident Linker/Loader that provides all the

capabilities required by the SDW.

The Requirements Definition Tools. There are four

specific tools used for requirements definitions. The

Requirements Engineering and Validation System (REVS) and

the Extented Requirements Engineering and Validation System

(EREVS) provide for the textual and/or graphical displaying

of requirements, the consistency checking of requirements,

and the simulation of requirements. The difference in the

two systems is that EREVS provides greater analytical

capabilities and allows for the stating and analysis of

142

A

concurrent requirements. These tools use the Systems

Specification Language (SSL) and the Requirements

Specification Language (RSL) to textually describe

requirements and a process flow diagram called an RNet to

graphically portray the requirements.

The Interim AUTOIDEF tool is used to draft IDEFO models

of requirements. The CIDEF tool may also be used to protray

the requirements in limited IDEFO models and then do some

analysis on these models.

The Simulators. The Integrated Decision Support System

(IDSS) is used to develop and execute IDEF2 dynamic models.

These models may be developed either graphically or

textually with IDSS. The IDEF2 models are network- oriented

simulation models, however, they may be expanded with

FORTRAN 77 code to provide for discrete event modeling. The

REVS and EREVS also have limited embedded simulation

capabilities. To realize these capabilities, PASCAL code

must be entered into the statement of requirements.

The Peach Routines. The teach facilities for the SDW

are embedded into the Help Facility of the SDW and the

corresponding off-line documentation.

The Text Editors. There are two generally recognized

types of text editors in existance today. They are

line-oriented editors that edit text a line at a time and

143

screen-oriented editors that edit text a screen at a time.

The SDW uses both types of editors. Both types of editors

can be found within the VAX-11/780 environment and thus

these editors are selected for inclusion into the SDW. The

SOS editor is the standard Digital Equipment Corporation

(DEC) line-oriented editor. The other editor is the DEC EDT

editor that is a very powerful, screen-oriented editor.

The Word Processors. Only one word processor is

available on the VAX-11/780 at the present time. This word

processor is the RUNOFF Text Processor. Although not a true

word processor, the RUNOFF Text Processor does provide for

the efficient product of textual material. RUNOFF is an

adequate substitute for a true word processor until one

becomes available on the VAX-11/780 VMS environment.

i"4.3 Detailed Dsig of the__ SDWJ Exegtv.

4.3.1 A Regi e Aplitio of he Softwar

L-fe-Cygle. The SDW component tools provide the SDW with

its developmental capabilities. However, the high level

requirements for the SDW state that it must be an integrated

environment. The type of integration refered to here

requires that all of the component tools be accessible

through a common unified interface. This requirement is

satisfied by the SDW Executive. The SDW Executive (SDWE) is

144

essentially a sub-system of the SDW. The SDWE sub-system is

the interface to and controller of the SDW component tools.

Obviously, the SDWE is, itself, a major development project.

In order to develop an effective SDWE, a recursive

application of the software life-cycle is performed on the

SDWE. In particular, the detailed requirements for the SDWE

are defined, a preliminary design is then developed, and the

algorithms for the SDWE modules are established.

4.3.2 Detailed Requirements Definiti n fr the SDWE.

The SDWE is required to fulfill two roles within the scope

of the SDW. First, the SDWE must provide an efficient and

usable interface to components of the environment and,

second, it must be able to control the execution of each of

these components. Currently, the number of SDW components,

as defined in section 4.2.2, is relatively moderate.

However, the SDW is a developing environment and many

additional tools are expected to be incorporated into the

environment in the future. In order to control each of

these components, the SDWE organizes each of the SDW

components into a functional group. These functional groups

are defined and justified in section 4.3.3 dealing with the

SDWE Preliminary Design.

The first step in the development life-cycle of the

SDWE is the definition of the specific requirements for the

SDWE. The objective of this stage of the SDWE development

145

is to define the exact capabilities that the SDWE must

possess. Two distinct Software Engineering Methodologies

are candidates for the definition of the SDWE requirements.

They are the Data Flow Diagram technique and the IDEFO (ICAM

Defintion technique). As discussed in section 2.4 of this

document, the Data Flow Diagram technique defines

requirements in terms of data flows and data

transformations. The IDEFO technique uses control flows,

input data flows, output data flows, mechanisms, and

functional activies to define the system requirements. The

IDEFO technique is essentially the same technique as the

SADT(TM) technique described in section 2.2. As an

interface and controller routine, the SDWE is not easily

described in terms of data flows and data transformations.

Instead, the use of control specifications and functional

activities is more appropriate to the explicit definition of

the SDWE requirements. As a result, the IDEFO methodology

is chosen to describe the SDWE requirements. (Refer to

section 2.2 for an explanation of the IDEFO methodology as

it is identical to the Structured Analysis and Design

Technique described there.)

The particular diagrams of the IDEFO model for the SDW

Executive are enumerated in the table below:

146

a

SDW Executive Requirements Model

Node Title

A-0 Utilize the Software Development Workbench

AO Utilize the Software Development Workbench

Al Initialize the SDW

A4 Execute the User's Command

A41 Provide a Functional Tool Group

A42 Provide Help Facility

A43 Access the Pre-Fabricated Software
Description Data Base

The top level diagram of the SDWE requirements model is

shown in Figure 27. In this model, the SDWE is viewed as

providing the ability to utilize the SDW. The utilization

of the SDW is controlled by UserCommands and accepts other

User-Input in order to perform its software development

function. The output of the SDW utilization are

Software_Development_Products.

The Activity "Utilize the Software Development

Workbench" is analyzed by the Figure 28. This figure

illustrates the breakdown of the activity into component

activities. The first of these activities is the

"Initialize the SDW" activity. This activity uses

147

UserCommands to control the initialization process and

specify the enabling/disabling of the automatic menu

facility. UserInput is used to establish a data storage

schema, whether it be a Project Data Base or the user's

default directory. A detailed analysis of the "Initialize

the SDW" activity is provided in Figure 29.

The second activity shown in Figure 28 is the "Provide

a Set of Top Level Options". The function of this activity

is to allow for only the SDW options that are appropriate to

the top level module of the SDW. The manner in which the

options are presented to the user is determined by the

Auto_Menu_Flag and may use the MenuFiles mechanism. This

activity may also be re-initiated by the

ReturntoTopLevelCommand. The output of the activity is

a set of TopLevelOptions which may be executed in the next

activity box in the figure.

This final activity, "Accept and Execute the User's

Command", receives the User-Command as a control item that

is used to select and execute the Desired_Option. Some of

these options do require additional User-Input. The

resulting output of this activity is either a

ConclusionMessage, a ReturntoTopLevelCommand, or some

type of SoftwareDevelopmentProduct. The "Execute the

User's Command" activity is analyzed in greater detail in

Figure 30.

148

* -. LU

z

C.C)

r4-)

00

LU

0

0
0 cLU

0

C)

4j U)

4u

0 I a

40 +) 4-*4

C4.

(0

x La LUI

$4 CL

uj a-

zz

14

I4-)
to 0

.. J,>- 0 ruU)

UU

U) 00

Luu

01

4r

cc4- u c 0

C~l 0

.4- 14-1
'00

Cd 0

0u cc *i- 0r 14l0 -
> 0 -H r. 4)

0 +) > 4-))

14 4) I
o 0 C)

'0 4)

14-

e~ n

IL.u

0

4c4

4-150

4)4

0

,-0
.4)-

4-) -'4

LU(-

LU

zN

4w 0- -

z 4) 4)

W O 0

0 .4.04 (

1% 4)

4-4I
LI.

o ~ ~ cctjr44-

oco

4 ~ 4 0

424

LU
LU

0
- z

The next diagram in the SDWE Requirements Definition Model

is found as Figure 30. The UserCommand types are the

FunctionalTool_GroupCommand that provides access to one of

• the fourteen functional tool groups, the HelpRequest that

provides access to the SDW Help Facility, the

Pre-FabSoftwareDescriptionData_BaseAccessRequest that

provides access to that data base for either the addition or

retrieval of a software module description; the

Menu-Request, that provides a display of the current menu

options; the ListProject DataBasesRequest, that provides

a display of all existing Project Data Bases; the

*! Termination-Request, that causes the graceful completion of

" -" the SDW session; a DCLCommand, that is any of a set of

host, monitor level commands that are also available to the

SDW user; and then the Invalid_Command, that must be

trapped and recovered from by the SDWE. Each of these

commands are used as control by a specific activity on this

diagram. The "Provide a Functional Tool Group", "Provide

Help Facilities", and "Access the Pre-Fab S/W Description

DB" activies are all analyzed in greater detail in the

following diagrams shown as Figures 31-33.

152

0 Iv

IV) (IF 6___ _____F

*0q r- 4O0'

c4 F w 1 S

U)1

00

w

cr o A

fn I,

U)~(0I .r4 r- m

0 +3

0LU z 0.
0Orl

cc 4t 4) "_ _

U- (60

IO 0, C4
ccc 0 s..H

~I- 4
UL

_ _ _0 (D!

CV~ U) :c3

The "Provide A Functional Tool Group"1 activity

illustrated in Figure 31 is very similar to the AO diagram.

The initial activity is to "Identify the Functional Tool

Group". This is done with either a header message or a menu

of options depending on the setting of the AutoMenuFlag.

The SDWE functional group must then provide for the options

required by that tool group. The DesiredOption is then

selected, the option set up for execution, and then

executed.

The next diagram, "Provide Help Facilities", is

illustrated in Figure 32. This diagram specifies what is

required of the SDW Help Facility. In general, the SDW Help

Facility must be able to provide either generalized help on

the SDW, specialized help on any SDW component, and help on

the DCL commands through the VMS Help Facility.

The final diagram of the SDWE Requirements Model is the

"Access the Pre-Fab Software Description Data Base" diagram

found in Figure 33. This diagram specifies that the SDWE

must provide means to both add and retrieve descriptions of

existing software modules to and from the Pre-Fab Software

Description DB. Keywords are to be used to access these

descriptions.

154

4)

L 4-J

'-i oo00 r40 Fn. C4)~ ~

o
44-u '

00

0l 00-'. 4'o Io a

-4 *4* CS ~
U)- 4-

2 w .0

W . 0. Is &

00 r4 00

0z -l z 0
0 WI-0

0 =20 3

-- 4

I> T

CC
go N;

00

'S-

A -4

U) U

40-

C 00-

4.

M.'. 0
* IL _ z

I 155

I

U -C U)

00

o0 0 H

CU) 4)

o j o 0

4

U)~ En
o UH U)

LU .4-4-)

H U) i:) a

2

S4

c'J

40 4.)
U))

0 U0

-4-

00
LU. U

0

0)0
-oj

H
;n

0

*r
4 156

0u U)

Oprz
00

0
cnd

*1"10

C))
a) P

-Ha
CO(

41

LuJ
rc) U)

00C

aJ z V)

z 0)

L

C

2 -H0

CU 0 CU

>4
*-H 0

U) CU)

0)

04t
4)

0 .

0 c U

CL14
4 wU)

CD

X4)

0'0
UU)

v3 U3

4 U) Fn
U

00

cvC)

Lfl (n U

U)- .9.4 -

CC 0 C

5 L z L .4
-)4

u

157

The SDWE Requirements Model just illustrated, demonstrates

what capabilities must be provided in the SDWE in order for

that SDW sub-system to perform its functions of controlling

the SDW components and providing an efficient interface to

those components. This statement of the detailed

requirements of the SDWE is used for the initial development

of the SDWE. Realizing that these stated requirements are

subject to modifications resulting from experiences with the

initial implementations of the SDWE, a post-implementation

statement of the modified requirments for the SDWE is

included as Appendix D.

It is also very important to establish a set of

* .implementation language requirements for the SDWE. The set

of requirements delineated below represents a minimal set of

requirements for the SDWE implementation language.

Language Requirements for the SDWE

1- The language must be available on the
target machine (VAX 11/780).

2- The language must have facilities for
conditional branching.

3- The language must support modular design.

4- The language must provide input/output
facilities for data, as well as, other
information handling facilities.

5- The language must be able to control
access to and the execution of the SDW
component tools.

158rI

These requirements reflect the "essential" capabilities that

a language must possess for use in the implementing of the

SDWE. Other facilities, such as strict data typing and

structured programming support, are also desired but not

necessary.

4.3.3 Preliminary Design of the SDWE. The development

of a preliminary design for the SDWE involves the

establishment of a modular, top-down structure for the SDWE.

This structure must contain modules that are specified to

perform each of the previously stated SDWE requirements. In

order to insure that the preliminary design satisfies the

requirements, each design module of the preliminary design

is mapped back to the specific requirements that it

fulfills.

The SDW requirements call for the SDW components to be

assembled into functional groups. This is done in order to

provide for the easy adding of new SDW components and to

provide a more user comprehensible interface to the SDW

component tools. These SDW Functional Tool Groups need to

be specified prior to the development of the SDWE

Preliminary Design because distinct modules are required to

interface with and control each of these tool groups. The

SDW Functional Tool Groups specified for the SDW are

4established to provide support to each of the generic tool

groups specified in the preliminary design of the SDW stated

159

in Chapter 3. These tool groups are:

SDW Functional Tool Groups

1- Comparators

2- Compilers

3- Debuggers

4- Design Tools

5- Dynamic Analysis Tools

6- Editors

7- Graphics Editors

8- Linkers

9- Performance Monitors

10- Requirements Definition Tools

11- Simulation Tools

12- Static Analysis Tools

13- Test Case Generators

14- Word Processors

The only tool types not specified by a precise tool group

are code generators and configuration managers. Code

generators are mostly design tools with enchanced

capabilities, so this t~'pe of tool is considered under the

design tool's group. Configuration managers are not given a

tool group because they should really be incorporated into

the SDW Executive or the Project Data Bases.

160

a

These functional groups are derived from the S1N-

Preliminary Design Modules Specifications (Appendix C).

Some of the design modules specified are grouped into a

single functional group because the functions of the dcsign

modules specifications are logically realized as a single

type of functional capability. For example, the design

specifications refered to as Functional Design Tools,

Information-Oriented Design Tools, and Consistency Checkers

are often realized in single SDW components such as Interim

AUTOIDEF. Thus, the generic term, "Design Tools", is used

to refer to tools satisfying any of these design

specifications.

W There are two candidate methods available for

expressing the Preliminary Design of the SDWE. They are the

IBM Hierarchical Input Process Output (HIPO) technique and

the Structure Charts technique. Both techniques support

top-down structured design and specify the inputs and

outputs to each module of the design. The Structure Chart

technique distinquishes between data inputs and output and

control inputs and outputs. The HIPO technique does not

make that distinction, however, it does provide a more

detailed and algorithmic definition of the module's function

(the process). The Structure Chart technique simply uses a

functional title for the module's process.

161

...

* - Either of the two techniques could effectively be used

to define the SDWE Preliminary Design. The Structure Chart

technique is chosen for three particular reasons. First,

the Structure Chart does not define the algorithms for the

design modules. These algorithms are the objective of the

detailed design. The preliminary design's objective is to

simply define the system's structure. By using the

Structure Chart technique, later modifications to the

* algorithms of the SDWE need only require alteration of the

detailed design. The Structure Chart technique more

accurately satisfies the scope of the preliminary design

stage as that stage is defined in this document (Section

1.3). The second reason is that the Structure Chart

technique provides for the distinction between data and

- . control parameters. This is important to the design of the

*SDWE because the SDWE must use a number of control

parameters and flags in order to accomplish the flexibility

required to handle different user devices as well as users

with different levels of experience. The final reason for

the use of the Structure Chart technique instead of the HIPO

technique is that one of the selected SDW components

(Hughes' AIDES) supports the automated and interactive

development of Structure Chart models. There is no tool

found to be available to APIT for supporting the development

of HIPO models.

162

With these tool groups specified, the Preliminary (or

structural) Design of the SDWE may be developed. The

i- preliminary design top level module specified for the SDWE

is presented in Figures 34 and 35. This design module,

called SDWEXE, provides the high level interface for the SDW

user and controls all of the other modules that are used to

control and interface to the various SDW components and SDW

commands. In particular, the SDWEXE module must fulfill the

SDWE requirements stated in SDWE Requirements Model diagrams

AO and A2, as well as boxes 4,6, and 7 of A4. The SDWEXE

module calls the other modules of the SDWE to perform the

remaining activities of diagram A4. Each of the SDWE

Preliminary Design modules identified with and asterisk (*)

is a SDW Functional Tool Group Module that must satisfy the

requirements of diagram A41 (Figure 31) for that particular

tool group. The entire SDWE Preliminary Design is specified

in Appendix E.

U1 .

.I

Q La Q x I ua
0 - w 0oc

O.W 06ofI MC

w 0

o~cr

o o oor.-
a. 0 0.

ILI IL (x1

0. w.. w~

EU)

SAl

4x z 0

IL-

CL)

00

I--

ce 0

o r

La,
j 0,
gL :34AZ1.

165C
0

"I

The other SDWE Preliminary Design modules that are

subordinate to the SDWEXE module are used to fulfill the

requirements defined by the other activity boxes of diagram

A4. In particular, the Help Facility and SDW Help Facility

modules are used to satisfy activity diagram A42. The List

Project Data Bases design module tulfills box 5 of diagram

A4 and the Access Pre-Fabricated Software Description Data

Base module satisfies diagram A43. The Trap Bad Commands

design module is used to satisfy box 7 of diagram A4.

Each of the SDWE Preliminary Design modules subordinate

to the SDWEXE module are passed two control parameters. The

first of these parameters is "Device" which contains the

name of the user's device and is to be used for the

exploiting of device specific feature by the modules and

components. The second control parameter is "Prompt" which

is the Auto_Menu_Flag specified in the SDW Requirements

Model. This control parameter dictates whether the current

menu of options is automatically displayed at every command

prompt.

There is also a final preliminary design specification

that is not explicity shown in the SDW Preliminary Design

Model. This design specification states that the SDWEXE

module sets up the DataStorageScheme and all project

development data be stored according to the

DataStorageScheme. The Data_StorageScheme may be either

166

I

a Project Data Base or the user's default directory.

This SDWE Preliminary Design specifies the structure to

be used in developing the SDWE. Like the previously stated

detailed requirements for the SDWE, this preliminary design

is subject to modifications that may be required by

experiences with the initial SDWE implementation. The

updated version of the SDWE Preliminary Design is included

as Appendix E. The components of this level of design are

simply titled boxes. The next and final step in the

development of the SDWE sub-system is to use the SDWE

Requirements Model and the SDWE Preliminary Design to

develop a SDWE Algorithmic Design.

...4,3.4Algorithmi Dgig - of thle SDWE. Within the

software life-cycle, the detailed design stage is

characterized by the development of the design module

algorithms. In order to better describe the objective of

this stage, it is refered to as the Algorithmic Design stage

in the rest of this document. The design modules for the

SDWE are specified in the SDWE Preliminary Design model

- (Figure 34-35). Explicit algorithms for these design

modules are developed using the SDWE Requirements model

(Figure 27-33) for a reference.

167

a

The algorithms for the SDWE design modules are

expressed in Structured English (Ref 90:48-49). The other

Software Engineering Methodologies available for the

specification of the algorithms are Decision Tables

(Ref 90:49) and Decision Trees (Ref 90:49). Neither of these two

options are very applicable to the development of the SDWE,

whereas, the flexibility of Structured English makes it the

most appropriate choice.

The subset of Structured English used to describe the

SDWE algorithms uses a limited set of constructs, action

verbs, data items, and other english words to formulate the

algorithms in an easily understandable form. The Structured

English constructs of the SDWE algorithms are the IF_THEN,

IFTHEN_ELSE, and REPEATUNTIL. Structured English is a

very u3eful tool for describing algorithms because of its

understandability. As a result, the reader who is

unfamiliar witi Structured English should be able to pick up

it's concept without much difficulty.

The highest level design module of the SDWE Preliminary

Design model is the SDWEXE v:odule. This module must satisfy

the requirement specifications defined by diagrams/activity
d

boxes A0, Al, A4, A41, A42, A43 of the SDWE Requirements

model (refer to Figures 28-33). The algorithm for

satisfying these requirements is detailed below:

168

SDWEXE Algorithm

(* Initialize the SDW *)

WRITE SDWHeaderMessage
GET UserDevice
GET HelpRequest
IF HelpRequest equals true THEN

CALL SDWHelpFacility
IF ProjectDBs are in use

GET ProjectDBRequest
IF ProjectDB-Request is true THEN

GET ProjectDBName
IF ProjectDBName does not
already exist THEN

CREATE ProjectDBName
SETUP ProjectDBName

GET AutoMenuFlag

(* Provide a set of Top Le\vel Options *)

DEFINE FunctionalTool_GroupCodes
DEFINE Help_Command
DEFINE MenuCommand

__- DEFINE ListProjectDBsCommand
DEFINE AccessPre-FabS/W_DescripDB
DEFINE TerminationCommand

.•[(Accept and Execute the User Command *)

REPEATUNTIL UserCommand equals TerminationCommand
IF Auto_MenuFlag is true THEN

DISPLAY TopLevelMenu
GET User_Command
IF UserCommand is invalid THEN

CALL TrapBadCommands
EXECUTE User-Command

4 END_REPEATUNTIL
CLOSE ProjectDBName
WRITE ConclusionMessage

4
Although each SDW Functional Tool Group controls and

*- interfaces to a different set of SDW components, the manner

in which each of the functional tool group iiodules preform

their functions is very similar. As a result, a generic

169

algorithm is provided for these modules. This algorithm is

presented below:

Functional Tool Group Module Algorithm

REPEAT_UNTIL User_Command equals ReturnCommand
IF Auto_MenuFlag is true THEN

DISPLAY CurrentMenu
ELSE (Auto_Menu_Flag is false)

SO DISPLAY Functional_Tool_Group_ID
DEFINE Help-Request, MenuRequest, Return_Command
GET UserCommand
IF UserCommand is invalid THEN

CALL TrapBad_Commands
IF UserCommand requires parameters THEN

GET Parameters
EXECUTE UserCommand

ENDREPEATUNTIL
RETURN to SDWEXE

There are several other design modules in the SDWE

Preliminary Design model that must have algorithms specified

for them. They are the List Project DBs module, the Access

Pre-Fab S1W Descrip. DB module, the Help Facility Module,

the SDW Help Facility module, and the Trap Bad Commands

module. The algorithms for these modules are defined below:

List Project DBs Algorithm

IDENTIFY ProjectDB_Names
WRITE Header-Message
WHILE more ProjectDBNames

WRITE next ProjectDBName
END_WHILE
RETURN to SDWEXE

.

