AD-R124 872 AN INTERACTIVE AND RUTOHRTED SOFTHRRE DEVELOPMENT
NVIRONHENT(U) RIR FORCE INST OF TECH WRIGHT-PATTERSON
RFB_OH SCHOOL OF ENGINEERING S M HADFIELD DEC 82

UNCLASSIFIED AFIT/GCS/EE/82D-17 . F/6 972

7 4‘5—.PAHr [xlt.\f

I

T

e

3

EEE

SEEE

3343 ¢ EEFERE

ll2=

i

[

125

|

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

...’-».U

Y

RAAN A Ff

s L

P

» -

A I Gy _
RAONTFEAYS » 2 SRS rall VO WO S iu by ol SEI QL e

*
k3

p—

B e B 4

Lo o B e

J

e 4 =

W A124872

Q

AN INTERACTIVE AND AUTOMATED
SOFTWARE DEVELOPMENY FNVIRONMENT

‘ RIS f

_“ AFIT/GCS/EE/82D-17 gﬁzvcn M. Hadfég}l\g

»

-

S

&2

e

[e

L DEPARTMENT OF THE AIR FORCE

S 3 AIR UNIVERSITY (ATC)

- B AIR FORCE INSTITUTE OF TECHNOLOGY

o .

: . YriGh'._f,t'.fé’so,ﬁ. f\”ir‘ »F?‘;:;Baso, % 02 022 06]
. This doa winaid oo o hw:d\\‘};r:

o lic tpir a0 aud

:»‘—. dbi::i;:aon";- ux:m"‘d- "!J

rt.lﬁ -

.................

T R T T N N W W W NN v w e v w w ow o w e

R

/

AFIT/GCS/EE/82D~-17

AN INTERACTIVE AND AUTOMATED
SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS
AFIT/GCS/EE/82D-17 Steven M. Hadfield
2Lt USAF
Approved for public release; distribution unlimited T
V?i
Yo ‘;

Lorm

—a - A 4 & 4. _a.a e om os

AF1T/GCS/EE/82D-17

AN INTERACTIVE AND AUTOMATED
SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS

E
gg Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

) Air University
v in Partical Fulfillment of the

Requirements for the Degree of

Master of Science

- Eggcession For
NTIS GRAZT
o PIIC Trg
. Unnosiae: Y -
E.:. Jurnif ot =
" . —— T e e——
& by B T
& Steven M. Hadfield, R.S. e]
2Lt USAF _-iste SRS
N e
" o ,..VE’. - o8
L ﬁ
- 107
4 Graduate Computer Science C 7
& December 1982 | i
»“ .‘

Approved for public release; distribution unlimited

L

PREFACE

This report is a result of my effort to accomplish a
high 1level design and intial implementation of an automated

and interactive software development environment, The

resulting implementation of this thesis investigation is an

g g e
y e

easy to use, yet very powerful aid for the development of

software in accordance with accepted software engineering

e B} s

p—p

principles. However, this current inplementation is only a
partical realization of the carefully developed design

specifications for an eventual environment involving a

higher 1level of sophistication. The last chapter of this
report outlines a progression of follow-on efforts required
to accomplish the eventual and complete realization of the
environment., My hope 1is to encourage the continued
development of this software development environment,

formally identified as the "Software Development Workbench".

I wish to express my sincere appreciation to Dr. Gary
B. Lamont, the advisor of this investigation, for his
professional gquidance, insight, and patience throughout the
duration of this effort and to Ric Mayer, Program Manager of
the Integrated Computer Aided Manufactoring/Systems
Engineering Methodologies program, for his sponsorship and
direction., T also wish to thank the members of my thesis
committee, Major Hal Carter, Ray Rubey, and Major Michael

Varrieur, for their support and patience.

ii

g Te e e e T N . n Ce e L. .
DY N S . ST, S, e e A B B B ' m . M w im e A a Ay e vl e L L LT

e Y T T T T W TR TR, W, R U e T T W T e —_ -
L R Kt NN N T Y Y N T Y T T Y R T e T R - e W W T e o oy ey e

Si - Finally, I desire to dedicate this document, as well as
the blood and sweat behind it, to my father, who's personal
integrity and continuous support have been a constant source

of inspiration and guidance for me.

Steven M, Hadfield

LM

 Aedalsiall
ia '] 1 + 1
tet 4 3

R

PN S . - 'A'_- _--._:--.n AJ

Contents

Page
Preface ii
List of Figures vii
Abstract ix
1 Introduction 1
1.1 Thesis Objective 2
1.2 Backround 2
1.3 Problem Statement 15
1.4 Scope of the Thesis 17
1.5 Assumptions 17
1.6 Approach 18
1.7 Summary 21
2 Requirements Definition 22
2,1 Introduction 23
2.2 Model of the Existing Software
Development Process 25
2.3 SDW Objectives and Concerns 31
2.4 Functional Model of the
Software Development Workbench 48
2.5 SDW Evaluation Parameters and
Criteria 82
2.6 Summary 85
f 3 Preliminary Design 87
- 3.1 Introduction 88
- 3.2 Evolutionary Design Strategy 91
: 3.3 SDW Configuration Model 95
= 3.4 Resolution of the SDW Development
Objectives and Concerns 101
3.5 SDW Structure Chart Model 120
i 3.6 Summary 128
H 4 Det2iled Design 130
—nd
L.
3 4.1 Introduction 131
- 4,2 SDW Component Selection 132
=X 4,3 Detailed Design of the SDW
- Executive 144
H N 4.4 Design of the Project Data Bases 173
- T 4,5 Summary 160
a iv

AN
‘e

(R MR O aeh aof
.

T : -
PR S e
L) PR

AN 9+ B DTt | PAACKOASMAL
[4

!‘:'. SN

N Ay

5 The Implementation Stage

1 Introduction

2 The Choice of an Implementation
Language for the SDWE

.3 The SDW Implementation Strategy

) SDWE Implementation Specifics

«5 SDWE Update to Version 1.1

.6 Summary

6 Integration of the Software
Development Workbench

Introduction

Installation of the SDW
Components

3 Integration of the SDW
Components and the SDWE
Installation of the SDW on the
Central ICAM Development System
Summary

7 Operations and Maintenance of
the Software Development Workbench

.1 Introduction

.2 Development of the SDW
Documentation Package
Maintenance Activities on
the SDW

Evaluation of the Software
Development Workbench
Summary

8 Conclusion/Recommendations

Introduction

Design Summary
Implementation/Test Strategy
Recommendations for Future
Investigations

0 0 0

* o o o

=W N~

Bibliography

Appendix A: A Model of the Existing
Software Development Process
Appendix B: SDW Data Dictionary

specification of Preliminary
DPesign Modules

Appendix C:

RTINS N Sl A SIS e et —— -

182
183
186
190
192
199
203
205
206
206
207
209
210
211
212
212
213

215
217

218
219
219
221
222

225

232
255

265

R ——

...........

Appendix D:

Appendix E:

Appendix F:
Appendix G:
Appendix H:
Appendix I:
Appendix J:
Appendix K:

VITA

-
ig
S
7
L .
L~
7
-
P,
o
.
(‘N
S
-
:
i
E-‘

J - Tt Y T e . . . R .
L.,-,.;._A‘A“ s eala s o e e e e

Detailed Requirements
Definition for the SDWE

Preliminary Design for
the SDWE

Algorithmic Design of the SDWE
Listing of SDW Command Codes
SDWE File Descriptions

SDWE User's Manual

SDWE Installation Guide

SDWE Maintenance Guide

vi

-——la o L -

285

294
311
319
323
336
347
352
365

LISTING OF FIGURES

Figure Number Title Page
- 1 Software Life-Cycle 5
& 2 SADT Activity Box 28
Ei 3 Data Flow Diagram Constructs 48
3' 4 SDW Functional Model Outline 51
?H 5 SDW Functional Model: Top Level 52
6 Perform Software Life-Cycle 53
7 Perform Requirements Definition 57
8 Develop Draft Requirements 59
9 Translate Requirements irto a
Machine-Readable Form 61
10 Develop Preliminary Design 63
11 Develop a Draft Preliminary Design 65
12 Validate Preliminary Design 67
Pé 13 Develop Detailed Design 69
g; 14 Implement and Test Software System 71
;g 15 Convert to Syntactically Correct Code 73
Tﬁ 16 Test Code with Traces and Error
Handling 75
4 17 Optimize the Code 77
:! 18 Integrate to and Validate on Target
- Machine 79
3' 19 Maintain and Operate Software System 81
'; . 20 Tool Variety Progression Plan 93
; B 21 Tool Integration Progression Plan 93
i vii

s .~ " . - . . - . -’ . N :)
. - APy - P . - = ") . | - '
mating . PP et 2 2 . el - PPN .
= 3 2 o a P — W dedienn e S S S S . Al e . i .) =,

o,
?

B AR
LR T e
P AN Pl T A

Ty
D PN
A

¥ 8-t
8

t-' .

AT PSR

R e,
o8 TR e
PRI

s e

SDW Configuration Model
Sample HIPO Function Chart
IPO Diagram Sample

HOS Function Specification
SDW Structural Model

A-0 Utilize the SDW

A0 Utilize the Software Development
Workbench

Al Initialize the SDW

A4 Execute the User's Command

A4l Provide Functional Tbol Group
A42 Provide Help Facilitiés

A43 Access the Pre-Fab Software
Description Data Base

SDWE Preliminary Design Model-1l
SDWE Preliminary Design Model-2
Project Data Base Design

Preliminary Design Top Level

viii

R S Y B e DAL N APy D PP P T P ST LA S S S

96

121
122
123
126
149

150
151
153
155
156

157
164
165
179
185

r?'t ST
R . kA

ﬁY. x‘l'.‘ "r‘ .' -

harad 4 VWY Vs o
T e

LI T VL A S

-

\ ABSTRACT

L
The purpose of this investigation is to IY define both

the delailed requirements and the preliminary design for an
automated and interactive software development environment,

and _, 2% develop an initial implementation of that

7
environment, The specified requirements for this
environment emphasize the need to support the entire
software life-cycle as a continuous and iterative process.
In particular, the concepts of integration, traceability,
flexibility, and user-friendliness are accentuated. The
preliminary design delineates the high level design
specifications, configuration schemes, and generic tool

categories with which the previously mentioned requirements

may be satisfied.

Detailed designs are developed for the integrating
interface/controller sub-system and the development data
storage scheme for the initial implementation of the
environment, The interface/controller sub-system has been
implemented and tested using the DEC Command Language (DCL)
and PASCAL. This sub-system is integrated with an initial
software development tool set executing on the VAX-11/780
computer wusing the VMS operating system. This initial
implementation, called the Software Development Workbench
(spw), is an extremely effective and easy to use aid feor
extending the cognitive and notational powers of the
software developer. ’

ix

L - - . IO S W W W W P

<

oduction

Chapter 1:

vos
O R
T ey
s PR
AP NT W !

ST i I
RO
mnr\'lPrbb

PRI U Y Y

«r

1.l Thesis Objective

The objective of this thesis investigation is to
perform the initial development and implementation of a
software development environment for the Air Force Institute
of Technology (AFIT). This software development environment
is entitled the Software Development Workbench (SDW). The
SDW supports the development and maintenance of software
from conception to termination by using automated and
interactive tools that apply the principles of software

engineering.

1.2 Background

A software development environment is an integrated set
of automated and interactive software development tools that
aid the software engineer to develop quality software
products and documentations. The software products and
documentations that are developed with the use of a software
development environment include requirements definitions;
design specifications; source and executable program codes;
test plans, procedures and results; as well as other
associated documentation such as guides and manuals for

operations and maintenance of the software.

4
{
(] \

e h o B e eme. Mmoo -

A well planned and implemented software development
environment can effectively assist in the development of
reliable and maintainable computer software, The typical
software development environment includes both hardware and
software tools to aid the software designer/programmer in
the production of software. Software development
environments may consist of a minimal set of primative
tools, such as editors and compilers, that support only the
actual coding of software. However, the most effective
environments are those with extensive sets of powerful tools
that support the most modern state-of-the-art methodologies
for dealing with software from its very conception through
its eventual termination (Ref 14). The methodologies that
are supported by such environments are a result of

investigations in software engineering.

During the past two decades, the discipline of software
engineering has developed in response to increasing problems
with the production and maintenance of computer software.
In particular, the goals of software engineering have been
to improve the software production process and software
quality. The concept of a software life-cycle has been
defined by many different authors in many different ways.
The version of the software life-cycle that is popular with
the AFIT software community is composed of six stages (Ref
40:4) ., This 1life-cycle is illustrated in Figure 1. The

stages of this life-cycle are requirements definition,

R N T T T T S Y S o S

preliminary design, detailed design, implementation
(coding), integration, and maintenance. The verification
and validation stage, that is included in many versions of
the life-cycle (Ref 59), is left out of this version. There
are two important reasons for this. First, the term,
"verification", 1is not really used cocrrectly in this
context, According to the New American Webster Dictionary,
the word "verification" means "(the act of)... proving
something to be true" when, in fact, software products are
seldom ever proved to be true. The term "validation", which
means the "supporting of something's validity by facts", is
a much more accurate expression of the actual objectives of

software testing,

The reason why the validation and testing activities
are not included as a formal stage in the software
life-cycle is that these activities should actually take
place throughout the entire life-cycle, The definition of
the requirements should be tested both internally and
against the needs of the user. Likewise, each of the other

stages should be tested both internally and against the

& T L St AR ST S At R R N T o T L

REQUIREMENTS
DEFINITION

PRELIMINARY
DESIGN

TIME DETAILED
DESIGN
TESTING
AND
IMPLEMENTATION VALIDATION
(CODING)

INTEGRATION

OPERATION &
MAINTENANCE

Figure 1: Software Life-Cycle

products of the earlier stages. Fach of the 1life-cycle
stages have their own objectives and the fulfillment of
those objectives are fundamental to the progression of the

development into the next stage.

The objective of the requirements definition stage is
to formulate an explicit statement of what the proposed
software system must do. The emphasis of this stage is on
the what the system 1is to accomplish and not on how the

system will accomplish it, Careful attention should be paid

POV WINPT V)

VTTTT T e s v w - w e

,

,

A

P

Fe

ons

V-

,

.

L

b

b

b

N | \
N

L

[

P

S
. —

not to constrain the system by specifying system mechanics
(the how) during the requirements definition stage. Several
activities provide means for achieving this objective,
Scoping involves limiting of the objectives to be
accomplished so that the problem statement actually
addressed is solvable with current technology and available
resources, Needs analysis refers to the careful study of
the user's needs for the software system. Often an "As-Is"
System Definition of how the problem is currently being
addrecssed helps in formulating the requirements. A certain
level of conceptual design is also useful in determining if
the stated requirements are actually feasible, The main
activity of the requirements definition stage 1is the
development of a functional model that states the exact
functions that must be accomplished with the system. This
functional model is developed from the user's point of view
and is usually in terms of data flows and functions on these

data flows.

The mechanisms of the system structure begin to be
defined during the preliminary design stage. During this
stage, the particular requirement specifications of the
previous stage are allocated to specific design components.
The components may be further specified and broken down into
sub-components if needed. Thus, a hierarchical description
of the software system is formed. Within this hierarchical

description or framework, components and sub-components are

.
-
.
I‘

~ET

AL el |

T

realized in terms of functional modules. The functional
modules are, at this stage, iust black boxes with defined
inputs and outputs, In many applications, a hierarchical
implementation and test plan is begun to be formulated
during this stage. This plan uses an "incremental" approach
to implementation and testing which uses the hierarchical

structure and facilitates easier system validation.

Each of the components of the preliminary design are
further specified in the next stage refered to as detailed
design, or algorithmic design. During this stage, the
black-box descriptions of the functional modules are
translated into specific algorithms. Many times some of the
functional modules can be satisfied by existing software
packages. Test plans and data for each of the algorithms
are often developed and incorporated into the implementation

and test plan during the detailed design stage.

The implementation stage is the actual coding of the
software system in a particular programming language,
Testing is incorporated into this stage in accordance with

the implementation and test plan.

The goal of the integration stage is to integrate the
software system code to the target hardware and to perform
the independent testing of the software system. During the
development of the software system, there is often an

independent project that is responsible for validating the

final software product. The use of independent testing and
validation is especially effective because of it's
objectivity. An independent testing agency looks

specifically at how well the software system meets the

specified requirements, This manner of testing most often
employed is called "Black-Box Testing" because it specifies

certain inputs, runs the system, and compares the actual

%
g &

output with the anticipated output. The mechanics of the
system are not of importance during this type of testing,

thus the test planning can be concurrent with system

Ty T Y
- P Y
L A T

development,

AN
o

The sixth stage of the software life-cycle is that of
operation and maintenance. Operation of the software system
involves the actual usage of the system by the users.
During this time errors may be detected in the software, or
needs for changes in the required functions of the software
may be realized. The modifying of the software system to
resolve errors or additional user requirements is known as
software maintenance. In the event of these occurances,

software must be modified and this is known as maintenance.

In order to support these phases, many methodologies
and tools have been developed. However, these tools often
require a great deal of bookkeeping, illustrating, and
consistency checking. Many of the contemporary

methodologies have been automated. Thus the massive

.-r‘\w-ﬁ‘TzY‘w
LLTLENT, - e
D (] RS

CADS (e (At R A ONEY (A
a0 e

potential of the computer can be realized. Automation
relieves the burden of the many tedious tasks associated
with the methodologies. In fact, numerous automated tools
presently exist to support each of the phases of the
software life-cycle (Ref 40:1-5). However, almost all of
these tools are disjoint, and they often do not interface to

tools of the other phases of the life-cycle,

A software develupwment environment is a collection and
integration of automated software development tools that
should adequately support the entire software 1life-cycle.
The universe of potential development environments can be
realized as a two dimensional space with one dimension being
the number and variety of tools and the other dimension
being the level of integration achieved between the tools,
Most contemporary software development environments have
emphasized only one of the these two dimensions (Ref 67:2).
Those environments that utilize a "tool kit" approach view
the concept of an environment as a collection of many
automated tools that are used disjointly. The "job/union
shop" approach defines an environment to be a limited
collection of tools that are integrated in accordance with a
single development philosophy. As one would expect, the
optimal environment for most applications is found by
extending in both dimensions of the universz potential.
This requires an environment that has many tools that may be

used separately or integrated to support a life-cycle

v Phdl Dt
" ‘ .
i te P

TTYT IS YTY

Ty
P

R

T

R+ AN

- - v - Y - . -~ - E St 3 - g - . el "N LR S R P Bion) R EIREa s onine Janen Ram i

methodology. This approach to a software development
environment provides both the flexibility of the "tool Kkit"
approach and the integration of the "job/union shop"

approach.

The concept of a Software Development Workbench (SDW)
is a broader perspective that defines not only the
individual tools that are to be incorporated and how they
interface to one another, but also specifies the physical
components required for the environment, That is, a SDW
defines the tools and the framework within which the tools

are used,

Up to the present time, the emphasis on automated
software development environments has been on the
development of specific tools or development of environments
tailored to a specific and narrow domain of application,
This statement is substantiated by a noted expert on the
subject of software development environments, Leon Osterweil
of the University of Colorado.

"Most current tools and tool systems focus

their support on narrow aspects of the

software processes, such as editing and
testing, and ignore the other areas." (Ref 60:35)

He elaborates further on the fact that environments should
be developed that support the entire life-cycle and that the

issues of integration of the specific tools and ease of

10

PR, DR SR S W L S A LEPOUR U SUE WS YD Wy S WY L. Brnctedbomtnsdecssinasmndh

T
f}

- ’

T T T Y . T Y
B
q

teachability and use should be of the utmost concern.

Furthermore, he challenges that:

"Although these environments and their

benefits have been widely discussed, there

has been relatively little research or

actual implementation in this area." (Ref 60:35)

Osterweil is quite correct in his statement that there
has been a great deal of discussion on the subject. A
primary focus of much of this discussion has been the
fundamental concerns to be realized in the establishment of
a software development environment. The 1list of concerns
resulting from these discussions is lengthy, yet
nevertheless its content is fundamental to the understanding
of the objectives of a software development environment.
The concerns include the concepts of integration,
user-friendliness, life-cycle support, flexibility,
consistency, traceability, explicitness, documentation
capabilities, testability, and the capability of updating
(Ref 60:36-37). These concerns are discussed in the chapter

on requirements definition,

One example of an on-line environment that address
these fundamental concerns is the UNIX* Programmer's
Workbench (Ref 40:345-357). A product of Bell Laboratories,
the Programmer's Workbench (PWB) is built to operate on the

UNIX* operating system. The Programmer's Workbench provides

11

o T: & nvuV. T '.":—‘T

... i '¢

A At Miatic S I A et VI A Ml 3 — " ekt - Ay o e - v —

for uniform program development and supports remote job
entry, source code control/modification, documentation
preparation and other tasks. The PWB supports the
production of software that will be compiled and run on
non-UNIX* target systems. As a result of being built on the
UNIX* operating system, the environment achieves some
successful integration by utilizing the common command
syntax and generic file structure of the operating system.
The PWB does, however, lack capabilities for requirements
analysis and specification, quality assurance, and specific

software methodologies (Ref 40:356).

The design philosophy behind the PWB 1is to get the
users on the system as soon as possible and let their needs
and experiences drive the design. The designers of the PWB
believe in building software quickly and throwing much of it
away. Many small programs are preferred to a few large ones
and a monitor is used to tract and log user problems. The
UNIX* PWB possess a fairly high degree of integration and is
a prime example of the "union shop" approach to development

environments (Ref 40).

Another interesting and contemporary approach to
developing a Software Development Environment is the Ada
Programming Support Environment (APSE). This environment is
much more of a "tool kit" approach than was the PWB. The

requirements for the APSE are stated in the "STONEMAN"

12

TR ——"

requirements (Ref 28). The APSE is an excellent example of
a language-oriented environment. There are actually two
government contracts to build APSEs, one with the U.S.
Army, called the Ada Language System (ALS) and one with the
U.S. Air Force, called the Ada Integrated Environment. The
APSE utilizes a kernal host dependent module for 1low level
1/0, user interfaces, program execution, and a data base,
with the majority of the environment being host independent.
The APSE is primarily an implementation and integration
oriented environment that provides extensive separate
compilation facilities, configuration managers, and the
addition of simulators and testbeds. However, the APSE also
lacks capabilities for requirements analysis and

specification and specific software design methodologies,

The shortcomings with both the PWB and the APSE is that
they 1lack facilities for many of the pre-implementation
software development activities. A study done by TRW found
that sixty-four percent of the errors encountered in a range
of software projects could be traced back to the
requirements definition and design phases of the project
(Ref 86). Thur, there is quite a legitimate case for a
major emphasis to be placed on these phases of the
life~cycle. This was exactly the concern during the
development of the Systems Requirements Engineering
Methodology (SREM), which was developed for the Army's

Ballistic Missle Defense Advanced Technology Center (PRef 3).

13

Y N et - L PP .
‘_ aaa oo of P 3 P, PO S - P ST S L VR S VR S S UV G Y Sy S P

BT 7 e 7T T T e Ty - L R . A T i N S A L . A S e o o e S

SREM utilizes the System Specification Language (SSL) to
state requirements in a machine readable form., Automated
tools called the Requirements Evaluation and Verification
System (REVS) and an extended version called EREVS are used
to check requirements stated in RSL for consistency and
completeness, and then produce graphics called R-nets, which
are process flow diagrams. Although the present state of
SREM deals almost exclusively with requirements definition
and preliminary design, major efforts are being initiated to

extend the system to a life-cycle supporting environment,

All of the efforts to develop a software development
environment are major scale projects with on going
objectives and difficult philosophical and methodological

decisions to be made. Osterweil capsulized this fact in his

statement:

"The task of creating effective (development)
environments is so difficult because it is
tantamount to understanding the fundamental
nature of the software process." (Ref 60:36)

The sponsor of this investigation 1is the Integrated
domputer-Aided Manufacturing/System Engineering Methodology
(ICAM/SEM) group. They are presently involved with a 15
man-year project called the Integrated Systems Development
System (ISDS). This system is a large scale development

environment for the development of not only software

14

Pr— T e —— T - LAMNNL et s cac R oma oo s san oaen o

]"4.

P SUPeEE

o

systens, but all types of manufacturing systems,
Integration in the ISDS is achieved through a shared
database called the Common Data Module (CDM). The ISDS uses
an approach to the development environment that extends
along both dimensions of the universe of potential for
software development environments. Many types of tools are
used in ISDS and yet a high degree of integration is to be

imposed by the use of the Common Data Module,

4.3 Problem Statement

The Air Force Institute of Technology (AFIT) and the
Air Force software community as a whole have a great need
for a life-cycle oriented software development environment,
AFIT's software community is continuously developing major
software products during thesis investigations and other Air
Force sponsored research. The objective of this thesis
effort is to define AFIT's requirements for a software
development environment and then design and implement a
prototype Software Development Workbench (SDW) to satisfy
these requirements, The SDW is required to support three
categories of user's within the AFIT software community.

These categories are listed below.

15

] APl g g
T C R R

il
[N

- 'T g
o ca - N U ' -4.‘1

T

o
» 5

B A Dt

DR o, o 4 s o e e e

e v D N s o (S AN - 1) 4 P

1) Students enrolled in the AFIT Software
Engineering course.

2) Students and faculty involved in M.S. and
Ph.D. research,

3) Students and faculty involved in other
software related activities,

The target and development machine for the SDW development
effort 1is the Digital Equipment Corporation's VAX 11/780
utilizing the VMS operating system. This machine and
operating system are chosen for three priwi:iy rearuns, 1) it
is available in the AFIT/Digital Engineering Laboratory, 2)
it is the target machine for the ISDS development, and 3)
many existing automated tools exist in VAX/VMS compatible

versions,

The objectives of this investigation are not limited to
the development of a software development environment for
AFIT. The sponsoring ICAM/SEM office is greatly concerned
with the issue of tool integration as it applies to the ISDS
Common Data Module. The rehosting of tools for the
VAX-11/780 computer provides ICAM/SEM with greater
flexibility in utilizing these tools on their natiun-wide

computer network that will eventually become the 1ISDS

(Ref 58).

16

PUA SSRE SEN Les Sne Semh AR SR Sont MR el RS ensesnteEn oo agint an oo et S g —

1.4 Scope of the Thesis Investigation

As pointed out in the background section of this

chapter, the development of a software development

environment is a very involved effort. This thesis
investigation effort is a first step towards the realization
;‘ of such an environment for the AFIT software community. The
g requirements definition of the prototype workbench deals
with the identification of functions (tools) and scenarios
(methodologies) to be supported by the environment, The
requirements detinition stage also emphasizes the defining
of the major objectives and concerns that must be satisfied

by the design. Functions present in the stated requirements

that are already available in contemporary systems, such as

REVS, acquired through the sponsoring ICAM/SEM office. The

= prctotype design <consists of a preliminary design of the
workbench, and a detailed design of the SDW executive and

w

some other needed tools. Implementation is limited to the

coding of the SDW executive and the re-hosting of available

g

{ tools.

L‘.

-

i

r ’ .

: l.> Assumptions

¢ The implementation of the Software Development
] _

»i . § Workbench prototype is done on the VAX-11/780 computer,

because of the wide availability of software development

L 17

tools on this system, as well as the availability of the

AFIT/DEL VAX-11/780 as a development computer,

The sponsoring ICAM office had promised to provide
tools, under their control, to the Software Development

Workbench effort,

1.6 Approach

This thesis investigation begins with an extensive
search and review of literature dealing with software
engineering and software development environments, In
particular, this research deals with gaining a thorough
understanding of the software life-cycle, the methodologies
used to support the 1life-cycle, and how to improve
life-cycle activities using an automated and interactive
development environment, The review of this literature
provides a "sound" backround for the development of a

software development environment,

Utilizing the understanding gained from the literature
review, the thesis investigation moves into the requirements
definition stage of development. The beginning of this
stage introduces and Jjustifies the methodologies used to
accomplish the objectives of this stage. Then, a model of
the existing sortware life-cycle is developed. Following

this analysis of the existing 1life-cycle, a comprehensive

18

PO S S

explanation of the objectives and concerns fundamental to
the development of a software development environment is
delivered, These objectives and concerns are the
summarization of those identified in the review of the
literature. Using the model of the existing software
life-cycle and the summarization of development environment
objectives and concerns, the high-level requirements for the
Software Development Workbench are defined. These
requirements take the form of a model of the software
life-cycle as it should be supported by a software
development environment, such as the Software Development
Workbench., Finally, a set of evaluation parameters and
criteria is established to provide for the judging of how

well the SDW implementation meets the stated requirements.

The preliminary design stage of the SDW development
effort is broken down into four sections, The first section
establishes an Evolutionary Design Strategy for the
continuing development of the SDW, The next section
develops the SDW Configuration Model that identifies the
major systemic components of the SDW and how they are
connected., The third sections explains how each of the
objectives and concerns of the SDW development are resolved.
Finally, the fourth section uses Structure Charts to portray
the hierarchical framework of the software components of the
SDW. The resulting SDW Preliminary Design defines the

structure of the initial SDW and provides a guideline for

19

.....

the future development of the SDW.

The next stage in the SDW development is the detailed
desian stage. This stage involves the detailed development
of a SDW Executive which is to be wused as a top-level
interface to and controller of the SDW. The component tools
and capabilities of the 1initial SDW are selected. A
specific capability for a data base of existing software
products is also delineated. Finally, the initial schema is

established for the SDW data bases that hold the development

data.

Implementation and testing of the 1initial version of
the SDW deals with the coding and validation of the SDW
Executive sub-system that controls the workbench. Also, the
component tools specified in the detailed design are loaded

onto the AFIT VAX 11/780,

The SDW Executive 1is integrated to the other SDW
components during the integration stage., The interfaces
between all of these components are also tested at this

time.

The final stage of the initial SDW development effort
is the operations and maintenance stage. The objectives of
this stage are to operate and test the SDW as an operational
environment, This involves the training of the SDW users

and the resolution of problems found in the system by the

20

P e Shes - Ausacante Sabe ZEan mune B Gn Snfen M Jean SN Sl ey Mt e S hawe e ast, —— ——

users,

1.7 Summary

The development of the Software Development Workbench
is an effort to introduce an interactive and automated
capability for the production of computer software. The SDW
is developed utilizing state-of-the-art software engineering
techniques to support all the stages of the software
life-cycle. The SDW development is geared to supporting the
AFIT software engineering courses and the many thesis and

other software developments with the AFIT software

community.

21

P S W Sy P S N U G)

v

F TION

D

EMENT
22

2: RE

PTE

I AR 1) U S Aas SV R e
B I

RN
L)

SR Qla gl 4 : PSP ST VY

2.1 Introduction

Requirements Definition is the complete and explicit
statement of the problem to be solved. Usually this stage
is achieved with a great deal of interaction with the user
of the software system. The end result of this stage is a
Requirements Definition Document that uses graphical and
textual means to unambiguously state the problem to be
addressed. A complete, explicit, and unambiguous statement
of the system requirements is the goal of the requirements
definition stage. The primary component(s) of the
Requirements Definition Document is a functional and/or data
model of the proposed system. These models define the
functional/data specifications for the system, The
Requirements Definition Document may also include a
description of the fundamental objectives that must be
achieved by the system and the concerns that guide the
development of the system. A specification of the target
environment may be included in the Requirements Definition
Document., If the proposed system is to be used by a variety
of users, a description of how each type of user is to view
the system is needed in the Requirements Definition
Document. Often a set of evaluation parameters andvcriteria
is included in the Requirements Definition Document to

assist in the testing of the system to meet its specified

23

P ST S

T PR AP A 3 'T‘ ' '
. RN . a TS I .
« . - . - . P P I . . L

‘

-

I

R
R

Ty

S FAEY
LA l. - .

T

W

M

MR DR S e e aie o

requirements. The content of the Requirements Definition
Document are highly dependent on the nature of the proposed
system, However, a great deal of care must be taken to
insure that the document produced specifies the system 1in
enough depth and from enough viewpoints to allow for its

proper development.

The purpose of this chapter is to develop the system
requirements for the Air Force Institute of Technology's
Software Development Workbench (SDW). However, the system
requirements for the SDW are not just specific to the AFIT
software community but must also reflect the needs of the
ICAM/SEM users. First a careful analysis of the generalized
software development process is performed. This is done in
order to establish a sound understanding of the problems to
be addressed by the SDW. A comprehensive set of objectives
and concerns fundamental to the SDW is listed and explained.
With this backround established, the specific high-level
requirements for the SDW are defined. Contemporary software
methodologies are utilized to describe the existing software
development process and define the SDW requirements., These
methodologies employ easy to understand two-dimensional
graphical techniques and are examples of the types of
methodologies to be supported by the SDW. Finally, a set of
evaluation parameters and criteria is established to aid in
assessing the extent to which the SDW development fulfills

its requirements.,

24

Numerous software engineering methodologies have been
developed to facilitate the explicit definition of
requirements (Ref 90). Most of the methodologies used for
describing requirements utilize some type of graphic medium.
The primary reason for this is that the requirements must be
easily understandable, Graphic techniques are more easily
understood in most instances. Ideally, the requirements are
used as a means of communicating with the user to insure the
designer's concept of what is needed is identical to that of
the user's. Graphic techniques assist those unfamiliar with
the rigor of the software community's dialect to quickly
comprehend what the designer has in mind., The methodologies
used for the SDW development are described in generality to
allow the reader to follow the discussion of this chapter.
Much of the detail inherent in these methodologies is
omitted since it is not fundamental to the understanding of

these applications of the methodologies.

