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'Preface

Earlier in this study, the emphasis was on under-

standing the occurrence of oscillatory instabilities
~in finite difference approximations fortwo-dimensional

transient heat conduction(diffusion). The Peaceman-

Rachford alternating direction implicit (ADI) finite

difference method (FDMTH) was of special interest.

As 'the computer programs for the various FDMTHs were

debugged and data began to accumulate, the emphasis

shifted to the accuracy of the FDMTHs. The Crank-

Nicholson implicit FDMTH proved to be the most accurate

of the methods considered and the Peaceman-Rachford ADI

FDMTH the least accurate.

N Dr. Bernard Kaplan's guidance and encouragement

throughout this study were always timely and effective.

Special thanks are due Dr. W. Kessler of the Air Force

Materials Laboratory for sponsoring this research project.

I am especially indebted to my wife, Madalene, and our

three children who have survived my master's thesis.

T. Sidney Chivers, Jr.
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P 'Abstract

The two-dimensional transient heat conduction

(diffusion) equation was solved using the fully explicit,

fully implicit, Crank-Nicholson implicit, and Peaceman-

Rachford alternating direction implicit (ADI) finite

difference methods (FDMTHs). The general stability

condition for the same FDMTHs was derived by the matrix,

coefficient, and a probabilistic method. The matrix,

coefficient, and probabilistic methods were found to be

equivalent in that each lead to the same general stability

condition. Oscillatory behavior of the fully explicit

FDMTH was as predicted by the general stability condition.

Though the Crank-Nicholson implicit and the Peaceman-

Rachford ADI FDMTHs were expected to be unconditionally

stable, unstable oscillations were observed for large

sizes of time step. For large numbers of time steps

and sizes of time steps for which all FDMTHs considered

are stable, the Crank-Nicholson implicit FDMTH is the

more accurate.

viii



I. Introduction

Background.

Finite difference methods are useful in obtaining

solutions for engineering problems involving partial

differential equations that cannot be solved in closed

form. Because finite difference methods approximate

the true solution, their competent use requires an

understanding of discretization errors and the stability

condition. The discretization error is the combined

effect of round-off and truncation due to the "limitation

on the number of significant figures carried by a

computer" (2:20) and the truncation of higher order

Taylor series terms in developing the finite difference

approximations of partial differentials (2:20),

respectively. The stability condition defines parameter

regions in which the finite difference method remains

stable for large numbers of time steps. The coefficient

method (15,16,12:283), the matrix method (20:60-68), and

the Fourier method (19) are the more common methods of

deriving the stability condition. A probabilistic

method of deriving the stability condition is suggested

by the work of Kaplan (10).

1
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Problem Statement.

The. primary objectives of this study were to

understand instability in finite difference methods

and be able to predict when oscillatory behavior would

occur. Secondary objectives were to compare the various

methods of deriving the stability condition, and compare

finite difference methods on the basis of discretization

error and stability.

Scope.

This study was limited to two-dimensional transient

heat conduction(diffusion) in a rectangular region.

The finite difference methods considered were the

fully explicit, fully implicit, Crank-Nicholson implicit,

and Peaceman-Rachford alternating direction implicit.

The matrix, coefficient, and probabilistic methods of

deriving the stability condition were considered.

4
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General Approach.

Computer programs were developed to solve the

two-dimensional transient heat conduction(diffusion)

problem by either the fully explicit, fully implicit,

Crank-Nicholson implicit, or Peaceman-Rachford

alternating direction implicit finite difference method.

The thermodynamic and mathematical aspects of the

stability of finite difference methods were researched.

The stability condition for the general two-dimensional

finite difference approximation of transient heat

conduction(diffusion) was derived by the matrix,

coefficient, and probabilistic methods. Computer

programs developed were run for selected time increments

and nodal array sizes to develop data for comparison

of finite difference methods, and to assess the

validity of the stability condition derived for the

general finite difference method.

-U,.

-o, ... . . .



Sequence of Presentation.

Finite difference methods are discussed in the

next section. The matrix methods used are described

in Section III. The theory of stability analysis is

detailed in Section IV. Computer methods and other

procedures used are described in Section V. Results

are summarized in Section VI with graphic results appended.

Acronyms.

Two acronyms will be used throughout the remainder

of this thesis. FDMTH(s) will represent finite difference

method(s), and ADI will represent alternating direction

P implicit. These acronyms are necessary for brevity.

Using these acronyms, the Peaceman-Rachford alternating

direction implicit finite difference method becomes the

Peaceman-Rachford ADI FDMTH.

0.'
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II. Transient Heat Conduction(Diffusion)

by Finite Differences

The two-dimensional transient heat conduction

(diffusion) problem considered in this study is described

by the following initial-boundary value problem.

3T 3 2T a2T
L- = [-+.-] (la)

at 3x2  By2

T(O,y,t) T(l,y,t) = T(x,O,t) T(x,l,t) = 0 (ib)

T(x,y,O) = sinrxsinry (ic)

where'T is for temperature, a is the thermal diffusivity,

x and y are spatial dimensions, and t is for time. The

analytic solution, derived at Appendix A, is

T(x,y,t) = exp[ -a(m 2 lr2 + n 2 W2 )t

sin (mix) sin (niry) (1d)

In the following, the two-dimensional finite difference

approximation of transient heat conduction(diffusion)

is developed from two basic difference equations, the

first forward difference and the second central difference.

Error analysis is discussed in the final sub-section.

"%" 5
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The General Finite Difference Approximation.

Approximating the time derivative in equation (1)

by a first forward difference and the two spatial

derivatives by second central differences, the finite

difference approximation of two-dimensional transient

heat conduction (diffusion) becomes

T(i,j,k+l) - T(i,j,k)

At

a[ T(i+l,j) - 2T(i,j) + T(i-l,j) I

(Ax) 2

a [ T(i,j+1) - 2T(i,j) + T(i,j-1) ]
+ 2 (2).: (A y)

where the subscripts i, j, and k are used to identify

the node location and time step. Figure 1 depicts a

spatial domain discretized by imposing a 5 by 5 array

of nodes over the domain so that, for equation (2),

*- i = 0,1,2, ... 5-1 and j = 0,1,2, ... 5-i. For a

general m by n nodal array, i = 0,1,2, ... m-i and

"= 0,1,2, ... n-1.

