
'0D-A124 804 FORTRN N A NEAR PROGRAMMINO FOR MICNOCOMPULTRS1 5
OAI NR N O ORC NS 0F TECH WRIOHT-PATTERSON AFB OH

-400O
0 F ENGINEERING T R FRALEY ET AL. DEC 82

UNCLASSIFIED AFIT/GOR/OS 829 4 F/G 12/1

mmhhmhhmmmmu
lllllhlllllllu
IIIIIIIIIIIIIIfllfllfl
ImllEEEEEEEEEEI

NAIOA BU3EA O STNAD -193-

low, I.

AFIT/GOR/OS/82D-4

A

S FORTRAN BASED LINEAR PROGRAMMING
FOR

MICROCOMPUTERS

THESIS

AF I T/GOR/OS/82D-4

THEODORE R. E. FRALEY DALE A. KEM
MAJOR USAF CAPTAIN USA

Approved -or public release; distribution unlimited

a W

APIT/GOR/OS/82D-4

FORTRAN BASED LINEAR PROGRAMING

FOR

MICROCOMPUTERS

THESIS

Presented to the Faculty o+ the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science -Accesion For

NTT7,~'~.r T
by ,

Theodore R. E. Fraley -

Major USAF -

and Di-t c.c2.

Dale A. Ken

Captain USA

Graduate Operations Research O

December 1982

Approved for public release3 distribution unlimited

bn Prefce

We would like to thank our thesis advisor, Major Daniel

B. Fox , for his guidance and support throughout the AFIT

program and specifically during the period of our thesis

research. Major Fox and our reader, Major Gerald R.

Armstrong, have expended great effort and time to insure

that this research was a learning experience and that a

beneficial software package was produced. We would like to

express our graditude to Lt/Col Ivy D. Cook for his

assistance during the research.

We also wish to thank our families, especially our

wives, Gail and Jean, for their support, typing and editing

assistance, and, most of all, their patience during this

time.

4

ii

- -

Prefaceii

List of Figures iv

List of Tables......................v

Abstract vi

I. Introduction 1

Linear Programming 2
Computer State-of-the-Art 3
Current Microcomputer LP Software Development. 7
Motivation for Further Research 10

II. Theoretical and Mathematical Background 12

III. Design Considerations 44

User Considerations 44
Hardware Considerations 46
Language Considerations 48

IV. Implementation 52

Hardware 53
Language 54
User Interface 55
Software Description 59

Module 1 - Data Base Entry Module. . 60
Module 2 - LP Instructional Module 65
Module 3 - Problem Solver Module 71
Module 4 - Sensitivity Analysis Module . . 73
Summary 77

V. Conclusions and Recommendations . . . 79

Bibliography 83

Appendix As Users Guide 85

Appendix B: Programmers Guide 177

Vita -WA29-

3
iii

LUst el Eigurus

2 Effe. ct of Single Change to the Original .

1 T6alea Solution. 14

3 Column, Constraint Relationship 35

4 Change to the Objective Function Coefficient 37

5 Right-Hand-Side Ranging 38

6 A Two -Dieninl rolmi.o..le. 39

7 CornrPoint at Infinity. 414

8 Developmental Hardware Configuration 54

9 Minimal Hardware Configuration... 78

i'v

Lis- of Ishia

I Tableau Form of Simplex Algorithm 27

II nitial Basic Solution 2

III Second Basic Solution 30

IV Third Basic Solution. 30

V A Final Tableau 40

VI Modified Problem, Final Tableau 41

VII Division By Zero. 42

V

q.-

AF IT/G0R/OS/82D-4

Linear programming is an analytical technique used in

decision analysis. This paper describes the development and

use of a highly interactive, non-programmer oriented, linear

programming software package implemented on a microcomputer.

This software, written in FORTRAN and supported by the UCSD

Pascal Operating System, has allowed increased portability

while providing the capability of solving moderate-sized LP

models. Also available are extensive postoptimal

sensitivity analysis capabilities.

The modularly implemented package provides interactive,

instructional sessions with user input LP models. The user

is guided through tableau formulation and pivot element

selection to an optimal solution by a series of option

displays and user selections. This module also provides

instructors the ability to rapidly demonstrate the

application of the simplex algorithm.

A separate module provides a more rapid problem

solution with minimal interaction. Options allow either

primal or dual problem solution with screen-oriented output

to either a monitor or printer. The sensitivity analysis

capabilities include right-hand-side, cost coefficient, and

constraint coefficient ranging. Also provided is the

ability to add constraints and variables to the original

model.

,V

FORTRAN BASED LINEAR PROGRAMMING

FOR

MICROCOMPUTERS

I INQTRODUCT N

Managers at all levels of private and public

organizations are continuously confronted with the burden of

decision making and the subsequent accountability for such

decisions. The criticality of these decisions may not be

immediately obvious to the manager or to the organization,

yet the outcome may contribute to the success or the failure

of the organization.

A large fraction of these decisions involve the amount

of organizational resources, such as manpower, equipment, or

funds, to dedicate to a particular project or operation.

Although one could attempt to dedicate the nacessary

resources required to maximize the output of each operation,

one would soon realize a shortage in one or many of these

organizational assets. One might then attempt purely

subjective evaluations of the worth of various projects and

allocate resources based upon this process. However, for

high level managers of diverse organizations, this may be

beyond the bounds of comprehension due to the magnitude of

I

activities under their control.

Therefore, managers have sought methods which wi 11

allow a systematic and accurate analysis of numerous

operations in a timely manner. A decision which is

accurate, but late, may be of less value than an inaccurate

decision which has been made in sufficient time. This

search has lead to the development and implementation of

several mathematical programming techniques. One important

subset of these mathematical programming techniques is

linear programming.

Linear Proramming

Mathematical programming, which consists of several

specific optimization techniques, has been defined as the

use of mathematical representations (models) to plan

(program) an allocation of scarce resources among competing

activities. Linear programming is one such technique

commonly used by analysts and is an optimization technique

which involves only linear mathematical relationships (Ref

4:35). Although the term "programming" is used, in this

context it does not refer to computer programming. The term

in this setting refers to the selection of a particular

course of action or program and is a synonym for planning.

Although mathematical optimization techniques have been

present for many years, the last three decades have shown a

great increased use of quantitative tools in aiding

managerial decision making (Ref 223 XI). Many techniques

2

. . - . -

--- , - _ .. .;- : . , . .r< - - . " - t " , , ,,. ',. i, .-

have been developed in this new realm of application, but

none so popular as linear programming. George B. Dantzig

and his associates first developed and applied this

technique in 1947 following a proposal that the interaction

of the activities in an organization may be viewed as linear

relationships (Ref 10: IX). In conjunction with this

development, Dantzig also proposed the simplex algorithm

which has been shown to be a systematic procedure for the

solution of such linearly defined problems.

The linear programming technique, although fairly

recent, was estimated to account for 25 percent of all

scientific computations in 1970 (Ref 22:XVI). The extensive

use of such a technique coupled with the increased use of

the computer for all types of computational procedures has

lead to the development of extensive software packages

implementing linear programming on mainframe computer

systems. These software packageE are capable of quickly

solving problems consisting of hundreds of variables and

constraints. The manager now has the capability of

performing complex linear programming computations within a

matter of minutes.

Comouprt _.te-of-the-Art

Managers now have the analytical tools and

computational capability to solve linear programming

problems, but is the computational power accessible? As

mentioned previously, extensive linear programming software

13

,~~~ ~ ,-F....•

packages have been developed and implemented on large

mainframe computer systems. These computer systems have

essentially unlimited storage capabilities and very rapid

computational rates. These combined capabilities have given

rise to the problem solving capabilities previously

mentioned. However, availability of these large systems is

somewhat limited due to the large acquisition expense and

stationary support requirements. Also, access to such

systems may be limited to those managers who are operating

in the immediate vicinity of such systems. This is

particularly true for military leaders who may be operating

in remote locations yet still require quantitative decision

analysis support.

Recent advances in communications links now allow the

use of remote terminals and peripherals which greatly reduce

the problem of computer accessibility. However, due to the

increased use of computers in all aspects of management, the

number of users attempting to access the computer is

normally quite large. This aspect may then cause the

response time of nor-dedicated remote computer systems to be

unacceptable in a time critical environment.

The recent explosive development of the microcomputers

or "desk-top" computers may offer a solution to many of the

problems associated with the large mainframe computer

systems. Prior to the late 1970's, microcomputers were

little more than toys, characterized by very limited memory

4

... ' ,- - i ' V..

capabilities, difficult input/output procedures, and awkward

data storage facilities. From that meager start, the

capabilities of microcomputers radically increased. Most

business oriented microcomputers have a random access memory

(RAM) of 64,000 (64K) bytes (approximately 64,000

characters) with the capability to expand to 256K RAM. The

data storage medium has advanced from slow cassette tape to

floppy disks to the present hard disks which can store many

millions of bytes per disk.

Noteworthy advances have also been achieved in the

programming languages available for use with these

microcomputers. Until recently, microcomputers were usually

limited to the machine specific BASIC language as the only

available high-level language. Now, many microcomputers

support more universal and powerful languages such as

FORTRAN, PASCAL, and APL. It is the availability of these

languages, based upon standardized rules, which has allowed

increased portability of programs from machine to machine.

The recent microcomputer developments coupled with the

even more recent language availability to these machines

have surmounted the initial obstacles to the use of

microcomputers for application of quantitative analysis

techniques. However, the development of software has yet to

be considered. The development of software for mainframe

computer systems has occurred over several years. Also,

software packages are readily available which allow the

5

I __

- * - - - -'

non-programming oriented manager access to efficient

techniques applying both general and specific problem

solving methods. This option is not so readily available

for the more recent microcomputers. Although the

development of software for the microcomputers is ever

increasing, the packages often require the user to be quite

knowledgable in programming in order to use the specific

decision analysis aids.

Software availability is not the only difficulty that

the microcomputer user will encounter. In exchange for the

ease of availability, accessibility, and dedicated

computational support, the user of "desk-top" computers will

find a marked decrease in memory capabilities and

computation rates. The limited memory capabilities greatly

reduces the problems which may be attempted. The marked

decrease in computational speed will considerably increase

the length of time required to obtain results.

The above stated problems are not insurmountable, yet

are serious limitations imposed by the use of

microcomputers. The most serious problem is the critically

limited, if existent, availability of user-oriented,

portable software for the microcomputers. This problem

renders the recent microcomputers virtually useless for the

managers who have insufficient background and, possibly even

more critical, insufficient time to formulate and implement

a decision making algorithm when needed. In order for the

:1 4

advantages of the microcomputer to be extended to a larger

percentage of the decision makers, software development is

required of the various mathematical modeling algorithms,

and in particular, the intensely used linear programming

algorithm. Although the microcomputer can not replace the

large mainframe computer systems, it may prove to be a

supplement in areas of moderately sized problems and greatly

aid in a more rapid response to less complex problems.

Current MicrocoMputer LP Software Develomgent

A literature search conducted in June, 1982 revealed

only one non-proprietary microcomputer linear programming

software package documented. This analysis package,

developed by Robert D. Conte (Ref 6), consists of several

analysis techniques, including linear programming,

implemented on an Apple II microcomputer in its machine

specific language Applesoft. This interactive package has

been well designed and implemented with true consideration

for the non-programmer oriented user. Although the linear

programming portion is capable of solving problems

consisting of twenty constraints and twenty variables, true

sensitivity analysis was not available. However, due to its

extensive editing features, one may respecify various

parameters and resolve the problem to arrive at equivalent

sensitivity analysis results.

Four microcomputer based linear programming software

developments were recently discussed and displayed at the

7

-. . -; '.. . . ,. - ' j-

TIMSIORSA meeting in Detroit, Michigan during April, 1992.

The first which will be discussed was developed by Ralph W.

Swain (Ref 20). Its primary purpose was that of graphical

demonstration of techniques commonly utilized in operations

research. Although a great aid in demonstrating the

behavior of systems, its use to the manager and analyst is

somewhat limited.

Rolf A. Daininger (Ref 7) has developed and

implemented an instructional aid which will display the

various iteration's tableaus for a maximum of nine

constraints and twenty variables. Implemented on an Apple

II microcomputer in Applesoft, it has proven to be a great

aid in allowing students to concentrate on the simplex

algorithm methodology and solution process rather than the

numeric operations involved.

Gary E. Whitehouse and Yassar A. Hosni (Ref 21)

presented an extensive software package consisting of

forty-two small problem oriented programs. Several of these

programs directly or indirectly involved linear programming.

Examples are the application of the simplex algorithm to an

LP problem and graphical solution of a two variable LP

problem. An advantage of these programs is that even though

written in BASIC, versions are available for both the Apple

II and the TRS-8O microcomputers. Although each version is

not portable between these or other systems, a larger

potential set of users have access to such software.

89t

The last current development in LP software was

presented by Byron Gottfried (Ref 12). This package, as

implemented on the Apple II microcomputer, is capable of

solving problems of approximately .forty-five constraints and

ninety variables (after the augmented basis has been

implemented). Another version has been implemented on an

IBM microcomputer which has larger capabilities and this

version includes limited sensitivity analysis. The

sensitivity analysis included is right-hand-side and

cost-coefficient ranging within the present feasible

solution. Both versions were developed in their respective

machine specific BASIC language and are currently not

portable to other machines or between the two target

systems.

The linear programming software presently found to

exist for microcomputers has been implemented in the

respective machine specific BASIC languages. Although each

package individually is of significant value, each has its

limitations in both significance and applicability. It

would be advantageous to construct a single package which

implements many of those already implemented plus expands

the capabilities in many areas. Particular emphasis may be

desired in the aroa of instructional aids designed for use

by both instructors and students. Although the work of

Daininger (Ref 7) has allowed the instructor to more easily

demonstrate the computations of the simplex algorithm,

9

little has ben done in the area of software development far

independent student use. Such software could allow the

student with minimal linear programming background to

reinforce the application of a linear programming solution

technique to an LP problem. Also, if this implementation

was in a high-level language which was more portable, it

would enhance such a development even more.

!!-tixatien fsm Eurcttc bnrsh

To insure a tool is utilized to its potential, it must

be developed with the user needs as a primary consideration.

Also, the availability and accessibility of such a tool must

be maximized for users to consider its use beneficial.

Linear programming is no exception.

The problem addressed in this research was the

development and implementation of a linear programming

software package which allows the user extensive problem

solving capabilities of small LP problems on a microcomputer

system. Although the package was planned for use by

analysts requiring responsive dedicated decision analysis

support, features may be incorporated which will allow

students and instructors of linear programming to be

beneficial users. The package was developed with ease of

user interface and minimum programming experience as primary

considerations as well as the desire +or maximum portability

between available microcomputer systems. These objectives

have lead to a modular package design with the requirement

10

A- --j -

Osl

for user interaction being dependent upon user desires. The

aforementioned goals must be balanced in light of the

limitations as well as the advantages offered by a dedicated

microcomputer system.

i

I The re k,

Linear programming, as has been mentioned previously,

is a very powerful optimization technique commonly used by

today's leaders and managers. Although the subject of

linear programming is found in numerous text and reference

books which a manager may review, each approach the subject

in different manners and elaborate to different levels of

detail. Some discuss the theoretical development and

background, others the methodology, and yet others focus

primarily on the application of the optimization algorithms
p

to specific type problems. This wide spectrum of literature

may cause an aspiring manager to misinterpret the true power

and validity of these techniques if an overview of the

subject can not be captured.

The purpose of this chapter is to provide the reader an

insight into the theoretical development of linear

programming, with emphasis on the simplex algorithm. This

theoretical background will be presented in conjunction with

the simplex algorithm methodology in hopes of assisting the

reader in gaining a more thorough understanding of the

simplex algorithm and its application to problem solving.

For our purposes, the LP model to be discussed will be

as shown below in EQ(1) through EQ(3). The dimension of m

represents the number of functional constraints, excluding

nonnegativity constraints, in EQ(2). The dimension of n

12

i In
VN

i7

represents the number of variables in the original problem

including the slack variables required to transform the

constraints into the equality form as shown in EG(2) below.

Therefore, the LP model is:

maximize z- QX (1)

Subject to

z - scalar value of objective function
= row vector of dimension n

X = column vector of dimension n
A = m x n matrix

= column vector of dimension m
= n dimensional null vector

A few definitions will be presented to provide a basis

for further discussion. First, a feasible solution to an LP

problem is an n dimensional vector X which satisfies EQ(2)

and (3) above. Therefore, each element of the vector is

nonnegative and provides a solution to EQ(2). A basic

solution is also a n dimensional vector X which iatisfies

EQ(2); however, a maximum of m elements of this vector are

nonzero elements. A basic feasible solution is a basic

solution which also satisfies EO(3). Therefore, a basic

feasible solution contains a maximum of m elements (called

the basic variables) which are nonnegative with the

remaining (n-m) elenments (called nonbasic variables) having

a value of zero. A basic feasible solution which contains

13

' ' - ' .. . : ' ' ' ' r' : "' .. I -'--.....-, - -

fewer than a nonzero elements is called a degenerate

solution. An optimal solution is a basic solution which

also maximizes the value of z in EQ(1). If the optimal

solution is also feasible, that is, EQ(3) is satisfied, then

the solution is an optimal feasible solution. Otherwise,

the solution is optimal but infeasible (superoptimal) for

the LP problem as stated.

To introduce the simplex method, one may want to first

review the geometric considerations of the problem. As the

problem is stated, there are m functional constraints,

represented by EQ(2), which may or may not be redundant.

Also, n nonnegativity constraints are imposed by the

problem. Considering a two dimensional space (n=2) and

three constraints (m-3), one might find a graphical

depiction of a problem as shown in Figure 1.

From the graph and the constraints shown below it, it

should be recognized that the shaded area is the solution

space of this problem (Note: the nonnegativity constraints

are enforced in the graphical depiction). This solution

space and the solution space for all LP problems forms a

convex set, and therefore the convex combination of any two

points in the solution set is also in the solution set (Ref

10:50). This solution set is bounded by a Finite number of

linear constraints which further implies that there are a

finite number of intersection points of these constraints.

It has been further shown that any point in a non-null

14

.4~~~ .1 '-9,

10 MIAX x(1) + 2x(2)

subject to:.

-A j XU) < 4

x x(2) < 6

X (i) + x (2) < 8

s 10 ?

Figure 1. Graphical Solution

convex set may be represented by a convex combination of the

extreme points tannotated by A, 8, C, D, and E in Figure 12

of the convex set (Ref 10s29). The above discussion implies

that of the infinite possible solutions to an LP problem,

all may be represented by a convex combination of a finite

number of solution space extreme points.

Assume that a solution set to an LP problem exists.

Also assume that this solution set consists of an Infinite

number of points and that each solution in this set may ba

15

represented by an n dimensional vector _. It has ben

proven that a point in n space, which includes our solution

set, may be represented by the interaction of s linearly

independent vectors, where m < n (Ref 19:62-71). As a

result, any point represented by a linearly independent n

dimensional vectors will contain at most m nonzero elements

and at least (n-m) zero elements.

It may be shown that the objective function, EQ(1),

assumes its optimal value at an extreme point of the convex

set or, if at more than one, the objective value, z, is the

same for all convex combinations of these extreme points

(Ref 10:50-51). Therefore, only the extreme points of the

convex set must be investigated in the search for an optimal

solution. The number of extreme points, although possibly

large, is finite and greatly reduces the number of points

which require investigation to determine the optimal

solution. If a set of m linearly independent vectors may be

found, with the solution vector containing at most m

nonnegative elements and at least (n-m) zero elements, the

solution corresponds to an extreme point of the convex set

(Ref 10:53).

The above implies that only the extreme points

generated by m linearly independent vectors must be

investigated in the search for an optimal solution.

Consider now the A matrix in EQ(2) and envision each column

of the matrix as an m dimensional vector V. Although m

16

linearly independent V vectors may not be -readily

identifiable in the problem initially, the matrix may be

augumented by a set of m linearly independent vectors to

provide this set of m linearly independent vectors. With

this m dimensional basis, it is known that, at most,

[n!/m'(n-m)!] possible solutions exist and may require

investigation since this is the number of combinations of m

vectors from a set of n vectors (Ref 9231).