A Model of the Existing Software pevelopment Process

Often, the problem to be solved by a proposed software
system is already being addressed by some other system. The
development of the proposed software system is a result of
inadequacies in this existing system. A careful analysis of
this existing system is often necessary before the statement

of requirements for a new system can be established. This

25

L AC R RO R EIE L P,
et EENRIE [
I Al ’ . & i 4 i, . + .

——y A bt it 4 00 AN IS e s s g PRy
Bk B T . s e - .
. el s Y N P R

-«
=
P_ _Z
P-»‘ .
-
b
b
- -
e
=
[
P .
:.
’;.
.
-
L

[| [N
-

o

L

analysis of the existing system 1is facilitated by the
development of an "As-Is" model. This "As-Is" model
describes how the problem to be solved by the new system is
presently being addressed. The understanding gained from
the "As-Is" model helps the designer to develop the

requirements and even the design of the new system,

The ICAM/Systems Engineering Methodologies (SEM) Group
realizes the importance of an "As-Is" model. The ICAM
Systems Life-Cycle (Ref 53:334) formalizes the development
of an "As-Is" model as part of its initial system
development stage called "Needs Analysis". This needs
analysis stage precedes the requirements definition stage.
The objective of the needs analysis stage is to establish a
formal statement of the user's needs for the new system.
The development of an "As-Is" model is a primary vechicle

for achieving the needs analysis objective,

Prior to the developing of the requirements for the
Software Development Workbench, an "As-Is" model of a
generic view of the software development process is created.
This model describes all of the stages that a software
system encounters, from conception to termination. Specific
areas within the model that require the application of

automated interactive tools are identified.

26

R e asan aine T TN AT

This "As-Is" model of the software development process
is derived from a model ol the Manufacturing Systems
Development Life-Cycle developed by the Control Data
Corporation for the 1Integrated Systems Development System

(Ref 58).,

Three software engineering techniques are analyzed for
possible use in defining the "As-Is" model of the software
development process. They are the Softech Structured
Analysis and Design Technique (SADT) (Ref 79), the Data Flow
Diagram technique (Ref 90:49), and the IBM Hierarchical

Input Process Output (HIPO) technique (Ref 90:50).

The first technique analyzed is the Softech SADT. This
methodology wutilizes two separate types of diagrams to
illustrate the proposed system, The "Activity Diagram" uses
labeled boxes to represent activities and labeled vectors to
represent input data flows, output data flows, control
flows, and mechanisms. The side of an activity box to which

a vector is attached identifies whether it is input, output,

)
control, or mechanism. The Figure 2 illustrates hoy the

= vectors are identified,.

27

a PR SO VG NI G G S S S T T - R

T T I — —

T e T [t 2 Tt P v oE v
B AR . . ALYSTEST

U e ey P
R R PR e

v e
BPR BATRA
X KA

CONTROL

INPUT—— ACTIVITY ————>0UTPUT

I

MECHANISM

Figure 2: SADT(TM) Activity Box

Each of the SADT Activity Diagrams has one or more Activity
Box. Activity boxes may be described by a separate Activity
Diagram, By describing Activity Boxes with Activity
Diagrams, a hierarchical structure of increasing detail is

constructed.

The other type of diagram in the SADT methodology is
the Data Diagram. These diagrams are very similar to the
Activity Diagrams ecxcept the boxes now represent data items
and the vectors are activities involving the data. The
Activity Diagrams view the proposed system from a functional
(procedural) viewpoint, while the Data Diagrams perceive the
system as a collection and transformation of data items.
Ideally, both types of diagrams are used in order to
facilitate multiple perspectives on the system. However, in
practice, wusually just one of type of diagram is used

because of time and other constraints, The Activity

28

. ‘. — v -
, N L, PN I WP RPN I TP Wy Py G P S R T 1

Y YT YV

-

RS Rt < DA A - v -y Lo o o

Diagrams are usually chosen over the Data Diagrams. One
justification behind this may be that the Activity Diagrams
more closily resemble the contemporary concept of a "Black
Box"™. This concept views a system as a set of inputs (data
items, controls) being translated into outputs by some
function described only with the box. Activity Diagrams are

expressed in terms much closer to our own english langauge.

The other techniques analyzed for possible use in
defining the "As-Is" model of the software development
process are Data Flow Diagrams (DFD) and IBM's Hierarchical
Input Process Output (HIPO) technique. The DFD technique
uses circle, sometimes called bubbles, to define processes
or functions. Between these functions are data flows,
reprecented by labeled vectors, that are the inputs and
ovtputs for the functions. FEach of these functions may be
decomposed into a separate diagram of several other

functions to show ;reater detail.

The IBM HIPO technique uses a hierarchical structure of
specification modules to describe system functions. Fach
specification has three sections, one for inputs, one for
outputs, and one for process. Data arrows between these
sections show the relationships between the individual

components of each section,

29

R T —— . s " e Ta———

—————— - i s P : - o T Y e e et

Softech's SADT: Structured Analysis and Design
Technique (Ref 79) is chosen to describe the "As-Is" model
of the software development process, The SADT Activity

Diagram methodology is used to descibe the software

SRR A AN T T
KRR RIS A

development process because of it's ease of understanding
and facilities for defining mechanisms. Mechanisms are
important for identifying where automated support is
required in the development process, The differentiation

between input and control for the data items 1is also of

L aite 4O G 5N s m p e L0 4
PR . BERSARN .
ST T Tt e

significance when describing the software development

process.

- The two other techniques considered for depicting the
"As-Is" model of the software development process were the
Data Flow Diagram (DFD) technique and 1IBM's Hierarchical
Input Output Process (HIPO) technique, The Data Flow
Diagram technique was not chosen because it 1lacks the
capability to illustrate where automation and interactive
capabilities need to be applied to the software development
process., The HIPO technique was not selected for this model
because it fails to allow the depiction of complicated flows
of information (data) between processes, Of the three
techiques considered, the SADT was the only one that allowed
both the complicated data flows to be represented and the

application of mechanisms to be specified.

i 30

Ty J o

vy TIT‘H
T B

'

b~

W T T g AT L T PR g A -
B M Y S CaR s oate she o v -

The development of the SADT model of the software
development process 1is fundamental to the understanding of
that process. However, the model 1is 1large and used
primarily as backround for the SDW Requirements Definition.

For these reasons, the model and the associated textual

information are included as Appendix A.

2.3 SDW Obijectives and Concerns

Prior to developing the functional model of the
Software Development Workbench, an extensive 1literature
search is conducted to identify the objectives and concerns,
These objectives and concerns must be considered when
developing an automated software development environment.
Especially within the past two years, a number of renowned
computer science researchers have been investigating
automated software development environment concepts
(Ref 59;60;89;33;67;38). These publications have revealed an
extensive list of objectives and concerns that are addressed
by the SDW development effort, The objectives of a software
development environment depend on the types of activities
that the environment is to support. A certain set of
objectives are fundamental to all software development
environments, while other objectives are more characteristic
of specific types of environments., The objectives of the

AFIT SDW are common to most software development

31

]

T NRERE

L et e e S & JE L GEL SN % vl

N

LAD Sy i 2Nt aue aun Jee St e o 4

Al .
N I

SR At

r—

b

environments. However, they are limited to the technical

development of software and not the managerial objectives
that would be required by an enviroment supporting larger
multiprogrammer development efforts. The objectives of the

AFIT SDW are described in the following paragraphs.,

2.3.1 The Reduction of Software Errors. A primary
objective of an automated software development environment
should be the reduction of as many software errors as
possible and the early detection of those that occur. There
are many types of software errors, but those errors that
deal with software reliability are by far of the most
significance here, Software errors have accounted for
tremedous losses of money, equipment, and, most importantly,
human 1life (Ref 32), A simple software error was
responsible for the c¢rash and destruction of an early
martian landing vechicle costing billions of dollars
(Ref 22). Software errors in aircraft control software could
cost the lives of air crew members. In a ballistic missle
detection system, software errors could, theoretically,
result in the worst of all possible disasters, a nuclear
exchange (Ref 12). Within more common software systems,
errors have caused costly budget overruns and schedule

slippage.

32

T

-
.
'.
3

L

il e e o8 Ah 08 Sles o
. .

ST

P S T S Yt

Software errors may be classified in many ways. One
manner of distinquishing them is by the stage of the
software development in which they are detected (Ref 32).
The cost of correcting errors increases exponenc.a'ly as
they are detected later in the development cycle (Ref 57).
Many times the action taken to correct for one error creates
more errors, The likilihood of this occuring also increases
exponentially as the error 1is detected 1later 1in the

development cycle (Ref 57).

Another manner of distinquishing errors is by the stage
of the development in which they are made. Analysis and
design errors which are made early in the development are
easily corrected if they are detected early. However, if
they are not detected until later in the development effort,
they become the most costly errors to correct (Ref 12:2).
Implementation errors on the other hand occur late in the
development and are usually much less expensive to correct.
The early detection of system software errors 1is thus of
extreme importance. In many software projects up to 50% of
the budget is spent on maintenance of software errors, while
only 17% of the budget is spent on analysis and design
(Ref 90:29). The logical response to this problem would be to
invest much greater effort on the design and analysis stages
of development in order to discover, isolate, and remedy
errors early in the development cycle. An emphasis on the

design and analysis phases of development, the utilization

33

- . Loat 2 ™ - — A a A M e m e e e el _ L S PR . -

=

o

z"'t‘v .

ol it atie g

Rl
Y

v

L4
Dl
)

B lam o T T

of state-of-the-art software engineering methodologies and
automated internal and external validation, would assist in
detecting errors much closer to when they occur. Thus, the

cost and risk associated with fixing them would be reduced.

2.3.2 Responsiveness to Change. Even with a very

strong emphasis on the analysis and design stages of
development, errors are 1likily to occur. The user's
requirements for the software are also likily to change
either during or after the software's developnent.
Modifications to a software system are inevitable and
mechanisms to handle them must be built into the SDW.
Changes to the system must be well documented, so as not to
repeat an error previously made, and all system

documentation must be kept consistent as changes occur,

2.3.3 Rapid Assessment of Design Alternatives. During
the design of a software system, many design decisions must
be made, Often these decisions are made with very 1little
assessment or understanding of alternatives due to time and
other constraints, An automated interactive software
development environment should provide means of rapidly
assessing the consequences of different design alternatives.
Contemporary technology offers a variety of simulation tools
(Ref 53:334), which if properly used, could produce feedback

on design decisions in near real-time.

34

e - a2 L m i mm .

—

DI Bl it e
R [ERERER EE .
A e .

A ‘r‘xr" CARM (y-.',y‘ -

e
-
3
;:.
"4

“Y

1

-‘-‘ - -~y —“f‘_:‘_.‘- .-

2.3,4 Automated Documentation Support. The production

and maintenance of software system documentation has been
and continues to be a major source of frustration for
software developers. With current technology, the automated
production and maintenance of this documentation could be

implemented, thus greatly improving the efficiency of the

software development process.

2.3.5 Software Managerial Capabjlitjes. While not a
primary objective of the initial development of the SDW, the

improvement of software management techniques is of great
importance to the Air Force. Therefore, facilities for
improving the management of software should become
objectives of later versions of the SDW. This could be
accomplished by keeping time and manpower statistics on all
development efforts, thus allowing for the better scheduling
and resource planning of future development efforts,
Facilities that estimate the status of a current development

effort would also be of great bhenefit to the software

manager.

The objectives of any development effort are of primary
importance and the SDW development effort is no exception,
However, the manner in which the objectives are accomplished
must be guided by a set of concerns that are also
fundamental to the proposed system. The concerns that gquide

the development of the SDW are a summarization of those

35

". kA AN T T 7
. L AH AP
PR . R I

Ty T ——— rovew
7 L I I P . . il iy
PP .- e . .
LI T

Y

P SRR

N YTYNY S YTy ey
: -~ o

-

T -‘,-’__‘Y 2-..'.‘-’ . -
PR P)

.
-

—
'
)

i

LA Tt T P v
4 . e T - A W e Lo

discussed by leading authorities on the subject of software
development environments, The varied opinions of these
authorities provide quite a list of concerns fundamental to
the development of an environment. However, many of these
concerns overlap or are not of significance toc the SDW
development effort. Thus, the 1list and description of
concerns that follows is a synthesis of the authorities'

opinions and the needs of the AFIT software community:

1- Integration

2- Traceability

3- User-Friendliness

4- Testability

5- Pre-Fabricated Programming

6- Support the Entire Software Life-Cycle
7- Flexibility

8- Consistency and Completeness

9- Explicitness and Understandability
10- Documentation Support

11- Updateabhility

12~ Languaqec Independence

13- Early Prototvping

36

FTa

A T e A A ™~ - . T T o —

2.,3,6 Integration. The issue of integration is
considered to be a primary concern of software development
environments that must support the development of software
throughout the entire life-cycle. Automated tools exist to
support every stage of the software 1life-cycle. Most of
these tools provide very effective means for accomplishing
the objectives of the stage they support, The fundamental
problem has been that these tools are not compatible with
the tools that support the other stages of development
(Ref 89:8). Achieving a fully integrated environment is a very
difficult task. However, integration can be realized at
many levels of detail and is thus not only a concern of the
initial SDW development but also a concern that will drive

the evolution of the SDW in the future.

2.3.7 Traceabjlity. The SDW must support all stages of
software development and to do so the developer must be able
to trace between the development stages. This ability to
trace between development stages is fundamental to the
validation of the later stages products against the results
of the previous stages (Ref 89:8). Both forward and

backward tracing between development stages should be

suppor ted.

2.3.8 User-Friendliness. User-friendliness is a term

often used in computer science circles, Difficulty of use

for both the experienced and the un-experienced user has

37

VR WY A W

constrainted many users from fully realizing the computer's
potential. Within the SDW project, user-friendliness can be
analyzed as two separate concerns. The teachability of the
environment and the human factors engineering of the
environment are the important aspects of the broad concern
of user-friendliness. The emphasis of both of these
concerns should be on tools whose user interface emphasizes
the function of the tool and not how to get the tool to

perform its function (Ref 33:46).

Teachability refers to the level of ease with which an
unexperienced user can become comfortable with and useful on
the svstem, The primary users of the SDW are to be AFIT
students and professors, Neither of these groups of
individuals have very much time to learn how to use a new
system, The SDW must be easily learnable and possess means

to walk users through its operation,

Human factors engineering is one of the most dynamic
areas within the computer science discipline (Ref 33:52-53).
New and innovative manners of interfacing with the computer
are being developed at an alarming rate., The resulting new
technologies should be used within the SDW to the maximum
extent possible. Interfacing with the SDW should be able to
be accomplished with a variety of means., Fasy to learn and
use command languages should be used for both environmental

and tool interfaces. Extraordinary work has been done with

38

. v wauv

AN iR At A wow e - - -
. N . . . Dl g LBt T o, . Ol Baesc) Adute Jmie suntn ans

7
o

_‘

DR]
PP
t .

¥ ol S i
R T)
E e

-

-

Artificial 1Intelligence in recognizing requests given in
natural language forms (Ref 8). Interactive graphics
capabilities should be utilized for working with the
graphical software engineering methodologies supported by
the SDW. Advances 1in Pattern Recognition and Speech
Synthesis could allow the user to interface with the SDW by

means of a verbal conversation (Ref 89).

2.3.9 Testability. Testing and validation are often
tedious and time consuming operations, However, the
internal and external validation of the products of each of
the development stages is fundamental to successful software
development., Capabilities for automated and interactive
testing should be available to validate the intermediate and

final products of all of the development stages.

2.3,10 Pre-Fabricated Programming. By the time that

the Preliminary Design has been established, many of the
functional modules, whose algorithms have not yet been
developed, may be satisfied with already written modules
(Ref 80). Studies have shown that, for business
applications, as much 40 to 60 percent of the required
modules already existed (Ref 50). The SDW should provide
means to utilize existing algorithms and codes within
development efforts, Such a facility could significantly

reduce development time for many software systems.

39

P O PP U S Y Sebedean ey ST

b
s
4

ey war ~w

T

i et dae

2.3.11 Support of the Entire Life-Cycle. This concern

has already been stated, but is important enough tc
re-emphasize exclusively. Automated and interactive tools
should be present to support each and every phase of the
software development from conception to termination,
Furthermore, these tools should be interfaced in manners
that will allow them to properly support the entire

life-cycle.

2,3,12 Flexibility. The concern of flexibility within
the context of an automated software development environment
takes on a variety of dimensions (Ref 89). The environment
must support many types of software developments including
mathematical or scientific applications, real-time and
control applications, and data base developments to name a
few, Each of these application types requires some set of
specialized tools. The environment must be able to support
development projects of different sizes, Facilities for
handling more than one version of a system must be present,.
The environment must support several programming languages
in order facilitate the choice of a language that is best
suited for the particular application, Fach language
requires specific compilers, debuggers, and other language
specific tools. Some languages require additional testing
tools to perform testing that is done by compilers in other
languages. One example of this is the DAVE tool that checks

FORTRAN programs for data anomalies that are automatically

40

e

:
P
.
-
!
r.
;
9
Fe \

Rad A TR 4
E__JN

EP“"TI'IW 1 0
-

check for in Pascal programs by the compiler (Ref 38). The
tools that compose the environment must be tailorable to fit

the needs of users with different experience and skill

levels (Ref 33).

2,3.13 Consistency and Completeness. Automated tools

must provide for the automatic checking for errors,

ommissions, ambiguities, and redundancies (Ref 2) .
Facilities are needed for checking the consistency of data
names, data types, and data units. Checking of module
interfaces for consistency could also be automated. Items
such as the number of parameters, their types, and their
order would be of importance here (Ref 13)., Consistency
should be automatically maintained between stages of the
development 1life-cycle. By using the shared data base with
a common data format, only one copy of the data exists,
instead of separate copies for each of the tools., This
elimination of redundancy is imperative in maintaining

consistency.

Completeness testing is also fundamentally important
during software development. Automated facilities could
check for modules that have been referenced but not
specified, or insure that all previous stage components have
been satisfied by later stage components, Completeness
checking is also important from a managerial point of view

in order to assess the status of the project at any

41

particular time,

2.3.14 Explicitness and Understandability. Products of
each stage should be as explicit as possible in order to

avoid misinterpretations (Ref 2), The products should also

be easily understandable to those with limited backround
' with the system. This makes the concern similar to a
E‘ double-edged sword. Often the rigor of explicitness
severely limits the general understandability. For example,
mathematical symbology is very explicit and precise, yet it
lacks an understandability to the mass of society. In
addition to explicitness for the human reader, the product

must be explicit to the computer which requires perhaps even

a more rigorous format (Ref 83).

Ej 2.3.15 Documentation Support. Documentation support is
ii a primary concern of any software development environment
because software only exists in its documentation. A najor

reason that the tools of software engineering are not fully

bl e an o

Clide.

utilized is that they often require a significant amount of

additional documentation, This documentation must be

v, 'W,v e 4

generated using development resources, namely personnel.

>
P

Y R

v

Automation of the documentation involved would allow its
production to be 1less costly and thus more generally
utilized. Automated documentation support should use data

from the data base to produce both hard and soft copy

BRI A AL okt 4

-
[4

documentation wupon demand (Ref 59), By using the data

42

T
:
|
L
2
L

W N Y S S S Y S S S P . o A .- _ A . & A & & oa

.....

directly from the data base the problems of saving and

updating the documentation are automatically taken care of.

The environment should have capacities to produce an
extensive variety of dd;umentation (Ref 89). Both hard and
soft graphics <capabilities should be present in the
environment. Bard graphics refers to printed graphical
illustrations, while soft graphics are illustrations
presented on a CRT device that are easily altered. 1In the
past, documentation has been the weak 1link in system
development (Ref 83), The environment's documentation
facilities should include mechanisms for developing scripts
for a variety of activities (Ref 89) and for the continuing

development of user's manuals.

2,3.16 Updateability. The development of most software

systems 1is an iterative process (Ref 83). There is often
needs to update precvious development data in a precise and
consistent manner (Ref 33). Besides just recording the
modifications that were made, it is important to record why
they were made to avoid repeating the error (Ref 83)., Often
a :»py of the previous version of the module comes in handy
if the correction proves to be less optimal than the
original. The development environment should support the
modification and justification of development data in a

simple and consistent manner.

43

S R ——— S e - P —— —

M |

2.3.17 Language Independence. Many programming

languages are presently available to the software developer.
Each of these languages has its own set of characteristics

and features that make it desirable for a particular set of

applications. In most software development scenarios, the
selection of a programming language is not required until
the actual Implementation stage or, at the very least, the
Detailed Design stage. Requirements Definition and

Preliminary Design should be accomplished prior to selection

of the 1lanquage and the tools used for these stages be
independent of any particular programming language. Thus,
the selection of the language can be made only after a sound
';;; understanding of the system being developed has been
established (Ref 33). Language independence can be realized
in the later development stages also with generic tools that

require only a description of the language constructs,

2,3.18 Early Prototyping. The use of proposed system

prototyping has proven a major break through in developing
systems that can accurately meet the needs of the wuser and
thus gain full acceptance upon completion (Ref 24).
Prototyping of the user interface allows the user to get a
feel for the system very early in the develop effort.

Functional prototyping insures that the system being

developed is what 1is needed to satisfy the needs of the
s user, However, the user often does not fully understand

what his needs are. A prototype allows the user to gain

¥ 44

TV G - G dam Rbe o B e omm e o

Y .Hf'r v

'ﬂ‘."vj’ J

v i,

Ty

4

Py
Fan

¢ 7

—

familiarity with the proposed system. Thus, the experiences
of the user actually drive the design of the system. Rapid
and early prototyping is useful in validating the
requirements and preliminary designs of the proposed system

by illustrating inadequacies and descrepencies (Ref 74).

2.3.19 AFIT Specific Objectives and Concerns. The

objectives and concerns of the SDW development are very
general and characteristic of any good software development
environment. However, the SDW development is specifically
geared for use by the AFIT software community. Specific
needs and requirements exist for this community, many of
which fall into the previously stated categories, but some
that do not. A description of the requirements of the SDW
that are specific to the AFIT software community is included
to help insure that the SDW is developed in a manner that is

of benefit to this community.

The SDW is intended for use by two categories of users
within the AFIT software community. First, the SDW is to be
used by students enrolled in the AFIT Software Engineering
course (EE 5.93). The SDW is also to be used by students
and faculty involved in thesis and other extensive software
development efforts. Each of these two categories of users
have particular requirements for the SDW development, The
students enrolled in the Software Engineering course are to

use the SDW as a pedogigical tool to learn and gain

45

experience with the classical Software Engineering
methodologies. Examples of these Software Engineering

methodologies would include Data Flow Diagrams, HIPO charts,

SADT (tm) diagrams, Data Structure Diagrams, Structure
Charts, Structured English, etc... The interactive tools
within the SDW that support these methodologies should be
easy to learn and to demonstrate., Furthermore, both the SDW
executive and the component tools should provide on-line
training facilities. The component tools should stress the

principles of the supported methodologies and not the

operations of the tools,

The other category of SDW users 1is the students
Ll N

m involved in thesis research and the students and faculty

involved in other extensive software development efforts. A

variety of many different types of software developments

take place with the AFIT software community. The SDW must
provide means to support the full range of these development
efforts, Fxamples of the types of software development
efforts currently underway include efforts to develop
relational data base management systems, to develop
interactive graphics languages, to implement concurrent and
distributed software systems, and to develop numerical
calculation software for the study of control systems. As
the SDW development progresses in follow-on thesis efforts,
the SDW could be extended to a systems development

environment, that supports the hardware, software, data base

46

‘- o e o - P N U T U D G Y G W]

MMM RACATLSAS Sha it ol sy

T -

and other components of a system's development. For the
near term, the SDW must provide for a number of distinct,
yet concurrent, developments to be supported with proper
security and separation of development data. Since many of
the software development efforts within AFIT are part of a
continuing series of developments on a single software
system, the capability to archive the development data for
future use must be provided. The documentation produced by
the SDW should be of a very high quality to allow for its
inclusion into the formal reports and thesis manuscripts.
Additionally, the SDW and the component tools must be easy
to learn and use to allow the SDW users to concentrate on
their particular development effort and not on the operation

of the SDW.

The primary difference between the SDW and other
software development environments is that the SDW does not
require capabilities to assist t+he managers of software
development efforts. The development activities within the
AFIT software community are limited to one or two perscn
efforts, thus the need for extensive managerial capabilities

is not present.

47

T

e, DA

A

i

e
b

ey ‘!","", Pty
. PR R

I

‘V'. D

3

Y YTy

2.4 Functional Model of the Software Development Workbench

With the "As-Is" model of the software 1life-cycle
provided by Appendix A and the preceding 1list of SDW
objectives and concerns, a sufficient background has been
established for the development of a definition of the SDW
functional requirements, A variety of methodologies exist
for defining and describing requirements. From this
variety, the Data Flow Diagram technique is used to define
the requirements for the SDW, Data Flow Diagrams, often
refered to as "Bubble Charts", illustrate operations on data
items by circles or bubbles and flows of data between the

operations by labeled vectors as shown in Figure 3.

—
OUTPUT DATA
FLOW

INPUT DATA OPERATION

FLOW

ID #

Figure 3: Data Flow Diagram Constructs

A data flow is an abstract data item that moves from a
source to a destination. Sources may be inputs to the
system or outputs of operations that produce the data item,
Destinations may be outputs for the system or inputs to
operations that 2lter the data item. Fach Data Flow Diagram

may contain several operations and data flows, Operations

48

MDA

v,
- -

DM

———— Y VY

R0

PYPRIT SPE ST AU VIR PR,) P - CYPRE P WO S TPUg G Wy PR T WL Y Wy BE ST S Y

on a diagram may be broken down into separate diagrams, thus
forming a hierarchical structure of increasing detail

(Ref 89).

Data Flow Diagrams are especially useful in describing
requirements for systems which specify a complex array of
data flows. The SDW is this type of system. Mechanisms, or
the "hows" behind the operations, are left out of the Data
Flow Diagrams, as they should be when specifying
requirements. Data Flow Diagrams are easily translated into
Preliminary Design Structure Charts by using techniques such
as Transaction Analysis and Transform Analysis (Ref 89).
Data Flow Diagrams provide for flexibility by allowing
multiple levels of detail to be illustrated. For these
reasons the Data Flow technique is wused to specify the

requirements of the SDW.

The Data Flow diagrams used to describe the
requirements for the SDW are explained in textual
supplements. Each textual supplement makes references to
the data flows and operations of the corresponding diagram.
The titles of these data flows and operations are
capitalized to allow the reader to identify them more

easily.

49

v"_ﬁ"
‘4
4

L I'_ -:.', v
R St
.« o

ﬁ.‘--
e e e

(i ko JR S A A
- - Tt et
G T

1 4

PO DR 4 TR YT R e e L e T N T R a SUR S e T TR L YW A S dh e e Rk B Tl 1

The functional model for the SDW utilizes DFDs in a
hierarchical structure that extends down four levels. Each
DFD has an accompanying textual description to aid the
reader in understanding the diagram. Both the data flows
and the operations are capitalized when mentioned within the
textual supplements, The data flow in each diagram are
described in the SDW Data Dictionary that is included as
Appendix B. The diagram outline below (Figure 4) is
provided to assist the reader in understanding the breakdown

of the model.

50

SDW Functiopal Model Qutline

Figure Diagram
Mumber Title

— iy o P e T . s et e s e T S T s e G Gt T St G W e Sun S S et et Gt Gy v S e G e T o 8 B B S e et S e G S S W S

5 0~ SDW Functional Model: Top Level

6 1- Perform Software Life-Cycle

7 l.1- Perform Requirements Definition
8

9

l1.1.1- Develop Draft Requirements
l1.1.2- Translate Requirements into
Machine-Readable Form

- 10 1.2~ Develop Preliminary Design
:‘ 11 1.2,1- Develop a Draft Preliminary
i Design
. 12 1.2.2- Validate Preliminary Design
.- 13 1.3~ Develop Detailed Design
s 14 1.4- Implement and Test the Software System
15 1.4.3- Convert to Syntactically
Correct Code
16 1.4.4- Test Code with Traces and
Error Handling
17 1.4.5- Optimize the Code
18 1.5~ Integrate to and validate on Target
'iﬁi Machine
19 1.7- Maintain and Operate Software System

Figure 4: SDW Functional Model Outline

[

P

'ﬁ

L

L::

éi

4

b

-

-

i .

.

-

H 51
r—

F.

r" - .

k_._A- " mlectmin i i i ——s " RPN L PPN —aad

4

-

S

g

"4 (N
[aga -~
L .
L .

(S

PERFORM
SOFTWARE LIFE
CYCLE
10

SYSTEM CONCEPT

SYSTEM

Figure 5: SDW Functional Model: Top Level

2,4.1 The SDW Functional Model: Top Level.
level
of the SDW investigation,
ambiguous idea for a software system,

Life-Cycle operation is the process of

operating, and maintaining the software
requirements within this operation are
satisfy. The SDW must support this
Life-Cycle Operation until the software system is no

needed, at which pointed it is terminated.

system,

what the SDW

R P ————

TERMINATED SOFTWARE

This top
diagram of the SDW requirements illustrates the scope
The System Concept is a vague and
The Perform Software

developing,

The

must

Perform Software

longer

L

STD4P-6517 SIEMLJOT 0jJaI8g 9 wJInSly

[N
WIALSAS

3uYN140S 3198340
ONY NIUINIWU

W3ILSAS IyunL 108 a“?

g W378048d 3yunis
W3ALSAS 3dvmiil5 QILSOH

51 81
SKNIHCoW L13D3%L

NO 3.9lI7vn OGN
0L 31vd93iH!

3cels
iN3Wg0134:32 oL
SWUHLINDSTIY Sh0NCued— L3T100ad 30wl

€1

ND1S3T 031Iw.L3]
W3 4073030 S3IN03N NOILYITIICOW NS24
. -]
5aand0c 5153N02y 3I1v047
ret uzwumwm iN3unool SINUINING 3N
L NDISIC
WILSAS INYML 405 N3153q .M:..mm 1
ASYUNTNII38d ASTNI H o s
1535 anw 4013030 NOILINI 413G
1N3UITau] . SLNIL3STINOIY
- [X 7]
g+t SLNILIYINCIy
L dIIN0D

$3272300%q 3uon; 405
NSILva1lwn
LN3CN3IdIGNT
«013n3¢

NBld 1831 X0g-AJ918

4a30N00 3¥un140$5

Ve S . - .
L . . . 3 o e e e

"

2,4.2 Perform Sofiware Life-Cycle. This level of the

SDW Functional Model is a breakdown of the Perform Software
Life-Cycle operation of Figqure 5, The breakdown is
- accomplished by dissecting the life-cycle into its component
stages. The six stages of the life-cycle are represented as
operations with their input and output data flows shown
accordingly. Perform the Requirements Definition is the
first scage (operation 1.1). This operation translates the
vague System Concept into a detailed Requirements Document.
Requirements Update Requests are also inputs to the Perform
Requirements Definition operation, This illustrates the
possibility that experience gained later in the development
cycle may require the existing Requirements Document to be

updated.

Developing the Preliminary Design is the next operation
(operation 1.2), Inputs to this operation are the
Requirements Document and Design Modification Requests,
which again demonstrate the requirement for modifiability.
Likewise, the Develop Detailed Design operation (operation
1.3) translates the Preliminary Design Document into a
Detailed Design Document and accepts reports of Erroneous

Algorithms as input. These reports require a modification

to the Detailed Design Document. Both the Preliminary and
Detailed Design operations may output Requirements Update
{ .’ff Requests if the present Requirements Document 1is not

- ‘ sufficient.

DA e T A AL I e A T T T T TR T T TR T T T s e

The Detailed Design Document is translated into a
Hosted Software System by a sequence of two operations
(operations 1.4, 1.5) that implement, test, integrate, and
validate the software system., Software Problem Reports may
be generated by these operations if the previous development
products prove to be insufficient. The Integrate to and
Validate on Target Machine operation (operation 1.5) accepts
a Black-Box Test Plan. This test plan is utilized for
independent wvalidation. The Black-Box Test Plan 1is a
product of the Develop Independent Validation Procedures
operation (operation 1.6) that occurs concurrently and
independently of the rest of the system development., The
Hosted Software System is accepted by the Maintain and
Operate Software System operation (operation 1.7). The
output of this operation is either a Terminated Software
System or a Software Problem Report. The Software Problem
Reports are feed to the Trace Problem to Development Stage
operation (operation 1.8). This operations decides at which
stage the problem should be remedied. The inclusion of this
operation in the SDW Functional Model illustrates a major
difference between the existing software life-cycle shown in
Appendix A and the 1life-cycle supported by the SDW. The
existing life-cycle emphasizes the idea of "quick fixes" to
the software, whereas the life-cycle supported by the SDW
promotes the re-development of the software from the point

of error occurance., The approach taken by the SDW greatly

55

PR S AP ot B NI U I W P S W P A DI LR T R Y -,J

reduces the chances for the introduction of new

improves the overall reliability of the software.

56

e B Mmoo lms A B Gamen e demeaioms Gk i e m A e m A . a s .