6



Figure 1. A 5 by 5 Nodal Array Imposed
over the Domain of a Square
Surface

To simplify notation, a common practice is to use nodal

labels that indicate the locations of nodes relative to

the node ( i,j ) as illustrated in Figure 2 where

TE T(i+l,j) (3)

TW  T(i-l,j) (4)

TN - T(i,j-1) (5)

T T(i,j+l) (6)

Tp T(i,j) (7)

7
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TN

-T T *TE

T

Figure 2. Relative Labelling
of Nodes

Equation (2) now simplifies to

T k+l Tk ciAtTp _ T
t l) 2 TE 2Tp Tw

AAXt

+ T N  2T - Ts (8)
(6y)

The temperatures on the right side of equation (2)

represent a mean temperature between time steps (15:28),

fTk+l +(1f)Tk

Te e T e e e(9)

where f e is some weighting factor.

. . . , . . . . . . . . . .

:'."2 - , .-2,.: -,, .,;°.2 - --.-:i-i -• : •... ..- .::: . : ; .,_• • .i --i: ;,}, - -,}.8-



From equations (8) and (9), the general two-dimensional

FDMTH for transient heat conduction(diffusion) becomes

Tk+l - k

p p

-At r k+1 -f T k f T + (1_ w k
(Ax) 2 IfETE + ( E Ek+l k

2f- T - 2(1-fPwT'j
P EW P

af f+T k+l (1,fN)TNk + fT k+, (-f)T k
(Ay) 2 fNN N S"S  S  S

-k+l 2( )Tk1  (10)S2fPNsTP  - 1-fPNS

Figure 3 indicates the relative locations of the

temperatures in equation (10). Values of fe can be

varied to reduce equation (10) to a specific finite

difference method. Table 1 lists values of f for_ e
the fully explicit, fully implicit, Crank-Nicholson

implicit, and Peaceman-Rachford ADI FDMTHs.

9
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t x

Tk~l /

Tk+l T ~
/1 E

k+/!

Ts

Tk
N

k 1/ k

/ P

T S

Figure 3. Relative Position of Nodes, or
Temperatures, of the Generalized
Two-dimensional Finite Difference
Approximation of Transient Heat
Conduction (Diffusion)
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Table 1

Weighting Factors for the Generalized

Finite Difference Approximation of

Transient Heat Conduction (Diffusion)

FDMTH fN s fNs

Fully Explicit 0 0 0 0 0 0

Fully Implicit 1 1 1 1 1 1

Crank-Nicholson
Implicit

Peaceman-Rachford ADI

for Odd Time Steps 0 0 0 1 1 1

for Even Time Steps 1 1 1 0 0 0

i, 11
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Fully Explicit FDMTH.

'K The two-dimensional fully explicit FDMTH is

explicit in both spatial dimensions. This FDMTH assumes

nodal temperatures for time t prevail until time t + At

(15:56). From equation (10) and Table 1, the equation

for the fully explicit FDMTH for transient heat

conduction (diffusion) is

k+l k aAt k k k

(Ax)

aAt
kx~ k k

+ 27(TN( -T+T
'Ay)

or

k ~ Atk +k ctt k k
= (Ax) 2(Tk T + 2A Tk)

+ "[ 2aAt 2cAt 1 k
(Ax) 2  (Ay) 2 p

Figure 4 is the mnemonic for the fully explicit FDMTH.

12
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I
I0

"."."I / A

(A"yI / Ay) 2

_ _ 'CI _ _

2--"I ' /

2c:" t tc At

(Ax)Ax2 (/
(Ay)x)

Figure 4. Mnemonic for the Fully Explicit
FDMTH
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Fully Implicit FDIITH.

The two-dimensional fully implicit FDMITH is

* .implicit in both spatial dimensions. This FMTH assumes

nodal temperatures at time t change immediately to

temperatures for time t + At which prevail throughout

the time step. From equation (10) and Table 1, the

equation for the fully implicit FDMTH for transient

heat conduction(diffusion) is

Tk+1 k T ct Tk+1 2T k+l k+l
TP PT A2 E - +W

cit k+1 k+1 k+1
T y) 2T~ + Ts (13)

or

[2aA t 2QAt 1 k+l[ + (AX) 2  + -(y)2 T

ciAt (Tk+1 +Tk+1 ciAt (Tk+1 k+1

-2 ~x E TW ) - y 2(TN +S

T Tk (14)

Figure 5 is tle mnemonic for the fully implicit FDMTH.

14
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OZ. -.

t

"" -cAt

(AY 2i / lay)

2aAt 2aAt /
(1. i+ + 2) /

(AX) 2 Ay)

-aAt "-At

2 / I .)2(AX) (AX)'-"/ I
: / I

-aAt I
2

(Ay)2  I

I

Figure 5. Mnemonic for the Fully Implicit
FDMTH.
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*Crank-Nicholson Implicit FDMTH.

The two-dimensional Crank-Nicholson FDMTH assumes

- *.nodal temperatures change linearly from their value at

time t to their value at time t + At. From equation

(10) and Table 1, the'equation for the Crank-Nicholson

*implicit FDMTH for transient heat conduction(diffusiol)

is

(Ax) At

[1 ~~~ (AY)2 jT1

cit k+1 k+1 Il k+1 k+1

(Ax)(TE +Tj (y 2 (TN +T S

caft caft 1
- ~~ (Ax)2  (Ay)2]T

ciAt k k caft k k
+ 7- T % T) + 2 (TN TS) (15)

r Figure 6 is the mnemonic for the Crank-Nicholson

implicit FDMTH.

16



-'A

S 2
At.-aAt

1+ 2 ) 2

(ax) 2 +ay 2 //

-tAt - - ' °-7-At

2 (Ax) / 2(Ax) 2

7. I

-At

2 I aAt
2 (AY) . 2 (Ay) 2

2(Ax)2 (Ay/

aft axt

( 1-# - ._ _

S(Ax) 2  (Ay)
cz~t 7~

-2(Ay) 2

Figure 6. Mnemonic for the Crank-Nicholson
Implicit FDMTH
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Peaceman-Rachford ADI FDMTH.

