AD-A124 846 ACCURACY OF FINITE DIFFERENCE METHODS FOR SOLUTION OF 172
THE TRANSIENT HEAT.. (U) AIR FORCE INST OF TECH
WRIGHT-PARTTERSON AFB_OH_SCHOOL OF ENGI.. T S CHIVERS

UNCLASSIFIED FEB 83 AFIT/GNE/PH/83M-3 . F2 /1.

12/1 NL




'
"
1
d
b
o
r
3

S

.

'
O

«!..11
.....\11|~4. ..11
i 5T .W‘a . .-u- ST

Ty
I A
\

1
\

. 4
-
-

"
.
- aw

333 mmmnuum

2 =l

=

) Ty

u
s et

X

-

MICROCOPY RESOLUTION TEST CHART

- NATIONAL BUREAU OF STANDARDS-1963-A

I

N

ey
N
Lt S,
-

Gl i )
RIS
.
'4
|
H
\




C3
.

Y

ST AIR UNIVERSITY
.0 UNITED STATES AIR FORCE

ACCURACY OF FINITE DIFTERENCI NETHODS
FOR SOLUTION OF THE TRALSILLT
KEAT CCNDUCTION(DIFFUSION) ZIZIQUATION

—_ ) . P ORI S A A Sr il
S N N i , guiac st
2 o . L2 N agane - N
;
v ‘.

THESIS

G

i

~ SCHOOL OF ENGINEERING ¢ DG

This ﬁmmmpuw
for p trelease and sale; its

distribution is unlimited.

FEB 2 4 1983

A

WRIGHT-PATTERSON AIR FORCE BASE, OHIO

sy i

§ FILE copy



AFIT/GNE/PH/83M-3

ACCURI‘CY OF FINITE DIFFERENCE METHODS
FOR SOLUTION OF THE TRANSIENT
HEAT CONDUCTION (DIFFUSION) EQUATION

DTIC

@.‘ELECTEQ;,
THESIS \; FEBZ4 1983 A
4 P
W £
. .
AFIT/GNE/PH/83M-3 T. Sidney Chivers, Jr.
Capt USA/OrdcC

Approved for public release; distribution unlimited.

*




-----
.....

«

g P T,
Rl . e

ATV E R

r e A
CAR AN S B

¢ Sttt T

......

- e
.............................

...........
....................

........
..............

ACCURACY OF FINITE DIFFERENCE METHODS
FOR SOLUTION OF THE TRANSIENT
HEAT CONDUCTION (DIFFUSION) EQUATION

THESIS

‘Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University

Iﬁ Partial Fulfillment of the

Requirements for the Degree of
Master of Science TNTTS Geakl
™I TAR

U »asunced

[ S

i Ayl

—y

Accession Tor

Jsti®ication. 2

R ——— |

P .~',<,_.____J |

1

|

farivuting

? Aol il ity Codes
wingd for

ZT;H‘ Ty e m]
by i {;E, f
! !

T..Sidney Chivers, Jr., B.S.
Capt USA/OrdC
Graduate Nuckéar Engineering

January™1983

Approved for public release; distribution unlimited.

o R ~ o
......
PURE WY B AT

P

20




Preface

Earlier in this.study, the emphasis was on under-
standing the occﬁrrence of oscillatory instabilities
in finite difference approximations for two-dimensional
transient heat conduction(diffusion). The Peaceman-
Rachford alternating direction implicit (ADI) finite
difference method (FDMTH) was of special interest.
As the computer programs for the various FDMTHs were
debugged and data began to accumulate, the emphasis
" shifted to the acéuracy of the FDMTHs. The Crank-
Nicholson implicit FDMTH proved to be the most accurate

of the methods considered and the Peaceman-Rachford ADI

FDMTH the least accurate.

Dr. Bernard Kaplan's guidance énd encouragement
throughout this study were always timely and effective.
Special thanks are due Dr. W. Kessler of the Air Force
Materials Laboratory for sponsoring this research project.
I am especially indebted to my wife, Madalene, and our

three children who have survived my master's thesis.
T. Sidney Chivers, Jr.
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- ‘ ' . ' Bbstract

s

The two-dimensional transient heat conduction'

EIR2 0.. ‘..‘ -l“ "_
Pt tsta 3"

(diffusion) equation was solved using the fully explicit,

fully implicit, Crank-Nicholson implicit, and Peaceman-

.
pvtaeusy

'Rachford alternating direction implicit (ADI) finite

oo r

& - . difference methods (FDMTHs). The general stability

. condition for the same FDMTHs was derived by the matrix,

-
iva
a.

-4

coefficient, and a probabilistic method. The matrix,

‘_.,a A

i)
1 A

coefficient, and probabilistic methods were found to be

ALK wg
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"

equivalent in that each lead to the same general stability

condition. Oscillatory behavior of the fully explicit

arit,

FDMTH was as predicted by the genéral stability condition.

&
LRI N

‘t' " " Though the Crank-Nicholson implicit and the Peaceman-

Rachford ADI FDMTHs were expected to be unconditionally

-0, Sy fud® f"‘;!

2"2%a";

stable, unstable oscillations were observed for large

L3
.‘-l

sizes of time step. For large numbers of time steps
and sizes of time steps for which all FDMTHs considered

e are stable, the Crank-Nicholson implicit FDMTH is the

' more accurate. \
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I. Introduction‘

Background.

\\\D Finite difference methods are useful in obtaining

- solutions for engineering problems involving partial

differential'equations that cannot be solved in closed
form. Because finite difference methods approximate
the true solution, their competent use requires an

X ’

understanding of’discregigggigp‘eypprs and the stability

—

g T ST T .

cbndition.. The discretization error is the combined.r~

effect of round-off ‘and truncation due to the "limitation

on the number of significant figures carried by a

computer” (2:20) and the truncation of higher order

Taylor series terms in develobing the finite difference
approximations of partial differentials (2:20),
respectively. The stability condition defines parameterl
regions in which the finite differenee method remains
stable for large numbers of time steps. The coefficient
method (15,16,12:283), the matrix method (20:60-68), and
the Fourier method (19) are the more common methods of
deriving the stability condition. A probabilistic
method of deriving the stability condition is suggested

by the work of Kaplan (10).
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Problem Statement.

The. primary objectives of this study were to

understand instability in finite difference mefhods

and be able to predict when oscillatory behavior would

occur. Secondary objectives were to compare the various
methods of deriving the stability'condition, and compare
finite difference.methods on the basis of discretization

error and stability.

- Scope.

This.study was limited to two-dimensional transient
heat conduction(diffusion) in a rectangular region.
The finite difference methods considered were the
fuliy explicit, fﬁlly implicit, Crank-ﬁicholson implicit,
and Peaceman-Rachford alternating direction implicit.
The matrix, coefficient, and probabilistic methods of

deriving the stability condition were considered.