BRI i e - gt

errors and

UCTIIUTJe(SPUSLsSIinLay

VIO I
WaGsdud o

—

T

S'1°1
3ICW
NOILlYINUIS
NNy

0974 Q3LvCI N
SIN3WIBINI3Y

SLIN3LIWINCIY Q3NI

LH34NOC
SINIWININD3Y £t
AGN3LSISNGD
QGNY SSINILINdUCT

b ok Lol

FINIUIYINO3N
14034
1€udyIy-3INIHOVU

JTIouND3ICYNI/5QI0N
$3W3HINT Y

| A

“33J0u
1LY17W1S o O4ng
SINIUIBINOIY
3.¥TSNUNL

0

3.ivldNn

C3.vadn

21°7
W¥03 3169093y
SNINCHW 0N
SLM2L3YINC3Y
2197ISNUNL

SLN3L Y NN

SANZN3NIND3Y

SINIU3YING3H
L3980 d0I373C

$i53N03x
3lvqan
SiN3U3NING3d

Ld3IDN0I W3LsSAS

Py

2.4.3 Perform Requirements Definition. The Perform

Requirements Definition operation specifies that the System
Concept be used to develop the Draft Requirements (operation
1l1.1.1). The resulting Draft Requirements are translated
into a machine-processible form (operation 1,1.2). These
Machine~Readable Draft Requirements are checked for
consistency and completeness (operation 1.1.3). If
Requirements Voids/Inadequacies are discovered, the Draft
Requirements are updated (operation 1.€). Requirements
Update Requests are also processed by operation 1.1.6. The
Updated Requirements are then be check for consistency and
completeness again (operation 1.1.3). If the stated
requirements are consistent and complete, they are defined
as the Requirements Document. Before this document is
passed on to the next stage, it may be translated into a
Simulation Model for further internal validation (operation
l.1.4). Running of this Simulation Model (operation 1.1.5)
may reveal Requirements Voids/Inadequacies, These
Voids/Inadequacies are processed by the Update Requirements

operation and the Requirements Document is re-compiled.

RN N
ELLF RO

SRUSWSITHDDY 3Jedd dOTsAsC g 8an3TI]
1
4
1
5' 171"t
€111
9ld3Ialad .
SONMLNTIN3d INIUNCHINNS
H5178Y253 139800 3nl .
NOTLYIIZIZ2d IZAToNY LNeNy &350
ANZLNOM AN -4
Y0891 4
wly3Lryd \\ W
IS U344 / [2R3 2 < KR T8 T
4 SANZWIZINO3IY S]
J Y1ivG e a3nios)
- ’ CNY TUNOILONNS le g 0L U3 80&
S1N3L2WIND3Y 2110 CNIGNu1583aNN WI1208d 38 0L uzi80d¢ .
14944 N N 3ZAT9NY 1430M02 W3LSAS]
\,]
AN
\
b 4
NCILINISSQ w3.S5AS .SI-6Y
CARSRE: L
NCILINI 230 4
W3ILSAS .SI-Svu.
a01303¢
. R4 _
RN - SOTIIEA . TRASSPIN NN ST SIS g SR - A WS R N

BRI RA SN A A
, LW

DRia e =R ne (o A i SR s abau i e it il Mt

PRy W D

TR e Ol PR S Mt - ry -

2.4.4 Develop Draft Requirements. Developing the Draft

Requirements is a very important function that requires a
knowledge of the System Concept and, possibly, User Input.
The first step (operation 1.,1.1.1) is to carefully analyze
the System Concept and User 1Input to gain a Problem
Understanding. With this Problem Understanding an "As-Is"
System Definition may be developed (operation 1.1.1.2),
similar to Appendix A of this thesis investigation. An
analysis of the Target Environment (operation 1.,1.1.3) may
also be necessary if the Target Environment possess uncommon
attributes, The Probler Understanding, "As-Is" System
Definition, and Target Environment Specification are all
used to Formulate the Functional and Data Requirements for
the software (operation 1l.l.1.4). The result is a set of
Draft Requirements that may be enhanced with a set of
Performance Criteria (from operation 1.1.1.5) if the

particular system requires,

60

U0 &TABLBIL-SUTLOE © C3UT SjusksdInbay 93BISUBLL ¢ oauls

pe2°1"3
pR-H1eE]
SJIrouys ¥
L23INNCS

SINIJIVIND3Y
[3R LE
¥NLIX3L ¥ILKN3

SIN3UZNINO3Y
- YNLX3L

Cad

>

-

SWuyswIg
IWIVINOIY
QI1YHINGD
A3L.0dULT

SINZW3IBINO3Y
INLX3L

SINIW3YITDIY

g'e"tt

1x3. 316vI93y
3nIHOGW CINT
3LVISNvNL

tetite

52 11 SIH3L3IAINC 3N
C3.:vWy0d
SZIHcOHD 23IIN3

SINLIBIN03Y
Livag

S3T1iNOM3s
1493a SIN3L3¥INDIN
3ivdIlun

1d3ON0D W3LSAS

SLS3T03Y NOILYOIII¥v IO SLINZT

£2-14

AR O -~
ORI SIS 2

D e el Ao

(38!

O w L e e, W, YT W W e e W Aot . G A L A S

7'1‘

I

‘g

DA §

ME # SO

2.4.5 Translate Draft Requirements into a
Machine—-Readable Form. The Draft Requirements could be

entered using either graphic or textual mediums., Most
Requirements Definition tools only accept textual inputs and
thus textual input must be supported (operation 1.1.2.,2).

However, since most Requirements Definition methodologies

AT ﬂ'ﬁ“("" R
PP . PR SR

utilize graphics for understandability, the ability to enter
the graphical representations directly (operation 1.1.2.1)
greatly simplifies the process. If graphics are used, they
must be translated to a textual format for computer
processing (operation 1,1.2.3). The translation of the
textual statement of the requirements into a graphic form
(operation 1.1.2.4) allows the easier validation of the
exact stated requirements against the user's or developers
perception of the System Concept (operation 1.1.2.5). This
process 1is often refered to as verification within the

computer science community., Generically stated in terms of

the computer science community, verification is simply the
checking that what the designer/programmer has told the

computer to do is what he meant to tell the computer to do.

TNy

udisag Sfaeuiuwitedd doea

[
[
o
e

O

1o}

=3

o]
o
fr,

..
I
b
|
}

e'et

1S3ND3Y 31vddN SIN3WISINDIYN

ND1S3a
AGUNIWI135d
3ivQITon

7|_ NDISIQ AN

S$1S31903¥ 31vadN SINIUININDIY :

NOIS3Q Ade

HIWwIn3y4
93]

v 27

63

AD3.iudlLS
NOIL9LINIWITdUI

IN3UNJ0Q NDIS3C

NCIS3T

51531034

ABYNIWITI4d any 1S3L SNSTSIk NOT DI 150U AYYNIWITI28d
oIS3f .
1490 ¥
4013n3d g3141C0% NOI530 o1an3a
IN3UNJ04 ,
| SIN3U3ZINO3Y

€

NOIS23q
A¥UNIL 1324
ieGdn

‘et

S4537038 NOILWIISIGOW NOIS3Q

. PP AP RN IR 2 N O ST R

2.4.6 Develop Preliminary Desigan. The developing of a

Draft Preliminary Design could be accomplished by using any
one of a number of design techniques (operation 1.2.1).
Ideally, several different design techniques are supported
by the SDW to allow the SDW user to choose the technique
best fitted to his individual development effort, The Draft

Preliminary Designs are validated against the previously

stated Requirements Document (operation 1.2.2). This
:3 operation is elaborated on in the next diagram. The output
of operation 1.2.2 is either Design Modification Requests,
Requirement Update Requests, or a statement of the
Preliminary Design. Design Modification Requests is routed
<> to the Update Preliminary Design operation (operations
p! 1.2.3). Updating of the design requires re-validation of

- the Modified Designs. Once a statement of the Preliminary

ii Design has been’developed, it is fed into the Develop Test
: and Implementation Strategy operation (operation 1.2.4).
T The Test and Implementation Strategy developed by this
;‘ operation is included as part of the Preliminary Design
- Document, This strategy is an incremental plan for

implementing and testing of the software system according to

i; a hierarchical design of increasing detail (Ref 89).

4_‘ "

64

YTy s "
B P M -‘7.‘. LR R

.] LI S T S Y A o - . e e a L lonnanlh VR VI S W W W

u3isaq Adeutwiradad 3Jeag e doloasqg :T sanfid

NOIS3IT AWYNIWIN3Md
14vsd

WILSASH™S/W3LSAS

g-1°2°1

S4NZNO2OD

N33n.354
LERUELEFIN
3NIZZE6

SNOI193I4103dS
LN3NGIW0D
WILSASENS W3LSAS

SIN3U3BIN03d LN3INOSWIO

FARSE-M
NOIL19lIdIlZad

ININOJUOS
W31SASANS/UILSAS
HS5118w.53

ARSI

SIN3NCALOY
W31SASENS/WILSAS
A41.LN3CI

SANINGLA0D
UILSASENS/USLSAS

LN3UNJ0C
SINIUI=IN03A

N

P S VRPN

PR

PRI YR W A W) a P . PRI L om et A s aa A e mtataeas_nla

2.4.7 Develop a Draft Preliminary Design. The

Development of a Draft Preliminary Design is an iterative

process. The Requirements Document specifies the software
system to be designed. The System/Sub-System Components are
then identified (operation 1.2.,1.1). The System/ Sub-System
Components Specification are then established (operation
1.2.1.2) and the interfaces between the components are
defined (operation 1.2,1.3). The System/Sub-System
Component Specifications that are not down to a single
function 1level are broken down into further Sub-System
Components and the process is continued. Once all of the
System/Sub-System Component Specifications are down to just
a single function, the Draft Preliminary Design is

completed.

66

=

$153N%3y
NOILGZ <CH
NDI1524Q

<

453003y 2ivdan
S1N3W38IN03Y

C¥14 NOILYQIlen

NOIS30 AYUNIUIT INd

153023y
NOILYOI4Id0U

NDI53Q

r-22'1

g'e*e’’
SKDIS3C a3r4rqouw

130CK 1310
NOILWINUIS CI.YTINUIS ¥ QLN
NN 330U NIILVINWIS MD153d

319 SHYNL

EAR-AA-AN ¢
SNIddoa

SIN3W3ININ03Y J0
NOILI3/ N5

804 XJ3HD

1v2t2tt
LN 3¥IrD3N

v 0ol
SLINN NDIS3Q
3098.

ONIddos TYUE0J
LN3RNS0C

SIn3U3sINOsY

SND1S30 C3I3IQ0W

7

S Y, S W Ve T TRTT e WO Y Y e T W

.‘"‘n“,‘.,,_
AN A IOt

2.4,.8 Validate Preliminary Design, Validation of the

:! Preliminary Designs must be done both internally, checking
for the completeness of the design, and externally,
B comparing the designs to the statement of requirements,
i. Internal checking 1is facilitated by translating the
preliminary design into a simulation model and running the
model (shown in operation 1.2.2.3 and 1.2.2.4). External
t! validation against the stated system requirements involves
the tracing of the design units back to a specific
requirement and then checking that all of the stated
‘3 requirements have been satisfied by at least one design unit

(operations 1,2,2.1 and 1.2.2.2). The tracing of design

units to requirements should be done in both directions to

facilitate later bi-directional movement between the stages,

P S T T R {1‘;’...".-'.'“.

Dbt N JEL SN I 00 O Sl

“.rv
ST et A
rd

68

ARSI %o Sl

- S . . a - N
.. L . o . .
o . L. G P I U PP Sl 2 . a Brcoorttirrmmcsnssibiermessosscssd PSS

9

ERRONZQUS ALGOR

ITHMS

1.2.2

FRE-FAB MODULES

REQUIREMENTS
CORRECT UPZATE
FUNSTIONAL CORRECTED REQUEST
&LGORITHM FUNCTIONAL
ALGORITHNS

DESIGN MODIFICATION REGLEST

VALIDATE
MCDULE DESIGRS

DETAILED TESIGN

PRELIMINARY
[ESIGN
DOCUMENT
SEARCH FCR
PRE-FAB MODULES
FCR EalH
FUNCTION
1.2.1
JNSATISFIZD
FUNCT1O0IS

FUSCS

CEVELOP
FUNCTIONAL
LGORITHA

1.2.3

ATLORI

e 1.3.4

CETAILED DESIGN

FFEPARE

KoL WHITE-8Cx DOTURENT

THM TEST PLeNS

AND TATA

1.3.5

Figure 13:

Develop Detailed Design

-

2.4.9 Develop Detailed Design. As defined in the first
chapter, the Detailed Design stage deals with the

development of functional algorithms for each of the system

A iy

modules, Many times, these algorithms may already have been

developed and perhaps even coded. Operation 1.3.1 searches
for the existance of already developed and coded algorithms
to satisfy the the requirements of system modules, Those
system modules left unsatisfied must be developed by the
programmer/sqftware developer as shown by operation 1.3.3.
Acknowledging the iterative natuvre of the software
life-cycle, there may exist erroneous algorithms that
require correcting (operation 1.3.2). Once the Module
Designs have been established, they are validated against
the system's requirements and checked for consistency both
internally and with the Preliminary Design (operation
1.3.4). If inadequacies are discovered, they are passed to
the proper stage in the form of a Requirement Update Request
or a Design Modification Request, Otherwise, the
specifications of the Detailed Design are used to enhance
the Test and Implementation Strategy to include meaningful
sets of test data and detailed modular test plans that

execute all of the logical paths of the modules (operation

1.3.5) L]

70

je!
o
[
4
[
3
£
QO
~d
fe)]
3]
b
bs
Q©
4
o]
.

f=s

1°¥°3

30UNTNY
NOILYINZWIIGUE
1353135

[308 2

3307 4034403
ATTUIILTYLNAS

W2L5AS 3002 3HL

YL ICS 3211140 CLNI 1d30N0D
C3ZIwIidO
53 LRI AN
quhm -
3u
ywnos dul vl3d
2'r'T
5180438 53%v.5
W3140ud NOTLULNENITdW]
NYH ¥C
x¥wNL 405 oqumzc 2 aww — _ CLNI
CNY S30YdL HLIM SNYld 1§34 NMOA>Y3NE

33007 4534

71

2,4.10 Implement and Test Software System. Inorder to

implement the software system, a suitable programming
language must be chosen (operation 1l.4.1). Many programning
language exist today and each one possess features that make
it attractive for use in solving a particular class of

programming problem, Careful selection of a programming

language can significantly simplify the task of coding. The
SDW must support as many languages as possible to provide
the software developer the needed flexibility to code his
software efficiently. The SDW should possess facilities for
only allowing syntactically correct code to be entered
(operation 1.4.3). Other facilities of the SDW may provide

. for some automatic coding by wusing the products of the
a7

Detailed Design stage.
The Test and Implementation Strategy is then broken
: down into the designated stages (coperation 1.4.2) and the
:i objectives of each stage are used to direct the coding
E operation (operation 1.4.3). The coded section of the
5 system is then tested according to the plans recorded in the

Implementation and Test Strategy (operation 1.4.4). After

the entire system has been coded and tested according to the

VYT YY

Implementation and Test Strategy, the coded system may be

optimized as required by an stated performance requirements

Iy

(operation 1.4.5).

Ty
-

72

9DP0)) 103440 ATTBOTLOBIULA] L4 FI0nUC) 47 2an81:
e'E'rl
‘
$3420 33%N0S . "
¥34N3
3000 GINILNI-NN
I9MNONYT ONILUSES0Y4]
L
[RN 2 N
$3C02 123740 L e 3002 0L NDISET =
$3d95 3IIMN0S — mquoZd”_ ONILWYYICHd 1¥3NM0D
371dUJ3
SYTUUI XYLNAS
€ery 39915 NOILYIN3WITdUT 1
4
$3003 3031CS d313IAcL S2C3d3 XU.NAS
L23Ux00
L
B i T oY vt :

..... S i

2.4.11 Convert to Syntactically Correct Code. The

first step in the conversion of the Detailed Design into
code is to convert the Implementation Stages into an
Un-Entered version of Code in the selected Programming
Language (operation 1.4.3.1). The Un-Entered Code is then
entered into the host computer (operation 1.4.3.2) and the
result is the Source Code for that Implementation Stage.
The Source Code is then compiled (operation 1.4.3.4) which
produces the executable Object Codes and detects any Syntax
Errors. If Syntax Errors are detected they are corrected
(operation 1.4.3.3) and then the Modified Source Code is
re-compiled. The result of this entire process is a set of

Object and Source Codes for the particular Implementation

Stage.

74

- e, P D S S . PI T S S V. G ST SRR S S

—~ %W

SUTTPUBE JOJIF LUB S80BII L3lh SECS 388] 9%

2

NG

Syt /

S5153. ¥3HL0

W3ILSAS 35971405

SNYle 53t

W2 383a 339ML 405 .
034534 {SISATUND DIwuNAZ
ATT9I T Lavd LHOS¥IY

SL¥343y
w3183ud
3=YNL20S

[Al

S37N104
3&9N1405
BIHLZT0.
3Sa3u

e'rv'l

SISATuNY DILWLS
w304%3g

$3%00 123730
ane 352N03

L B A

S¥C¥N¥3 981003
P3ek 1.1 fopo]

ddm1305 C3LI3M¥HO0D

e
AR

R4 ! I.!,! ‘.‘_L*,:’Y" KA A

- REMEUN 4 VR A

Y

Cash el ey
SRR
’

.

2,4,12 Test Code with Traces and Error Handling. The
first step in the testing of the code for each
Implementation Stage is to merge together the necessary
object codes (operation 1.4.4.1)., The resulting Un-Tested
Software is then tested using either just Dynamic Analysis
techniques (operation 1.4.4.3) or Static Analysis techniques
(operation 1.4.4.2) together with the Dynamic Analysis. If
Coding Errors are detected, they are corrected (by operation
1.4.4.4) and then re-linked and re-tested. Other tests may
also need to be run in accordance with the Test Plans
(operation 1.4.4.5). A Software System results once all
tests have been passed, If an error is detected that is
from a source other that the coding activity, a Software

Problem Report is issued,

76

. . - - y
IS 2 CUPREP [Y o N -

epol 9yz osztwridy :

.,

- N ¢

£°S'»°1

IONVUNT NI
IvIJvdsS INY 3ui
AOLINOW

3¥unL 405 3HL
1531-34

33000 @3ZIulldo

ZA23N3T1108 W3ILSAS JF¥wNL 405

3duni 408

e's'»'}

3C0) G3ZiuWIldo
C3LS3INN

I¥INL 408 3IHL
A4IQ0U

7

PUR S

2.4.13 Optimize the Code. Often the coded Software

System does not execute within the Performance Criteria
established for it., If this is the case, the code must be
optimized, The first step is to Monitor the Time and
Spacial Performance of the Software System (operation
1.4.5.1). This identifies the Software Bottlenecks, which
are the areas of the code where the greatest gains in
performance can be realized. These areas of the code are
then modified (operation 1.4.5.2) and the resulting
Un-Tested Code is re-tested (operation 1.4.5.3). The result

of this phase is a tested version of Optimized Code.

78

S Y W S Y AN a e 2,

—

9

) SUTYDBY 49YIB. U0 33BLT{EBA pUB G} 23BIBEIUI [T SInli
£
f,
b .
h -
X
b
p
b
&
I
. - INTADDL
ﬁ 13Ts8L O
) ERCAS o3
ﬁ ' RRL 210
i ~ £°5°%
1 40d3a ITNYLa3IDY
L W315044 ¥35N NG
YL I0S NOTLEQ1TYA U3L5AS Fau=riDs
, 1N3QN3dIINT
s, W0 s83d 'S0
. SIN3NOUOD
ﬂ W3LSAS 3avnidls m;uuwmhm?
GILSCH bl
. Id9mLals
i ShUld L153.i X08-XSv18

RS L e

el k. A 2. a sl alal S alata. Ao

4

oy CJEA A0 0 A A
' . LIV

Nl Mkt A GNE
- PR .

e
-

i
1
i

s s i B e S i)

.-

B

L.;;-_‘--~‘ .-

= LT e, w v owm v

2.4.14 Integrate to and Validate on the Target Machine.
The integration of the Software System involves either the
Mating of the Software with the other Components of it's
host system (operation 1.5.1) or the installation of the
Software System on to the Target Machine (operation 1.5.2).
The result of either of these operations is an On-Line
version of the Software, This version of the Software is
then tested with the independently developed Black-Box Test
Plans (operation 1.5.3) and User Acceptance of the Software
is achieved. If errors are detected during this operation,
Software Problem Reports are issued, otherwise a Hosted

Software System has been achieved.

80

’ 4
wsysfy axewmyJos ajeaad(LUE UTBIUTEN PET sandis R

i
4
) A
i A
: A

t
: A
_ L

1
: <
i)
140438 W3180u4d I¥9NLI0S L5AS)
, 33971 405 3
oot et a3150m J

1
43.8A5 STonNuYM]

J¥BNLI0S 3IHL ONIlv¥3ds
3.v¥340 321181
w &

i

i
WILSAS IWYNL30S QILYNILYIL su3sn ONI L0830 '
1

SY¥3SN INoMLI0S

o

A.,.. v e .
C et e .
L P
i ndeiad, XY REBER TR

2.4,15 Maintain and Qperate Software System. Once the

Hosted Software System has been delivered, the Finalization
of the Operating Manuals takes place (operation 1.7.1).
These Operating Manuals are used to Instruct the Users of
the Software System (operation 1,7.2). The result of this
operation is a set of Qualified Users. These Qualified
Users operate the software (operation 1.7.3). If errors are
detected in the software or additional requirements for the
software are realized, a Software Problem Report is issued.
Once the software system 1is no 1longer of operational

usefulness, it is archived as a Terminated Software System.

2.5 SDW Evaluation Parameters and Criteria

In order to measure the success of any software system
in satisfying its requirements, a set of evaluation
parameters and a criteria for these parameters must be
established prior to implementatio:n and measured following
implementation, The evaluation of the SDW is a rather
subjective matter, Thus, the criteria for the evalnation
parameters is also rather subjective. Evaluation parameters
for the SDW are established for two different levels of the
SDW implementation, Evaluation parameters for the system
level of the SDW determine the SDW's merit as an integrated
software development environment, Fvaluation parameters for

the tool level of the SDW help determine which components of

82

]

KIS

B M e i aae e g TR p————

the SDW should be kept, which should be modified, and which

should be discarded.

There are several system level evaluation parameters
for the SDW. The first is the average time spent in
learning how to effectively use the SDW. This parameter
varies with the individual user and the type of development
effort he is involved with. The general and subjective
criteria for this parameter is minimization, most probably
in the range of five to ten days. Another evaluation
parameter for the SDW is the level of integration achieved
as measured by the life-cycle methodologies supported by the
SDW using a sequential application of tools that share data.
The initial criteria for this evaluation parameter is the
support of the methodologies taught in the AFIT Software
Engineering course, The time and effort spent on the
software development, as well as, the reliability and
quality of the software produced is a third evaluation
parameter. The criteria for this parameter is to lessen the
time and effort spent on the development while improving the
reliability and quality of the software as compared to
estimates of these parameters if the SDW was not wutilized.
A fourth system level evaluation criteria for the SDW is how
easily the software product can be updated in response to
detected <crrors or new requirements, The criteria for this
parameter is also an estimate of the difficulty involved in

the activity if the SDW had not been utilized.

83

b Lot e At m il a A el A

.,w,_--_.-‘

YTy
P .

Laa 4
o

YT

Tla

C2aiit athie s Mams AN i e aad A e - atiir ol R D

A separate set of evaluation parameters and criteria
exist for the tool level of the SDW, The first parameter at
this level is the time required to learn the function and
operation of the particular tool., The criteria should be 1
to 5 days depending on the complexity and usefulness of the
tool. The next parameter is the user's response to the
usefullness of the tool in his development effort. As 1long
as some users find the tool useful in their development
efforts, the criteria for this parameter is met. The final
parameter for the tool level of the SDW is the quality of
the tool's output. The criteria for this parameter 1is
determined by the type of the tool, If the tool is used for
notational purposes, the outpuit must be of a high enough
quality to be included in a formal manuscript. If the tool
is used to detect errors in the development, it must
demonstrate some level of effectiveness in achieving its

goal.

The preceding discussion of the evaluation parameters
and criteria for the SDW is not meant to be exhaustive, but
rather just a guideline to assist in calculating the benefit

of the SDW and in pointing out areas of future improvement.

84

adn i e PP IR WPE W IPUUy S Y " Y P S S -

B Al e Seun A TR - . . AZRttin il ZuEE i P Bl

2.6 Summary

Fj The AFIT Software Development Workbench specified in
this chapter is to be the realization of an automated
h software development environment that interactively assists
the software developer in producing highly reliable and

maintainable software. Capabilities to assist 1in software

-

development management and to simplify the production and

maintenance of many varieties of software production help to

¥

F reduce the high costs associated with software development,
Tﬁ Specific concerns such as integration, user-friendliness,
- flexibility, testability, etc... are fundamental to the
b : development of a useful software development environment,

% These concerns are used to direct the design and
implementation of the SDW. The previously stated functional
model of the SDW demonstrates that the SDW must support

software development in all of its develooment stages and be

able to do so in a variety of ways. Firally, a set of

A coramn

evaluation parameters and criteria is established to aid in

-

the analysis of the SDW upon initial completion,

R

The preceding statement of requirements for the AFIT
SDW is purposely limited to higher level requirements. This

is done because may of these high level requirements are

Ot 6] ANAS Adia

satisfied by existing software packages, The required

functions that are not adequately satisfied by existing

i) Sies e a2
)

packages must be provided by software packages that are

"

85

AD-A124 872 AN INTERARCTIVE RND RUTOHRTED SOFTNARE DEYELOPMENT
ENVIRONMENTCU> AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFB_OH SCHOOL OF ENGINEERING S M HADFIELD

UNCLASSIFIED AFIT/GCS/EE/82D-47

L -]
nma
'y
[
«©
W
N
N

«-,1.‘&*1
' » - T .1.114 v -

+
1

.
RSO Y *
e ?rb-r %y
—— vfl.l

I.b
e
—
—
—
—

EEE!
SEEE]

ki EEFEFFELTE

=

U

|o4
—
—
—
—
—

NATIONAL BUREAU OF STANDARDS-1963-A

125

MICROCOPY RESOLUTION TEST CHART

=
Il

=

achieved by a recursive application of the Software
Development Life-Cycle.

The concerns and objectives of the SDW, as well as the
functional model, stated in this chapter formulate the
Requirements Definition Document for AFIT's Software
Development Workbench. The goals of this Requirement's
Definition Document are very optimistic. The design and
realization of these goals is planned to be accomplished
incrementally. Initial designs and implementations of the
SDW are limited in order to achieve some degree of
operational status as soon as possible. The experience
gained from using the initial versions of the SDW provides

for later improvements to the design and implementation.

86

S AP A o St ¥ Rl B e e o L i . I R R i Sy o Haiai it Bl et Bt DM M i R A S P e B S

—ry T
S 23 R
PRI £ . L.
- PP

-

CHAPTER 3: SDW PRELIMINARY DESIGN

87

. . N P P Y y e N o
o PHPRL WS PR WP W WO R I P D W WP G .

3.1 Preliminary Design: Introduction

Within the Software Development Workbench (SDW)
development effort, the term "preliminary design" refers to
the software development stage during which the functional
framework of the software system is developed (Ref 90). The
preliminary design of a software system is much 1like the
structural framework of a building. The walls and braces
that compose the framework of the building are built first
with the details of the building's interior left for later.
The interior of the building is where most of the activity
(for which the building is being constructed) is to take
place. However, without a sound framework, the building is
not able to support the activities it was designed for.
Likewise, the preliminary design designates the framework
within which the functional algorithms for the software
system are to operate. Without this structure, the
functional algorithms would not be able to become a useful
part of the entire software system. Thus, the establishment
of a sound framework for the software system 1is the

objective of the preliminary design stage.

Just as the constructor of a building has a standard to
use in building the framework of their buildings, the
software engineer has a standard to use in developing the
preliminary design for his software. This standard is most

usually a hierarchical framework of managerial and

88

P PO S S S PR PN AT P SO DU A I SR e . PP P, PN S S U

- 'rﬁ'"“"""-. v,
f R

functional modules. This framework begins with a single
high level module at the top which calls/uses other modules.
These modules many, in turn, call/use still other modules.
Some modules are tasked with managing the 1lower modules,
while the other modules are tasked with other functions
required by the software system. The modules are linked
together by calls or usage relationships. They may also
pass data or control information back and forth. Fach of
the modules are defined in terms of their purpose or

function as well as their inputs and outputs.

The result of the prelimirary design stage is a
Preliminary Design Document. This document usually includes
the a two-dimensional graphic representation of the
hierarchical framework of the software system with all
relationships and information interfaces between the modules
stated explicitly. Structure Charts and HIPO diagrams are
common tools used for protraying the software's structure

(Ref 90:50,139).

The Preliminary Design Document may also contain other
information about the software system. A configuration
model is often included in this document, The configuration
model specifies the software system and the hardware, data
bases, and other components that are required for the
software's operation. Besides identifying the individual

hardware, software, data base, and other components, the

89

e P S M A B A . . Remhe o N VLA FUL WD SRy P P 5 A [

*— O
: L e e e

Y BN

configuration model also illustrates the interconnections of

these components.

The Preliminary Design Document must state how the
requirements, previously stated, are to be satisfied by the
software system. This is usually done at a high, rather
abstract 1level during the preliminary design stage and
refined by the following detailed design stage. Ideally,
the satisfaction of the requirements 1is accomplished by
tracing each of the requirements to a module of the

preliminary design's hierarchical framework.

The preliminary design for the SDW includes all of the
above stated features of a preliminary design. The SDW is a
major development effort that 1is only being initially
addressed in this thesis, Anticipated later development on
the SDW requires that ¢n evolutionary design strategy be
established. This evolutionary design strategy is provided
as a guide for these later development efforts, A
configuration model of the SDW is developed to establish how
the various component hardware and software systems and data
bases are to interface with one another. A high level
description is provided to state how the objectives and
concerns of the requirements definition chapter are to be
resolved by the SDW development effort. This includes a "by
function” identification of the tools required by the SDW,

Finally, a Structure Chart model 1is developed of the

90

Btnaegn e St I IPONE W W W W I a - _— sl el el

AP N R M i L i i LYt W halnall g JMAEE a st Ssan onet oy

W ,-“‘_“1,_ W Trepr——— T ——— P Ty - —— -
. - . . . - . - - . i ..

SRR N T M S

] - . . .

h' AR framework for the SDW. This model emphasizes "functional
8 cohesion" for each module and "data coupling" between the
. modules (although some control coupling is also required).

Functional cohesion and data and control coupling are

?. defined in the SDW Development Data Dictionary included as
E. Attachment 2, The preliminary design of the SDW includes
E' these sections in order to provide a sound framework, not
:‘ only for the initial SDW development, but also for later

follow on efforts.

3.2 The Evolutionary Design Strategy

The SDW is designed as a software development
environment to serve the AFIT software community, The
accomplishment of the SDW objectives requires an extensive
development effort that will span many thesis
investigations, The experienced gained in each of these
follow-on investigations provides for enhancements to the

SDW in later follow-on efforts. Thus, the SDW takes on an

Ei evolutionary nature, This evolutionary nature is visible
through the study of two SDW parameters. One parameter is
the number and functional variety of tools. This parameter
measures the degree to which the SDW achieves the goals of a

"tool kit" approach. The "tool kit" approach, as defined in

Chapter 1, is characterized by many single function and

distinct tools, The benefit of this approach is that it

91

provides for a great deal of flexibility in supporting
software development. The other parameter used to measure
the evolution of the SDW is the level of integration of the
resident . tools. The level of integration is of concern in
the "job shop" approach to software development
environments, The "job shop" approach emphasizes a smaller
tool set th&t is highly integrated. These individual tools
can be interfaced to provide automated support for
life-cycle methodologies. The benefit of the "job shop”
approach 1is that it provides support for and enforcement of
software development methodologies. 1In theory, both of the
these approaches can be supported by a single software
development environment, A large and varied number of tools
within the environment would provide the flexibility of the
"tool kit" approach, while the integration of a selected
subset of these tools would accomplish the "job shop"
approach goals, The eventual objective of the SDW
development is to achieve the goals of both of these

approaches,

The accomplishment of both the "tool kit" and the "job
shop" goals in the SDW development is very optimistic,
especially when considering the other objectives and
requirements of the SDW, For this reason, an evolutionary
design strategy is established to allow for the gradual
realization of the "tool kit" and "job shop" goals. This

Evolutionary Design Strategy is described by the two figures

92

- i [N - " - -,"‘ o - -" ., - "
SV N DT AN S NI AT N S JPUL. 2P SR S TP S S DL O P I . A s o s a

NUMBER/

VARIETY
OF

TOOLS

TIME —>

Figure 20: Tool Variety Progression Plan

LEVEL

OF
INTEGRA-
TION

TIME —>

Figure 21: Tool Integration Progression Plan

Figure 20 illustrates that the intial development of the SDW

93

O APt SV T

is to be involved with the inclusion of many component tools
in to the SDW, The acquistion of additional tools then
levels off as the required SDW functions are satisfied.
During the intensive initial acquistion of tools, the level
of integration between tools 1is not emphasized, as
illustrated by Figure 21, However, after a comprehensive
tool set has been obtained, the level of integration within

the tool set is stressed.,

The justification behind this evolutionary design
strategy is that many of the tools to be incorporated into
the SDW are already in existence as stand-alone systems.
The early incorporation of these tools into the SDW allows
the SDW to become operational very early in the development
cycle. This benefits the continued development of the SDW
in two ways. First, by using and analyzing these existing
tools within an operational version of the SDW, the
familiarity with the tools that is achieved aids in the
later integration of the tools. Secondly, the experiences
of the SDW users with these tools can assist in evaluating
which tools should be kept, replaced, or discarded. Thus,
the integration of the tool set occurs only after the tool
set composition has stabilized. The concept of an
evolutionary design is by no means unique to the SDW
development effort., Evolutionary design is a characteristic
of many software development projects. In fact, William

Riddle of the University of Colorado in Boulder recommends

94

Rk |

that all software development environments be developed
using some type of evolutionary design strategy (Ref 67).
His Jjustification for this advice is that the user's
requirements for.the environment may not be fully understood
until some experience with an operational environment has
been obtained, Furthermore, if the tools to be included in
the environment are being or have been developed outside of
the eﬁvironment's development, their usefulness within the

environment must be evaluated.