The Peaceman-Rachford ADI FDMTH is a two step

method. In the first step, nodal temperature changes

are implicit with respect to one spatial dimension and

explicit with respect to the other. In the second

time step, the explicit/implicit roles of the two

spatial dimensions are reversed. From equation (10)

and Table 1, the equations for the Peaceman-Rachford

ADI FDMTH for transient heat conduction(diffusion) are

[I + T 2k+1 ( Y.T 2k+l T2k+1
7l&Ax72] P 030) 2 (E +W

[- 2 IT 2k c~t 2k + 2k) (16)
+A) P 2 (TN4 S

and

2aAt 2k+2 - aAt 2k+2 2k+2
[1 ( 2 ITP CAy)2 (TN +T 5 S

2aAt 2k1aAt 2k1 k+
T 1 2 k+ 2 E +T )k~ (17)

Figures 7 and 8 are the mnemonics for the Peaceman-

Rachford ADI FDM4TH.

18



t

y/

OLzAtaAt ( 1+ (A )/ / . cA

(Ax) 2 (Ax)

/ II2
/ /A,

I I aAt

21

I A(Ay)

I /

1/
e- - •

/ iAt
/ (1

(Ay) .7

Figure 7. Mnemonic for the first step of the
Peaceman-Rachford ADI FDMTH

:" (Implicit in the x-direction)
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Li cAt

aAt

(A(Ay2

caft /~
2 2

(AX) AX

(AX)

Figure 8. Mnemonic for the second step of the
Peaceman-Rachford ADI FDMTH
(Implicit in the y-direction)
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Error Analysis.

The discretization error is the sum of the round-off

error and the truncation error. The round-off error is

dependent on the largest number of digits that can be

represented in a computer's memory and the number of

computations needed to obtain a solution. The truncation

error is due to the truncation of higher order terms of

the Taylor series representation of differentials in

* approximating the differentials by finite differences

(2:20). Table 2 lists the order of truncation error

expected with the fully explicit, fully implicit,

Crank-Nicholson implicit, and Peaceman-Rachford ADI

FDMTHs. In this study, the discretization error, ERR,

is computed as the difference between the FDMTH and

analytic solution temperatures, or

k~l k+lERR W TF.J TR (18)e e

where Tk+l is the FDMTH temperature of node e at time
e

k+1step k+l and TRe is the analytic solution temperature

of node e at time step k+l.

Numerical stability, another aspect of error analysis

of FDZ4THs, is discussed in Section IV.

21
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Table 2

Order of Truncation Error of

Selected Finite Difference Methods

FDMTH Order of the

Truncation Error

Fully Explicit At + (Ax) 2 + (Ay)
2

2 2

Fully Implicit At + (Ax) + (Ay)

Crank-Nicholson"-"Implicit (At) 2+(Ax) 2+(Ay)2

Peaceman-Rachford ADI

for Odd Time Steps At + (Ax)2

for Even Time Steps At + (Ay)2

22



III. Matrix Methods

Matrix methods are used to solve the simultaneous

equations that result when applying any FDMTH that is

partially or fully implicit, such as the fully implicit,

Crank-Nicholson implicit, and Peaceman-Rachford ADI

FDMTHs. The matrix equivalent of the general FDMTH

equation, equation (10), is

A.Tk+l Tk (19)
;- A T (T9

where the coefficient matrix A is as shown in Figure 9.

For example, the coefficient matrix for a 5 by 5 nodal

array imposed over a square domain for the initial-

boundary value problem (1), may be represented as

a -b 0 -c

-b a -b 0 -c

0 -b a 0 0 -c

-c 0 0 a -b 0 -c

-c 0 -b a -b 0 -c

-c 0 -b a 0 0 -c

-c 0 0 a -b 0

-c 0 -b a -b

-c 0 -b a (20)

23
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I: W.

where the elements not shown are zero valued and

a 1 + 2cat[l-f MAX)2 + 2aAt[l-f ]/(Ay) 2

EW NS

a"- a a2,2 a n,n (21)

b - At(l-f x)/(Ax)2  = fE =fw

= a =a =a
1,2 2,3 n-l,n

= a 2  = a n,n-1 (22)2,1 3,2 = a -

c =aAt(l-f) IAy) 2  fy N

= a,M a2 ,M+l = .= an-M,n

=a aM a,M,l M+,2= = an,n- M  (23)

These type matrices are referred to as banded because

all non-zero elements are within a band of n diagonals

centered on the principal diagonal of the coefficient

matrix. The width of the band is dependent on the array

size used and the order in which the interior nodes are

numbered. For example, if the interior nodes of a 8 by 4

nodal array are numbered from left to right and top to

bottom, as in Figure 10, then the coefficient matrix is 13.

25



If the interior nodes of the same array are numbered top

to bottom and left to right as in figure 11, then the

bandwidth is 5. In general, the bandwidth, BW can be

defined as

BW = 2m - 3 (24)

for an m by n nodal array if the interior nodes are first

numbered along the dimension corresponding to m.

i " 1 2 3 4 5 6

z I 1 1.0 1.1 12

Figure 10. Interior Nodes of a
8 by 4 Nodal Array
Numbered Left to Right
and then Top to Bottom

t 6 8 1.0 1.2

I

Figure 11. Interior Nodes of a
8 by 4 Nodal Array
Numbered Top to Bottom
and then Left to Right

26
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If the coefficients in the two outer diagonals are all

- zero, as is the case for the Peaceman-Rachford ADI FDMTH,

then the matrix is tridiagonal and a solution can be

obtained by the Thomas method (3:46-48). An iterative

process such as the method of Guass-Sidel (18:40-41)

- will solve the general form of the coefficient matrix.

The Givens-Householder transformation can be used to

-reduce the general form to a tridiagonal coefficient

matrix (14:85-115,22:901-914).

27

Mr

. ..

. ...



[- IV. Theory of Stability Analysis.

Instability in finite difference methods can be

considered caused by either violation of the first or

second laws of thermodynamics (4), or use of an unstable

numerical process. This study concentrates on the

mathematical stability of FDMTHs. Oscillations of the

* - same order of magnitude as the true solution are regarded

as phenomenon characterizing marginal stability of FDMTHs.

In the following, the matrix method (20:60-68), coefficient

method (15,16,12:281-283), and the probabilistic method

of deriving the stability condition will be described and

two-dimensional forms presented.

Matrix Method.