Up to this point, it has been shown that of the

infinite number of solutions which may exist, at most

[n:/m(n-m)!' require investigation. But now it must be

asked, how are these extreme points determined? Again

envision the A matrix consisting of n m-dimensional vectors

V(1) through V(n). Assume that the first m vectors are

linearly independent and that X is a basic feasi .e

solution. In this form, EQ(2) may be expressed as follows:

xbC1)*V(1) + xb(2)*V(2) +...+ xb(n)*V(n)= 8 (4)

where
xb(i) are the elements of the basic feasible solution

xb(i)> 0 imli...,n

It has been assumed that V(1) through V(m) are linearly

independent. It will be further assumed that a nonnegative

combination of these vectors equals the vector _.

Therefore, EQ(4) may be now expressed as shown in EQ(5)

below. Note that the elements of X from xb(m+l) through

17

now9

I.
xb(n) are equal to zero due to the linear independence of

V(M) through V(m).

xb(1)*V(l) + xb(2)*V(2) +...+ xb(m)*V(m) = B (5)

It is known that any of the n vectors may be

represented as a linear combination of the basis vectors.

Therefore a vector V(k), where k > m, may be represented as

follows:

xk(1)*V(1) + xk(2)*V(2)... + xk(m)*V(m) = V(k) (6)

where
xk(i) represents the weight of the i(th) vector in the
linear combination forming V(k) when V(k) is the
selected entering basis vector

To determine a new solution vector X to EQ(5) which

includes at most (m+l) nonzero elements, we may multiply

EQ(6) by some value, say T, then subtract it from EQ(5) to

find:

[xb(i)-T~xk(1)*V(1) + [xb(2)-T~xk(2)]*V(2) ...

+ xb(m)-T~xb(m)JSV(m) = B-T*V(k) (7)

or

Exb(l)-T*xk(1)]3V(1) + [xb(2)-T*xk(2)]*V(2)...

+ Exb(m)-TSxk(m)]*V(m) + T*V(k) = 8 (8)

(assume one xk(i) > 0 for iri,...)

The solution vector X is n dimensional, but now

contains at most (.e+l) nonzero elements. It must now be

18

noted that only those vectors with no more than I

nonnegative elements are desired and are possible basic

feasible solutions. Therefore, the solution vector for

EG(8) must contain no more than m nonnegative elements to

represent an extreme point of the convex set. The problem

at this point is to determine the value of T which will

force one of the elements in the EQ(8) solution vector to

zero, thereby forcing one of the previous vectors V(1)

through Y(m)] out of the basis.

With the above insight, it may be determined that if

the multiplier T is positive, only those values of xk(i)

which are positive need be checked. If the value of xk(i)

was nonpositive, the solutioi element [xb(i)-T*xk(i)] would

always be positive and would not approach zero. To

determine which element of EQ(8)'s solution will be forced

to exactly zero, it must also be considered that ali oth'

elements which are nonnegative must remain nontcgative in

the new solution. Therefore we want to find that element

which first reduces to zero. For i=1,...m, the element

which first achieves

xb(i)-T*xk(i) - 0 (9)

is the coefficient of the vector which will be forced out of

the basis. This may be formulated to be:

m
T - min~xb(i)/xk(i)] (10)

:1

19

I--.-'-

Using the above value for T, one may determine the new basic

solution corresponding to another extreme point of the

convex set.

One should recognize that if a vector is selected to

enter the basis, EV(k) in this example3 and it is found that

all xk(i) are less than zero, this basis will contain m*1

elements. Since the new solution can not be expressed as a

basic solution, that is, m nonnegative elements in solution

vector, it does not correspond to an extreme point and

therefore is not-a basic solution. This situation indicates

that the problem has no finite maximum solution (unbounded)

and the solution process is terminated.

From the previous discussion, one may find all extreme

point solutions by enumeration and evaluate each of these

solutions in terms of EQ(1) to determine which basic

feasible solution produces the maximum objective value z.

Although the above process could, in theory, be performed,

the number of calculations increases exponentially as the

number of variables (n) and constraints (i) increase. The

discussion of the simplex algorithm will show that once an

initial basic feasible solution is found, an optimal

solution may then be found, if it exists, in a finite number

of steps. The simplex algorithm allows the user to find

only those basic feasible solutions which have an objective

function of equal or greater value than the present

solution. Also, the algorithm identifies for the user when

20

the optimal solution has been obtained or that a optimal

solution does not exist (known as unbounded solution).

To illustrate the methodology of the simplex algorithm

in light of the theoretical background, consider the

numerical example given earlier. If one would express this

problem in the stated form, each constraint would have a

slack variable added to form an augmented basis as shown in

EQ(12) through EQ(14). The initial basis feasible solution

is x(3)=4, x(4)-6, and x(5)=B since these vec~tors provide

the basis. EQ(15) states the equivalent mathematical

relationship of EQ(12) through EQ(14) in the form presented

earlier CEQ(5)3.

Maximize z =x(1) + 2x(2) + Ox(3) + Ox(4) + Ox(5) = 0 (11)

Subject to
xci) + X(3) = 4 (12)

x(2) + x(4) = 6 (13)

x(l) + x(2) X(5) - a (14)

xb(3)*V(3) + xb(4)*V(4) + xb(5)*V(5) (15)

Now if each basic variable is expressed in terms of only the

non-basic variables, x'C1) and x(2). the following is found:

x(3) -4 - x(1) (16)

x(4) -6 - x(2) (17)

X(5) = a - x(1) - X(2) (18)

The objective function m~ay then be expressed in terms of the

21

m - -.
tC A-I

lI

nonbasic variables to arrive atm

z - 0 + x(1) + 2x(2) (19)

At this point, review the previous section's thoughts.

A basic feasible solution exists; X- (0, 0, 4, 6, 8) and the

basis is formed by m-3 linearly independent vectors CV(3),

V(4), M(5)3. At this point, we would select a vector not in

the basis EV(1) or V(2)] to determine whether this new

solution is also a basic feasible solution. Previously, no

method has been discussed to select the incoming basis

vector. Each nonbasis vector could have been selected to

enter; however, random vector selection may cause the value

of the objective function to decrease and move away from its

optimal value. The simplex algorithm assists in this

selection in that it guides the user to select an incoming

basis vector which will increase, or at least maintain, the

current objective function value. Looking at EQ(19), one

will find that the current objective function value is zero

since both x(l) and x(2) are currently nonbasic variables.

To increase the objective function, either V(1) or V(2) may

be selected to enter the basis since both have positive

coefficients in the objective function. The objective

function value, z. will increase as the value of the

incoming variable increases since it has been stated that

the variables Ex(l), x(2)] must be nonnegative. However, if

V(2) is selected, the objective function value will increase

22

- I -I

at a rate or slope of two while V(1) would only increase the

objective value at a rate of one. Therefore, the simplex

algorithm will guide the user to select as the entering

basis vector, that vector which will cause the most rapid

increase in the objective function. One could at this time

perform the computations of EQ(&) through EQ(10) to

determine the new basis. These calculations will not be

performed at this time but will be shown later using the

simplex algorithm from beginning to end for the example

problem.

Now that the logic for selecting an entering basis

vector has been displayed, the theoretical development will

be reviewed. Recall that the constraints of the problem

were given in EQ(5). The objective function may be then

expressed as follows:

xb(1)*c(1) + xb(2)*c(2) +... + xb(m)*c(m) = z (20)

where
c(i) for i=l,..,n are the cost coefficients of the
objective function.

Also recall that X has been assumed to be a basic feasible

solution and that any vector V(n) may be expressed as a

linear combination of the basis vectors, V(1) through V(m).

At this point, let us define a term z(j) as

m
z(j)= a(i,j)*c(i) j=l.n (21)

where
a(i,j) are the i(th) coefficients of the j(th) vector
_(j)

23

S...

c(i) represents the cost coefficient of the basic
variable of row i.

The element z(j) for vector j EV(j)] could be enumerated ass

z(j) = a(1,j)Sc(1) + a(2.j)*c(2) +...+ a(mj)*c(m) (22)

The z(j) element has been defined by Hillier & Lieberman

(Ref 13:88) as the net amount by which the initial

coefficients in the objective function have been increased

by the simplex method.

For a fixed value of j, if z(j)-c(j)<O, a feasible

solution exists in which the new value of z is greater than

or equal to the current value of z (Re+ 10:66-67). The

proof of this was shown by multiplying EQ(6) by some value,

T in our example, and subtracting this from EQ(5). The

results of this are shown in ED(8). Also as part of this

proof, EQ(22) was multiplied by T and subtracted from

EQ(20). The results are shown below.

[xb(1) - T*a(1,k)]$c(1) + [xb(2) - T*a(2, k)]*c(2) +

+[xb(m) - T*a(m,k)]Sc(m) + T~c(k) - z - T*[z(k) - c(k)] (23)

Note that T*c(k) has been added to both sides of EQ(23).

EQ(23) represents the objective function of a feasible

solution, assuming the coefficients of V(1)...V(m), _(k) are

positive. Also note that if a [z(k)-c(k)] exists which is

negative and assuming that T is positive, the right hand

side of EQ(23) will increase in value beyond z, the previous

24

I& .Ag' , •

objective function value. This means that a feasible

solution exists which possesses a higher objective value and

that the simplex procedure requires further iterations to

obtain optimality. In order to increase the objective

function at the greatest rate, the simplex algorithm directs

the user to select as the entering basis vector that vector

which has the largest negative [z(k)-c(k)] value.

If a negative Cz(k)-c(k)] does not exist for a problem,

the current basic feasible solution is optimal. This

condition then allows the simplex algorithm to be terminated

(Ref 10:67).

For purposes of illustration, assume that a negative

Cz(k)-c(k)3 exists and therefore an entering basis vector

(basic variable) may be identified. At this point, one

would determine the leaving basis vector by calculating the

multiplier T as in EQ(lO). Note that in EQ(8) and EQ(lO),

xk~i) is equivalent to the a(ik) in EQ(21),(22). and (23)

where k represents the vector V(k), the selected entering

basis vector. Also remember that only those a(i,k) [or

:k(i)] coefficients which are positive need to be checked

since a basic feasible solution is being sought. Once the

value of T is determined, one would solve EQ(21) and (22)

for the new objective value and EQ(8) for the basic variable

values. However, the a(iwk) values (or xk(i)] of EQ(8) have

not yet been determined, so one further step is required.

Assume that vector k (V(k)] is the entering basis

25

vector [largest negative z(i)-c(j)3. EQ(h) shows that -V(k)

may be expressed as a linear combination of the basis

vectors EV(1) through V(&)3. Also assume that V(l) has bee

found to the leaving basis vector (ET - min (xb(i)/a(ilk))3

where i has been found to be I) One may then express V(l)

as Cfrom EQ(6)2]z

V(1) - Ci/a(i,k)3*EV(l) - xk O) *V(i) 3 (24)

where

E9(24) may then be substituted into EQ(5) to arrive at

EQ(25).

(x bl) - Exb(l)/a(1~k)3*a(1,k)) *V(i) +

+(Exb() a (, k) 3) XVk +...

+ (X kcm) - Exb(l)/aQl,k)3*a(msk)) *Vm-(M B (25)

The new solution X is then found to include the basic

variables x(1), x(2), .. x(l-l), x(1+1), x(m) and x(k).

The above process may be performed, however the time

required would be excessive for any significant number of

basis changes. The simplex method shortens this process

considerably by constructing a "tableau" which contains only

the coefficients of the objective function and constraints

in a form which greatly simplifies the above manipulations.

Although different references farm this tableau in slightlyI different manners, all perform the same function. The +orm
for this review will be as shown in Table 1.

* '5 *26

TABLE I

Tableau Form Of Simplex Algorithm

z X(1) x(2) x(m) x(m,.1) x(n) RHS

jobj fun 1 z(i)-c(j) z(2)-c(2) z(m)-c(m) z(m+1) z(n) 0

1 1 0 a(1,1) a(1,2) aclm) a(lm+l) a(1,n) b(l)

2 0 a(2,1)

3 0 a(3,1) .

I.I i 0 ...

m 0 a(m) 1 alm,2) aim,me . b)

To place the objective function in the proper form for

the tableau, it must be in a maximize z-Ec(j)x(j)] form for

the c(j)'s to be in the -c(j) form. For our numerical

example, this would correspond to z - x(1) -2x(2) = 0. Had

the problem been a minimization problem, one would %imply

multiply the entire objective function by -1 and this would

then represent an equivalent maximization problem (Re+

10t78). The constraints must be first converted to

equalities which may be done by adding a "slack" variable to

each constraint (assume that the inequalities are less-than

inequalities for the moment). It should be noted that these

slack variables form the initial basis of this problem.

With the above modificationsp the initial tableau would be

as shown in Table II.

27

TABLE II

Initial Basic Solution

z x1) x(2) x(3) x(4) x(5) RHS

1 -1 -2 0 0 0 0

0 1 0 1 0 0 4

0 0 1 0 1 0 &

0 1 1 0 0 1 B

If the material which has been discussed is now

applied, one would first determine the entering basis vector

or basic variable. Only two possibilities exist for

entering variables and the simplex method directs the

selection of that variable with the largest negative

[z(j)-c(j)]. Variable x(2) would then be selected for the

entering variable. Next, one would determine the value of

T, the multiplier which will force one of the present basic

variables [xC3), x(4), and x(5)3 to exactly zero while

maintaining the other basic variables at a nonnegative

level. The values of T which are found by EQ(9) are:

i-I T = 4/0 = undefined

i=2 T - 6/1 = 6 (minimum)

i-3 T = 8/i 8

Therefore, T would equal 6 in this iteration and identifies

28

J97i u m.... .. ,..--p-..

the basic variable of row 2, x(4), as the leaving basic

variable. In the notation of this review, 1 is the leaving

basic variable of row 2 while k is the entering basic

variable, column 4. Each element of the tableau may be

transformed to that corresponding to the new basis using the

following formulas (Note: x(i,j) represents any element of

the tableau):

x' (i,j) = x(ij) -[x(i,j)/x(1,k)]x(i,k) i~ol (26)

x' (i,j) - x(i,j)/x(1,k) i=l (27)

The above formulas are simplifications of EQ(25) and are

applicable to all rows and columns of the tableau (Ref

10:74).

If one applies the above, one will find a new tableau

as is depicted in Table III. One would see that a negative

[z(j)-c(j)] exists Ex(1)3 so an optimal solution has not yet

been obtained. Therefore one would select x(1) as the

entering basic variable. Performing this iteration, one

would find that shown in Table IV.

One would examine this tableau and find that no

negative Cz(j)-c(j)] values exist which indicates an optimal

solution. The solution vector X=(2,6,2,0,0) has all

nonnegative elements indicating that it is also feasible.

One should also check +or degeneracy, which means that fewer

than m elements of the basic feasible solution are nonzero.

Since the basis dimension (m-3) equals the number of nonzero

29

V..

TABLE I I I

Second Basic Solution

1z x(1) x(2) x(3) x(4) x(5) R0S

1 -1 0 0 2 0 12

0 1 0 1 0 0 4

0 0 1 0 1 0 6

0 1 0 0 -1 1 21

TABLE IV

Third Basic Solution

z x(1) x(2) x(3) x(4) X(5) RHS

1 0 0 0 1 1 14

0 0 0 1 1 -1 2

0 0 1 0 1 0 6

0 1 0 0 -1 1 2

variables, the solution is also nondegenerate. One would

note that the same solution was found earlier in the chapter

by the graphical method.

If the graph is inspected, it will be found that we

initially started at the extreme point labeled E

Ex(I)-x(2)=03 in the first tableau. Next, x(2) entered the

basis and we moved to point A Ex(l)0, x(2)=6. The final

30

I so -NO.

tableau corresponds to point B rx(l)=2, x(2)-63. Had we not

used the selection rule of the largest negative [z(j)-c(j)]

for the entering basis vector, we could have selected x(l)

as the first entering basis vector. This pivot would have

moved us from point E to point D, and then next to point C,

and finally to point B. Although the simplex selection rule

does not always cause fewer pivots to be performed, this is

an example of it doing so.

One area which has been passed over is that of

unboundedness. Problems may arise which have no optimal

solution since a basic variable or variables may be

increased indefinitely without forcing another vector out of

the basis. This occurs when a negative [z(k)-c(k)] exists

but all a(i,k)<O for i=1, ,.m. This means that T may be

made arbitrarily large, the basis is m+1 and the objective

function increases without bound. If EQ(23) is examined

with T being large and a(i,k)<O, it can be seen that this

occurance is possible. In a practical sense, this means

that the model has been formulated incorrectly and when this

situation occurs, the simplex algorithm is terminated.

The discussion up to this point has assumed an initial

basis was present or the problem was stated as AX<B where

slack variables will form the basis. The initial problem

may be stated as AXB with an initial basis not readily

identifiable. A technique which is used in this case is

called an "artificial basis" technique. Each constraint has

31

a unique basis variable added and alsc each variable is

assigned an unspecified large negative number (often called

"M") as a cost coefficient. It has been proven that if a

feasible solution exists to the original problem, one will

also exist for the augmented problem. Also if a feasible

solution does not exist for the original problem, the

optimal solution to the augmented problem will contain an

artificial variable at a positive level (Ref 10:81).

This technique, although powerful, may increase the

number of iterations required to obtain optimality. The

artificial variables must be driven from the basis prior to

determining optimality and therfore should be used only when

required. If a basis vector exists in the problem as given,

use this as an initial basis vector to minimize the

iterations required.

The simplex algorithm is applied as discussed

previously to the artifical basis with the exception of

selecting the entering variable. Since the [z(j)-c(j)]

values may now contain a unspecified large value "M", the

selection of the largest negative [z(j)-c(j)] must consider

two elements. All Ez(j)-c(,)3 values which contain a "M"

must be examined and the selection differentiator is the

numeric element. That Ez(j)-c(j)] with an "Pu vaiue and the

largest negative fz(j)-c(j)] should be selected as the

entering basic variable. Once the "M" values has been

removed from the objective row -f the tableau, the algorithm

32

- -.

proceeds as before.

Sensitivity analysis is based on the relationship

between the coefficients of the original columns of the

linear programmming model and the columns representing the

slack and artificial variables.

Considering a problem with K constraints and V

variables, the final K columns will initially form an

identity matrix. As the simplex algorithm is performed, the

identity matrix undergoes a transformation. This matrix is,

upon completion of the algorithm, a record of all operations

performed on the original equation. It is possible to

determine from this record the change to any element of the

final taoleau which results from one or more changes to the

original tableau.

To illustrate these changes, consider an original

problem with three variables and four constraints. If a

change was made to the original (3,2) element, the changes

to the final tableau could be found by pre-multiplying the

matrix with the single change by the transformed identity

matrix which is commonly called B-inverse.

As can be seen in Figure 2, a change in the third row,

second column will produce changes in the entire second

column of the final tableau. Also, note that only the

values in the third column of B-inverse were pertinent.

This is because the third column of the identity matrix or

B-inverse is associated with the third row of the original

33

VV WV0 0 [o Aw 0

V V X V 0 00 0 AX 0

V V Y V 0 4 0 0 Y 0

VV Z V 0 0 0 O AZ 0

B-i nverse

Figure 2. Effect of Single Change to the Original Tableau

tableau. Although not shown in the illustration, the

coefficient of the objective function above the third column

of the B-inverse matrix, when multiplied by the change to

the (3,2) element, will give the change to the coefficient

in the objective function above the second column of the

original matrix.

When the results of the changes have been determined

and added to the respective elements of the final tableau,

further manipulations may be necessary. If a change

occurred to a column which was in the basis of the final

tableau, that column will have to be returned to its final

tableau form. This is done by: first, dividing the entire

row which had a value of one in the column under

investigation by the new value to reestablish the value of

one, and second, adding multiples of that row to each of the

other rows and the objective function to return all other

values in the column to zero. If the value of any

34

'Ik .,. . .: .: . . , ? ,. k .. .d " i.' .. .'

right-hand side or objective function coefficient has become

negative, the tableau must be resolved using the LP

algori thm.

Determining the range limits of the elements of the

original tableau is merely a variation of the method

previously described. Rather than solving for the changes

which result from a change to an original element, the

algorithm individually investigates each element to

determine the smallest positive and negative changes which

would cause either a multiple optimal (an objective function

coefficient not in the basis goes to zero) or a degenerate

(right-hand side goes to zero) condition.