3.3 SDW Configuration Model

3.3.1 SDW Configuration Model Objectives. With the

objectives of the SDW Preliminary Design stated and an
evolutionary design strategy established, a model of the SDW
components and their inter-relationships is developed. This
model is refered to as the SDW Configuration Model and it
defines the overall structure of the SDW. The objectives of
this model are to establish the systemic structure for the
SDW in terms of all of its hardware, software, and data base
components. The model also identifies all of the data and
control interfaces between SDW system components, The SDW

Configuration Model is illustrated in Fiqure 22,

o . w
‘ 18P0 UOTYRINITIUS) ACS g2 esndiu 1
4
‘ 1
_... -
3 3sud wiva
3 YILNING 331034
19nQ0yd AL179N0 SOIHJWHD AdOD
_.\) nss n«uau«j d3lLm 1408
-
‘. X
2 :
o 35v8 vivg 35vd vlud 33103G 3I5vd vivd 4
b r
s o Xeo] 3 v SIIHAVYD AdOD N31.d1¥255 h
4 193royd 1237044 auon
3 R
b T T 4
. | |
- 5100, ! s100L | 51004 1
y
ALLNIWONY | TUNOILWLON | 3ATLINDOD §
$3%5vd vivg 1 1 35v8 wiwd Vo) b
133r0ad n/s Sv4-38d o]
. 0L 30VIHIINI . 04 39Y3N3LNI]
.. L
3015N23x3 NS 4
i
i
] _
!]
IIYIHIUINT mem e m e 1
MNO14 YiYQ AYMN-2 uarmmsmgs
. DT UiVE AUN-T cOmmemmmcm]
, TOUINOD @ X

V;\"v_‘;"'. ArSrYa)
AT

e

3.3.2 SDW Configuration Model Description and
Justification. The SDW Configuration Model is provided as a

framework for the SDW software components and as a guide for
the implementation of the SDW, At the top level of the
model is the SDW Executive. The SDW Executive is a software
component and provides the interface between the SDW user
and the SDW itself. The SDW Executive manages and controls

all of the other SDW components,

The other software components of the SDW are the
Interface to the Pre-Fab Software Description Data Base, the
Interface to the Project Data Bases, and the actual
automated and interactive tools, The Interface to the
Pre-Fab Software Description Data Base allows the SDW wuser
to search the Pre-Fab Software Description Data Base for
descriptions and 1locations of already written software

modules and programs that he may ~equire,

The Interface to the Project Data Bases allow both the
SDW wuser and the SDW tools to access the Project Data Bases
where all of the software development data and documentation
are stored. The Interface to the Project Data Bases also
provides for a software transfer link between the Project
Data Bases and the Pre-Fab Software Product Data Base, where
the already constructed software modules and programs are

stored,

97

rv.v 'V'i"'; ey g

MERARALA

oy

The final software component of the SDW is the actual
tool set. The individual tools within this tool set are
classified by function into three categories, These
categories are cognitive tools, notational tools, and
augmentive tools (Ref 67). The cognitive tools extend the
intellectual capabilities of the SDW user by provided
automated and interactive facilities to support Software
Engineering methods and techniques. The notational tools
assist the SDW user in developing, producing, updating, and
maintaining development information. The augmentive tools
utilized the computational speed of the computer to check
the consistency, precision, and completeness of the
development products with great rigor. The SDW tool set is
capable of selectivily interfacing to other SDW components
through data paths. Some tools within the SDW tool set
interact with the .Interface to the Pre-Fab Software
Description Data Base, Most all of the tools communicate
with the Interface to the Project Data Bases. Some tools
receive software products directly from the Pre-Fab Software
Product Data Base. The Notational and Cognitive tools
especially use the three input/output (I/0) hardware devices
(the hard copy graphics device, the soft copy graphics

device, and the letter quality printers).

98

. P) ' . N

SR b & s et an an 4 7-"7_"'1" LOLIRSA A

Aam 4 s o e n e o
H . 2

The remaining components of the SDW Configuration Model
include three distinct types of data bases and four hardware
I/0 devices. The first type of data base 1is the Pre-Fab
Software Description Data Bases. This data base holds the
descriptions and locations of existing software packages.
This data base assists the SDW user in locating existing
software packages that are similar to or may solve part of
his particular development project. The Pre-Fab Software
Product Data Base is where the actual software packages,
described by the Pre-Fab Software Description Data Base, are
stored. The last type of data base component in the SDW
Configuration Model is the Project Data Base. There exists
a separate Project Data Base for each development effort
being supported by the SDW., These Project Data Bases hold
all of the development documentation and data for the

developments being supported by the SDW.

The hardware components of the SDW Configuration Model
are all I/0O devices. There are four of these hardware I/0
devices. They are a hard copy graphics device, a soft copy
graphics device, a letter quality printer, and a standard
interactive video terminal. The hard copy graphics device
is required for the production of on paper copies of the
graphical illustrations of the development efforts supported
by the &SDW. The soft copy graphics device is required for
the displaying and editing of these graphical illustrations

on a video display. The letter quality printer is used for

99

L WY YOI WY SR SOV S LN P PO AL S UL SO S L S PO U U O S S T S N Y . P

B SR DU SPNT

producing copies of software development documentation. The
high level of quality is required because this documentation
must be included in formal manuscripts such as theses, The
last hardware 1I/0 device that 1is identified by the SDW
Configuration Model is the standard interactive video
terminal, realized in the model as the component labeled
User., This component is refered to as User because it is
the usual device used to interface with the SDW., Of course,
separate terminals are required for each concurrent User of

the SDW.

The SDW Configuration Model provides a framework for
the developing of the software and data base components of
the SDW. These are the components that are the emphasis of
this initial development effort of the SDW. However, the
model also specifies the required SDW system structure that
must be present to satisfy the objectives and concerns of
the SDW development effort as stated in Chapter 2. The next
section of this chapter (Chapter 3) explains how each of
these objectives and concerns are addressed by the SDW
design, References are made in that section to the SDW
Configuration Model and how its components are wused to

satisfy these objectives and concerns,

100

Ya o PP - L -
F S —

_—

" 3.4 Resolution of the SDW Development QObjectives and Concerns

The SDW Configuration Model establishes the baseline
configuration of the SDW as viewed as a total hardware,

software, and data base system, The configuration model,

however, does not state the detail of how each of the
l specific requirements for the SDW are addressed. In order
i‘ to specify the mechanics of how each requirement is
‘ resolved, each requirement is taken individually and the
;- components of the SDW that address that requirement are
established. The first requirements to be resolved are the

developmental concerns and objectives of the SDW. They are

discussed in the order presented in chapter 2. Each
a7 statement of an objective or concern (in chapter 2) is
referenced by the paragraph(s) that describes its resolution
(in chapter 3). Discussions of how each objective/concern
is resolved detail both the initial mechanisms used and

those to be incorporated into the SDW in follow-on efforts,

3.4.1 The Reduction of Software Errors (Resolves
2.3,1). Several mechanisms are introduced into the SDW in
order to reduce the occurrence of software errors, First,
the SDwW utilizes a variety of software engineering
methodologies supported by interactive and automated tools
to encourage software development in accordance with the
established software engineering practices and principles.

The SDW Preliminary Design calls for such tools to support

101

1

> ” T e Y‘-_v‘—ﬁw_w:—“ﬁ_a—?
- . N T N

- R activities in all of the software development stages. For
:! requirements definition, the SDW Preliminary Design calls
for tools to support the development of Data Flow Diagrams
ii (Ref 90), Structured Analysis and Design Technique (SADT)

(Ref 79), and other english-like requirements languages such

as the Requirements Statement Language (RSL) and the System

T
N

. S AR e od o4 i o
K o e 'ﬁ". '
. oon PR AR <,

Specification Language (SSL) (Ref 2;3)., Preliminary design
and detailed design are supported by tools for such
methodologies as HIPO (Hierarchical 1Input Process Output)
(Ref 90:139), Structure Charts (Ref 90:50), and Structured

English. Other methodologies, such as Nassi-Scniederman

Charts and N-Squared Charts may be supported in later
versions of the %:¥. The implementation and integration
stages of development are supported by facilities for
developing and recording of top-down implementation and test
plans (Ref 90:210). The implementation and integration
stages involve a great deal of specialized code testing
tools. These tools are discussed in greater detail in the

section dealing with "Testability".

While the tools used for testing during the
implementation and integration stages do support software
engineering testing principles, they are also considered a
variety of "augmentive tools". Augmentive tools are the

automated tools that utilizing the speed and computational

power of the computer to test for completeness and

consistency of intermediate and final software products.

102

These augmentive tools form an important aspect of the SDW
in the effort to reduce software errors. Augmentive tools
are designed into the SDW to test the products of all stages
of software development. These tools enable the developer
to test his products with great rigor which allows many

errors to be detected very early in the development cycle.

Ultimate plans for the SDW call for all development
data to be stored in an unified data base, This would
eliminate much of the potential for consistency errors
occuring when not all of the development data from different
data bases is updated to reflect a requirments, design, or
software change. The wuse of an unified data base is not
implemented in the initial version of the SDW., A stabilized
tool set for the SDW is required prior to the establishment

of the unified data base.

3.4.2 Responsiveness to Change (Resolves 2.3.2). As
pointed out earlier, software is a dynamic entity. Errors
found during development or operation must be corrected with
changes to the software. Changes in the user's requirements
also require modifications to the software. Thus, the
software development data must be changeable, The SDW
supports the modification and updating of development data
by wutilizing three types of mechanisms. First, all of the
SDW components provide for both the building and modifying

of their outputs by updates to their inputs. These outputs

103

1oy,
l.l‘. .
PR

‘.

¢

ad
9

are all stored in a common data area. This common data area
is the Project Data Base (3.3). 1Initially, the Project Data
Base is simply a directory structure of individual files,

Later, the Project Data Base is to be an unified data base

that joins these individual files,

b

[The Project Data Base also stores the test cases used
-

!l to validate the software system. Once a modification has
¢ been made, these test cases may be called up to validate the

modified software. The final mechanism to facilitate ease

of software modifications is the enforcement of a tracing
relationship between corresponding components of the
different development stages products. An example of this
type of mechanism is the tracing of requirements to design
and code modules., Such a mechanism would allow a change of
requirements, for example to be taken through only the
design and code modules that it is related to. Initially
this mechanism is done manually with the use of comments in
the intermediate products. However, with the use of an
unified Project Data Base, the traceability mechanisms could
be built directly into the data base conceptual schema. The

achievement of traceability is further discussed in 3.4.7.

3.4.3 Rapid Assessment of Design Alternatives (Resolves
2.3.3). The software developer is often faced with design
decisions that must be made with 1little knowlege of the

alternatives and their effects on the software system. The

104

coa o s) . N
P MEr— 2o re P PO S B WPD. WP LI G WY N S U S S Sy

SDW assists the developer in this problem by providing
prototyping and simulation tools, These types of tools
allow the developer (SDW user) to model his software system
very quickly. The model of the system is then run through a
simulation of the system load and feedback is produced for
the model. The model is then easily modified to reflect
another design alternative and the model is again run
through the simulation and the produced results are
compared. The SDW supports prototyping and simulation is
three fashions. First, the SDW provides tools for
independent prototyping and simulation, Second, it provides
translation interfaces for converting requirements and
designs into simulation models, Thirdly, many of the
Requirements Definition and Design tools have built-in
simulation capabilities. The ideal of the prototyping and
simulation capability of the SDW 1is to provide near

real-time feedback on different design alternatives,

3.4.4 Autopated Documentation Support (Resolves 2.3.4).
The genesis of the SDW development effort was to provide
automated tools to assist in the production of the
documentation associated with software development,
Automated documentation support is still of major
significance. The SDW Preliminary Design calls for the
inclusion of many tools to support the various software
engineering methodologies that utilize two-dimensional

graphics. These tools must be capable of producing hard

105

Srtomndinn, P R S U S YT WA TP W U I . PR S O Y I G U VU S

—

v

N
PRSI

s . g
gl hdivingd

copy outputs in' addition to the wvideo outputs. An
interactive graphics editor is also included in the SDW
Preliminary Design. This editor allows the SDW user to
develop his own customized documentation and even develop
his own graphical development methodologies. A text editor,
most favorably a screen-oriented text editor, is included in
the SDW Preliminary Design for use by the SDW user in
creating and modifying the textual documents associated with
the development, A word-processor program is also called

for to assist in the development of the textual information.

All of these "notational tools" are supported by the
four hardware components of the SDW Configuration Model.
These components are the video terminal, the letter-quality
printer, the hard copy graphics device, and the soft-copy

graphics device.

3.4,5 Software Managerjal Capabilitjes (Resolves
2.3,5). Although not addressed by the initial version of
the SDW, later investigation:s could use the SDW as an
excellent test bed for developing software managerial
capabilities., Such capabilities may be the automating of
status reports on an individual software development effort,
or the interactive development and maintenance of plans and
schedules for the development. The incorporation of
software managerial capabilities into a development

environment is of extreme importance when the number of

106

LIPS s AP WP W W) PP P Wt PO} POy ST W S S

developer/programmers gets much over a half-dozen or so.
Such capabilities are not easily developed, but if properly

developed they could be of great significance.

Besides the specific objectives of the SDW development,
the requirements definition chapter (Chapter 2) establishes
a set of concerns that must be addressed by the development.
The following paragraphs provide explanations of how these
concerns are addressed in both the initial and the follow on

SDW development efforts.

3,4,6 Integration (Resolves 2.3.58). The first concern
listed is that of integration. The term, integration, can
be used with a variety of meanings within the discussion of
software development environments, Within the SDW
development effort, this conflict of semantics is resolved
by discussing 1levels of integration, with each of these

levels taking on a distinct meaning.

The highest level of integration is simply that all
components of the SDW are located on a single machine, This
level is achieved by hosting all of the SDW components on
the target machine (the DEC VAX 11/780). The next level of
integration deals with how the SDW components are accessed.
A single common interface is provided to the SDW components
through the SDW Executive illustrated in the SDW
Configuration Model (3.3). The third level of integration

is the use of a common data storage area for all of the

107

P LA VP W S

LA BRI AK BAMACCALSALIS i ¢4 00 P18y
. EEr S S S UL T A ¥ o -
. P T A D T . et

D P A] CRRR I B
P
.
.
.
.
.
.

development data from a single development project. This is
achieved using the Project Data Bases, again illustrated in
the SDW Configuration Model. Within the Project Data Bases,

a separate and independent schema exists for the data from

each of the development stages.

The last two levels of integration are by far the most
interesting, however, they are 1left to be implemented by
later SDW follow-on development efforts. The first of these
last two levels 1is the actual integration of specific
components of the tool set., This could be done either by
interface routines that reformat the output of one tool to
be the input of a next tool or by the design and
implementation of an original tool set that is integrated by
design. The first approach, using the interface routines,
is probably the easiest to realize given the evolutionary
design strategy (3.2). However, integration by design has
proven most effective as it has been realized in the
University of California at San Diego's P-System (Ref 87)
for the development of software written in Pascal. The
P-System uses a similar command syntax for all of its
components and allows 1its different tools to call each
other. The ultimate goal of this level of integration is to
enforce consistency of intermediate and final development
products through strict tool =set integration, This is
accomplished by using previous development products as

constraints on the production of 1later products, The

108

mechanisms used for accomplishing this are discussed in the

section on Consistency and Completeness (3.4.13).

The second of these 1last two 1levels of integration
involves the wuse of a shared data base to hold all of the
development data for a single project. This type of data
base would realize the relationships between each of the
separate data schemas that exist for each of the development
stages. The use of this shared data base 1is further
discussed in the next section that deals with traceability,

which is the major benefit of this level of integration.

3.4.7 Traceability (Resolves 2,3.7). Traceability
refers to the use of relationships or mappings to track
between units of the products of each of the different
development products. In particular, traceability involves
the mapping of requirements specifications to design units,
of design units to code modules, and code modules to updates
of that code module. Changes to the software are easily

maintained using these mappings.

In the initial version of the SDW, traceability is
handled manually by referencing requirements in the design
specifications and the design specification in the comment
areas of the code. Later versions of the SDW are to use
integration mechanism to achieve an automated traceability
capability. The particular integration mechanism is a

shared data base. This shared data base is actually a

109

e AR L - . -
o ety PRSP PR O SN S Sy SRS PR P PSS S PP

o

distinct schema added to the top of the Project Data Bases
referenced in the SDW Configuration Model. This added
schema is refered to ac a Common Data Model (CDM). The
schema defined as the CDM establishes and preserves all of
the relationships between the different schemas of the
Project Data Base., By utilizing these stored relationships,
the mappings between requirements, design, implementation,
and maintenance units are automatically provided for

traceability.

3.4.8 User-Friendliness (Resolves 2.3.8).

User-Friendliness is a fundamental concern of the SDW
development because of its direct influence on the eventual
acceptance of the SDW by the AFIT software community. Menus
are provided at each level of the SDW Executive, as well as
help files that are integrated into the VMS Help facility.
A primary criteria for the selection of specific tools
during the detailed design stage is the tool's user
interface. Automated, on~line teach capabilities are
designed into the SDW to assist the new users. Fail soft
error recovery (Ref 60) is provided for 1in the design so
that wusers are not left helple:s due to an erroneous input.
As the state-of-the-art in artificial intelligence, speech
synthesis, and pattern recognition advances, later version
of the SDW may utilize an intelligent talking front end.
This would allow SDW users to develop software by conversing

with the SDW in normal english.

110

o g P Y DU Wy P o . o a ~

2R N i Bt - Saer R St Saatie e CHmaem gy Nt " - —— ” o M Ahme en han e o T T T T T ey
S TR) R - T - ’ R

3.4.9 Testability (Resolves 2,3.9). Utilizing the

potential of the computer to help detect development errors

is a major emphasis of the SDW for the achieving of the SDW
objective to help eliminate software errors (3.4.1). The
augmentive tools referenced by the SDW Configuration Model
are included in the SDW Preliminary Design for this purpose.
They provide automated and interactive mechanisms to test
and validate the products of each step of the software
life-cycle., During the requirements definition and design
stages of software development, the augmentive tools are
built into the cognitive tools, Some simulation
capabilities are included to round out the wvalidation
functions for these stages. A variety of specialized
testing and validation tools exist to support the
implementation, integration, and maintenance/operation
stages of the software life-cycle. The specific types of
these tools that are incorporated into the SDW Preliminary
Design are listed and explained below.
-Static code evaluators perform code evaluation
that does not require the execution of the code
(Ref 12:42). The purposes of this type of
testing are the insuring of:
--Consistent language usage
~--Consistency of redundant iiformation
---Type declarations

---Physical dimensions

---Assertions

111

P b A P P P .. o . . N W e - . . o i

A 'Tri Ko v

L N

ARt

T e T———————— -

--Consistent variable setting and usage
--Consistent code structuring

-Dynamic code structure evaluators require the actual
execution of the code (Ref 59:7). Three general
types of these evaluators are commonly recognized.

~—-Execution monitors check for and stop
at error conditions (in a manner similar
to the Ada Exception Handling capability
(Ref 1).

~-Software monitors allow for the stating of
assertions in the code and the testing of
those assertions during execution,

~-Dynamic debuggers provide trace and dynamic
code and data updating capabilities,

-Code instrumenters provide means for collecting data,
either conditionally or unconditionally during the
execution of the software (Ref 12:40),.

~Test case generators provide for automatic or semi-
automatic production of input data (Ref 12:43).

-Symbolic execution tools anaiyze software along a
given path within the software and determine a set
of input data that causes that path to execute
(Ref 61)

-Test analyzers are algorithms for estimating the
degree of "testedness" of a program (Ref 12:44).

-Performance monitors insert additional code into the
software that calculates the time spent in each

software module to locate the areas where the greatest
gains from optimization can be realized (Ref 89).

3.4.10 P:ngab:igatgd Prog ing J(Resolves 2.3.10).
pre-fabricated programming is a term coined to refer to the
use of existing software systems and modules to satisfy
requirements and design specifications within developing

software systems. The use of pre-fabricated programming can

112

significantly benefit many software development efforts by
eliminating the need to design, code, and test many
functions and subfunctions. The SDW Preliminary Design uses
the Pre-fab Software Description Data Base and the Pre-Fab
Software Product Data Base to support the concept of
pre~fabricated programming. These two data bases are

referenced by the SDW Configuration Model in section 3.3.

The Pre-Fab Software Description Data Base records the
existance of many existing software modules and programs. A

description of the software unit, an associated 1list of
keywords, the author(s), and the software unit's location
are stored in this data base for each existing piece of
software. . The Pre-Fab Software Product Data Base is simply
a collection of the actual software units (in either code,
desiagn, or both). The Pre-Fab Software Product Data Base
may be distributed over many locations with some units being
resident on system disks and some archived on other disks,
tapes, cards, etc. More detailed descriptions and models of
these data bases are provided in the next chapter on

detailed design.,

3.4.11 support the Entire Software Life-Cycle (Resolves
2.3.11). A major principle of software engineering is the
view of software as possessing a 1life-cycle. The S8SDW is
required to support this entire life-cycle. This concern is

addresscd in two fashions, First, the SDW tool set is

113

PP N S S

Lans St oon. o

,d "“', T

Y

RO AN e au of

BN

it Al

Ly

ARG

N

......

Pl P s M M Mt e . e T W ~ e w T i e T 5 o o R

design to provide capabilities to support each of the
software life-cycle stages., Second, the SDW stores all of
the development data associated with each of the life-cycle
stages in a common data area for each development effort,

the Project Data Bases,

3.4.12 Flexibility (Resolves 2,3,12). The SDW is an
evolving environment that is designed as both a pedogigic
tool and a creative tool, since the development of software
is a creative effort. Thus, a certain degree of flexibility
is required to support the SDW as a creative tool. In order
to achieve this flexibility, the SDW provides for an
evolving tool set. The SDW Executive is design to be easily
modifiable to incorporate new tools or discard old ones. By
utilizing the "tool kit" approach to the initial SDW
development (section 3,2), there is no set order or
restrictions on the operations of the different SDW tools.
The initial design of the Project Data Bases is a loose file
structure that is easily updated to support new tools,
Language-specific tools are provided for a variety of
programming languages to provide the SDW use flexibility in
choosing a language, Many of the SDW component tools
utilize languages and conventions that are expandable to fit
individual requirements. Finally, an interactive graphics
editor capability is designed into the SDW to allow SDW
users to create their own original graphics and graphical

methodologies.

114

vy

=
3.4.13 Consistency and Completeness (Resolves 2,3.13).
3 During the development of large and complex software, the

software developer may quite easily forget or overlook the

specification of some development details, Additionally,

Wnﬁ"" Yoy
- oo [B .‘;

several references to a particular software detail mway not
of been made consistently amidst the complexity of the
entire system. Such problems are not easily found by the

human eye, however, a computer could exhaustively search for

” r"":-.. v
v . . 3 . ‘ . e’

such problems in a much more economical fashion, The

/augmentive tools previously mentioned in the SDW
Configuration Model are used by the SDY to insure
consistency and completeness of the software development
products. Most of the augmentive tools used to check for
consistency and completeness are built into the cognitive
tool that produces the particular development product that
is being analyzed. These augmentive tools thrive off the
same sub-schema of the Project Data Base that is used by the
associated cognitive tool. Some of the development details
that are analyzed by these augmentive tools are the
consistency and completenss of functional requirements
specifications, of design specifications, and of code
modules, The explicit interfaces between code and design
modules are checked by interface checkers. These tools
check the rumber, type, and order of parameters that are
passed accross the interfaces. A units checking capability

is also employed to insure that assignment statements are

115

. 1 K
k3 /‘ A, t ‘
u RN '

.

Rt et S i S0 S s

dimensionally correct.

The previously mentioned mechanisms deal primarily with
internal consistency and completeness checking. External
consistency and completeness checking insures thc proper
translation of development data between the different
development stages, Interfaces between the SDW component
tools use the output of one tool to constrain the input of
the next tool. Consider for example the development of a
design for a software system, The requirements are already
specified, A syntax-directed editor is used to state the
design in some particular design language, The
syntax-directed editor accepts both the Backus Normal Form
(BNF) description of the design language and the previously
stated requirements as inputs. Using these inputs, the
editor only permits the creation of design specifications
that are consistent with both the design language rules (the
BNF description) and the stated requirements, An attempt to
state a design specification that is not traceable to a
requirements specification is either not allowed until the
requirements documert has been updated or is allowed with
the system automatically updating the requirements document
to reflect the design addition., If the second alternative
is used, the update to the requirements document is recorded
as an unapproved requirements modification. This helps the
developers and users to identify where modifications to the

requirements have been made, A similar type of scenario can

116

be employed when moving from the design specification into
the actual code. Such a capability is a major advance in

maintaining consistent development documentation.

3.4.14 Explicitness and Understandability. The need
for explicitness and understandability is common to many
aspects of the SDW. The SDW components utilize graphics
extensivily to improve the understandability of“the produced
documentation, Furthermore, the languages used to provide
inputs for the tools are selected based upon a criteria of

both explicitness and understandability.

3.4.15 Documentation Support (Resolves 2.3.15). The

resolution of the requirement for automated documentaticn
support is addressed in a previous paragraph (3.4.4). The
requirement for automated documentation support is addressed
both as an objective and a concern of the SDW development,
As a concern of the SDW development, automated documentation
support is resolved by the inclusion of software notational
tools and hardware output and storage devices into the SDW
Preliminary Design, The production of high quality
documentation and the archiving of that documentation for
later reference are also specific requirements of the AFIT

software community (refer to 2.3.19).

117

- PP S ST W T U T Ay G WL PP U S SR A P USRI

F
5
[
8

DES st e Yy

L

3.4.16 Updateability (Resolves 2,3.,16). The commonly
realized dynamic nature of software dictates the requirement
for updateability within the SDW, Updateability is achieved
by designing the Project Data Base to store both previous
and current versions of the development data. The
notational and cognitive tools are utilized to actually
modify the data. The notational tools include the text and

graphics editors.

3.4,17 Language JIpndependence (Resolves 2,3.17). As
stated in the SDW requirements (2.3.17), the selection of a
particular programming language for a development effort is
not required until the Detailed Design or the Implementation
stage of development. For this reason, all 'of the SDW
component tools that support pre-implementaticn activities
are programming 1language independent. These tools may
utilize specific specification or design language to

operate, but the tool specific languages do not 1limit the

choice of application language for the eventual
implementation,
3.4.,18 Early Prototyping (Resolves 2.3.18). By

prototyping a software system very early in its development,
design alternatives can be analyzed. Furthermore, user
experience with the prototype can help to drive the design.
The SDW uses stand-alone simulation tools to achieve the

requirement for early prototyping. However, the simulation

118

r

RAUBGOL:
".‘.L b —

l"

ORI A o e e o e e ——————
.‘... .;,',. LS D . .

tools may be driven by the requirements and designs develop
by the cognitive tools. This is facilitated by translation
routines that convert requirements statements and designs

into simulation models that prototype the software system.

3.4.19 AFIT Specific Objectives and Concerns (Resolves
2,3.19). Besides being a general investigation of software
development environments, the SDW development effort is
directed at achieving an operation environment for the Air
Force Institute of Technology (AFIT) software community. As
a result, the SDW development effort specified the
particular requirements of the AFIT software community for
the actual SDW. The AFIT users of the SDW are categorized
in two groups. One set of SDW users are those students
enrolled in the software engineering course (EE 5.93). The
other set is the faculty and thesis students using the SDW

for major software developments.,

Students in the software engineering courses use the
SDW as a pedagogical tool for 1learning the classical
principles of software engineering that are supported by the
cognitive tools of the SDW. Facilities for on-line teaching
are designed into both the cognitive tools and the SDW

Executive.

119

o ey, S ORI TS PR PO E. WP . s A . PRy

The faculty and thesis students that compose the rest
of the SDW users have a different set of specific
requirements that are resolved by the SDW design. The many
separate projects of this set of users are handled in a
secure manner by using the distinct Project Data Bases
illustrated in the SDW Configuration Model (3.3.2). The
Project Data Bases also provide for the archiving of
development data if the development is a continuing one.
The last specific requirement for this class of users is the
need for high quality documentation support. This is
achieved by the hard copy graphics device and the

letter-quality printer specified in the SDW Configuration

Model.

3.5 SDW Structural Model

The objective of the SDW Structural Model 1is to
illustrate the hierarchical compositions of the SDW
components into a functional environment, The individual
components of the SDW are included into the structural model
in order to satisfy the requirments for such components as

stated in the SDW Functional Model (2.4).

Three separate design techniques are candidates for

illustrating the structural model of the sSDW,. These

120

. T R T —y—_—

it i

P R "
i
i L

B

vy

- v e ki
. v S Tt >
* - '.. .-. i '."l ‘l'l ’s!‘ -. x -‘ . ‘l‘
hP P L T P

techniques are IBM's HIPO (Hierarchy plus Input Process
Output), Higher Order Software's HOS technique, and the
classical Structure Chart technique. Each of these
techniques utilize a hierarchy of design modules. They each
specify the inputs and outputs of each module (sometimes
refered to as a function) as well as a titles of modules.
The differences in the techniques are realized at the more

:l detailed levels of illustration.

The HIPO technique uses a special digraph called a tree

to illustrate it's Function Chart (Ref 90:139). An example

of a Function Chart is realized in Figure 23.

Figure 23: Sample HIPO Function Chart

The root of the tree is the main module that <calls all of
the other modules either directly or indirectly. In Figure
23, module A is the main module and it calls modules B and

C. Each module is described in more detail by the IPO chart

121

v

RCI e

YTy

v—r ,
ol e e EEE

$20ce)

e

that specifies the exact inputs, processes, and

The

each module, IPO (Input Process Output)

three block as shown in Figure 24,

outputs of

diagrams use

| Input | | Process | | Output |

Para- Algoritmic Para-

meters|—> Description |[—— meters
Figure 24: IPO Diagram Sample

The HIPO technique does not, however, specify an

ordering or conditions on the calling of subordinate modules
nor does it specify the passing of parameters between
modules. The HOS technique originated to aid in the
development of software designs for the NASA's Apollo and

SkyLab programs (Ref 34:72).

hierarchical structure of mathematical funct

structure 1is similar to the Function Chart of

however each box represents a function with the

the function state immediately to the left of
0w o i
the outputs immed&ately to right, This modified

boxes is illustrated in Figure 25.

122

P UL S UL S TR v . o P Y SOy W T ST G

The HOS technique utilized a

ions, This
Figure 23.,

inputs to
the box and

use of the

Input (s)| Punction Name |Output (s)

Figure 25: HOS Function Specification

D
B . The HOS technique uses an implied left to right ordering of
subordinate modules. This ordering may be augmented by

special codes at the immediately superior function that

specify if the calls are conditional, iterative, or

recursive,

The HOS technique does not, however, differentiate
between control and data parameters. The Structure Chart
method (Ref 90:141) that has been utilized since the late
1960s does differentiate between control and data
parameters., The Structure Chart method also utilizes the
basic Function Chart hierarchy shown in Figure 23 and has
conventions for illustrating conditional and iterative calls
of modules. Parameters are shown as vectors with inputs to
a module pointing down to the subordinate module and outputs
pointing back up to the calling module. Data parameters are
shown with vectors that originate with an unshaded circle.
The vectors illustrating control parameters originate wiin a
shaded circle, There is no implied ordering to the

subordinate modules, however, the proper input parameters to

123

a module must exist before the module can be called.

The HOS and Structured Chart techniques are especially
useful in illustrating the parametric relationships between
modules. However, this facility is not of great
significance to the SDW Structural Model. The HOS technique
views components in terms of functions, The components of
the SDW are tools and aids which are not properly expressed
in terms of mathematical functions. Of the three candidate
techniques for the SDW Structural Model, the HIPO technique
seems best suited because of its treatment of modules as
distinct units invoked by other units, The components of
the SDW are best described as such distinct units because

many of them exist as stand-alone systems already.

The HIPO technique does have its drawbacks in terms of
the SDW Structural Model. The major problem is that the IPO
part of the technique describes the process associated with
the module in a psuedo-algorithmic manner. The components
of the SDW need only to be described in general terms at the
level of detail involve in this preliminary design. The IPO
part of the technique is thus replace by a simple formatted
textual module specification, This module specification
includes the title or type of the component tool, the
calling module (tool), any subordinate modules (tools), the
inputs and outputs, a functional description of the tool, a

comment area, and a special entry that traces the module

124

Bsos o M PR Iy PPN WD W WOR T PR AP W — PP S S S S ST S ST Y W S S T RS

(tool) to the specific requirement(s) that it satisfies,

3.5.2 The Actual SDW Structural Model. The SDW
Structural Model is a specification of the major components
of the SDW. Most of these components are designed to aid in
the development of software by supporting and enforcing the
use of Software Engineering mecthodologies. However, some of
the components are utilities to support the other tools or
facilities to aid in the actual use of the SDW, The SDW
Structural Model identifies each of these components and

illustrates its position in the SDW hierarchy.

The SDW, being a software development environment, is
more of a collection of individual tools (that may or may
not be integrated) than it is a software system per se, As
a result, the calling relationships illustrated by the
vectors ir the model may not be formal calls as one would
realize in most software programs., Rather, they represent
that the modules are used by the SDW user as part of the
environment and are referenced by the SDW Executive,
However, the calling relationships between the subordinate

modules do take on the usual meaning.

The actual SDW Structural Model 1is illustrated in
Figure 26. Each of the SDW components referenced in the

model are describe in greater detail in Appendix C.