............................

........

General Approach.

Compufer programs were developed to solve the
two-dimensional transient heat conduction(diffusion)
problem by either the fully explicit, fully implicit,
Crank-Nicholson implicit, or Peaceman-Rachford
alternating direction implicit finite difference method.

The thermodynamic and mathematical aspects of the

sfability of finite difference methods were researched.
‘i : - The stability condition for the general two-dimensional
1 finite difference approximation of transient heat
.conduction(diffusion) was derived by the matrix,
éoefficieﬁt, and probabilistic methods. Computer
programs developed were run for selected time increments

and nodal array sizes to develop data for comparison

of finite difference methods, and to assess the
validity of the stability condition derived for the

general finite difference method.
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‘Sequence of Presentation.

'

Finite difference methods are discussed in the

next secfion. The matrix methods used are described
in Section III. The theory of staﬁility analysis is
‘detailed in Section IV. ‘Computer methods and other
- procedures used are described in Section V. Results

are summarized in Section VI with graphic results appended.

Acronyms.

Two adronymé will be used fhroughout the remainder
of this thesis. FDMTH(s) will represent finite difference
method(s), and ADI will represent alternating direction
"implicit. These- acronyms are necessary for brevity.
Using these acronyms, the Peaceman-Rachford alternating
direction implicit finite difference method becomes the

Peaceman-Rachford ADI FDMTH.
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II. Transient Heat Conduction(Diffusion)

by Finite Differences

The two-dimensional transient heat conduction
(diffusion) probiem considered in this study is described

by the following initial-boundary value problem.

oT 92T 327 :

_— = ] —+ —] (la)

at x?  ay? ‘
T(0,y,t) = T(l,y,t) = T(x,o,t) = TP(x,1,t) =0 {1b)

T(x,y,0) = sinmxsinmy - (1c)

where 'T is for temperature, o is the thermal diffusivity,
' x and y are spatial dimensions, and t is for time. The

analytic solution, derived at Appendix A, is

T(x,y,t) = expl -a(m2n? + n?n?)t ]

sin(m7x) sin(n7ny) (14)

In the following, the two-dimensional finite difference
approximation of transient heat conduction(diffusion)

is developed from two basic difference equations, the
first forward difference and the second central difference.

Error analysis is discussed in the final sub-section.
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The General Finite Difference Approximation.

Approximating-the time derivative in equation (1)
by a first forward difference and the two spaﬁial
derivatives by second central differences, the finite
difference approximation of two-dimensional transient

heat conduction(diffusion) becomes

T(i,j,k"’l) - T(iljlk)
At -
al T(i+1,j) - 2T(i,j) + T(i-1,3) ]
(Ax)2
al T(i,j+1) - 2T(i,j) + T(i,j-1) 1
+ 5 (
(ay)

where the subscripts i, j, and k are used to identify
the node location and time step. Figure 1 depicts a
spatial domain discretized by imposing a 5 by 5 array
of nodes over the domain so that, for equation (2),
i=2,1,2, ... 5-1 and j =0,1,2, ... 5-1. For a
general m by n nodal array, i = 0,1,2, ... m-1 and

j= 0’1,2' ee 0 n-1.
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Figure 1. A 5 by 5 Nodal'Array Imposed
over the Domain of a Square _

Surface

To simplify notation, a common practice is to hse nodal
labels that indicate the locations of nodes relative to

the node ( i,j ) as illustrated in Figure 2 where

TE = T(i+l1,3) (3)

Ty = T(i-1,3) (4)

TN = T(i,j-1) (5)

Tg = T(i,j+1) _ (6)

T, = T(i,3j) | ' | (7)
1




.T LT .T

Figure 2. Relative Labelling
of Nodes

Equation (2) now simplifies to

T§+1 - T’; alt
——[ T, - 2T, - T

A (Ax)

w ]

alAt

+ (T. - 2T - T_ ] (8)
(Ay)i N P S

The temperatures on the right side of equation (2)
represent a mean temperature between time steps (15:28),
k+1

- _ k
Te = feTe + (1 fe)Te (9)

" where fe is some weighting factor.




.........
........................................

From equations (8) and (9), the general two-dimensional

FDMTH for transient heat conduction(diffusibn) becomes

]
n

aldt ‘
k+1 _ k k+1 _ k
(Ax)2 [fETE + (1 fE)TE + fWTW + (1 fw)'rw

k+1 _ - ymk
2f T 2(1 fP lTP

PEw ) 4 EW }

aAt
k+1 k k+1 k
+ (Ay)2 [fNTN + (1 fN)TN + fSTS + (1 fs)T

k+1 k
-2f, T - 2(1-f )T (10)
PNS P PNS ?]

Figure 3 indicates the relative locations of the
temperatures in equation (10). Values of fe can be

varied tc reduce equation (10) to a specific finite

difference method. Table 1 lists values of fe for

te ':‘

'

s the fully explicit, fully implicit, Crank-Nicholson
%; implicit, and Peaceﬁan-Rachford ADI FDMTHs.
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Temperatures, of the Generalized
Two-dimensional Finite Difference
Approximation of Transient Heat
Conduction (Diffusion)
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Table 1

Weighting Factors for the Generalized

Finite Difference Approximation of

Transient Heat Conduction (Diffusion)

FDMTH bd £ f £ f f

| E W Ppw N s Pys
Fully Explicit 0 0 0 0 0 0
Fully Implicit- 1 1 1 1 1 1
Crank-Nicholson

Implicit % X X X % X

Peaceman-Rachford ADI
for 0dd Time Steps 0 0 0 1 1 1

for Even Time Steps 1 1 1 0 0 0
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Fully Explicit FDMTH.

The two-dimensional fully explicit FDMTH ié
explicit in both spatial dimensions. This FDMTH assumes
nodal temperatures for time t prevail until time t + At
(15:56). From eguation’(lO) and Table 1, the equation
for the fully explicit FDMTH for transient heat

conduction(diffusion) is

_ "
k+1 x _ ¢ k k k
Tp = - Tp = ——3(Tg - 2Tp + Ty )
(Ax)
aAt o
+ — T]; - 2T’I§ + T‘S‘ ) (11)
(Ay)
or
alAt alAt
T’;” = —3 ('r]é + T]v<1) + —s (T]I; + T]s<)
(Ax) _ (Ay) © .
20t 20At K
+ |1 - - Tp (12)

(ax)?  y?

Figure 4 is the mnemonic for the fully explicit'FDMTH.