170

Access the Pre-Fab S1W Descrip. DB Algorithm

DEFINE Add_S/W _DescripCommand
DEFINE Find_S/WDescripCommand
DEFINE Help-Command, Menu_Command, Return_Command
REPEATUNTIL UserCommand equals Return-Comnand

IF AutoMenuFlag is true THEN
DISPLAY CurrentMenu

GET UserCommand
EXECUTE Use rCommand

ENDREPEAT_UNTIL
RETURN to SDWEXE

Help Facility Algorithm

GET Type-ofHelpRequest
IF Type-ofHelpRequest equals SDWHelpRequest THEN

GET SDW_ComponentSelection
"V IF SDLComponent_Selection is "SDW" THEN

CALL SDW_HelpFacility
ELSE

-V DISPLAY Appropriate_HelpFile
ELSE (Type-ofHelpRequest equals VMSHelpRequest)

GET VMSSelection
CALL VMSHelpFacility

RETURN to calling module

Trap Bad Commands Algorithm

DISPLAY BadCode
EXPLAIN BadCode

171

SDWHelpFacility

PROVIDE Menu-ofGeneralHelpOptions
GET Help-Option
DISPLAY RequestedHelpFile

These SDWE algorithms completely specify the SDWE in terms

of detailed design. The algorithms avoid extremely low

level specifications because those types of specifications

are often implementation language dependent and the

Algorithmic Design of the SDWE is meant to be

language-independent. Furthermore, the use of the Project

Data Bases is specificed in very broad terms in these

algorithms. The Project Data Bases may be designed and

implemented in a variety of manners and their design and

implementation should not be significant to the Algorithmic

Design of the SDWE. Even through the design of the Project

Data Bases is independent of the SDWE algorithms, it is

still very fundamental to the overall SDW and, as such, is

stated in the following section. The Algorthmic Design of

the SDWE is also subject to modifications that may be

required after the initial implementation of the SDWE. For

thiz reason, the modified SDWE Algorithmic Design is

included as Appendix F.

172

Ui

4.4 Desigin RL the ProQiect Data Baes

The Project Data Bases of the SDW are the means of

storing the software development data and products produced

with the SDW. As such, the Project Data Bases are a most

fundamental sub-system of the SDW. The specific design of

the Project Data Bases must be developed to fulfill the data

storage requirements presented in the Requirements

Definition chapter of this document. In particular, these

requirements call for the integration of development data

into a common data storage area (Section 2.3.6), the

recording of relationships between the products of the

different stages of the software development (Section

2.3.7) , the means to easily access the development data for

consistency and completeness checking (Section 2.3.13) , and

the ability to easily update the stored development data

(Section 2.3.16) . The concept of the integration of

development data storage may actually be realized in two of

the five levels of integration described in Section 3.4.6.

The first of these two levels defines integration to be the

storage of development data from the SDW into a single data

area for each project supported by the SDW. The second,

more demanding level of integration, requires the use of a

Data Base Management System (DBMS) to store all of the

development data and the relationships between the

* development data items.

4 J 73

Approach Taken in Designing the Project Data Bases.

The design of the Project Data Bases is presented in two

stages. The first of these stages is the design for the

" :immediate implementation of the Project Data Bases. The

second stage presents a Project Data Base design suggested

for ultimate implementation in order to fulfill all of the

data storage requirements for the SDW. The first stage of

the Project Data Base design is designed to fulfill the

first level of integration of development data. This design

consists of a single data storage area and is described with

greater detail in the next paragraph. The second or

ultimate design stage of the Project Data Bases attempts to

fulfill all of the data storage requirements of the SDW.

This design uses a DBMS that saves and preserves, not only

the development data items, but also the relationships

between these items. The design of the Project Data Bases

is divided into these two stages because the design required

to fulfill all of the SDW data storage requirements can not

be fully realized until a full and complete set of SDW

component tools is established. In order to at least

accomplish some of the SDW data storage requirements, the

first stage of the Project Data Base is presented.
A

The first stage of the Project Data Base design is

developed to satisfy the first level of integration of the

SDW development data. This level of integration requires

that all of the development data for a specific software

174

development project be recorded in a common data storage

area. However, each of the products of the different

development stages are stored separately within this common

data storage area, none of the relationships between the

products are automatically recorded in this design. This

design is established because it fulfills all of the data

storage requirements that can be satisfied prior to the

finalization of the SDW component set.

The second stage of the Project Data Bases design must

satisfy all of the development data requirements for the

SDW. This design must fulfill the second level of data

storage integration. The design must preserve all of the

development data items and the relationships between them,

regardless of the development stage in which they were

created. By fulfil.ling this second level of integration,

the design also satisfies the requirement for traceability

between development data items by means of the preserved

relationships. Consistency and completeness checking of the

development data must be supported by this design. The

development data must be easily updateable also.

Furthermore, the Project Data Base must be able to control

the configurations of different versions of a software

project. An example of this capability is found in the

Source Code Control System (Ref 71,72).

3.75

a

In order to fulfill these requirements for development

data storage, the second stage of the Project Data Bases

design uses the concept of data schemas and a DBMS to

automate the handling of the development data and the

relationships between the data. A schema, in the sense of a

DBMS, is an overall outline of the data items and the

relationships between them. The schema is automatically

enforced by the DBMS. A sub-schema is simply a subset of

the schema that defines a logically related set of data

*items and relationships.

• The second stage of the Project Data Base's design

outlines a data schema for the Project Data Bases that must

be handled by a DBMS. The outline of this data schema

consists of the definition of the Project Data Bases

sub-schemas and the requirements for each of these

silh-schemas. The definitions and requirements for these

sub-schemas are presented in generic terms because they can

not be fully specified until all of the SDW components are

satisfied.

The schema for the second stage Project Data Bases

design calls for the use of seven sub-schemas. Six of these

sub-schemas are used to store the development data that is

realized as belonging to one of the following categories:

requirements definition, preliminary design, detailed

design, program code, testing activity data, and other

176

I

associated documentation, such as user manuals, maintainance

guides, installation guides, etc. The seventh sub-schema is

used to preserve the relationships between the elements of

each of the other sub-schemas. The SDW users and the SDW

components interface to the Project Data Bases through this

seventh sub-schema. A model of this design is presented in

Figure 36. This model is a formalization of a concept

developed by the sponsor of this research investigation,

Rick Mayer of the ICAM/Systems Engineering Methodologies

Group.

By using the seven sub-schemas and a DBMS, the second

stage Project Data Base design fulfills the all of the

S'3. requirements for integration of development data storage.

Furthermore, the seventh sub-schema, that preserves the

relationships between the products of the different

development stages, provides for traceability between

developmtcnt data items and thus satisfies that requirement.

The use of separate schemas for each stage of the software

life-cycle allows consistency and completeness checking of

stage products to be automated with data retrieval routines.

(The Integration stage does not have a specified sub-schema

*0 because it does not involve the storage of extensive amounts

of development data. It is replaced by a sub-schema for

testing that holds the test data and test plans for the

software system.) By using a DBMS, the updating of

development data is easily accomplished with the automated

177

q

* capabilities of the DBMS. Furthermore, the sub-schema

defining relationships between the other sub-schemas allows

updates to be traced through the other stages of the

software development.

The detailed design and implementation of this second

stage of the Project Data Bases design requires the

establishment of a complete set of SDW components, an

analysis of the data requirements for each of these

components, and a development of the precise schema and

sub-schemas required. After this stage of the Project Data

Bases design is realized, interface routines must be

developed to allow the SDW components to thrive off the

Project Data Bases.

1

'

[178

.-

La

La

IL

'7,

6--

Ldd

Cd

179

Aa.Summary.

As defined in section 1.3 of this document, the

detailed design stage of the Software Life-Cycle involves

the specification of the algorithms for the system under

development. For this reason, the stage is often refered to

as the algorithmic design stage. The development of complex

systems often involves recursive applications of the

Software Life-Cycle for component sub-systems. The detailed

design of the SDW involves the specification of the SDW

component tools as well as a complete development of an

executive sub-system that must provide an integrated

interface to the SDW components.

The selection of SDW component tools is highly

significant to the effectiveness of the SDW as a software

development environment because these tools provide all of

the development facilities for the SDW. Only a limited

number of tools are chosen for initial incorporation into

the SDW because of two particular constraints on this phase

of the SDW development effort. First, the target machine,

the AFIT/DEL VAX 11/780, is a limited configuration that

possess only two RK07 disk drives and no tape drive. Thus,

the transfer, re-loading, and storage of potential SDW

components is severely constrained. Second, the limited

time involved in this phase of the SDW development effort

allows only a limited number of potential component sources

180

to be investigated.

The development of the SDWE requires a recursive

application of the Software Life-Cycle. The SDWE is a most

significant sub-system of the SDW because it is the

interface to and controller of the SDW components. The SDWE

is what makes the SDW an integrated software development

environment. In this chapter, the initial requirements

definition and design of the SDVI'E is developed. The

specifications are, however, subject to modification as

determined during the later implementation and testing

stages of the SDWE. As a result, the final specifications

of the requirements and designs of the SDWE are stated in

the models included as Appendices D, E, and F.

With the detailed design of the SDW thus specified, the

initial implementation of the SDW may begin. The strategy

utilized for implementation and the implementation specific

decisions are described in the following chapter of this

document.

1.81

i7D-A124 872 AN INTERACTIVE AND AUTOMATED SOFTWARE DEVELOPMENT 3/
ENVIRONMENT(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFB OH SCHOOL OF ENGINEERING S M HADFIELD DEC 82

UNCLASSIFIED RFIT/GCS/EE/82D-i7 F/G 9/2 N

momhohhohmoiI
I fllflfflflflfl lllf

bq

10- -L2.....

.
13,. - ' .. ;,.,l1.-. r . 1 "/ .4- l.*0s,. _ -l:,

1. 2.03.-

11. . 1

I:
MICROCOPY RESOLUTION TEST CHART

*NATIONAL BUREAU OF S'TANDARDS-1963-A - " :.

. - . '- - :,-- .- ,..-.,- , - _

.. . _ .. .= .-,. , . , .- 4 4 . . "c" . . . - ." " - . " .. ." .- ,, . --. - ." .- . - -

WI!

:C~p~ it-_ 5 H MPLEMENTATION STAG

. 4-

182

..

."L"5 Introduction

The implementation stage of the software life-cycle is

characterized by the conversion of the detailed design

specification into executable code modules. This stage is

not entirely distinct from the previous stage, detailed

design, and the following stage, integration. Partical

implementation is often accomplished prior to the

development of a full detailed design specification. This

is done in order to study the feasibility of certain design

specifics prior to a full commitment to a specific design

development. The use of incremental implementation is also

useful in testing the developing system. Because of reduced

complexity, this type of code testing tends to be very

effective (Ref 90:208-225). The stage following the

implementation stage is the integration stage. During this

stage the individual sub-systems of the development effort

are brought together into a single system. Sub-systems may

be tied together prior to the complete implementation of

other sub-systems. Thus, an overlap between the

* implementation and integration stages is evident.

The Software Development Workbench (SDW) is composed of
the controller sub-system called the Software Development

Workbench Executive (SDWE) and the SDW component tools. The

specific objective of the implementation stage is to fully

. code and test the SDWE design specification of Appendices E

183

...7...............* .

and F (Preliminary Design for the SDWE and Algorithmic

Design of the SDWE, respectively). To this end, the

implementation stage described in this chapter defines and

justifies a choice of an implementation language,

establishes an implementation strategy and discusses a

complete set of implementation specific decisions. Also,

the changes to SDW Version 1.1 are presented. Specific

implementation of the SDWE utilizes a top-down approach.

The overall modular structure is in Figure 37.

184

771 -Jl-

0 LlJ 0r -u

-L -j LL (L

LA m

cm~ L t Jj I)Z

0 0 0 1-

ef I. L.9 J

LEaLII.
x

ELL

0

1.- 0)lai

U) 0 .L o .

0. C41 0

41 0

0 IL 0 T 0. 0 C

IL ci

____ca

The Top Level module is coded and tested first. Then, the

Provide Editors module is coded, tested, and integrated to

the Top Level module and the SDW editor components. At this

point, this initial implementation of the SDW can be used to

code and test the rest of the SDWE.

!il 52 h i of An Implementation Language for th SDWE

A fundamental decision that must be made before the

implementation stage of development is the choice of an

implementation language. A varied spectrum of computer

programming languages are available to the contemporary

programmer (Ref 60). Each language posses its own

individual features and limitations. A careful choice of a

programming language can greatly reduce the time and effort

involved in implementing and maintaining a particular

software system.

Two categories of languages are studied and compared

for potential use in the implementation of the SDWE. The

first category of languages is quite large and very popular.

This category is the Higher Order Languages (HOLs).

Languages of this category are characterized by a set of

powerful control flow structures and a variety of potential

data types. The second category of languages under scrutiny

for the implementation of the SDWE are command languages.

186

-1---- .~- - '- - - -~-~ ~. .

*7

These are interpreted languages that are specifically

designed for one type of operating system. Most command

languages possess at least the primitive control structures

of the HOL.

For the detailed analysis of these two categories of

alternatives, available representatives of each category are

chosen. There are two HOLs available on the target machine,

FORTRAN and PASCAL. However, PASCAL possess much better

information handling facilities than does FORTRAN (Ref 87)

Since this application is primarily information handling

. oriented, PASCAL is the more favorable of the two options.

• The Digital Equipment Corporation (DEC) Command

Language (DCL) is selected to represent the command language

category (Ref 27). DCL is the representative because it is

the only command language available on the target machine.

Prior to the comparison of the two alternative

languages, a set of language requirements for the SDWE are

established as a measure of the analysis of the languages.

These requirements are first stated in Section 4.3.2 which

deals with the specific requirements for the SDWE. However,

these language requirements are also delineated in the table

below:

*; 187

Language Requirements for the SDWE

1- The language must be available on the
target machine.

2- The language must have facilities for
conditional branching.

3- The language must support modular design.

4- The language must provide input/output
facilities for data, as well as, other
information handling facilities.

5- The language must be able to control
access to and the execution of the SDW
component tools.

These requirements reflect the "essential" capabilities that

a language must possess for use in implementing the SDWE.

Other facilities, such as structured programming support,

are also desired but not necessary because the constructs of

structured programming may be built with simple decision and

branching statements.

The PASCAL language is a relatively new language,

having been developed by Nicklaus Wirth in 1971. PASCAL

possess exception information handling capabilities as

provided by its varied and powerful data structures. PASCAL

is a structured language meaning it supports a set of

powerful control structures, in particular, the

4IF-THEN-ELSE, WHILE-DO, REPEAT-UNTIL, etc. These control

-. structures are the essence of structured programming

188

rro.r. :. / -. .. '.r r - - . 3 .. x_ " / ° -./.. /° . -* -- .-. . . .

support. PASCAL is also a relatively fast and efficient

language to run because it is translated into machine code

with a compiler. The major disadvantage of PASCAL in terms

of the SDWE is that it can not interface to the command

language routines because of the architecture of the VMS

operating system. Thus, PASCAL may not be used to run the

SDW component tools.

On the other hand, the DCL language may easily

interface to the command routines of the SDW component tools

since they are also implemented in DCL. There are, however,

several disadvantages to using ICL for the SDWE. DCL

possess only two data types, integers and character strings.

The control constructs provided by DCL are very limited,

consisting only of decision statements and branching

statements. DCL is an interpreted language meaning that the

code is translated and executed one line at a time. Thus

DCL programs execute significantly slower that comparable

HOL programs that are converted to machine language by

compilers.

Although there are several disadvantages to using DCL

for the SDWE implementation, these disadvantages are not

stifling. The two data types provided by DCL are the only

ones required for the SDWE. While the control constructs

are limited, they are sufficient to create whatever other

constructs are required. Furthermore, there are several

189L7

. functions available for handling character strings. Even

though the DCL language is slow, the SDWE spends most of its

execution time waiting for user responses and the code

executed between these I/O activities is not extensive.

Thus, the slower execution time would not be significantly

noticed by the SDW user. In addition, DCL provides means to

trap interrupts whether they be initiated by the user or an

error condition.

The preceding discussion reveals that DCL, while by no

means "optimal" because of its slow execution speed and poor

control structures, is the only available alternative that

meets all of the previoualy stated language requirements for

the SDWE (section 5.2). PASCAL is not sufficient because it

lacks facilities to interface with the DCL routines that

drive the SDW component tools. DCL is thus chosen as the

primary implementation language for the SDWE. However,

PASCAL may be called by DCL, so PASCAL is chosen as an

auxiliary implementation language to be used for some

utility SDWE modules.

3 The ME Implementation Statg

The implementation stage described in this chapter for

the Software Development Workbench (SDW) deals strictly with

the implementation of the Software Development Workbench

190

S -.. 7..7. -. '-*.,. -

'< Executive (SDWE). The SDWE is a sub-system of the SDW that

is used as a primary interface to the SDW enviroment and a

controller for that environment (section 3.3, Figure 22).

The implementation of the SDWE is a sub-system

implementation of the SDW. Concurrent to the implementation

of the SDWE, the SDW component tools are being loaded on the

target machine, the AFIT/DEL VAX-II/780. The SDWE is

actually interfaced to the other SDW sub-systems, the SDW

. component tools, during the next stage, integration. This

process is discussed in Chapter 6.

The implementation of the SDWE requires the coding of

the design module specifications defined in section 4.3.3.

An incremental approach to this coding is taken. This

approach calls for the initial implementation of the top

level module with dummy modules or stubs for all called

routines. These dummy modules simply report that the module

was properly called and then return control to the top level

module. After the implementation of the Top Level module,

the Provide Editors module is coded. With this module

implemented, the SDW may be used to aid in the implemention

of the rest of SDWE. This approach allows the inciemental

testing of the SDW implementation. Furthermore, by using

the SDW to develop the SDW, the human interface features of

the SDW algorithms are tested and possibly refined.

191

5.4 SD'WE ImpleMentation Spgcific

The implementation of the SDWE is accomplished by the

incremental coding and testing of the algorithms for the

SDWE that are established in section 4.3.3. During this

implementation, a number of specific decisions are made to

define how the requirements of the SDWE are to be met. This

section reports and justifies the specific decisions that

are made during the initial implementation of the SDWE.

Prior to the coding of the first SDWE module, a set of

* command and file conventions are established for the SDWE.

The command conventions require that each SDW-specific

command be a unique, two-letter code. The length of two

letters for the commands is chosen because it provides many

alphabetic combinations (26 squared or 676 combinations).

Furthermore, the two letters provide a reasonable ability to

describe the meaning of the commands without being

excessively long to type in on the keyboard. The

requirement for uniqueness of these codJes is imposed as a

result of the established file conventions. Each

SDW-specific command must have an associated help message

that is accessible from the SDW Help Facility. A separate

file is used for each help message, thus allowing these help

messages to be displayed with the "TYPE <file_name>"

command. The naming of these help files consists of the two

letter code for the command, say "xx", followed by the word

192

"help". Thus, if the code for the command is specified in a

variable entitled "OPTION", the help file is easily accessed

with the following DCL command:

TYPE 'OPTION' HELP.MEM

The single quotes around the command variable option mean

that the value of that variable is used in the command.

Those SDW-specific commands used to access the

functional tool groups also require text files that state

the menu of options within that tool group and identify the

tool group. Files used for these purposes are named,

"xx"MENU.MEM and "xx"ID.MEM respectively.

The implementation of the top level SDWE module,

SDWEXE, is initiated with the defining of data and control

variables that are used by all of the SDWE modules. These

variables are stated and defined as follows:

193

I ; " " " " " " " ' " ' "

SDWE Data and Control Variables

Name Type Definition

device string The name of the
user's CRT device

module string The ID for the
current SDWE module

nopdbs boolean Enable/disenables
the use of Project
Data Bases

option string The current command
option

pdb boolean Specifies if a Project
Data Base is currently
in use

project string Name of the Project
Data Base in use

prompt boolean The AutoMenuFlag

qualifier string List of qualifiers
for a particular SDW
command

ret string Dummy variable used for
accepting user input to
continue

savedir string Name of the user's
original default
directory

194

With the data and control variable specified, the

actual coding of the top level SDWE module proceeds. The

execution of the SDW is initiated with a header message that

confirms the entrance into the environment and identifies

the version number and authors. Then, a few queries are

used to determine the type of CRT device in use, whether a

Project Data Base is to be used, and if the user requires

immediate help. These queries fulfill the algorithmic

design of the SDWEXE module (Section 4.3.4). Then, a menu

of the top level command options is presented with a prompt

for user input. The prompt for user input consists of the

SDW-specific code that was used to access the current SDWE

level followed by a greater-than character and a colon as

shown below:

XX>

The two letter code is required to identify the current

level of the SDW in the event that the auto menu facility is

disenabled. The greater than character is used because it

is a convention common to many VAX-resident packages, such

as the resident debugger and the SYSGEN routine. The colon

is an unavoidable feature of the DCL "INQUIRE" command that

is used for reading data into a DCL program (Ref

27:235-237).

195

With the initial implementation of the SDWE top level

module completed, the module to control the SDW editors is

coded to enable the use of the SDW component editors to aide

in the further development of the SDWE. Using the SDW in

this fashion enables the critical review of the SDW

algorithms prior to complete implementation.