125

.l

N 1
1 T30 TBALRONAL,Z NM(OS 102 oan¥is
4 L
4
p
\ 1 $35v8 viud
133roud
3
oLy INUI 83-dI¥353 SHIDUNIU S¥3IAIZHD SYOLYAINID L
TINIWUNOHINNG M-S gY¥4-3nd NOI . YdND15N0D SHOLYINUIS AINILSISNDD 33907
xx b 39 b 3 4 X X 4
: - - I ST]
L
$100. SHOLYNYGwID H $1001 57001 w1633 $100L N3153C 4
NOI1)IX3 17053y 1531 s$¥399N83¢ ©437 1.034 TUNOILONN Y G3LH3140-0 Ml 4
J1708wrS 88X $rx X x 1Y Y
} L i ¥ T T ']
L
Se31:0y¥d SHINIID SHINDIHD S¥3TY¥0N $100L 1
NOILNDIX3 NOISN3UIA 30udu3LNT 783N S¥3114u00 OHINHY T -)
3 11X 132 3 4 t1x i 4
t 1 1 1 t ¥ 1
SN LYHINGD SHITATYNY SUOLINCUH S39Yx3ud S$405537044 EILivHdo s
3593 153L nol4 Yivg 3ONYUE0 A4 3d 1YIILSILYLS aycn 3000 33:Nn03
b 94 Xtz X b $ § 4 b 4 19 $ 4
1 i 1 1 i t .
SHIZATUNY S3NILNOY §3714 SY¥011Q3 SH0L133 80LIC3
Hind 31001 HOU3L d13H SI1HdYED aX3L d3.9341d0-XYiINAY
} 4 b § x ¥ 3 3z
3INILNI3IXI Nas
b 4
i

Ca s et

In accordance with the «¢volutionary design strategy

(2.2), the SDW Structural Model 1is to be implemented
incrementallv, Fach block of the model is marked with one
or more asterisks to indicate it's relative.significance to
the SDW. The semantics of these asterisks are as fbllows:
* -means the module is of immediate importance
to the SDW as should be implemented as soon

as possible.

** -means the module is important but not critical
to the inital implementation of the SDW.

*** ..means the module would be nice to have in the
SDW but can be done without,

The modules specified with a single asterisk (*) are
the SDW components that are of fundamental importance to the
initial implementation of the SDW because they provide the
basic development facilities common to most environments, a
user—-friendly interface and framework for the SDW per se, or
aid in the pre-implementation stages of software
development, The pre-implementation stages are given
greater significance because errors made during these stages

tend@ to be much more expensive to correct (Ref 2).

Modules marked with two asterisks (**) are deemed to be
of the next level of importance to the SDW because they do
not meet the criteria for primary importance, but are

necessary for a truly state-of-the-art environment.

127

a. & & 2 a

S S Ahon oo
o

7

— T
-. PN)
AN PR N

L

il

rfﬁry"'v-r‘rvvv—
. L .

PPy

-

R T T T e T —— T——— W o T T g -

The final set of modules, identified with three
asterisks, are those facilities that are nice to have in a
development environment but are not of critical
significance. The inclusion o0f these tools into the SDW
does not effect the further investigation of the advanced

topic associated with the SDW project.

3.6 Summary

The purpose of this chapter is to define the
preliminary design for the AFIT Software Development
Workbench. 1In order to define this preliminary design, an
evolutionary design strategy is established. This design
strategy calls for the initial versions of the SDW to
emphasize the inclusion of many independent tools into the
SDW. Later versions of the SDW are to investigate the
integration of these tools into specific methodologies

according to the design strategy.

A confiquration model of the hardware, software, and
data base components of the SDW is included in the chapter,

This model defines the SDW as a multi-faceted system.

The many objectives and concerns of the SDW development
are resolved with specific approaches to the development

effort hoth initially and for later efforts.

128

The culmination of the preliminary design is the
presentation of the SDW Structural Model. This model
illustrates the many components of the SDW, describes the
components, and specifies the significance of the component

to the Shw,

The preliminary design that is presented in this
chapter is a guideline for the continuing development of the
SDWw, As a guideline, it 1is carefully orchestrated to
resolve the requirements, objectives, and concerns of the
SDW development, The rest of this thesis investigation
focuses in on particular aspects of the SDW,. The
justification behind this narrowing of scope is to allow the
initial implementation of the SDW within _he time frame of
this investigation, The next chapter deals with the
detailed design of several components of the SDW. That
chapter identifies specific existing and available tools to

satisfy some of the design specifications of this chapter.

129

T —

CHAPTER 4; SDW Detailed Desiagn

130

- .t et o P - L} EPRL N P P PSPPI O U NP G

-

TN

LR AafahGaCtdrace s

AL A a N

LN SIS o Pk i i i

4.1 Introduction

The detailed design stage of the software 1life-cycle
deals with the development of the functional algorithms
required by each design module specified during the
preliminary design (Ref 10:7). 1In larger developments, some
of the design modules of the preliminary design may be
extensive sub-systems., The detailed design of this type of
module involves a recursive application of the software
life-cycle. That 1is, the requirements for that design
module must be explicitly defined, a sub-system Preliminary
Design developed, and then the algorithms for that

preliminary design may be stated.

When implementing a top down implementation and test
plan, the Detailed Design stage often overlaps with the next
stage, implementation. The top level modules are often
designed in detail and coded prior to the algorithmic design
of the lower modules. This strategy 1is followed because
testing of the implementation of the top level modules may
reveal the need for modifications that affect the 1lower

modules,

The algorithms developed during the detailed design
stage must be both concise and precise. In most cases, the

algorithms can be developed independent of any

implementation language,

131

——————y

9 CaailiCudiS adiey Jaet dithelihnih el A et L W G WYY TR e Ty W R AN T T T e T W T w e e T

The detailed design stage of the Software Development
Workbench (SDW) has several important aspects which are
described in this chapter. The first is the selection of
component tools for Version 1.0 of the SDW. This aspect
involves establishing a set of criteria for selection and
then making and justifying the selections. The next aspect
is the development of the SDW Executive sub-system
structure. This development involves the defining of a set
of detailed requirements, as well as, a preliminary design
and algorithmic design of the SDW Executive. The final
aspect is the detailed design for the Project Data Bases
files., A simple directory structure is used for the initial
Project Data Base design., However, a high level design for

later versions of the Project Data Bases is also suggested.

The detailed design stage of the SDW development is a
most significant part of this thesis investigation because
it deals with the realization of the concepts developed

during the earlier theoretical activity.

4,2 SDW Component Selection

The Software Development Workbench (SDW) can be
realized as two distinct classifications of components. The
first is the Software Development Workbench Executive (SDWE)

and the second is the SDW component tools. The selection of

132

........ . . e . .
- al a3 ATt o w s amlA . A& A A A 4 a.m.a _maa & a.a a

[‘v. P

e T gl

YTy

-y
-

T e ¥ 13 8

Ta "

L i MEr I i ey

SDW component tools is very fundamental to the effectiveness

environment to support the development of software.

of the

Prior to the selection of component tools, an apriori set of

criteria must be established as a basis for the selections.
The first part of this section deals with the definition of
this set of criteria. The second part specifies and
justifies the selections of component tools for Version 1.0
of the SDW,.

4,2.1 Selection Criteria for the SDW Components. The

selection criteria for the SDW components is realized within

three categories. The first of these is the ability of the

component option to meet the design specifications

established in the SDW Preliminary Design. The second is

the availability of the component option to the Air Force

Institute of Technology/Electrical Engineering Department.

The final is a result of the limited time and resources

available to this thesis investigation. Since, only a few

new components may be installed on the SDW during this

investigation, due to limited installation time and limited

disk storage space, some type of ordering criteria must be
established for deciding which types of tools must be given
first priority for incorporation in to the SDW.

The ability of the component option to meet the design

specifications of the SDW Preliminary Design is an obvious

criteria for component selection. However, just because it

133

D T R I R RNy Ty T W T T T Y ey vy e o v v ™ A A —
R T —~————" P > Ty T T v T e T .- BN - . - N W - .r-v.-v’

is obvious, does not mean it could not of been overlooked.
For this reason, each of the SDW components selected for

incorporation into the SDW must be referenced back to a

specific design module specification in the Specificetion of

SDW Preliminary Design Module (Appendix C).

As an academic institution, the Air Force Institute of
Technology is not able to spend a large amount of money on
the purchase of an automated software development tool for
the SDW. Furthermore, with the abundance of suct tools in
the public domain or under the propriety of the U.S. Air
Force, AFIT should not have to purchase these component
tools. Thus, the selection criteria that all SDW component
tools must be available to AFIT free of cost is established.
Under this criteria, there exist three manners in which
components may be obtained for the SDW. Potential SDW
components may be either public domain software, Air Force
proprietary software, or available to AFIT on some type of

academic loan arrangement,

Since, there is also a serious shortage of manpower to
work on the development of the SDW, there is an additional
criteria imposed on the selection of SDW components that
deals with the availability of component options. The
manpower constraints on the SDW development do not permit a
great deal of time to be spent on the installation of SDW

components, As a result, it is strongly suggested that all

134

SDW components be available in VAX-11/780 (the SDW target
computer) compatible format. Thic eliminates the timely
re-hosting of foreign software systems. However, this
criteria may be overlooked in the event of a component

option who's potential merit to the SDW outweighs the cost

of re-hosting.

The final category of selection criteria for the SDW
components is previously mentioned in section 3.,5.2 of this
document. This criteria deals with the relative importance
of the component to the realization of the SDW. Each
functional category of SDW components is given a measure of
importance to the SDW in Figure 26 of Chapter 3. These
measures of importance reflect the significance of members
of the tool group to the establishment of an effective
software engineering environment. 1In order to obtain the
highest measure of importance, the tool groups must be
required to provide the minimal capabilities common to all
software development environments or must be needed to
provide support to the pre-implementation stages of software
development, More details on this set of criteria is

provided in section 3.5.2.

In accordance with this just established set of
criteria, potential SDW components must be able to satisfy
the design specifications of the SDW Preliminary Design,

available to AFIT free of charge and in a VAX-11/780

135

compaitable version, and of significance to the initial
version of the SDW as measured by the criteria set forth in
section 3.5.2. With this set of criteria defined, the

component tools for Version 1.0 may be selected.

4,2,2 Selection of the SDW Components. The greatest

constraint on the selection of SDW components is that
imposed by the limitations of manpower and time. As a
result of this constraint, only those design specifications
for tools that are specified to be of highest priority to
the initial realization of the SDW are satisfied by SDW
component selections for Version 1.0, Each of these most
significant design specifications are listed below with the

specific tools that will be used to satisfy them.

Design Specification Specific SDW
Deemed to be of Greatest Component
Significance to the SDW Selection
Compilers VMS PASCAL
VMS FORTRAN
VMS BASIC
VMS COBOL
Consistency Checkers Requirements

Engineering and
Validation System
Extended Requirements
Engineering and
Validation System

CIDEF

AIDES
Debuggers VMS DEBUGGER
Functional Design Tools CIDEF

Interim AUTOIDEF

136

AIDES
Graphics Editors AFIT Graphics Editor
SYSFLOW
Help Facility Built into SDW Executive
Information-Oriented Interim AUTOIDEF
Desigr Tools
Linkers/Loaders VMS Linker

Requirements Definition Tools Requirements

Engineering and
Validation System

Extended Requirements
.Engineering and
Validation System

CIDEF

Interim AUTOIDEF

Simulators Integrated Decision
Support System (IDSS)

Teach Routines Built into SDW Executive
SDW User Manuals

Text Editors VMS EDT Edi‘or
VMS SOS Editor

Word Processors RUNOFF Text Processor

These particular software development tools are chosen

for incorporation into the initial version of the SDW

because they meet all of the requirements imposed upon the

2

‘

. selection process by the previously stated criteria. All of
&; these SDW component selections are available to AFIT from
E one of two sources. The first source 1is the existing
E- VAX-11/780 VMS environment located in the AFIT Digital
¢

Engineering Laboratory. The second source of components is

137

the sponsoring Integrated Computer~Aided
Manufacturing/Systems Engineering Methodologies Group. The
tools available from these two sources are quite
satisfactory for the accomplishment of the primary
Preliminary Design Module Specifications, Thus, no other
:j sources are required in order to complete the initial

- implementation of the SDW.

Each of the specific SDW component selections satisfies
the functional requirements of it's design specification
tool group in a distinct manner. Thus, the selection of
each SDW component requires a certain degree of

justification, The following paragraphs provide this

justification for each of the design specification tool

groups.

. The Compilers., The theoretical analysis of software
!! engineering environments, provided in Chapter 2 of this
document, points out that such environments must be able to
support a variety of programming languages in order to allow

the software developer to choose a 1language that most

Lalbal . Gy -
NS AR

effectively meets his needs. To this end, four distinct

'

languages are provided compiler support in the SDW. Each of

P p——
-t e

o

the 1languages has its own merits and disadvantages. Thus,
$ the software developer is given a greater deal of
k% flexibility in language selection. Only the four languages
-

are given compiler support because they are the only

. 138
i

L bl il oo e e
P :

’v‘rr‘n‘ oy
AR PP L
. . R

AR AN 4 y—— B

languages supported by the AFIT/Digitial Engineering

Laboratory (DEL) VAX-11/780.

Consistency Checkers. The term, consistency checkers,
spans a large variety of software tools. Consistency
checkers are available to support products of almost all of
the stages of the software 1life-cycle. The consistency
checkers selected for the SDW are all embedded” within
Requirements Definition and Design tools. They provide
specific support for the analysis of the products of these
particular tools, The Requirements Engineering and
Validation System (REVS) and the Extended Requirements
Engineering and "Validation System (EREVS) are used to
develop and analyze system (software system) requirements,
They store these requirements within internal data bases and
the consistency checkers are used to analyze these
requirements and report any consistency or completeness
anomalies. The CIDEF tool is used to produce and analyze
requirements or designs, T™his *+ool uses a subset of the
IDEF0 methodologies and explicit data item definitions to
describe requirements and/or designs, The IDEF0 diagrams
and the data item definitions are then analyzed by an
internal consistency checler for completecness and
consistency, The CIDEF tool also has the capability to
automatically generate FORTRAN 77 code from the complete
IDEF0 models and data item definitions., The AIDES tool is

provided by Hughes Aircraft through the ICAM/SEM office.

139

¥ WV RN S PR, D (AP Y 4 PP P A AT G Y S Y PR N S

PO G S Sy

AIDES is a structured design tool that is wused for the
development and analysis of structure charts. AIDES has two
distinct components, The first is a structure chart editor
used to develop the models and the second is a consistency
checker used to analyze the consistency and complexity of

the structured chart models.

The Debugger. The VAX~-11/780 VMS environment possess a
symbolic debugger facility that is essentially
language-independent., This debugger is thus a very powerful
tool for the dynamic analysis of software code, As a part
of the VAX-11/780 VMS environment means, this debugger is
already the property of AFIT/DEL and is more than powerful

enough to satisfy the debug requirements of the SDW,

The Functional Design Tools. Each of the three
functional design tools approaches the concept of automated
and interactive design is a different manner, CIDEF uses a
subset of the IDEF0 methodologies and explicit data item
definitions to describe the design for a software system.
CIDEF has very powerful analytical capabilities. Not only
does the tool provide for the production and analysis of
design, but there is also a capability to generate FORTRAN

77 code from the completed designs.

140

o
1

T v ‘**'7'.

The Interim AUTOIDEF tool is a prototype of a more
extensive tool to be released at a future date. The Interim
AUTOIDEF tool supports the drafting of IDEF0, functional
design models; IDEF1, information models; and 1IDEF2,
dynamic models. The Interim AUTOIDEF tool only recognizes
its products as drafted diagrams, whereas the later AUTOIDEF

will provide more analytical capabilities.

The AIDES Structured Design tool is provided to AFIT on
academic loan from the Hughes Aircraft Co. This tool
supports the development of functional designs as realized
in Structure Charts. The tool provides two specific
capabilities, First, a Structure Chart editor is wused to
enter and draft the models, then, an analyzer is used to
check the models for completeness and complexity. The AIDES
tool is a very powerful facility that is undergoing

continued development and enhancement.

The Graphics Editors. Two distinct graphics editors
are planned for inclusion in the SDW, One is a result of
current thesis investigation in the AFIT/DEL being done by
Capt. Kevin Rose, The other is called "SYSFLOW". This
graphics editor is being re-hosted for the VAX-11/780 by
ASD/AD and should be available for inclusion in the SDW by
Fall 1982, Both tools provide interactive graphics
capabilities and the AFIT editor also supports the use of

color graphics,

141

The Help Facility. Most of the component tools provide
5 there own on-line and off-line help facilities. However,
the SDW user requires higher level help information on what
tool are supported by the SDW and how to access them. This
information is provided in the help facilities of the SDW

Executive and the supporting off-line documentation.

1

a2

7“ The Information-Oriented Design Tools. The only
h

specific information-oriented design tool is the Interim

x5 AUTOIDEF. This tool provides the capability to draft IDEF1

information models. Interim AUTOIDEF is purely a drafting
tool, no analytical capabilities are provided. The graphics
editors may also be used to draft other types of information

models, if necessary.

The Linkers/Loaders, The VAX-11/780 VMS environment
provides a resident Linker/Loader that provides all the

capabilities required by the SDW.

The Requirements Definition Tools. There are four
specific tools used for requirements definitions, The
Requirements Engineering and Validation System (REVS) and
the Extented Requirements Engineering and Validation System
(EREVS) provide for the textual and/or graphical displaying
of requirements, the consistency checking of requirements,
and the simulation of requirements., The difference in the
two systems 1is that EREVS provides greater analytical

capabilities and allows for the stating and analysis of

142

——
L AL AL

concurrent requirements, These tools use the Systems
Specification Language (ssL) and the Requirements
Specification Language (RSL) to textually describe
requirements and a process flow diagram called an R_Net to

graphically portray the requirements.

The Interim AUTOIDEF tool is used to draft IDEF0 models
of requirements. The CIDEF tool may also be used to protray
the requirements in limited IDEF0 models and then do some

analysis on these models.

The Simulators. The Integrated Decision Support System
(IDSS) 1is used to develop and execute IDEF2 dynamic models.
These models may be developed either graphically or
textually with IDSS. The IDEF2 models are network- oriented
simulation models, however, they may be expanded with
FORTRAN 77 code to provide for discrete event modeling. The
REVS and EREVS also have 1limited embedded simulation
capabilities, To realize these capabilities, PASCAL code

must be entered into the statement of requirements,

The Teach Routines. The teach facilities for the SDW
are embedded into the Help Facility of the SDW and the

corresponding off-line documentation,

The Text Editors. There are two generally recognized
types of text weditors in existance today. They are

line-oriented editors that edit text a line at a time and

143

screen-oriented editors that edit text a screen at a time.
The SDW uses both types of editors, Both types of editors
can be found within the VAX-11/730 environment and thus
these editors are selected for inclusion into the SDW, The
SOS editor is the standard Digital Equipment Corporation
(DEC) line-oriented editor. The other editor is the DEC EDT

editor that is a very powerful, screen-oriented editor.

The Word Processors, Only one word processor 1is

available on the VAX~11/780 at the present time, This word
processor is the RUNOFF Text Processor., Although not a true
word processor, the RUNOFF Text Processor does provide for
the efficient product of textual material. RUNOFF 1is an
adequate substitute for a true word processor until one

becomes available on the VAX-11/780 VMS environment.

4,3 Detailed Design of the SDW Executive.

4.3.1 A BRecursive Application of the Software
& Life-Cycle. The SDW component tools provide the SDW with

its developmental capabilities. However, the high level

requirements for the SDW state that it must be an integrated

SR DA S S B 2 s e g

s

B environment, The type of integration refered to here
- requires that all of the component tools be accessible
P; through a common unified interface, This requirement is

satisfied by the SDW Executive. The SDW Executive (SDWE) is

144

T M~ S~ - I I S R e e B Aete Jmmac

essentially a sub-system of the SDW. The SDWE sub-system is
the interface to and controller of the SDW component tools.

Obviously, the SDWE is, itself, a major development project.

In order to develop an effective SDWE, a recursive

application of the software life-cycle is performed on the

TPp— AR i T Man dos st ot OAararanLa as bad Ty
R - DL A S Rt S D
L .] . e T

. sttt e R Y\ B
B
.

SDWE. In particular, the detailed requirements for the SDWE

are defined, a preliminary design is then developed, and the

algorithms for the SDWE modules are established.

4,3,2 Detailed Reguirements Definition for the SDUWE.

The SDWE is required to fulfill two roles within the scope

of the SDW. First, the SDWE must provide an efficient and

. usable interface to components of the environment and,
‘t,' second, it must be able to control the execution of each of
these components. Currently, the number of SDW components,

as defined in section 4,2.2, 1is relatively moderate,

However, the SDW is a developing environment and many
additional tools are expected to be incorporated into the
environment in the future, In order to control each of

these components, the SDWE organizes each of the SDW
components into a functional group. These functional groups

are defined and justified in section 4.3.3 dealing with the

4 SDWE Preliminary Design.

The first step in the development 1life-cycle of the
k SDWE 1is the definition of the specific requirements for the

SDWE. The objective of this stage of the SDWE developuent

145

is to define the exact capabilities that the SDWE must
possess. Two distinct Software Engineering Methodologies
are candidates for the definition of the SDWE requirements,
They are the Data Flow Diagram technique and the IDEFO0 (ICAM
Defintion technique). As discussed in section 2.4 of this
document, the Data Flow Diagram technique defines
requirements in terms of data flows and data
transformations. The IDEF0O technique uses control flows,
input data flows, output data flows, mechanisms, and
functional activies to define the system requirements, The
IDEF0 technique 1is essentially the same technique as the
SADT(TM) technique described in section 2,2, As an
interface and controller routine, the SDWE is not easily
described in terms of data flows and data transformations,
Instead, the use of control specifications and functional
activities is more appropriate to the explicit definition of
the SDWE requirements. As a result, the IDEFO0 methodology
is chosen to describe the SDWE requirements. (Refer to
section 2.2 for an explanation of the IDEF0 methodology as
it is identical to the Structured Analysis and Design

Technique described there.)

The particular diagrams of the IDEF0 model for the SDW

Executive are enumerated in the table below:

146

RO I o g

3.,
PR R
e ey

SDW Executive Requirements Model

> S s Ene Y Gt G G L B e W S Gme . e P Gy Gme TES EED e Y S i Bt T e e S G

D G G Gnp e Gnt S S — s o S . . G S0 T g G e S TED P G e e G Gme G 8 S A v e S ——

A-0 Utilize the Software Development Workbench
AQ Utilize the Software Development Workbench
Al Initialize the SDW

A4 Execute the User's Command

A4l Provide a Functional Tool Group

A42 Provide Help Facility

A43 Access the Pre-Fabricated Software
Description Data Base

The top level diagram of the SDWE requirements model is
shown in Figure 27. 1In this model, the SDWE is viewed as
providing the ability to utilize the SDW, The wutilization
of the SDW is controlled by User_Commands and accepts other
User_Input in order to perform its software development
function, The output of the SDW utilization are

Software_Development_Products.

The Activity "Utilize the Software Development

Workbench" is analyzed by the Figure 28, This fiqure

illustrates the breakdown of the activity into component

activities. The first of these activities is the
"Initialize the SDW" activity. This activity uses
147

User_Commands to control the initialization process and
specify the enabling/disabling of the automatic menu
facility. User_Input is wused to establish a data storage
schema, whether it be a Project Data Base or the user's
default directory. A detailed analysis of the "Initialize

the SDW" activity is provided in Figure 29,

The second activity shown in Fiqure 28 is the "Provide
a Set of Top Level Options"., The function of this activity
is to allow for only the SDW options that are appropriate to

the top 1level module of the SDW., The manner in which the

options are presented to the user 1is determined by the
. Auto_Menu_Flag and may use the Menu_Files mechanism. This
h “V activity may also be re-initiated by the
Return_to_Top_Level_Command. The output of the activity is
a set of Top_Level_Options which may be executed in the next

activity box in the fiqure,

This final activity, "Accept and Execute the User's
Command”™, receives the User_Command as a control item that

is used to select and execute the Desired_Option, Some of

,-'-vx 2 Al AL b AR A g A g
P T et e '

these options do require additional User_Input. The

vy

; resulting output of this activity is either a
r Conclusion_Message, a Return_to_Top_Level_Command, or some
i type of Software_Development_Product. The "Execute the
% User's Command" activity is analyzed in greater detail in

Figure 30.

148

oo

29218

A —

1 T3 35 #as W 92111 G-V
HIGWAN ‘31L1L ‘JJON
) A
$7 onpody
jusudoTons; @ | @—————— 3nduy Jgssp
alBM] JOGQ yousqyopm
JUBLAOT9AS] aIEM} JOS

8y} 821NN o)

=4

—

!

! ,
| M
SpUBWWOS X8s() . M
1
q
[
{
PSS L
| ;M
NOILVDI8Nd OL6 8 . 9 G v £ Z U SIION k
G3aNIWWO0I3Y SjUBLAITADEY e L
13vua e 30y - A3M opetjoes naeh. -yq ‘403roud

1X3ILANOD 3lvQ d3dv3id ONINHOM o ~ ‘31va e i " HOHLINY Lv @3IsnN

——— CENTTS TN ION JTUSEAO 10460 61€M] JOS 8y3 9ZTTITMN ov
‘HIGWNN ‘33400 :300N
Wy pueuwWOy) ToA¥] doJ 07 udniay J
Q
3 ﬂH
dessoy
. TuoTsSNToU0) anduI Jdesq
” 10 @———————pY} 3}Noaxg
sy onpoad
) Tjusudotaseg
5 “eaemy JOog
‘ _ pUBWWO) J3S()
3 edA] puEuwwo)
] SOTT4 NUsy
. Z suoryadp |
b H0>QH
suot3dg Teae] dog jdoL jo 3eg
&= ﬁm eptaoxd
] L
od] “eoTASQ 11
3 ~as eyl * uduy Jesf)
- ezZTTeTITu]
edessal{ Japesy
TC
] SpUBWWOS Jasf)
a-y NOILYJI18Nd OL 6 8 £ 9 S ¥ € C 1 SILON
T GIaNIWNGI3E - sumseamoey gs
:1X3LNOD 3iva 430v3Y SNINHOM 28 ¥ 7 31va PISTIPEH USAIS 3T \ominv] :1vaasn
25218

150

- o

)
ek

W S R W X

O =rim

T ET T R Tow

-

Comb - Supac Aha Jinte ShGin At SME "] i

e

[aPEY -

———— evmTas *T5 9y, SITIBILTUI "y
‘H3IAWNN 37411 ‘300N
] |
| 4 i
: i ..
No‘ll.- suuajp o33Ny _
ge1s | Jo uoy3dg |
“nuey _, ey} eprAOIg _
ony o)
m |
soseg ! 11
10 S eye] 308foxyg _‘ 4 nauy
_ swayodg _ Jo esn eyy | soTt1J dI1aH TJdesq
8381075 ®B3B] _ J03 mua>oum !
3 '
c @
SaT3TTTIORY
drey eptaocad
1 g
od 41 |
Teoraeg @ edTAe] §.J6s) ‘.IIL
” JO eanjeN
._ ey} eutulejeg
\ \ 4
L 10
SpURWWO) Jos()
734 NOLLYIIT8Nd oL 6 8 £ 9 S ¥ £ ¢ 1 S3ION
a o = AG3aN3IWWO0I3H
= 14vHa A3 sjumexinbay grgs 193rodd
:1X3LNOD 3iva ¥3gvay ONINHOM 20 290 v '3iva PIATIRER UeA2NS 37 ‘HOHLNY ‘Av @3Isn

TeT——rT——w

.
Lo ™
ol gl -

2se1s

BN/

E I' AN

R
:
‘

The next diagram in the SDWE Requirements Definition Model
is found as Figure 30. The User_Command types are the
Functional_Tool_Group_Command that provides access to one of
the fourteen functional tool groups, the Help_Request that
provides access to the SDW Help Facility, the
Pre-Fab_Software_Description_Data_Base_Access_Request that
provides access to that data base for either the addition or
retrieval of a software module description; the
Menu_Request, that provides a display of the current menu
options; the List_Project_Data_Bases_Request, that provides
a display of all existing Project Data Bases; the
Termination_Request, that causes the graceful completion of
the SDW session; a DCL_Command, that is any of a set of
host, monitor level commands that are also available to the
SDW user; and then the 1Invalid_Command, that must be
trapped and recovered from by the SDWE. Each of these
commands are used as control by a specific activity on this
diagram, The "Provide a Functional Tool Group", "Provide
Help Facilities", and "Access the Pre-Fab S/W Description
DB" activies are all analyzed in greater detail in the

following diagrams shown as Figures 31-33,

152

ool o,

. i : Hamls PUEWWO. $.I9SN 9U3 ©3ND8X: s
! ‘HIGWNN ‘37414 ‘300N 4
r)
g T u
|

) SpuBWuO. | :
2 1184ul dBI; |]
! -
| w A 3 |
| | — M
‘ ! isg3 30efodd ! , .
| : 1 BuT3SIXF | .
! : TT® 3517 | |
. !
b “ 4
! K suot3do

Jo nuay ~ !
¢ PUBLWO ® eprAocld ! .
. _ 1@4eT] v M
| .IQ o] ©°13 mommm .G.Q e] | ! o
| uIn} ey *draoseq ,)

. €0 o /S qed-8ad |
] , 37556 | su3 sseody .4
! e ras _ eTnpol iy

@«——— oW esorD | edBmg JOS [z
_ edessoy ° seTyTIToRd i 11 1
] uosNTOUOY ! drey [* FnAUT 1
- A~ opTAOId “Jes(
g Mﬁ 3senbey sgq
_puUeLWOT | 3senboy 300f0dd A . _ dnoan Too,
1 pITeAU] wral 1STI qsenbsy nuey | 3senbey sseddy qsanbey dreH2 4 TRUOTA OUN
. ﬁ “aeq 1i/s | _® eplaodd
1 \ \ \ “Dedc dnods
] 15 |_ 1o0p "oun:
] spuewwo)) J1esf)
wl oy NOILYD118Nd o0 6 8 £ 9 S ¥ € Z 1 ‘SIION
o e o owQZuEH‘M%w_M squeuwsxtnbey arag
v ‘A3dY BH UGA . :133rodd
:1X31NOD 31va g3avay SNIXHOM 28 3% T .3)vg PISTIPRH USARS 3T ‘jominv] -avaasn

25¢1s

7'(' AR
- . .
Pt PR [N

MDA

TP
Adi
[&

St

ey

a7’

s

/

The "Provide A Functional Tool Group" activity
illustrated in Figure 31 is very similar to the A0 diagram,.
The initial activity is to "Identify the Functional Tool
Group". This is done with either a header message or a menu
of options depending on the setting of the Auto_Menu_Flag,
The SDWE functional group must then provide for the options
required by that tool group. The Desired_Option 1is then
selected, the option set up for execution, and then

executed,

The next diagram, "Provide Help Facilities", is
illustrated in Fiqure 32. This diagram specifies what is
required of the SDW Help Facility. In general, the SDW Help
Facility must be able to provide either generalized help on
the SDW, specialized help on any SDW component, and help on

the DCL commands through the VMS Help Facility.

The final diagram of the SDWE Requirements Model is the
"Access the Pre-Fab Software Description Data Base" diagram
found in Figure 33, This diagram specifies that the SDWE
must provide means to both add and retrieve descriptions of
existing software modules to and from the Pre-Fab Software
Description DB, Keywords are to be used to access these

descriptions.

154

SEMIS dnoar, [o0] [BUSILOUTY E 6FTACLg “44

SI9TJTTEWD

uot3dp ay3
03 dn 388

suoTyestyToeds ot

_ 1
andul Jesp

_ uotadp
pediseq

4

sjubueatnb omlpmnwcu suoT3do

s ,3usuoduon ~ MIS Jo nuel
suotqdp Juetand B epraold

4313Uep]

()

HIGWNN 37444 :300N
S pdeuLo.
TATTTIN MIS $3UEUOAWO T MIE
PUBLWO, .
T 1eas] K B
Tdoj o3
20 Tuanyey ! S -) .
e
| uoTydy e
T0 jonpoaq |©OYI eInoexy’ L
AoT M/S)

*sedg dnoap Se14
T1o0]” *oumy Tnuel ojny
= Y NOILVDI178Nd OL 6 8 £ 9 S ¥ € ¢ [‘S3ION
a = a Q3aNIWWO0DI3Y sqususaTabey gMaS
- 14vHa 2g 300 1 _A3Y PTOTJIPEH Usaejg -3 '123roud
AX31INOD 3iva H34gv3y ONINHOM :34va ‘HOHLINY AV g3asn
2521s

155

r (SRN——— JaraS SETTT(VOvd U[H SPmoay (444
‘HIBWNN (3701 ‘JOON
pUeuog seTTd dTeH MAS
10A9] {
: “doy 03
i Tuanyey _
44— i
! 10 f
4 ‘ilj o
. dteH 1
1 fedstq MIS epTAOLd :
, dtey mas J
apo) purumoy/jueucdwoy MIS € t
J
1sonbey maom MIS) ;
ueuoduon MIS LytrToRed dTeH SKHA ,
ay3 eutuwlajag . t
_ f
. — Y A
qsanbey prEeAul > qndul Jdesp ©
£e1dstq dTeH SHA ! [
£yrroey dieH 11
SHA oYl ssedoy _ h
o 1 E
qsenbay dTeH SWA | .
! pejsenbay ‘I\ :
i sT dT8K MaS _
| JT eutwtejeq
lh— H- .
. "
umosmom dtep .
o o hY NOILVD118Nd OL 6 8 £ 9 S v € € ['S3LON .
a - O a OWQZNS_—ZOQNM m#ﬂwﬁagﬁﬂm =Mds
0o 1dv ‘A3 9T JPeH UeA®S 3T :103roud :
'LXILNOD 3iva ¥3av3IY ONINYOM 28 30 T .3lva PTotIPEE ‘HOHLNY LV Q3sN ‘
2$21S .
» | 4.
P _ .