12




T, HOOORATEO
.
Y
X
1
. [ J
i
]
|
I
1
: alAt
l (ay) 2
l [ ]
| /
|
alAt | / alAt
(bx) 2 7 (Ax) 2
W/ :
[ J——, [ [ ]
/A
/S
/// 2aAt 20At
(1 - - )
aAt 2 2
-/ (4x) ¢ (ay)
T

Figure 4. Mnemonic for the Fully Explicit
FDMTH
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Fully Implicit FDMTH.

The two-dimensional fully implicit FDMTH is
implicit in both spatial dimensions. This FDﬁTH assumes
nodal temperatures at time t change immediately to
temperatures for time t + At which prevail throughout
the time step. From equation (10) and Table 1, the
equation for the fully implicit FDMTH for transient

heat conduction(diffusion) is

alt k+1 k+1

k+1 k k+1
T -T. = —( T - 2T + T )
P P 0x)2 E P W
adt
+ s okt - apktl gkl g
(ay)
or
At oAt
1+ + Tt
@ x) Ay)
| uAt (k1 4 gkt ald t (Tk+1 + TK¥1,
2''E L o2 S
A x) ay)
= k
= X (14)

Figure 5 is t*e mnemonic for the fully implicit FDMTH.

14




B
P

o

5
(ay) \ /

-alAt

(ay) 2

T—-—
I
I
I
1
|
l
|
|
I
|
]
|
I
¢

1

Figure 5.

Mnemonic for the Fully Implicit
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Crank-Nicholson Implicit FDMTH.

The two-dimensional Crank-Nicholson FDMTH assumes
nodal temperatﬁres change linearly from their value at -
time t to theirvvalue at timé t + At. Ffom equation
(10) and Table 1, the equation for the Crank-Nicholson
implicit FDMTH for transient heat éonduction(diffusion)

is

aAt aAt Kk+1
1 + 5 + 5 TP
(Ax): (Ay)

alAt oAt
S 2(Tl]§+1 N T:;"'l) _ 2(T§+1 N T1§+1)
(Ax) : (Ay) :
/
_ L - alAt _ aldt Tk
o ap?] F
alAt alAt
+ ————E(Tg + T;) + ————§(T§ + Tg) (15)
(Ax) (ay)

Figure 6 is the mnemonic for the Crank-Nicholson

implicit FDMTH.

16




t oy
| : -alAt
X PY 2
/  2(4y)
alAt alAt /, .
(1 + 3 + 3 )
(8x) N 7
- ¢ L ° o_
alAt /| aldt
2 (ax) 2 ya 2 (Ax) 2
|
7 |
. |
-alt -
— 1 aldt
2 (8y) | 2
0 _.Z(AY)
| /
A
v -/
alAt ) /// ' aAt
2(A:‘<)2 l//' '?éAx)z

J/ alt abt
(1- - )
/ x)%  (ay)?

aAt }//

2(Ay) 2

| Figure 6. Mnemonic for the Crank-Nicholson
Implicit FDMTH
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Peaceman-Rachford ADI FDMTH.

The Peaceman-Rachford ADI FDMTH is a two step

A i A Y " i
R e et Ce .
M I [ S P

4 method. In the first step, nodal temperature changes
!! are implicit with respect t6 one spatial dimension and
= | explicit with respect.tb the other. In the second

- ' time step, the explicit/implicit roles of the two

q. spatial dimensions are reversed. From equation (10)

.- .
- . and Table 1, the equations for the Peaceman-Rachford

ADI FDMTH for transient heat conduction(diffusion) are

20At aAt
p2k+l p2k+1

2k+1
(1 + -] ( + T )
wa? P )2 E W
20At aldt
= [1 - legk + Z(Tgk + Tgk) (16)
(Ay) (Ay) :
and
208t op40 adt  ox+2 2k+2
P L —— G
(Ay) (ay)
2aAt aldt | §
+ +
= - —1t s (2l 4 g2ty 9
(Ax) (Ax)

"Figures 7 and 8 are the mnemonics for the Peaceman-

Rachford ADI FDMTH.
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alAt .///’//
(Ay)2 i
Figure 7. Mnemonic for the first step of the

Pedceman-Rachford ADI FDMTH
(Implicit in the x-direction)
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Figure 8. Mnemonic for the second step of the
Peaceman-Rachford ADI FDMTH
(Implicit in the y-direction)
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Error Analysis.

The discretization error is the sum of the round-off
error and the truncation error. = The round-off error is
dependent on the largest number of digits that can be

represented in a computer's memory and the number of

computations needed to obtain a solution. The truncation
error is due to the truncation of higher order terms of
the Taylor series representation of differentials in
approximating the differentials by finite differences
(2:20). iéble 2 lists the order of truncation error
expected with the fully explicit, fully implicit,
Crank-Nicholson impliéit, and Peaceman-Rachford ADI

' FDMTHs. In this study, the discretization error, ERR,
is computed as the difference between the FDMTH and
analytic solution temperatures, or

ok+l  _ k+1

TR ' (18)

ERR = e e

k+1 is the FDMTH temperature of node e at time

e
step k+1 and TR§+1

where T
is the analytic solution tgmperature
of node e at time step k+l.

Numerical stability, another aspect of errot analysis

of FDMTHs, is discussed in Section IV.
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Table 2

Order of Truncation Error of

Selected Finite Difference Methods

FDMTH Order of the

Truncation Error
Fully Explicit At + (Ax)2 + (Ay)2
. s 2 2

Fully Implicit At + (Ax)" + (Ay)

Crank-Nicholson 2 2 2
Implicit (At)© + (Ax)” + (Ay)

Peacéman-Rachford ADI
for 0dd Time Steps At + (Ax)2

for Even Time Steps At + (AY)2




-------- -
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III. Matrix Methods

Matrix methods are used to solve the simultaneoﬁs
equations that result when applying any FDMTH that is
partially or fully implicit, such as the fully implicit,
Crank-Nicholson implicit, and Peacemah-Rachford ADI
FDMTHs. The matrix equivalent of the ggneral FDMTH
equation, equation (10), is

A pk+l  _ ok (19)

= I

where the coefficient matrix A is as shown in Figure 9.