" - A matrix equation for the general FDMTH for two-

dimensional transient heat conduction(diffusion) is

A T = A' Tk (28)

where the coefficient matrices A and A are as described

in Appendix A. Equation (28) can be rewritten as

[I+ (A-I) T k+l [ .I+ (A-I) ]Tk (29)

.. The stability condition is determined by examination of

*the eigenvalues of [I+(A'-I)I. The general FDMTH stability

28



condition for tao-dimensional transient heat conduction

(diffusion), derived at Appendix A, is

i (1-fx )  (1-fy

K UAt[ (Ax) 2 + (Ay)2 ]J< (30)

where fx = fE = fw and fy = fN = S " Table 1 depicts

the values of f e for the FDMTHs studied.

The Coefficient Method.

Descriptions of the coefficient method by Meyer

(12:281-283) and by Patankar (15,16) differ only in

k+l ksymbology. Each considers the ratio, X, of T to T

as an indicator of stability. When X is negative, the

FDMTH is unstable. Table 3 gives the ranges of X

associated with the four types of stability of FDMTHs.

Figure 12 depicts the finite difference stability curves

for transient heat conduction(diffusion) in a square

region with one interior node. The stability condition

derived by the coefficient method is the same as the

stability condition derived by the matrix method

(See Appendix B).

2
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Table 3

X for the Four Possible Types of Behavior of FDMTHs

for Transient Heat Conduction(Diffusion)

in a Rectangular Region with One Interior Node

(20:282)

)L>I Steady, unbounded growth. Tk+l has

the same sign as Tk and is larger

in magnitude.

I>X>0 Steady decay. Tk+ l has the same sign

k
as T and is smaller in magnitude.

0>X>-i Stable oscillations. Tk+l has the

opposite sign as Tk and is smaller in

magnitude.

X>-i Unstable oscillations. Tk+l has the

opposite sign as Tk and is larger in

magnitude.
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Fully Implicit

a=1.0O a=2.0

.X=O. 5
Crank-Nicholson Implicit

Fully Explicit

UFigure 12. Finite Difference Stability Curves
for Transient Heat Conduction
(Diffusion) in a Square Region with
One Interior Node

att
a = -

(Ax) 2
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The Probabilistic Method.

The-probabilistic method is suggested by the works

of Kaplan (10), Haji-Sheikh and Sparrow (8), and Collins

. (5). By considering the coefficients of the general

FDMTH to be probabilistic, a stability condition can be

derived. The derivation of the stability condition by

the probabilistic method for the general FDMTH for

transient heat conduction(diffusion) is included as

Appendix C. The stability condition derived by the

probabilistic method is the same as the stability

condition derived by the matrix and coefficient methods.

Summa

All methods of stability analysis are equivalent

in that each lead to the same stability condition,

(- (-f
Q +At(x2  + y < ( (33)I~Ax) lAY) 2
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V. Procedures

Computer System.

The data in this study is from programs executed

on the Harris 500 computer of the Air Force Institute

of Technology.

Computer Programs.

Programs EXPLI, IMPLI, and PRADI were written for

execution of the fully explicit, fully implicit and Crank-

Nicholson implicit, and Peaceman-Rachford ADI FDMTHs,

respectively. The Guass-Sidel method was used in IMPLI

and the Thomas method was used in PRADI. Band storage,

see Appendix F, was used to minimize memory requirements.

Error Analysis.

The four FDMTHs studied were compared on the basis

of truncation error and stability. Truncation error was

computed as the difference between the FDMTH temperature

and the analytic temperature. The analytic temperature

was computed from the analytic solution derived at

Appendix A. Stability was studied by counting the number

of oscillations about the true solution and noting occur-

rences of instability. Only data for those nodes along

4 the diagonal from the northwest corner of the rectangular

region to its center, see Figure 13, were considered.
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-nodes for which data is collected)

Figure 13. Nodes for which Data Would be Collected
for a 11 by 11 nodal array.

Stability Conditions.

The stability condition for the general FDMITH for

two-dimensional transient heat conduction(diffusion) was

derived by the matrix method, the coefficient method,

and the probabilistic method. The stability condition

was used to select the program input parameters for

execution of the various FDMTHs.

34
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VI. Results

Most of the data collected in this study is at

Appendix E. The following summarizes the results of this

study.

Stability.

Applicability of the general stability condition,

described in Section IV, was verified for the fully explicit

and fully implicit FDMTHs.. Though the Crank-Nicholson

implicit and Peaceman-Rachford ADI FDMTHs were expected

to be unconditionally stable, some unstable osc .latory

behavior was observed for large time steps. Unstable

i oscillations for the fully explicit FDMTH were typically

as depicted in Figure 14. Unstable behavior of the

Crank-Nicholson implicit and Peaceman-Rachford ADI FDMTHs,

for large time steps, is illustrated by figures 15 and

16 through 18, respectively. Edge effects, stable oscil-

lations for nodes near corners, were observed for all

FDMTHs. Edge effects for the fully implicit FDMTH are

r represented by Figure 19, where the number of oscillations

for each node is represented by a number in the same

relative position as the position of the node in the

nodal array.

- .
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10 10

5 5

0

Analytic Solution

-- 5

-10 -10

0.1 0.2 0.3 0.4 0.5

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 14. Unstable Oscillations for the Fully Explicit
FDMTH for a 21 by 21 Nodal Array. Elapsed
Time is 0.08. Time Step is 0.01. Number of
Iterations is 8. K = 8.
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4 4

Analytic Solution

2~2-

0

-4 -4

0.1 0.2 0.3 0.4 0.5I I !I

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 15. Unstable Oscillations for the Crank-
Nicholson Implicit FDMTH for a 11 by 11
Nodal Array. Elapsed Time is 0.3. Time
Step is 0.1. Number of Iterations is 3.K, = 10..
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0.50 0.50.

-0 5 __ _ _ _ _ _ _ _ _ _ _ _ 0.25

Analytic Solution
is less than 1x1O

00.0

-0.25.

--0.5 -0.50.

f-0,75-0.75
0.1 0.2 0.3 0.4 0.5

X, DISTANCE FROM4 THE WEST FACE OF THE RECTANGULAR REGION

Figure 16. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal Array.
Elapsed Time is 2. Time Step is 1. Number
of Iterations is 2. Kc 900.

38



- - •...

0.50 0.50

5 0.25

i AnalyticSolution 17

is less than lxlO-

0.00

0 5-0.25

-- 0.5-0.50

'i -0.75 -0.•75

.- 0.1 0.2 0.3 0.4 0.5

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 17. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal Array.
Elapsed Time is 4. Time Step is 1. Number
of Iterations is 4. = 900.
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1.0 1.0.