S PAcieiy 9svy 18] UO11dTI058] 6J€M] JOG Qe4-ald 943 SSeody v

‘HIBWNN ‘374014 ‘300N

20 eseg ®}8] uotT3dTaoseq &IBM}JOS qeg-odd
puBwWON J
T Teae]
“daj "1 h
Tuan} ey R

s € ,

eseg eye(
d ayepdy @)
*22seq M/S uotydraosaeg
_Qeg-edd M/S ® epracad
parepdy | §
uotydiaosag
8TNPON M/S
.
N —
T0 TI 4nduy JIesp
_ < — TeAsTaroy (@ spIomLay (
uotjydraoseq STNPOH M/S uogidraoseq
#/S ® 8ptaoad

!

I
1senbay eqepdp q1senbay TrARTIIEY [

; | T
r " Ammawox. $S900Y /

83} JOo eaujeN
1sanbey sseddy jo adAl ey} eutuureya]

-) ysonbey sseooy gg drIdosag M/S qes ead

P P P W

157

=G hV NOILVYIITI8Nd oL 6 8 ¢ 9 G ¥ € Z L ‘S3ION
o S=m a3aNIWWO0I3Y
a 14vyd :A3Y squewstnbay srS (123rOHd
:1X3LNOD 31va y3qvay ONINHOM 28 190 T :31va pIeTjpes usaszc 3] HOHLINY 'LV a3sn

1S

LT TTR— T ————

_ W‘
TYTYIIY
£

4

The SDWE Requirements Model just illustrated, demonstrates
what capabilities must be provided in the SDWE in order for
;5 that SDW sub-system to perform its functions of controlling

the SDW components and providing an efficient interface to
‘. those components. This statement of the detailed
3 requirements of the SDWE is used for the initial development
of the SDWE., Realizing that these stated requirements are
subject to modifications resulting from experiences with the

initial implementations of the SDWE, a post-implementation

statement of the modified requirments for the SDWE is

included as Appendix D.

It is also very important to establish a set of
implementation language requirements for the SDWE. The set
of requirements delineated below represents a minimal set of

requirements for the SDWE implementation language.,

Language Requirements for the SDWE

- e G G G e S e e i —— St W S B et NS G S G B M e Gue S e W G S

1- The language must be available on the
target machine (VAX 11/780).

2- The language must have facilities for
conditional branching.

3- The language must support modular design.
4- The language must provide input/output
facilities for data, as well as, other
information handling facilities,

5- The language must be able to control

access to and the execution of the SDW
component tools,

158

3\ L WP S Y. . PR PR W Ty T PP T PTG U S ST R PR . PG S PYTRL W PR PRI 1

These requirements reflect the "essential" capabilities that

E

?u a language must possess for use in the implementing of the
Ef SDWE, Other facilities, such as strict data typing and
4 structured programming support, are also desired but not
necessary.

Ef 4.3,.3 Preliminary Design of the SDWE. The development
EI of a preliminary design for the SDWE involves the
{ establishment of a modular, top~down structure for the SDWE.
g This structure must contain modules that are specified to

perform each of the previously stated SDWE requirements, 1In
oraer to insure that the preliminary design satisfies the
requirements, each design module of the preliminary design
is mapped back to the specific requirements that it

fulfills,

The SDW¥ requirements call for the SDW components to be

assembled into functional groups. This is done in order to

provide for the easy adding of new SDW components and +o

vrry ”
P SOAARN0NS

provide a more user comprehensible interface to the SDW
B component tools. These SDW Functional Tool Groups need to
F; be specified prior to the development of the SDWE
éi Preliminary Design because distinct modules are required to
[f interface with and control each of these tool groups. The
F% SDW Functional Tool Groups specified for the SDW are
E; established to provide support to each of the generic tool

groups specified in the preliminary design of the SDW stated

159

B PSR

Lok 2
R

L P ' - - - * . . c L N . - - ¥ .
S tielatite. sl sl > PP LI NPT U S Wy Lana - P U S S -;‘;‘_._\j

in Chapter 3. These tool groups are:

SDW Functional Tool Groups

1- Comparators

2- Compilers

3~ Debuggers

4- Design Tools

S- Dynamic Analysis Tools

6- Editors

7- Graphics Editors

8- Linkers

9~ Performance Monitors
10- Requirements Definition Tools
11- Simulation Tools
12- Static Analysis Tools
13- Test Case Generators

14- Word Processors

The only tool types not specified by a precise tool group
are code generators and configuration managers. Code
generators are mostly design tools with enchanced
capabilities, so this type of tool is considered under the
design tool's group. Configuration managers are not given a
tool group because they should really be incorporated into

the SDW Executive or the Project Data Bases.

160

These functional groups are derived from the SI¥-
Preliminary Design Modules Specifications (Appendix C).
Some of the design modules specified are grouped into a
single functional group because the functions of the design
modules specifications are logically realized as a single
type of functional capability. For example, the design
specifications refered to as Functional Design Tools,
Information-Oriented Design Tools, and Consistency Checkers
are often realized in single SDW components such as Interim
AUTOIDEF. Thus, the generic term, "Design Tools", is used
to refer to tools satisfying any of these design

specifications.

There are two candidate methods available for
expressing the Preliminary Design of the SDWE. They are the
IBM Hierarchical Input Process Output (HIPO) technique and
the Structure Charts technique. Both techniques support
top-down structured design and specify the inputs and
outputs to each module of the design. The Structure Chart
technique distinquishes between data inputs and output and
control inputs and outputs, The HIPO technique does not
make that distinction, however, it does provide a more
detailed and algorithmic definition of the module's function
(the process). The Structure Chart technique simply uses a

functional title for the module's process.

161

bR W U G - <o Seommaenscde o - " 3 .
s S A P AP, Y) - P PO

R — W ‘.“‘

Either of the two techniques could effectively be used
to define the SDWE Preliminary Design. The Structure Chart
technique is chosen for three particular reasons, First,
the Structure Chart does not define the algorithms for the
design modules. These algorithms are the objective of the

detailed design. The preliminary design's objective is to

— " T, v'.,._,."-‘-‘-r‘-vr. 'rtw"'. "
R FEREREEE S el S

simply define the system's structure, By using the

Structure Chart technique, 1later modifications to the

“i '
AT .

algorithms of the SDWE need only require alteration of the
detailed design, The Structure Chart technique more
accurately satisfies the scope of the preliminary design
stage as that stage is defined in this document (Section
1.3). The second reason 1is that the Structure Chart
technique provides for the distinction between data and
control parameters. This is important to the design of the
SDWE because the SDWE must use a number of control
parameters and flags in order to accomplish the flexibility
required to handle different user devices as well as users
with different levels of experience., The final reason for
the use of the Structure Chart technique instead of the HIPFO
technique is that one of the selected SDW components
(Hughes' AIDES) supports the automated and interactive
development of Structure Chart models. There is no tool
found to be available to AFIT for supporting the development

of HIPO models.

162

— —d v Admh) prey

AR LR DRCNL kv il
et DL T L
. Ses B T T TSP BT 0t T
Se ot e e e L P)

W

With these tool groups specified, the Preliminary (or
structural) Design of the SDWE may be developed. The
preliminary design top level module specified for the SDWE
is presented in Figures 34 and 35. This design module,
called SDWEXE, provides the high level interface for the SDW
user and controls all of the other modules that are used to
control and interface to the various SDW components and SDW
commands, In particular, the SDWEXE module must fulfill the
SDWE requirements stated in SDWE Requirements Model diagrams
A0 and A2, as well as boxes 4,6, and 7 of A4, The SDWEXE
module calls the other modules of the SDWE to perform the
remaining activities of diagram A4, Each of the SDWE
Preliminary Design modules identified with and asterisk (*)
is a SDW Furctional Tool Group Module that must satisfy the
requirements of diagram A4l (Figure 31) for that particular
tool group., The entire SDWE Preliminary Design is specified

in Appendix E.

163

AP W

—T———

W

L a3

18poy UBTsag AIBUTWLITAIG 400

@

13}

o

I

P

SAOLUYNINID 57004 57001
S530553208d nuog 35493 1531 NOILUINUWIS SISATYNY Jlivig
331N0ud 371In0dd 3401n0Nd 341n0¥d
t ¥ b4 b ¢
$7001 434 SH0LTHOW 3594 vluq
SINIUININOIY IINYUUOIY3d *dINdS3q NS S3s5vd vivg
3Q1n04d 331n0¥d rnculumn SS3IJv 193008d 151
L 2 1 I ¥
S¥0L1Q3
SYIANIT SIIHJIYND 5302103 67001 NDIS3Q
3QIn0x4 33In0¥d 34Inoud 34IN0Ad
[2 ? K] L3
S71001
S¥300N43¢ W~m>4¢z¢ JIUYNAS SHCLUNYINGD S8371dw0d
341n0¥d 3Q1n0N8d 301n0¥d 3a1n08d

1

I

r

]

3NILNJ3X3 nas

164

‘I‘ ‘I‘g
;V.
L
! o .
h U37saQ TBAN3ONILS drods (00 TEUOTLOURS 16 sanS1g
b
_ S3IL1710v4
y d13H 51004
! 3310044 LNINOJ4OD
3
2
9 [N
. SNOT1d0 .
3 53003 MNQS INNTLNDD 40 NN H3I3Nas
"a_ avg dual LdW0¥d AV1dS1a ¥v370
4
- 31naou 391030
i %
v.
. dnoy9 100L
ﬁ TYNOILONNS
. 3aq1n0¥d
{
-
=
k
g N

e

PP LI S

The other SDWE Preliminary Design modules that are
subordinate to the SDWEXE module are used to fulfill the
requirements defined by the other activity boxes of diagram
A4, In particular, the Help Facility and SDW Help Facility
modules are used to satisfy activity diagram A42., The List
Project Data Bases design module tulfills box 5 of diagram
A4 and the Access Pre-Fabricated Software Description Data
Base module satisfies diagram A43., The Trap Bad Commands

design module is used to satisfy box 7 of diagram A4.

Each of the SDWE Preliminary Design modules subordinate
to the SDWEXE module are passed two control parameters. The
first of these parameters is "Device" which contains the
name of the user's device and is to be used for the
exploiting of device specific feature by the modules and
components, The second control parameter is "Prompt" which
is the Auto_Menu_Flag specified in the SDW Requirements
Model. This control parameter dictates whether the current

menu of options is automatically displayed at every command

prompt.

There is also a final preliminary design specification
that is not explicity shown in the SDW Preliminary Design
Model. This design specification states that the SDWEXE
module sets up the Data_Storage_Scheme and all project
development data be stored according to the

Data_sStorage_Scheme, The Data_Storage_Scheme may be either

166

a Project Data Base or the user's default directory.

This SDWE Preliminary Design specifies the structure to
be used in developing the SDWE. Like the previously stated
detailed requirements for the SDWE, this preliminary design
is subject to modifications that may be required by
experiences with the initial SDWE implementation. The
updated version of the SDWE Preliminary Design is included
as Appendix E, The components of this level of design are
simply titled boxes. The next and final step in the

development of the SDWE sub--system is to use the SDWE

Requirements Model and the SDWE Preliminary Design to

develop a SDWE Algorithmic Design.

4,3.4 Algorithmic Design of the SDKWE. Within the

software life-cycle, the detailed design stage is
characterized by the development of the design module
algorithms, In order to better describe the objective of
this stage, it is refered to as the Algorithmic Design stage

in the rest of this document. The design modules for the

SDWE are specified in the SDWE Preliminary Design model
(Figure 34-35) ., Explicit algorithms for these design

modules are developed using the SDWE Requirements model

i
1
Ef (Figure 27-~33) for a reference.
o
L- .. -
167

Seamalies & I PO ST DT YR T PR I I S S S SN S PR S S SRy S Sy Sy S S G S Y . doe

e
e -
B P

LACAOE Attt i'~:\"‘

av

The algorithms for the SDWE design modules are
expressed in Structured English (Ref 90:48-49). The other
Software Engineering Methodologies available for the
specification of the algorithms are Decision Tables
(Ref 90:49) and Decision Trees (Ref 90:49) ., Neither of these
options are very applicable to the development of the SDWE,
whereas, the flexibility of Structured English makes it the

most appropriate choice.

The subset of Structured English used to describe the
SDWE algorithms uses a limited set of constructs, action
verbs, data items, and other english words to formulate the
algorithms in an easily understandable form. The Structured
English constructs of the SDWE algorithms are the IF_THEN,
IF_THEN_ELSE, and REPEAT_UNTIL, Structured English is a
very useful tool for describing algorithms because of its
understandability. As a result, the reader who |is
unfamiliar witl Structured English should be able to pick up

it's concept without much difficulty.

The highest level design module of the SDWE Preliminary
Design model is the SDWEXE module, This module must satisfy
the requirement specifications defined by diagrams/activity
boxes A0, Al, A4, A41, A42, A43 of the SDWE Requirements

model (refer to Figures 28-33). The algorithm for

satisfying these requirements is detailed below:

two

TE

Y

o— oy
- - o,
P o
RN

L oan gt e an aen o rrr

SDWEXE Algorithm

(* Initialize the SDW ¥*)

WRITE SDW_Header_Message
GET User_Device
GET Help_Request
IF Help_Request equals true THEN
CALL SDW_Help_ Facility
IF Project_DBs are in use
GET Project_DB_Request
IF Project_DB_Request is true THEN
GET Project_DB_Name
IF Project_DB_Name does not
already exist THEN
CREATE Project_DB_Name
SETUP Project_DB_Name
GET Auto_Menu_Flag

(* Provide a set of Top Level Options *)

DEFINE Functional_Tool_Group_Codes
DEFINE Help_Command

DEFINE Menu_Command

DEFINE List_Project_DBs_Command
DEFPINE Access_Pre-Fab_S/W_Descrip DB
DEFINE Termination_Command

(* Accept and Execute the User Command ¥*)

REPEAT _UNTIL User_Command equals Termination_Command
IF Auto_Menu_Flag is true THEN
DISPLAY Top_Level_Menu
GET User_Command
IF User_Command is invalid THEN
CALL Trap_Bad_Commands
EXECUTE User_Command
END_REPEAT_UNTIL
CLOSE Project_DB_Name
WRITE Conclusion_Message

Although each SDW Functional Tool Group controls and
interfaces to a different set of SDW components, the manner
in which each of the functional tool group .iodules preform

their functions is very similar. As a result, a generic

169

R R R R R R R R .~ T E———— L T P EAn g St gt et e g

algorithm is provided for these modules. This algorithm is

presented below:

Functional Tool Group Module Algorithm

- - - e e s S S Sy i T S St . e e e it Bae SHS A WA S G S G e S G S e S

REPEAT_UNTIL User_Command equals Return_Command
IF Auto_Menu_Flag is true THEN
DISPLAY Current_Menu
ELSE (Auto_Menu_Flag is false)
SO DISPLAY Functional_Tool_Group_ID
DEFINE Help_Request, Menu_Request, Return_Command
GET User_Command
IF User_Command is invalid THEN
CALL Trap_Bad_Commands
IF User_Command requires parameters THEN
GET Parameters
EXECUTE User_Command
END_REPEAT_UNTIL
RETURN to SDWEXE

There are several other design modules in the SDWE
Preliminary Design model that must have algorithms specified
for them. They are the List Project DBs module, the Access
Pre-Fab S/W Descrip. DB module, the Help Facility Module,
the SDW Help Facility module, and the Trap Bad Commands

module. The algorithms for these modules are defined below:

List Project DBs Algorithm

—— ————— S IS RS (e fe M Gt Ve S e

IDENTIFY Project_DB_Names
WRITE Header_Message
WHILE more Project_DB_Names
WRITE next Project_DB_Name
END_WHILE
RETURN to SDWEXE

170

:; Access the Pre-Fab S/W Descrip. DB Algorithm

- — - e EEm i S e S G fme S S Wt S — T - S S T S e S= T e Gme S e e St fan - R P

DEFINE Add_S/W_Descrip_Command
DEFINE Find_S/W_Descrip_Command
DEFINE Help_Command, Menu_Command, Return_Command
REPEAT_UNTIL User_Command equals Return_Command
IF Auto_Menu_Flag is true THEN
DISPLAY Current_Menu
GET User_Command
EXECUTE User_Command
END_REPEAT UNTIL
RETURN to SDWEXE

Help Facility Algorithm

—— e . tmn . . G S ——— —— 1 o —

GET Type_of_Help_Request
IF Type_of_Help_Request equals SDW_Help_Request THEN
GET SDW_Component_Selection
IF SDW_Component_Selection is "SDW" THEN
CALL SDW_Help_Facility
ELSE
DISPLAY Appropriate_Help_File
ZLSE (Type_of_Help_Request equals VMS_Help_Request)
GET VMS_Selection
CALL VMS_Help_Facility
RETURN to calling module

Trap Bad Commands Algorithm

o o i - e — B P S e an G Be M e o $ne

DISPLAY Bad_Code
EXPLAIN Bad_Code

B ‘1
v f

171

SDW_Help_Facility

PROVIDE Menu_of_General_Help_Options
GET Help_Option
DISPLAY Requecsted_Help_File

These SDWE algorithms completely specify the SDWE in terms
of detailed design. The algorithms avoid extrenely low
level specifications because those types of specifications
are often implementation language dependent and the
Algorithmic Design of the SDWE is meant to be
language-independent. Furthermore, the use of the Project
Data Bases is specificed in very broad terms in these
algorithms, The Project Data Bases may be designed and
implemented in a variety of manners and their design and
implementation should not be significant to the Algorithmic
Design of the SDWE. Even through the design of the Project
Data Bases 1is independent of the SDWE algorithms, it is
still very fundamental to the overall SDW and, as such, is
stated in the following section. The Algorithmic Design of
the SDWE is also subject to modifications that may be
required after the initial implementation of the SDWE, For

thiz reason, the modified SDWE Algorithmic Design is

included as Appendix F,

172

C3 i I Jhae e A R Jnanc

Bd W e T T ﬁrv-rfvaff~ﬁ1

4.4 Design of the Project Data Bases.

The Project Data Bases of the SDW are the means of
storing the software development data and products produced

with the SDW. As such, the Project Data Bases are a most

- fundamental sub-system of the SDW. The specific design of

the Project Data Bases must be developed to fulfill the data

3 ad Ad ded s
Al

D
oAt LT [

P

storage requirements pPresented in the Requirements
Definition chapter of this document. In particular, these

requirements call for the integration of development data

into a common data storage area (Section 2.3.6), the
recording of relationships between the products of the
different stages of the software development (Section
2.3.7), the means to easily access the development data for
consistency and completeness checking (Section 2,3.13), and
the ability to easily updatz the stored development data
(Section 2.3.16). The concept of the integration of
development data storage may actually be realized in two of
the five levels of integration described in Section 3.4.6.
The first of these two levels defines integration to be the
storage of development data from the SDW into a single data
area for each project supported by the SDW. The second,
more demanding level of integration, requires the use of a
Data Base Management System (DBMS) to store all of the

development data and the relationships between the

development data items.

173

Approach Taken in Designing the Project Data Bases.
The design of the Project Data Bases is presented in two
stages. The first of these stages is the design for the
immediate implementation of the Project Data Bases. The
second stage presents a Project Data Base design suggested
for wultimate implementation in order to fulfill all of the
data storage requirements for the SDW, The first stage of
the Project Data Base design 1is designed to fulfill the
first level of integration of development data. This design
consists of & single data storage area and is described with
greater detail in the next paragraph. The second or
ultimate design stage of the Project Data Bases attempts to
fulfill all of the data storage requirements of the SDW.
This design uses a DBMS that saves and preserves, not only
the development data items, but also the relationships
between these items. The design of the Project Data Bases
is divided into these two stages because the design required
to fulfill all of the SDW data storage requirements can not
be fully realized until a full and complete set of SDW
component tools is established. In order to at least
accomplish some of the SDW data storage requirements, the

first stage of the Project Data Base is presented.

The first stage of the Project Data Base design 1is
developed to satisfy the first level of integration of the
SDW development data., This level of integration requires

that all of the development data for a specific software

174

-

royre .7

po— ——p
et RAARACAN

. S 4 8 2 4 v ».*
T Aottt e

™vey R an P L, "
TV T IR R
. PR S .

e [_ 0 LR T P h

oy —T.‘r‘r;v.ﬁr'v—_—r . Y
o TS ‘-

P

development project be recorded in a common data storage
area. However, each of the products of the different
development stages are stored separately within this common
data storage area, none of the relationships between the
products are automatically recorded in this design. This
design 1is established because it fulfills all of the data
storage requirements that can be satisfied prior to the

finalization of the SDW component set,

The second stage of the Project Data Bases design must
satisfy all of the development data requirements for the
SDW. This design must fulfill the second 1level of data
storage integration. The design must preserve all of the
development data items and the relationships between them,
regardless of the development stage in which they were
created., By fulfilling this second level of integration,
the design also satisfies the requirement for traceability
between development data items by means of the preserved
relationships. Consistency and completeness checking of the
development data must be supported by this design. The
development data must be easily updateable also,
Furthermore, the Project Data Base must be able to control
the configqurations of different versions of a software
project. An example of this capability is found 1in the

Source Code Control System (Ref 71,72).

175

I'

In order to fulfill these requirements for development
data storage, the second stage of the Project Data Bases
design usec the concept of data schemas and a DBMS to
automate the handling of the development data and the
relationships between the data. A schema, in the sense of a
DBMS, is an overall outline of the data items and the
relationships between them. The schema is automatically
enforced by the DBMS. A sub-schema is simply a subset of
the schema that defines a logically related set of data

items and relationships.

The second stage of the Project Data Base's design
outlines a data schema for the Project Data Bases that must
be handled by a DBMS. The outline of this data schema
consists of the definition of the Project Data Bases
sub-schemas and the requirements for each of these
suh-schemas. The definitions and requirements for these
sub-schemas are presented in generic terms because they can
not be fully specified until all of the SDW components are

satisfied.

The schema for the second stage Project Data Bases
design calls for the use of seven sub-schemas. Six of these
sub-schemas are used to store the development data that is
realized as belonging to one of the following categories:
requirements definition, preliminary design, detailed

design, program code, testing activity data, and other

176

APt e f L.,

L S A r i S AN Pl A P diatt e a3 Ratt Sl St

associated documentation, such as user manuals, maintainance
guides, installation guides, etc. The seventh sub-schema is
used to preserve the relationships between the elements of
each of the other sub-schemas. The SDW users and the SDW
components interface to the Project Data Bases through this
seventh sub-schema, A model of this design is presented in
Figure 36. This model 1is a formalization of a concept
developed by the sponsor of this research investigation,
Rick Mayer of the ICAM/Systems Engineering Methodologies

Group.

By using the seven sub-schemas and a DBMS, the second
stage Project Data Base design fulfills the all of the
requirements for integration of development data storage.
Furthermore, the seventh sub-schema, that preserves the
relationships between the products of the different
development stages, provides for traceability between
development data items and thus satisfies that requirement,
The use of separate schemas for each stage of the software
life-cycle allows ccnsistency and completeness checking of
stage products to be automated with data retrieval routines.
(The Integration stage does not have a specified sub-schema
because it does not involve the storage of extensive amounts
of development data. It is replaced by a sub-schema for
testing that holds the test data and test plans for the
software system.,) By using a DBMS, the updating of

development data is easily accomplished with the automated

177

A S M e A S i A AP SR S SN ML AR SRR st

capabilities of the DBMS, Furthermore, the sub-schema

defining relationships between the other sub-schemas allows

updates to be traced through the other stages of the

software development,

The detailed design and implementation of this second

= stage of the Project Data Bases design requires the

establishment of a complete set of SDW components, an

of the data requirements for each of these

analysis

components, and a development of the precise schema and

sub-schemas required. After this stage of the Project Data
Bases design is realized, interface routines must be
o developed to allow the SDW components to thrive off the
¥ 4 Project Data Bases.
-
4
>
¥
Eon
l
"2' 178
¢
o

")
WL e .
L LSRN SO VSV LI W AT S S L T Saneamds P PG | i .

]

u8tzag eStg BLeR] 10@]0X3 19f 8dan

lal

fra

ed3I=25
ALINTILOY

oNILS3L

YU 3InCS
3002
w300 xd

UWIHCS
H3IS3C
@31vr3g

Y4 3IHIS
NSIS3T
AYINIL T 38d

oN3IHIS
NQILINE23d
AN3UININC 3

8]

17

T 3IN3S

TNISvHL

R 4.5 Summary.

As defined in section 1.3 of this document, the

T

. Sy
e Lt

detailed design stage of the Software Life-Cycle involves

vy,
S}

the specification of the algorithms for the system under
development., For this reason, the stage is often refered to
as the algorithmic design stage. The development of complex

systems often involves recursive applications of the

-

Software Life-Cycle for component sub-systems. The detailed

design of the SDW involves the specification of the SDW

B I 53 i o g

- L g
: R A

component tools as well as a complete development of an
executive sub-system that must provide an integrated

interface to the SDW components.

The selection of SDW component tools is highly

* Suf Yl i e Il
¢ » e e
e oo e

significant to the effectiveness of the SDW as a software

development environment because these tools provide all of

the development facilities for the SDW. Only a limited

Dt)

number of tools are chosen for initial incorporation into
the SDW because of two particular constraints on this phase
of the SDW development effort., First, the target machine,

the AFIT/DEL VAX 11/780, is a limited configuration that

Ty y——"

AL
Y

possess only two RKO07 disk drives and no tape drive, Thus,

the transfer, re-loading, and storage of potential SDW

vy

L)

T
Y4

components is severely constrained. Second, the limited

L

time involved in this phase of the SDW development effort

allows only a limited number of potential component sources

180

Y
| . . -

o - . . " - -

-—ied em. & A m mal el s . B T M P L S L T VPPN PO —— - PO 3 — e e, R Mmoo A s —w] " - re e S B

1
1
1
1
i

~y vy
[P s

e tr
4 PR

7~z T

T e
. H': L

‘-‘"‘!T“" o

Tr,r;_r v*'v?'i. —
T R . .

TPy
e .

L

Ny

to be investigated.

The development of the SDWE requires a recursive
application of the Software Life-Cycle, The SDWE is a most
significant sub-system of the SDW because it 1is the
interface to and controller of the SDW components, The SDWE
is what makes the SDW an integrated software development
environment, In this chapter, the initial requirements
definition and design of the SDWE 1is developed. The
specifications are, however, subject to modification as
determined during the later implementation and testing
stages of the SDWE. As a result, the final specifications
of the requirements and designs of the SDWE are stated in

the models included as Appendices D, E, and F,.

With the detailed design of the SDW thus specified, the
initial implementation of the SDW may begin. The strategy
utilized for implementation and tne implementation specific
decisions are described in the following chapter of this

document,

181

“AD-A124 872 AN INTERACTIVE AND AUTOMATED SOFTHRRE DEVELOPIIENT
ENVIRONNENTCU) AIR FORCE INST OF TEC IGHT-PRTTERSON
ARFB_OH SCHOOL OF ENGINEERING SN HRDFIE DEC 82

UNCLASSIFIED AFIT/GCS/EE/82D-17

£

v T
et AT

L P2 B25

2 £
Ll ?3‘ K §20
et = o5

)
(&)
F N

||

I
/

MICROCOPY RESOLUTION TEST CHART
. NATIONAL BUREAU OF STANDARDS-1963-A

STAGE

TAT

M

CHAPTER 5: THE

182

O Cge e e e e
TN LI © ¢ IRTATRTRFRRRERE 4 HRVRPRERPR VRS b U IR L .

5.1 Introduction

The implementation stage of the software life-cycle

specification into executable code modules, This stage
not entirely distinct from the previous stage, detai
design, and the following stage, integration, Parti

implementation is often accomplished prior to

is done in order to study the feasibility of certain des
specifics prior to a full commitment to a specific des
development, The use of incremental implementation is a

useful in testing the developing system. Because of redu

effective (Ref 90:208-225). The stage following
implementation stage is the integration stage. During t

stage the individual sub-systems of the development eff

be tied together prior to the complete implementation

other sub-systems, Thus, an overlap between

—

implementation and integration stages is evident,

Workbench Executive (SDWE) and the SDW component tools.

code and test the SDWE design specification of Appendices

183

T w e

is

characterized by the conversion of the detailed design

is
led
cal

the

development of a full detailed design specification. This

ign
ign
1so

ced

complexity, this type of code testing tends to be very

the
his

ort

are brought together into a single system, Sub-systems may

of

the

The Software Development Workbench (SDW) is composed of

the controller sub-system called the Software Development

The

specific objective of the implementation stage is to fully

E

PP JPUL A AP T SRl Tl SRR S Fu i VO VAR PV Sl . Ay Ce et e e e e s P SN S

and F (Preliminary Design for the SDWE and Algorithmic
Design of the SDWE, respectively). To this end, the
implementation stage described in this chapter defines and
justifies a choice of an implementation language,
establishes an implementation strategy and discusses a
complete set of implementation specific decisions. Also,
the changes to SDW Version 1.1 are presented, Specific
implementation of the SDWE utilizes a top-down approach,

The overall modular structure is in Figure 37.

b

184

...........

Tesnsg dog

UFise AIBUTLITSIZ

S¥ILUMIN3D 51001 sw0t !
S»0553208d Qa0 358) 163 NIILVINUIS SISATENY J1lvy
2401Nn0dd 331004ad 30In0%d 3G1n0Nd
L 3 ¥ b4
57001 430 550 LINGK 3508 Wivd _
SINIUIXINOIN I0\vlEC y3d *al¥ls3C nss $33uq vivd
3017044 321nCxd gy d-3uas SS330Y 193rond 1510
i ki K 3
S$30.103
SHIANI SIIhdVHD 5301103 51004 ND153Q
3011044 3210084 3a:n08d 301n0d4
L) [] [4 []
£7004
5439911230 pISATuNY JIUUNAG SHOLYYYLROD $Y¥271dw0d
381n0¥d 3CIn08d 2q1noyd 331n0¥8d

{

I

i

J

13027 o0l
3NLILINJ3X3 NaS

185

The Top Level module is coded and tested first, Then, the
Provide Editors module is coded, tested, and integrated to
the Top Level module and the SDW editor components. At this

point, this initial implementation of the SDW can be used to

code and test the rest of the SDWE,

: 5.2 The Choice of an Implementation Language for the SDWE

'; A fundamental decision that must be made before the
!! implementation stage of development is the choice of an
implementation language. A varied spectrum of computer

programming languages are available to the contemporary

programmer (Ref 60). Bach 1language posses its own
individual features and limitations, A careful choice of a
programming language can greatly reduce the time and effort
involved in implementing and maintaining a particular

software system,

Two categories of languages are studied and compared
for potential use in the implementation of the SDWE, The
first category of languages is quite large and very popular.
This category is the Higher Order Languages (EOLs).
Languages of this category are characterized by a set of
powerful control flow structures and a variety of potential
data types. The second category of languages under scrutiny

for the implementation of the SDWE are command languages,

186

. -, B . L. RS
PRTIY VSR O . SRV AURIT SO SO O SP y -.......A.j

Py
AN
PR IS

V_
s

..........................
..

These are interpreted 1languages that are specifically
designed for one type of operating system. Most command

languages possess at least the primitive control structures

of the HOL,

For the detailed analysis of these two categories of
alternatives, available representatives of each category are
chosen., There are two HOLs available on the target machine,
FORTRAN and PASCAL. However, PASCAL possess much better
information handling facilities than does FORTRAN (Ref 87).
Since this application is primarily information handling

oriented, PASCAL is the more favorable of the two options,

The Digital Equipment Corporation (DEC) Command
Language (DCL) is selected to represent the command language
category (Ref 27). DCL is the representative because it is

the only command language available on the target machine.

Prior to the comparison of the two alternative
languages, a set of language requirements for the SDWE are
established as a measure of the analysis of the 1languages,
These requirements are first stated in Section 4.,3.2 which
deals with the specific requirements for the SDWE. However,
these language requirements are also delineated in the table

below:

187

.........

.................

Language Requirements for the SDWE

o — G G- ——— G — . - — G - ——— - S g

1- The language must be available on the
target machine.

2- The langquage must have facilities for
conditional branching,

3- The language must support modular design.

4- The language must provide input/output
facilities for data, as well as, other
information handling facilities,

5- The language must be able to control

access to and the execution of the SDW
component tools.

These requirements reflect the "essential"™ capabilities that
a language must possess for use in implementing the SDWE.
Other facilities, such as structured programming support,
are also desired but not necessary because the constructs of
structured programming may be built with simple decision and

branching statements.,

The PASCAL language is a relatively new language,
having been developed by Nicklaus Wirth in 1971. PASCAL
possess exception information handling capabilities as
provided by its varied and powerful data structures., PASCAL
is a structured 1language meaning it supports a set of
powerful control structures, in particular, the
IF-THEN-ELSE, WHILE-DO, REPEAT-UNTIL, etc. These control

structures are the essence of structured programming

188

................

support. PASCAL is also a relatively fast and efficient
language to run because it is translated into machine code
with a compiler. The major disadvantage of PASCAL in terms
of the SDWE is that it can not interface to the command
language routines because of the architecture of the VMS
operéting system, Thus, PASCAL may not be used to run the

SDW component tools,

On the other hand, the DCL 1language may easily
interface to the command routines of the SDW component tools
since they are also implemented in DCL. There are, however,
several disadvantages to using RPCL for the SDWE. DCL
possess only two data types, integeis and character strings.
The control constructs provided by DCL are very limited,
consisting only of decision statements and branching
statements, DCL is an interpreted language meaning that the
code is translated and executed one line at a time, Thus
DCL programs execute significantly slower that comparable
HOL programs that are converted to machine 1language by

compilers,

Although there are several disadvantages to using DCL
for the SDWE implementation, these disadvantages are not
stifling. The two data types provided by DCL are the only
ones required for the SDWE. While the control constructs
are limited, they are sufficient to create whatever other

constructs are required. Furthermore, there are several

189

SRR TLN TN

n

p--

p -

£

y

r..

r—~

P-. TN
b

=

.’

b.'
b, e

v

B T T Lo . .
I I A N A A T R P A e R e . . BN . . PN
¥ WL T S SNECRE. A S S LT T TR S T S YRl SR N Y TR I PR PG A PR T Wi WA SO S S TR S W T S § P e

,,,,,,,,,,,,,,

.............................

functions available for handling character strings. Fven
though the DCL language is slow, the SDWE spends most of its
execution time waiting for user responses and the code
executed between these I/0 activities is not extensive.
Thus, the slower execution time would not be significantly
noticed by the SDW user. In addition, DCL provides means to
trap interrupts whether they be initiated by the user or an

error condition.