. For example, the coefficient matrix for a 5 by 5 nodal

array imposed over a square domain for the initial-

boundary value problem (1), may be represented as

r a -b 0 -c

-C 0 -b a 0 0 -c
-Cc 0 0 a =-b 0
-c 0 -b a =-b

- =c 0 -b a (20)
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g- " where the elements not shown are zero valued and

gi a = 1 + 2aAt[1-fP ]/(Ax)2 + 2aAt[1—fP ]/(Ay)2
- ' ' EW NS
\ - a1’1 = a2'2 =T e = an'n (21)
= - 2 = _
b = aldt(1l fx)/(Ax) . £ fE = fw
= al,z = a2,3 S e = n-lpn
= a1 = 3,2 = ++- =35 1 {(22)
= - 2 - =
c = oalAt(1l fy)/(Ay) ‘ fy = fN = fs
= al’M = az,M+1 = e =an-M'n
® 3M,1 T %+1,2 T T 3,n-M (23)

These type matrices are referied to as baﬂded because
all non-zero elements are within a band of n diagonals
centered on the principal diagonal of the coefficient
matrix. The width of fhe band is dependent on the array -

size used and the order in which the interior nodes are |

numbered. For example, if the interior nodes of a 8 by 4

nodal array are numbered from left to right and top to

bottom, as in Figure 10, then the coefficient matrix is 13.
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If the interior nodes of the same array are numbered top
™ to bottom and left to right as in figure 11, then the"
&E - bandwidth is 5. In general, the bandwidth, BW can be
- - " defined as
g | BW = 2m - 3 - - (24)
ﬁ for an m by n nodal array if the interior nodes are first
- numbered along the dimension correspondiﬁg to m.

\ .. Y 2 % v 5 &
Ll z q g 1.° 1.1 1.2 .
& Figure 10. Interior Nodes of a
.. 8 by 4 Nodal Array
7 - Numbered Left to Right
" and then Top to Bottom
= S T I B S B
" * g E § e 100 1.2
e

Figure 11. Interior Nodes of a
8 by 4 Nodal Array
Numbered Top to Bottom
and then Left to Right
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If the coefficients in the two outer diagonals are all
zero, as is the case for the Peaceman-Rachford ADI FDMTH,
then the matrix is tridiagonal and a solution can be

obtained by the Thomas method (3:46-48). An iterative

process such as the method of Guass-Sidel (18:40-41)
will solve the general form of the coefficient matrix.
ﬁ' : ' The Givens-Householder transformation caﬁ be used to
-reduce the genéral form to a tridiagonal coefficient

matrix (14:85-115,22:901-914).
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IV. Theory of Stability Analysis -

Inséability‘in finite difference methods can be
"considered caused by either violation of the first or
second laws of thermodynamics (4), or use of an unstable
numerical process. This study concentrates on the
mathematical stability of FDMTHs. Oscillations of the
same order of magnitude as the true solution are regarded
as'phenomenoh characterizing marginal stability of FDMTHs.
In the following,.the matrix method (20:60-68), coefficient
-methAd (15,16,12:281-283), and the probabilistic method
of deriving the stability condition will be described and

two-dimensional forms presented.

Matrix Method.

A matrix equation for the general FDMTH for two-

dimensional transient heat conduction(diffusion) is

ATl o e oK (28)

]
where the coefficient matrices A and A are as described

in Appendix A. Equation (28) can be rewritten as

(z+@a-1) 1% = [r+at-nirk (29)

The stability condition is determined by examination of

the eigenvalues of [I+(A'-I)]. The general FDMTH stability




[SPEL LA,

" condition for two-dimensional transient heat conduction

(diffusion), derived at Appendix A, is

a-f) a-g)
(ax)2  (ay)?

kK = altl ] < Kk (30)

where fx = fE = fw and fy = fN = fS . Table 1 depicts

the values of fe for the FDMTHs studied.

The Coefficient Method.

Descriptions of the coefficient method by Meyer
(12:281:283) and by Patankar (15,16) differ only in
symbology. Each considers the ratio, A, of Tk+1 to Tk
as an indicator of stability. When A is negative; the
FDMTH is unstabie. Table 3 gives the ranges of A
associated with the four types of stability of FDMTHs.
Figure 12 depicts the finite difference stability curveé
for transient heat conduction(diffusion) in a square
region with one interior node. The stability condition
derived by the coefficient method is the same as the

stability condition derived by the matrix method

(See Appendix B).
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Table 3

A for the Four Possible Types of Behavior of FDMTHs

for Transient Heat Conduction(Diffusion)

in a Rectangular Region with One Interior Node

(20:282)

A>1 Steady, unbounded growth. Tk+1 has

the same sign as Tk and is larger

in magnitude.

1>A>0 Steady.decay. Tk+1 has the same sign

as 7% and is smaller in magnitude.
. . k+1 '

0>A>-1 ~ Stable oscillations. T has the
opposite sign as Tk and is smaller in
magnitude.

: . k+1
A>=1 ‘ Unstable oscillations. T has the

opposite sign as Tk and is larger in

magnitude.
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A\
Fully Implicit
a=2.0
L A=0.235
Crank-Nicholson Implicit

- Fully Explicit
; «
i! Figure 12. Finite Difference Stability Curves
& for Transient Heat Conduction

(Diffusion) in a Square Region with
{ One Interior Node
?f ' alt
e _ 2 e 2
S | (Ax)
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The Probabilistic Method.

The~probabilis£ic method is suggested by the works
of Kaplan (10), Haji-Sheikh and Sparrow (8), ahd Collins
(5). By considering the coefficients Qf the general
FDMTH to be probabilistic, a stability condition can be
derived. The derivation of the stability condition by
the probabilistic method for the general FDMTH for
trénsient heat conduction(diffusion) is included as

Appendix C. The stability condition derived by the

- probabilistic method is the same as the stability

condition derived by the matrix and coefficient methods.

Summary.

All methods of stability analysis are equivalent

in that each lead to the same stability condition,

(l-fx) . (l-fy)

(8x)2  (Ay)?

kK = oabt( 1 < % . (33)
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V. Procedures

Computer System.

The data in this study is from programs executed
~on the Harris 500 computer of the Air Force Institute

of Technology.

Computer Programs.

Programs EXPLI, IMPLI, and PRADI were written for

execution of the fully explicit, fully implicit and Crank-

rﬁ Nicholson implicit, and Peaceman-Rachford ADI FDMTHs,

S
[

respectively. The Guass-Sidel method was used in IMPLI

Py
i

2
ams

"1 and the Thomas method was used in PRADI. Band storage,

-

see Appendix F, was used to minimize memory requirements.

Error Analysis.

The four FDMTHs studied were compared on the basis

of truncation error and stability. Truncation error was

computed as the difference between the FDMTH temperature

and the analytic temperature. The analytic temperature

was computed from the analytic solution derived at
Appendix A. Stability was studied by counting the number
of oscillations about the true solution and noting occur-
rences of instability. Only data for those nodes along

the diagonal from the northwest corner of the rectangular

region to its center, see Figure 13, were cecnsidered.

&i 33
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(* - nodes for which data is collected)

Figure 13. Nodes for which Data Would be Collected
for a 11 by 11 nodal array.

Stability Conditions.