0.5 0.5-

I 0.

//. 0.0-

Analytic Solution
EA is approximately zero

-0. -0.5-

-. E-.

-1.0 -1.0

0.1 0.2 0.3 0.4 0.5

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 18. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal Array.
Elapsed Time is 6. Time Step is 1. Number
of Iterations is 6. K 900.
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Discretization Error.

The Crank-Nicholson implicit FDMTH has the smallest

discretization error for large numbers of time steps.

The fully explicit FDMTH is the next most accurate FDMTH

for large numbers of time steps. The fully implicit

FDMTH has a positive discretization error for large

I numbers of time steps that is larger than the discret-

ization error for the Crank-Nicholson implicit FDMTH..

For a sufficiently small time step, the discretization

errors of the fully explicit and fully implicit FDMTHs

are nearly equal. For large numbers of time steps,

the Peaceman-Rachford ADI FDMTH is the least accurate

of the FDMTHs studied. The Peaceman-Rachford ADI FDMTH

has a negative discretization error that not significantly

improved by either decrease in time step size or increase

in nodal density. Figure 20 is a comparison of all FDMTHs

-studied for a time step size of 0.0025 and an elapsed

time of 1.
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LEGEND 1
-o- Fully Explicit FDMTH
-0- Fully Implicit FDMTH
-V- Crank-Nicholson Implicit FDM

4 - Peaceman-Rachford ADI FDMTH 4
-'-Analytic Solution

o~ 3 3
.;. I0

r 2 2

* 0.2 0.3 0 4 0.5

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 20. Comparison of FDMTHs for a 11 by 11 Nodal
Array.. Elapsed Time is 1. Time Step is
0.-0025. Number of Iterations is 400.
K = 0.5 for the Fully Explicit FDMTH.
K = 0.25 for the Crank-Nicholson and Peaceman-
Rachford ADI FDMTHs.
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Execution Time.

Data on the execution times of the different FDMTHs

was not collected. In general, the fully implicit and

Crank-Nicholson implicit FDMTHs were slower because of

the use of the Guass-Sidel method of solution. Figures

21 and 22 depict the number of Guass-Sidel iterations

required for the fully implicit and Crank-Nicholson

implicit FDMTHs, respectively, for a 11 by 11 nodal array

and differing size and number of time steps.
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50 50
0DT=l

~40 40
0~ ~DT=O. 1

E-i 3030

-20 2
0

E -10 10
0.2 0.4 0.6 0.8 1.0

E-0III

ELAPSED TIME

Figure 21. Number of Guass-Sidel Iterations Required per
Time Step for the Fully Implicit MTH for a
11 by 11 Nodal Array.

50 50-
04 0 DT=1

~40 40-

~30 30

I~I DT=0.1
-20 20

H DT=0.001
1~ ~ 0 10

0.2 0.4 0.6 0.8 1.0

ELAPSED TIME

Figure 22. Number of Guass-Sidel Iterations Required per
Time Step for the Crank-Nicholson Implicit
FMITH for a 11 by 11 Nodal Array.

45



"" .. . " " " . . . .. . . - , t " - " - -- m ' ".* . . . . . . . . . "

o I

VII. Discussion

All FDMTHs considered gave unrealistic results for

a time step of 1 when the maximum initial temperature,

TINIT in programs EXPLI, IMPLI, and PRADI; a, the thermal

diffusivity; and the dimensions of the rectangular region

were equal to 1. The order of the truncation error for

all FDMTHs, per Table 2, is also 1 when the size of the

time step is 1. The observed unrealistic results for

a time step of 1 are probably due to discretization error

rather than the type of numerical instability addressed

by the stability condition.

-. The accuracy of all FDMTHs improved with decrease in

the size of the time step and/or increase in nodal density.

The accuracy of FDMTHs, relative to each other, remained

as suggested by the order of the truncation error as long

as the size of the time step was small enough for the

FDMTHs considered to remain stable. The Peaceman-Rachford

ADI FDMTH was the least accurate of the four FDMTHs

considered for large numbers of time steps when compared

to stable FDMTHs using a common size of time step and

nodal array size.

Figures 2i and 22 suggest that the fully implicit

and Crank-Nicholson implicit FDMTHs require fewer Guass-

Sidel iterations per time step for smaller time step sizes.
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VIII. Conclusions

Stability.

The general stability condition correctly predicts

the onset of instability for the fully explicit FDMTH.

The fully implicit FDMTH is always stable, as expected.

The Crank-Nicholson implicit and Peaceman-Rachford ADI

FDMTHs, expected to be unconditionally stable, are

• unstable for large time step sizes for the initial-

boundary value problem studied.

Accuracy.

For sizes of time step satisfying the general

stability condition for all four of the FDMTHs considered

for large numbers of time steps, the Crank-Nicholson

implicit FDMTH is the most accurate FDMTH and the

Peaceman-Rachford ADI FDMTH the least accurate for the

initial-boundary value problem studied.

Complexity.

The simplest FDMTH algorithm was that of the fully

explicit FDMTH.

* Stability Condition.

Derivation of the general stability condition by

either the matrix method, coefficient method, or proba-
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bilistic method leads to the same result,

K< (34)
(AX 2  Ay) 2

Further, while a FDMTH may be stable when the general

stability condition predicts instability, the accuracy

of a FDMTH, such as the Peaceman-Rachford ADI FDMTH, is

significantly improved if the size of the time step is

one for which the general stability condition predicts

stability.
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IX. Recommendations

Use of This Thesis.

This thesis should be used as a reference or starting

point for future studies of FDMTHs to encourage the study

of three-dimensional FDMTHs and FDMTH modelling of nuclear

effects.

Follow-on Studies.

A follow-on study is needed to better define the

regions of stability for two-dimensional FDMTHs, possibly

in a manner similar to Table 3 and Figure 12 of this study.

Another study should consider FDMTH solution of a

different initial-boundary value problem having a damped

analytic solution.

The use of graded spatial grids should be considered

as a method of reducing edge effects.