AC C

X2 0 AW 0 0 0 W 0
X1 0 AX 0 0 0 X 0 I

X5 0 AY 0 0 0 Y 0

X7 0 AZ 0 0 0

-inv r se

Figure 3. Column, Constraint Relationship

As shown in Figure 3, a change in the (3,2) element may

cause changes to all elements in the second column. This

column oust now be returned to the final tableau form

(assume a 1 was in element (1,2) and the other elements were

zero). The first constraint would now be divided by l+AW

35

I ?"q' :. . -- -J " """ - l 9 i ILL i L i
""I : :' " ' " i" ;.. . I " ..2 :]

-and multiples of the first row would be added to the

objective function and to the other rows to return their

values in the second column to zero. To be specific, -AX

times the first row would be added to row two, -AC times the

first row would be added to the objective function, etc.

Each of these cases can be set up as an equation to

determine what value of A will cause a zero value to be

reached in a non-basic column of the objective function or

in the right-hand side. Each row and each non-basic column

(except artificial variables which are excluded) will

produce a A. From these A's, the smallest positive and the

smallest (absolute) negative represent the bounds on the

change to the element.

The specific equation used to determine the maximum

positive change is:

A= MIN CMIN POS(-C(L)/(A(ROWBCOL)SC(L)-A(ROWL)S

C(BCOL)), MIN POS (-B(M)/(B(M)*A(ROW,BCOL)-B(ROW)*

A(MO BCOL)) 2 (28)

where

C = objective function coefficient in the final
tableau

L = 1,2. total variables---excluding artificials
and the column with the delta

ROW - the row which represents the basis of the column
under investigation (has a value of 1 in the
final tableau)

36

.. .l

A - the element coefficient in the final tableau

BCOL - the column in B-inverse associated with the
change being investigated (The third column of B
inverse if the change was to the (3,2) element.)

B - right-hand-side value in the final tableau

M = 1,29...K - all rows except the row in the
basis for the column being investigated

The negative delta is similar except the largest
negative (smallest absolute) values are determined.

To illustrate:

I X2 0 1+&W H 0 0

2 XI I AX E 1 0 X 0

3 X5 0 AY F 3 1 Y 0

4 X7 0 AZ G K 0 Z 1

1 2 3 4 5 & 7

Figure 4. Change to the Objective Function Coefficient

For L = 3 and X2 is in the basis in ROW I

4(3,2) = -C(6)/C(6)*A(1,3)-C(3)$A(1,6) (29)

4(3,2) - -C/(CSD-C3$W) (30)

The value of A(3,2) found in equation 30 will cause the

objective function coefficient C3 (Figure 4) to be driven to

zero. All other columns which are not in the basis must

also be checked to find the minimum changes. Basic columns

do not need to be checked since they have a zero in the

37

"-~ 7 u-----~

critical element. Therefore, no multiple of the row could

change any other row. 1f the element which is being

investigated for range limits is not in a basic column, the

only value to be determined is the relationship between the

objective function coefficients of the desired column and of

the column associated with the constraint. The maximum

range limit Is determined by &- -C(L)/CCBCOL).

The changes f or the right-hand side are chocked in a

similar manner.

&C C

X2 0 1+&W A1,3 AI,4 0 W 0 BI

X1 I AX A2,3 A2,4 0 X 0 P2

X5 0 AY A3,3 A3,4 I V 0 B3

X7 0 &Z A4,3 A4,4 0 Z 1 84

Figure 5. Right-Hand-Side Ranging

ROWi1, M1-2

A - -D(2)/(B(2)*A(1,6)-B(1)SA(2,6) (31)

A - -82/(B2*W-B1*X) (32)

Again, each row (P-2,3,4) will produce a delta. All of

4the deltas (positive and negative) are searched to find the

delta which first drives an objective function coefficient

38

-ffi. , - VM

or a right-hand side to zero. This will be the range for

the element under consideration.

Sensitivity analysis is subject to ill-conditioning

which would not be present if the modified problem was

solved from the initial tableau. This conditLon occurs when

one of the two constraints (in a two-dimensional problem)

which forms the corner-point solution of a final tableau is

modified to cause the two constraints to be parallel. The

current corner point is now at infinity. This condition

would never occur using the full algorithm since one of

these constraints would be outside the convex boundary and,

therefore, not involved in any basic solution.

Figure 6 shows a two-dimensional problem. The optimal

solution is shown in Table V. A critical value to cause

X(2]

Ft.co ject to:

2.t .) 5' (2+ 2C)) :

I..
50-

30 3o I.

100X(1)

110 30 S6 70 90 110

Figure 6. A Two-Dimensional Problem

39

TABLE V

F A Final Tableau

I 1 1.00000 .00000 .40000 .0O000 -2.00000
2 4 A1~'O0O . 00000 -. 40060 1. 00000 2.00000

3.00000 1. 00)0 . 0000) J10"000 1.00000

2J3 FUNCTION 22.0000
IN NAMIE VAR i~ttg~$2ggg~gSf~U~SS*Ig*gSgl

1 20.0000
4

2 30.0000')

ill-conditioning is a change in the (1,1) element of -2.5.

This change is shown in the revised problem in Figure 7. As

can be seen, two constraints are now parallel, and one of

them is not within the convex boundary. This new problem

can be easily solved by the full algorithm (Table VD) but

requires division by zero when sensitivity analysis is used

to find a new solution from the original optimal solution

(Table VII).

Ill-conditioned points exist in every tableau. A critical

value may exist for each element in an original column which

has its variable in the basic solution. Empirical results

indicate that these critical values are usually outside of

the range limits for individual elements. The only known

exception is the unique case where the change makes the

40

I2

X(2)

MAX .2x 1) + .6x (2)
subject to:

O. ~ x (1 + 2) <. 3o)
0. 0 >(I) + 5x (2) 20C

50

__40"o_ old corner point at 00 -p
30-

5 20"

Figure 7. Corner Point at Infinity

TABLE VI

Modifid Problem, Final Tableau

FINAL OPEU PTIMAL

-X(:1Ai 3 (4

0?j FUNCTION .0000.O~O .6O
CH NAME VAR AE
S00 00ooO (,0,0'O -5. 1Q1O1 3 01)(10 .000,0'. f, '.,00 0 ..?00", -.1,100,02 2 1,OO'..)00 .0¢0,)0 . O'OO I. OOOO0 .,OO

• 3 2 .000000 1,OOO. , .)O'.(0 i.QO0

RHS
B,; FUNCIION
N NAME V.R tIISII Is I tI It III IIIII I $ lIU III S,,

3- 000
. I = 40). 0000O

- 2 = 30, uO0('.,

41

-" .

TABLE VII

Division By Zero

X) M 2) XQ) .04) X (5)
OB FUNCTION 0 - .2 0.0 .0a 0.0 0.2
CN AE VAR S IMS) I*t$$$Im/$ $1ugnu$g: is$istsi5 I 11$its$Ss
I I I-1 I 0.0 .4 0.0 -2.0

r 7
. 4 + -.4 12.0

2 1 1.0 0I. , 0.0 !.0.j

constraint parallel and identical. This new problem would

be ill-conditioned for all solutions since the constraints

would no longer be independent.

Ill-conditioning in sensitivity analysis is an

interesting phenomena, but its effects are not major. The

ill-conditioning can be avoided if the changes are varied a

small amount. The full simplex algorithm can be used if the

exact changes must be investigated.

The purpose of this chapter was to provide a brief

theoretical review of linear programming in conjunction with

the simplex algorithm methodology and postoptimal

sensitivity analysis as they were applied in this software

package. Those interested in a more thorough discussion of

the simplex algorithm are directed to Gass (Ref 10) and also

Garfinkel & Nemhauser (Ref 9). The area of postoptimal

42

N -N -- - N

sensitivity analysis is covered in depth by Sal (Ref 8) with

again a practical view given by Levin & Kirkpatrick (Ref

16). Many other important aspects of linear programming,

such as duality theory, have not been presented but are

present in numerous refereneces. A quite thorough and

practical presentation of duality theory is given by Levin &

Kirkpatrick (Ref 16) while a brief, but comprehensive

theoretical view is given by Garfinkel & Nemhauser (Ref 9).

Although many areas were not discussed, hopefully the

previous discussion has implanted or reinforced the

mathematical background of the simplex algorithm. Also, the

simplex algorithm has been intended to be shown not as an

abstract technique which is blindly applied, but a valuable

tool to assist analysts and managers in solving real life

problems.

43

' i

III esiogn Considerations

The developmental process involved in an effort to

produce a well-designed product requires careful

consideration of all aspects which may influence the

outcome. The objective of this section is to present the

major considerations of the software design phase. Chapter

IV will then discuss the method of implementation which has

evolved from this analysis.

User Considerations

The user must feel that the software is beneficial in

terms of the time and effort required to use it in problem

solution and analysis. Therefore, several important factors

must be considered with the user in mind. One such

consideration is that the program should be developed in a

logical sequence from model formulation to problem solution

to analysis of results. The user should be carefully guided

through this sequence, being allowed to correct either

incorrect entries or incorrect problem formulation without

resorting to complete model reformulation and input.

Furthermore, the input of an option selection or the input

of a model should occur in a sequence which coincides with

the logical progression of problem solution in order to

lessen the anticipation and doubts of infrequent users.

Another important area is the ability of the user to

44

_ J

quickly and accurately locate the results of each step in

the sequence. The prompts to the user for data or response

input should provide meaningful, concise guidance to the

user. In some instances, graphically supplemented output

may be desirable. This may occur when one value being

studied is valid for a range of values for another variable.

In this manner, the user is able to visually determine the

range, and to a degree, the sensitivity of one variables

relationship to another.

Although linear programming and the simplex algorithm

are capable of producing the desired solution, alternative

methods of applying the simplex algorithm are available

which may allow more efficient and timely solutions to an LP

model. It may be desirable to provide the user with the

capability and option to solve the problem by one of these

alternatives. Again, the presentation of these options

should be performed as clearly and concisely as possible.

Further software enhancements which may be user

desirable include minimal programming and operating system

interface. The user should not be required to alter program

source code to use the software; however, the programs

should be designed and presented in a manner which will not

preclude future enhancements or modifications. These

considerations suggest that the source code be modularly

designed, developed, and documentod to reduce the effort

required to locate the code of a specific function and then

45

* **..i -,*,'.. n -, : i". ":-- ' ' " " - .. . ". .. '.. N . ..

interpret the source code.

One additional area of concern is program control.

Since the user may be inexperienced in either programming or

use of the operating system, the program should require

minimal and infrequent guidance. This consideration leads

to a menu-driven program which displays available program

options enroute to problem solution and analysis. Upon

input of a desired option by the user, the program ideally

will perform all interface with the operating system to pass

control to the desired program, unit, or subroutine.

Compromises to this ideal environment may be necessary. If

so, precise instructions to the user on the required

operating interface commands needed to progress through the

desired sequence should be appropriately displayed to

minimize the required familiarity with the operating system.

Hardware Considerations

Microcomputers offer many advantages not available with

large, stationary computer systems. These advantages

include a substantial decrease in acquisition cost plus

virtual elimination of support requirements. Also, the

transportability of the "desk top" computers is ever

increasing due to recent advances and design considerations.

In conjunction with these advantages, one would expect and

soon finds areas of diminished capabilities compared to a

mainframe system. Two primary areas are the decreased

memory capacities and reduced computational rates of the

46

microcomputers. This exchange of decreased cost and

increased transportability for decreased capabilities does

impair the size and speed of developed software therefore,

one must consider possible avenues which will counter these

decreased capabilities.

In determining the target system for software

development, one should consider the availability of the

various microcomputers in conjunction with the capabilities

of each. Software which is developed on a system with

limited availability to the target users will not be used

extensively. Even if a readily available system is used for

software development, it is necessary to consider the

modifications and peripherals of the target system. If

these modifications or peripherals are unique to the

development system, it limits the use of the software.

Although the available microcomputers vary extensively

in their memory capacities and peripherals, a range from 48K

to 128K bytes random access memory (RAM) is not unusual (48K

is approximately equal to 48,000 characters). Peripherals,

such as printers, communication links (modems), and disk

drives are quite common, if not necessary, among those who

use microcomputers. The dependency of the developed

software on these peripherals must be strictly specified, or

options must be provided which will allow the user to

designate only those peripherals possessed. In this way,

many potential users could gain access to the software

47

jai

without an added hardware requirement.

Languagg Qogigoa3!19l&

A primary factor in the selection of a language for

this research was the portability of the language from one

microcomputer system to another. BASIC was once the only

high-level language generally available for use with

microcomputers. Presently, microcomputer users have access

to other high level languages such as Pascal, FORTRAN, and

APL. The three languages felt to be most accessible to

users were BASIC, Pascal, and FORTRAN and were considered

for implementation in this research.

BASIC. As previously noted, that the portability of

the language is a primary consideration. 'From this

viewpoint, BASIC does not gain much support since each

microcomputer system has modified the BASIC language in

order to coincide with the needs of that particular system.

This has caused many versions of the BASIC language and

results in extremely limited portability.

Execution time is also dependent on the language

selection. A program written in BASIC must be interpreted

line by line to machine language each time the program is

executed. This process causes execution time to be

considerably slower than for other languages which are first

compiled and then executed. BASIC programs may be compiled;

however, the compilers are machine dependent due to language

and hardware differences between systems. This compiled

48

code is then unique to the system and further deters

portability.

Pascal. Pascal, the most recently developed language

of those considered, emerged in the early 1970's and has

since proven to be a powerful, high-level language. A

significant factor in the growth of this language was the

work of Kenneth Bowles who directed the development of UCSD

Pascal at the University of California at San Diego (Ref

14:118). UCSD Pascal, originally formulated as a teaching

tool, has allowed for larger programs to be implemented on

microcomputers and has lead to an increased portability of

high-level languages between systems.

The enhancements to Pascal and FORTRAN are the result

of the "P-code" and "P-machine" of the UCSD Pascal system.

The source code, either Pascal or FORTRAN, is first compiled

into P-code and stored as the object code for the P-machine.

The P-machine, which interprets the P-code upon execution,

emulates instructions to the machine-specific central

processing unit. Only the emulator of the UCSD Pascal

system must be revised to coincide with each system to allow

portability, and this may be performed in a relatively short

time. This one-time revision then allows compiled Pascal or

FORTRAN programs to be portable between microcomputers.

Another advantage of the P-code is that it requires

considerably less memory than the equivalent object code or

machine language. This allows larger programs to be

49

"M V07I

resident in memory at any one time. Also, UCSD Pascal has

implemented an overlay capability which loads P-code into

memory as needed and discards this code upon completion.

This capability allows the user to specify, to a great

extent, the amount of code in memory during the various

phases of program execution (Ref 14s114). The advantages of

the UCSD Pascal system are applicable to both Pascal and

FORTRAN programs; therefore, little preference is gained for

either high-level language.

A disadavantage of Pascal is that it does not possess

extensive output formatting capabilities which are often

found in other languages. Although not an insurmountable

problem, it is a factor when carefully formatted output is

desired.

FORTRAN. FORTRAN, the most widely used language within

the scientific programming community, was developed in the

early 1950's by IBM (Ref 3:1). In the succeeding years, the

FORTRAN variations have increased, leading to a need for

standardization of such an intensely-used language. Two

attempts have been made, with the most recent (1970-1977)

specifying a full language and subset language. Attempts to

standardize the language have been of assistance to

programmers, however, discrepancies between implementations

still exist and are a major downfall of the language.

As previously discussed, the portability of FORTRAN has

been greatly aided by the development of the UCSD Pascal

50

noMnw

operating system. Also, due to FORTRAN's evolution process,

formatting features are available which are not present In

BASIC and Pascal. A consideration which has not been

mentioned is that although increased formatting capabilities

do exist, output time is increased when this option is

utilized. Dependent upon the type and amount of output

desired, this may become a significant factor in program

execution time.

The above sections have discussed those features which

are desired in the software and also the availability of

hardware and languages with respect to microcomputers. The

next chapter will discuss the selection of a particular

microcomputer system and language. Also discussed are the

methods in which those desired features were incorporated

into the software within the constraints of the hardware and

language selections.

51

IV 1R1b901at _on

The objective of developing an extensive

microcomputer-supported linear programming software package

combined with the design considerations discussed in the

previous chapter have formed the foundation for this

research; Each area discussed in Chapter III was felt to be

of significance; however, each must be reviewed in light of

the capabilities, advantages, and disadvantages of

microcomputers as well as the desires and abilities of the

intended users. Due to the requirements placed upon the

design by each of these factors, conflicts may arise which

will allow less. than full incorporation of one or more of

those desired areas.

The purpose of this chapter is to present the method of

implementation used in the software development of this

research. First, the method Qf incorporation of those

significant areas discussed in Chapter III will be discussed

as they apply to the software package in general. Next, the

method and underlying logic of implementation will be

reviewed as it applies to each module of the software

package. Then, specific problems or special areas of

consideration will be discussed. Chapter V will present

findings and recommendations which are felt to be noteworthy

to future efforts in similiar research.

52

-Ix,-, - ---.---. YLA

.. arwAmII

One of the first major decisions of the implementation

phase concerned the selection of the microcomputer system to

be used in the development. It was felt that the system

should be a commonly available system without extensive or

unique modifications or peripherals. Also, the memory

capacity of the chosen system should be comparable to those

most likely accessible by the intended users.

In light of the above considerations in conjunction

with the availability of such a system to the developers, an

Apple li-plus microcomputer was selected as the

developmental system. The Apple II-plus, although not the

most advanced microcomputer on the market, has become one of

the largest selling systems and is presently selling

approximately 20,000 microcomputers per month (Ref 18s19).

Other favorable features of the Apple II include

high-resolution graphics, memory expansion capabilities,

readily available peripherals, and the ability to support

the Pascal and FORTRAN languages.

The system which was used for the implementation of

this software package is shown in Figure 2. The system, as

shown, was felt to be representative in capabilities of

those microcomputers available to the intended users.

53

1. Apple 1l-plus microcomputer with 48K RAM

2. Two disk drives (5-1/4 inch)

3. 16K memory expansion card (language card)

4. Printer

5. Video display (monitor or TV)

Figure 8. Developmental Hardware Configuration

The three languages which were examined for

implementation in this research were BASIC, Pascal, and

FORTRAN. FORTRAN, even though it does have limitations and

drawbacks, was felt to be the most appropriate language as

supported by the Apple II microcomputer.

The BASIC language, either Applesoft or its machine

specific counterparts, was found not to be portable to any

extent, thereby violating one of the primary language

selection criteria. Furthermore, as an interpreted

language, the execution times were known to be in excess of

compiled languages such as Pascal and FORTRAN.

The selection between Pascal and FORTRAN was much more

subjective than the elimination of the BASIC language. In

the past, Pascal had offered a greater degree of

portability. However, the recent development and use of the

UCSD Pascal Software System (Ref 14) has allowed increased

portability of both FORTRAN and Pascal. This system allows

54

both Pascal and FORTRAN to run on most microcomputers

thereby virtually eliminating portability problems due to

hardware configurations.

A frequently discussed obstacle to FORTRAN is its lack

of standardization among the various implementations.

Although the magnitude of this problem has been reduced, it

still exists for large computer systems as well as

microcomputers. It was found that even though a standard

Pascal language exists, the microcomputer implementations of

this language often do not coincide fully with the standard$

allowing for portability problems similar to FORTRAN.

Although Pascal has come to be known as a powerful

high-level language, it is relatively new and not as

intensely used by the scientific community. It was felt,

even at the possible expense of perpetuating an outdated

language, that FORTRAN would be an acceptable language by

the scientific community due to its familiarity. Also, the

well-developed intrinsic output formatting capabilities of

FORTRAN, which were extensively used in the research, would

allow for a more rapid implementation than those available

with Pascal.

The requirement for user interaction while employing a

microcomputer is inevitable; however, the degree of such

interaction is largely programmer controllable. The

previous selection of hardware and language has also

55

delineated the magnitude and frequency of user interaction

to some extent, dependent upon program size and complexity.

It has been noted that the targeted users should not be

required to possess extensive programming* or operating

system knowledge. This further requires that any interface

be proceeded by well structured, concise guidance to the

inexperienced user. This user interface requires user input

of responses or data which may be entered incorrectly

causing an execution error. To preclude possible operating

system errors due to erroneous input, a system of screening

user input has been constructed to prevent such losses.

This section describes the manner in which the interface

system has been designed within the confines of the hardware

and language parameters as well as the design considerations

outlined in Chapter 111.