The stability.condition for the general FDMTH for
two-dimensional transient heat conduction(diffusion) was
derived by the matrix method, the coefficient method,
and the probabilistic method. The stability condition
was used to select the program input parameters for

execution of the various FDMTHs.
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VI. Results

Most of the data collected in this study is at
Appendix E. The following summarizes the results of this

study.

Stability.

Applicability of the general stability condition,
described in Section IV, was verified for,the fully explicit
and fully implicit FDMTHS . . Though the Crank-Nicholson
implicit and Peaceman-Rachford ADI FDMTHs were expected
to be unconditionally stable, some unstable osc:illatory
behavior was observed for large time steps. Unstable

- oscillations for the fully explicit FDMTH were typically
as depicted in Figure 14. Unstable behavibr ofbthe
Crank-Nicholson implicit and Peaceman-Rachford ADI FDMTHs,
for large time steps, is illustrated_by figures 15 and
16 through 18; respectively. Edge effects, stable oscil-

lations for nodes near corners, were observed for all

FDMTHs. Edge effects for the fully implicit FDMTH are

represented by Figure 19, where the number of oscillations

E , for each node is represented by a number in the same
: - relative position as the position of the node in the

nodal array.
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L -5 =54
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| ) | i

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 14. Unstable Oscillations for the Fully Explicit
FDMTH for a 21 by 21 Nodal Array. Elapsed
Time is 0.08. Time Step is 0.01. Number of
Iterations is 8. « = 8.
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Analytic Solution

T,
RTEAL 3 T

CRT RO A
I TR PR R PR TRTRY

TEMPERATURE (10™ %)

0.1 0.2 0.3 0.4 0.5
4 b 1 3 {

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 15. Unstable Oscillations for the Crank-
Nicholson Implicit FDMTH for a 11 by 11
Nodal Array. Elapsed Time is 0.3. Time
Step is 0.1. Number of Iterations is 3.
k = 10.
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"0-50 0-504
- 0L 25 0.25]
Analytic Solution_,.
is less than 1x10
0.0p /
» 0.004
g
2
.NF-o.z . -0.25 ]
:
L -0.50 -0.50)
F‘ | -0.75 =0.75,
5 0.1 0.2 0.3 0.4 0.5
L_:-—;‘ 1 1 L 1 2
X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION
Figure 16. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal Array.

Elapsed Time is 2. Time Step is 1. Number
of Iterations is 2. «x = 900.
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Analytic'Solution_17
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g _-0.5 -0.50 -
3]
--0075! -0.75 -
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- 0.1 0-2 0.3 0-4 0.5
>, [ /] 4 I i

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 17. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal Array.
Elapsed Time is 4. Time Step is 1. Number
of Iterations is 4. «k = 900.

AR 0 AR AT

DO P4ty

39

SIS < ey

[y

e T e T T e e e T N T e e e A e
w eyt T m L T T T Tl T e T A L ) e e cuv e TR T S P - ST
LIPLIPLEPLIG B LIS SN A SR S SISO PN, B S SRS S T . S, SRS P S, P, S S R T ™ P




1.0-
O.Sﬁ
/ 0-0-
g Analytic Solution
E is approximately zero
g' -0. -0.5_
5]
(]
- -100 . -1.0-

0.1 0.2 0.3 0.4 0.5
1 1 L 1

-

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 18. Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal Array.
Elapsed Time is 6. Time Step is 1. Number
of Iterations is 6. «k = 900.
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Discretization Error.

The Crank-Nicholson implicit FDMTH has the smallest
discretization error for large numbers of time steps.
- The fully explicit FDMTH is the next most accurate FDMTH
for large numbers of time steps. The fully implicit
FDMTH has a positive discretization error for large
numbers of time steps that is larger than_the discret-
ization error for the Crank-Nicholson implicit FDMTH.
For a sufficiently small time step, the discretization
errors of the fully explicit and fully implicit FDMTHs
are nearly equal. For large numbers of time steps,
the Peaceman-Rachford ADI FDMTH is the least accurate
of the FDMTHs studied. The Peaceman-Rachford ADI FDMTH
has a negative discretization error that not significantly
improved by either decrease in time step size or increase
in nodal density. Figure 20 is a comparison of all FDMTHs
studied for a time step size of 0.0025 and an elapsed

time of 1.
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,TEMPERATURE(IO-g) '

LEGEND -
-o- Fully Explicit FDMTH oL
-2 Fully Implicit FDMTH
‘| % Crank=Nicholson Implicit FDM
~ 4| > Peaceman-Rachford ADI FDMTH , 4
' — Analytic Solution
<
- 3 V. 3 o
o O
- 1 1 e
2
=20 : l0.2 9;3 0I4 015

X, DISTANCE FROM THE WEST FACE OF THE RECTANGULAR REGION

Figure 20. .Comparison of FDMTHs for a 11 by 11 Nodal
Array. Elapsed Time is 1. Time Step is
0.0025. Number of Iterations is 400. '
K = 0.5 for the Fully Explicit FDMTH.
k = 0.25 for the Crank-Nicholson and Peaceman-
Rachford ADI FDMTHs.
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Execution Time.

Data on the execution times of the different FDMTHs

was not collected. 1In general, the fully implicit and

Crank-Nicholson implicit FDMTHs were slower because of

the use of the Guass-Sidel method of solution. Figures
21 and 22 depict the number of Guass-Sidel iterations
required for the fully implicit and Crank-Nicholson
implicit FDMTHs, respectively, for a 11 by 11 nodal array

and differing size and number of time steps.
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Figure 21. Number of Guass-Sidel Iterations Required per
Time Step for the Fully Implicit FDMTH for a
11 by 11 Nodal Array.
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VII. Discussion

All FDMTHs considered gave unrealistic rgsults for
a time step of 1 when the maximum initial temperature,
TINIT in programs EXPLI, IMPLI, and PRADI; a, the thermal
diffusivity; and the dimensions of the rectangular region
were equal to 1. The order of the truncation error for
all FDMTHs, per Table 2, is also 1 when the size of the
time step is 1. The observed unrealistic results for
a time step of l‘are probably due to discretization error

rather than the type of numerical instability addressed

by the stability condition.

The accuracy of all FDMTHs improved with decrease in
the size of the time step and/or increase in nodal density.
The accuracy of FDMTHs, relative to each other, remained
as suggested by the order of the truncation error as long
as the size of the time step was small enough for the
FDMTHs considered to remain stable. The Peaceman-Rachford
ADI FDMTH was the least accurate of the four FDMTHs
considered for large numbers of time steps when compared
to stable FDMTHs using a common size of time step and
nodal array size.

Figures 21 and 22 suggest that the fully implicit

and Crank-Nicholson implicit FDMTHs require fewer Guass-

~ Sidel iterations per time step for smaller time step sizes.
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VIII. Conclusions

Stability.