4
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APPENDIX A

Analytic Solution of the Initial-Boundary Valu~e Problemn for

Two-Dimensional Transient Heat Conduction (Diffusion)

An initial-boundary value problem describing two-

dimensional transient heat conduction(diffusion) for a

rectangular region is

BT T2  T2
Cc= (A-la)

at 8X2  ay 2

T(Ojyjt) =T(a,y,t) =T(x,O,t) =T(x,b,t) =0 (A-lb)

T(x,y,O) =sinirxsinrry (A-ic)

where T is for temperature, a is the thermal diffusivity,

x and y are spatial dimensions, and t is for time.

* - The solution for T(x,y) follows.

Let T(x,y,t) = F(x,y)G(t),

then aT/at = ~T FG t' a2 T/ax Txx =xG

and aT/a y =_Ty = F yyG.

Now, FG t = x cdYY +FGI

or G t/G=X a[F x IF + F y/F].
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Let F(x,y) H(x)Q(y), then F = H Q, and F = HQxx xx yy yy

X = a[H Q/HQ + HQ /HQ] = [H /H + Q /Q]
xx yy .xx yy

)/ctH xx/H+Q yy/Q

Solve H /H= for H.
xx

[D2 - C]H = 0 H = e1sinhV-E= 82cosh/-C.

'Applying the boundary condition H(0) = 0

0 = 82coshO 82 = 0, or H = 81sinh/--,

or H = 1 sin~- (by the trigonometric identity:
sinh/flu = sin f }

Applying the boundary condition H(a) = 0

0 = aisin/r' -+ mn = a/' -= m2CM 2 /a2 , m=0,1,2,

or

H = aisin[mwx/a]

Similarly, Q = aisin[nny/b]

or F = 1asin[mwx/a]sin[nwy/b]
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When solving for Q, it is also found that

nir = 7- Fb -7 n2W 2/b2= X/ - ,

or a = (n 21 2 /b 2 + ) = c(n 2 "I2/b 2 + m2ir 2 /a 2)

- Solving Gt/G = X, for G,
t

X [D- 2iG = 0 G = fexp[a(m 2rr2/a2 + n 2ir 2 /b 2 )]t

or,

T(x,y,t) C exp[ -(m 2i 2 /a 2 + n2W 2/b2 )t]sin[mwx/alsin[nny/b].
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APPENDIX B

Matrix Method Derivation of the Stability Condition for

the Two-Dimensional Finite Difference Approximation of

Transient Heat Conduction (Diffusion)

The general two-dimensional finite difference

approximation of transient heat conduction(dif fusion) is

Tk+1 T k fzT k+1 1f)
PP 2 [ET E Ek

(Ax)E (f)T

+fwT ' (1-fw)T

-2f~ T~~ - 2(1-fp )T~
PEW PE P

caft k+1 k
+ 2~ fNTN (1-f )TN
CAy)

k+1 k I+fsT (1-f )T5

k+1 k
-2f T -2(1-fe )T~ (B-1)

~NS ~ NS
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or

aTk+l bTk+l k+l k+l _k+lSP E bTW - CTN CTS

ak b'k ,k ,k k
= aTp + WT + bT w + cOTk + c'T S  (B-2)P E W N S

2aAtf 2aAtfx y
where a = 1++

2 2(Ax) (Ay)

2aAt (l-f x  2aAt (l-fy
a'(Ax) 2(Ay)2

2b = aAtf x/(Ax)

b' = aAt (1-f (Ax)

C = aAtfy/(Ay)2

ycI = aAtll-f y} (Ay) 2

and f= fE f fP
~EW

and fy= fN fs fPNS

The matrix equivalent to equation (B-2) is

' k+1 Tk

A = A'T . (B-3)

or as depicted on the next page.
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a -b ...- c Tk+ 1
k1

-b a -b .. -cT l

k+ 1*-b a -b -c. -

-C
-C

*-b a -b

-c . . -b a Td

a' -b' . . -c'

-b' a' -b' *.*-c ITc
2

-b' a' -b' .*.-c' 3

=-CI -cl

* (B-4)

-b' a' -b'

-clTk
-b' al mdl

4 The eigenvalues of A' are equal to the eigenvalues of

[ I ( ' - ) . ( ' -I )is the coefficient

matrix of the finite difference representation of the

boundary value problem
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XT =T T + T yy(B-5)

T(O.,y) =T(1,y) =T(X,O) =T(x,l) =0

Solving for T,

T(x,y) =F(x)G(y)

T F FGxx xx

T =FG
yy yy

or 'XFG=F G+FG X -F IF=G /Gs xx yy s XX yy

-F Gxx ~x

F + ~= = G

-F + (X -OF 0xx s

2[D + ( -x )IF =0 ,let X

F81 sinh' iix + a2sinh/-in'

F(O) =0 =8 2coshO -~82 =0

F =8 1sinhv'-nx

F (1) = 0 6,asinA~'"+~V' sir

F ai~sin(srx)
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for G &G= 0, as for F,
yy

G =aisin (tiry)

and T =C sin(srx) sin(snry)

Let T =sin(sirx) sin tWry).

A finite difference representation of equation (B-1)

is

b'T(i+1,j) -2b'T(i,j) +b'T(i-1,j)

* + c'T(i,j+1) -2c&T(i,j) +c'T(i,j-1) X XT(i,j) (B-6)

or as shown on the next page.
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mirsi mir s rvirtj
b'sin[ - + - I sin[ -I

H m N

mirsi nirtj
-2b'sin[ -]sin[

M N

mirsi mir s nirtj'
+ b'sin[ - -- ]sin[-

m m N

mir si nlrtj flit
.c' sin[ - 1 sin[ - +-I

m N N

mirsi nirtj
0' - 2c'sin[ -]sin[ -]

H N

mwTsi nirtj nirt
+c'*sin[ -Isin[ --- ]

H N N

mirsi nirtj
x ~ sin[ sin[ (B-7)

H N
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Using the trigonometric identity,

sinacosB h sin'c+B) + sin(a-a)

and dividing through by sin (mirsi/M) sin (nfftj/N), equation*

(B-7) reduces to

2b'cos[mRrs/M] -2bI + 2c'cos[rnrt/N] -2c' =X (B-B)
5

By the trigonometric identity,

2
sin a = (1-cos2a)

equation (B-B) reduces to

= * 2 2X -[b sin (mirs/2M) + c'sin (nInt/2N) (B-9)
5

For equation (B-9) to be stable, must have that

1I[b'i (mnrs/2M) + c sin (nnt/2N)

(B-10)

or

b'i2  2
-1 < 1 4- b~i (mvrs/2M) + c'sin (nnrt/2N) I (B-11)

.2
or, since sin a <1.