One modification, made evident while using the SDW to

develop the SDWE, is the need to have the screen cleared

between distinct operations of the SDW. A primative

function, named "CLEARSCRN", is used to pass the necessary

control characters to the user's CRT device to perform the

clear screen function. The "DEVICE" variable is used as the

cont:ol parameter for determining the proper control

character string. The Tektronix 4014 and 4016 devices

require a Form-Feed character. DCL lacks facilities for

passing such a character, so a special PASCAL program,

"CLEARTKTX", is used when these Tektronix devices are

*- specified by the DEVICE variable.

The "CLEARSCRN" and a module called "CONTINUE" are the

only device specific modules of the SDWE. The "CONTINUE"

module is used to query for user permission to clear the

display screen. This capability is important because it

allows the user to view the entire display and clear the

display.

196

* .-- .o

When executing a DCL command program, such as the SDWE,

the operating system expects all commands to be taken from

the mass storage device on which the program is located. As

a result, SDW components, such as editors, that require user

, input, are not executable. In order to alleviate this

problem, the following command is used to flag the operating

system to expect commands from the user's CRT device for the

execution of the next component:

ASSIGN/USERMODE SYS$COMMAND: SYS$INPUT

By including this command statement just prior to the

.---* execution of every SDW command option, any SDW component or

any VMS component may be executed from the SDW input

prompts. The only exception is that the entire command must

be entered on a single line. This is a restriction of the

VAX/VMS operating system.

One of the primary requirements for both the SDW and

the SDWE is the inclusion of a Help Facility (sections 2.3.8

and 3.4.8). Since the SDWE is capable of executing both

SDW-specific and VMS commands, the SDWE Help Facility must

provide help capabilities for each type of commands. To

this end, the SDWE Help Facility uses three components that

are selectively accessed through the SDW help request

command. One component is a general help facility for the

SDW as a software development environment. The next

197

* •. . .-. ••... .- •,

-- -*-. --

component provides help on selected SDW specific command

codes. The final component is the resident VMS Help

Facility used to provide help on VMS commands.

The SDWE is also required to trap invalid command code

specifications (Section 4.3.2, Figure 30). The VMS

operating system automatically traps invalid commands with

warning messages. VMS also provides means to execute

specific commands upon the occurance of such a warning.

This capability is provided with the ON WARNING THEN

<command> facility (Ref 27:329-330). Within the SDWE, the

occurance of an invalid SDW command causes the "BADCODE"

module to be executed. This module reports an error message

to the user's terminal. The error message includes the

invalid command. Control is then returned back to the

calling module.

These are the implementation specifics resulting from

the initial implementation of the SDWE. However, a number

of experiences with this implementation, Version 1.0,

demonstrated the need for an updated version of the SDWE.

These experiences and the resulting modifications requiring

the update to Version 1.1 are described in the next section

of this chapter.

198

.

5.SDWE Update to Version a1.1

The driving forces behind the update of the SDWE to

Version 1.1 are an operating system update from VMS Version

2.7 to VMS Version 3.0 and a critical review of the SDWE by

, the advisor for this thesis investigation, Dr. Gary Lamont.

The result of this Version update is a more user-friendly

and user-safe interface for the SDW.

The VMS operating system update from Version 2.7 to 3.0

requires only minor modification to the existing SDWE code.

Version 3.0 of VMS uses a self-prompting hierarchical

structure. Thus, the SDWE Help Facility is no longer

required to prompt the user for specifics, such as commands

and qualifiers. The SDWE Help Facility simply calls up the

VMS Help Facility and lets that facility provide specific

help on the VMS features. The second modification to the

SDWE code deals with the facility for trapping erroneous

command inputs. This is done with the following line of

code Version 1.0:

ON WARNING THEN @SDW$DISK:[SDW]BADCODE

However, under Version 3.0 of VMS the explicit call to the

Badcode module is not permitted. So the synonym, "TRAP", is

defined to replace the call to Badcode as shown below:

199

TRAP • @SDW$DISK:[SDW]BADCODE

ON WARNING THEN TRAP

No VMS documentation is available that explains this

peculiarity of Version 3.0!

The first set of SDWE modifications deal with the

initiation procedures for the SDW. The initial header

message is expanded to include, not only the system's name

and version number, but also the names, addresses, and

phones numbers of the system developers and copyright

protection information for the SDWE.

All of the initial queries used to set up Project Data

Bases, set the AutoMenuFlag, and provide initial help

information are replaced by a new SDW module referred to as

the SDW Utility Functions. The Device specification query

still follows the header message. The initial default user

VCRT device is a VT100. After the Device query, a default

device spec of a VT52 is used if no other device type is

specified. All queries used in the SDWE check the user's

response against the valid options and reprompt if an

invalid response is detected. If the response range is not

limited, as with the potential Project Data Base names, the

200

user's response is echoed for user validation.

. The SDW Utility Functions provide the SDW user with a

greater flexibility because of the ability to alter the

Auto_MenuFlag, the DataStorageScheme, or the

DeviceSpecification at any time during the operation of the

SDW.

The AutoMenuFlag is also used to provide automatic

prompting of qualifier options for SDWspecific commands

that may use qualifiers. The displays of these options are

stored in files whose names begin with the two-letter code

for the SDW~specific command and end with "PARMTS.MEM".

This file name stands for the parameters that are available

to qualify the particular SDW command.

Prior to exiting the SDW a number of concluding

activities must take place. Under SDWE Version 1.0, the

user could enter the DCL "EXIT" command that would cause the

immediate exit of the SDW without the concluding activities

taking place. To remedy this problem, the "EXIT" command is

re-defined to a branch instruction that causes the

"graceful" exiting of the SDW. A "graceful" exit requires

that all the synonyms specific to the SDW be deassigned

K prior to termination of the SDW session.

201

..

User interrupts, CTRL/Ys and CTRL/Cs,aswlaero

interrupts would also cause immediate exiting of the SDW

without the concluding activities being performed. The

ON-THEN DCL facility is used to trap these interrupts. This

trapping involves the use of a graceful exit upon the

occurance of any of these interrupts.

The final modification of the SDWE for Version 1.1

* deals with the scope of the SDW command codes. Only the

command codes presented in the current menu of options

should be executable from that level. DCL provides two

types of scope specification for its synonyms, local and

global (Ref 27:4-7). Version 1.0 defined all SDW command

* *'P' codes as local synonyms with the understanding that they

would only be visible within the command module in which

they are defined. This is an erroneous assumption! Once a

command code is defined, it is visible until it is

re-defined or deleted, or until the DCL command program is

terminated. Thus, came the necessity to establish

mechanisms to define and limit the visibility of the SDW

command codes. The mechanism, used to achieve these

visibility objectives, defines all current command code

options globally upon entrance into a particular module and

then deletes the synonyms when control is passed on from

that module. The "ASSIGNSYM" module is used to define the

proper command codes. The "MODULE" variable indicates the

current command module to allow the proper synonyms to be

202

defined. When control is passed on from that module, the

"DELSYMBOL" module deletes these command codes. Testing of

this mechanism reveals that the required limiting of the SDW

commands' visibility is achieved.

The updated Version 1.1 of the SDWE provides a more

user-friendly interface to the SDW. The finalization of

Version 1.1 marks the complete implementation of a major

sub-system of the SDW. The next step is to integrate the

other SDW components to the SDWE in order to realize the SDW

as an operational environment.

s~ ummr

The implementation of the Software Development

Workbench Executive (SDWE) is realized in three phases.

First, the selection of the implementation language(s) used

are presented and justified. They are the DEC Command

language and PASCAL. Then, the initial implementation of

the SDWE Version 1.0 is described as is the update to

Version 1.1. This version update is necessary for the SDWE

because of the target machine operating system upgrade to

VAX-11/780 VMS 3.0.

203

The extensive theoritical analysis, requirements

definition, and design specification for the Software

Development Workbench allows the implementation of the SDW

to progress with little difficulty. The implementation of

the SDWE is especially interesting because of the use of a

Command Language, a definite top-down implementation and

testing strategy, and the use of the SDW to develop itself.

204

..

Software~ fleYeIQlDtA Wrkbench

205

6.1 Introduction

The Integration stage of the Software Life-Cycle is

characterized by the merging together of the systems

components into a single system. During this stage, the

actual integration of the system components is validated by

the testing of the interfaces between the system components.

Within the realm of the Software Development Workbench

(SDW) effort, the integration stage involves the joining of

the Software Development Workbench Executive (SDWE) to the

other SDW components. All of the SDW components are loaded

on to a single RK07 disk drive on the VAX-11/780 host

- computer.

The purpose of this chapter is to define the manner in

which the SDW components are installed on the SDW and

integrated under the SDW Executive.

7<

6.2 Installation of lih SDR Components

Prior to the integration of all of the SDW components,

each of these components is loaded onto the host computer.

The SDWE resides on the host computer, since this computer

was used for its development. All of the other SDW

components, that are not part of the VMS environment, are

loaded onto the VAX-11/780 from magnetic tape or floppy

206

disk. Since the host computer configuration does not

included a tape drive, it is necessary to use some other

compatible system in order to perform the transfers from

tape to RK07 disk. A PDP-11/34 belonging to Aeronautical

Systems Division, Air Force Systems Command, Wright-

Patterson AFB, is used for the transfers. Some special

procedures are used to facilitate the transfer on the

PDP-11/34 machine. Namely, the disk is initialized under

the Structure 1 format instead of the regular Structure 2

and the initial directories use strictly numeric names.

Each of the SDW components is transfered to disk using

an accompanying installation guide. The Extended

*Requirements Engineering and Validation System (EREVS) is

not included in the initial set of disk resident tools

because its transfer uses the VMS "BACKUP" command that is

not available on the PDP-1/34. Furthermore, only the

executable images and other necessary files are retained on

disk for each of the SDW components. A shortage of disk

space is responsible for this action.

6.3 Integration of the SDW Components and tb SDWE

The careful design and implementation of the SDWE

allows the efficient integration of the SDWE to the other

SDW components. All of the non-VMS SDW components have a

207

specific logical name defined for their resident disk. The

assignment of these logical names is done in the SETSDW.COM

procedure that is used to set up for the use of the SDW.

Each of the non-VMS SDW components that require special set

n up activities use a special command module that is callable

from the two-letter SDW code for the particular component.

Each of these special command modules uses an internal flag,

called "INSTALLED", to conditionally execute one of two

sections of code. If "INSTALLED" is false, then a message

to that effect is displayed on the user's CRT. However, if

the flag is true, then the component is set up for and

executed. Each of these special command modules is

identified by the convention "SET<componentname>.COM". If

the component does not require special set up activities,

the two-letter code for that component is simply redefined

in the "ASSIGNSYM.COM" module to allow for the execution of

the component.

Each of the non-VMS SDW components resides in its own

directory. The protection on these directories is set to

allow their use and each directory is owned by the [200,75]

User Identification Code.

The next step in this stage is to test the interfaces

between the SDW components. One problem encountered during

this process is that the Interim AUTOIDEF and the ICAM

Decision Support System reset the default directory in their

208

internal command procedures. Thus, those command procedures

are modified to save and reset the default directory prior

: to termination of their execution. Besides this minor

modification, the integration processes has few problems.

6.4 Installation of the SDW on the

Central ICAM Development System

The initial implementation of the SDW is on the

AFIT/DEL VAX-lI/780, however, the SDW is also installed on

the thesis sponsor's Central ICAM Development System (CIDS).

This system is also a VAX-II/780. The installation of the

SDW on the CIDS simply requires the transfer of the SDWE to

the CIDS, since the other SDW components are already

resident on that system. The transfer is completed using

floppy disks. Since the CIDS runs under Version 2.7 of the

VMS operating system, a few minor changes to the SDWE are

necessary. These changes include are exclusively in the

help facility because Version 2.7 uses a slightly different

help facility and the SDW help facility calls it. It is

also necessary to set the NPDPS flag to true in order to

disallow the use of Project Data Bases. This is required

due to the protections placed on the SDWE's resident

directory that prohibited the creation of sub-directories by

users.

209

7. .

"6.5 Summary

The integration of the SDW components onto the target

computer was a relativily minor operation for two reasons.

First, the SDWE was designed to easily accept the

incorporation of new tools into the SDW. Second, all of the

SDW components were available in VAX versions.

With this final integration and validation of the SDW

K" and its components, the Software Development Workbench is

ready to go operation. The following chapter on Operations

and Maintenance describes the initial operation phase of the

SDW and any maintenance required as a result of the

operation experience.

210

4 .'

" :-CHAPTER 7"pert=Aionsl an-d Maneac Df=

, heSof twar e Dev~elomentm Wokec

2112I

LI Introduction

* .!The operations and maintenance stage is the final stage

of the software life-cycle. Of primary importance during

this stage are the system documentation from the previous

phases, the resolution of any problems, and any system

modification from new requirements for the system.

For the Software Development Workbench (SDW), this

final stage is supported by the assembling of a complete set

of documentation for the SDW, the Software Development

Workbench Executive (SDWE), and the other SDW components.

During this stage, the SDW is first used, as a prototype

environment by the AFIT software community. In particular,

the system is to be used by the EE7.93 Advanced Software

Engineering class and a number of AFIT thesis students.

This stage also involves the evaluation of the operational

*SDW against the criteria established in Chapter 2.

7.2 De mn -oft the S DW pocumentatiQn package

Prior to the release of the SDW to the AFIT software

community, a complete set of user documentation must be

assembled into a SDW Documentation Package. This package

includes the SDWE User Manual, the SDWE Maintenance Guide,

and the SDWE Installation Guide, as well as the user manuals

and installation guides for the other SDW components. The

212

SDWE documents are included as Appendices I, J, and K.

1, 21 Maintenance Activities on the SDW

As with most software developments, additional

requirements are identified for the system following initial

delivery. The SDW is no exception. Four modifications are

required to the SDW as a result of user experiences with the

system.

The first modification is to the SDW Help Facility. As

first implemented, this facility uses a series of queries to

provide the user with help on any SDW or VMS command.

However, as the user develops greater familiarity with the

SDW, he prefers to simply state the help option followed by

the specific command code for which he requires help and

then receive the appropriate display on his CRT. The SDW

Help Facility is modified to provide this capability, as

well as the initial walk-through help capability.

The second modification is also a result of additional

requirements desired by the user who possess a greater

familiarity with the SDW. As is often the case with

top-down, menu-driven systems, the user eventually requires

the capability to enter a command string at the top level

that allows him to directly access tools several levels down

the hierarchy (Ref 58). This type of capability requires

213

, ... 1.-

* the parsing of command strings as entered from the top-level

module. The DCL capability to use pre-defined parameters

allows the relativily simple modification of the SDW to

provide for such command strings.

The third modification to the SDW deals with the usage

of Project Data Bases. Previously, the user would not be

told whether the Project Data Base specified for use is a

new or existing one. As the number of Project Data Bases

increases, so does the probability of duplicate names for

these data bases. To help avoid these types of problems,

the SDWE is modified to report to the user whether the

specified Project Data Base is a new or existing one.

The final modification to the SDW deals with the

initial and default user's device specifications. The

original initial device specification was set to a "VTI00".

This setting provided for the passing of specific control

characters to clear the display and use reverse-video for

continue prompts. However, on non-VTl00 devices, the

specific control characters appeared on the CRT. This looks

quite un-professional. Thus, the initial setting of the

device specification is set to a "VT52" mode. This mode

uses no special control characters and is thus appropriate

for any device. The use of the continue prompt between

displays is also removed when in the VT52 mode. Since this

mode uses scrolling instead of display clearing, the normal

214

terminal facilities for stopping and continuing scrolling

may be used to view the SDW displays.

7.4 Evaluation of the Software Development Workbench

The Software Development Workbench (SDW) only addresses

a portion of the specifications for a software development

environment presented in chapter 2. While each of the main

categories of specifications are addressed, none of these

categories are fully satisfied. As a result, it is

important to emphasize the strengths and weakness of the SDW

to provide a background for future investigations involving

the SDW. Although a through evaluation and development of

the SDW is not possible, due to the limited time of the

investigation, a summary of user reactions to the SDW as an

environment is provided. The criteria for this evaluation

is established in the requiremexrts definition chapter of the

SDW (section 2.5).

7.4.1 Strength of 1h= 9PM. The SDW is found to be a

very user-friendly environment. The menu-driven format and

extensive help facilities allow the novice user easy access

to any SDW component. The SDW is also a very flexible

environment because of its capabilities for disenabling the

auto-menu facility, changing the user's device

specification, and providing for the use of command strings.

215

The SDW implements fail-soft error-handling capabilities.

With the currently incorporated tools, the SDW is an

excellent aid in the production of software and related

documentation.

2.LL2.Wekneses~jthe ap The SDW possess all of

the minimal requirements for a software development

environment, as well as a number of extra capabilities.

However, these provided capabilities are almost exclusively

supportive only of the pre-implementation stages of software

development. The SDW possess few if any components to aid

and augment post-implementation activities such as code

testing and code optimization.

The issue of integration within the environment is only

addressed at the higher levels by the SDW. Components are

integrated only by means of a common user interface and

common data storage locations. There are no means for

integrating development data by preserving the relationships

between software products and allowing the individual

components to share the development data.

216

Su mmr

The operational phase of the Software Development

Workbench met with a very welcome response. The SDWE proved

to be an effective and easy to learn interface to the SDW.

The SDW was found to be very helpful for the development of

software, especially in the preparation of software

documentation and associated models.

Furthermore, the modifications recommended and

implemented during this stage greatly added to the power and

appearance of the SDW as a product.

217

* .C~ABTR ~Conglusion/Recommendation-S

218

i~~~~~~~_
j 1 _

8.1 Introduction

The purpose of this thesis investigation is two-fold.

The initial emphasis of the effort deals with the

requirements specification and the development of a design

for an interactive and automated software development

environment to support the software life-cycle in accordance

with accepted software engineering principles. The second

emphasis of this investigation is to implement and test a

prototype version of a software development environment, the

Software Development Workbench (SDW). This prototype serves

two purposes. First, it demonstrates the feasibility of

some of the requirements and design specifications

established during the initial emphasis of the

investigation. Secondly, the prototype is actually

installed and operational on two distinct development

computers to aid in the development of software at these

locations.

3-, Design Summary

The Software Development Workbench (SDW) was developed

in accordance with a classical version of the s 'tware

life-cycle (Ref 40:1-5). The first three stages of this

life-cycle are requirements definition, preliminary design,

and detailed design. Of these three stages, the first two

involve the theoretical development of an ideal software

219

.1.0MA.4

* development environment for the Air Force Institute of

Technology (AFIT) . The third stage, detailed design, is

characterized by the detailed specification of a design for

the software development environment prototype, the SDW.

The requirements definition stage of this effort

involves the definition of the current software development

process, a specification of how the process of software

development should be addressed, and a study and summary of

the concerns and objectives of a state-of-the-art software

development environment. The second step in the theoretical

development of this investigation is preliminary design.

The objective here is to define the structure, required

* components, and configuration for the software development

environment to meet the previously stated requirements.

The detailed design stage bridges the gap between

theoretical development and application by specifying the

precise design specification for the initial inpiementation

of the SDW. This stage requires the complete development of

a top-level user interface and controller for the

environment and the careful selection of component tools for

the environment. The purpose behind this stage of design is

to develop means to realize the theoretical objectives of

the previous stages.

220

, S - -

a

8.3 Implementation/Tes-t Summary

The second section of this investigation deals with

realization of a prototype version of the software

development environment specified in the detailed design

stage. This prototype is named the Software Development

Workbench (SDW). The implementation of the SDW involves the

coding and testing of a top-level user interface and

controller, called the Software Development Workbench

Executive (SDWE), as well as the incorporation of several

component tools into the SDW. Following the implementation

of the SDWE and the loading of the component tools, all of

these SDW sub-systems are integrated to the VAX-11/780 VMS

Operating System and to each other. Then, the SDW is

completely tested, operating manuals are composed, and the

SDW goes into an operational status. The SDW is installed

on two distinct host computer systems. The first host is

the AFIT/DEL VAX-lI/780. Here the SDW is used as a software

development aid to support both student course work and

Master and Doctorate level researcn efforts. The second

host is the Central ICAM Development System (CIDS). The

CIDS facility is used by a number of research groups across

the nation (Ref 5C). The members of these research groups

are themselves developing a very sophisticated development

environment for the CIDS that is to become the Integrated

.- Systems Development System (ISDS) upon completion. The SDW

is used as a prototype for this much larger environment and

221

..as a tool with which to develop the larger ISDS environment.

8. Recommendations for Future Investigations

As one might expect from the previous section and the

fact that the SDW is a prototype environment, there are many

topics for future investigation dealing with the SDW. A

listing of these topics is provided in the following

paragraphs. This listing of topics is sequenced in the

order in which the topics should most likily be addressed.

.i8.4.1 Implementation ot the Pr-a Sofwar

Description Dat Base, The Pre-Fab Software Description

Data Base is a concept for a facility that will greatly

reduce the production of software programs and modules that

have previously been designed. This capability could

represent a very substantial economic and manpower savings.

The Pre-Fab Software Description Data Base concept requires

a complete development consisting of design and

implementation of the facility. Implementation should

include the population of the facility with a wide variety

of existing software modules.

8.4.2 Enhanceng t of t_ SDW Componentgo t, The SDW

currently incorporates only a limited tool set. These tools

4 -, provide capabilities for a minimal environment with extended

capabilities for supporting pre-implementation type

222

activities. The SDW component set must be enhanced with

additional components to support the other functional

specifications defined in Appendix C.

8.4. Re•Hisina at tbL Software D Wkbench

onto UNIXITih The Air Force Institute of Technology has

recently procured and installed a larger VAX-11/780

configuration as its new Scientific Support Computer. This

computer runs under the UNIX(TM) operating system. The SDWE

and the SDW component tools could easily be re-hosted on to

this machine by translating all of the DCL command

procedures into compatiable UNIX command procedures.