The general stability condition correctly predicts

the onset of instability for the fully explicit FDMTH.

~ The fully implicit FDMTH is always stable, as expected.

The Crank-Nicholson implicit and Peaceman-Rachford ADI
FDMTHs, expected to be unconditionally stable, are
unstable for large time step sizes for the initial-

boundary value problem studied.

Accuracy.

For sizes of time step satisfying the general
stability condition for all four of the FDMTHs .considered
for large numbers of time steps, the Crank-Nicholson
implicit FDMTH is the most accurate FDMTH and the
Peaceman-Rachford ADI FDMTH the least accurate for the

initial-boundary value problem studied.

Complexity.

The simplest FDMTH algorithm was that of the fully

explicit FDMTH.

Stability Condition.

Derivation of the general stability condition by

either the matrix method, coefficient method, or proba-
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bilistic method leads to the same result,

(1-£.) (1-£.)
K = oAt § + g
(Ax) © ~(Ay)

1 2

Further, while a FDMTH may be stable when

stability condition predicts instability,

(34)

the general

the accuracy

of a FDMTH, such as the Peaceman-Rachford ADI FDMTH, is

significantly improved if the size of the

time step is

one for which the general stability condition predicts

stability.
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IX. Recommendations

Use of This Thesis.

This thesis should be used as a reference or starting
point for future studies of FDMTHs to encourage the study
of three—dimensional FDMTHs and FDMTH modelling of nuclear

effects.

Follow-on Studies.

A fqllow-on study is needed to better define the
regions of stability for two-dimensiohal FDMTHs, possibly
in a manner similar to Table 3 and Figure 12 of this study.

Another study should consider FDMTH solution of a
different initi&l-boundary v&lue problem haviné a damped
analytic solution.

The use of graded spatial grids should be consideréd

as a method of reducing edge effects.
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APPENDIX A

Analytié Solution ¢f the Initial-Boundary Value Problam for

Two-Dimensional Transient Heat Conduction(Diffusion)

An initial-boundary value problem describing two-
dimensional transient heat conduction(diffusion) for a

rectangular region is

oT 32t 3?7
— = af + ] (A-1la)
ot ax?  ay?

T(0,y,t) = T(a,y,t) = T(x,0,t) = T(x,b,t) =0 (A-1Db)
T(x,y,0) = sinmxsinny (&-1c)

where T is for temperature, o is the thermal diffusivity,

X and y are spatial dimensions, and t is for time.
The solution for T(x,y) follows.

Let T(x,y,t) = F(x,y)G(t),

then 3T/3t = T, = FG 3%7/oxt = 7 = FxxG,

: t’ XX
d 3%7/32y =T _ _=F G.
an 137y = Tyy = Fyy
Now, FGt = a(FxxG + Fny],

or Gt/G = A = a[Fxx/F + Fyy/F].




‘Ao

Let F(x,y) = H(x)Q(y), then Fxx = Hxe, and F = HQ

Yy Yy

A = lH, 0/HO + HOU./HOl = alH, /H + Q. /0]

Hxx/H + QYY/Q

Hxx/H =§ = Ao - ny/Q

Solve Hxx/H = £ -for H.

[D? - E]H =0 ﬁ = &,sinh/~Ex = ézcosh/-gx'.

-Applying the boundary condition H(0) = 0 ,

0 = 8cosh0 + &, =0, or H = &;8inhv-Ex ,

or H = ¢&;sinvEx (by the_trigonometric identity:
sinhv/~1 u = sinfu’).

¢

Applying the boundary condition H(a) = 0 ,

0 = &sin/Ea + mn = avf -+ & = m?n?/a?, m=0,1,2, ...
or

H = & sin[mmx/al .

Similarly, Q = d,sin[n7my/b] ,

or F = &,d;8in[mmx/alsin(nny/b] .’
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When solving for Q, it is also found that

nm = /A/od - Eb + n?n%/b%= A/a - £ ,

or X =a(n?w2/b? + &) = a(n?r2/b? + m?n%/a?) .

Solving G_,_/G

t A, for G,

[D-AlG=0 +G = fexpla(m®n2/a® + n2n?/b%)1t
 or,
T(x,y,t) = C exp[ -a(m?n2/a? + n2n2/b?)tlsin[mnx/alsin[nny/b].
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APPENDIX B

Matrix Method Derivation of the Stability Condition for

the Two-Dimensional Finite Difference Approximation of -

Transient Heat'Conduction(Diffusion)

The general two-diménsional finite difference

~ approximation of transient heat conduction(diffusion) is

At :
k+1 k o k+1 k
T - T = [ £.T + (1-£_)T
P P (ax)2 EE E''E
: k+1 k
+ ETSTT 4 (1-£) Ty
k+1 k
- 2f_ T - 2(1-f, )T~ ]
Pew P Pew F
alAt
k+1 k
+ [ £.T + (1-£)T
(Ay)z N'N N’ N
k+1 k
+ fs'rs + (1-fS)TS
k+1 k
-2f_. T - 2(1-f, )T. 1] (B-1)
Pyg P Pyg P
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k+1 _ ,  k+l k+1 k+1 k+1
a?P bTE - bTw - cTN - cTS
= ar® 4 bR 4 bk 4+ orK 4 ik _2)
a TP + b TE + b iw + C TN + c TS (B-2)
20Atf 20Atf
" where a = 1 + — ,§ + 2y
(Ax) (Ay)
aio 1 2aAt (1-£) ) 2'aAt(1—§y)
% . (ax) 2 (Ay)
| 2
E! b = .aAtfx/(Ax)
2 b' = abt(l-£)/(sx)>
c = aAtfy/(Ay)2
c!' = aAt(l-fy)/(Ay)2
and f = £ =€f_=°f¢
X E W PEW
and f = £ .=£f_.=f
Y N [ PNS
The matrix equivalent to equation (B-2) is
artl - Aok (B-3)
or as depicted on the next page.
57




F‘.i.: R Paahedt L - s -~ s
a -b . . . "'C \ Tl]<.+1
-b a -b ... = T§+1
. -b a -b e o = -C T]§+1
- - - -c °
-C . L4
" -b a =b
-C e o o -b a Tx];;l
a.' -b' . . - -C' T];
-b' a'-b* ... =c! Tg
L ] —b' a' -b' - * * -c‘ Tg
= -c' -c' .
. | (B-4)
_bl al _bl
-c' -b* a' Tﬁdl

The eigenvalues of A' are equal

{I1-(A"'-I)]1. (A'-1)

matrix of the finite difference

" boundary value problem
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AT = T _+T ~ (B-5)

T(0,y) = T(1,y) = T(x,0) = T(x,1) =0

Solving for T,

- or

'ASFG = FxxG + FG

T(x,y) = F(x)G(y)

Tyx = FxxC

T =  FG
YY Yy

vy -+ As - Fxx/F = ny/G

G
— XX + A = g = —u
G

-Fxx + (AS-E)F =0

2 o _
(0% + (E-A)IF =0, letn =g - A

F = &,sinh/=nx’ + @&,sinh/=nx'

F(0) = 0 = 8,cosh0 » &, =0
F = &, sinh/=nx"'
F(l) = 0 = &;sinv/n + /M = su

F = &;8in(smx)
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G = d1sin(tmy)
and T = C sin(smx) sin(smwy) .