The preceding discussion reveals that DCL, while by no
means "optimal" because of its slow execution speed and poor
control structures, is the only available alternative that
meets all of the previously stated language requirements for
the SDWE (section 5.,2), PASCAL is not sufficient because it
lacks facilities to interface with the DCL routines that
drive the SDW component tools., DCL is thus chosen as the
primary implementation language for the SDWE, However,
PASCAL may be called by DCL, so PASCAL is chosen as an
auxillary implementation language to be used for some

utility SDWE modules.

2.3 The SDW Implementation Strategy

The implementation stage described in this chapter for
the Software Development Workbench (SDW) deals strictly with

the implementation of the Software Development Workbench

190

Executive (SDWE). The SDWE is a sub-system of the SDW that

is used as a primary interface to the SDW enviroment and a
controller for that environment (section 3.3, Figure 22),.
The implementation of the SDWE is a sub-system
implementation of the SDW. Concurrent to the implementation
of the SDWE, the SDW component tools are being loaded on the
target machine, the AFIT/DEL VAX-11/780. The SDWE is
actually interfaced to the other SDW sub-systemc, the SDW
component tools, during the next stage, integration. This

process is discussed in Chapter 6.

The implementation of the SDWE requires the coding of
the design module specifications defined in section 4.3.3.
An incremental approach to this coding is taken, This
approach calls for the initial implementation of the top
level module with dummy modules or stubs for all called
routines. These dummy modules simply report that the module
was properly called and then return control to the top level
module. After the implementation of the Top Level module,
the Provide Editors module is coded. With this module
implemented, the SDW may be used to aid in the implemention
of the rest of SDWE. This approach allows the inciemental
testing of the SDW implementation, Furthermore, by using
the SDW to develop the SDW, the human interface features of

the SDW algorithms are tested and possibly refined.

P

LIARE T Sl Sl Sl end e 2

5.4 SDWE Implementation Specifics

e

PRI I
Ry L
. P

- The implementation of the SDWE is accomplished by the

L ow o e e 4
]
S

incremental coding and testing of the algorithms for the

it

SDWE that are established in section 4.3.3, During this
implementation, a number of specific decisions are made to
define how the requirements of the SDWE are to be met, This
section reports and justifies the specific decisions that

are made during the initial implementation of the SDWE.

Prior to the coding of the first SDWE module, a set of
command and file conventions are established for the SDWE.
The command conventions require that each SDW-specific

command be a unique, two-letter code. The length of two

letters for the commands is chosen because it provides many
alphabetic combinations (26 squared or 676 combinations).
Furthermore, the two letters provide a reasonable ability to
describe the meaning of the commands without being
excessively 1long to type in on the keyboard, The

requirement for uniqueness of these codes is imposed as a

result of the established file conventions. Each
SDW-specific command must have an associated help message |

that is accessible from the SDW Help Facility. A separate

; file is used for each help message, thus allowing these help
ﬁ': i
> messages to be displayed with the "TYPE <file_name>"
5 command. The naming of these help files consists of the two

T
ot
1

letter code for the command, say "xx", followed by the word

192

bt a Al S LT PR e htiein PR SO LI PO U LY W L S YU NI O Wt L AT A W Aj

T
....................

"help". Thus, if the code for the command is specified in a
variable entitled "OPTION", the help file is easily accessed

with the following DCL command:

TYPE 'OPTION'HELP.MEM

The single quotes around the command variable option mean

that the value of that variable is used in the commandg.

Those SDW-specific commands used to access the
functional tool groups also require text files that state
the menu of options within that tool group and identify the
tool group. Files used for these purposes are named,

"xx"MENU,MEM and "xx"ID.MEM respectively.

The implementation of the top level SDWE module,
SDWEXE, is initiated with the defining of data and control
variables that are used by all of the SDWE modules, These

variables are stated and defined as follows:

193

- - .) , -t e T et YT, - : - to - —‘ T, LS . 2 .
%! L N N S T TUUe SIS S T s N O P VA R PR P, N ot e

Name
device

module

nopdbs

option

pdb

project
E prompt
! qualifier
Ef ret
’l‘i
.
3 save_dir
5

CRGI YR VI W NS

.........

Type
string

string

boolean

string

boolean

string

boolean

string

string

string

194

SDWE Data and Control Variables

The name of the
user's CRT device

The ID for the
current SDWE module

Enable/disenables
the use of Project
Data Bases

The current command
option

Specifies if a Project
Data Base is currently
in use

Name of the Project
Data Base in use

The Auto_Menu_Flag

List of qualifiers
for a particular SDW
command

Dummy variable used for
accepting user input to
continue

Name of the user's
original default
directory

]

? T T L e S St) b S A AP P NN e e UL AR RSPt ot LCUNEE e i R S AR T St Tt L T L T LR T
t .~ u
LY d

With the data and control variable specified, the
actual coding of the top level SDWE module proceeds., The
4 execution of the SDW is initiated with a header message that
' confirms the entrance into the environment and identifies
!- the version number and authors. Then, a few queries are
Ef used to determine the type of CRT device in use, whether a
N Project Data Base is to be used, and if the user requires
ﬂl immediate help. These queries fulfill the algorithmic
design of the SDWEXE module (Section 4.3.4). Then, a menu
of the top level command options is presented with a prompt
for user input., The prompt for user input consists of the
SDW-specific code that was used to access the current SDWE
level followed by a greater—than character and a colon as

shown below:

XX>

v . A) A 3 -
A N Phik] f"._ 1-'“_ .r 'h
:?u
e
.
.
-

The two letter code is required to identify the current
level of the SDW in the event that the auto menu facility is

disenabled. The greater than character is used because it

R
< IrV‘ BT
St Pl et

is a convention common to many VAX-resident packages, such

U
.
\

SR P S

as the resident debugger and the SYSGEN routine. The colon
is an unavoidable feature of the DCL "INQUIRE" command that
is used for reading data into a DCL program (Ref

27:235-237).

195

..

[}

With the initial implementation of the SDWE top level
module completed, the module to control the SDW editors is
coded to enable the use of the SDW component editors to aide
in the further development of the SDWE, Using the SDW in
this fashion enables the critical review of the SDW

algorithms prior to complete implementation.

One modification, made evident while using the SDW to
develop the SDWE, is the need to have the screen cleared
between distinct operations of the SDW. A primative
function, named "CLEARSCRN", is used to pass the necessary
control characters to the user's CRT device to perform the
clear screen function., The "DEVICE" variable is used as the
cont:ol parameter for determining the proper control
character string, The Tektronix 4014 and 4016 devices
require a Form-Feed character. DCL lacks facilities for
passing such a character, so a special PASCAL program,
"CLEARTKTX", 1is used when these Tektronix devices are

specified by the DEVICE variable.

The "CLEARSCRN" and a module called "CONTINUE" are the
only device specific modules of the SDWE. The "CONTINUE"
module is used to query for user permission to clear the
display screen, This capability is important because it
allows the user to view the entire display and clear the

display.

196

................................

M When executing a DCL command program, such as the SDWE,
;!‘ the operating system expects all commands to be taken from
: the mass storage device on which the program is located. As
a result, SDW components, such as editors, that require user &
input, are not executable, In order to alleviate this
problem, the following command is used to flag the operating
system to expect commands from the user's CRT device for the

execution of the next component:
ASSIGN/USER_MODE SYS$COMMAND: SYSSINPUT

By including this command statement just prior to the
execution of every SDW command option, any SDW component or
any VMS component may be executed from the SDW input
prompts. The only exception is that the entire command must
be entered on a single line. This is a restriction of the

VAX/VMS operating system.

One of the primary requirements for both the SDW and
the SDWE is the inclusion of a Help Facility (sections 2.3.8
and 3.4.8). Since the SDWE is capable of executing both
SDW-specific and VMS commands, the SDWE Help Facility must
provide help capabilities for each type of commands. To
this end, the SDWE Help Facility uses three components that
are selectively accessed through the SDW help request
command, One component is a general help facility for the

SDW as a software development environment, The next

197

[R,

component provides help on selected SDW specific command
codes. The final component 1is the resident VMS Help

Facility used to provide help on VMS commands,

The SDWE is also required to trap invalid command code
specifications (Section 4.3.2, Figure 30). The VMS
operating system automatically traps invalid commands with
warning messages. VMS also provides means to execute
specific commands upon the occurance of such a warning.
This capability is provided with the ON WARNING THEN
<command> facility (Ref 27:329-330). Within the SDWE, the
occurance of an invalid SDW command causes the "BADCODE"
module to be executed. This module reports an error message
to the wuser's terminal. The error message includes the
invalid command, Control is then returned back to the

calling module.

These are the implementation specifics resulting from
the initial implementation of the SDWE. However, a number
of experiences with this implementation, Version 1.0,
demonstrated the need for an updated version of the SDWE,
These experiences and the resulting modifications requiring

the update to Version 1,1 are described in the next section

of this chapter.

198

,,,,,,

..................

W e e g

AR A AN W Tt A S i i St et Rt s A Bl A SR S i S A e At
S - . NS w e A - ORI B

5.5 SDWE Update to Version l.,l

The driving forces behind the update of the SDWE to
Version 1,1 are an operating system update from VMS Version
2.7 to VMS Version 3.0 and a critical review of the SDWE by
the advisor for this thesis investigation, Dr. Gary Lamont.
The result of this Version update is a more user-friendly

and user-safe interface for the SDW.

The VMS operating system update from Version 2.7 to 3.0
requires only minor modification to the existing SDWE code.
Version 3.0 of VMS uses a self-prompting hierarchical
structure, Thus, the SDWE Help Facility is no longer
required to prompt the user for specifics, such as commands
and qualifiers. The SDWE Help Facility simply calls up the
VMS Help Facility and lets that facility provide specific
help on the VMS features. The second modification to the
SDWE code deals with the facility for trapping erroneous
command inputs, This is done with the following line of

code Version 1.0:
ON WARNING THEN @SDWSDISK: [SDW]BADCODE
However, under Version 3.0 of VMS the explicit call to the

Badcode module is not permitted. So the synonym, "“TRAP", is

defined to replace the call to Badcode as shown below:

199

P B T T — R T — AR R I S AR I o S~ e - CA e Lo Boen oo o -y

by ma st

- P AN
| H’ ’A‘ .:“'.'.

s e

2’2 e
I

Pk T el Sk
Fan

» n":' o

E:

RSP ar g of

-

AL AR LD

2 e

Eaar e st She o
AR

=
%
i
A
:

Y
. 3w

LR 25~ NENER

ix
VI

.......
.........

TRAP :== @SDWS$DISK: [SDW] BADCODE

ON WARNING THEN TRAP

No VMS documentation is available that explains this

peculiarity of Version 3.0!

The first set of SDWE modifications deal with the

initiation procedures for the SDW. The initial header

message is expanded to include, not only the system's name

and version number, but also the names, addresses, and

phones numbers of the system dJdevelopers and copyright

protection information for the SDWE.

All of the initial queries used to set up Project Data

Bases, set the Auto_Menu_Flag, and provide initial help

information are replaced by a new SDW module referred to

as

the

SDW Utility Functions,

The Device specification query

still follows the header message. The initial default

CRT device is a VT100, After the Device query, a def

other device

device spec of a VT52 is used if no type
specified.
response against the

invalid

user
ault

is

All queries used in the SDWE check the user's

valid options and reprompt if an

response is detected. If the response range is not

limited, as with the potential Project Data Base names, the

200

..........
PO SR DR Sy SPUr S S S P P S DA S P ST TP S SR N

user's response is echoed for user validation,

The SDW Utility Functions provide the SDW user with a
greater flexibility because of the ability to alter the
Auto_Menu_Flag, the Data_Storage_Scheme, or the
Device_Specification at any time during the operation of the

SDW.,

The Auto_Menu_Flag is also used to provide automatic
prompting of qualifier options for SDW_specific commands
that may use qualifiers, The displays of these options ‘are
stored in files whose names begin with the two-letter code
for the SDW_specific command and end with "PARMTS.MEM".
This file name stands for the parameters that are available

to qualify the particular SDW command.

Prior to exiting the SDW a number of concluding
activities must take place. Under SDWE Version 1.0, the
user could enter the DCL "EXIT" command that would cause the
immediate exit of the SDW without the concluding activities
taking place. To remedy this problem, the "EXIT" command is
re-defined to a branch instruction that causes the
"graceful" exiting of the SDW. A "graceful" exit requires
that all the synonyms specific to the SDW be deassigned

prior to termination of the SDW session.

201

User interrupts, CTRL/Ys and CTRL/Cs, as well as, error
interrupts would also cause immediate exiting of the SDW
without the concluding activities being performed. The
ON-THEN DCL facility is used to trap these interrupts. - This
trapping involves the use of a graceful exit upon the

occurance of any of these interrupts.

The final modification of the SDWE for Version 1.1
deals with the scope of the SDW command codes. Only the
command codes presented in the current menu of options
should be executable from that 1level. DCL provides two
types of scope specification for its synonyms, 1local and
global (Ref 27:4-7). Version 1.0 defined all SDW command
codes as local synonyms with the understanding that they
would only be visible within the command module in which
they are defined. Tris is an erroneous assumption! Once a
command code 1is defined, it 1is wvisible until it |is
re-defined or deleted, or until the DCL command program is
terminated. Thus, came the necessity to establish
mechanisms to define and limit the visibility of the SDW
command codes, The mechanism, used to achieve these
visibility objectives, defines all current command code
options globally upon entrance into a particular module and
then deletes the synonyms when control 1is passed on from
that module. The "ASSIGNSYM" module is used to define the
proper command codes, The "MODULE" variable indicates the

current command module to allow the proper synonyms to be

202

COURP SN W T 2P R SE WG TR WP U SO S NPT SR S T SRS .U, ST TR A ST WP PO S PR

..
AN A L T S T T T T S L T ST T T T T e "

S e nseucauser e —user: RIS B SR e e el e S LNt MRt <o fiae Tt “ni JSiew b A b) G A WEa in ot Jied A Mdn S Jbie Mth Snan AL ‘_vv,-,*

defined. When control is passed on from that module, the

"DELSYMBOL" module deletes these command codes. Testing of
this mechanism reveals that the required limiting of the SDW

commands' visibility is achieved.

The updated Version 1.1 of the SDWE provides a more
user-friendly interface to the SDW. The finalization of
Version 1.1 marks the complete implementation of a major
sub-system of the SDW. The next step is to integrate the
other SDW components to the SDWE in order to realize the SDW

as an operational environment,

- 5.6 Summary

The implementation of the Software Development
Workbench Executive (SDWE) is realized in three phases.
First, the selection of the implementation language(s) used
are presented and justified. They are the DEC Command
language and PASCAL. Then, the 1initial implementation of
the SDWE Version 1.0 is described as 1is the update to
Version 1.1. This version update is necessary for the SDWE
because of the target machine operating system upgrade to

VAX-11/780 VMS 3.0.

203

P T 1 S T NN Lo . . . - R - .
Tt v A e A SN - BT FREIIN R) . . 4
;“".‘."_ D e TP N

(Y Te ¥ AT SAPR WSS, P P W W P W s P, DA A Sl S N Ak o~ PP S U O PRI

R S

The extensive theoritical analysis, requirements
definition, and design specification for the Software
Development Workbench allows the implementation of the SDW
to progress with little difficulty. The implementation of
the SDWE is especially interesting because of the use of a
Command Language, a definite top-down implementation and

testing strategy, and the use of the SDW to develop itself.

204

AR R P . e RPN o .
PRSI Wy Wy I U SN R DL PP T PP P W Vot N SN T Gt SO VLI . L Tl

o

et Bl S S e A dirte e T L S) - L EROTE SRt et e o A il - e .
NOYNS AL ANAANE B R . - -

RO T S AE T -

CHAPTER 6: Integration of the
Software Development Workbench

205

R . T et LR .- R NI -, -
" P PR Setth et A At at o s a e S a -'-',-LJ

L

e

6,1 Introduction

The Integration stage of the Software Life~Cycle 1is
characterized by the merging together of the systems
components into a single system, During this stage, the
actual integration of the system components is validated by

the testing of the interfaces between the system components.

Within the realm of the Software Development Workbench
(sbw) effort, the integration stage involves the joining of
the Software Development Workbench Executive (SDWE) to the
other SDW components. All of the SDW components are loaded
on to a single RK07 disk drive on the VAX-11/780 host

computer,

The purpose of this chapter is to define the manner in
which the SDW components are installed on the SDW and

integrated under the SDW Executive,

6.2 Installation of the SDW Components

Prior to the integration of all of the SDW components;
each of these components is loaded onto the host computer.
The SDWE resides on the host computer, since this computer
was used for its development. All of the other SDW
components, that are not part of the VMS environment, arec

loaded onto the VAX-11/780 from magnetic tape or floppy

-

A APt S i AR AP S AL A L e A A A AN SR T A e b T A o .

disk. Since the host computer confiquration does not
included a tape drive, it is necessary to use some other
compatible system in order to perform the transfers from
tape to RK07 disk. A PDP-11/34 belonging to Aeronautical
Systems Division, Air Force Systems Command, Wright-
Patterson AFB, is used for the transfers. Some special
procedures are useé to facilitate the transfer on the
PDP-11/34 machine, Namely, the disk is initialized under
the Structure 1 format instead of the regular Structure 2

and the initial directories use strictly numeric names,

Each of the SDW components is transfered to disk using
an accompanying installation guide. The Extended
Requirements Engineering and Validation System (EREVS) 1is
not included in the initial set of disk resident tools
because its transfer uses the VMS "BACKUP" command that is
not available on the PDP-11/34. Furthermore, only the
executable images and other necessary files are retained on
disk for each of the SDW components. A shortage of disk

space is responsible for this action,

6.3 Integration of the SDW Components and the SDWE

The careful design and implementation of the SDWE
allows the efficient integration of the SDWE to the other

SDW components., All of the non-VMS SDW components have a

207

:

g specific logical name defined for their resident disk. The
P assignment of these logical names is done in the SETSDW,COM
> procedure that is used to set up for the use of the SDW.
Each of the non-VMS SDW components that require special set
!! up activities use a special command module that is callable
from the two-letter SDW code‘for the particular component.

Fach of these special command modules uses an internal flag,

called "INSTALLED", to conditionally execute one of two
sections of code, If "INSTALLED" is false, then a message
to that effect is displayed on the user's CRT. However, 1if
the flag is true, then the component is set up for and
executed. Each of these special command modules is

identified by the convention "SET<componentname>,COM", If

the component does not require special set up activities,
the two-letter code for that component is simply redefined

in the "ASSIGNSYM.COM" module to allow for the execut.on of

the component,

Each of the non-VMS SDW components resides in its own
mi directory. The protection on these directories is set to
allow their use and each directory is owned by the [200,75]

User Identification Code.

The next step in this stage is to test the interfaces

between the SDW components. One problem encountered during

P
MBI Sl ity -'-'{ i A
e Carte LM W [ERC PR AR

this process is that the Interim AUTOIDEF and the ICAM

B Decision Support System reset the default directory in their

internal command procedures. Thus, those command procedures
are modified to save and reset the default directory prior
to termination of their execution. Besides this minor

modification, the integration processes has few problems.

6.4 Installation of the SDW on the
Central ICAM Development System

The initial implementation of the SDW is on the
AFIT/DEL VAX-11/780, however, the SDW is also installed on
the thesis sponsor's Central ICAM Development System (CIDS).
~This system is also a VAX-11/780. The installation of the
SDW on the CIDS simply requires the transfer of the SDWE to
the CIDS, since the other SDW components are already
resident on that system. The transfer 1is completed using
floppy disks. Since the CIDS runs under Version 2,7 of the
VMS operating system, a few minor changes to the SDWE are
necessary. These changes include are exclusively in the
help facility because Version 2.7 uses a slightly different
help facility and the SDW help facility calls it. It is
also necessary to set the NPNPRS flag to true in order to
disallow the use of Project Data Bases. This is required
due to the protections placed on the SDWE's resident

directory that prohibited the creation of sub-directories by

users,

209

v vem =,
et ety
LA AN

T X A
BV RS e,
PR PN AN

AR TR M2
P et

S

6.5 Summary

The integration of the SDW components onto the target
computer was a relativily minor operation for two reasons.
First, the SDWE was designed to easily accept the
incorporation of new tools into the SDW. Second, all of the

SDW components were available in VAX versions,

With this final integration and validation of the SDW
and its components, the Software Development Workbench is
ready to go operation. The following chapter on Operations
and Maintenance describes the initial operation phase of the
SDW and any maintenance required as a result of the

operation experience.

210

211

LA N L N . .

5; £ f' 7.1 Introduction

The operations and maintenance stage is the final stage
| of the software 1life-cycle. Of primary importance during
ii this stage are the system documentation from the previous
L phases, the resolution of any problems, and any system

modification from new requirements for the system.

! For the Software Development Workbench (SDW), this
_ final stage is supported by the assembling of a complete set
E; of documentation for the SDW, the Software Development

Workbench Executive (SDWE), and the other SDW components,

During this stage, the SDW is first used, as a prototype

environment by the AFIT software community. 1In particular,

the system is to be used by the EE7.93 Advanced Software
Engineering class and a number of AFIT thesis students,
This stage also involves the evaluation of the operational
SDW against the criteria established in Chapter 2.
1.2 Development of the SDW Documentation Package
; Prior to the release of the SDW to the AFIT software
F! community, a complete set of user documentation must be
:f assembled into a SDW Documentation Package, This package
=
- includes the SDWE User Manual, the SDWE Maintenance Guide,
? Y and the SDWE Installation Guide, as well as the user manuals
ﬁ" and installation guides for the other SDW components. The
=
E.' 212
¢
;'J
S;-'.:L‘M-A‘-h, P S S T T TR i m me aee Mo s e a e ‘;-_‘;___L__L.;-_',._i._- —ta ..j

SDWE documents are included as Appendices I, J, and K.

A A
N R A)
. T Te
s L,

v

P
it

.
E.
[
£

e
Ll
L‘.

7.3 Maintenance Activities on the SDW

As with most software developments, additional
requirements are identified for the system following initial
delivery. The SDW is no exception. Four modifications are
required to the SDW as a result of user experiences with the

system,

The first modification is to the SDW Help Facility. As
first implemented, this facility uses a series of queries to
provide the user with help on any SDW or VMS command.
However, as the user develops greater familiarity with the
SDW, he prefers to simply state the help option followed by

the specific command code for which he requires help and

then receive the appropriate display on his CRT, The SDW
Help Facility is modified to provide this capability, as

well as the initial walk-through help capability.

The second modification is also a result of additional

requirements desired by the user who possess a greater

H familiarity with the SDW, As is often the <case with
top~down, menu-driven systems, the user eventually requires
the capability to enter a command string at the top 1level

“"a that allows him to directly access tools several levels down

&y

the hierarchy (Ref 58). This type of -capability requires

the parsing of command strings as entered from the top-level
module., The DCL capability to use pre-defined parameters
allows the relativily simple modification of the SDW to

provide for such command strings.

The third modification to the SDW deals with the usage
of Project Data Bases. Previously, the user would not be

told whether the Project Data Base specified for use is a

new or existing one, As the number of Project Data Bases

increases, so does the probability of duplicate names for

these data bases. To help avoid these types of problems,
the SDWE is modified to report to the user whether the

specified Project Data Base is a new or existing one.

The final modification to the SDW deals with the
initial and default wuser's device specifications, The
original initial device specification was set to a "VT100",
This setting provided for the passing of specific control
characters to clear the display and use reverse-video for
continue prompts. However, on non-VT100 devices, the
specific control characters appeared on the CRT. This looks
quite un-professional, Thus, the 1initial setting of the
device specification is set to a "VT52" mode, This mode
uses no special control characters and is thus appropriate
for any device, The use of the continue prompt between
displays 1is also removed when in the VT52 mode. Since this

mode uses scrolling instead of display clearing, the normal

214

..... . R .- .
. Iy - o e Lt .. - - . . - . . P . - -
B i CEE. JUF T I S AL L S P P PR I P g o ata:

terminal facilities for stopping and continuing scrolling

may be used to view the SDW displays.

7.4 Evaluation of the Software Development Workbench

The Software Development Workbench (SDW) only addresses
ﬂ a portion of the specifications for a software development
environment presented in chapter 2. While each of the main

categories of specifications are addressed, none of these

categories are fully satisfied. As a result, it is
important to emphasize the strengths and weakness of the SDW
to provide a background for future investigations involving
Gi* the SDW, Although a through evaluation and development of
the SDW is not possible, due to the 1limited time of the
investigation, a summary of user reactions to the SDW as an
environment is provided. The criteria for this evaluation
is established in the requiremenrts definition chapter of the

SDW (section 2.5).

7.4.1 Strengths of the SDW. The SDW is found to be a

very user-friendly environment. The menu-driven format and
extensive help facilities allow the novice user easy access
to any SDW component, The SDW 1is also a very flexible
environment because of its capabilities for disenabling the
auto-menu facility, changing the user's device

’Zfﬁ specification, and providing for the use of command strings.

215

R ST, T - . T e, . e - - . .. -t L. . " Lt
B . TP T T M . T o N b 2 " S L - PR S AA_AM_‘J-_L—_"A_";_!]

.

—yr—w

v;f,T-A-~A —-r'
DA DA S CAARERT IR AN
AR P A L

........

The SDW implements fail-soft error-handling capabilities,
With the currently incorporated tools, the SDW is an

excellent aid in the production of software and related

documentation.

7.4.2 Weaknesses of the SDW. The SDW possess all of

the minimal requirements for a software development
environment, as well as a number of extra capabilities.
However, these provided capabilities are almost exclusively
supportive only of the pre-implementation stages of software
development. The SDW possess few if any components to aid
and augment post-implementation activities such as code

testing and code optimization.

The issue of integration within the environment is only
addfessed at the higher levels by the SDW. Components are
integrated only by means of a common user interface and
common data storage locations. There are no means for
integrating development data by preserving the relationships
between software products and allowing the individual

components to share the development data.

216

1.5 Sunmary

The operational phase of the Software Development
Workbench met with a very welcome response, The SDWE proved
to be an effective and easy to learn interface to the SDw.
The SDW was found to be very helpful for the development of
software, especially in the preparation of software

documentation and associated models.

Furthermore, the modifications recommended and
implemented during this stage greatly added to the power and

appearance of the SDW as a product,

217

't
.
‘

CHAPTER 8: Conclusion/Recommendations

pia e

b Jun SEn Je Ste s
e e

’ '<r.r.7.- !
L Pl

hod
-

Vi

8.1 Introduction

The purpose of this thesis investigation is two-fold.
The initial emphasis of the effort deals with the
requirements specification and the development of a design
for an interactive and automated software development
environment to support the coftware life-cycle in accordance
with 'accepted software engineering principles. The second
emphasis of this investigation is to implement and test a
prototype version of a software development environment, the
Software Development Workbench (SDW). This prototype serves
two purposes. First, it demonstrates the feasibility of
some of the requirements and design specifications
established during the initial emphasis of the
investigation, Secondly, the prototype is actually
installed and operational on two distinct development
computers to aid in the development of software at these

locations.

8.2 Design Summary

The Software Development Workbench (SDW) was developed
in accordance with a classical version of the £ “tware
life-cycle (Ref 40:1-5). The first three stages of this
life-cycle are requirements definition, preliminary design,
and detailed design, Of these three stages, the first two

involve the theoretical development of an ideal software

development environment for the Air Force 1Institute of
Technology (AFIT). The third stage, detailed design, is
characterized by the detailed specification of a design for

the software development environment prototype, the SDW.

The requirements definition stage of this effort
. involves the definition of the current software development

!. process, a specification of how the process of software

development should be addressed, and a study and summary of
the concerns and objectives of a state-of-the-art software

development environment, The second step in the theoretical

development of this investigation is preliminary design.

The objective here is to define the structure, required

SRR
p w7 components, and configuration for the software development
3 environment to meet the previously stated requirements,

ii The detailed design stage bridges the gap between
thheoretical development and application by specifying the

precise design specification for the initial inplementation

of the SDW. This stage requires the complete development of
a top-level user interface and controller for the
environment and the careful selection of component tools for
the environment, The purpose behind this stage of design is

to develop means to realize the theoretical objectives of ‘

the previous stages,

8.3 Implementation/Test Summary

The second section of this investigation deals with
realization of a prototype version of the software
development environment specified in the detailed design
stage. This prototype is named the Software Development
Workbench (SDW). The implementation of the SDW involves the
coding and testing of a top-level wuser interface and
controller, called the Software Development Workbench
Executive (SDWE), as well as the incorporation of several
component tools into the SDW. Following the implementation
of the SDWE and the loading of the component tools, all of
these SDW sub-systems are integrated to the VAX-11/780 VMS
Operat%ng System and to each other. Then, the SDW is
completely tested, operating manuals are composed, and the
SDW goes into an operational status. The SDW is installed
on two distinct host computer systems. The first host is
the AFIT/DEL VAX-11/780. Here the SDW is used as a software
development @id to support both student c¢ourse work and
Master and Doctorate 1level researcn efforts, The second
host is the Central ICAM Development System (CIDS). The
CIDS facility is used by a number of research groups across
the nation (Ref 5C). The members of these research groups
are themselves developing a very sophisticated development
environment for the CIDS that is to become the Integrated
Systems Development System (ISDS) upon completion, The SDW

is used as a prototype for this much larger environment and

221

Ty ._,1

PRSI Tl T el S

o,

as a tool with which to develop the larger ISDS environment.

8.4 Recommendations for Future Investigations

As one might expect from the previous section and the
fact that the SDW is a prototype environment, there are many
topics for future investigation dealing with the SDW. A
listing of these topics is provided in the following
paragraphs. This listing of topics 1is sequenced in the

order in which the topics should most 1likily be addressed.

8.4.1 Implementation of the ©Pre-Fab Software
Description Data Base. The Pre-Fab Software Description
Data Base is a concept for a facility that will greatly
reduce the production of software programs and modules that
have previously been designed, This capability could
represent a very substantial economic and manpower savings.
The Pre-~Fab Software Description Data Base concept requires
a complete development consisting of design and
implementation of the facility. Implementation should
include the population of the facility with a wide variety

of existing software modules.

8.4.2 Enhancement of the SDW Component Set. The SDW
currently incorporates only a limited tool set., These tools

provide capabilities for a minimal environment with extended

capabilities for supporting pre-implementation type

222

T AP U A L I G UL U0 P U D AT DL Gy PO S GO S , L

activities., The SDW component set must be enhanced with
additional components to support the other functional

specifications defined in Appendix C.

8.4.3 Re-Hosting of the Software Development Workbench
onto UNIX(TM), The Air Force Institute of Technology bhas
recently procured and installed a larger VAX-11/780
configuration as its new Scientific Support Computer. This
computer runs under the UNIX(TM) operating system. The SDWE
and the SDW component tools could easily be re-hosted on to
this machine by translating all of the DCL command

procedures into compatiable UNIX command procedures.

8.4.4 Development of an Integrated Project Data Base
Schema, At present the Project Data Bases are simply
isolated data storage areas. Conceptually, the Project Data
Bases should be integrated data storage areas that are
managed by a Data Base Management System (DBMS) and preserve
the relationships between the development data from the
different stages of the software life-cycle. This concept

is addressed in greater detail in Section 4.4.

8.4.5 Extension of the SDH's Scope. At present, the
SDW provides few facilities to control and coordinate
many-programmer projects, The SDW is a software developer's
environment and does not provide the managerial capabilities
required to manage large software development projects that

involve many analysts and programmers. The Air Force is in

223

great need of such a capability for the 1large software

developments under its direction. 1In order to provide these

. T T Y T

iR
e

needed capabilities, the SDW must utilize sophisticated

«
PR

-
.

configuration management and planning tools. These tools
must be able to interface to and retrieve development data

from the other SDW components,

g! 8.4.6 Development of a Consistency- and Syntax-Directed
8 Editor. A syntax-directed editor uses a Backus Normal Form
definition of a language's syntax to automatically check the
E syntactical correctness of programs as they are entered on
to the computer (Ref 33). This capability could be extended

so that the editor also accepts a previous specification for

the software system, such as a requirements or design
specification, Thus, the editor checks for both syntactical
correctness and consistency with the previously stated

specifications for the software system.

224

I Y T S Y N N N P L R e R S L S e " A A m a e latatado renb a.a

L4
.
L

Y w4
e g’
e

3

L o i 4
" .

A PADOLOEOL & vy

Yooy vy,
-

"

10.

11.

12.

13,

Bibliography

Ada Reference Manual, Department of Defense,

Alford, M. W. "A Requirements Engineering Methodology
for Real-Time Processing Requirements," IEEE
Transactions on Software Engineering (Jan 1977).