8.4.4 Development ofo al I Projec Data Base

Schema. At present the Project Data Bases are simply

isolated data storage areas. Conceptually, the Project Data

Bases should be integrated data storage areas that are

managed by a Data Base Management System (DBMS) and preserve

the relationships between the development data from the

different stages of the software life-cycle. This concept

is addressed in greater detail in Section 4.4.

.4... E ension 2f the SDW's , .. At present, the

SDW provides few facilities to control and coordinate

many-programmer projects. The SDW is a software developer's

environment and does not provide the managerial capabilities

i .required to manage large software development projects that

involve many analysts and programmers. The Air Force is in

223

4j

S. .

great need of such a capability for the large software

developments under its direction. In order to provide these

needed capabilities, the SDW must utilize sophisticated

configuration management and planning tools. These tools

must be able to interface to and retrieve development data

from the other SDW components.

8.4.6 D1mentai t aof Consistency- and Syntax-Directed

Editor, A syntax-directed editor uses a Backus Normal Form

definition of a language's syntax to automatically check the

syntactical correctness of programs as they are entered on

to the computer (Ref 33). This capability could be extended

so that the editor also accepts a previous specification for

Wthe software system, such as a requirements or design

specification. Thus, the editor checks for both syntactical

correctness and consistency with the previously stated

specifications for the software system.

b4

224

Bibliography

1. Ada Reference Manual, Department of Defense.

2. Alford, M. W. "A Requirements Engineering Methodology
for Real-Time Processing Requirements," IEEE
Transactions on Software Engineering (Jan 1977).

3. Alford, M. W., Irby, J. E., Scott, J. E., Lawson, J. T.,
Osborne, R. G., Hardy, E. J. Distributed Computing
Design System. Huntsville, AL : TRW Defense and Space
Systems Group, August 1981.

4. Andrews, D. M. and Melton, R. A. FORTRAN Automated
Verification System (FAVS) User's Manual. Rome Air
Development Center, RADC-TR-78-268, January 1979.

5. Appleton, Daniel S. "Measure Twice, Cut Once,"
DATAMATION (February 1982).

- -. - 6. Atwood, M. F., The Processes Involved in Designing
Software. AD-A092935/6, August 1980.

7. Baker, F. T. "Structured Programming in a Production
Programming Environment," Proceedings, 2nd International
Conference on Reliable Software (April 1975).

8. Balzer, R., Goldman, N. and Wile, D. "On the
Transformational Implementation Approach to Programming,"
Proceeding, 2nd International Conference on Software
Engineering, IEEE: Long Beach, Calif. 1976.

9. Basili, Victor R. "FLEX: A Flexible, Automated Design
System," AD A079312.

10. Bergland, Glenn D. and Gordon, Ronald D. Tutorial:
Software Design Strategies. 2nd Ed. Murray Hill, NJ
Bell Laboratories, 1981.

11. Bianchi, M. H. and Wood, J.L."A User's view on
the Programmer's Workbench' Proceeding, 2nd
International Conference on Software Engineering,
Oct 1976.

12. BMDATC Software Development System, Vol 1. Ballistic
Missle Defense Advanced Technology Center, AD-B014-623.

13. Boehm, Barry W. "Module Design and Interface Validation,"
IEEE Transactions on Software Engineering, Jan 1975.

225

-I

- -

14. Boehm, Barry W. "Some Experience With Automated Aids
to the Design of Large Scale Reliable Software,"
IEEE Transactions on Software Engineering. Vol. 1,
No. 1 (March 1975).

15. Branstad, M. A. and Adrion W. R. "NBS Programming
Environment Workshop Report," Special Publication
550-78, Institute for Computer Science and Technology,
National Bureau of Standards, Washington D.C., 1981.

16. Bratman, H. and Court, T."The Software Factory.'
COMPUTER 8 (May 1975) p 28-37.

17. Bratman, H."Automated Techniques for Project Management
and Control. ' Practical Strategies for Developing Large
Software Systems, Addison-Wesley, Reading, Mass. 1975.

18. Buxton, J. N. "An Informal Bibliography on Programming
Support Environments," SIGPLAN Notices (December 1980)
page 17.

19. Chrusciki, Andrew; Simpson, Louis; and Sheffield, R.
JOVIAL J73 Programming Support Library, Rome Air
Development Center, RADC-TR-82-162, June 1982.

20. Chyuan-Shiun Lin, "A Structured Functional Testing
Approach," NCR.

21. Clarke, L. A."The Source Code Control System". IEEE
Transactions on Software Engineering. (Jan 1977).

22. Conrad, Thomas P. "Application of Advanced Software
Technology to Submarine Command and Control," Naval
Underwater Systems Center, Newport, RI. AD-B050-288L.

23. Cotterman, William W., Couger, J. Daniel, Enger, Norman
L., Harold, Frederick, Systems Analysis and Design - A
Foundation for the 1980s. New York : North Holland Publ.,
1981.

24. Davis, C. G. and Vick, C. R. "The Software Development
System". IEEE Transactions on Software Engineering,
(Jan 1977).

25. Davis, Richard M. Thesis Projects in Science and
Engineering. New York, New York : St. Martin
Press, 1980.

26. Denning, Peter, "Parts Based Programming," Computer
Science Department, Purdue University, IEEE COMPCON,

, 1981.

226

".. : -. ' .'-:' . .' .' . - . < : . i : i: . . " " : : i ::: : : i

27. Digital Equipment Corporation, VAX/VMS Command
Language User's Guide, March 1980.

28. "DoD Requirements for Ada Programming Support
Environments, STONEMAN," HOLWG, February 1980.

29. Dolotta, T. A. and Mashey, J. R. "An Introduction
to the Programmer's Workbench". Proceedings, 2nd
International Conference on Software Engineering,
Oct 1976.

30. Duvall, Data and Analysis Center for Software,
AD-A089678/7, June 1980.

31. Features of Software Development Tools, National
Bureau of Standards. PB81-176562, Feb 1981.

32. Glass, Robert L. "Persistent Software Errors," IEEE
Transactions on Software Engineering, Vol. SE-7,No.2,
(March 1981).

33. Gutz, Steve, Wasserman, A. and Spier, M.,
"Professional Development System for the Professional
Programmer," COMPUTER, Vol. .4, No. 4 (April 1981)
p45-53.

34. Hamilton, M. and Zeldin, S. "High Order Software
-A Methodology For Defining Software". IEEE
Transactions on Software Engineering (Jan 1977).

35. Hausen, H. and Mullenburg, M. "Conspectus of Software
Engineering Environments," 5th International
Conference on Software Engineering, San Diego, CA
March 1981, IEEE Catalog No. 81CH1627, pp. 34-43.

36. Houghton, National Bureau of Standards Software
Tools Data Base. National Bureau of Standards,
PB81-124935, 1981.

37. Howden, William E. "Applicability of Software
Validation Techniques to Scientific Programs"
ACM Transactions on Programming Languages and
Systems. 2,3(1980).

38. Howden, William E. "Contemporary Software Development
Environments," Communications of the ACM, Vol 25,
No 5 (May 1982).

39. Howden, William E. "Functional Testing and Design
Abstraction," Journal of Systems and Software, 1980.

40. Hunke, Horst# Software Engineering Environments.

227

-................. .. ,i21:.... . . :

New York - North Holland Publ., 1981.

41. ICAM/SEM Coalition Program Meeting Notes from the
1-4 March project review at Wright-Patterson AFB.

42. Integrated Computer Aided Manufacturing, Dynamic

Modeling Manual (IDEF-2). Materials Laboratory,
Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson AFB, OH,

June 1981.

43. Integrated Computer Aided Manufacturing, Function
Modeling Manual (IDEF-0). Materials Laboratory,
Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson AFB, OH,
June 1981.

44. Integrated Computer Aided Manufacturing, Information
Modeling Manual (IDEF-I). Materials Laboratory,
Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson AFB, OH,
June 1981.

45. Ivie, E. L. "The Programmer's Workbench - A Machine
for Software Development," CACM, Vol. 20, No. 10
(October 1977) pp. 746-753.

46. Jefferies, Robin "The Process Involved in Designing
Software," University of Colorado, AD A092 935.

47. Keringhan B. W. and Mashey, J. R. "The UNIX Programming
Environment," COMPUTER, Vol. 14, No. 4, p. 12
(April 1981).

48. Kernighan B. W. and Plauger, P. J. Software Tools.
Addison Wesley, Reading MA, 1976.

49. Kernighan B. W. and Plauger, P. J."Software Tools'.
Proceedings, ist National Conference on SoftwareK: Engineering, Sept 1975.

50. Lamergon, Robert G. and Dugan, Dennis K. "Software
Engineering With Reusable Designs and Code" IEEE
COMPCON 1981.

51. Loshbough, R. P. Applicability of SREM to the Verification

of Management Information System Software Requirements.
AD-AI00720/2 and AD-A100721/0.

52. Mashey, J. R. and Smith, D. W."Documentation tools
and Techniques. Proceeding, 3rd International Conference
on Software Engineering (Oct 1976).

228

• ..- - ."

53. Mayer, Richard, "Unified SEM: The ICAM Approach to Systems
Software Development," Proceedings COMPSAC 79, Chicago, IL
November 1979.

54. Melton, Richard; Greenburg, Gary; and Sharp, Michael.
COBOL Automated Verification System: Study Phase, Rome
Air Development Center, RADC-TR-81-11, March 1981.

55. Millington, D. Systems Analysis and Design for Computer
Applications. New York : Ellis Horwood Limited, 1981.

56. Mullens, Dan E. Investigation of Meta-Language Modelling for
Translation between Simulation Languages and Requirement
Definition Languages, AFIT/GCS/EE/82M-4.

57. Myers, Glenford J. Software Reliability: Principles and
Practice, New York:Wiley-Interscience Publ. 1976.

58. Nusinow, E. I. and O'Connor, Fran, Integrated
Systems Development System Needs Analysis Document,
NAD170132000. Dayton, Ohio : Control Data Corporation,
February 1982.

59. Osterweil, L., A Software Life Cycle Methodology
and Tool Support, AD-A076335/9, April 1979

60. Osterweil, L., "Software Environment Research:
Directions for the Next Five Years," Computer,
Vol. 14 No. 4 (April 1981) p35-43.

61. Osterweil, L., "Using Data Flow Tools in Software
Engineering," AD A076 300/6.

62. Radatz, Jane W. "Analysis of IV&V Data," Logicon, Inc.
RADC-TR-81-145, June 1981.

63. Ramanoorthy, C. U. and Ho, S. E., "Testing Large Software
With Automated Software Evaluation Systems". IEEE
Transactions on Software Engineering, January 1977.

64. Reifer, D. J. and Trattner, S. "A Glossary of Software
Tools and Techniques". IEEE Transactions on Software
Engineering, January 1977.

65. Riddle, William E. "An Assessment of DREAM," N80-30066/8.

66. Riddle, William E. "Flight Software Requirements and
Design Support Software," N80-30061.

67. Riddle, William E. "Software Development Environments:
Present and Future," N80-30065/0.

229

68. Ritchie, D. M. and Thompson, K. L."Special issue
dedicated to the UNIX Time-Sharing System"' The Bell
System Technical Journal, Vol. 57, No. 6, Part 2,
(July-August 1978), pp. 1897-2304.

69. Ritchie, D. M. and Thompson, K. L. "The UNIX Time-
Sharing System," CACM, Vol. J.7, No. 7 (July 1974),
pp. 365-375.

70. Robertson, P; Melton, R.; and Andrews, C. COBOL
Automated Verification System User's Manual, General
Research Corporation: Santa Barbara, CA, May 1982.

71. Rochkind, M. J."The Source Code Control System. IEEE
Transactions on Software Engineering, Dec 1975.

- 72. Rochkind, M. J. "The Source Code Control System". IEEE
Transactions on Software Engineering, January 1977.

73. Ross, D. T. and Schoman, K. E. "Structured Analysis
For Requirements Defination". IEEE Transactions on
Software Engineering, January 1977.

74. Satterfield, Doyce. "Cjerview of Software Production
Tools," Ballistic Missle Defense Advanced Technology
Center, Huntsville, Alabama.

75. Schindler, M. "Software Productivity Needs Tools
For Improvement," Electronic Design, Vol.28, No.17
(16 August 1980) p45-8.

76. Schneider, Hans-Jochen. and Wasserman, Anthony I.
Automated Tools for Information Systems Design,
North-Holland Publishing Co.: Amsterdam, Holland, 1982.

77. Smith, Paul. FORTAN CODE AUDITOR User's Man.al, TRW:
Redondo Beach, CA, Dec 1976.

78. Software Research Associates. Automated Tools for
Software Engineering Seminar, Software Research Associates:
San Francisco, CA, October 1980.

79. Softech, Inc. "An Introduction to SADT: Structured
Analysis and Design Technique," Softech, Inc.:Waltham,
Mass, 1976.

80. "Software Automation Attacks the Programmer Bottleneck,"
Electronic Design (12 Nov 1981) pll.

81. Stephens, S. A. and Tripo L. L. "Requirements Expression
and Verification Aid". Proceedings, 3rd International
Conference on Software Engineering, May 1978.

230

82. Sutton, S. A. and Basil, V. R. FLEX: A Flexible, Automated
Design System, AD-A079312/5.

83. Teichroew, D. and Hershey, E. A. "PSL/PSA: A Computer-
Aided Technique For Structured Documentation and
Analysis," IEEE Transactions on Software Engineering,
January 1977.

84. Teitelbaum, Tim. The Cornell Program Synthesizer: A
Tutorial Introduction, TR 79-381, July 1979, Revised
January 1980, Dept. of Computer Science, Cornell
University, Ithaca, NY.

85. Teitelbaum, Tim,"The Why and Wherefore of the Cornell
Program Sythesizer, Proceedings of the Symposium on Text
Manipulation, SIGPLAN and SIGOA, Portland, OR, 1981.

86. TRW, A New Approach For Software Success. Redondo Beach,

California : TRW, Inc. 1982.

87. UCSD Pascal Users Manual.

88. Walker, Michael G., Managing Software Reliability.
New York : North Holland Publ., 1981.

89. Wasserman, A., "Automated Development Environments,"
Computer, Vol. 14 No. 4 (April 1981) p7-10.

90. Weinberg, Victor. Structured Analysis. New York, New York
Yourdon Press, 1978.

91. Willis, R. R. "DAS- An Automated System to Support Design
Analysis". Proceeding, 3rd International Conference on
Software Engineering, May 1978.

92. Wood, R. J. Computer Aided Program Synthesis, University
of Maryland, AD-A092621/2, Jan 1980.

93. Yourdon, Edward & Constantine, Larry L., Structured Design,
2nd Ed., New York, New York: Yourdon Press, 1978.

2

°

-" 231

NO

232

I ii

AModel _o .Lb& Existing Software Development Prcs

The Software Development Workbench (SDW) is a software

development environment that utilizes automated and

interactive tools to support the Software Life-Cycle. In

order to achieve this goal, a thorough understanding of the

existing life-cycle is required. The Structured Analysis

and Design Technique (SADT) model of this chapter is a

vechicle for gaining this understanding of the life-cycle.

The model represents a generic view of the life-cycle as it

exists today. In reality the life-cycle is defined and

realized many different ways. The variety that exists in

these many versions of the life-cycle is attenuated in the

model by dealing with the life-cycle stages and component

activities is broad terms.

The objectives of the model are to provide a generic

view of the life-cycle, to identify areas that require

automated support, and to realize where the life-cycle needs

to be modified to improve the efficiency of development and

the reliability of the product. The model does not consider

issues of resource allocation or planning that are

characteristic of the larger development efforts.

The actual "As-Is" model is preceded by a diagram

listing of all of model's component diagrams. This listing

is on the next page and is followed by the actual model.

233

DIAGRAM LISTING OF THE "AS-IS" MODEL

Number: Node: Title:

SDW0l A-0 Perform Software Life-Cycle (Context)
SDWO2 AO Perform Software Life-Cycle
SDWO3 A2 Understand the Problem
SDWO4 A21 Conduct Needs Analysis
SDWO5 A22 Perform Requirements Definition
SDWO6 A223 Define Requirements
SDWO7 A225 Review Requirements Document
SDWO8 A3 Formulate the Solution
SDWO9 A31 Perform Preliminary Design
SDW10 A331 Define Interfaces

*SDW11 A312 Develop a Valid Top-Level Design
SDW12 A313 Develop Intermediate-Level Designs

**SDWl '3 A32 Perform Detailed Design
SDW14 A33 Synthesize Implementation & Test Strategy
SDII15 A4 Construct & Integrate Solution
SDW16 A41 Convert Solution Design into an Executable

K Image
SDW17 A42 Run Test Cases
SDW18 A5 Operate & Maintain Software
SDW19 A52 Operate Software System
SDW20 A54 Correct Software Problem

234

at

wI

-IaK

w

42.

000

*~ ui

c Q. z

4zJ

I: 0

cI-I
C4 U-

0 Q

I~~O It__ _ _ _

414

Q vs

4WW

Jr

Ul OW.

I-- z

of0L
-5

_jO 4I

x

0 0.

236

~~cc

313

z.

It

4aa

- 00

64W H I'
2373

£1i

o ca

Lia

LL

'Uk

A4 cc th

C44
* 3

I-
(L

- tU
46r

IAO I C

238

-9-7
le

Iso

C-4

I- I)

L1 4

Cn

:3239

I'I

Of3

4 La

LA W___ _ fu

£1~W

--)

0. . %

.° c t, 0 'AW log

.9.C

61 100

"-.24o

Ooo

13. ..

60 L

zz

I'u

1 241

_A 4

-4.C

4J

II

a wa

cl rx w

-u I-

a wa

tr .,.:

* 411

0140

24

I-IA

-I'

4 1C
frii

LiL

et. 'z
Ch

kL IL

243-

1~ 4-

I' t'

of. Wcc
11

Z C

gO U

- 4.

kr

Z L - (n)ww

1 I-

ol

24 4

1!
r:-"'.' ,L ii-12-i.7: . 2,1.." . "" i . .. _" . " .

,,I,. .. . , . ,. . . -. , . w.. _-.4, , . . - . . , , _ * . .

03

oo

144

fA.

~14
fn

120

-00

w tj 0

OZ !-j
wa~

:-4

A 8

u--a

(&41

thi

w
a wi

rK
WO.- whi

IAId

0 L0

246.

0.

caI-

00
z5

III C)b

YW V W
0-. I- %m0

0 0-

*~L I I

*(w

Z:

24'(

INI

IIL

U. A
Qa

Z en

-0-

CL

V, 4 4-

xu~o

__248

rr

00

o 00

InI

19 'A

err
!zz

C; C-

0 w
#A f3

240cJ

13 J

09--

oo
tU

404

:3(34L'
cl

A I
0

a~) A
a,0 W

025

P75

x

r'16

wo

tiJh

t44

to Ir

'4l LT t

Ld z

4. :J' N:

CA~' cl t

41 i

a- C7 an k

C C)
,n

2-5 1

zT

0~

age

ImrdX
K

cc

140

LA-

Li I.,

S.. 3 fl

-u-

L.

M J 14

mu252

a L 09i

SCL

j444 04-

'a 02

lpa
IL-

2 u 1
a- - owC

4z 0

253n

o - i

P--

II

U~ D-

00

"Er

44

'7 I.-blU

II'.., -, J

-I-

ww

cc W w 1 It"

• -" o

0 0E

i- ,o 5 9

-Jw

to 0 w

.4254

255

Data Dictionary for the Initial SDW Development

This data dictionary is provided to the reader to asist

in the understanding of the models and concepts of this

initial development of the AFIT Software Development

Workbench. The data dictionary enumerates all data items

important to the development effort and provides a brief

description of each data item to insure that the reader

understands its usage within the realm of the SDW

development.

Data Item Description

AIDES An automated tool for constructing
Structure Charts.

"As-Is" System A model of the current system being
Definition utilized to solve a particular problem

Augmentive Automated or interactive facilities
Tools used for testing and checking the

specifications of requirements,
design, and implementation documents.

AUTOIDEF An automated tool for constructing
IDEFO and IDEFI diagrams.

Backus Normal A means of formally specifying
Form (BNF) the syntax of a language. Also refered

to as Backus-Naur Form.

Black-Box A testing strategy of inputs and
Test Plan expected outputs with no regard for

the internal logic of the system.

BNF Backus Normal Form.

CDM Common Data Model

CIDS Central ICAM Development System.

Code Formatters Automated tools that reformat software

256

. I . .

code to improve read-ability.

Code Generators Automated tools that assist in the
translation of a software design
into the actual code.

Coding Errors Errors in the software that occur and are
detected during the Implementation Stage.

Cognitive Automated and interactive facilities for
Tools developing software using common principles

and practices of Software Engineering. Tools
used to expand the conceptual capabilities of
the developer.

Common Data A data base schema that stores the relationships
Model between elements of other schemas.

Compilers Automated tools that convert source code
into executable object code.

Computer- Two-dimensional graphical representations
Generated of the System Requirements.
Requi rements
Diagrams

-,onfiguration Tools that help to coordinate several
Managers versions of a particular system.

Configuration A model of the hardware, software, data
Model base and other components of a system.

Control The level of coupling between design/code
Coupling modules characterized by the passing of

control variables.

Data The level of coupling between design/code
Coupling modules characterized by the passing of

data variables.

Data Flow Automated tools that trace data items
Analyzers in a software system to detect data

anomalies.

Data Flow Tools Tools that support system specification
and design by analyzing the flows of
data through system functions.

Data Structure Tools that describe a system in terms
Tools of its data units and the necessary

- operations on those data units.

257

Debuggers Automated tools that provide on-line
tracing and incremental executions
of software programs.

Defined A version of the requirements for
Requirements the system that check for

completeness, accuracy, and consistency

Design The statement of a need to update
Modification and/or modify the Preliminary
Request Design of a system.

Detailed A statement of the algorithms and
Design specific mechanisms that are to be

used in the implementation of the
system.

Detailed A formal version of the Detailed
Design Design.
Document

DFDs Data Flow Diagrams used for the stating
of requirements in an easy to understand
two-dimensional graphics format.