Let T = sin(swx)sin(tny).

A finite difference representation of equation (B-1)

is

b'T(i+1,j) - 2b'T(i,j) + b'T(i-1,3)

+ ¢'T(i,j+1) - 2¢'T(i,]j) +c'T(i,j-1) = ABT(i.J') (B~6)
or as shown on the next page.
|
|
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musi mns nmtj

nnt]

nnt

b'sin| + — ] sin{ ]
M M N
mrsi nntj
- 2b'sin{ ] sin|
: M N
mnsi m7s
+ b'sin( - — ] sin|
M M
mrsi nwtj ntt
c'sin| 1 sin{ + — ]
M N N
. mnsi nmtj
- 2c¢'sin{ 1 sin|
M
mrsi nntj
+ c'sin| ] sin(
M N
mrsi nntj
= A_sinf ] sinl( ]
s M N
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Using the trigonometric identity,
sinacosf = Xksin(a+B) + %sin(a-B) ,

and dividing through by sin(mwsi/M)sin(nmtj/N), equation

(B-7) reduces to

2b'cos[mrs/M] - 2b° ; 2c'cos[nnt/N] - 2¢' = As (B-8)
By the trigonometric identity,

sinza = X(l-cos2a) ,

equation (B-8) reduces to

As = =4[ b'sinz(mws/ZM) + c'sinz(nﬂt/ZN) (B-9)

For equation (B-9) to be stable, must have that‘

1< | 1-41 b'sinz(mnSIZM) + c'sinz(nntIZN) 1 |

(B-10)
or A
-1 <1 - 4[ b'sin®(mvs/2M) + c'sin®(nmt/2M) 1 (B-11)
oxr, since sinza <1,
k¥ >b' +c'. (B-12)
Or, the general stability condition is
(l-fx) (1-£ )
K = aAtl 5 + 51 < % (B-13)
(Ax) (ay)
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APPENDIX C

Coefficient Method Derivation of the Stability Condition

for the Two-Dimensional Finite Difference Approximation of

Transient Heat Conduction(Diffusion)

‘The general two-dimensional finite difference

- approximation of transient heat conduction(diffusion) is

as given in Appendix B, equation (B-1), or

k+1 k+1 k+1 k+1 k+1
(1+2p+2q)TP - PTg =~ - pTw - qTy - qTS

g k vk k k k
= eIn!=a! ' -
? (1-2p 2q,)TP + p TE + p'TW + q".[‘N + q'TS | fC 1)
: where p = aAtfx/(Aic)2
’ L) q = uAtfy/(AY)z
¢ p' = abt(l-£ )/ (sx) >
: q' = abt(1-£.)/(ay) 2
£ =f =£ =¢
b 4 E W .PEW
and f =£f =f£f_=¢£ .
y N S PNS
The ratio of T:+l to Tg , A, from equation (C-1) is
' K+l |, . k+l k+1 | k+l
L Gewereaan et e i) g™+ gt
(14+2p+2q) (1+2p+2q)

k k k k
p' (T, + Ty) + q' (T + Tg)
+ E " W N S (c-2)
(1+2p+2q)
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‘Both Myers and Patankar consider only the case of a single

interior node so that T

E

T. = 0.

S For a single

W N

interior node,

1-2p'-2q°'

]

(Cc-3)
1+2p+2q

" The stability curves predicted by (C-3) are depicted

in Figure C-1. The general stability condition can be

derived from equation (C-3) as follows:

A

1 - 208t(1-£,)/ (4x) 2 - 208t (1-£,) / ()

) ZaAtfx/(Ax) + 2aAtfy/(AY) -

For stability, A must be positive. The denominator of
'equation (C-6) is always positive, so only the numerator

need be considered further. For stability then

0 < 1 - 208t(1-£,)/(x)? - 208t(1-£,)/ (8y)
or '
% 2 astl(-£0/0% + -/ %) .
Or, the general stability condition is
(1-£) (1-£)
k = abt] X5+ 1 < 5 . (c-5)
(4x) (ay)
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APPENDIX D

Probabilistic Method Derivation of the Stability Condition

for the Two-Dimensional Finite Difference Approximation of

Transient Heat Conduction(Diffusion)

The general two-dimensional finite difference approxi-

‘mation of transient heat conduction(diffusion) is as givén

in Appendix B, equation (B-1). Let'P}eﬁ1 be the probability

" of node P attaining the potential (temperature) of node e

at time t * iAt, then

p§+1A =1 (o-1)
PE*L = anegg/ (W) (2x) 2 ~ -2)
Bl = aaef /) (ax) 2 (D-3)
Pl = aatf /(W) (ay) S (D-4)
pE*l - aIAth/(W)(Ay)2 (D-5)

[1 - 20At(1-£, )/(ax)? - 208t(1-£, )/ (ay)?)

k EW NS
P, =

P W

(D-6)

PX = At (1-£.)/ (W) (Ax)2 ' (D-7)
E E _—
PK = aAt(1-£.)/ (W) (Ax)2 (D-8)
w w
P = aat(1-£,) /(W) (ay) 2 (D-9) -
N N : |

PK = aAt(1-£.)/(W) (Ay) 2 (D-10)
S S
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= - ‘and W= 1 + aAtfP /(Ax)2 + aAtfP /(Ay)2 . " (D-11)
( - "EW NS

Using the probabilistic coefficients defined on the

previous page, the general FDMTH becomes

+1 _k+1 k+1_k+1 k+1_k+1 k+1Tk+1

- k+1, k+1 _ _k
- P, Tp =Pp T | +Py Ty +tPy Ty +Pg Tg
- L kok L, okok . okk . okk . kK )
+ PETE + PWTW + PNTN + PSTS + P_PTP . (D-12)
A
o As long as all fe are less than or equal to 1, the only
EE probabilistic coefficient that might be negative is Pg .
Ef , : Since negative probabilities are not realistic, the
‘ .
= following stability condition is inferred.
.7 (l-fx) (1-£ )
i 1 - 2adt( 5 + 2 > 0 (D-13)
ha G (Ax) (By) .
"‘ ' or | '
¥ (1-£,)  (1-£)
- K = oalAt( 5 + yi < k5, (D-14)
¥ (Ax) (ay) '
; where
‘:.5 4 f =2 f =€f_ =1
% x E W PEw
fy=ih=1%5 - fPNS .