Alford, M, W., Irby, J. E., Scott, J. E., Lawson, J. T.,
Osborne, R. G., Hardy, E. J. Distributed Computing
Desjgn System. Huntsville, AL : TRW Defense and Space
Systems Group, August 1981.

Andrews, D. M, and Melton, R. A. FORTRAN Automated
Verification System (FAVS) User's Manual. Rome Air

Development Center, RADC-TR-78-268, January 1979.

Appleton, Daniel S, "Measure Twice, Cut Once,"

DATAMATION (February 1982),

Atwood, M. E,, The Processes Involved in Designing
Software., AD-A092935/6, August 1980,

Baker, F. T, "Structured Programming in a Production
Programming Environment," Proceedings, 2nd International
Conference on Reliable Software (April 1975).

Balzer, R., Goldman, N. and Wile, D, "On the
Transformational Implementation Approach to Programming,"
Proceeding, 2nd International Conference on Software

Engineering, IEEE: Long Beach, Calif, 1976.

Basili, Victor R. "FLEX: A Flexible, Automated Design
System," AD A079312,

Bergland, Glenn D, and Gordon, Ronald D. Tutorijal:
Software Design Strategies. 2nd Ed. Murray Hill, NJ :
Bell Laboratories, 1981,

Bianchi, M. H, and Wood, J.L. “A User's view on
the Programmer's Workbench), Proceeding, 2nd
International Conference on Software Engineering,
Oct 1976,

BMDATC Software Development System, Vol 1, Ballistic
Missle Defense Advanced Technology Center, AD-B014-623,

Boehm, Barry W. "Module Design and Interface Validation,"
IEEE Transactions on_Software Engineering, Jan 1975.

225

..... . NPT

PRI T T T Shart ot It A S S st L L

AL 14. Boehm, Barry W. "Some Experience With Automated Aids
) to the Design of Large Scale Reliable Software,"
IEEE Transactions on Software Engineering, Vcl., 1,
No. 1 (March 1975).

15. Branstad, M. A. and Adrion W. R. "NBS Programming
Environment Workshop Report," Special Publication
550-78, Institute for Computer Science and Technology,
National Bureau of Standards, Washington D.C., 198l.

- 16. Bratman, H, and Court, T.'The Software Factory.
- COMPUTER 8 (May 1975) p 28-37.

and Control’, Practical Strategies for Developing Large

ﬁ 17. Bratman, H. "Automated Techniques for Project Management
E Software Systems, Addison-Wesley, Reading, Mass. 1975.

18. Buxton, J. N. "An Informal Bibliography on Programming
Support Environments," SIGPLAN Notices (December 1980)

page 17.

19. Chrusciki, Andrew; Simpson, Louis; and Sheffield, R.
JOVIAL J73 Programming Support Library, Rome Air
Development Center, RADC-TR-82-162, June 1982.

20, Chyuan-Shiun Lin, "A Structured Functional Testing
Approach,"™ NCR.

21. Clarke, L. A,."The Source Code Control System". IEEE
Transactions on Software Engineering, (Jan 1977).

22. Conrad, Thomas P, "Application of Advanced Software
Technology to Submarine Command and Control," Naval
Underwater Systems Center, Newport, RI. AD-B050-288L.

: 23, Cotterman, William W., Couger, J. Daniel, Enger, Norman

: L., Harold, Frederick, Systems Analysis and Design : A
Foundation for the 1980s. New York : North Holland Publ.,
1981.

5 24, Davis, C. G. and Vvick, C. R. "The Software Development
4 System", IEEE Transactions on Software Engineering,
(Jan 1977).

25. Davis, Richard M. Thesis Projects in Science and
Engineering. New York, New York : St. Martin
Press, 1980.

oYy

26. Denning, Peter, "Parts Based Programming," Computer
Science Department, Purdue University, IEEE COMPCON,
#om 1981.

\ au it

Y
.
“

7% IRRREREK " SN

RV

v

= T~ S —
. .. A [} DI TR TR Y 3
1o R PRI I
. e e s R PR

CANL3

e)
.
N

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

'''''''''''''''''''''''''''''''''

Digital Equipment Corporation, VAX/VMS Command
Lanquage User's Guide, March 1980,

"DoD Requirements for Ada Prcgramming Support
Environments, STONEMAN," HOLWG, February 1980.

Dolotta, T. A. and Mashey, J. R. "An Introduction
to the Programmer's Workbench". Proceedings, 2nd
International Conference on Software Engineering,
Oct 1976.

Duvall, Data and Analysis Center for Software,
AD-A089678/7, June 1980.

Features of Software Development Tools, National
Bureau of Standards. PB81-176562, Feb 1981.

Glass, Robert L. "Persistent Software Errors," 1EEE
Transactions on Software Engineering, Vol. SE-7,No.2,
(March 1981).

Gutz, Steve, Wasserman, A. and Spier, M.,
"Professional Development System for the Professional
Programmer," COMPUTER, Vol. 14, No. 4 (April 1981)
p45-53.

Hamilton, M. and Zeldin, S. "High Order Software
-A Methodology For Defining Software". IEEE
Transactions on Software Engineering (Jan 1977).

Hausen, H. and Mullenburg, M. "Conspectus of Software
Engineering Environments," 5th International
Conference on Software Engineering, San Diego, CA
March 1981, IEEE Catalog No. 81CH1627, pp. 34-43.

Houghton, ©National Bureau of Standards Software
Tools Data Base, National Bureau of Standards,
PB81-124935, 1981.

Howden, William E, "Applicability of Software
Validation Techniques to Scientific Programs"
ACM Transactions on Programming Languages and
Systems. 2,3(1980).

Howden, William E. "Contemporary Software Development
Environments," Communications of the ACM, Vol 25,
No 5 (May 1982),

Howden, William E. "Functional Testing and Design
Abstraction,” Journal of Systems and Software, 1980.

Hunke, Horst, Software Engineering Environments,

227

Q
e

B

*F'?I'n"'.'.'-‘-'.‘;'r Y YT T T

TR e,

..........

e

41.

42.

43.

44,

45.

46.

47.

48.

49,

50.

51.

52,

New York : North Holland Publ., 1981.

ICAM/SEM Coalition Program Meeting Notes from the
1-4 March project review at Wright-Patterson AFB.

Integrated Computer Aided Manufacturing, Dynamic
Modeling Manual (IDEF-2). Materials Laboratory,
Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson AFB, OH,
June 1981.

Integrated Computer Aided Manufacturing, Function
Modeling Manual (IDEF-0). Materials Laboratory,
Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson AFB, OH,
June 1981.

Inteqrated Computer Aided Manufacturing, Information
Modeling Manual (IDEF-1). Materials Laboratory,

Air Force Wright Aeronautical Laboratories, Air
Force Systems Command, Wright-Patterson AFB, OH,
June 1981.

Ivie, E. L. "The Programmer's Workbench - A Machine
for Software Development," CACM, Vol, 20, No. 10
(October 1977) pp. 746-753.

Jefferies, Robin "The Process Involved in Designing
Software, " University of Colorado, AD A092 935.

Keringhan B, W. and Mashey, J. R. "The UNIX Programming
Environment," COMPUTER, Vol. 14, No. 4, p. 12
(April 1981).

Kernighan B. W. and Plauger, P, J. Software Tools.
Addison Wesley, Reading MA, 1976.

Kernighan B, W. and Plauger, P, J."Software Tools\
Proceedings, 1st National Conference on Software
Engineering, Sept 1975,

Lamergon, Robert G. and Dugan, Dennis K. "Software
Engineering With Reusable Designs and Code" IEEE
COMPCON 1981,

Loshbough, R. P. Applicability of SREM to the Verification
of Management Information System Software Requirements,
AD-A100720/2 and AD-A100721/0.

Mashey, J. R. and Smith, D. W, “Documentation tools
and Techniques'. Proceeding, 3rd International Conference
on Software Engineering (Oct 1976).

228

.....

P, WP PSP WS Y. RPN . W, PO W PP Y . SO S G P i G U Wy - = PSP AT W S L W S N

53. Mayer, Richard, "Unified SEM: The ICAM Approach to Systems
Software Development," Proceedings COMPSAC 79, Chicago, 1L
November 1979,

CMELI = YaSatrie raduan

54. Melton, Richard; Greenburg, Gary; and Sharp, Michael.
COBOL Automated Verification System: Study Phase, Rome
i Air Development Center, RADC-TR-81-11, March 198l.

s 55. Millington, D. Systems Analysis and Design for Computer
: Applications. New York : Ellis Horwood Limited, 198I.

56. Mullens, Dan E, Investigation of Meta-Language Modelling for
Translation between Simulation Lanquages and Requirement
Definition Lanquages, AFIT/GCS/EE/82M-4,

57. Myers, Glenford J. Software Reliability: Principles and
Practice, New York:Wiley-Interscience Publ. 1976.

58. MNusinow, E. I. and O'Connor, Fran, Integrated
Systems Development System Needs Analysis Document,
NAD170132000, Dayton, Ohio : Control Data Corporation,
February 1982,

59. Osterweil, L., A Software Life Cycle Methodology
and Tool Support, AD-A076335/9, April 1979

60. Osterweil, L., "Software Environment Research:
Directions for the Next Five Years," Computer,
Vol. 14 No. 4 (April 1981) p35-43,.

6l. Osterweil, L., "Using Data Flow Tools in Software
Engineering," AD A076 300/6.

62. Radatz, Jane W. "Analysis of IV&V Data," Logicon, Inc.
RADC-TR-81-145, June 1981,

63. Ramanoorthy, C. U, and Ho, S. E., "Testing Large Software
With Automated Software Evaluation Systems". IEEE
Transactions on Software Engineering, January 1977.

64, Reifer, D, J. and Trattner, S. "A Glossary of Software
Tools and Techniques". IEEE Transactions on Software

Engineering, January 1977.

65. Riddle, William E. "An Assessment of DREAM," N80-30066/8.

66. Riddle, William E, "Flight Software Requirements and
Design Support Software," N80-30061,

.. 67. Riddle, William E, "Software Development Environments:
o Present and Future," N80-30065/0.

229

- LA O ST,

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

8l.

AT R Sy WY CLaY e

Ritchie, D. M. and Thompson, K, L, “Special issue
dedicated to the UNIX Time-Sharing System); The Bell
System Technical Journal, Vol, 57, No. 6, Part 2,
(July-August 1978), pp. 1897-2304.

Ritchie, D. M, and Thompson, K. L, "The UNIX Time-
Sharing System," CACM, Vol. 17, No. 7 (July 1974),

Robertson, P; Melton, R.; and Andrews, C. COBOL
Automated Verification System User's Manual, General

Research Corporation: Santa Barbara, CA, May 1982.

Rochkind, M. J.”The Source Code Control System| IEEE
Transactions on Software Engineering, Dec 1975.

Rochkind, M, J. "The Source Code Control System"., IEEE
Transactions on Software Engineering, January 1977.

Ross, D, T. and Schoman, K. E. "Structured Analysis
For Requirements Defination", IEEE Transactions on
Software Engineering, January 1977,

Satterfield, Doyce. "Cverview of Software Production
Tools," Ballistic Missle Defense Advanced Technology
Center, Huntsville, Alabama.

Schindler, M., "Software Productivity Needs Tools
For Improvement," Electronic Design, Vol.28, No.1l7
(16 August 1980) p45-8.

Schneider, Hans-~Jochen, and Wasserman, Anthony I.
Automated Tools for Information Systems Design,
North-Holland Publishing Co.: Amsterdam, Holland, 1982.

Smith, Paul. FORTAN CODE AUDITOR User's Manmnal, TRW:
Redondo Beach, CA, Dec 1976,

Software Research Associates, Automated Tools for
Software Engineering Seminar, Software Research Associates:
San Francisco, CA, October 1980.

Softech, Inc. "An JIntroduction to SADT: Structured
Analysis and Design Technique," Softech, Inc,:Waltham,
Mass, 1976.

"software Automation Attacks the Programmer Bottleneck,"

Electronic Design (12 Nov 1981) pll.

Stephens, S. A. and Tripo L. L. "Requirements Expression
and Verification Aid". Proceedings, 3rd International

Conference on Software Engineering, May 1978.

230

82, Sutton, S. A. and Basil, V. R. FLEX: A Flexible, Automated
Design System, AD-A079312/5,

83. Teichroew, D, and Hershey, E. A. "PSL/PSA: A Computer-
Aided Technique For Structured Documentation and
Analysis," IEEE Transactions on Software Engineering,

January 1977.

84, Teitelbaum, Tim. The Cornell Program Synthesizer: A
Tutorial Introduction, TR 79-381, July 1979, Revised
January 1980, Dept. of Computer Science, Cornell
University, Ithaca, NY.

85, Teitelbaum, Tim, “The Why and Wherefore of the Cornell
Program Sythesizer Proceedings of the Symposium on Text
Manipulation, SIGPLAN and SIGOA, Portland, OR, 1981.

86. TRW, A New Approach For Software Success. Redondo Beach,
California : TRW, Inc. 1982,

87. UCSD Pascal Users Manual.

88. Walker, Michael G., Managing Software Reliability.
New York : North Holland Publ,, 1981.

89. Wasserman, A,, "Automated Development Environments,"
Computer, Vol. 14 No. 4 (April 1981) p7-10.

90. Weinberg, Victor. Structured Analysis. New York, New York :
Yourdon Press, 1978.

91. Willis, R. R, "DAS- An Automated System to Support Design
Analysis". Proceeding, 3rd International Conference on

Software Engineering, May 1978.

92. Wood, R, J. Computer Aided Program Synthesis, University
of Maryland, AD-A092621/2, Jan 1980.

93. Yourdon, Edward & Constantine, Larry L., Structured Design,
2nd E4d., New York, New York: Yourdon Press, 1978.

231

W T LT . . . B . . N .. -
'y P PP WP A Pa— e o 3 PR R - - - . - - . M - N - el P M - P P LA S

T E—— P JNGR e oo e —

|
1

232

o
\
Ranases ol

a 2 At A [N S ¢ haz

Lo .

c Lt

A Model of the Existing Software Development Process

The Software Development Workbench (SDW) is a software
development environment that utilizes automated and
interactive tools to support the Software Life-Cycle. In
order to achieve this goal, a thorough understanding of the
existing life-cycle is required, The Structured Analysis
and Design Technique (SADT) model of this chapter is a
vechicle for gaining this understanding of the 1life-cycle,
The model represents a generic view of the life-cycle as it
exists today. 1In reality the 1life-cycle 1is defined and
realized many different ways. The variety that exists in
these many versions of the life-cycle is attenuated in the
model by dealing with the life-cycle stages and component

activities is broad terms.

The objectives of the model are to provide a generic
view of the 1life-cycle, to identify areas that require
automated support, and to realize where the life-cycle needs
to be modified to improve the efficiency of development and
the reliability of the product. The model does not consider
issues of resource allocation or planning that are

characteristic of the larger development efforts.

The actual "As-Is" model 1is preceded by a diagram
listing of all of model's component diagrams. This listing

is on the next page and is followed by the actual model.

233

.

;‘ DIAGRAM LISTING OF THE "AS-IS" MODEL

B e e e o o o e e o o e e e e e e e e s 2 o s e e

ji Number: Node: Title:

FI SDWO01 A-0 Perform Software Life-Cycle (Context)

2 SDW02 A0 Perform Software Life-Cycle

- SDWO03 A2 Understand the Problem

- SDW04 A21 Conduct Needs Analysis

- SDWO05 A22 Perform Requirements Definition
SDWO06 A223 Define Requirements
SDWO07 A225 Review Requirements Document
SDW08 A3 Formulate the Solution
SDW09 A3l Perform Preliminary Design
SDW10 A331 Define Interfaces
SDW1l1l A312 Develop a Valid Top-Level Design
SDW12 A313 Develop Intermediate-Level Designs

- SDW13 A32 Perform Detailed Design

X SDW1l4 A33 Synthesize Implementation & Test Strategy
SDW15 A4 Construct & Integrate Solution

- SDW16 A4l Convert Solution Design into an Executable

SRR Image

\ v 4 SDW17 A42 Run Test Cases

' SDW18 A5 Operate & Maintain Software

) SDW19 A52 Operate Software System

- SDW20 A54 Correct Software Problem

-

$A

H

%

t

o

(IR

T

:::

- 234

R

-

s

PRSI PP S AR WL WP, P PP I I Y. W T b Bt et ot St ot el B T

9 . T 0 M y3qum | 31940 3317 3nYN140S WHO4N3d 13111t | ©-v, 81 x0ddy_ :3qm; |

- |

» w

2 $31901000M1 3n : ,
" . €004 ONIYIZNIONT : .
w i Q31VYROLNY VAL 0S a |
{ - _ 1
.

<
~

pes HIVALAOS
. , KIoJd9ad :

9 T
= sINI1avaa 0
- s
g
ROTIUST NI X BT ¥ L 9 5 ¥ U T YT ISIIN
- Q3IRILITIFE L
- T3UdT 13y AJS:L23MNad £
- 1 LXIINGD ELM 3 ORI AYTN 28 LM 3uq Q131 3QUM: SOHLOY id¥ 235N .

R

roemas “mmmz:z_ 313451407 T WALEOS M0 4434 .uH:L Qv /01/9XCdd¥ :320n
e h AV Tw
ce 1 V053 $31001CQOHLER
—_—— LIRS BHIEIII DN
Pll 3uvsaliaios
r 1
»G11N10S =
TO >ivalsds HIVING Y M (4 T)
A31vNIRY3L Ny T T siozoe)
JLY¥320 v VY MBIV 141008 MD1530
n3:sasi3uvalsns
ﬁﬁd)
NOL1IO0S q
STVINVI SHI VA0 JLIVHOIING v
12061522
. wopska
NJLEDIDS
v ¥
SHIILVIIBYID
i 3K 3410
NYId 15011 ONY NOILINYOS My Auiaoaw
S.ﬁ(b!JiU.—n’. JLVIVCANO S
w § ¥
]
um SIKINININOTY - —/
I3 CYIANT 139%V) e
"31008d M)
EM? J¥Y M1 40 3ILVIS «L OnviSHIoNN
N !
SLS3nY3Y (voiSIASY 10DINDS “
tv
. L - h -
$535Cyd 4
S31¥Q ISH3gsns ININGO3A30; $433N0D
3TNQSS | J¥ve) 20T

i

£

1LX3LINOD

NOTIGOTTTd T X

C3CNTLOSTS

JIVY RUCEL URISGON

L3980

t2
SINIQVI0
¥V B ¥ L ¥ 8§ ¥ €t ¢ TI55I0W
1h3Y NAS1 L33 0N
egbihtiiiva 0131 4QUHTHOHLAY 1ly 43Isn

T S T

JL PR VR S

v...
[
h ——— foMmas ,mmmxwz— WITECAd IHL Dy iS83ANA .N:ZF 20-81 /79Xy
)
k. 'n
[S0l
v G31vNOLnY
X k 4
,,.. (X4 *
[
L ™
b $31201000H 1 3N
Lo SIMGRIN QT SRLM3IHIONS
L : 3¥valics vel J0S
IVINAIS
b V
y.
» e
w .-
vA.‘.
N dINFTHINOIY ILYNOICYNI _r bt A 4
y - I
X »0 NOIULINI 30 SINIAIRIN03Y -
y £O 01 14I5753T INTRNONI AND L3THVL - X ECTIRII VAL
by -G NO111N1 430 SININZY N03Y
;' Z0 INGAND0Q 1¥Y ML 40 31ViS SIN3AZINO3Y J
[- A0 R34
L 10 SLSINOIY NOISIAZY 3INCMOS o~
L SR) o)
r o
h,
v %4
IN3WILVIS la———11
SISATYHY SO StSLTYAY 1439N02
. ﬁ - SCIMN Jyvel40S
LNFWN0G O JO3S : 120CN0I
,ﬂ
.\. \ - - _
12
$31vS
FSNIISNS
MASTCIINLEr IR I8 L 9 5§ ¥ £ ¢ T 153L0F
j») o e
f) o - tn{lh(”(“lmw A3)anrvwﬁoaﬂ
- - v
11X34INO3 ° JoIT §3.533 TR goT 2821111 240g 0137 QM1 BOHLNY iy qasn

- PR

AR INE vl ORI Sivdl TURMEIR UL o) B

' 1
W _ — rs?nﬂ&umz:z_ SISAIWNY 5Q33M 1INANOD _S.:._.H 12v/01/Yxddy __ 13G0N 1
:]
)]
Y 1
.r 1
1
. [4%44
= 4
. sizv
: — \
I3c0m
ey~ «S1-Sv.
TI0OR AILSLS «SI-SV. $0Y3AD
f IN2A3IVLS
SISAIYNY SQIDN et]
320001d
X v. TV
3 S¥GLIVY
- $31vaen R
QIOMTTII3Y [IMRILIVLS
SISATYNY SO3IN Lav¥d ag— 1
Su¥0L9IvJ 2
L1514 NY RS 4
. INIASILIN iy
: 12
W. S3iva
S -——ro— ISN34SOS
N INPOLYIS 1 .
v. SISLIYNY phddady \ S t
o 2 3A1 4
K S0 831a3y | SHIAIYG IOMYIN0 SId FONVRLO 5134 1g3e0d
v
K IIRYILI0 112
B
4 , -—eeee e} by 1
- 3402%
a 1na1 10 IN3RNO0Q 2N1d0JS A31S:S
’ . aIsn A41IN3Q)
b . .
....
: o 00 0C Met:ur B ¥ F ¥ L 9 5 v € ¢ 7 i5ICN .
- =R . BT CTRREE - AGS 11937 0d .
. 71XIINOD TI9T L ERLEL: LI 2gk1h1:3u0a G13IsCoHis0Miw | 11w a3sn
a >
. _ .
L
L]
..... . .-y S - ‘..\..n.ﬂ.,'.ﬂ...::
PUPRFRTRPLPT ST GO - O IR DPRLLIUPRre ovf -

LA Sl duake. sunib danll el
- e R S,

P .WS)JDW.&.S:_ NOTLINISIA SiNIuININDIN W20 sH3d _S:L ‘22v/01/uXAddy 130N
N
33
JTHIU34AT TYI ISR
LNIMN200 S31201000H1 30
*—1 smIOwInow NO!19vZ W3ISH DH1 TN
‘0a 314N 51601 931vmOLINY 39vel s
$1.034
vzey
133504
SINIRIVINC TN LIvea ,
BWCINY S o0} $1001
SistonN |
TO % SINININI1N03N Q3ILVYROiNY
NOISTAZY IINABOS 3900024
] 102
sionRInghy o w)
<> €<
ENOILYDI 418V SIN3IN3AINOIY
iy . SINJN3HINOTY 31VNO3IQAVYNI
$31V0 ISKIJNS SIKINIY (NO3Y -
M I
% 14247
€tz
1433M0)
3uvalaGS
€0 G- INIWNONIAND
NO!1dI¥2S30 UNIANCY) AN3 LIDUVL 1306vV1 $1002
322 IvNY a31vroLINY
ﬂ ﬂ vzev W
" 2\ h :
O TNmw0d 1t¢ Bl x4 VIS av
4z 30 3ivis
mO8YISIN
- _de
A4} iNm3ivis
INFRADOT ON1dOIS S!SiTVNY SO33M
089S MMt WC B LS ITF YL % 5 vV E ¢ 7 ISTTW
n o o SUE S B -
B r— ~ISEET T 173 NAS1Lo30Sud
tAXIINGD FI.9% EEEL] TR YSTTT 8 /L1/ Y 13296 Q1IT 3CuMt aOn LNy 1Ly g3isn

239

P Sl O SN SR

DU S Ty S L

——— 90MaS | y3gunm | SINMININOIN NI Tali] - €229 01 bxGday :3goM
. L |
| "4
P
i)
| 4
g 33134
b ‘.
“, P
§ 1 AR TRT S
= NOI LVNIVAI
s17gvis3

- .ﬁ ¥ 3

4 .
v 14144]
w” dﬂﬁdﬂdﬂ‘l ’ rw)
g 3130100 3N .
5 ¥ { SINIMININOTY R 120 1400m1 38
. : |
[ALtNiQISVIY RIVAL 408 w .
: NIRYILIQ $1001 W ,
. G3ivmo NV o .
f : e * P
-.‘
... L
5 b 4] ~
3 ANFNTIOQ 1yv ML 0 IiViS {

. 7o SINIQGUINOIY |
. NOI 14163530 14vua “
g . . INIROY T AND

: 1308v) tczzv § . “
. . N
- _\.T.Nduu.quuun
| Iyve, 29$
| — SNO VI SIL
.. muzuaux.:ou.m*zuxum:..aux p:
! | Uﬁ(.hkogﬁ
: JIVCaN/31VIS) Fvnoagvant o
| M
1 o) WY 9 (a3 d] X 3V 8 8 Z 9 & v v ¢ TV i57ICN ..‘

PEPOE PP L

w.. s L = o) - lrlud“.w tNA3Y = WMMNFOUN.OW& oy
[12X3. N0 J1YT T ¥ITYIE| ORTASTY €s/Li/in1304 Q131 sCuMI BOHLOY tdv Qq3sn c
X ,
b *. |
. |
b, ..
‘h- L
b, |
-,.. »\m‘..-‘..
¥

Tt A A% . S R 1
IR . rh)hh.r.'rf ,.r..I‘VWF.xh.-P-L

4 .
: — L2 QS | y3gunu | IN3UNJ0Q SINIWIHINOIY AITN3Y 131414 | §229/01/Yx0day 130N
y _ g
:)
., :
3 TszEY _
| .
;- — ———————— ¥ 4
: NO119V3Y ¥ISN s)
U ¥3ISN Hits .
_f, 1 siaRRInozu (™ N i
: 31vaiiva v
| .
. N
\ $1001 GIivROLNV
- . '
1 23327 B
) -
\ﬂzﬂ.u«:&u« 0 : ‘4
- A3N31515%0) l :
. — ¢x = 1
- ol lntned IS1193dx3 TvIpNio3L 2 .
. $1001 G31vROINV K
.._ﬂ ﬂ v Aq
- 13137 i
to ~= NOLLYI L S19VID SINSRIYINOIY -~
* SIN3INIYIN03M —
8 — ' I G »
: o T NI 330 SIR e oS SSINIITIoNCI T
b inld BINEYS LI BTYs -
.. SININII NG _—
. LIveC ©
. .‘-
o » IO Ml S XYL TS v ot T TSIR]
. o PRSI E 1
o g et A3y NAS:1)3M 08y ,
. 11X3i%03 JIOT L EPGEL OIS 8 /ut/1 1393 9131 339Kt g0niNe 1.9 G350 >
1

$OMAS y3qumm |

NOILNTCS 3HL IlviNLd04 .u._._.:.M

Ev/8]/uxqddy 1 3QON

Tw

N A

T W Y

e At s

$212070Q04 4 30
NI YIING D)
3dval xS

£V «
- 5
v | pa——————sy g~ S 11 A
i cyupsou 1231vHLs 1ML 1O Y $1601
o1 1y LN 1531 Owv Q3aivmroLinv
- MO VIRV M1 1Y 11 |
321 SIINAS

(3]

_ S

A | w

o . - =

€O Wt TITErS .

SISHOIY RGT. quguaﬂjna;ﬁll 7
91530 _
(aiviig \ o -
R20.443d = B

s 4§ 3 o

f”...ﬁwww]
oY & v
U e ! A

AYy

ho STRINIITOIE g ! A
m.a:Quua...lmq s —] __ < A
T0 515 YR TEHFITIOER x0:530]
— —| D psrvErsTsITvoTREvETTRT—] YN)N 3

} o

, 2

L L iy

o P2 :
v M) 0 JUVLS S3.pC -
INJRNICA LYY 34 _ umzunwmw o
zo b1 °
"dIS30 "HANI :304VI O gLt 23T D

SiNINn3y N0y

D CrReC gt (TR IS I B 8§ L 95 ¥ £ € T SIW ‘
B -m BRSPS - i

2o SR A 103 ras: 1330 o%g . :

11%31N03 [ToUT LEQVEL] TRITECY Y8 /Ly /113,58 Q31 SN ECHLNY 13y €35

ke e e e . . - e -
LI PN S e R s v
AN P.h.b.h r!.n sinman v AN M alale

ULl SN S

-

e A AT T Y T LY S N R Y L TN N T T e TR T T T LY

! b @M aS | y3gunm | NOISIQ AWNIWI1IN W¥0I¥I4 131014 | 1€v/01 uX0dd 3 ICON
$310070C0H1 I
N1 HITNIOND
ey FRVE1I0S
Tw
A931VNLS
T0 ™% 1531 STOOT YIIVROINY
A331VM1S DI KDYV IH cw .
183 ¥ J013AX
IV IHSYVEI N # crpv 4 —
91830 1347 -z
J1VIQFFMIING -} L SN0
W 21530 NQ1 J¥D) 100N
| 134N N21S30
] 3LVICIANIING NV | —
SGYIAZQ 4
N2 1S3Q # ¢
1A}y =01 zIeY
-y
w1530
uon&:r!..ﬂ& 1331 g0t
oINS Q3 IVA |
v 9013A30
LigY ‘ |
SNOILYD 1 4!D3dS
pov Y 11
EO SR Ty 31910 Sin.mau i nosa §3IVsnIUNT | =
N30
ho .
INIAND0G 1NV ML 3 ILVLS
To €
NOI LINT 430 NOt1diNIS 2O
SININ3ININO3M INIANOY " AN
13%2uvi
RNt ER IS IT & L ¥ 5 ¥ € ¢ ¥ i53i0R
o] R P vk |)
= TieET? in3s A9$1133009d
14%31n0D =TT LEPAEL] LI P S €8 /L /ni3led Q13140UHI ¥CHLNY 11y CISA

243

S SR ST S SR S O PRI SRR W G LI PSR L S

B

LSRG VY NS S SR S

1
i
Y
A
i

)

——uTJ o ‘
2T QS Lu3gurn | S32USNIANT WI43Q 1TUIL]| ° VECY/®I/wxCddy :3CON
CLICY
] SIIVIuIING
u3sn
23118308
X
P ¢
Zrigy
SIDVAIINI
Isve viva
A41IN30L
titgy
-) m
CO 0111 41334 S3ovauding |
FOVIHILNY J¥valyvyH:
49018300
~— \ L 4 .
2
— NOILINIJFO SINSHRIINDIY
z9
NO 1L dtIS50
INIANCY - AN3
132uvi
o) SR IIRERTE B ITF T L 95 F & & vV SIIH
L= B 2 ie~Jeac o391
= TImE 1138 2531430 Jud
1 AXI1M0D £, S EPUEL] CAPREDHD| 8/ L1/1113100 Q131 4Quri uCrinY 144 Q3sn

2L

»

1
TT ™MAS .zumr.at~ NO1S3Q 13n31 dO0L Glwn ¥ d013n3g .u.:.:~ YIEY /01, WXQddV $ IGON
i
SICQL QAL VYROLNY
{2 sZicy k
<o l SIS Viva
‘ IG1 1V J1uYYD
. [S NIRRT | . i)
: IS SIUNLONYLS S
ra &E.h..!.. 13431-904 -y viva :
13A3V-d0l JLVO11IVA ANYNOI1131G VivO J013A30
| vzicv ¥
.. s3A11
. »9153Q :
R SIATIVNNIL Y 2
N21SO
4013430 1530
- I3A0-001
Jvua
caiey ¥
m MILSI X3 W—gul NOILINIZIC SININRIINDIY T
LIRS L]
| 31¥203 7N
$3150710000) 38 e '
| W emey ¥V ¥ oMk IINION o :
Buva, 105 g
[] TISAIVNY
NO T IDVSNYYL
/RS0 SSNVYL
KRG 3434 ‘
)) ‘
. - Zigv t 3
o 1MV 3L JO 31ViS .
L SINIOIMOD TPNO I IINNY S INTNGING) !
.) TYNS T LONNY {
v; 1 410N3Q1 2o
I
, . - L
o <ol . . ._
. SNOI VYD $132¢S t
ﬁ. I3vagaN N
. o PO bt 10 B IS U %5 8§ C 9 5 ¢ £ € ¢ 530N !
o SISO S
5 " ! LI 1A3Y n1s:133 Cad .
t.X3in02 JIUTY - EiEL) k. J5C s/t t1Iled Q2 31aCuniaCrilw 1y QISn .
ﬁ.
A

»
. — eTmd s .uun....:z_ NOISIQ 13131 ILVIGWNILNI NY d013n3Q .u:.:,_‘ 21°€TEY/d1/UX0ddy :302Y)
$1001 GIIVROLAV ,
y R)
' N1
* ! - 0 |
. T Y50 s1.03
' i3 4
_ FN1RLS
LNN0uR0D
v._ T 0 a—————ri EYCIRITS
RISIG I13AN]
31VIQIRYIINI $31507000H1 3N
ONITHIINIONG
3yvai.08 -
v.... w ...
]
B ﬁ g
NOISIQ 13AIT)
- ILVIAIYIING triev - .
o : 1N3H0aMGI SIS37038 WO11vD14100m W01530 °F)
\ worsaal T) :
P - GIRNLIINYLS)
: LNINGIROD)
[LTS o enm— N 0 :
’ i g
9
. T 4
1] 4
. :
L T 4
[" 4
9 L
‘ SININOIROI-ANS .
= T Awvm01 1980 4 1cLev * d
. L
: ’ - .o
] fex -3¢ 4
k.) — ININOGRO? $:.03n) 4
- . WIY3 .‘Ir -
o 3741VNV TL R
ND1S30 "
- 13431-40; ‘
L - N
.. ,
= =Y. SO STIARENCS .S L SIS Sy SN B S N SR~ S S X $€1)0 y
a Qn ARLCELTEREL ‘nly neS:133r0ad ! o
b