Draft Intermediate versions of the

Preliminary Preliminary Designs
Designs

Draft A intermediate version of the
Requirements requirements for the system.

Draft The Draft Requirements stated in
Requirements a two-dimensional graphics format.
Diagrams

EREVS Extended Requirements Engineering
and Validation System, an automated
tool that allows for the specifying,
testing, and modeling of concurrent/
distributed system requirements.

Erroneous Algorithms that do not satisfy their
Algorithms specified functions.

Execution Automated tools that traces how many
Prof ilers times specific lines of cod~e in a

program are executed during a single
run of the program.

*Formal A means of tracing among components
Mapping of two different sets of entities.

258

-... " ,- ' - "- - '. - " .. •- . " . - " --. / - , . " ,

Functional A design objective realized when
Cohesion all design modules are characterized

by their own single function.

Functional A set of SDW component tolls that
Tool Group have been classified together by

the fact of similar function.

Hard Copy The capability to produce two-
Graphics dimensional graphics on paper.

HIPO Hierarchical Input Process Output
technique used for systems analysis
and design.

Hosted A complete Software System that
SSoftware resides on the machine for which

System it was designed to execute.

ICAM Integrated Computer-Aided Manufacturing.

ICAM/SEM ICAM Systems Engineering Methodologies.

IDEF ICAM DEFinition techniqueb.

IDEFO IDEF for functional modelling.

IDEFI IDEF for informational modelling.

IDEF2 IDEF for dynamic modelling.

IDSS ICAM Decision Support System,
A simulation tool.

Implementation The stage of development during which
the actual code for the software is
developed.

Implementation Units of the incremental plan to
Stages implement the software.

Inconsistencies Specifications within the system
requirements that are incompatible.

Integration The stage of software development when
the coded software system is mated to
the target machine.

Interactive Interactive automated tools that
4 " Graphics provide means to create and modify

Editors two-dimensional graphics images on
a video display.

259

*- -.. <; -

Interface Automated tools that check the
Checkers interfaces between software modules.

ISDS Integrated Systems Development System

"Job Shop" An approach to the development of
Approach software development environments that

utilizes a small set of highly integrated
tools.

Linkers Automated tools that merge and map
together separate software units.

Machine-Readable The system requirements stated in
Draft a format that can be parsed by the
Requirements computer.

Maintenance/ The stage of software when the software
Operation is actually being used and changes to

the existing system are made if required.

Mathematical On-line libraries of software modules
Support that provide numerical functions.
Libraries

*Modified Extended and updated versions of
Designs the Preliminary Designs.

N-Squared A graphical technique that utilizes
Charts matrices to illustrate interface between

software modules.

Nassi- A graphical technique used to illustrate
Sniederman the design of structured code. Can be used
Charts to prove if some code is structured.

Network Simulation tools that view the system
Oriented to be processed in terms of nodes
Simulators and edges.

Notational Automated and interactive facilities that
Tools expand the developer notational powers.

Object Codes The compiled and executable versions
of a software system.

On-Line Software that is currently operational
Software on the target machine.

aOperating Guides used for instructing users on
Manuals the operation of a particular software

system.

260

Optimized An advanced version of the Software
Software System that has been tuned for time
System performance and spacial usage.

Pattern The capability of the computer to
Recognition recognize patterns of vocal, visual

or other analog inputs.

* .Performance A parametric statement of acceptable
*.Criteria performance ranges for a i.ystem, usually

with respect to space and/or time.

Pre-Fabricated A database and set of applications
Software programs that provide for the
Description DB cataloging and retrieval of already

written software product descriptions.

Pre-Fabricated A database containing the actual
Software software products that are described
Product DB by the Pre-Fabricated Software

Description Database.

Preformance Automated tools that trace the time
Monitors spent in different areas of the code

during execution.

Preliminary A statement of the functional
Design structure of the system usually

done with HIPO or Structure Charts.

Preliminary A formalized version of the
Design Preliminary Design.
Document

Pre-Fab vesigned and coded software modules
Fuctions that fulfill a specified function.

Preliminary A signal that the Preliminary Design
Design has passed a set of tests design to
Validation Flag calculate the designs validity.

Problem A developed knowledge of the problem
Understanding to be solved.

Process Simulation tools that view the system
Oriented to be processed as a series of inter-
Simulators related processes.

Project DB The data base that contains all of
4 the documentation for a particular

development effort.

261

- R-net A process flow diagram that describes
system requirements for REVS/EREVS.

Requirements A request to clarify an ambiguous
Clarification requirement.
Request

Requirements The formal statement of the requirements
Document for the proposed system.

Requirements The statement of a need to modify or
Update Reques extend the requirements for the system.

Requirements A signal that the stated requirements
Validated Flag have passed the tests applied to them

and thus are more likely correct.

Requirements Important aspects of the system that
Voids have not been specified.

REVS Requirements Engineering and Validation
System, used for specifying, testing, and
modeling system requirements.

- RSL Requirements Specification Language,
a language used by REVS/EREVS to state
requirements in terms of entities,
attributes, and relationships.

Qualified A group of individuals that have been
Users trained with and can use the software

system.

SADT(TM) Softech's Structured Analysis and Design
Technique.

SDW The AFIT Software Development Workbench

SDW Executive The top-level module of the SDW that controls
(SDWE) and coordinates all SDW functions.

Shared A data base that is used by a variety of
Data Base different applications.

I
Soft Copy The capability to project two-dimensional
Graphics graphics images on a video display.

Software Areas of the code where large amounts of tinie
Bottlenecks and/or space are being used up.

"- *Software The discipline that defines means to develop
Engineering software using well specified methodologies.

262

Software A report that details an inadequacy
Problem found with the Software System as
Report currently implemented.

Software The fully coded version of the system.
System

Source Code The human-oriented listings of
the software.

SSL System Specification Language, the language
used to intially describe a system to REVS/
EREVS.

Structure A two-dimensional graphics technique used
Charts to describe the design of a system as

a hierarchy of modules with specific
interfaces.

Structure Tools that automate the development of
Chart Tools Structure Charts.

Structured Software code that is constructed using a
Code limited set of constructs that emphasize a

single entrance point and a single exit
point.

Structured A means of stating requirements and designs
English that uses a strictly formatted subset of the

english language.

Symbolic Automated tools that trace all functions
Execution of a program to all of their outputs and
Tools along all of their paths.

Syntax Errors Attempts at code that is illegal within
the constructs of the particular programming
language.

Syntax-Directed Interactive automated tools that check the
Editors syntax of and compile the source code as it

is entered into the computer.

System The realization of a problem to be solved
Concept by a Software System.

System A statement of the functions that the system
Requirements must be able to perform and the criteria

within which it must perform the functions.

System/ Logical subsets of the software system.
Sub-System

263

* Components

System! Descriptions of the inputs, outputs, and
Sub-System functions of the System/Sub-System Components.
Component
Specifications

Target Specifications of the environment within which
Environment the software system will reside and operate.
Specifications

Target Automated tools that make the host computer
Machine behave like the taroet computer.
Emulators

Terminated The archived documentation of a Software
Software System that is no longer needed or
System operational.

Test Case Automated (interactive) tools that produce
Generators sets of input data with which software

systems are tested.

Test Coverage Automated tools that report which parts of
~T7Analyzers a program were executed during a particular

test run.

Test Plans Strategies and test cases for use in the
validating of the coded software.

Text Editors Interactive automated tools that provide
for the insertion and modification of text
into files on the computer.

Textual A statement of the System Requirements in
Requirements an english language form.

"Tool Kit" An approach to developing software development
Approach environments 'hat emphasizes the use of many

independent component tools.

Unsatisfied Functions required by the Preliminary
Functions Design that have not been previously

designed or coded.

Updated A version of the system requirements that
Requirements has been modified to allievate some problem.

Word An automated facility for developing
Processing textual manuscripts.

264

Ap~n C~Lspeifigations Qf Preliminkr

265

Specification Df Prliinary Design Modules

This appendix presents formatted specifications of the

SDW Preliminary Design modules of the SDW Structural Model

(3.5.2). Each module is described by the type of tool it

is, the calling module, any subordinate calls, the inputs

and outputs, a functional description, a comment block, and

a special resolves entry. The resolves specification traces

the module to the operation(s) of the SDW Functional Model

(2.4) that it satisfies. The table below identifies all of

the SDW Preliminary Design Modules.

SDW Preliminary Design Modules

Number Label

3-1 Code Generators
3-2 Compilers
3-3 Configuration Managers
3-4 Consistency Checkers
3-5 Data Flow Analyzers
3-6 Debuggers
3-7 Dimension Checkers
3-8 Environmental Emulators
3-9 Execution Profilers
3-10 Functional Design Tools
3-11 Graphics Editors
3-12 Help Files
3-13 Information-Oriented

Design Tools
3-14 Interface Checkers
3-15 Interface to Pre-Fab

Software Description
Data Base

3-16 Interface to iroject
Data Bases

3-17 Linkers
3-18 Loaders

4 3-19 Logic Path Analyzers
3-20 Performance Monitors
3-21 Planning Tools

266

I . i ,

3-22 Requirements Definition
'rools

3-23 SDW Executive
3-24 Simulators
3-25 Source Code Formatters
3-26 Statistical Packages
3-27 Symbolic Execution Tools
3-28 Syntax-Directed Editors
3-29 Teach Routines
3-30 Test Case Generators
3-31 Test Result Comparators
3-32 Text Editors
3-33 Word Processors

267

7 .17

V 3-1 TYPE OF TOOL: Code Generators

RESOLVES: 1.4.3.1, 1.4.3.2

CALLED BY: Information-Oriented Design Tools,

Functional Design Tools

CALLS: None

INPUTS: Some variety of Design Specification

OUTPUTS: Full or Partial High order Language Source
Code

FUNCTIONAL DESCRIPTION: A computer program that
translates a design specification for a program into
all or part of the actual source code for the program.
Usually has two parts, (1) an analyzer that check the
design specification and (2) the actual code generator.

COMMENTS: Code Generator capabilities are often
___ embedded in Design Specification Tools

3-2 TYPE OF TOOL: Compilers

RESOLVES: 1.4.3.4

CALLED BY: SDW Executive

CALLS: None

INPUTS: Source Codes

OUTPUTS: Object Codes, Error Diagnostics

FUNCTIONAL DESCRIPTION: Compiler programs convert
source code versions of programs into executable
object code. During the conversion process, the
source code is checked for syntax and some semantical
errors. Most all compilers are designed for a single
programming language.

COMMENTS: The SQW must have compilers to support
many different languages.

268

3-3 TYPE OF TOOL: Configuration Managers

RESOLVES: 1.4.2, 1.4.3.2, 1.4.4.1, 1.4.4.4, 1.4.5.2

CALLED BY: SDW Executive

CALLS: Interface to Project Data Bases

INPUTS: Software System Components

OUTPUTS: Version Data on Software System Components

FUNCTIONAL DESCRIPTION:I! A configuration manager controls the different
components and versions of a software development
project.

3-4 TYPE OF TOOL: Consistency Checkers

RESOLVES: 1.1.3, 1.2.2, 1.3.4

CALLED BY: Information-Oriented Design Tools, Functional
Design Tools, and Requirements Definition Tools

CALLS: None

INPUTS: Machine-Readable Design Specifications,
Machine-Readable Requirements Specifications

OUTPUTS: Listin.g of voids and Inconsistencies

FUNCTIONAL DESCRIPTION: A computer program used to
determine (1) if requirements and/or designs specified
for computer programs are consistent with each other
and their data bases and (2) if they are complete.

COMMENTS: Consistency Checkers are often embedded
in Requirements Specification and Design tools.

269

3-5 TYPE OF TOOL: Data Flow Analyzers

RESOLVES: 1.4.4.2

CALLED BY: SDW Executive

CALLS: None

INPUTS: High Order Language Source Code

OUTPUTS: Report of Data Flow Anomalies

FUNCTIONAL DESCRIPTION: A computer program that
* checks source code listings for data flow anomalies

such as the referencing of a variable before it has
been set.

COMMENTS: Data Flow Analyzers are often language
specific.

3-6 TYPE OF TOOL: Debuggers

RESOLVES: 1.4.4.3

CALLED BY: SDW Executive

CALLS: None

INPUTS: An Executable Version of a Program, Set of
Specific User Commands

OUTPUTS: Listing of Variable Values, Location Values

FUNCTIONAL DESCRIPTION: A computer program that
allows the user to control the execution of a program,
monitor specific locations, change specific locations,
check the sequence of program control and otherwise

-* locate and correct errors as they occur during the
execution of the program.

COMMENTS:

270

3-7 TYPE OF TOOL: Dimension Checkers (Units Checkers)

RESOLVES: 1.4.4.2

CALLED BY: SDW Executive

CALLS: None

INPUTS: Source Code Listing, Dimensional Specification
of the Physical Units associated with each Variable

OUTPUTS: Dimensional Inconsistency Report

* FUNCTIONAL DESCRIPTION: Computer Programs that check
assignment statements for dimensional consistency
according to a user specified dimension for each variable
referenced.

COMMENTS: Dimension Checkers are usually used for
scientific programs and are language specific.

3-8 TYPE OF TOOL: Environmental Emulators

RESOLVES: 1.4.4.3

CALLED BY: SDW Executive

CALLS: None

INPUTS: Specification of the Target Environment

OUTPUTS: An Emulated Environment

FUNCTIONAL DESCRIPTION: A computer program used to
permit testing operational programs on a host computer.
The operational programs run under enulated conditions
as if they were operating within the real-time control
program of a machine to which all of the devices constituting
the ultimate system are attached.

COMMENTS:

271

C T V. 1--. T

3-9 TYPE OF TOOL: Execution Prof ilers

RESOLVES: 1.2.1y 1.2.3

CALLED BY: SDW Executive, Compilers

CALLS: None

INPUTS: High Order Language Source Code

OUTPUTS: A Source Code Listing that specifies the
number of times each line of code was executed.

FUNCTIONAL DESCRIPTION: A computer program that records
and reports how many times each line of source code in
a program was executed during a specific run of that
program.

COMMENTS: Execution Prof ilers are sometimes language
specific and may require special options to be invoded
during compilation.

3-10 TYPE OF TOOL: Functional Design Tools

RESOLVES: 1.2.1.1, 1.2.1.2, 1.2.1.3, 1.2.2, 1.2.3,
1.3.2, 1.3.3, 1.3.4

CALLED BY: SDW Executive

CALLS: Simulators, Consistency Checkers, Code Generators

INPUTS: Specification of Design in a Design
Specification Language or in terms of 2-D Graphics

OUTPUTS: Specification of a program's Functional Design
in Consistent and Unambiguous terms

FUNCTIONAL DESCRIPTION: An interactive computer program
that assists the software developer in specifying the
functional design of a software system. This specification
is usually in terms of a recognized Software Engineering
Methodology that focuses on the specification of functions
as components of the software program.

COMMENTS: Examples of Functional Design Tools support
methodologies such as HIPO, SADT, HOS, etc.

272

'. -.

3-11 TYPE OF TOOL: Graphics Editor

RESOLVES: 1.1.2.1, 1.1.2.4

CALLED BY: SDW Executive

CALLS: None

INPUTS: Specific Set of Terminal Commands,
Existing Files of 2-D Graphics

OUTPUTS: Files of 2-D Graphics

FUNCTIONAL DESCRIPTION: A computer program that
provides capabilities to create and update files
of 2-dimensional graphics images. Primative graphics
editors will just display the graphics on a video
screen and not provide the means to save images in
files.

COMMENTS: Graphics editors are often dependent
on very specific hardware

3-12 TYPE OF TOOL: Help Files

RESOLVES: 1.7.2, 1.7.3

CALLED BY: SDW Executive

CALLS: None

INPUTS: Help Requests

OUTPUTS: Textual Displays of information and instructions
to assist the user

FUNCTIONAL DESCRIPTION: A collection of files that
information to assist the user in operating the SDW and
its component tools. Help files are indexed so that
requests can be answered quickly and efficiently.

COMMENTS:

273

3-13 TYPE OF TOOL: Information-Oriented Design Tools

RESOLVES: 1.2.1, 1.2.2, 1.2.3

CALLED BY: SDW Executive

CALLS: Code Generators, Consistency Checkers,
Interface to the Project Data Base

INPUTS: Data Structure Specifications & Relationships

OUTPUTS: Informational Models and Designs

FUNCTIONAL DESCRIPTION: These computer programs use
graphical and textual specifications of the data
structures used in developments to produce data models

.- and software designs based on the data structures.

COMMENTS: These tools support Software Engineering
methodologies such as Jackson's Method, Warnier-Orr
technique, etc...

3-14 TYPE OF TOOL: Interface Checkers

K RESOLVES: 1.3.4, 1.4.4.2

CALLED BY: SDW Executive

CALLS: None

INPUTS: Source Code, Design Specifications

OUTPUTS: Interface Correctness Reports

FUNCTIONAL DESCRIPTION: Computer programs that check
the number, order, type, and range of parameters that
are passed between design and code modules.

COMMENTS:

.

- 274
r!

3-15 TYPE OF TOOL: Interface to Pre-Fab Software Description

Data Base

RESOLVES: 1.3.1

CALLED BY: SDW Executive

CALLS: Pre-Fab Software Description Data Base Manager

INPUTS: Set of Keywords, Description of a Software Unit

OUTPUTS: Description of a Software Unit

FUNCTIONAL DESCRIPTION: An applications program that
provides the user with the ability to locate existing
software units that may satisfy some of his required
functions. The program uses a set of keywords to locate
descriptions of candidate software units. This program
also facilitates the entering of dest... ptions for new
software units.

3-16 TYPE OF TOOL: Interface to the Project Data Base

RESOLVES: 1.1.2, 1.1.6, 1.2.1, 1.2.3, 1.2.4, 1.3.2
1.3.3, 1.4.3.2, 1.4.3.3, 1.4.4.4, 1.7.1

CALLED BY: Configuration Manager, Functional Design
Tools, Information-Oriented Design Tools, Requirements
Definition Tools

CALLS: Project Data Base Manager

INPUTS: Queries on the Project Data Bases, Project
Development Data

OUTPUTS: Various Views of the Project Data Bases

FUNCTIONAL DESCRIPTION: An applications program that
provides means for the user to interact with the Project
Data Bases. In these data bases are stored all of the
development data with separate schemas for each stage

r and another schema that preserves the mapping between
the schemas of the different stages.

275

3-17 TYPE OF TOOL: Linkers

RESOLVES: 1.4.4.1

CALLED BY: SDW Executive

CALLS: None

INPUTS: Separately Compiled Software Units

OUTPUTS: An Executable Image

FUNCTIONAL DESCRIPTION: A program that assembles and
maps together separately compiled software units.

COMMENTS: This facility is usually included as a
standard utility of the resident operating system

3-18 TYPE OF TOOL: Loaders (Relocatable Loader)

RESOLVES: 1.4.4.1

CALLED BY: SDW Executive

CALLS: None

INPUTS: An Executable Image

OUTPUTS: A Loaded Executable Image

FUNCTIONAL DESCRIPTION: A computer program that enables
external references of symbols among different assemblies
as well as the assignment of absolute addresses to
relocatable strings of code. This progiam provides
diagnostics on assembly overlap, unsatisfied external
references, and multiple defined external symbols.

COMMENTS:

42 7

276

, ..I .i i .- -. -. .

3-19 TYPE OF TOOL: Logic Path Analyzers

RESOLVES: 1.4.4.2

CALLED BY: SDW Executive

CALLS: None

INPUTS: Executable software

OUTPUTS: Path Analysis Report

FUNCTIONAL DESCRIPTION: A computer program that
checks all logical paths within a program to determine
if the paths are executable and what conditions must
be satisfied for that path to be executed.

COMMENTS:

3-20 TYPE OF TOOL: Performance Monitors

RESOLVES: 1.4.5.1

CALLED BY: SDW Executive

CALLS: None

INPUTS: A Software Program

OUTPUTS: Report on the Time Spent in each Module

FUNCTIONAL DESCRIPTION: A computer program that inserts
extra code into a software program that records the amount
of time spent in each area of the code during the execution
of the software. Used for the detection of software areas
where gains may be had by optimization.

COMMENTS:

277

ARD-Ai24 872 AN INTERACTIVE AND AUTOMATED SOFTWARE DEVELOPMENT 4/4
ENVIRONMENT(U) AIR FORCE INST OF TECH NRIOHT-PATTERSON
AFI OH SCHOOL OF ENGINEERING S M HADFIELD DEC 82

UCASIFIED AFIT/GCS/EE/82D-i7 F/G 9/2 NUNLSM ENOMONEE .IEI
mhhhhhhhhhhhhI

I fllfllfllfllMfflfflf

Olsonh0hhhhhhhI

VV

1.0 Q8
)j.

W &62/

11.2 1116 .

MIROOP REO1TONT11CHR
AIOA BREUOFSTNARS-3 -A

3-21 TYPE OF TOOL: Planning Tools

RESOLVES: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6

CALLED BY: SDW Executive

CALLS: None

INPUTS: Specification of the Development Effort

.UTPUTS: A Schecule for the Development Effort

FUNCTIONAL DESCRIPTION: An automated tool that aids
in the creation an maintenance of software development
plans and schedules.

COMMENTS:

3.22 TYPE OF TOOL: Requirements Definition Tools

S..RESOLVES: 1.1.1, 1.1.2, 1.1.6

CALLED BY: SDW Executive

CALLS: Simulators, Consistency Checkers, Interface to
the Project Data Bases

INPUTS: Specifications of Software Requirements

OUTPUTS: Various Test Reports on the Stated Requirements,
Various Illustrations of the Requirements

FUNCTIONAL DESCRIPTION: Computer programs that accept
a specification of system/software requirements (usually
in a tool-specific specification langauge) and assemble
them in a data base. Then, these requirements may be
simulated, updated, checked for consistency/completeness,
or used to produce different representations of the
requirements.

COMMENTS: These tools often have Consistency checkers
and Simulators built into them.

278

_'

. .