Apple FORTRAN, the FORTRAN version implemented on the

Apple II, allows the use of a "turnkey" system which

automatically begins running a programmer-designated program

following prescribed startup procedures (Ref 1:9) (See

Appendix A for startup procedures). A turnkey system

requires minimal operating system interface with the user

for a program to initially gain control and begin to guide

the user. Such a system has been included to lessen the

interface initially required for software use. Therefore,

upon startup, the first program of the package, Module 1, is

automatically executed.

5'

~1-w~ii 'I7-AAS

The package consists of four separate programs due to

the physical size of the LP package and memory capabilities

of the selected hardware system. This factor, coupled with

the inability to 'chain" programs in Apple FORTRAN (in

chaining, one program may cause the execution of another

program without user intervention), has forced the design to

include, to a degree, user interface with the operating

system. This interface, which occurs when the user requires

a different program to continue the solution process, has

been designed such that the user will select from a menu the

course of action desired. The program which is currently in

control will then terminate and display specific

instructions to the user. These instructions will enable

the user to execute the desired program of the package.

The previous discussion noted that the user would be

presented a list of alternatives. The user woild then

select one, after which specific operating systems commands

would be presented. This method of menu display and user

selection input may also be applied within a specific

program to cause execution of a particular subroutine or a

sequence o+ code. This method, often designated as

"menu-driven", requires minimal user input to cause the

desired actions. This method haa been implemented, where

appropriate, in this software package. User inputs are

normally limited to either numeric input (Options 1, 2, or

3), character input (P for printer, S for screen), or Yes/No

57

L_ i

I
inputs (Y for YES, N for NO). User inputs are screened to

prevent undesired program termination.

The high-level languages such as FORTRAN do not support

intrinsic input error checks which prevent premature program

termination and data loss when user inputs are of an

improper type or range. Therefore, to assist in prevention

of such an eventf all user inputs except problem,

constraint, and variable names are first screened to insure

that they will be acceptable to the program. All user

inputs are first placed in character strings which allow any

type of numeric or character input. Next, depending on

whether the input is a character or a numeric

representation, these inputs are inspected character by

character.

Character inputs, such as an option selection involving

options P, S, or B or a Yes/No response, are checked to

insure that one of the possible responses for that

particular input has been entered. If so, the option

represented by the user input is performed. However, if the

input does not coincide with the possible alternatives, a

message indicating an invalid input is displayed and the

user is directed to reenter the input. This process is

repeated indefinitely for any required user input.

Numeric inputs have been separated into real and

integer numbers. Inputs which require integers are

inspected character by character to insure that all

58

individual entries are numerics or blanks. If so, the

character string representation is converted to its

equivalent numeric representation. At this point, the

numeric value is checked to insure that it is within the

allowable range for the specific response. If a non-numeric

is found or the range is violated, the user is informed of

an invalid input and directed to reenter the number. Real

numbers are treated similiarly to integers except that a

decimal point has been included in the set of valid entries.

Also, range screening is not performed on real input. It

should be noted that real numbers may be input as integers

(i.e. if 1 is entered, it will be internally represented by

1.0) and that commas (i.e. 10,000) will not be accepted in

real number inputs. Also, a value of zero may be entered by

simply pressing RETURN without numeric input.

These steps allow the user to enter an invalid response

and recover without data loss; however, an undesired input

which is valid to the program will be accepted and the user

will be forced to correct this erroneous input. In the case

of an erroneous option selection, the user will be forced to

complete the process under the option entered.

Software Descrition

This linear programming software package consists of

four distinct FORTRAN programs. There were two primary

reasons for the separate programs. First, the memory

capacity of the microcomputer would not allow the software

59

- - t NMI IN

to be developed in fewer than the four which were used.

Second, if the software could have been implemented in one

program, the compiled code would have been too large to be

stored on one disk. Therefore, these programs (annotated as

Module 1 through Module 4) have been designed and

implemented in a sequence which coincides with the LP model

formulation, solution, and analysis sequence used in most

analyses.

The four modules serve separate purposes, but are

related. Module 1 must be used for problem entry before

Modules 2 or 3 may be used. Module 2 (the instructional

module) or Module 3 (the problem solver module) must be used

to generate a final solution before sensitivity analysis

(Module 4) can be performed. The following sections will

discuss the purpose of each module and their relationship to

each of the other modules of the package. Problems which

were encountered and the methods of correction will be

discussed.

Module I - Data Base Entry Module. This module, which

is the program automatically executed upon startup through

the use of the turnkey system, serves two primary purposes.

First, it provides an initial entry point into the software

package where the program may begin to guide the user

through the sequence of model entry, solution, and

sensitivity analysis. This module's second primary function

is data base entry. The user is guided through the steps of

60

me lo

selecting the type of model to be entered as well as

entering of the various parameters of the LP model desired

to be studied.

Module 1, when executed, presents the user with several

options related to the possible alternatives available in

the complete LP package. The user may elect to enter a

model data base; in which case, Module 1 continues to guide

the user. If the user elects to solve an LP problem using

either Module 2 or 3, Module 1 provides the necessary

guidance. The last choice is sensitivity analysis. If this

option is selected, Module 1 informs the user of the

required data bases and the required steps to implement

Module 4.

The above selection allows Module I to provide specific

instructions to the user on the operating system commands

required to enter the desired module. As noted, this is one

of the primary functions of this module. It should also be

pointed out that, upon the completion of any of the other

modules, the user is given instructions to execute Module 1

which will then again present the various options. The

user, at that point, may select the desired step of the

sequence and continue the analysis.

The second purpose of this module is model entry. I+

the user elects to enter a data base, Module 1 continues to

guide the user through the required steps. This portion of

the module consists of three primary sections: data base

61

entry, data base management, and execution management.

Data Base Entry: This section allows the user to enter

a model with or without names associated with the various

parameters of the model. Also, a model which has previously

been stored on a disk may be retrieved for inipection or

editing. If the user elects to enter a modelp a series of

prompts are presented, which requires either an option

selection or parameter input. Prior to the entry of the

model parameters, instructions are displayed which inform

the user of the method and order to be followed in parameter

input. During this series of prompts, the user has access

to extensive editing functions which allow correction of any

previously entered option selection or parameter input.

These editing features, in conjunction with the

screening of user inputs allow the inexperienced user to

correct invalid responses as well as incorrect input

(meaning valid to the program but not the user intended

input) without having to resort to complete model reentry to

correct either type of error. The editing features,

available during data base entry and data base management,

constitute the majority of this module in the terms of

FORTRAN code; however, this feature was felt to be important

in terms of usability of this software package. The number

and degree of editing features to be employed was subjective

in nature; however, previous work by Conte (Ref 6) aided

greatly in the selection of those which would be most

62

beneficial to the user.

Data Base Managements Upon completion of the initial

data base entry or retrieval of an model from a disk, the

user is presented several new options. The user may display

the model to insure that all parameters have been entered as

desired. Also, this option allows the output device to be

either a monitor or printer. With this option, those users

who possess printers may then receive a hard copy of the

input, while those who do not have printing capabilities

still have the ability to review input. Should the user

find an error in the model, access is provided to the

editing features of this model and changes may then be

performed. The user may elect to save the model to a disk

under a user-specified filename. It should be noted that

each model must be saved to disk following data entry and

editing to allow further study. This requirement arose from

the inability of the package to be implemented as one

program. To prevent the user from inadvertently leaving

this module without first saving the model to disk, a prompt

appears which warns the user that the current model will be

lost if not saved.

The ability to read a model from a disk, combined with

the editing features, allows a user to use one model as a

starting point, perform changes and then solve to determine

the effects of those changes. The above procedure would not

normally be required due to the extensive sensitivity

63

.S. .

analysis features of Module 4; however, the user may wish to

see the complete solution process with certain parameter

variations applied.

Execution Management: Once the initial model has been

saved to disk, the user may elect to enter another model

with the data base entry section; however, one would

normally elect to solve the model at this point. A menu of

options allowing Modules 2, 3 or 4 to be selected is

displayed when the user elects to solve the problem. An

option of returning to the data base management menu is also

provided to allow recovery from an incorrect or undesired

input.

The user selects the desired module and i s then guided

through the required entries. A problem which was

encountered during the transition phase was the transmittal

of the diskname:filename. To solve to this problem, two

data files were created, LPI:LPDATA and LP2:LPDATAW with

these files being placed on the disks LPI and LP2,

respectively. These files contain the diskname:filename of

the model currently being studied. LPI:LPDATA contains the

name of the most recently input or edited model while

LP2:LPDATAW contains the diskname:filename of the file which

contains the results of the most recently solved problem by

Module 2 or 3. LP1:LPDATA is automatically read by Modules

2 and 3 while LP2:LPDATAW is read by Module 4 to determine

the file which contains the inputs for that module.

64

.. ..

One other area which required careful planning was the

arrangement of the various editing subroutines in the

overlayed compilation units. Due to the extensive

interaction of the various editing functions, attention was

required to avoid several overlayed units being resident in

memory simultaneously thereby overloading the capacity of

the microcomputer. This problem was eliminated by

cross-referencing the subroutine interaction and then

forming the compilation units so that an overloading of

memory would not occur.

Module 1 does not perform or enhance the LP model

solution process but provides valuable organization support

for the overall package. Organizing the package so that one

program provides this support allows more memory to be

available for the individual functions of each of the

remaining modules whose specific functions will be

discussed.

Module 2 - LP Instructional Module. The goal during

the development of Module 2 was two-fold. First, the module

would allow the user to select a previously entered LP model

and apply the simplex algorithm to that model to determine

an optimal solution. Second, it was envisioned that this

module would be designed so that the user could be assisted

in learning the application of the simplex algorithm to an

LP model. Although the primary concern of the instructional

portion was to assist students in their initial contact with

65

the simplex algorithm, these features also allow instructors

to demonstrate to students the outcome of procedures or

selections not complying with the simplex algorithm.

The initial guidance in reference to notation and the

sequence of steps representative of simplex algorithm

computer implomentations was drawn from Gillett (Ref

11:101-105). Although the FORTRAN code presented in Gillett

was of assistance in forming the code of this module,

extensive modifications and extensions were necessary in

order to implement the desired instructional features.

This module and Module 3 are quite similar in that they

both allow the solution of an LP model by the simplex

algorithm. Due to the desire to provide extensive feedback

to the user during the instructional proces*, this module

was much larger than that of Module 3. The size of this

module's FORTRAN code required, as did Module ls, careful

consideration of memory capacities in the forming of the

compilation units. As is discussed in Appendix B, the

manner in which the compilation units are formed may dictate

the size of the overall program.

Several steps are required to insure the LP model is in

the proper form to apply the simplex algorithm. The

standard LP form upon which this and the following modules

have been based has been illustrated in Chapter II. The

process of modifying the LP model to coincide with the

stated form has been labeled as "tableau formulation" and

66

- • 7

involves the manipulation of the objective function and

resource constraints. Once the tableau formulation is

completed, the iterative process of the pivot element

selection and moving to an adjacent feasible solution is

performed. After moving to each new feasible solution, one

must check to insure that an optimal solution has not been

reached prior to continuing the iterative process.

Therefore, the application of the simplex algorithm has the

following three major steps:

1. Tableau formulation
2. Pivot element selection and determination of new

basic feasible solution
3. Check for optimality, unboundedness, etc.

The instructional areas of this module have been

divided into three areas coinciding with the above steps.

In order to allow the user to concentrate on the specific

step or steps desired, options have been provided which

allow either: 1.) the user to direct the manner each step is

performed or 2.) the program to perform these actions

without user interaction.

The three areas in which instructional assistance has

been provided have been implemented differently. During

tableau formulation, several options which modify the

objective function or constraints are presented to the user.

The user selects that option which is applicable to the

objective function or to the constraint under consideration.

At that time, the user is provided feedback as to whether or

67

not the selection was correct; and, if not, the correct

selection is displayed. Although the user's selections may

be incorrect, the objective function constraint is

modified properly.

The pivot element selection process has been

implemented differently than the process described above.

The user is presented two methods to select the pivot

element: with or without feedback. If the user elects to

receive feedback, the user is allowed to correct improper

pivot element selections to coincide with the algorithm

selection which is also displayed. The user may also elect

not to receive feedback on the validity of the selection,

and the user-selected pivot element is used for further

computations. Under both methods, the user could request

that the algorithm divide by zero and cause an execution

error. In order to allow the maximum possible freedom of

pivot element selection for demonstration purposes yet

prevent inadvertant execution errors, a system of checks has

been implemented which warns the user that an execution

error may occur if the pivot is performed as selected. The

user is then allowed to either continue with the previous

selection or select a new pivot element.

The step in which the optimal ity, unboundedness, and

infeasibility of the current solution are checked has been

implemented similarly to that of tableau formulation.

Regardless of user input, the cycle of steps 2 and 3 will

68

continue until true optimality, unboundedness, or

infeasibility exist. During each cycle of the steps, the

user must enter responses to questions pertaining to the

status of the last tableau and receives feedback on these

responses.

Module 2 has implemented, at the expense of less

descriptive feedback on user selections, a capability to

perform dual pivots. This capability allows the user to

become familiar with the dual simplex algorithm while also

allowing a more efficient solution technique to be used in

certain situations. Again, a system of checks has been

incorporated which prevents the user from improperly

applying the dual (or regular) pivot method.

Due to memory size limitations, the expansion of any

one portion of this module required reduction in another.

Considerable effort was required to allow both dual pivots

and descriptive and informative feedback to the user. In

order to allow the most detailed comments possible, standard

formats for comments were used with variables representing

the areas applicable to the situation. The comments were

more descriptive than would have been possible if separately

implemented comments were used for each situation.

Several features have been incorporated into this

module and Module 3 which increase the ease of use and

decrease the time and peripherals required. First, the user

may elect that output be displayed in either scientific

69

ILI W vim

notation (e.g. 12.01E+02) or in the more common

representation (e.g. 1201). Although the output format has

no influence on the computations performed, the numbers may

become too large or too small to be accurately representd

in the space allocated in the output without the use of

scientific notation. Any numbers larger than 999,999 or

less than 0.00001 will be represented by asterisks or

0.00000, respectively, if the scientific notation is not

requested.

A second feature allows the user to have the tabular

output displayed on the screen or on a printer. This option

allows users without printing capability to use the software

and allows those with printers to receive hard-copy output

for later use and study. The format, which is identical for

both output devices, has been constructed in a manner to

facilitate viewing on a screen. The tableaus are displayed

in sections from left to right with a user-controlled pause

between screen displays. This allows the user to study

information from that portion of the tableau prior to the

next screen being displayed.

The last feature is primarily applicable to those who

wish to use this module as a problem solver without

interaction. This option allows the user to designate the

specific tableaus to be displayed. This option, if minimal

output is required, allows a solution to be obtained more

rapidly since less output time is required for the

70

i -- I-V1 " ... I -- ~----- -

intermediate tableaus to be displayed. The user should be

cautioned against changing the programer-defined defaults

for tableau output when using this module for instructional

purposes. Should these defaults be changed, the user will

not be able to determine the tabular outcome of the previous

iteration and, therefore, may not be able to select the

proper pivot elements for future iterations.

When an optimal solution has been obtained, the user

may save the solution on disk to allow for future

sensitivity analysis using Module 4. It should be noted

that once a problem has been solved using this module, there

is no reason to use Module 3 for the same problem. Module 3

performs the same computations as Module 2 with minimal user

interaction.

Module 3 - Problem Solver Module. Module 3 is similar

in purpose to Module 2. The major distinction is that

instructional comments have been deleted allowing the

addition of features not possible in Module 2 due to memory

size limitations. The primary feature available in Module 3

not previously available is the ability to explicity solve

the dual LP model of an LP problem entered in Module 1.

Although user interaction is not required in the

transformation process from the primal to the dual problem,

the proram does inform the user when variables are added to

allow for unconstrained variables. One may wish to review

duality theory to fully understand this requirement.

71

9 No BM

Hillier & Lieberman (Ref 13s91-109) offers a basic review of

this area. The message which advises the user of added

variables denotes the subscript of the original variable and

the corresponding added variable so that later tableaus may

be correctly interpreted.

This module, as does Module 2, displays the

programmr-de+ined default options upon execution of the

module. The options displayed include the type of problem

to solve (primal or dual), whether or not to use dual

pivots, the output format and destination, and the specific

tableaus to be displayed. The selection of these default

options was based on the subjective judgement of the

frequency of use of the various options. Also, the default

options were defined to be consistent between Modules 2 and

3. In this way, a user who has become familiar with the

operation oi one module may transition smoothly to use of

its counterpart.

A problem not encountered in Module 2 implementation

arose during the incorporation of the dual problem solving

capability. Module 4, the sensitivity analysis module,

requires access to the parameters of the problem as entered

or, for dual problem solution, as it would have been entered

as a primal problem. Since Module 3 performs the

transformation of the primal to the dual, the parameters of

the dual problem have not previously been saved to disk.

This requires that a new data file be created to contain

72

theme parameters. Initially, it was envisioned that the

original data file containing the input to Module I would be

rewritten to contain the dual problem parameters. Two

problems were encountered. First, the original data file

would be lost, and the user could no longer use this file to

edit the model for further problem formulation. Second, and

most importantly, due to the possible addition of variables,

the new file possibly could not be stored on disk in the

space allocated to the original data file. This problem

would cause an input/output error and premature program

termination. Both of the above problems were overcome by

the creation of a new file with a user-specified

di skname filename.

The primary areas noted above were those which differed

from that of Module 2 or in which special problems arose.

The user may save the results of problem solution to disk

for later sensitivity analysis with Module 4. The user is

then allowed to retrieve another LP model from disk for

solution or to receive instructions on the operating system

commands to enter Module 1. From Module 1, the user may

elect to perform any of the functions available in the

software package.

Module 4 - LP Sensitivity Analysi s. Module 4 provides

several types of sensitivity analysis for linear programming

problems previously solved by Modules 2 or 3. The types are

1) finding range limits for the right-hand side, the

73

objective function coefficients, or the variable

coefficients; 2) solving for a new final tableau after one

or more changes to any combination of right-hand side or

other coefficients; 3) solving for a new final tableau after

a new variable or a new constraint has been added. The

sensitivity analysis program is structurally separated into

eight parts. A master menu calls one of four sections which

allow the user to specify the type of analysis desired and

to enter required data. These four sections, in conjunction

with three additional sections, perform the analysis and

display the results on screen or printer. Each of the seven

sub-programs are overlayed on the main program when needed.

This allows the total package to greatly exceed the

immediate memory of the computer.

The sensitivity analysis package originally included a

section which would have presented the results in a

high-resolution graphical display; however, the graphics

package could not be overlayed. With the graphics held in

memory, the remaining space was not sufficient to run any of

the other sensitivity analysis sections. Because of this

problem, the graphics portion was deleted.

All sections of the sensitivity analysis require data

from either Module 2 or 3. This data includes the original

tableaus as entered by the user in Module 1 (except for

problems solved by the dual method). If the dual of the

problem was solved, the sensitivity analysis receives and

74

LL 9....

displays all data as though the dual of the problem had

originally been entered. This means that the

right-hand-side values and the objective function

coefficients will be switched and all elements of the matrix

will be transposed. The sensitivity analysis section also

requires the full final tableau from Modules 2 or 3 as well

as a number of flags and parameters indicating the solution

conditions and method.

Sensitivity analysis is based on relationships between

values in the tableau. The data received from Modules 2 or

3 have the ordering of the final K (number of constraints)

columns based on the original constraint type (<,,=).

Sensitivity analysis is least complicated when the last K

columns are aligned according to their association with the

constraints. That is, the first column of the last group is

associated with column 1, etc. This reordering is

accomplished in Unit 48 immediately after the data is read

from the data file. (See Appendix B for specific

information on the units and their purposes.)

Unit 41 provides right-hand-side upper and lower bounds

for the current optimal solution and displays the value of

the basic variables and the objective function (z) at each

of these bounds. Unit 42 provides upper and lower bounds

for the objective function coefficients and for all original

matrix coefficients. Units 41 and 42 require no user input

other than selecting the option and the desired display

75

-S

(screen, printer, or both).

Unit 43 allows changes to one, any, or all of the

original values of problems. After the effects of all

changes are summed, the tableau is returned to a basic

solution form, and a new optimal solution is obtained using

Unit 45. Unit 43 requires user inputs for each desired

change.

Unit 44 allows the addition of a new constraint or

variable to the origihal problem. These additions are a

special case of the changes investigated in Unit 43. In

this case, the original values are assumed to be zero and

the changes which are a result of the added constraint or

variable are determined. Units 43 and 44 use Unit 47 to

check the validity of inputs.