Equation (D-14) is the general stability condition for
- the two-dimensional finite difference approximation of
¥ transient heat conduction(diffusion).
£
ad .
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APPENDIX E

FDMTH Data

The volume of data generated in this study was too
great to graphically protray all of it. The data preserted
in this appendix represents most of the more significant
data collected and not previously described in Section VI,

Results.

List of Figures.

Figure Page

E-l-l Unstable Oscillations for the Peaceman-

Rachford ADI-FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 10. Time Step
is 1. Number of Iterations is 10.

E-1-2 Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 20. Time Step
is 1. Number of Iterations is 20.

E-2-1 Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 6. Time Step is
1. Number of Iterations is 6.

E-2-2 Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.2. Time Step
is 0.01. Number of Iterations is 20.

E-2-3 Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 1. Time Step is
0.001. Number of Iterations is 1000.
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Figure Page
E-2-4 Comparison of FDMTHs for a 11 by 11 Nodal

"Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.1. Time Step
is 0.0001. Number of Iterations is 1000.

E-2-5 Comparison of FDMTHs for a 21 by 21 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 2. Time Step is
1. Number of Iterations is 2.

E-2-6 Comparison of FDMTHs for a 21 by 21 Nodal
' Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.01. Time Step
is 0.0001. Number of Iterations is 100.

- E=3-1 Number of Oscillations by Node for the
Peaceman-Rachford ADI FDMTH for a 11 by 11
Nodal Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.5. Time Step
is 0.0001. Number of Iterations is 5000.

B-3-2 Number of Oscillations by Node for the
Crank-Nicholson Implicit FDMTH for a 21 by
21 Nodal Array Imposed Over a 1 by 1
Rectangular Region. Elapsed Time is 0.01.
Time Step is 0.0001. Number of Iterations

is 100.

Acronyms.

The following acronyms are used in the figures of this
appendix.

ANALY Analytic Solution

EXPLI Fully Explicit FDMTH

IMPLI Fully Implicit FDMTH

CNICH Crank-Nicholson Implicit FDMTH

PRADI Peaceman-Rachford ADI FDMTH
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Figure E-1-1.

Unstable Oscillations for the Peaceman-
Rachford ADI FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 10. Time Step
is 1. Number of Iterations is 10.

K = 900,
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Figure E-1-2. Unstable Oscillations for the Peaceman-

Rachford ADI FDMTH for a 31 by 31 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 20. Time Step
is 1. Number of Iterations is 20.

k = 900.
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Figure E-2-1. Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 6. Time Step is
1. Number of Iterations is 6.
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Figure E-2-3. Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 1. Time Step is
0.001. Number of Iterations is 1000.
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Comparison of FDMTHs for a 11 by 11 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.1. Time Step is
0.0001. Number of Iterations is 1000.
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Comparison of FDMTHs for a 21 by 21 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 2. Time Step is
1. Number of Iterations is 2.
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Figure E-2-6. Comparison of FDMTHs for a 21 by 21 Nodal
Array Imposed Over a 1 by 1 Rectangular
Region. Elapsed Time is 0.0l1. Time Step
.is 0.0001. Number of Iterations is 100.
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APPENDIX F

Use of Band Storage to Reduce Computer Program

Memory Requirements for Coefficient Ma{:rices1

This appendix presents, by example, the use made of
band storage for storage of banded coefficient matrices
characteristic of the fully implicit, Crank-Nicholson
implicit, and Peaceman-Rachford alternating direction
imﬁlicit (ADi) finite difference methods (FDMTHs).

For an m by n nodal array imposed over a rectangular region,

application of any of the forementioned FDMTHs results in

a banded coefficient matrix. For the Peaceman-Rachford ADI
FDMTH, the resulting coefficient matrix is tridiagonal.

For the fully implicit and Crank-Nicholson implicit FDMTHs,
the resulting coefficient matrix has a band width of 2M-1
or 2N-1 depending on the order in which the nodes are
numbered. M =-m -1 and N=n - 1. The variables M and
N are introduced for a convenience in coefficient subscript-
ing described later. The remainder of this appendix is
concerned with the coefficient matrices of the fully
implicit and Crank-Nicholson implicit FDMTHs. The coeffi-
cient matrix of the Peaceman-Rachford ADI FDMTH may be band

stored with minor modifications to the following.

1Alan Jennings, Matrix Computations for Engineers and
Scientists, (London: John Wiley and Sons, Inc., 1977)

pPpP. 95-96.
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The coefficient matrix is dimensioned MDL by MDL

for the fully implicit and Crank-Nicholson FDMTHs where
MDL = (M-1) times (N-1). In the nodal array is, for
example, 31 by 31, then M = N = 30 and the coefficient
matrix is 841 by 841. By taking advantage of the banded
nature of coefficient matrices for the fully implicit and
the Crank-Nicholson FDMTHs; and, noting that, when using
the Guass-Sidel solution technique, no use is made of the
zero-valued coefficients not within the banded portion of

the coefficient matrix; the coefficient matrix can be

vrepresented by a band storage array dimensioned (2M-1) by

MDL. For a 31 by 31 nodal array, the band storage array

is dimensioned 59 by 841, or less than one tenth of the

size of the coefficient matrix that it replaces, dimensioned
841 by 841. The following example illustrates the
application of band storage. -

Consider éhe coefficient matrix for the fully implicit
FDMTH for a 5 by 5 nodal array, shown in Figure F-1, where
coefficients not shown are zero-valued and outside the
band of interest. In this case, M = N = 4 and the band
width is 7. If zeros are added to the band of Figure F-1
so that the band resembles a parallelogram as showﬁ in
Figure F-2, then a new coefficient matrix of dimension

7 by 9 can be defined whose nonzero elements would be as

depicted in Figure F-3.
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' Figure F-3. Coefficients of Interest in Band Storage

The form of band storage represented by Figure F-3
is perferred because it maintains the node to matrix row
subscript relationship (i.e. coefficients bi4 result from
application of a FDMTH at node 4). A general form of the
band stored coefficient matrix is as depicted in Figure
F-4.

Figure F-4 also illustrates the reason for introducing

Eg the variables M and N. Without M ard N, the coefficient
%3 bl,M would become bz,m-l and coefficients on the main

{ﬁf diagonal would become bm-l,i’ where i = 1,2, ... . M and
Eg N are used because the resulting subscripts of ‘the band
%ﬁ are preferred.
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