3-23 TYPE OF TOOL: SDW Executive

RESOLVES: 1.

CALLED BY: None

CALLS: All SDW Component Modules

INPUTS: User commands

OUTPUTS: Prompts, Diagnostics

FUNCTIONAL DESCRIPTION: An operating system level
program that controls the operations of the SDW
and all of its components.

COMMENTS:

3-24 TYPE OF TOOL: Simulators

RESOLVES: 1.1.5, 1.2.2.4

CALLED BY: SDW Exeputive, Functional Design Tools,
Requirements Definition Tools

CALLS: None

INPUTS: Simulation Model

OUTPUTS: Requested Reports from Simulation Model

FUNCTIONAL DESCRIPTION: Computer programs that are
used to estimate how particular systems, stated as
simulation models, will perform under stated conditions
over time. Simulations may be of software systems,
target environments, other hardware components, etc...

COMMENTS: Simulators may be stand-alone, or embedded
in other tools.

279

3-25 TYPE OF TOOL: Source Code Formatters

RESOLVES: 1.4.3.2, 1.4.3.3, 1.4.4.4

CALLED BY: SDW Executive

CALLS: None

INPUTS: Source Code Listings of Software

oUTPUTS: Formatted Source Code Listings

FUNCTIONAL DESCRIPTION: A computer program that
insures that the source code listings of software
are well formatted for readability and understandability.

COMMENTS:

3.26 TYPE OF TOOL: Statistical Packages

* - RESOLVES: 1.1.1.1, 1.1.1.5

CALLED BY: SDW Executive

CALLS: None

INPUTS: Applications Programs, Empirical Data

OUTPUTS: Statistical Reports

FUNCTIONAL DESCRIPTION: Computer programs that are used
to statistically analyze data in ways prescribed by
specific applications programs.

COMMENTS:

280

* 3-27 TYPE OF TOOL: Symbolic Execution Tools

RESOLVES: 1.4.4.2

CALLED BY: SDW Executive

CALLS: None

INPUTS: Source Codes of Software

OUTPUTS: Trace Reports

FUNCTIONAL DESCRIPTION: Computer programs used to trace
coded software along all possible paths or partical paths
and evaluate the execution along those paths symbolically.

COMMENTS:

3-28 TYPE OF TOOL: Syntax-Directed Editors

RESOLVES: 1.1.2.2, 1.1.2.3, 1.1.4, 1.1.6, 1.2.1, 1.2.2.3
1.2.3, 1.3.2, 1.3.3, 1.4.3, 1.4.4.4,F 1.4.5.2

.2 CALLED BY: SDW Executive

CALLS: None

INPUTS: BNF Description of a Programming Language,
User-Entered Source Code

OUTPUTS: Source and Object Codes of Software

FUNCTIONAL DESCRIPTION: A text editor that checks the
syntax and compiles source code as it is entered. The
editor does not allow syntactically-erroneous source code
to be entered.

COMMENTS: Syntax-Directed Editors are extend to also
accept constraints from previous development stages to
insure that entered text is both syntactically correct
and valid against the previously stated constraints.

281

3-29 TYPE OF TOOL: Teach Routines

RESOLVES: 1.7.2

* .CALLED BY: SDW Executive and al1l SDW components

%.ALLS: None

INPUTS: Teach Requests (Specific or General)

OUTPUTS: Scripts for Operating the SDW and Components

FUNCTIONAL DESCRIPTION: Automated aids that provide
* - on-line teaching of the operation of the SDW and the

SDW components.

COMMENTS: Separate teach routines are provided for
each of the SDW components.

3-30 TYPE OF TOOL: Test Case Generators

RESOLVES: 1.4.4.3, 1.6

CALLED BY: SDW Executive

CALLS: None

INPUTS: Software Source Codes, Data Constraints

OUTPUTS: Input Test Cases

FUNCTIONAL DESCRIPTION: Computer programs that analyze
software codes and data constraints and automatically
produce input test cases used to test the software code.

COMMENTS:

282

3-31 TYPE OF TOOL: Test Result Comparators

RESOLVES: 1.4.4.3, 1.4.4.5

CALLED BY: SDW Executive

CALLS: None

INPUTS: Anticipated Results, Actual Results

OUTPUTS: Descripencies Between Actual & Anticipated
Results

FUNCTIONAL DESCRIPTION: Automated tools that compare
the actual output of test runs to the anticpated output
of test runs and report any descripencies.

COMMENTS:

3-32 TYPE OF TOOL: Text Editors

RESOLVES: 1.1.1.4, 1.1.2.2, 1.1.6, 1.2.1, 1.2.3, 1.3.2,
1.3.3, 1.4.3.2, 1.4.4.4, 1.4.5.2

CALLED BY: SDW Executive

CALLS: None

INPUTS: Text, User Commands

OUTPUTS: Text Files

FUNCTIONAL DESCRIPTION: Computer programs that provide
for the interactive insertion and modification of text
which is saved in text files.

COMMENTS: Text Editors are often used to create &
modify source codes and in conjunction with word
processors.

. .283

3-33 TYPE OF TOOL: Word Processors

RESOLVES: 1.1.1, 1.1.1.2, 1.2.1, 1.3.3, 1.7.1

CALLED BY: SDW Executive

CALLS: None

INPUTS: Text files, User commands

OUTPUTS: Formalized Documentation

FUNCTIONAL DESCRIPTION: Computer programs that convert
textual inputs into formalized documentation in accordance
with specific commands.

COMMENTS:

284

SA

Detailed Requirements Deffinition Lar. Il

Software Develorment Workenc Execu~tive

,8

28

"D etail., ed Requirements Dfoinition th

SotaeDaveloretWorkbenchExctv

The Detailed Requirements Definition for the Software

Development Workbench Executive (SDWE) defines the specific

requirements for the SDWE which is the integrating interface

and controller for the Software Development Workbench. The

model defined in this appendix depicts the updated

requirements for the SDWE current to publishing of this

thesis document. The model uses the Structured Analysis and

Design Technique (SADT). This technique is defined and its

use justified in section 4.3.1 of this document.

* .. The Detailed Requirements Definition for the SDWE

A- Utilize the SDW
A0 Utilize the SDW

A4 Execute the User's Command
A41 Provide a Functional Tool Group
A42 Provide Help Facilities
A43 Provide SDW Utility Functions
A44 Access the Pre-Fab Software

Description Data Base

286

........

LU

0f)

LU

0

LU

z
w.0 -

cc 4 ita

I.->

CC

.~1C)

.5-4 304ul e4 r.j

0 4)

-, -
0 04

414

00

286

14D 0

X4 0ud 4)

0

IAA
02U U)u~

cc~'

LICg

0 Z 0
zo U)

Lu. 0 ::D FA

00

LL 1% 4; r-

~0 c -4r4 :

N

CC 01
0 c4Cd

CC)
*r40

0 r-4+

> 0 Id
4a. P.C2

010

co

4 44

> N' L
4)

4-) C487

0)
VIl 0 r.0c

2A C 0 0 4,0 4) no~ 4-). 1> OD__ _ _ _ _ _ _

1p C
o 11(goJt>

LU
00

44
LUj

LU4) 4) j4)U

(U U).. 0~ U) a,__0

00

;-

(D(

U),

-. 0 U .

ULU

4 4J

II/lp > -4

tl- 4- ;

_ _ 1I1 c
NW -4 U

t 0 4-4S a a .. ~ a J a

II 0 0

II 0

0 -4r 10
4-))

*LU o) -

C)4) 4.)4- r

C: U

U) fit C. :3

I.'.)& E0
C)

< 0
LUP.v

z 4-)

00

7e.)4.

LL 0
CO

LU. PtLU=
2cc CL:

LL C

00

C~C)
a:) 4 4.) U

0 r4 Ia.

LLU

V 0 c

0 cl 0 C*-

g Lf. 0b O

.3 40

0 (0

14 r 089

I-l Ip ::!i

I L
4)-0

0

w En

4
141

z 0

00

4J

o) U) 41

Z 44

-4C

cn r-4 a H

4w p)

4'-
M-4)

'n 00

40 4.) -4

4)-

'a

1

x LU)

e4 IL 4-

U-

0~P90

13 sz --

1 .It
£~4-)

Mbi

004 C~I)

Mi

MU-

z 0

z- 2 C)

0)
-c 0 c 0A

0(0

U)v rZ

4-)j

us
H

(4q

0 --

~= 0

0 -.
I Us w

00

P4 Mi 0

291

t.0U ta I '

4-3 4S f..

@+3

41

0 --0 --

+)

LU U)-4
a z 3

LU 0 0 0d
0L +3

z2
g 0

cr4
<4 U)i

0 uiI

-in
4) V) 9

LU.. 0

4wC

4-3 1
V) 0) 4A4-

In If)

@3 0

-n 0)3- 0U

00)) -

< IL

ul U)
U~U)

>U I -.

Ic 0 n r. 0

4-

Iii

0

292

Software DelopmentQ1 Workbench Eeuive

71

294

Preliminary Design forL the

Sotwr Devel1opmnent Wokbnch Exeguti3Le

The Preliminary Design Specification for the Software

Development Workbench Executive (SDWE) defines the

structural design model for the SDWE which is the

integrating interface and controller for the Software

Development Workbench (SDW). The model defined in this

appendix depicts the updated Preliminary Design of the SDWE

current to the publishing of this thesis document. The

model uses the Structure Chart technique (Ref 90:141). This

technique is defined and its use justified in section 4.3.2

of this document.

.-The Preliminary Design for the SDWE

Figure "ritle

5-1 Top Level Diagram
5-2 Provide Compilers
5-3 Provide Comparators
5-4 Provide Dynamic Analysis Tools
5-5 Provide Debuggers
5-6 Provide Design Tools
5-7 Provide Editors
5-8 Provide Graphics Editors
5-9 Provide Linkers
5-10 Access Pre-Fab S/W Description DB
5-11 Provide Performance Monitors
5-12 Provide Requirements Definition Tools
5-13 Provide Static Analysis Tools
5-14 Provide Simulation Tools
5-15 Provide Test Case Generators
5-16 Provide Word Processors

295

LJU':>C

CK 0

IA w

0 %M

Ix I- - ----

w

IIL

$- o

0 -

4A. L, CL w E',

C3) .

oI IL I
IA

wo6

or. .. .QI

E ~ 0. U)-

00 A

%nI-aI .I-

29
,A >

Ix z
OL 0 C

z 71

00

D0

ww

w 0 Q.

Q 297

w La w CL

La
-0

vi 0
:3 cr
w CL CL

UA

Ld

>
z w I-.w im

D
0

LJ _j CL 300 ,,a LL
4A

w

CA cqccw 0 OP
a (A LU w
at 0! w
c w D
IL && a
&
0 &L

>LL 0 n w
Q 4Z n

040Ct Z) Ld Q
US 40

C>

w
cl

ul
:2

LLJ (L
w

Lj Op.-
Ix z

0
ej

298

LaL

w

a L U

wa

II

.. a 0

w

0
00

ww

C'nI

4Z oL

L3i

%A f

ZLIa

b

.1

w

LaSh

OC ww

La

IL

301

aa

01.

I.-
bJ 0.0.

InI

II

Ij(

w I-

IL d

0 0D
qpIL

ww

IAJ aj

30

II,

,, C
-0

w

000

30

CL
7 LJ w

.1

ao"
Ir
CL cL

Lu

tu

0
u

kA
uj Z
C2 oo0 Q

Ln
M 'n
UJ

cl
A W-

Ld U
(n
w

uj
Ir

LL IL (A

CK
M Uk

La
4n ick
IA
UA :m C:

'A
0 Li

.

w0 IL 01.- 0EL uo

w

at w (L
ul

z
IL 0

305

Ld -j -A * .

V)

L.CJ

4AA

a 7
0 (A Q 5

07)(
Uj

30
4w

zw

0. C3)

Lij

0

S, IJ~(n

Li .ia

000

0 nJ

ww
w

w I

307

-4 ..

Z LL) LU La a-
w

4A u
:>

0 0 1

d cx
CL n

to > %A

45 w

0 cr z
La -i a- :3C)

w

0
Q

V)

00

0 ci
IL cs

tA
c 0

W CL u or.

LLI

w
w CL zW U C

ac
%n CL

308

.. ~~~C -. - - -. - -. . 'A-

(A 0

4.))

('AA

4z c

(%n

a0

w

30

-S.. ~. .S - -.

ww

00

W IL.

wY
0

1o

~0

w
a

i0.

w

IAJ

>4L

C 0 r 31 A

Appendix Lz:
Algorithmic D.epign QL ThQ

Sotr Devlmnt Workench Executive

311

Algorthmic Deign QT fl

Within the software life-cycle, the Detailed Design

stage is characterized by the development of the design

module algorithms. In order to better describe the

objective of this stage, it is refered to as the Algorithmic

Design stage in the rest of this document. The design

modules for the SDWE are specified in the SDWE Preliminary

Design model (Appendix E). Explicit algorithms for these

design modules are developed using the SDWE Requirements

model (Appendix D) for a reference.

The algorithms for the SDWE design modules are

expressed in Structured English (Ref 90:48-49). The other

Software Engineering Methodologies available for the

specification of the algorithms are Decision Tables

(Ref 90:49) and Decision Trees (Ref 90:49). Neither of these two

options are very applicable to the development of the SDWE,

whereas, the flexibility of Structured English makes it the

most appropriate choice.

The subset of Structured EngJish used to describe the

SDWE algorithms uses a limited set of constructs, action

verbs, data items, and other english words to formulate the

algorithms in an easily understandable form. The Structured

English constructs of the SDWE algorithms are the IFTHEN,

- -IFTHEN_ELSE, and REPEATUNTIL. Structured English is a

312

very useful tool for describing algorithms because of its

understandability. As a result, the reader who is

unfamiliar with Structured English should be able to pick up

it's concept without much difficulty.

The algorithms for the SDWE modules are displayed and

explained in the text. Each of these algorithms are

identified in the below.

SDWE Algorithms

Figure Algorithm Title

6-1 SDWEXE
6-2 Functional Tool Group
6-3 List Project Data Bases
6-4 Access Pre-Fab Software

Description Data Base
6-5 Help Facility
6-6 Trap Bad Commands
6-7 SDW Help Facilities
6-8 Provide SDW Utility Functions

The highest level design module of the SDWE Preliminary

Design model is the SDWEXE module. This module must satisfy

the requirement specifications defined by diagrams/activity

boxes AO, Al, A2, A31, A35, A37 of the SDWE Requirements

model (Appendix D). The algorithm for satisfying these

requirements is detailed below:

3

"" 313r!

h" - - • . • r• . _ . _ . . . • . • " . •• •••- . J - • ._ .

..

SDWEXE Algorithm

(* Initialize the SDW *)

WRITE SDW_Header_Message

GET DeviceType

(* Provide a set of Top Level Options *)

DEFINE FunctionalTool_GroupCodes
DEFINE HelpCommand
DEFINE MenuCommand
DEFINE ListProjectDBsCommand
DEFINE AccessPre-FabS/WDescripDB
DEFINE Termination-Command

(* Accept and Execute the User Command *)

REPEAT_UNTIL UserCommand equals TerminationCommand
IF AutoMenu-Flag is true THEN

DISPLAY TopLevelMenu
GET UserCommand
IF UserCommand is invalid THEN

CALL TrapBadCommands
EXECUTE User-Command

ENDREPEATUNTIL
CLOSE ProjectDBName
WRITE Conclusion_Message

Figure 6-1

Although each SDW Functional Tool Group controls and

interfaces to a different set of SDW components, the manner

in which each of the functional tool group modules preform

their functions is very similar. As P result, a generic

algorithm is provided for these modules. This algorithm is

presented below:

314

I -

Functional Tool Group Module Algorithm

UNDEFINE Previous_Codes
DEFINE FunctionalToolGroupCodes
DEFINE HelpCommand
DEFINE SDW_Utility_FunctionCommand
DEFINE MenuCommand
DEFINE ReturnCommand
REPEAT_UNTIL User_Command equals ReturnCommand

IF AutoMenu-Flag is true THEN
DISPLAY CurrentMenu

ELSE (Auto MenuFlag is false)
SO DISPLAY Functional_Tool_Group_ID

DEFINE Help Request, MenuRequest, ReturnCommand
GET UserCommand
IF UserCommand is invalid THEN

CALL TrapBadCommands
IF UserCommand requires parameters THEN

GET Parameters
EXECUTE UserCommand

ENDREPEATUNTIL
UNDEFINE Functional_ToolGroupCodes

'RETURN to SDWEXE

Figure 6-2

There are several other design modules in the SDWE

Preliminary Design model that must have algorithms specified

for them. They are the List Project DBs module, the Access

Pre-Fab S/W Descrip. DB module, the Help Facility Module,

the SDW Help Facility module, and the Trap Bad Commands

module. The algorithms for these modules are defined below:

315

List Project DBs Algorithm

IDENTIFY Project_DB_Names
WRITE HeaderMessage
WHILE more ProjectDB_Names

WRITE next Project_DB_Name
END_WHILE
RETURN to SDWEXE

Figure 6-3

Access the Pre-Fab S1W Descrip. DB Algorithm
--

UNDEFINE PreviousCodes
DEFINE AddS/WDescripCommand
DEFINE Find_S/WDescripCommand
DEFINE Help-Command, MenuCommand, ReturnCommand
REPEATUNTIL UserCommand equals ReturnCommand

IF AutoMenuFlag is true THEN
DISPLAY CurrentMenu

GET UserCommand
EXECUTE UserCommand

ENDREPEATUNTIL
UNDEFINE AddS/WDescripCommand
UNDEFINE FindS/WDescr ipCommand
RETURN to SDWEXE

Figure 6-4

316

"I

Help Facility Algorithm

GET Type-ofHelpRequest
IF Type-ofHelpRequest equals SDWHelp.Request THEN

IF AutoMenuFlag is true THEN
DISPLAY Menu of SDWHelpOptions

GET SDW_ComponentSelection
IF SDWComponentSelection is "SDW" THEN

CALL SDWHelpFacility
ELSE

DISPLAY Appropriate_Help_File
ELSEIF Type-ofHelpRequest equals
VMSHelpRequest THEN

IF Auto_MenuFlag is true THEN
DISPLAY Menu of VMSHelpOptions

GET VMSSelection
CALL VMSHelpFacility

ELSE (* No help is really desired *)
NO OPERATION

RETURN to calling module

Figure 6-5

Trap Bad Commands Algorithm

DISPLAY BadCode
EXPLAIN BadCode

Figure 6-6

SDWHelpFacility

PROVIDE MenuofGeneral_HelpOptions
GET Help-Option
DISPLAY RequestedHelpFile

Figure 6-7

317

- ...

.7i -' 7

VPROVIDESDWUTILITYFUNCTIONS

UNDEFINE PreviousCodes
DEFINE UtilityFunctionalCodes
DEFINE Help_Command
DEFINE MenuCommand
DEFINE Return_Command
REPEATUNTIL User_Command equals ReturnCommand

IF AutoMenuFlag is true THEN
DISPLAY CurrentMenu

ELSE (AutoMenuFlag is false)
SO DISPLAY UtilityjFunctions_ID

GET User Command
IF UserCommand is invalid THEN

CALL TrapBad_Commands
IF UserCommand requires parameters THEN

GET Parameters
IF User_Command requires Device-Type change THEN

DETERMINE new Device-Type
IF UserCommand requires
DataStorageScheme change THEN

IF ProjectDBs are required THEN
GET ProjectDB_Name
IF Project_DBName does not
already exist THEN

CREATE Project_DB_Name
SETUP ProjectDBName

ELSE IF directory desired for
DataStorageScheme THEN

GET Directory-Spec
SETUP Directory

ELSE
NO OPERATION

IF UserCommand requires Auto-MenuFlag change THEN
GET new AutoMenuFlag

END_REPEATUNTIL
UNDEFINE UtilityFunctionCodes
RETURN to SDWEXE

Figure 6-8

318

4!

!i.

APPENDIX G:
Listing of the SDW Command Codes

3

rIr

.319

-I:

* iListing of the SDW Command Codes

The following is a list of all of the legal SDW codes.
This list is provided as a maintenance tool because the
structure of the SDW and its associated text files require
that each SDW command be given a unique code. Therefore, if
new SDW commands are entered, this list will help insure
that it will be given a unique code.

AD - Run the AIDES Structured Design tool.

AI - Run the Interim AUTOIDEF Drafting tool.

AM - Alter the setting of the Auto_Menu facility.

AS - Add a software description to the Pre-Fab
Software Description Data Base.

BS - Run the BASIC compiler.

CB - Run the COBOL compiler.

CD - Continue an interrupted Debug session.

CI - Run the CIDEF Design and Code Generation
tool.

CM - Enter the SDW Compiler functional group.

CP - Enter the SDW Comparator functional group.

DA Enter the SDW Dynamic Analysis functional
group.

DB - Enter the SDW Debugger functional group.

DE - Begin a Debug session

DF - Run the VMS Differences comparator.

DS - Enter the SDW Design Tool functional group.

DV - Alter the User's device specification.

ED - Enter the SDW Editor functional group.

EE - Run the EDT editor.

ER - Run the Extended Requirements Engineering
* °and Validation System (EREVS).

320

ES - Run the SOS editor.

EX - Exit the current SDW command module.

FR - Run the FOR'_IAN compiler.

FS - Find a software description(s) in the
Pre-Fab Software Description Data Base.

GR - Enter the SDW Graphics Editors functional
group.

HL - Run the SDW Help Facility.

IS - Run the Integrated Decision Support System
(IDSS)

LI - Run the VMS linker.

LK - Enter the SDW Linker functional group.

LP - List all Project Data Bases.

MN - Display the current menu of options.

PD - Specify a new data storage area.

PF - Enter the SDW Pre-Fab Software Description
Data Base access module.

PM - Enter the SDW Performance Monitor functional
group.

PS - Run the PASCAL compiler.

RD - Enter the SDW Requirements Definition functional
group.