> b' + c' (B-12)

Or, the general stability condition is

(11-f
K At[ 2 h . (B-13)

(AX) (AY)
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APPENDIX C

Coefficient Method Derivation of the Stability Condition

for the Two-Dimensional Finite Difference Approximation of

Transient Heat Conduction (Diffusion)

The general two-dimensional finite difference

approximation of transient heat conduction(diffusion) is

as given in Appendix B, equation (B-i), or

k+1 k+i k+l k+i k+1
(1+2p+2q)T~ - pT E -PTw - qT~ N qT S

k k k + k~ k

PJ- +qI. PIT E PI qIT qWT (C-i)

where p = cAtf/(x

Vq = cAtf /(Ay) 2

y
fI =f =lf =f/Ax

yy

f x = kf . kW= f PE

The ratio of T k1to T k , X, from equation (C-i) is

4 'i2p'-2') k+i + T k+i ( k+i k+i
A- ~~pq, + IT ~T

(i+2p+2q) (i+2p+2q)

,IT k Tk ) + qI T k + k~ E + T)(N + T)
+ (C-2)

(1+2p+2q)
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Both Myers and Patankar consider only the case of a single

interior node so that TE Tw TN Ts 0. For a single

interior node,

1-2p'-2q'
(C-3)

1+2p+2q

The stability curves predicted by (C-3) are depicted

in Figure C-1. The general stability condition can be

derived from equation (C-3) as follows:

.1 -2ditt(l-f )/Ax - 2ctAt(1-f M Y

2 (C-4)2
1 - 2ctAtf /(AX) + 2aAtf/(y2

x y

For stability, X must be positive. The denominator of

equation (C-6) is always positive, so only the numerator

need be considered further. For stability then

0 4 1 -2caft(1-f )(Ax) 2 - 2aft (1-fy)(AY) 2

or

2 2
* ~~X ct(1f)(AX) + (1 fy)MAY)I

Or, the general stability condition is

ctt (1___ (-f f C5

(AX) 2 (Ay)2
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a=1.0 a=2.0

Crank-Nicholson Implicit
X=O. 5 

rn-ih

ulEx ~licit

Figure C-i. Finite Difference Stability Curves
for Transient Heat Conduction
(Diffusion) in a Square Region with
One Interior Node
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APPENDIX D

Probabilistic Method Derivation of the Stability Condition

for the Two-Dimensional Finite Difference Approximation of

Transient Heat Conduction (Diffusion)

The general two-dimensional finite difference approxi-

mation of transient heat conduction(diffusion) is as given

in Appendix B, equation (B-1). Let pk+le be the probability

of node P attaining the potential(temperature) of node. e

at time t -iAt, then

pk+l 1 * (D-1)

_k+l = AtfE/(W) (Ax) (D-2)

Sk+1 = aAtfw/(W) (Ax) 2 (D-3)
YW (D3

k+1 AtfN/(W)AY) 2  (D-4)YNN

Sk+1 = aAtf /(W) ay) 2  (D-5)
S

[ - 2aAt(l-fP w/Ax) - 2cAt(1-fP s/Ay) 2]
Pk =EW NS

PP W
(D-6)

P = At(lf/ (W) (Ax) 2  (D-7)

S At (1-f) /(W) (Ax)2  (D-8)
W

- At (1-f)/ (W) (Ay) 2 (D-9)

PS =aAt(l-f / (W) (D-10)
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ad2 2(D1)

"and W = 1 + aAtf /(Ax) + aAtf /(Ay) . (D-11)p p
PEW PNS

Using the probabilistic coefficients defined on the

previous page, the general FDMTH becomes

Pk+lk+l = k+l k+l k+l k+l k+l k+l k+l k+lPp"' E TE +P T +P +P

PW TW +N N S S

,"+-k k +k k +k k 'pk k + k k
-ETE + PWTw + PNTN + PsTs Pp .(D-12)

As long as all f are less than or equal to 1, the onlye~k
probabilistic coefficient that might be negative is Pp

Since negative probabilities are not realistic, the

following stability condition is inferred.

(-f (-f
1- 2aAt[ 2 + > 0 (D-13)

(Ax) (Ay)

or

(1-f (1-f
K E aAt[ 2 +  ]  < , (D-14)

(Ax) (Ay)

where

f =f =f :1
x E W PEw

fy f N fS f PNS

Equation (D-14) is the general stability condition for

the two-dimensional finite difference approximation of

transient heat conduction(diffusion).
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APPENDIX E

FDMTH Data

The volume of data generated in this study was too

great to graphically protray all of it. The data preser-ted

in this appendix represents most of the more significant

data collected and not previously described in Section VI,

Results.

List of Figures.

Figure Page

E-1-1 Unstable Oscillations for the Peaceman-
Rachford ADI-FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 10. Time Step
is 1. Number of Iterations is 10.

E-1-2 Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 20. Time Step
is 1. Number of Iterations is 20.

E-2-1 Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 6. Time Step is
1. Number of Iterations is 6.

E-2-2 Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.2. Time Step
is 0.01. Number of Iterations is 20.

E-2-3 Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 1. Time Step is
0.001. Number of Iterations is 1000.
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Figure Page

• E-2-4 Comparison of FDMTHs for a 11 by 11 Nodal
'Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.1. Time Step

*is 0.0001. Number of Iterations is 1000.

E-2-5 Comparison of FDMTHs for a 21 by 21 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 2. Time Step is
1. Number of Iterations is 2.

E-2-6 Comparison of FDMTHs for a 21 by 21 Nodal
Array Imposed Over a 1 by 1 RectangularRegion. Elapsed Time is 0.01. Time Stepis 0.0001. Number of Iterations is 100.

* E-3-1 Number of Oscillations by Node for the
Peaceman-Rachford ADI FDMTH for a 11 by 11
Nodal Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.5. Time Step
is 0.0001. Number of Iterations is 5000.

E-3-2 Number of Oscillations by Node for the
Crank-Nicholson Implicit FDMTH for a 21 by
21 Nodal Array Imposed Over a 1 by 1
Rectangular Region. Elapsed Time is 0.01.
Time Step is 0.0001. Number of Iterations
is 100.

Acronyms.

The following acronyms are used in the figures of this
appendix.