Unit 45 solves the modified problem (if possible) and

then displays the new optimal solution. The display

routines are generally limited to values between 10'5 and

10-5. Since the optimal solution must always have a

coefficient value of 1 in the element representing the basic

variable, the solutions tend to be "sized". Any value

outside of the displayed range is suspect and may be caused

by ill-conditioning. Such values are usually printed as

either zeros or S's. Ill-conditioning may be the result of

the sensitivity analysis techniques and does not necessarily

imply that the original problem (as modified) would be

ill-conditioned if solved by the other modules.

76

we -w.L,,

Several special conditions may arise which will

preclude completion of the desired sensitivity analysis. If

the total change to any element of the primary matrix sums

to approximately -1 for a variable which is in the basis and

has a value of one, the new value will approximate zero.

Since this value is used as a divisc- for the entire row,

any non-zero value in the row will approach infinity after

division, and the problem will not be solvable. In this

case, the user is returned to the main menu.

Whenever the new problem, developed through sensitivity

analysis, is either unbounded or infeasible, these

conditions are noted, and the solution process is

terminated. Other than these noted special cases, the

sensitivity analysis should produce the requested output.

Summa r. The considerations discussed in Chapter III,

combined with the desire to design an accurate and

responsive analytical tool, have caused some compromises in

each area. The ability to extensively edit or recover from

erroneous input has decreased the possible thoroughness of

instructional comments. This exchange was felt to be

justified since erroneous inputs could require a coisplete

input of data causing the user to be hesitant in future use

of the software.

An area not previously dimcussed is the use of prompts

on which disk must be available in a disk drive to insure

that an input/output error does not occur. Initially, ail

77

prompts on disk availability assumed a two-disk drive system

configuration with one drive of the disk containing the

module being used (See Appendix B for disk file structure).

It was found that by inserting additional prompts, the LP

package could be used with a one-disk drive system. This

modificaiton, although it slows the overall solution or

analysis process, allows users not possessing two drives to

be potential users. This was felt to be an improvement to

the package because of an increased potential audience.

The above enhancement, combined with the user being

allowed to select an output device, has allowed the minimal

system configuation shown in Figure 3 below.

1. Apple Il-plus microcomputer with 48K RAM
2. One disk drive (5 1/4 inch)
3. 1bK memory expansion card
4. Video display (TV)

Figure 9. Minimal Hardware Configuration

78

~ II -~ ~ ~W~ Wm=

V Conclusions and Recommendations

The major objective of this thesis was the development

of an extensive linear programming software package which

could be used on a microcomputer system. Several

sub-objectives were also defined in the preliminary phases

of the research. These sub-objectives were: 1) the design

and implementation of the software package would allow

maximum portability among microcomputer systems; 2) the

software would be user-oriented and designed for use by

non-programmer oriented persons; 3) the programs would be

able to provide interactive instructional sessions on the

simplex algorithm; 4) the software would provide true

sensitivity analysis which could be supplemented with a

graphical depiction of the parameters and their ranges.

The sub-objectives were often found to be in conflict

with each other. The amount of FORTRAN code required to

implement all of the desired features could not be

implemented in one program due to memory size limitations.

Furthermore, the code could not be stored on one disk. To

retain many of the desired capabilities, a decision was made

to compromise the simplicity of use of the software. The

software now resides on two disks in four separate programs.

This is somewhat confusing to the new user; but the

disadvantages are short-lived while the advantages of

retaining the desired features are long-lasting.

79

The decision to use two disks and four programs also

resolved several other problems which were computer-memory

size dependent. These retained features include: the

ability to run the software on a single-drive system; user

prompts abundant with instructions; and the ability to

choose the formatting parameters. A desired feature which

was not retained was the capability to graphically depict

sensitivity range and parameters. The Pascal Operating

System, as supported by the Apple II, does not allow the

graphics package to be overlayed in memory when using

FORTRAN. When programming in Pascal, a different memory

allocation scheme is used which permits graphics overlay

(Ref 15). Because of this limitation in FORTRAN, graphics

and large computational programs could not be combined. A

graphics capability would have required a fifth program on a

third disk. A compromise had already been made in the size

and complexity of the linear programming software package

and, therefore, the determination was made to forego the

graphical capability.

As a result of using FORTRAN, several other limitations

or deficiencies are resident in the programs. There are no

provisions in the programs to recover from incorrect file

access. If an attempt is made to open an old file where

none existed, or to open a new file when an old one of the

same name existed, the program will abort. Provisions have

been placed in the programs to give the user an opportunity

so

.i ______________0_______

A! -

to correct the filename input, but mistakes are possible

which will terminate the program with an execution error.

Another deficiency is the lack of character string

manipulation capabilities. If concantentation existed in

the Apple FORTRAN subset, the appearance and meaning of some

prompts and other output could have been improved. These

limitations are not present in Pascal. However,

implementation of these features in Pascal would require

additional source code and could result in memory overload.

This would require the elimination of other desired

features.

There are several features which could be added to this

linear programming package; however, the risk of increased

complexity and size may be incurred with these additions.

The first feature is the graphical capability previously

discussed. The ranges and parameters derived in Module 4

could be written to a disk file. A fifth program could then

be executed to display the desired values. This feature

could be further enhanced with the capability to print the

graphics to hard-copy.

A second area of investigation could be the problem

size limitations of the programs. The current system limits

the final problem to twenty constraints and sixty variables.

This size approaches the system limit as currently coded.

By developing a version with reduced features, the maximum

size could be enlarged.

.1

.. . ____________:____ . .__. .. . '. 1 '

Other mathematical programming techniques, such as

integer programming and goal programming are also primary

candidates for future enhancements. Both techniques could

be partially supported by the present modules; however,

extensive additions would be required.

This software package has accomplished the objectives,

with the exception of the graphics capability. Future

research and microcomputer developments may allow this

product to be enhanced or variations may be developed for

specific purposes. Many of those included features, as well

as envisioned modifications to this software, are dependent

on the capabilities of the microcomputer system. It must be

realized that microcomputers have finite limitations due to

memory capabilities and the current language

implementations. These factors and their interactions have

placed obvious constraints on this linear programming

implementation and requires careful research before

attempting an effort of comparable magnitude.

e2

1. Apple Computer Inc. A_2gle FORTRAN Languagg
Reference Manual. Cupertino, California: Apple
Computer Inc., 1980.

2. Apple Computer Inc. RJA!l_ Pascal Oe Eat i ng Mtem
Rew+ergnce Manual. Cupertino, California: Apple
Computer Inc., 1980.

3. Balfour, A. and D. H. Marwick. Programminq In
Stanad FORTRAN 77. New York: North-Holland Inc.,
1979.

4. Bradley, S. P., A. C. Hax, and T. L. Magnanti.
_ggied Mathematical Programming. Massachusetts:
Addison-Wesley, 1977.

5. Chung, An-min. Linear ProgEamming. Columbus,
Ohio: Charles E. Merrill Books, Inc., 1963.

6. Conte, Robert D. Co~muter Assisted Analy2sis for
Militav Managers. MS Thesis, Wright-Patterson AFB,
Ohio: Air Force Institute of Technology,

December, 1979. (AD A080215)

7. Daininger, Rolf A. "Teaching Linear Programming on a
Microcomputer," TIMS-ORSA Meeting, Detroit, Michigan,
April, 1982.

8. Sal, Tomas. Postogimal Analss. Parametric
Prograing, and Related Toics. New York: McGraw-
Hill Book Company, 1979.

9. Garfinkel, Robert S. and George L. Nemhausr.
Intfggff eogCaing. New York: John Wiley & Sons,
1972.

10. Bass, Saul I. Lingfa PE~goEa__in - Methods and
ARggications (Fourth Edition). New York: McGraw-Hill
Book Company, 1975.

11. Gillett, Billy E. jntE2OUgjio To perag_s
Rgearch: A C[mRQjtt-Qrin _Al o1i9CbM 622ro20_gh_
New York: McGraw-Hill Company, 1976.

12. Gottfri.d., Byron. "Micro-LP : A Microcomputer-Based

Linear Programming System," TIMS-ORSA Meeting, Detroit.
Michigan, 21 April, 1982.

13

13. Hillier, Fredrick S. and Gerald J. Lieberman.
!atcWLustiea tq O-g-sati ons R.aracg (Third Edition).
Son Francisco: Holden Day, Inc., 1960.

14. Irvine, C. A. "USCD System Makes Programs Tortable,"
gjectrgniS PS2ig, Z@ (14)s 113-118 (August
1990).

15. Lee, David B. Enhance~d Dec;Li gr 8'elyajs %gggc t
ra~tg MS Thesis. Wight-Patturson AFS, Cihios

Air Farce Institute of Technology, March, 1981.

16. Levin Richard 1. and Charles A. Kirkpatrick.
Q~i0UaodaiYL A-22C9402tL0 ti gg!2MMEM (Third
Edition). New Yorks McGraw-Hill Book Company, 1975.

17. Orchard-Hayes, William. Adag Linear-Progamfi
C--A0 iff&!-0iguu2. New Yorks McGraw-Hil1l Book
Company, 1969.

IS. Shaf fer,, Richard A. "In a Rapidly Changing Field,
Apple II Shows Staying Power,, its Wall Stree-t
Journal, pg. 19, 14 May, 1982.

19. Strang, Silbert. 6ia Algebra and Its
AgL42isations (Second Edition). New Yorks Academic
Press,. Inc., 1990.

20. Swain, Ralph W. "Microcomputers in the Classroom,"
TIMS--ORSA Meeting, Detroit, Michigan, 21 April, 1982.

21. Whitehouse, 6. E. and Vassar Hosni. "Use of
Microcomputers to Solve Industrial Engineering and
Operations Research Problems," TIMS-ORSA Meeting,
Detroit,-Michigan, 21 April, 1962.

22. Wu, Nesa and Richard Coppins. Linear Programmingan
92tep-99 New Yorks McGraw-Hil11 Book Company,

1981.

84

APPENDIX A

USERS GUIDE

1 85

II.~~~~% wp v~- ~ -- - --

CONTENTS

I Introduction 87

II Capabilities and Limitations B

Capabilities 0 8
Limitations. 90

III User Input 92

IV System Startup 94

V Sample Problem 96

Numerical Example 96
Module Demonstration 97

Module 1 98
Module 2 117
Module 3 151
Module 4 163

8.

I .. ' '.. .. e° " i ' " i - i

I Introduction

The primary emphasis in the main body of this thesis

has been the design considerations and the method of

implementation of this linear programming software package.

Specific comments on the use of the package have been

limited; therefore, it is the purpose of this appendix to

provide the user with specific information and guidance on

the use of various programs included in this LP software

package. Included in this section are the specific

capabilities, limitations methods of access, and use of

each program. Also, suggestions are provided which will

reduce the quantity of input required by the user of these

programs.

An Apple 11 microcomputer with 48K RAM is required for

the use of this software as implemented. Also required are

a 16K memory expansion card, at least one 5 1/4 inch disk

drive, and a monitor. Although one disk drive is

sufficient, a second drive requires significantly fewer disk

changes during problem solution and speeds the process

considerably. Also, note that the instructions and

suggestions in this appendix apply to the Apple II

microcomputer and may not be applicable to other systems.

87

q owl,~ 00-

II Ca2abilities and Limitations

This section specifically outlines the type of linear

programming problems which may be solved and analyzed with

this software. Limitations exist and they will be

explicitly noted below.

This linear programming software package allows the

user to interactively enter LP models with the variables and

constraints identified only by numerical identifiers or with

names associated with each. These models may be stored to a

disk for later review, editing, and solution. Extensive

editing features of all entries allow correction during data

input or editing at a later time. These editing features

also allow the user to input a model, save this model to a

disk, then change selected parameters to form new LP models.

After the model has been input, it may be displayed for

review on the screen or output to a printer. All displays

of output, prompts, or comments are screen-oriented with

pauses inserted at the end of each screen display to allow

inspection of the information prior to proceeding to the

next display.

The remaining programs of this package are dedicated to

problem solution and sensitivity, analysis. Module 2, the

instructional module, allows the user to input option

selections regarding the application of the simplex

88

AD-A124 804 FORTRAN BASED LINEAR PROGRAMMING OR ROCOMPU ERSIU .3/5
AIR FORCE INS OF It CH WRIGHT-PATTERSON AFB OH SCHOOL
OF ENGINEERINO R FRALE lA.DC8

UNCLASSIFIED A FI/GOR/OS/82D-4 F/G 1211 NL

Emmnm EEI nmmhhmflhflfllflf

I EI~lffh~h

11111 1.L

1.2511 .4 IizL

MICRCOP RESLUIO TET -H
NAINLBRA F TNAD-16-

Mel4 to mp

algorithm and receive feedback concerning the validity of

the option selection. Areas in which instructional comments

and guidance have been provided are tableau formulation,

pivot element selection, and identification of optimal,

infeasible, or unbounded solutions. Options have been

provided which allow the user to specify whether to perform

and receive feedback on each of the areas or to allow the

program to perform the functions without user input. This

permits the program to require varying degrees of user

interf ace and corresponding degrees of feedback and

instructional aid.

The instructional module only allows the solution of

the primal problem of the LP model; however, it permits this

solution by either the regular or the dual simplex method.

When the solution process is performed using the dual

simplex procedure, instructional comments similiar to those

available with the regular simplex procedure are presented.

The third module, annotated as the problem solver

module, allows the user to solve either the primal or the

dual problem of the LP model using the regular or the dual

simplex procedure. This expanded capability allows the user

to specify the most efficient method of problem solution.

Once the type of problem and method of solution have been

identified, the program performs all formulation, pivot

element selection, and identification of the final solution.

Prior to the solution process, the user may specify the

eI

LLNU

tableaus to be displayed. Also, the numerical format and

location of output is user-dofined.

The last module provides the sensitivity analysis

capabilities of this package. This module requires that an

LP problem have been solved using either problem solving

module and the solution parameters saved to disk. The user

may then select one of five alternatives offered for

sensitivity analysis. Resource constraint right-hand-side

ranging within the present optimal solution is provided as

well as constraint and cost coefficient ranging. The user

is also able to change one or any combination of the

original model parameters and proceed to the corresponding

new final solution. This solution may be displayed in the

same tabular form as discussed earlier. Two more features

of the sensitivity analysis module are the ability to add a

variable or a constraint to the LP model and the ability to

obtain the corresponding solution. This capability allows

the user to examine modified examples of the original

problem without resorting to model editing and solution with

Modules I and 2 or Modules I and 3.

-imitations

The limitations associated with this package are

orimarily a result of implementation on a microcomputer

rather than a large, stationary system. The principle areas

o+ concern are the size of the LP model and the number of

digits in the various parameters of the model.

90

7 A., .7 _,, , . lal. .l ,.;. , ,n,.l .. .,, . . .

Due to memory restrictions of the Apple microcomputer,

as well as most comparably sized microcoputers, the number

of constraints and variables are limited in this software

implementation. The maximum number of constraints and

variables which the user may input has been set tot

Maximum number of constraintss 20
Maximum number of variables: 20

Note that since an augmented basis is used in problem

solution, this translates to a possible twenty constraint,

sixty variable problem for solution.

The other area in which limitations exist is the number

of significant digits which may be accurately maintained by

the microcomputer. A maximum of ten digits may be entered

as coefficients and resource limits; however, any number of

significant digits larger than six may be subject to

round-off during computation and display. The abiiLty to

enter ten digits has been allowed since the "ser may need to

enter a negative sign and decimal point in addition to the

significant digits. Therefore, the user should be cautious

in the use of numbers which have six or more significant

digits.

91

III User Inout

The amount of user input differs among the various

modules of this package; however, the amount required is

extensive in the data entry and instructional portions of

the software. Therefore, minimization of input is necessary

whenever possible. Listed below are several suggestions, as

well as warnings, regarding user input.

Option Selection: The user will be required to make

several option selections requiring one or two digit inputs

or single character inputs. An error during this input may

have one of two results. If the user inputs a valid entry

(one of the possible alternatives) but not the desired

option designator, the user will not be able to prevent

execution of the selected alternative. If the entry is not

a valid alternative, the program will inform the user of an

invalid entry and the proper option designator may be

entered.

Model Parameters. All numeric parameters (cost and

constraint coefficients, constraint right-hand sides) are

checked for invalid characters in the input. Any

non-numeric input except sign designators and decimal points

will cause an invalid entry display followed by a request

for the user to reenter the data. Due to this check of

input, commas should not be entered (i.e. enter 10000, not

92

-_OEM

10,000). Positive values are assumed unless a negative sign

is input. Also, all real numbers which contain no

significant digits to the right of the decimal may be

entered as integers (i.e. 1.0 may be entered as 1).

Inequality Inputs Less-than or equal (<_) must be input

as less-than E<] inequalities while greater-than or equal

(>) must be entered as greater-than inequalities E>3.

Yes/No Inputs& All [YES] or ENO responses may be

entered by a EY] or EN3 single entry.

All Inputs: All user inputs must be completed by

depressing the CRETURN] key. The computer does not attempt

to read input until this action is taken. A zero may be

entered as a numeric input by pressing only the [RETURN]

key; this allows faster input of a model which has many zero

coefficients.

Printer Options This software package offers the user

the capability to have selected output routed to a printer;

however, the selection of this option without a printer

being available will cause an execution error. Also, if the

printer option is selected, the user must insure that the

printer has been turned on and is in a printing mode.

Otherwise, the system will wait indefinitely for the printer

to accept information, and it will "hang" the system.

93

Io

IV. _Sy-_s_- 9t-rtum

The compiled FORTRAN code files which form this LP

package have been stored on two 5 1/4 inch floppy disks with

volume names LPi and LP2 (see Appendix B for disk file

structure). As was discussed in Chapter IV, a turnkey

system has been used which causes Module I, the data base

entry module, to execute automatically when the computer is

turned on. However, for this system to function properly,

two data files must be placed on the disk LP1 prior to its

use. These files, SYSTEM.PASCAL and SYSTEM.MISCINFO, must

be transferred from disk APPLE1 (Version 1.0) to LP1 for the

turnkey system to operate. For those who are not familiar

with the procedures required to transfer files, please refer

to the operating system reference manual (Ref l3156).

Once the transfers have been completed, the following

steps should be performed to allow Module 1 to execute.

1. Place disk APPLEI (Version 1.0) in disk drive

#4 (the first disk drive is numbered as 04 with

the Pascal Operating System while the second

drive, if present, is numbered 0!). If two drives

are present, also place disk LP2 in drive 05.

2. Turn on the power switch of the Apple-II (04

drive should activate and run for approximately

Sf ive seconds).

94

I

3. Remove APPLE1 from 14 drive and replace it

with LP1.

4. Press the CRESET] key ('4 drive should again

rung followed by 15, if a second drive present,

and then the *4 drive runs again).

At this point, a title page should appear on the screen and

Module 1 has executed.

For those users not familiar with this software, the

next section is devoted to an example problem and

explanation. The problem demonstrates the use of all

modules and may be of assistance in learning the various

alternatives available and their method of activation.

95

i q!%

v IsRL& e___qhLnes

This section is dedicated to a step-by-step guide

through the major portions of this software package. Users

may review this section to learn the specific alternatives

available and their sequence of availability. It would not

be feasible to demonstrate all of the possible alternatives

and their use; howevers the sequence and methods felt to be

most commonly used will be shown with explanatory comments

given for many of the other features available.

Numerical Exagf13

The following numerical example will be used for the

purposes of this demonstration. The example, although not a

large problem, will allow the user to become familiar with

the method of data entry and the output formats used in this

LP package.

Problemi An analyst has been asked to determine the

number of helicopters, by type, which would be required to

move at least 2000 men and 1200 tons of equipment to a new

area of operation. Three types of helicopters are available

with the following capabilities.

FUEL COST($100) MEN EQUIP(tons)

TYPEI 30 5 6
TYPE2 22. 5 a 3
TYPE3 25 4 6

96

-- -7 I -
-' .1. I

The analyst has been directed to determine the mix of

aircraft which minimizes cost; however, the analyst has been

restricted to the use of 400 helicopters (Ref 6:75).