RE - Run the Requirements Engineering and Validation
System (REVS).

RN - Run the RUNOFF text processor.

* Q SA - Enter the SDW Static Analysis tools functional
group.

SD - Run the AFIT Syntax-Directed Editor.

SM - Enter the SDW Simulation tool functional group.
6

TC - Enter the SDW Test Case Generator functional group.

321
14

UT - Access the SDW Utility Functions.

WP - Enter the SDW Word Processor functional group.

.

322

.- 7 *..

APPENDIX H:
SDWE File Descriptions

323

SDWE File Descriptions

This document is a listing and description of all of
the SDW component files. It is to be used as a guide for
future maintenance of the Software Development Workbench
(SDW).

A-DDSW.EXE;l -The executable image of the application
program used to add a software description
into the Pre-Fabricated Software Description
Data Base.

ADDSW.OBJ;l -The object code of the application program
used to add a software description into the
Pre-Fabricated Software Description Data Base.

ADDSW.PAS;l -The source code of the application program
used to add a software description into the
Pre-Fabricated Software Description Data Base.

ADHELP.DAT;I -The RUNOFF input file for the help message
for the AIDES Structured Design Tool.

ADHELP.MEM;l -The help file for the AIDES Structured Design
Tool.

AIHELP.MEM;l -The help file for the Interim AUTOIDEF Drafting
Tool.

AMHELP.DAT;l -The RUNOFF input file for the Alter Auto_menu
facility help file.

AMHELP.MEM;l -The help file for the SDW command used to alter
the use of the automenu prompting facility.

ASHELP.MEM;l -The help file for the SDW command used to add
a software description to the Pre-Fabricated
Software Description Data Base.

ASSIGNSYM.COM;l -The command module used to assign the SDW symbols
for the current module.

BADCODE.COM;l -The command module used to trap invalid inputs

to the SDW.

BSHELP.MEM;l -The help file for the SDW Basic Compiler.

BSPARMTS.DAT;l -The file of optional qualifiers for the Basic
| .Compiler.

CBHELP.MEM;l -The help file for the SDW COBOL Compiler.

324

CBPAP.MTS.DAT;l -The file of optional qualifiers for the COBOL
compiler.

CDHELP.DAT;l -The RUNOFF input file for the help message dealing
with continuing an interrupted Debug session.

CDHELP.MEM;I -The help file for the command that continues and
interrupted Debug session.

CIHELP.MEM;l -The help file for the CIDEF Design and Code
Generation facility.

CLEARSCRN.COM;l -The command module that is used to clear the video
display screen. (*** This module contains terminal
dependent features ***)

CLEARTKTX.EXE;l -The executable image of the module used to clear a

Tektronix display screen.

CLEARTKTX.OBJ;I -The object code of the module used to clear a
Tektronix display screen.

CLEARTKTX.PAS;l -The source code of the module used to clear a
Tektronix display screen.

CMHELP.DATI. -The RUNOFF input file for the SDW compiler help

file.

CMHELP.MEM;l -The help file for the SDW compilers.

CMID.DAT;l -The RUNOFF input file for the compiler ID message.

CMID.MEM;l -The ID message for the SDW compiler functional
group.

CMMENU.DAT;I -The RUNOFF input file for the SDW compiler menu.

CMMENU.MEM;l -The menu for the SLW compiler functional group.

COMFILE.DAT;l -The list of all of the SDW command modules.

COMPARE.COM;l -The command module for the SDW comparators.

COMPILE.COM;I -The command module for the SDW compilers.

CONTINUE.COM;l -The command module that prompts for and executes
the user's command to continue with the SDW
execution. (*** This module contains device
dependent features ***)

- CPHELP.DAT;I -The RUNOFF input file for the SDW comparators
help file.

325

[J

CPHELP.MEM;l -The SDW comparators help file.

CPID.DAT;l -The RUNOFF input file for the SDW comparators
functional group ID.

CPID.MEM;l -The ID for the SDW comparator functional group.

CPMENU.DAT;l -The RUNOFF input file for the SDW comparator's
menu.

CPMENU.MEM;l -The SDW comparator's menu.

DAHELP.DAT;l -The RUNOFF input file for the SDW Dynamic Analysis
Tools help message.

DAHELP.MEM;l -The help file for the SDW Dynamic Analysis Tools
functional group.

DAID.DAT;l -The RUNOFF input file for the SDW Dynamic Analysis
Tools functional group identification message.

DAID.MEM;l -The SDW Dynamic Analysis Tool functional group ID.

DAMENU.DAT;I -The RUNOFF input file for the SDW Dynamic Analysis
Tools menu.

DAMENU.MEM;l -The menu for the SDW Dynamic Analysis Tools
functional group.

DATOOLS.COM;l -The command module for the SDW Dynamic Analysis
Tools functional group.

DBHELP.DAT;l -The RUN OFF input file for the SDW Debuggers help
message.

DBHELP.MEM;l -The help file for the SDW Debuggers functional
group.

DBID.DAT;l -The RUNOFF input file for the SDW Debuggers ID
message.

DBID.MEM;l -The SDW Debugger functional group ID message.

DBMENU.DAT;l -The RUNOFF input file for the SDW Debuggers menu.

DBMENU.MEM;l -The menu file for the SDW Debugger functional group.

DEBUGGER.COM;l -The command module for the SDW Debugger functional
group.

DEHELP.DAT;I -The RUNOFF input file for the Begin Debug help file.

326

-°- - - - - - - - -

- -o

K DEHELP.MEM;l -The Begin Debug command help file.
DELSYMBOL.COM;I -The command module that deletes the SDW symbols for

modules that are about to be exited.

DFHELP.MEM;l -The help file for the VMS Differences Facility.

DFPARMTS.DAT;I -The file of optional qualifiers for the VMS
Differences Facility.

DSGNTOOL.COM;l -The command module for the SDW Design Tools
functional group.

DSHELP.DAT;l -The RUNOFF input file for the SDW Design Tools help
message.

DSHELP.MEM;l -The SDW Design Tools functional group help file.

DSID.DAT;l -The RUNOFF input file for the SDW Design Tools ID.

DSID.MEM;l -The ID for the SDW Design Tool functional group.

DSMENU.DAT;l -The RUNOFF input file for the SDW Design Tool menu.

* DSMENU.MEM;l -The menu file for the SDW Design Tool functional
group.

DSPLMENU.COM;l -The command module that displays on the user's
terminal the current menu of SDW options.

DVHELP.DAT;l -The RUNOFF input file for the help file for th(
altering user's device spec module.

DVHELP.MEM;l -The help file for the altering user's device spec
module.

EDHELP.DAT;l -The RUNOFF input file for the SDW Editors help
message.

EDHELP.MEM;l -The help file for the SDW Editors functional group.

EDID.DAT;l -The RUNOFF input file for the SDW Editor's ID
message.

EDID.MEM;l -The SDW Lditors functional group ID message.

EDITALL.COM;l -The command module used during SDW development to
edit a group of similar files.

EDITORS.COM;l -The command module for the SDW Editors functional
group.

327

* * - . .. o

EDMENU.DAT;l -The RUNOFF input file for the SDW Editors menu.

EDMENU.MEM;l -The menu file for the SDW Editors functional group.

ELHELP.MEM;l -The help file for the SOS editor.

ELPARMTS.DAT;l -The file holding the optional qualifiers for the
SOS editor.

ERHELP.MEM;l -The help file for the Extended Requirements
Engineering and Validation System (EREVS).

ESHELP.MEM;l -The help file for the EDT editor.

ESPARMTS.DAT;l -The file holding the optional qualifiers for the
EDT editor.

EXHELP.DAT;l -The RUNOFF input file for the SDW "EX" command
help message.

EXHELP.MEM;l -The help file for the SDW "EX" command.

FILES.DAT;1 -The RUNOFF input file for this listing of files.

FILES.MEM;l -This file of SDW file names and descriptions.

FINDSW.EXE;l -The executable image of the application program
used to find a software description in the Pre-
Fabricated Software Description Data Base.

FINDSW.OBJ;l -The object code for the application program used
to find a software description in the Pre-
Fabricated Software Description Data Base.

FINDSW.PAS;l -The source code for the application program used
to find a software description in the Pre-
Fabricated Software Description Data Base.

FRHELP.MEM;l -The help file for the SDW FORTRAN Compiler.

FRPARMTS.DAT;l -The file holding the optional qualifiers for .oe
FORTRAN compiler.

4 FSHELP.MEM;l -The help file for the SDW command used to find a
software description in the Pre-Fabricated Software
Description Data Base.

GRAPHICS.COM;l -The command module for the SDW Graphics Editors

functional group.

4 -- GRHELP.DAT;I -The RUNOFF input file for the SDW Graphics Editors

help file.

328

4

GRHELP.MEM;1 -The help file for the SDW Graphics Editors

functional group.

GRID.DAT;l -The RUNOFF input file for the SDW Graphics Editors
functional group ID.

GRID.MEM;I -The ID file for the SDW Graphics Editors functional
group.

GRMENU.DAT;l -The RUNOFF input file for the SDW Graphics Editors
functional group menu.

GRMENU.MEM;l -The menu file for the SDW Graphics Editors
function group.

HEADER.DAT;l -The RUNOFF input file for the header for the SDWE
documentation package.

HEADER.MEM;I -The header for the SDWE documentation package.

HELPER.COM;l -The command module that implements the SDW Help
Facility.

HELPFILE.DAT;l -The directory listing of all help files.

HLHELP.DAT;1 -The RUNOFF input file for the help message on
the SDW Help Facility.

HLHELP.MEM;l -The help file for the SDW Help Facility.

IDFILE.DAT;l -The directory listing of all ID files.

INSTALL.DAT;I -The RUNOFF input file that contains the SDWE
installation procedures.

INSTALL.MEM;l -The file that contains the installation
procedures for the SDWE.

ISHELP.MEM;l -The help file for the Integrated Decision Support
System (IDSS).

LIHELP.MEM;l -The help file for the SDW command to use the

linker.

LINKER.COM;l -The command module for the SDW Linkers.

LIPARMTS.DAT;l -The file holding the optional qualifiers for
the VMS linker.

4 LISTPDBS.COM;l -The .ommand module that reports a list of all
..... - existing Project Data Bases.

329

., - -..--. i- •--....- S

LKHELP.MEM;l -The help file for the SDW Linkers functional
group.

LKID.DAT;l -The RUNOFF input file for the SDW Linkers ID
message.

LKID.MEM;l -The ID message for the SDW Linkers functional
group.

LKMENU.DAT;l -The RUNOFF input file for the SDW Linkers menu.

LKMENU.MEM;l -The menu file for the SDW Linkers functional
group.

LPHELP.DAT;l -The RUNOFF input help file for the SDW command
to report all existing Project Data Bases.

LPHELP.MEM;I -The help file for the "LP" command, to report
all existing Project Data Bases.

MAINT.DAT;l -The RUNOFF input file that contains maintenance
tips on the SDW.

MAINTMEM;l -The file that contains instructions and tips on
potential maintenance situations for the SDW.

MENUFILE.DAT;l -The directory listing of all menu files.

MNHELP.DAT;l -The RUNOFF input file for the help file on SDW
menus.

MNHELP.MEM;l -The help file on SDW menus.

PDHELP.DAT;1 -The RUNOFF input file for the help file for the
specifying of data storage areas command module.

PDHELP.MEM;l -The help file for the specifying of data storage
areas command module.

PERFMON.COM;l -The command module for the SDW Performance
Monitors.

PFDB.COM;l -The command module for accessing the Pre-
Fabfricated Software Description Data Base.

PFHELP.DAT;l -The RUNOFF input file for the SDW Pre-Fab
Software Description Data Base help file.

PFHELP.MEM;l -The help file for the SDW Pre-Fab Software
Description DB.

PFID.DAT;l -The RUNOFF input file for the SDW Pre-Fab

330

~A

Software Description DB ID message.

PFID.MEM;l -The ID message for the SDW Pre-Fab Software
Description DB.

PFMENU.DAT;l -The RUNOFF input file for the SDW Pre-Fab
Software Description Data Base menu of options.

PFMENU.MEM;l -The menu file for the SDW Pre-Fab Software
Description DB.

PMHELP.DAT;l -The RUNOFF input file for the SDW Performance
Monitors help message.

PMHELP.MEM;I -The help file for the SDW Performance Monitor's
functional group.

PMID.DAT;l -The RUNOFF input file for the SDW Performance
Monitors ID.

PMID.MEM;l -The ID message for the SDW Performance Monitors
functional group.

PMMENU.DAT;l -The RUNOFF input file for the SDW Performance
Monitors menu.

PMMENU.MEM;l -The menu file for the SDW Performance Monitors
functional group menu.

PSHELP.MEM;l -The help file for the SDW PASCAL Compiler.

PSPARMTS.DAT;l -The file of optional qualifiers for the PASCAL
Compiler.

PDHELP.DAT;1 -The RUNOFF input file for the SDW Reguirements
Definition help file.

RDHELP.MEM;l -The help file for the SDW Requirements Definition
functional group.

PDID.DAT;l -The RUNOFF input file for the SDW Requirements
Definition ID.

RDID.MEM;I -The ID message for the SDW Requirements Definition
functional group.

RDMENU.DAT;I -The RUNOFF input file for the SDW Requirements
Definition tools menu.

- RDMENU.MEM;I -The menu file for the SDW Requirements Definition
- .Tools.

331

* -.- ."

REHELP.MEM;l -The help file for the Requirements Engineering
and Validation System (REVS).

REQDEF.COM;l -The command module for the SDW Requirements
Definition Tools functional group.

RNHELP.MEM;l -The help file for the RUNOFF text processor
facility.

RNPARMTS.DAT;l -The file of optional qualifiers for the RUNOFF
facility.

SAHELP.DAT;l -The RUNOFF input file for the SDW Static Analysis

Tools help file.

SAHELP.MEM;l -The help file for the SDW Static Analysis Tools.

SAID.DAT;l -The RUNOFF input file for the SDW Static Analysis
Tools ID.

SAID.MEM;l -The ID message for the SDW Static Analysis Tools.

SAMENU.DAT;l -The RUNOFF input file for the SDW Static Analysis
Tools menu.

SAMENU.MEM;l -The menu file for the SDW Static Analysis Tools.

SATOOLS.COM;l -The command module that controls the SDW Static
Analysis Tools.

SDHELP.DAT;l -The RUNOFF input file for the help file on the

SDW Syntax-Directed Editor.

SDHELP.MEM;l -The help file on the SDW Syntax-Directed Editor.

SDWCODES.DAT;] -The RUNOFF input file for a listing of all SDW
commands.

SDWCODES.MEM;l -The listing of all SDW commands.

SDWEXE.COM;l -The top-level SDW command module.

SDWHELP.COM;l -The command module that provides general help
on the SDW.

SDWHELP.DAT;l -The RUNOFF input file for the GENERAL SDW help

file.

SDWHELP.MEM;l -The help file for GENERAL SDW help.

SDWHELP2.DAT;l -The RUNOFF input file for the STRUCTURE SDW
help file.

332

.-7 -. 7

SDWHELP2.MEM;1 -The help file for STRUCTURE SDW help.

SDWHELP3.DAT;l -The RUNOFF input file for the 1st OPERATION

SDW help file.

SDWHELP3.MEM;l -The help file for the 1st OPERATION SDW help.

SDWHELP4.DAT;l -The RUNOFF input file for the 2nd OPERATION
SDW help file.

SDWHELP4.MEM;l -The help file for the 2nd OPERATION SDW help.

SDWHELP5.DAT;l -The RUNOFF input file for the 3rd OPERATION
SDW help file.

SDWHELP5.MEM;l -The help file for the 3rd OPERATION SDW help.

SDWHLMN.DAT;l -The RUNOFF input file for the menu of SDW
Help options.

SDWHLMN.MEM;l -The menu file for high level SDW help options.

SDWMENU.DAT;l -The RUNOFF input file for the SDW Top-Level
menu.

SDWMENU.MEM;l -The menu file for the SDW Top-Level menu.

SDWUTIL.COM;l -The command module that controls access to the
SDW Utility Functions.

SETAIDEF.COM;l -The command module that controls the Interim
AUTOIDEF tool.

SETAIDES.COM;l -The command module that controls the AIDES
Structured Design tool.

SETCIDEF.COM;l -The command module that controls the CIDEF
Design and Code Generation tool.

• iSETEREVS.COM;I -The command module that controls the EREVS
Requirements tool.

SETIDSS.COM;l -The command module that controls the IDSS
simulation tool.

SETREVS.COM;l -The command module that controls the REVS
Requirements tool.

SETSDW.COM;I -The command module that set up the required
logical names to run the SDW.

SFHELP.DAT;l -The RUNOFF input file for the SYSFLOW tool

333

help message.

SFHELP.MEM;l -The SYSFLOW tool help message file.

SIMULATE.COM;l -The command module that controls the SDW
Simulation tools.

SMHELP.DAT;l -The RUNOFF input file for SDW Simulation tool's

help message.

SMHELP.MEM;l -The help file for the SDW Simulation tools.

SMID.DAT;l -The RUNOFF input file for the SDW Simulation
tools ID.

SMID.MEM;l -The ID message for the SDW Simulation tools.

SMMENU.DAT;1 -The RUNOFF input file for the SDW Simulation
tools menu.

SMMENU.MEM;l -The menu file for the SDW Simulation tools.

TCHELP.DAT;l -The RUNOFF input file for the SDW Test Case
Generators help message.

TCHELP.MEM;l -The help file for the SDW Test Case Generators.

TCID.DAT;l -The RUNOFF input file for the SDW Test Case
- Generator's ID.

TCID.MEM;l -The ID message for the SDW Test Case Generator
tools.

TCMENU.DAT;l -The RUNOFF input file for the SDW Test Case
Generator menu.

TCMENU.MEM;l -The menu file for the SDW Test Case Generators.

TSTCASGEN.COM;l -The command module that controls the SDW Test
Case Generator tools.

USERMAN.DAT;l -The RUNOFF input file for the SDWE User's Manua

USERMAN.MEM;l -The SDWE User's Manual.

UTHELP.DAT;l -The RUNOFF input file for the UT module help file.

UTHELP.MEM;l -The help file for the SDW Utility Functions.

UTID.DAT;1 -The RUNOFF input file for the ID message for UT.

UTID.MEM;I -The SDW Utility Functions ID message.

334

UTMENU.DAT;l -The RUNOFF input file for the UT menu.

UTMENU.MEM;l -The menu file for the SDW Utility Functions.

WELCOME.DAT;l -The RUNOFF input file for the initial SDW header.

WELCOME.MEM;l -The initial SDW header message.

WORDPROC.COM;l -The command module that controls the SDW Word
Processors.

WPHELP.DAT;l -The RUNOFF input file for the SDW Word Processor's

help message.

WPHELP.MEM;l -The help file for the SDW Word Processors.

WPID.DAT;l -The RUNOFF input file for the SDW Word
Processor's ID.

WPID.MEM;l -The ID message for the SDW Word Processors.

WPMENU.DAT;l -The RUNOFF input file for the SDW Word
Processor menu.

WPMENU.MEM;l -The menu file for the SDW Word Processors.

335

Appendix I:

SDWE User's Manual

3.33

SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE (SDWE)
USER'S MANUAL

(C) Copyright 1982 by
Lt. Steven Hadfield
Dr. Gary B. Lamnont

337

.

.4;

" . SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE (SDWE)

TABLE OF CONTENTS

TITLE PAGE

1. GENERAL INFORMATION ON THE SDWE 339

2. A WALK-THROUGH OF THE SDWE IN OPERATION 341

2.1 SDW INITIAL PROCEDURES 341

2.2 SDW TOP LEVEL OPERATION 342

2.3 SDW FUNCTIONAL TOOL GROUPS OPERATION 344

2.4 SDW HELP FACILITY 345

3. CONCLUDING INFORMATION 346

3..

°.S.2

°338

SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE (SDWE)
USER'S MANUAL

The Software Development Workbench Executive (SDWE) is

a top-down, menu-driven interface to the Software

Development Environment (SDW) . The SDW is a software

engineering environment that has many automated and

interactive tools to support the development and maintenance

of software. However, many of the SDW components are

equally useful for the development of systems in general.

The objective of this user's manual is to instruct new

users on the operation of the SDWE. This objective is

achieved by presenting a general description of the SDWE and

then walking the new user through the operation of the SDWE.

1. GENERAL INFORMATION ON THE SDWE

As previously mentioned, the SDWE is a top-down,

menu-driven interface to the SDW. The SDWE is designed to

run on any VAX compatiable terminal. The highest level of

the SDWE is the SDW Top-Level. After a short initiation

section, the user is presented with the SDW Top-Level menu.

From this level the SDW user many choose any of fourteen

(14) functional tool groups or one of a number of other SDW

commands. In addition, the user may use any DEC Command

Language (DCL) command, provided the entire command is

j 339

entered on a single line.

If a functional tool groups is selected, the user is

presented with another menu of options that are specific to

that functional tool group. All of the SDW component tools

are run from this functional tool group level. Any of the

DCL commands may also be run from this level, (however, they

must still be entered on a single line).

At the SDW Top-Level and at all of the functional tool

groups, only the SDW menu options presented at that level

and the DCL commands are executable. There are a few

commands that are recognized at both the SDVI Top-Level and

the functional tool groups. They are the "HL" command that

provides the user with automated help on the SDW; the "UT"

command that allows the user to change the auto-menu

prompting facility, select a Project Data Base for data

storage, or change the terminal device specification for his

terminal; the "MN" command that displays the current menu

of options; and the "EX" command that causes an exit from

the current SDW level.

340

2. A WALK-THROUGH OF THE SDWE IN OPERATION

This walk-through of the SDW in operation is broken

into four sections. The first section deals with the

initial set up procedures for the SDW. The second section

illustrates the options available at the SDW Top-Level. The

third section illustrates the options available within the

SDW functional tool groups. The fourth and final section

deals with the SDW Help Facility.