ANALY Analytic Solution

EXPLI Fully Explicit FDMTH

IMPLI Fully Implicit FDMTH

CNICH Crank-Nicholson Implicit FDMTH

PRADI Peaceman-Rachford ADI FDMTH
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-2 -2

0.1 0.2 0.3 0.4 0.5

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure E-1-1. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 10. Time Step
is 1. Number of Iterations is 10.
KC 900.
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5 5

.0. 0-

Analytic Solution
is approximately zero

-5

-10 -10

0.1 0.2 0.3 0.4 0.5
I I

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure E-1-2. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 20. Time Step
is 1. Number of Iterations is 20.
K= 900.
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1. "EIMPLI
1.0 A* CNICH 1.0

-4 PRADI

0.5 0.5-

/00.0

Analytic Solution is
approximately zero

--0.5 -0.5

-1.0 -1.0

0.1 0.2 0.3 0.4 0.5

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure E-2-1. Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 6. Time Step is
1. Number of Iterations is 6.
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Figure E-2-2. Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.2. Time Step
is 0.01. Number of Iterations is 20.
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* LEGEND
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0.1 0.2 0.3 0.4 0.5SIII I

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure E-2-3. Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 1. Time Step is
0.001. Number of Iterations is 1000.
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Figure E-2-4. Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.1. Time Step is
0.0001. Number of Iterations is 1000.
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Figure E-2-5. Comparison of FDMTHs for a 21 by 21 Nodal
Array.Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 2. Time Step is
1. Number of Iterations is 2.
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X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure E-2-6. Comparison of FDMTHs for a 21 by 21 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.01. Time Step
is 0.0001. Number of Iterations is 100.
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APPENDIX F

Use of Band Storage to Reduce Computer Program

Memory Requirements for Coefficient Matrices

This appendix presents, by example, the use made of

band storage for storage of banded coefficient matrices

characteristic of the fully implicit, Crank-Nicholson

implicit, and Peaceman-Rachford alternating direction

implicit (ADI) finite difference methods (FDMTHs).

For an m by n nodal array imposed over a rectangular region,

application of any of the forementioned FDMTHs results in

a banded coefficient matrix. For the Peaceman-Rachford ADI

FDMTH, the resulting coefficient matrix is tridiagonal.

For the fully implicit and Crank-Nicholson implicit FDMTHs,

the resulting coefficient matrix has a band width of 2M-1

or 2N-1 depending on the order in which the nodes are

numbered. M = m - 1 and N = n - 1. The variables M and

N are introduced for a convenience in coefficient subscript-
I

ing described later. The remainder of this appendix is

concerned with the coefficient matrices of the fully

implicit and Crank-Nicholson implicit FDMTHs. The coeffi-

cient matrix of the Peaceman-Rachford ADI FDMTH may be band

stored with minor modifications to the following.

1Alan Jennings, Matrix Computations for Engineers and
Scientists, (London: John Wiley and Sons, Inc., 1977)

pp. 95-96.
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The coefficient matrix is dimensioned MDL by MDL

for the fully implicit and Crank-Nicholson FDMTHs where

MDL = (M-4) times (N-i). In the nodal array is, for

example, 31 by 31, then M = N = 30 and the coefficient

matrix is 841 by 841. By taking advantage of the banded

nature of coefficient matrices for the fully implicit and

the Crank-Nicholson FDMTHs; and, noting that, when using

the Guass-Sidel solution technique, no use is made of the

zero-valued coefficients not within the banded portion of

the coefficient matrix; the coefficient matrix can be

represented by a band storage array dimensioned (2M-1) by

MDL. For a 31 by 31 nodal array, the band storage array

is dimensioned 59 by 841, or less than one tenth of the

size of the coefficient matrix that it replaces, dimensioned

841 by 841. The following example illustrates the

application of band storage.

Consider the coefficient matrix for the fully implicit

FDMTH for a 5 by 5 nodal array, shown in Figure F-1, where

coefficients not shown are zero-valued and outside the

band of interest. In this case, M = N = 4 and the band

width is 7. If zeros are added to the band of Figure F-1

so that the band resembles a parallelogram as shown in

04 Figure F-2, then a new coefficient matrix of dimension

7 by 9 can be defined whose nonzero elements would be as

depicted in Figure F-3.
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a11  a12  a13 a14

a a a a aa21  22 23 a2  25

a31 a32 a3 3 a34 a35 a36I a4 1 a42 a4 3 a44 a4 5 a46 a47

a52 a53 a54 a55 a56 a57 a58

a6 3 a64 a65 a6 6 a67 a68 a69
V'.

a74 a7 5 a76 a77 a78 a79

. a8-5 a8 6 a87 a88 a89

a9 6 a97 a98 a99

Figure F-i. A Coefficient Matrix for a 5 by 5 Nodal Array

0 0 0 a11 a12 a13 a14

0 0 a21 a22 a23 a24 a25

0 a31 32 33 34 35 36

a41 a42 a43 a44 a45 a46 a47

52 53 54 55 56 57 58

a63 a64 a65 a66 a67 a68 a69

a74 a75 a76 a77 a78 a79 0

a 85 a86 a87 a88 a89 0 0
a a a 0 0 0
96 97 98 99

Figure F-2. Augmented Coefficient Matrix for a 5 by 5
Nodal Array.
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b41  b51 b61  b71

* b32 b4 2 b52 b6 2 b72

b23  b3 3  b43  b53  b63 b73

b1 4  b2 4  b34  b4 4  b54  b64  b74

b15 b25 b 35 b45  b55 b65 b75

b 16  b 26  b 36  b 46  b,56  b 66  b 76

b17  b27  b37 b4 7  b57 67

b18  b b b b
is 28 38 48 58
b19  b29  b39 b40

Figure F-3. Coefficients of Interest in Band Storage

The form of band storage represented by Figure F-3

is perferred because it maintains the node to matrix row

subscript relationship (i.e. coefficients bi4 result from
i.i4

application of a FDMTH at node 4). A general form of the

band stored coefficient matrix is as depicted in Figure

" F-4.

Figure F-4 also illustrates the reason for introducing

the variables M and N. Without M atd N, the coefficient

b would become b2 ,m_1 and coefficients on the main

diagonal would become bml1i, where i = 1,2, .... M and

N are used because the result-ing subscripts Of *the band

are preferred.
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