The above situation may be formulated as a linear

programming problem as follows:

x(1) = number of TYPE1 aircraft
x (2) = number of TYPE2 aircraft
x(3) = number of TYPE3 aircraft

minimize 30 x() + 22.5 x(2) + 25 x(3)

subject to

5 x(1) + 3 x(2) + 4 x(3) > 2000

&x() + 3 x(2) + 4 x(3) > 1200

x(1) + x(2) + x(3) < 400

Wodule Demonstration

In the demonstration which follows, all inputs by the

user have been placed in square brackets (E 3) to

distinquish input from screen displays and prompts. All

user inputs are completed by depressing the [RETURN] key to

allow the program to read this input. Another area which

may require clarification is the PAUSE statement which

appears after displays not requiring data input. The user

must depress the [RETURN] key or the [SPACE] bar whenever a

PAUSE statement appears before the program will continue.

The input of any other type than the two stated will cause a

new PAUSE statement to appear.

97

-NOMw 1. The first step required in the use of this

LP software package is system initialization which is

performed as described in Part IV of this appendix, System

Startup. Once those procedures have been completed, the

following title page will be displayed.

g FORTRAN BASED S

$ LINEAR PROGRAMING I

* $ FOR
* S

SMICROCOMPUTERS *

BY

THEODORE R. E. FRALEY

AND

DALE A. KEM

ARE INTRODUCTORY REMARKS DESIRED?
(Y/N, RETURN) EY]

Should one wish to review the introductory remarks, a

[Y] would be entered (remember that the brackets indicate

user input followed by a CRETURN]) and the following

comments will be displayed. Note that in the lower left

corner of each display the word "PAUSE" appears. This

indicates that no further displays or program progress will

occur until the ESPACE] bar or CRETURN] key have been

depressed.

98

'lid

LINEAR PROGRAMMING SOFTWARE PACKAGE

THIS PACKAGE IS DESIGNED TO ALLOW
STUDENTS TO IMPROVE THEIR UNDERSTANDING
OF THE SIMPLEX ALGORITHM AND ALSO TO
PROVIDE THE MANAGERS AND ANALYSTS WITH A
PROBLEM SOLVING TOOL.

THE PACKAGE CONSISTS OF FOUR DISTINCT
PROGRAMS (ANNOTATED AS MODULES) WHOSE
FUNCTIONS ARE AS FOLLOWSs

MODULE 1: DATA BASE ENTRY
MODULE 2: LP INSTRUCTION
MODULE 3: LP PROBLEM SOLVER
MODULE 4: SENSITIVITY ANALYSIS

ALL LP PROBLEMS MUST BE ENTERED INTO A
DATABASE USING MODULE 1. MODULES 2 OR
j3 MAY BE USED TO DETERMINE A SOLUTION TO
A PROBLEM AND THIS MUST OCCUR PRIOR TO
ENTERING MODULE 4.

PAUSE

I NSTRUCTIONS ON HOW TO ENTER EACH MODULE
WILL BE PRESENTED WHEN APPROPRIATE.

ANSWERS TO SPECIFIC QUESTIONS CONCERNING
ANY MODULE WILL BE FOUND IN THE USERS
GUIDE (APPENDIX A) OF THE THESIS
DOCUMENTATION.

ALL RESPONSES REQUIRE A [RETURN] TO NOTE
THE COMPLET ION OF INPUT.

ALSO, ALL YES/NO INPUTS MAY BE ENTERED
BY LY] OIR EN], RESPECTFULLY.

IPAUSE

After the introductory remarks, the first menu

displayed is that of module selection. Since a data base

has not previously been entered, one would select option E1]

99

I- , l * 5iil

to continue in Module 1 and data base entry.

MODULE SELECTION

THE FOLLOWING OPTIONS ARE AVAILABLE:

1. DATA BASE ENTRY (ENTER DATA BASE OR
EDIT CURRENT DATA BASE)

2. LP INSTRUCTIONAL MODULE

13. LP PROBLEM SOLVER MODULE

4. LP SENSITIVITY ANALYSIS MODULE

(NOTE: OPTIONS 2 OR 3 REQUIRE THAT A
DATA BASE BE CURRENTLY STORED ON DISK)

(NOTE: OPTION 4 REQUIRES THAT A DATA
FILE HAS BEEN SAVED UPON LEAVING THE
OPTION 2 OR 3 MODULES ABOVE.)

WHICH OPTION? E1]

The fonlowing header confirms entry into the data base

entry nortion of Module 1.

*t $

* DATA S
* *

S BASE *

*t ENTRY t
MO UL

* MODULE I
St S

*t MODULE 1 *

PAUSE

100

Following the data base entry header, the user is

offered soveral alternatives of entering a data base.

Again, no previous data base exists so either option 1 or 2

must be selected. Option C23 allows the same input as

option 1, but allows the constraints and variables to be

identified by names as well as subscripts.

DATA BASE ENTRY

TO ENTER LP MODEL DATA BASE
YOU HAVE THE FOLLOWING OPTIONS:

11. CREATE MODEL INTERACTIVELY:SUBSCRIPTS
(VARIABLES ANNOTATED BY SUBSCRIPTS, I

CONSTRAINTS ANNOTATED BY NUMBER ONLY)
2. CREATE MODEL INTERACTIVELY:NAMED

VARIABLES AND CONSTRAINTS ARE
ASSIGNED NAMES)

3. READ FROM DISK
(PREVIOUSLY CREATED BASE)

4. DISPLAY INTRODUCTORY REMARKS

5. QUIT PROGRAM

WHICH OPTION? E2]

If a data base had been previously entered and saved to

disk, one could select option 3. At that time, the

following three displays of comments and prompts would

appear. If this previous file had been placed on disk LPI

(volume name) with a filename of BUSES, one would enter this

as shown below to retrieve that model. The next two prompts

appear sequentially to inform the user that the designated

101

disk must be in the 04 disk drive for a one drive system or

in either drive for a multiple drive system. A habit of

leaving disk LP1 in drive *4 and disk LP2 in drive *5 has

been found to be beneficial for a two drive system. In this

configuration only when files are to be written or read

from another disk are the two disks not accessible in the

disk drives.

READ LP MODEL FROM DISK

ENTER THE DISK DRIVE NUMBER AND FILE
NAME WHICH HOLDS THE MODEL DESIRED.

ENTER EXACTLY AS FOLLOWS
DISK DRIVE:FILENAME

EG. *4:FILENAM

DISK:FILENAME = ELPIBUSES]

INSURE THE DISK CONTAINING THE

LP1:MAX

MODEL IS AVAILABLE.

PAUSE

INSURE DISK LP1 IS AVAILABLE.

PAUSE

Continuing with the data base entry for the example

problem, one would enter an identifier for later reference.

Also, the type of problem is entered at this time as shown

102

below.

ENTER A PROBLEM IDENTIFIER
(MAXIMUM OF 20 CHARACTERS)

PROBLEM ID - [.SAMPLE PROBLEM]

IS PROBLEMS OBJECTIVE FUNCTION TO BE:

1. MAXIMIZED
OR

2. MINIMIZED

WHICH OPTION? E23

Next, one identifies the objective name of the problem.

This input is not allowed for models with only subscript

designators.

WHAT IS THE NAME OF THE OBJECTIVE YOU
WANT TO MINIMIZE?

(FOR EXAMPLE, COST, MANPOWER, ETC.)

MAXIMUM OF 10 CHARACTERS ALLOWED

OBJECTIVE NAME = [COST]

At this point, the number of constraints and variables

which form the LP model are entered. Nonnegativity

constraints are not to be included in the number of

constraints entered below.

103

. '

ENTER NUMBER OF CONSTRAINTS IN PROBLEM
(MAXIMUM OF 20)

NUMBER OF CONSTRAINTS - E3]

ENTER NUMBER OF VARIABLES IN PROBLEM
(MAXIMUM OF 20)

NUMBER OF VARIABLES - E33

Since a model with names has been selected, the

following three displays are presented allowing the input

and correction of the decision variable names. First the

names are input and in the next display, a rY] may be

entered to allow correction of the names. An EN] has been

entered since corrections were not needed.

VARIABLE NAME INPUT

ENTER VARIABLE NAMES WuHICH CORRESPOND
TO THE 3 VARIABLES THAT AFFECT

COST

NAMES ARE TO BE 6 CHARACTERS OR LESS.

PAUSE

PROBLEM IDs SAMPLE PROBLEM
VARIABLE NAME INPUT

X(1) - ETYPE13
X(2) - [TYPE23
X(3) = [TYPE3]

104

.- so I wpm

PROBLEM IDs SAMPLE PROBLEM
VARIABLE NAME INPUT

ARE CORRECTIONS NEEDED? CN3

The same sequence appears next for the input and

correction of constraint names. Note that variable and

constraint name input is not allowed for models with

subscripts only. Although these names are useful for ease

of variable identification, input of the data base is slowed

considerably by this requirenment.

CONSTRAINT NAME INPUT

ENTER CONSTRAINT NAMES WHICH CORRESPOND
TO THE 3 CONSTRAINTS WHICH AFFECT
COST

NAMES ARE TO BE 6 CHARACTERS OR LESS.

PAUSE

PROBLEM ID, SAMPLE PROBLEM
CONSTRAINT NAME INPUT

CONSTRAINT 1 - [PERSON]
CONSTRAINT 2 = [EQUIP3
CONSTRAINT 3 = PLANES]

PROBLEM ID2 SAMPLE PROBLEM

CONSTRAINT NAME INPUT

ARE CORRECTIONS NEEDED? CN]

105

I~. was

Next, the objective function is input following

comments regarding the restrictions on numerical Input.

After completion of input, the option of correcting input is

presented. This allows changes of any type to the objective

function. Note that the coefficients input below do not

include decimals for those without significant digits to the

right of the decimal. This allows for more rapid input of

the coefficients values.

OBJECTIVE FUNCTION INPUT

INPUT THE FUNCTION AS IF IT WERE IN THE
FOLLOWING FORM

Z - X(1) + X(2) + X(3) + ETC.

A MAXIMUM OF 10 ENTRIES PER COEFFICIENT
INCLUDING DECIMAL AND SIGN ARE ALLOWED.

IF COEFFICIENT IS ZERO, HIT -RETURN-
WITHOUT DIGIT ENTRY.

PAUSE

PROBLEM ID3 SAMPLE PROB3LEM
OBJECTIVE FUNCTION INPUT
COST MINIMIZATION

C(1) - TYPE1 - E301

C(2) - TYPE2 - E22.52

C(3) - TYPE3 - 1253

106

No corrections were needed so in the objective function

an CN3 was entered below.

PROBLEM ID: SAMPLE PROBLEM
OBJECTIVE FUNCTION INPUT

COST MINIMIZATION

:RE CORRECTIONS NEEDED? EN]

The constraint coefficients are input next in the same

type sequence as the objective function. One constraint is

entered per display with the option of corrections being

presented after the last constraint has been entered. This

editing allows the user to change any constraint and any

part of the input, including the inequality. Note that the

nonnegativity constraints are not entered into the model.

Also, note that the constraint coefficients are input as

integers since no significant digits exist to the right of

the decimal point.

107

i

CONSTRAINT INPUT

INPUT CONSTRAINT VARIABLE COEFFICIENTS
AS IF THE CONSTRAINT WAS IN THE
FOLLOWING FORM

X(1) + X(2) + X(3) <-> RHS

THE VARIABLE COEFFICIENTS ARE A MAXIMUM
OF 10 CHARACTERS

lIF COEFFICIENT IS ZERO, ENTER 0 OR HIT
!"RETURN" WITHOUT ENTRY.

THE LESS-THAN (<) REPRESENTS A LESS-THAN
OR EQUAL INEQUALITY.

THE GREATER-THAN (>) REPRESENTS A
GREATER-THAN OR EQUAL INEQUALITY.

NEGATIVE RHS IS PERMITTED.

PAUSE

PROBLEM IDt SAMPLE PROBLEM
CONSTRAINT 1 = PERSON

X(1) - TYPEI E (53
X(2) - TYPE2 E (83
X(3) - TYPE3 - C4]
INEQUALITY E>3
RHS - (2000]

PROBLEM IDi SAMPLE PROBL.EM
CONSTRAINT 2 -'EQUIP

X(1) = TYPEl - (63
X(2) - TYPE2 = (33
X(3) - TYPE3 -(62
I NEQUAL I TY E>3
RHS - E12003

108

Ab'1 -AL~

PROBLEM 10a SAMPLE PROBLEM
CONSTRAINT 3 - PLANES

X(1) - TYPEI - E1]
X(2) - TYPE2 - C1]
X(3) - TYPE3 - C1]
INEQUALITY E<3
RHS E [4003

ARE CORRECTIONS NEEDED? (N]

Following the input and correction of the constraints,

the data base -managemnt menu is displayed. Option 1 allows

the user to review input to insure correctness, after which

the data base management menu appears again. The user may

then select to edit any parameters with option 2. Once the

model is corrected, it may be saved to disk by selecting

option (3].

DATA BASE MANAGEMENT

THE FOLLOWING OPTIONS ARE AVAILABLE:
1. DISPLAY CURRENT LP MODEL

(SCREEN OR PRINTER)

2. EDIT CURRENT LP MODEL
(CHANGE ANY PARAMETER)

3. SAVE CURRENT MODEL TO DISK FILE
(MAY THEN EDIT TO ANOTHER MODEL)

4. ENTER NEW MODEL
(CURRENT MODEL LOST IF NOT ON DISK)

5. SOLVE PROBLEM
(INCLUDES EDUCATIONAL, PROBLEM SOLVER.
AND SENSITIVITY ANALYSIS)

6. QUITsUNSAVED FILES DESTROYED!

WHICH OPTION? E33

109

.... -L .-

The next four displays pertain to saving the model to a

disk. The user first enters the disknamefilenaume which the

current-model is to be saved under. Next, the user is given

the opportunity to correct this diskname. The user is then

directed to insure that the specified disk is in a disk

drive. Next, the user is required to input the status of

the disknamesfilename combination. If one has previously

saved a model to the same disknametfilename combination, but

answers (N] in the third display, all input data will be

lost. This will then require reinitialization of the system

and reentry of the last data base.

SAVE LP MODEL TO DISK

ENTER THE DISK DRIVE NUMBER AND FILE
NAME WHICH YOU WANT PROBLEM

SAMPLE PROBLEM
SAVED UNDER.

ENTER EXACTLY AS FOLLOWS
DISK DRIVEvFILENAME

EG. *4sFILENAM

THE DRIVE:FILENAME MUST BE 10 CHARACTERS
OR LESS

IF THE ABOVE IS ENTERED INCORRECTLY,
YOUR MODEL WILL BE LOST!!

DISKiFILENAIE - [LPIsSAIIPLE]

ARE CORRECT IONS NEEDED? EN]

110

IM n V

INSURE THE DISK TO CONTAIN THE FILE

LP1 uSAMPLE

IS AVAILABLE.

PAUSE

HAS THIS DISKeFILENAME COMBINATION BEEN
USED PREVIOUSLY?

(ARE YOU UPDATING A CURRENTLY EXISTING
FILE?)

(V/N) (N]

INSURE DISK LP1 IS AVAILABLE. 7

After the model has been saved, control returns to the

data base management menu as shown below. At that point,

one may select option 2 and the data base editor menu would

be displayed as shown below the data base managmeent menu.

IA

IT

DATA DAM MANAGEMENT

THE FOLLOWING OPTIONS ARE AVAILABLES
1. DISPLAY CURRENT LP MODEL

(SCREEN OR PRINTER)

2. EDIT CURRENT LP MODEL
(CHANGE ANY PARAMETER)

3. SAVE CURRENT MODEL TO DISK FILE
(MAY THEN EDIT TO ANOTHER MODEL)

4. ENTER NEW MODEL
(CURRENT MODEL LOST IF NOT ON DISK)

5. SOLVE PROBLEM
(INCLUDES EDUCATIONAL, PROBLEM SOLVER
AND SENSITIVITY ANALYSIS)

6. QUIT:UNSAVED FILES DESTROYED!

WHICH OPTION? C5]

DATA BASE EDITOR

YOU MAY EDIT THE CURRENT MODEL IN ANY OF
THE FOLLOWING MANNERS3
1. ADD A VARIABLE
2. ADD A CONSTRAINT
3. DELETE A VARIABLE
4. DELETE A CONSTRAINT
5. CHANGE COEFFICIENT BY CONSTRAINT
6. CHANGE COEFFICIENTS BY VARIABLE
7. CHANGE RHS OF CONSTRAINT
S. CHANGE CONSTRAINT INEQUALITY
9. CHANGE OBJECTIVE FUNCTION COST

COEFFICIENTS
10. CHANGE MAXIMIZATION/MINIMIZATION

CHOICE
11 . CHANGE VARIABLE NAMES
12. CHANGE CONSTRAINT NAMES
13. RETURN TO LAST MENU

(DATA BASE MANAGEMENT)

WHICH OPTION? £13]

As shown, extensive editing features are available and

112

* Now

could also have been used prior to saving the model to disk.

These features could also be usd to form a new LP model by

changing selected parameters of the model in memory. Upon

completion of the editing, one may return to the data bass

management menu by selecting option E13].

Option 4 of the data base management menu above could

have been selected if the user wished to enter a new model

after saving the first model to disk. The user , if

attempting to enter a new model prior to saving the first to

disk, receives a warning that the first model must be saved

or will be lost.

Option [53 has been selected in the last data base

management menu signifying that the problem is now to be

solved. Again, if this option had been selected prior to

saving the last entered model to disk, a warning message

would have appeared and the user would have been allowed to

save the last model before progressing to problem solution.

Following the selection to solve the problemp the

following menu, execution management, is displayed. Option

E1] has been selected for this demonstration; however,

option 2 could also have been selected. Option 3 is not

possible at this time since a problem must have previously

been solved with Module 2 or Module 3 and the result* saved

to disk. The user is also permitted to return to the data

entry section prior to exiting this module. The user, upon

selection of option 1, 2. or 3, is prompted to insure a

113

required disk is accessible.

EXE/UTION MANAGEMENT

THE FOLLOWING OPTIONS ARE AVAILABLE2

1. LP INSTRUCT IONAL MODULE
(EACH TABLEAU MAY BE DISPLAYED)

2. PROBLEM SOLVER MODULE
(NO USER INTERACTION)

3. SENSITIVITY ANALYSIS MODULE

4. RETURN TO DATA BASE MANAGEMENT MENU

5. QUIT:UNSAVED FILES WILL BE LOST!

WHICH OPTION? [13

INSURE DISK LP1 IS AVAILABLE.

SPAUSE

After the selection of a module, the following display

allows the user to specify a data base other than the last

entered for solution by the selected selected module. One

may enter [N] in the response below and is then allowed to

specify a file as was done earlier for reading a file from

disk. As shown, the last file entered is desired so a [Y3

was entered. The last display of this module then appears.

114

-V-

LP INSTRUCTIONAL MODULE

TO USE THIS MODULE, A DATA BASE MUST
HAVE BEEN PREVIOUSLY CREATED USING THE
DATA BASE ENTRY (MODULE 1) AND SAVED TO
DISK.

THE DATA BASE WHICH IS CURRENTLY
IDENTIFIED AS THE PROBLEM TO BE STUDIED
IS

LP1 :SAMPLE

IS THIS THE MODEL YOU WISH TO STUDY? EY]

Simultaneously with the display below, the control

returns to the operating system. The user need only enter

LX] (no ERETURN] key should be used after the input of [X3).

Next, the user enters [LPI:ED] and Module 2, which contains

the instructional code, will be executed. If the user had

selected option 2 of the execution management menu, th- only

difference would have been that [LP2:TAB] would have

replaced [LP1:ED] above. One need Pot memorA.- this fact

since the prompt will reflect the option input by the user.

As a final note, users must insure that the disk

containing the desired module is in a disk drive when the

above operating system commands are entered. The user may

identify the required disk by the LP1 or the LP2 preceeding

the colon and filename entered to the operating system.

This will coincide with one of the two disks provided with

this software package.

115

TO ENTER THE LP INSTRUCTIONAL NODLEx

TYPE

x
LPlIsED

116

MrodMgfe 2. The last entries of the Module 1

demonstration were EX] and CLP1:ED]. These are the

operating systems commands which direct the execution of the

code file ED on disk LP1. Therefore, disk LP1 must be

accessible when these commands are entered. Once these

steps have been completed, the following header appears

which confirms the execution of Module 2, the instructional

module.

* LINEAR $
* *

$ PROGRAMMING $
$ *

* EDUCATIONAL $

* MODULE $
S *
$ *

S MODULE 2 *. [
PAUSE

Following the header, the default options are displayed

as shown below. On the right of the display, the options

which have been programmer cefined are shown. These optios

control the extent of user interface required in the

instructional areas as well as the method of solution.