2.1 SDW INITIAL PROCEDURES

The Software Development Workbench (SDW) is entered

with the "SDW" command given from the monitor level of the

operating system. The SDW then presents the user with a

header message that indicates the version number of the SDW.

The SDW user is the presented with a query as follows:

Enter the type of terminal in use (VT52,VTl0O,4014,4016)

if your device is not listed above hit a <RET> :

The SDW requires a specification of the type of terminal

device that the SDW user is working from. The SDW

recognizes the DEC VT52, the DEC VT100, the Tektronix 4014,

and the Tektronix 4016. If your device is not listed, or

you are unsure of the type of device you are using, simply

hit a <RET> (carriage return). The default for the device

341

type is a DEC VT52. After the completion of this initial

procedure, the user is at the SDW Top-Level.

2.2 SDW TOP LEVEL OPERATION

The SDW Top Level is indicated by the menu title and/or

by the special command prompt "SDW> -". At this prompt, any

of the options indicated on the menu many be selected, or

any DCL command may be entered on a single line. There are

twenty SDW options at the SDW Top Level. Fourteen of these

options call up SDW functional tool groups (whose operation

is detailed in the next section of this manual). The other

six command options provide means to 1) access the

Pre-Fabricated Software Description Data Base (that holds

the descriptions and locations of existing software

modules), 2) obtain a listing of all of the existing Project

Data Bases, 3) access the SDW Help Facility (for help on any

SDW command or any DCL command), 4) perform one of the SDW

Utility Functions, 5) display the SDW Top Level menu, and 6)

exit the SDW and return to the operating system monitor

level. All of the SDW options are selected by entering the

two letter code for that option after the "SDW> :" prompt.

The "UT" command at this level allows the SDW user to

access any of three very important SDW Utility Functions.

The first of these functions is the "AM" function that

342

provides the user with the option of being automatically

-. prompted with the current set of options at each level. The

SDW will prompt the SDW user with menus unless this function

- * is executed. This function also provides for the resetting

of the automatic menu facility if it was previously turned

off.

The second of the SDW Utility Functions is the "DV"

command. After the SDW user initially reports the type of

.- 2 terminal he is using to the SDW, he may wish to reset this

specification. He does this with the "DV" command that

* re-prompts the SDW user for the device type. Again, the SDW

.] recognizes only four types of terminals (VTI00, VT52, 4014,

4016). If the SDW user is using a different type of

terminal, he need only hit a <RET> at the prompt for a

device type.

The final SDW Utility Function is the "PD" command.

This function allows the SDW user to specify a data storage

area for the products of the SDW. The SDW user may choose

to use a Project Data Base (which is simply a separate

directory under the SDW's main directory), or the user's

default directory at the time he called up the SDW. With

this function, the SDW user may change his data storage area

to any Project Data Base or his default directory at any

time. If a Project Data Base is selected, the name for it

must be one to eight alphabetic characters.

743

9 R

- -2.3 SDW FUNCTIONAL TOOL GROUPS OPERATIONS

Within each of the functional tool groups, entered from

the SDW Top Level, the user is presented with a new set of

SDW command options. Only these options and the DCL

commands are recognizable from these levels. The command

prompts at each of the functional tool groups consist of the

two letter code for that functional tool group followed by a

[---. "> :" in the following format "xx> :". The options within

these functional tool groups are selected by entering the

two letter code for that option after the command prompt.

There are four command options common to all of the SDW

functional tool groups. They are 1) "UT" for accessing the

SDW Utility Functions, 2) "HL" for accessing the SDW Help

Facility, 3) "MN" for displaying the current menu of
options, and 4) "EX" to return to the SDW Top Level. The

fourteen functional tool groups within the SDW are

Compilers, Comparators, Dynamic Analysis Tools, Debuggers,

Design Tools, Editors, Graphics Editors, Linkers,

Performance Monitors, Requirements Definition Tools, Static

Analysis Tools, Simulation Tools, Test Case Generators, and

Word Processors. Information on the exact contents of each

of these functional groups is available through the SDW Help

Facility.

344

2.4 SDW HELP FACILITY

The SDW Help Facility is an on-line capability for

* providing general or selective help on the SDW and its

components. The SDW Help Facility is accessed by entering

the HL command from the SDW Top Level or any of the SDW

functional tool group levels. Upon entering the SDW Help

Facility, the user is prompted with the query:

Do you wish help on an SDW Component (Y or N):

SDW Components are defined as any of the two letter command

options presented on any of the SDW menus. If the "Y"

response is chosen and the Automatic Menu Prompting facility

is enabled, the user will receive a menu of current help

options. With or without the Automatic Menu Prompting

facility, the user will be prompted with a request for the

two letter code he is interested in:

Enter the 2-Letter SDW Component Code

(or enter 'SDW' for more general information):

The user is then provided with a help display on his

selected option. The response "SDW" is also a legal option

for this query and will provide the user with a selection of

more general type information on the SDW. If the "SDW"

response is entered, the user will be prompted with four

high level help options. They are "BA" for backround

information on the SDW, "ST" for information on the

345

structure of the SDW, "OP" for information on the operation

of the SDW, and "AL" for the displaying of all three of the

help texts. At the end of each text message, the user is

prompted to type a carriage return to continue.

The other response option to the initial Help Facility

query is "N". This response will cause the following query

to be displayed.

Do you wish help on a VMS facility (Y or N):

4A "Y" response to this query puts the user into the VMS help

facility. This facility gives the user a list of topics on

which he may receive further help.

From within the SDW, a wide range of help facilities

are accessible and provide complete on-line help

capabilities for the user that wishes to learn by doing.

3. CONCLUDING INFORMATION

The SDWE was developed as a user-friendly interface to

a variety of automated and interactive tools for the

development of software systems and systems in general.

This user's manual is provided as off-line assistance on the

operation of the SDWE.

346

APPENDIX J:

SDWE Installation Guide

347

SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE
INSTALLATION GUIDE

(C) Copyright 1982 by
Lt. Steven Hadfield
Dr. Gary B. Lamont

348
IL

K: "SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE (SDWE)

INSTALLATION GUIDE

The Software Development Workbench Executive (SDWE) is

a top-down, menu-driven user interface to the Software

Development Workbench's component tools. The purpose of

this document is to provide detailed instruction on the

installation of the SDWE on the VAX-11/780 computer. These

installation procedures assume the target VAX-11/780 is

running under the VMS operating system. The SDWE is stored

on a VMS formatted magnetic tape.

INSTALLATION INSTRUCTIONS

1. The first step in the installation of the SDWE is

to create a top level directory entitled [SDW]. This can be

done when logged in under "SYSTEM". The command for this

operation is:

$CREATE/DIR [SDW]

There are various options to this command which may be

Kimportant to a specific installation. These options are

documented in the VMS Help Pacility and may be realized by

the command:

$HELP CREATE/DIR

349

IMPORTANT: The Project Data Bases of the SDW are data

storage areas which may optionally be used by users to hold

their development data. The Project Data Bases are

currently implemented as sub-directories under the main

directory [SDWI. Since the SDW users must have full read,

write, edit, and delete privileges on these sub-directories,

the [SDW] directory must be created with these privileges

given at either the Group or World levels.

2. The next step in the installation process is to

copy the SDWE code from the magnetic tape. The device name

for a magnetic tape drive will be "MSxx:" where xx is the

channel and device number. The " SHOW DEVICE M" command

Wwill display the tape drives on your system. Pick one not

-n use and use that device name where you see "MSxx" in

these instructions.

The following sequence of DEC Command Language (DCL)

commands is used to copy the SDWE from the magnetic tape.

$SET DEF disk-name:[SDW] (* SETS THE PROPER DEFAULT

DISK DEVICE AND DIRECTORY *)

$ALLOCATE MSxx: (* RESERVES THE TAPE DRIVE *)

-HAVE THE TAPE MOUNTED ON THE TAPE DRIVE, THE OPERATOR

SHOULD ASSIST YOU WITH THIS.

$MOUNT MSxx: SDWEl SDWEI

350
L

. . - - -. -

$COPY/LOG MSxx:[SDWI*.* [SDW]*.*

$DISMOUNT MSxx: (* FINISHED WITH THE TAPE *)

$DEALLOCATE MSxx:

At this point all of the SDWE files are in the directory

[SDW]. A description of each file is found in the file

"FILES.DAT". Instructions on the SDWE's operation are found

in file "USERMAN.MEM". A maintenance guide is in file

"MAINT.MEM" and this document describing the installation

procedures is found in file "INSTALL.MEM".

3. The next step in the installation procedure is to

set up the logical names and symbols that are required to

execute the SDWE and the SDW components. The device

location for the SDWE and each of the SDW components are

assigned logical names in the file "SETSDW.COM". You will

need to edit this file and insure that each of the logical

assignments is made to the proper device.

4. The final step in the installation of the SDWE is

to include the following command into each of the SDW users'

LOGIN.COM files.

$@disk: [SDW]SETSDW

Where "disk" the resident device name for the SDWE. The use

of this command insures that the proper symbols and logical

names are defined for each SDW user.

351

'. '%A-,- .

APPENDIX K:

* - SDWE Maintenance Guide

352

SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE
MAINTENANCE GUIDE

(C) Copyright 1982 by
Lt. Steven Hadfield
Dr. Gary B. Lamont

353

SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE

MAINTENANCE GUIDE

TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION 355

1.1 GENERAL SDWE STRUCTURE 355

1.2 ON-LINE DOCUMENTATION STANDARD 356

2. SDWE MAINTENANCE AREAS 357

2.1 ADDITION OF NEW SDW COMPONENTS 358

2.2 ADDITION OF NEW VIDEO TERMINALS 359

2.3 PROJECT DATA BASE POTENTIAL 361
PROBLEMS AND SOLUTIONS

2.4 ALTERING A TOOL'S RESIDENT DEVICE 362

2.5 LIMITED DEPTH OF SDWE CALLING 363

2.6 SPECIAL LIMITATIONS TO THE SDWE 363

3. CONCLUSION 364

354i

" SOFTWARE DEVELOPMENT WORKBENCH EXECUTIVE

MAINTENANCE GUIDE

1. INTRODUCTION

The Software Development Workbench Executive (SDWE) is

a top-down, menu-driven interface to the Software

Development Workbench (SDW). The SDW is a collection of

automated and interactive tools that support the life-cycle

development activities of system (software systems in

particular). The SDWE is the interface and controller of

the SDW. The SDWE is primarily written in the DEC Command

Language (DCL), however, there are some low level modules

written in PASCAL. The SDWE has been designed to run on any

VAX 11/780 compaitable video terminal. There are, however,

special facilities to be realized when using VTI00

terminals, or Tektronix 4014 s or 4016 s. The SDWE is also

easily modifiable for special features when using other

types of video terminals (see Section 2.2).

1.1 SDWE GENERA STRUCTURE

As previously mentioned, the SDWE has a top-down

S .structure. At the top of this structure is the SDW Top

Level (SDWEXE.COM;I). This module provides the initial and

355

high level interface for the SDW. The SDW Top Level module

sets up the execution of the SDW and provides for the

execution of a variety of SDW commands. The set up of the

SDW includes the establishing up of a Project Data Base if

one is to be used. From the SDW Top Level module, commands

can be selected to enter a SDW functional group. These

groups provide access to the SDW component tools and form

the second level of the SDW structure. The SDW functional

groups may execute the tools directly or they may call other

command modules that provide detailed set up for and

execution of the SDW tools. Besides these modules, the SDWE

has a few more modules that provide primative functions,

such as clearing the video display, prompting for a

continue, and displaying a menu of options.

1.2 SDWE Ot-LINE DOCUMENTATION STANDARDS

The bulk of\the detailed documentation on the SDWE

resides with in the coded modules. A specific standard was

used for this documentation. The standard calls for the

following header information on each module.

356

MODULE NAME LAST DATE OF MODIFICATION

AUTHOR

CALLING MODULES

CALLED MODULES

FUNCTIONAL DESCRIPTION OF THE MODULE

Besides this header information, there are comment

statements for each code section with the body of the

module. This allows those unfamiliar with DCL to understand

the code.

2. SDWE MAINTENANCE AREAS

Version 1.0 of the Software Development Workbench (SDW)

is the initial prototype of an environment designed for the

Air Force Institute of Technology. As a result of its

developing nature, there are a few sections of the SDW that

will quite likily require maintenance and modification. The

following sections describe some anticipated modifications

to specific sections of the SDW. They are provided to aid

installation personnel in maintaining the SDW at their

S-location.

357

2.1 ADDITION OF NEW SDW COMPONENTS

There are presently only a few operation components

incorporated into the Software Development Workbench. Many

additional tools are anticipated to be added into the SDW

structure and for this reason a set of instruction on how to

add a new tool are provided below.

I- Select a new 2-letter code that will be

used to call up the new tool. This code must

be unique. (A set of the present codes is

included as Part 5 of the SDW Documentation

Package.)

2- Create a logical name for the device that

the new tool will reside on. An example would

* be "IDEF$DISK:". Then, add a new assignment

statement into the file "SETSDW.COM". This file

is used to set up all of the SDW logical names

for each one of the SDW users.

3- If the new tool requires special set up

commands, a special command file must be

written to facilitate this. An example of such

a command file would be "SETEREVS.COM;l".

4- Then, the module for the functional group

to which the new tool will belong must be edited

358

S. . .I..I... . . .,

if the tool requires any special qualifiers or

file specs. The "ASSIGNSYM.COM" must also be

updated with the global definition of the two-

letter code for the tool. This is done under the

section of codes for that tool group. The

"DELSYMBOL.COM" file is similarily update with

a global delete co.ammmand under the section

reserved for the proper tool group.

5- The menu for the functional group must then be

updated. The menu file will be named with the two

letter code for the functional group followed by

the letters "MENU.MEM".

6- The final step is to create a help file for the

new tool. This should be done in the format of the

other help files. The naming convention for this

help file is the 2-letter code for the tool followed

by "HELP.MEM". This file must be in the [SDW] directory.

2.2 ADDITION OF NEW VIDEO TERMINALS

Since many of the SDW component tools require special

video terminal in order to function, the SDWE has been

designed to be compatible to any terminal that can be

otherwise used with the VAX 11/780. Since many of these

359

terminals have extensive display capabilities, the SDWE is

easily modified to exploit device-dependent features.

Presently, the SDWE uses a clear screen command extensively

with VT100 and Tektronix 4014 and 4016 terminals. The SDWE

also uses a reverse-video display for prompting for

continuing on the VT100 terminals. These device-dependent

features are buried within SDWE primative modules. The type

of the current user's device is stored in a SDWE global

variable called "DEVICE". The SDW primatives will

conditionally executed device-dependent features depending

on the status of the "DEVICE" variable. The "DEVICE"

variable is set in the SDW Top Level module located in file

"SDWEXE.COM". Originally, the type of the device was

determined automatically by the SDW Top Level module using a

"SHOW TERMINAL" command. However, the device name shown by

this command is not always the actual device being used. As

a result, it was necessary to use queries to the user to

determine the type of his device.

If you desire to modify the SDWE to provide special

features for a new type of video terminal, you may follow

the instructions provided below.
4

I- Add the terminal type to the device queries

in "SDWEXE.COM" and "SDWUTIL.COM".

2- Update the SDWE primative module(s) that deals

360

J7

with the special feature(s) you wish to add.

If no primative module exists for that feature,

K< create a new primative module. Then, insert calls

to that module into the SDWE command modules as

appropriate. The new primatives must provide

means to handle any type of device.

2.3 PROJECT DATA BASE POTENTIAL

PROBLEMS AND A SOLUTION

The present implementation of the Project Data Bases is

very elementary, they are simply sub-directories under

[SDW]. Potential problems with this structure are that two

different users may be unknowingly be using the same Project

Data Base or the need for Read, Write, Edit, arid Delete

protection on the ST'WE code in [SDW] will make the Project

Data Bases unusable. Or the SDW user may be denied access

to the data bases due to UIC conflicts.

These potential problems are easily fixed by

disallowing the use of the Project Data Bases. This can be

done by altering one character in the SDW Top Level module

in file "SDWUTIL.COM". The line to be changed in that

module is:

NOPDBS "N"

361

-.- -- • " - i i -- , ; ,

This must be changed to:

NOPDBS :"Y"

in order to disallow the use of the Project Data Bases.

2.4 ALTERING A TOOL'S RESIDENT DEVICE

During the operational period of the SDW, it may be

necessary to alter the location of the SDW itself or one of

its components. The SDWE was designed to handle this very

simply. A logical device name is given to the resident

- - device for each SDW component, as well as, the SDWE itself.

These assignments are made in the "SETSDW.COM" file. By

- simply editing this file so that the logical device

assignment is to the new resident device, the tool can be

accessed properly from the SDW. This was facilitated by

using the logical names for devices within all of the SDW

code.

362

K2.5 LIMITED DEPTH OF SDWE MODULE CALLING
When using DCL command modules, the software developer

is limited to a depth of eight calls. The SDWE itsself only

uses a maximum of four levels of calling depth and all

component tools are called from only a second or third level

of depth module. However, if the component tool uses too

many further levels of comimand module calls, a serious

limitation is realized. The only manners in which to remedy

this problem are to reduce the levels of calls in the

component tool or in the SDWE.

2.6 SPECIAL LIMITATIONS IN THE SDWE

In order to enforce the information hiding of SDW

command external to the current SDW module, the symbols for

the SDW commands are assigned and deassigned at the begining

and conclusion of each module. To do this the "EXIT"

command given from the command level had to be assign to the

value: "GOTO OUT" so that the SDW codes get deassigned

properly. However, this disables the use of the EXIT

command in modification to any of the SDW modules. Be aware

of this fact if you need to modify you copy of the SDW.

363

3. CONCLUSION

The Software Development Workbench and the Software

Development Workbench Executive are very young and

developing software systems. Your experiences and comments

on these systems are greatly appreciated. If you do have

any comments or problems with the SDW or SDWE, please

forward them to:

Lt. Steven Hadfield, USAF
P.O. Box 4143
or
Dr. Gary Lamont
Electical Engineering Department

Air Force Institute of Technology
School of Engineering
Wright-Patterson AFB, OH 45433

(513) 255-5533

364

. r - - . -,.

VITA

Steven M. Hadfield was born on 6 March 1959 in

7. Milwaukee, Wisconsin. He moved to Clearwater, Florida at

the age of 1 and graduated from Clearwater Central Catholic

High School in 1977. He attended Tulane University on an

Air Force Reserve Officers Training Corps (AFROTC) Four-Year
'2

Scholarship. He served as Cadet Corps Commander during his

senior year. He graduated from Tulane University in 1981

with a Bachelor of Science Degree with majors in both

Mathematics and Economics. He was also a Distinguished

Graduate of AFROTC. Second Lieutenant Hadfield entered the

School of Engineering, Air Force Institute of Technology, in

U June of 1981.

Permanent address : 12449 84th Way N.
Largo, Florida 33542

i

SECU4WbZfi11R~lONOF THIS 04',E 'Wll-l, flata kirntered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPRTDOCMETATONPA ESSC BEFORE COMPLETPING FORM
1. REPORT NUNOUEn V CE0NO. 3. 'PE F~SCTLGNME

AFIT/GCS/EE/82-D -'1 ~' 1 ~~
4. TITLE (and Subtitle) 5.TVFE OF REPONkT & PERIOD COVERED

AN INTERACTIVE ANn AUTOMATED MS THESIS
SOFTWARE DEVELOPMENT ENVIRONMENT 6. PERFORMING ORG. REPORT NUMBER

7AUTHOR(s) a. CONIRAC-i OR~ GRANT NUMBER(&)

'teven M. Hadfield, 2nd Lt. USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. -PCGPiAhM ELEMENT PROJECT. TASK

A If7A A WORK UNIT*NUMBERS

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433

r 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Computkur Integrated Manufacturing Branch December 1982
Materials Laboratory, Wright Aeronautical Lab. 13. NUMBiR Or PAGES

Wright-Patterson AFB, Ohio 45433 --76
IC. MONITORING AGENCY NAME & ADDRESS(if differenit trom Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSI FICATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

%7

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from, Report)

IS. SUPPLEMENTARY NOTES tJrd "@Y l relacmee' TAW APR 1.7.

D e an for Resse ch an,1 Pr~Ic cona l D velopm a 4 J A N 1 ,Ld S
AllF~ts 11341la t eclanalogy CATO)

19 KEY WORDS (Continue on reverse side it necessary and identify by block numher)

Computer Software Software Development
Loftware Develonmont 12ivirnment Automated Tools
Software Engiern Software Development Tools
Programming Environment Computer Aided Design (CAD)
Integrated Coripit,' -Aided 1Manufcctiiri ni_ (ICMv)

20. ABSTRACT (Continue an reverse aide It necessary and Idewiib bv block number)

The purpose of' this inves~ligation is to 1) define both the
detailed req~iire merts anid the prelimiinary design for an automated and
interactive so,'tware developmm- t environment, and 2) develop an initial
implementation of that environment. Thie specified requirements for this
environment emphasize the need to support the entire software life-cycle
as a nontinuous and iterative process. In particular, the concepts of
integration, traceability, flexibility, and user-friendliness are

DD JA 73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE: (147in flare E~ntered)

TTTNTTAS~ q I FTEDf
SECURITY CLASSIFICATION OF THIS PAGE(Whon Data Entered)

LI

20. (con't)

accentuated. The preliminary design delineates the high level design
specifications, configuration schemes, and generic tool categories with
which the previously mentioned requirements may be satisfied.

Detailed designs are developed for the integrating interface!
controller sub-system and the development data storage scheme for
the initial implementation of the environment. The interface/
controller sub-system has been implemented and tested using the
DEC Command Language (DCL) and PASCAL. This sub-system is integrated
with an initial software development tool set executing on the
VAX-1l/780 computer using the VMS operating system. This initial
implementation, called the Software Development Workbench (SDW),
is an extremely effective and easy to use aid for extending the

cognitive and notational powers of the software developer.

- .

-.9

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whon Data Enteed)

3543