Options 5 through 7 allow the user to designate those

tableaus to be displayed as well as their location and

format. Those options desired to be changed may be selected

117

S-

in any order. The number of alternatives available within

the options vary; however, several options have only two

possibiliities (options 3, 6, and 7). These options require

only that they be selected while the other options require

further input to cause a change in their value. After the

selection and change of any option, the default values are

again displayed with the noted changes. When the user is

satisfied with the defaults as displayed, option 8 should be

selected to allow the program to continue. The major

options and their alternatives are shown in the following

sequence.

For instance, if the user would like to review the

alternatives available under option 1, E1] would be input as

shown below.

DEFAULT OPTIONS
ENTER OPTION NUMBER TO CHANGE

1. TABLEAU FORMATION USER
2. PIVOT ELEMENT SELECTION USER SEL

ALGOR CH-NK

3.DUAL PIVOTS N
4. INFEASIBLE, UNBOUNDED, OPTIMAL

SELECTION IDENTIFICATION USER

.5.TABLEAUS TO BE DISPLAYED
INITIAL Y
INTERMEDIATE N =
FINAL Y

6. OUTPUT LOCATION SCREEN

7.OUTPUT FORMAT F FORMAT
3. NO CHANGES

*SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-8)? [1]

118

- ,A A ,A

The display below describes the alternatives available

for this area of the instructional aid. Option E1] was

selected as shown below which will allow instructional

comments to be provided for the user. Note that this was

the same alternative as was originally designated as a

default.

EDUCATIONAL MODULE OPTION SELECTION

IN ORDER TO PLACE THE LP MODEL INTO THE
PROPER FORM FOR THE SIMPLEX ALGORITHM
(OBJECTIVE FUNCTION CHANGES, ADDITION OF
SLACK OR ARTIFICAL VARIABLES), WHICH
METHOD IS DESIRED?

11. USER SELECTS MODIFICATION AND
ALGORITHM CHECKS

OR

2. ALGORITHM PERFORMS MODIFICATIONS.

(NO USER INPUT)

WHICH OPTION? Ell

The default menu then appears and the next option to be

changed may be entered. Option [23 was selected as the next

to be changed.

119

I lob

I DEFAULT OPTIONS
ENTER OPTION NUMBER TO CHANGE

i1.TABLEAU FORMATION USER
12.PIVOT ELEMENT SELECTION USER SEL

AL-OR CHK

3.DUAL PIVOTS N
4. INFEASIBLE, UNBOUNDED, OPTIMAL

SELECTION IDENTIFICATION USER

5.TABLEAUS TO BE DISPLAYED
INITIAL Y
INTERMEDIATE N = 1
FINAL Y

6.OUTPUT LOCATION SCREEN

7.OUTPUT FORMAT F FORMAT
8. NO CHANGES

$SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-8)? [23

The user is now shown the alternatives available for

the pivot element selection. Selections 2 and 3 do not

provide feedback to the user; however, the use of selection

2 may be beneficial to instructors who wish to demonstrate

the outcome of an inappropriate pivot element selection.

Option [1] has been selected below.

EDUCATIONAL MODULE OPTION SELECTION

IN SELECTION OF PIVOT ELEMENTS FOR THE
SIMPLEX ALGORITHM, WHICH METHOD WOULD
YOU LIKE?

1. USER SELECTS, ALGORITHM CHECKS.
(MAY CHANGE SELECTION AFTER CHECK)

2. USER SELECTS, NO ALGORITHM CHECK.

3. ALGORITHM SELECTS, NO USER INPUT.

WHICH OPTION? E13

120

f--

The default menu would again appear (not shown) and

option E4] could be input, resulting in the following

display. Again, the user may select the degree of user

interaction desired. Option E1] has been selected to allow

the demonstration of the instructional comments available.

This option requires the user to respond to questions

concerning the status of the tableau while option 2 would

have allowed the program to perform these actions without

user interface.

EDUCATIONAL MODULE OPTION SELECTION

AS OPTIMAL, INFEASIBLE, OR UNBOUNDED
SOLUTICNS OCCUR, WHICH METHOD WOULD YOU
LIKE?

1. USER ATTEMPTS TO IDENTIFY, ALGORITHM
CHECKS.

2. SYSTEM IDENTIFIES AND REPORTS AS
OCCURS.

WHICH OPTION? E1]

The default menu is displayed reflecting any changes

which have been requested. Since the user may have no

initial feeling for the magnitude of the final solution

values, option [73 has been input to allow larger numbers to

be displayed.

121

Ii
.1

DEFAULT OPTIONS
ENTER OPTION NUMBER TO CHANGE

I.TABLEAU FORMATION USER
2.PIVOT ELEMENT SELECTION USER GEL

3.DUAL PIVOTS BEOTIN6RH

INITIAL Y
INTERMEDIATE N 1
FINAL Y

6.OUTPUT LOCATION SCREENI

7. OUTPUT FORMAT F FORMAT
8. NO CHANGES

S*SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-8)? t73

The option 7 selection changes the default to NE

FORMAT" as shown above. Now that all desired changes have

been made, option E83 is entered as shown and the program

continues.

tI-

DEFAULT OPTIONS
ENTER OPTION NUMBER TO CHANGE

1 TABLEAU FORMATION USER
2.PIVOT ELEMENT SELECTION USER SEL

ALGOR CHK

3.DUAL PIVOTS N
4. INFEASIBLE, UNBOUNDED, OPTIMAL

SELECTION IDENTIFICATION USER

5.TABLEAUS TO BE DISPLAYED
INITIAL Y
INTERMEDIATE N = 1
FINAL Y

6.OUTPUT LOCATION SCREEN

7. OUTPUT FORMAT E FORMAT
8.NO CHANGES

*SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-8)? [83

The next three displays inform the user, and in

particular the one-disk-drive system user, that a particular

disk must be accessible before continuing.

j INSURE DISK LP1 IS AVAILABLE.

PAUSE

INSURE THE DISK CONIAINING THE

LP1 SAMPLE

MODEL IS AVAILABLE.
PAUSE

INSURE DISK LPI IS AVAILABLE.

P2USE

a IM

The following display informs the user of requirements

regarding the objective function modification. If the user

had selected the algorithm to perform the tableau

modification, this sequence would not be displayed. The

display following the instructions is the objective function

as entered in Module 1.

OBJECTIVE FUNCTION MODIFICATION

THE OBJECTIVE FUNCTION, AS ENTERED, WILL

BE DISPLAYED NEXT. AFTER THE DISPLAY,
YOU WILL BE ASKED TO SELECT THE OPTION
WHICH WILL TRANSFORM THE OBJECTIVE
FUNCTION INTO THE PROPER TABLEAU FORM
FOR THE SIMPLEX ALGORITHM.
PAUSE

OBJETIVE FUNCTION MODIFICATION
PRESENT OBJECTIVE FUNCTION

TYPEI TYPE2 TYPE3
1~(i) X(2) V 'I)

MINZ + 3.000E+01 + 2,2500E+01 + 2.5000E+01

PAUSE

The user has row reviewed the objective function and

must select the designator for the option which will place

the objective function in the standard LP form defined in

Chapter II of the main body. As shown below, option [1] was

selected and the feedback concerning this selection is

presented. The user may then review the entered and the

correct response to determine the reason for an incorrect

input.

124

-I

OBJECTIVE FUNCTION MODIFICATION

TO PLACE THE OBJECTIVE FUNCTION IN THE
PROPER FORMAT FOR THE SIMPLEX ALGORITHM
WHICH OF THE FOLLOWING SHOULD BE DONE?

1. ADD -C(J) TO BOTH SIDES OF EQUATION.

2. MULTIPLY EQUATION BY -1 AND THEN ADD
-C(J) TO BOTH SIDES OF EQUATION.

3. NO CHANGES ARE NECESSARY.

WHICH OPTION IS CORRECT? [1]

OPTION #1 IS INCORRECT.

THE PROPER RESPONSE WAS OPTION #2.

PAUSE

Regardless of user input, the objective function is

properly modified and displayed as shown below. This allows

the user to further review the objective function and its

modification.

AFTER THE PROPER MODIFICATION, THE
OBJECTIVE FUNCTION FORM IS:

T"PE1 TYFE2 TYPE3

X" i) X(2) X(3i
MAX (-V) + 3.O0O0E+0! + 2.25KE01 + 2.5000E+01 u0

POUSE

125

- L-r

The constraint modification sequence is siiuiliar to

that shown above for the objective function. The user is

given instructions followed by the display of the

constraints as entered. After reviewing these constraints,

the options which the user may later select are shown.

CONSTRAINT MODIFICATION

THE CONSTRAINTS, AS ENTERED, WILL BE
DISPLAYED NEXT. AFTER THE DISPLAY, YOU
WILL BE SHOWN EACH OF THE CONSTRAINTS
INDIVIDUALLY AND ASKED TO SELECT THE
OPTION WHICH TRANSFORMS THE CONSTRAIN
INTO THE PROPER SIMPLEX ALGORITHMFOM

PAUSE

SAIPLE PR.OOLEni
CURRENT CONSTRAINTS

TYPEI 7YFE2' TYPE3 RNS

I PERSON 5.1000E+00 a.00)OOE+QO 4.00000E+00 2.OO000E,03
2 EUIP 6.0-O000E+00~ 3.0%'(E+(10 6.01000E+%CQ 2.2GCd.')E+O3.

3 PLANES 1.0C00E+00 i.01000+00 1.0000E+00 < 4.00.0OE4O2

126

EACH CONSTRAINT WILL BE SEPARATELY
DISPLAYED, THEN THE FOLLOWING OPTIONS
WILL BE DISPLAYED FOR EACH CONSTRAINT.
YOU WILL SELECT THE OPTION WHICH WILL
PLACE THE CONSTRAINT IN THE PROPER
SIMPLEX ALGORITHM FORM.

1. ADD SLACK VARIABLE ONLY.

2. SUBTRACT SURPLUS VARIABLE, ADD
ARTIFICAL VARIABLE.

3. ADD ARTIFICAL VARIABLE ONLY.

4. MULTIPLY BY -1, SUBTRACT SURPLUS
VARIABLE, ADD ARTIFICAL VARIABLE.

5. MULTIPLY BY -1, ADD SLACK VARIABLE.

6. MULTIPLY BY -1, ADD ARTIFICAL
VARIABLE.

PAUSE

The constraints are next shown separately. This allows

the user to study the constraint individually. When the

user is confident that the proper option is known, the

[RETURN] key or [SPACE] bar is pressed allowing the display

of the options.

TYPE! TYPE2 TYPE3
X(1) A(2) X(3) RNS

CN# I PERSON 5.OOOOOE+M0 8.OO00AE00 4.6000E+00 126.00000E#3
NUSE

The user inputs the desired option (option [23 in this

case) and receives immediate feedback. The user then may

continue on to the remaining constraints for the same

sequence of steps.

127

ft

CONSTRAINT # 1

1. ADD SLACK VARIABLE ONLY.

2. SUBTRACT SURPLUS VARIABLE, ADD
ARTIFICAL VARIABLE.

3. ADD ARTIFICAL VARIABLE ONLY.

14. MULTIPLY BY -1, SUBTRACT SURPLUS
VARIABLE, ADD ARTIFICAL VARIABLE.

5. MULTIPLY BY -1, ADD SLACK VARIABLE.

6. MULTIPLY BY -1, ADD ARTIFICAL
VARIABLE.

WHICH OPTION? [2)

OPTION #2 IS CORRECT.

PAUSE

TYPE] TYPE2 TYPE-,1
V{ I) X(2) U{ 3) Ff s

CNI 2 EQUIP 6.00000E+0 3.00000E+00 6O0)0(E+00 1,20000E+03

Note that when an incorrect response is entered, the

correct response is shown while the corresponding function

of each response is still visible. In this manner, the user

may review any mistakes made while still being able to

review the available options. Also note that the

constraints are modified properly regardless of user input.

128

CONSTRAINT # 2

1. ADD SLACK VARIABLE ONLY.

2. SUBTRACT SURPLUS VARIABLE, ADD
ARTIFICAL VARIABLE.

3. ADD ARTIFICAL VARIABLE ONLY.

4. MULTIPLY BY -1, SUBTRACT SURPLUS
VARIABLE, ADD ARTIFICAL VARIABLE.

5. MULTIPLY BY -1, ADD SLACK VARIABLE.

6. MULTIPLY BY -1, ADD ARTIFICAL
VARIABLE.

WHICH OPTION? El]

OPTION #1 IS INCORRECT

THE PROPER RESPONSE WAS OPTION #2

PAUSE

The third constraint is now examined in the same manner

as the +irst two.

TYFEi TYPE2 TYPE3
X() Xi 2) X(3) RHS

CNI 3 PLANES 1.0000E+O0 1.O000E+O0 1.O000OEO0 (4.0¢000E+02

129

129

I ~ II I I - I -, - ' : ,

CONSTRAINT # 3

1. ADD SLACK VARIABLE ONLY.

2. SUBTRACT SURPLUS VARIABLE, ADD
ARTIFICAL VARIABLE.

3. ADD ARTIFICAL VARIABLE ONLY.

4. MULTIPLY BY -1, SUBTRACT SURPLUS
VARIABLE, ADD ARTIFICAL VARIABLE.

5. MULTIPLY BY -1, ADD SLACK VARIABLE.

6. MULTIPLY BY -1, ADD -RTIFICAL
VARIABLE.

WHICH OPTION? [1]

OPTION #1 IS CORRECT.

PAUSE

Next, the user is presented instructions on the next

sequence of steps. This is followed by the display of the

tableau as it has been modified by the previous two

sections, the objective function and constraint modification

sections.

ITHE TABLEAU AS MODIFIED PREVIOUSLY,
WILL BE DISPLAYED.

YOU WILL THEN BE ASKED IF THE TABLEAU IS
IN THE CORRECT FORM FOR THE SIMPLEX
ALGOR I THM.

PAUSE

130

rip)

TYPE! TYPE2 T.PE3 SURPLS SURPLS
It1) X(2) (3) X(4) X(5)

ONJ FUNCTION -3.00000E+01 -2.25000E+01 -2.50000E+Ol '0.0000E+00 O.00000E+01
CN NME VAR II$IIIII~SIII$III lII$1SIS$$*$!#!$ $

1 PERSON 7 5.00000E+00 8.00000E+00 4.00000E+60 -1.00000E+00 0.00000E+00
2 EQUIP 8 6.00000E+00 3.000OOE-00 6.OOOOOE+00 .O0000E+00 -1.00000E+00

3 PLANES 6 1.00000E+00 1.00000E+00 1.00000E+00 0000E00.OOOOOE+00

SLACK ART!F ARTIF RHS
(6 X(7) It 8)

091 FUNCTION O.0OOO(,E-00 0.0000E+00 .O00000E+0 0.00000E+00
CN NA)E VAR I$1S$*:SgIs:SeI1$$$$$I$$$$g$$$$g$;$$3I$ *s
I PERSON 7 O.O0000E+10 1.00000E+00 0.00000E+00 : 2.00000E+01
2 EGIP 8 ,}000E 00 O.OOOOOE+00 I.O0000E+00 1.2000(f+03
3 PLANES 6 1.O0000E+O0O0.O00001+00 0.00000E+00 4.0000E+02

PAUSE

The user is next asked for a response concerning the

form of the tableau. This input is followed by immediate

feedback concerning the accuracy of this input. Note that

this and the subsequent displays concerning the form of the

tableau would not have appeared if the user had allowed the

program to perform tableau modification without user

interf ace.

IS THE TABLEAU IN THE PROPER FORM FOR
THE INITIAL PIVOT? IY3

YOUR RESPONSE WAS INCORRECT.

ARTIFICAL VARIABLES HAVE BEEN ADDED, YETI
THE OBJECTIVE FUNCTION HAS NOT BEEN
MODIFIED (BIG M) TO REFLECT THIS.

PAUSE

fl
131

J I . _e

Further instructions are presented below followed by

the display of the tableau as modified up to this point.

THE TABLEAU WILL BE DISPLAYED AND YOU
WILL BE ASKED TO IDENTIFY THOSE
VARIABLES WHICH THE BIG M METHOD IS TO
BE APPLIED.

PAUSE

SAMPLE PROM.EN
CURRENT LP 'CDEL: MAX141ZE COST

TYPE1 TYPE2 TYPE31 SURPLS SI3PLS
X 1) X(2) X(3) Xj 4) U 5)

ON FUNCTIDN -3.0000.E+01 -2.25M0E+01 -2.50000E+01 0.0 000E0"0 0.000E0a!
CN UK VAR $I Ott Its:5*11Ss5its:5$$ I;$!$$IIII;I!$$I$1l$II$I
I PERSON 7 5.000E+00 8.OO00E+00 4.OOOOOE+Q0 -I.00OtO , 4.,000O0E+90
2 EQUIP 8 6.O0000E+00 3.000CE+00 6.00000E+00 O.OOOOOE+0 -I.OOOOE0
3 ?LANE$ 6 1.0000O0E 0 1.,,)0,0E+00 I.000R(E+0 O.0000.E+O0 0.0000E+O C

SLACK ARTIF ARTIF RHS
I(b) X(7 1(B)

ON, FUNCTION 0.0OOE+00 .O00.'0E+00).O0000E+VO 0,00010E+00
CH NAME VAR 1t01Mt$1U i$$$1$1$11$lg$$1#I$$$1$811
I PERSON 7 0.0000E+00 1.OOO00E+00 ,.OOOE00 L.000QE+03
2 E'UIP 8 0.0000E+00 O.OOOOEtOO !.W,0 0Q = 1.20002OE+03
3 PLANES S I.0O00EO0 O.00O00E+00 O.O0O0E 0O 4.000ME+02

PAUSE

The user is now asked to identify those variables which

require modification by the Big M method. Note that the

variable subscript is entered to designate the selected

variable. The input of C63 below refers to variable x(b) of

the previously displayed tableau. Again feedback and

instructional comments are provided immediately. The

132

9- 9

following display also requires input similiar to that

discussed above.

WHICH VARIABLES REQUIRE THE USE OF THE
BIG M METHOD?

(ENTER SUBSCRIPT VALUES)

FIRST VARIABLE? [63

YOUR RESPONSE WAS INCORRECT.

THE CORRECT RESPONSE WAS VARIABLE 7
THIS IS THE FIRST ARTIFICAL VARIABLE AND

REQUIRES THE USE OF THE BIG M METHOD.

PAUSE

VARIABLES 7 THRU X(?) REQUIRE THE
BIG M METHOD

LAST VARIABLE? [8]

YOUR RESPONSE WAS CORRECT.

THE LAST ARTIFICIAL VARIABLE IS # 8 ANDI

IS THE LAST TO REQUIRE THE USE OF THE

BIG M METHOD.

PAUSE

The instructions below are followed by the display of

the tableau as modified at this point. This allows the user

to review the modifications performed in the previous steps.

Once the user has reviewed the tableau, the (RETURN] key or

ESPACE] bar is depressed to allow the program to proceed.

THE TABLEAU WILL BE DISPLAYED, THEN YOU]
WILL BE ASKED IF IT IS IN THE PROPERI

FORM FOR THE INITIAL PIVOT.

PAUSE

133

SAMPLE PRODLEN
CURRENT LP MODEL: 3AXINIZE COST

TYPE! TYPE.2 TYPE3 SURPLS SIMPLS
X(1) If 2) xf 3) V1 4) X(5)

DDJ FUNCTION -3.OOOOOE+)1 -2.2500*E+01 -2.5000E+.)1 O.OOOQOE+00 O.OOOOOE+O1
CN NANE VAR IIIII U*IIIII**IIuIIISII!III lI htlU IIflt!I
I PERSON 7 5.00000E00 8.OOOOOE+00 4.OOOOOE+OO -1.(,(OE+00O .0000E+00
2 EQUIP 8 6.OOOOOE+O0 3.OOOOE+00 6.OOOOOE+00 O.OOOOE+ -1.O00")OE+0O
3 PLANES 6 I.000OOE+00 I.00000E+0O 1.O0OE+O00 .0000OE+O0O0.Ov00E+00

SLACK ARTIF ARTIF RHS
X(6 X(7) X(3)

68S FUNCTION 0.09000E+00 -3.eOOO0E+02 -3,CO00OCE+02 O.OOC,OOE+O0
CN PANE VAR $
1 PERSON 7 O.OOOOE+O0.000E+00 O.0000E+O0 z 2.000E+03
2 EQUIP 8 0.00000E00 O.OOOOOE+O0 L. 000E+O0 a 1.20000E+03
Z PLANES 6 1.O000E+O0).0000AE+00 O.OOOOE00O z 4.l00rOE+02

PAUSE

As shown below, the user is asked again whether or not

the tableau is ready for the first pivot. The opinion of

the user is entered and the corresponding feedback is

presented.

IS THE TABLEAU IN THE PROPER FORM FOR
THE INITIAL PIVOT? [Y]

YOUR RESPONSE WAS INCORRECT.
THERE IS NO INITIAL BASIC SOLUTION SINCE
THE OBJECTIVE FUNCTION COEFFICIENTS OF
THE ARTIFICAL VARIABLES ARE NOT ZERO.

PAUSE

Following the aoove input and comments, the final

modification of the tableau occurs. As shown below, the

134

.m" Now#, -10

next step is the display of the initial tableau. Note that

the above sequence of steps from the last default option

display to this point would not have been performed if the

user had selected the algorithm to perform the tableau

modification.

SAMPLE PROBLEM

BASIC SOLUTION I I

TYPE, TYPE2 TYPE3 SURPLS SURPLS
1i 1) 11 2) X1 3) 1(4) li5)

OJ FUNCTION -3.27000E+03 -3.27750+03 -2.97500E+03 3.00000E+02 3.O0OOOE+02
CN NAME VAR Usu*Its$mmit Ilastunt 98iug sugsIsItt IaggsungtUz
I PERSON 7 5.'000E+00 6.00000E*00 4.OOOOOE+00 -1.00000E+00 O.O00OO0500
2 EQUIP I 6.00000E+00 3.OOOOOEt.O 6.00000E+00 0.00000E40 -1.00000E+00
3 PLANES 6 1.00000E+O0 1.00000E+00 1. 00000E+00 0.00000E+00 O.O0000+00

SLACK ARTIF 4RTIF
I 6) L7) X(8) RIS

09J FUNCTION O.O0OO00500 O0.O0OOE+00 O.O00OOE000 -9.60000E+05
'i NWME VAR :tnsssuagwsmssslgsggs::sauaglsiimgwlligmwgggglgggg
I PERSDN 7 0.000O0E400 1.00000E 00 0.00000EO0 2.000E5+03
2 EQUIP 8 O.OOOOE+00 O.OOOOOE+00 1COOOOE+00 1.20000E+03
3 PLANES 6 1.00000E+00 .0E.O0 .E00 0.000+00 4.00000E 02

After this tableau display, the user who has elected to

identify optimal, unbounded or infeasible solutions will be

asked the followving four questions. Each question is

displayed separately and, as shown, instructional comments

accompany the user input. Note that prior to this input,

ET] may be entered allowing the user to reexamine the

tableau.

135

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS TABLEAU OPTIMAL? rNJ

YOUR RESPONSE WAS CORRECT
THE LAST TABLEAU WAS NOT OPTIMAL

PAUSE

TO REVIEW TABLEAU, ENTER T

IS THE SOLUTION FEASIBLE? EY]

YOUR RESPONSE WAS INCORRECT
THE LAST TABLEAU WAS INFEASIBLE

THE SOLUTION IS INFEASIBLE SINCE THE
ARTIFICIAL VARIABLE X(8) IS AT A
POS IT IVE LEVEL.

PAUSE

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS SOLUTION DEGENERATE?[N3

YOUF RESPONSE WAS CORRECT
THE LAST TABLEAU WAS NOT DEGENERATE

PAUSE

136

• , , . IA

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS SOLUTION UNBOUNDED
BASED UPON THE NEXT PIVOT COLUMN (ROW)
BEING THE COLUMN (ROW) WITH THE LARGEST

NEGATIVE Z(J)-C(J) (B(J)) VALUE? EY3J

YOUR RESPONSE WAS INCORRECT I
THE LAST TABLEAU WAS BOUNDED

THE CURRENT TABLEAU IS BOUNDED SINCE
ALL THE A(I,J) VALUES IN COLUMN 2 ARE

NOT NEGATIVE OR ZERO.

PAUSE

The user may elect to have the basic variable values

and objective function value displayed or to continue

without this display. As shown, the user elected not to

display the values by entering a [33.

WOULD YOU LIKE THE BASIC SOLUTION VALLES

DISPLAYED?

1. DISPLAY ON SCREEN

2. DISPLAY ON PRINTER

3. DO NOT DISPLAY

WHICH OPTION? [3]

The next four displays request the user to enter the

selected pivot column and row. Each input is accompanied by

appropriate feedback. As shown, column number 3 was

selected initially , but did not coincide with the algorithm

137

choice. At that point, the user must select the option

representing the pivot column to be used.

WHICH COLUMN CONTAINS THE CANDIDATE

ENTER ING VAR IABLE?

COLUMN - [33

YOUR SELECTION OF PIVOT COLUMN DOES NOT

MATCH THAT OF THE ALGORITHM.

WHICH SELECTION DO YOU WISH TO USE?

1. YOUR SELECTION COLUMN - 3

OR

2. ALGORITHM SELECTION COLUMN = 2

WHICH OPTION? E23

Based upon the above pivot column selection, the ratios

for the column are calculated and displayed. The user then

enters the number of the row which is felt to be correct for

the pivot element. If the user selection had not matched

the algorithm selection, the user would have been allowed to

change the selection as was shown above for the column

selection.

138

RATIOS FOR COLUMN 2

ROW 1 = 2. 50000E+02I
ROW 2 = 4.00000E+02
ROW 3 - 4.OOOOOE+02

WHICH ROW CONTAINS THE CANDIDATE
LEAVING VARIABLE?

ROW - [13

YOUR PIVOT ROW SELECTION MATCHES THE
ALGORITHM SELECTION.

PAUSE

Once the first pivot has been completed, the resulting

tableau is displayed.

.zAfPLE PROBLEM

BASIC .SLTWN # 2

TYPEI rYPE2 ',YPE3 SURPIS 3URPLS

ON~ FUNCTION -1. 22156E+03 0,00000E+00 -I, 3367jEeO3 -1 .09687E+02 3.00306)OE+02
CN NAME VAR I tgs:g~stsg:gsigs1111881:1t ;:::::att I t 1tts
I PERSON 2 6,2500OE-01 1.000cE+00 5.000O0E-01 -1.25000E-01 O.0OOOOE4oo
2 EQUIP a 4.12!OOE+0O O.000OOE+00 4.50000E+00 3.75OWO-01 -1.00000E00O
3 FLARES 6 3.75000E-01 0,OOCOE+00 5.0000CE-01 1,15000E-01 0.OO)OOE4O0

SLACK ARTIF ARTIF
VC6) X 71t V 8) RKS

UBJ FUNCTION O.OQQOOE*OO 4.09637E+02 0.00000E+00 -1.40625E+05
CN NONE ' 'AR sauw ::wawuu::suua~w~u

1PERSON I- O.O~OOOE-00 1.250OOE-01 0.c0O0OE+00 2.50000+02
2 EGUIP 8 O.OOOOOE.OO -3.7500OE-01 1.000)OE.OO 4.50000E+0l2
3 PLANES 6 1.00100E+00 -1.25OOE-0l O.0OOOOE4OO 1.50000c'02

139

After the tableau has been reviewed, the same sequence

of questions, displays, and feedback are repeated for the

last tableau calculated. This sequence is shown below.

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS TABLEAU OPTIMAL? [N]

YOUR RESPONSE WAS CORRECT
THE LAST TABLEAU WAS NOT OPTIMAL

PAUSE

TO REVIEW TABLEAU, ENTER T

IS THE SOLUTION FEASIBLE? [Y]

YOUR RESPONSE WAS INCORRECT
THE LAST TABLEAU WAS INFEASIBLE

THE SOLUTION IS INFEASIBLE SINCE THE

ARTIFICIAL VARIABLE X(8) 1S AT A
POSITIVE LEVEL.

PAUSE

TO REVIEW TABLEAU ENTER T

WAS THE PREVIOUS SOLUTION DEGENERATE?CY]

YOUR RESPONSE WAS INCORRECT
THE LAST TABLEAU WAS NOT DEGENERATE

THE CURRENT TABLEAU IS NOT DEGENERATE
SINCE ALL BASIC VALUES ARE AT A NON-ZERO

LEVEL.

PAUSE

140

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS SOLUTION UNBOUNDED
BASED UPON THE NEXT PIVOT COLUMN (ROW)

BEING THE COLUMN (ROW) WATH THE LARGEST
NEGATIVE Z(J)-C(J) (B(J)) VALUE? (NJ

YOUR RESPONSE WAS CORRECT
THE LAST TABLEAU WAS BOUNDED

PAUSE

WOULD YOU LIKE THE BASIC SOLUTION VALUES
DISPLAYED?

1. DISPLAY ON SCREEN

2. DISPLAY ON PRINTER

3. DO NOT DISPLAY

WHICH OPTION? [33

WHICH COLUMN CONTAINS THE CANDIDATE 7
ENTERING VARIABLE?

COLUMN = [33

YOUR PIVOT COLUMN SELECTION MATCHES THE
ALGORITHM SELECTION.

PAUSE

141

• * **w

RATIOS FOR COLUMN 3

ROW 1 - 5.OOOOQE+02
ROW 2 - 1 .00000E+02
ROW 3 - 3. OOOOOE+02

WHICH ROW CONTAINS THE CANDIDATE
LEAVING VARIABLE?

ROW - 123

YOUR PIVOT ROW SELECTION MATCHES THE
ALGORI THM SELECTION.

PAUSE

The following tableau is the result of the second

pivot.

SA'IPLE PROBLEM
PASIC SOLUTION 13

TYPE! TYWE2 TYPE3 SURPLS SURPLS
X(1) XI 2) 1 (.) X(4) X! 5)

OBJ FUNCTION 3.33357E,00 O.0OCOOOE*00 0.00000E+00 1.66667E,00 3.0555*E+O
CM NAAE vAR assiU:UuglS s t i~tg s I gugsssnu t tisititli i
I PERSON 2 1.66667E-01 1.000O0E+00 0.00000E+00 -1.66667E-01 1.1IIIIE-O!
2 EQUIP 3 7.167OE-01 0.00000E+00 1.0OOOOE*00 9.33333E-02 -2.22222E-01
3 PLANES 6 -8.333314E-02 0.00600E+00 O.OOOOOE+OO S.3333E-02 1.1II1E-01

SLACK ARTIF ARTIF
it(6) J(7) U~ 8) RICS

- I ON FUNCTION 0.000OE+00 2.98333i+02 2.96944E+02 -7.OGOOOE.03

CNNI VAR sgtilisiit t Igt *ass gst I ltIltiltisitgUgt ug11gtl
I PERSON 2 O.OOOOOE4OO 1.b6blE-(1 -!.1111!E-01 2.OOOOOE+02

2Eg01P 3 O.OOOOOE+0O -8..3 Z33E-02 12222E-O1 1.00000E+02
ZPLANES 6 1.* OOOEec -B."333E-02 -!.11IIIE-01 1.00000OE+02

The sequence of displays which follows is the same asf above with a few exceptions. Since it js found in the next

142

display that the last tableau was optimal, the user is

questioned concerning the existence of multiple optimal

solutions in addition to the previous questions.

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS TABLEAU OPTIMAL? EY]

YOUR RESPONSE WAS CORRECT
THE LAST TABLEAU WAS OPTIMAL

PAUSE

TO REVIEW TABLEAU, ENTER T

IS THE OPTIMAL SOLUTION ALSO FEASIBLE?
EY]

YOUR RESPONSE WAS CORRECT
THE LAST TABLEAU

WAS
FEASIBLE

-

PAUSE

TO REVIEW TABLEAU, ENTER T

WAS THE PREVIOUS SOLUTION DEGENERATE?rN]

YOUR RESPONSE WAS CORRECT
THE LAST TABLEAU WAS NOT DEGENERATE

PAUSE

143

TO REVIEW TABLEAU, ENTER T

ARE THERE MULTIPLE OPTIMAL SOLUTIONS?
[Y3

YOUR RESPONSE WAS INCORRECT
THERE ARE NO MULTIPLE SOLUTIONS.

THIS IS SINCE ALL NON-BASIC VARIABLES
HAVE A VALUE OF OTHER THAN ZERO IN THE

OBJECTIVE FUNCTION ROW. IF A ZERO VALUE
WAS PRESENT FOR A NON-BASIC VARIABLE,
INCREASING THE VALUE OF THIS VARIABLE

WOULD NOT CHANGE THE Z VALUE.

PAUSE

Since an optimal solution has been obtained, the pivot

element selections are no longer required.

The final tableau display is repeated following the

above questions since an optimal solution has been obtained.

This also occurs when unbounded or infeasible solutions

exist. This is followed by the opportunity to display the

basic values and objective function value. Option E1] has

been selected for screen output as shown below.

144

-

BASIC SOLUTION 1 3
FINAL TABLEAU - OPTIMAL

TYPEI TYPE2 TYPE3 SURPLS SURPLS
X(1) X 2) it 3) it 4) V 5)

ON FUNCTION 3.33337E40 O.OOOOOE+00 0.00000E00 1.66667E00 3.05554E+00
CN IiE VAR II$$3S3*$3333338381118IIIIISXS*33;331$311 11355115558
I PERSON 2 1.6667E-01 1.00000E+00 O.OOOOOE.OO -1.66667E-0! 1.11111E-01
2 EQUIP 3 9.16667E-01 O.OOOOOE+O0 1.00000E+00 8.33,31-02 -2.22222E-01
3 PLANES 6 -a.33333E-02 O.OOOOOE+O00O.OOOOE+00O 8.3333E-02 1.11111E-01

SLACK ARTIF ARTIF

X 6) X(7) X 8) RmS
OJ FUNCTION O.OOOOOEO0 2.99333E+02 2.96944E+02 =-7.000OOE41

CN WANE YAP s$3ttt tSttt #tlti utt tittsltt$ltst:I$ zswIlgtg
I PERSON 2 O.O0OOE+0 1.466067E-O -I.11IIIE-OI 2.00000E,)2
2 EQUIP 3 0.OO¢OOE+O0 -8.333SE-02 2,22222E-01 1.00000E-02
3 PLANES 6 I.00000E'O -8.3'33SE-02 -!.1111IE-O1 1.000C0E+02

WOULD YOU LIKE THE BASIC SOLUTION VALUES
DISPLAYED?

1. DISPLAY ON SCREEN

2. DISPLAY ON PRINTER

3. DO NOT DISPLAY

WHICH OPTION? [1]

SAMPLE PROBLEM
BASIC SOLUTION 3#3

TYPE2 z V, 2) = 2.0OOOE*Q2
TYPE3 z X(31 z 1.00000E+02
Si.[I z X, 6) = 1.000O0E+O2

Zr -7.,O000E+03

I
145

van PI le m

Las

The user may elect to perform additional pivots at this

point. This has been provided to allow the user to recover

from improper pivot element selections resulting in an

infeasible solution. If this option is selected, the

ability to perform dual pivots is automatically provided.

As shown, this option was not elected.

WULD YOU LIKE TO PERFORM FURTHER PIVOTS
ON THIS TABLEAU? EI]

The results of the problem must be saved to disk to

allow for sensitivity analysis. Since the analyst would

like to further study the above solution, a EY has been

entered.

TO PERFORM SENSITIVITY ANALYSIS ON THIS

MODEL, THE INFORMATION OF THE CURRENT
TABLEAU MUST BE SAVED TO DISK.

DO YOU WISH TO SAVE THIS FILE TO DISK?[Y]

146

,~-.

The sequence shown below requires the input of a

diskname:filname of the disk and file in which the results

are to be saved. The subsequent displays prompt the user to

place the correct disk in a drive.

SAVE LP MODEL TO DISK

ENTER THE DISK DRIVE NUMBER AND FILE
NAME YOU WANT THE CURRENT TABLEAU OF

SAMPLE PROBLEM SAVED UNDER.

ENTER EXACTLY AS FOLLOWS
DISK DRIVE:FILENAME

EG. #4:FILENAM

THE DRIVE:FILENAME MUST BE 10 CHARACTERS
OR LESS

DO NOT USE THE SAME NAME USED WHEN THE
ORIGINAL MODEL WAS ENTERED.

DISK:FILENAME - tLPI:SAMCM2]

ARE CORRECTIONS NEEDED? [NJ

Note that this prompt is for disk LP2 and not LPI. The

users of a one-drive system must remove LP1 and insert LP2

at this time.

INSURE DISK LP2 IS AVAILABLE.

PAUSE

One disk-drive users must reinsert disk LP1.

147

INSURE THE DISK TO CONTAIN THE FILE

LP 1 sSAMCM2

IS AVAILABLE.

PAUSE

The user must insure the following question is answered

correctly. If entered as shown below when a file already

exists on LP1 with the name SAMCM2, an output error will

cause the loss of the solution parameters in memory.

HAS THIS DISK:FILENAME COMBINATION BEEN
USED PREVIOUSLY?

(ARE YC J UPDATIN6 A CURRENTLY EXISTING
'FILE?)

(Y/N) EN]

The prompt below advises the user that the file of the

original model input into Module 1 must be available at this

time.

INSURE THE DISK CONTAINING THE.

LP 1%SAMPLE

MODEL IS AVAILABLE.

PAUSE

148

INSURE THE DISK TO CONTAIN THE FILE

LP1: SAMCM2

IS AVAILABLE.

PAUSE

INSURE DISK LP1 IS AVAILABLE.

If another LP model were available, the user could

enter CY] and would be asked to input the diskname:filename

of the model desired. Since no other models are available.

[N] was entered.

WOULD YOU LIKE TO STUDY ANOTHER MODEL
WHICH HAS BEEN SAVED TO DISK? IN]

I INSURE DISK LPI IS AVAILABLE.

PAUSE

The last display of this module is shown below. This

provides the user with the required operating system

commands to return to Module 1. The user is cautioned that

the period following STARTUP must be entered or Module 1

will not execute.

149

J' .- A-I

TO ENTER THE LP DATABASE MODULE:

TYPE

X
LPI : SYSTEM. STARTUP.

The above sequence has given an outline of the use of

Module 2. Not all options were employed in the

demonstration; however, those able to perform the above

steps should not encounter problems in other methods of

appl i cati on.

The sequence of steps normally used in problem solution

and analysis would lead the analyst now to the sensitivity

module. Since the method of access and use of Module 4, the

sensitivity analysis program, is identical following both

Modules 2 and 3. this explanation will be presented after

the Module 3 demonstration.

150

I 7F 1

Mod_gle 3. The method of accessing Module 3 when Module

1 has terminated was briefly noted earlier. It was shon

that to enter Module 2, the user would enter IX] and

ELPI:ED]. The commands for entering Module 3 are CX] and

ELP2:TAB]. Note that no CRETURN] is required following the

[X]. Also note that the command [LP2:TAB] communicates that

the file TAB on disk LP2 be executed. This requires that

disk LP2 be accessible when entering the above commands.

After these commands have been entered, the following header

will be displayed. This confirms entry into Module 3.

$ S

LINEAR $

$ PROGRAMMING $

* PROBLEM S

$ SOLVER $

* MODULE *
$ *
$ $

$ MODULE 3
$ $

PAUSE

Once either the [RETURN] key or the ESPACE] bar has

been depressed, the user is informed to insert disk LP1.

One-drive-system users must carefully read these prompts and

insure the required disk is available to avoid output errors

and data loss.

151

iii

INSURE DISK LP1 IS AVAILABLE.

PAUSE

The user is presented the diskname:filename of the file

currently identified as the model to be studied. Should the

user not want to study the file shown, an EN3 may be entered

and the user may then identify the file desired. As shown,

the file currently identified is the one desired so a [Y]

was entered.

PROBLEM SOLVER OPTION SELECTION

THE PROBLEM CURRENTLY IDENTIFIED AS THE
PROBLEM TO BE STUDIED IS:

LPI:SAMPLE

IS THIS THE PROBLEM YOU DESIRE TO STUDY?
[Y]

The one-drive system user must now reinsert disk LP2.

INSURE DISK LP2 IS AVAILABLE.

PAUSE l

The default options are displayed next with the

programmer-defined defaults shown on the right. The first

option is the only one which is not available in Module 2.

The selection of option I would change the default to "DUAL"

152

and the module would then convert the primal LP model into

its dual model. This transformation would be performed

without user interface; however, the user would be required

to input a new disk name:filename which the dual problem

formulation would be stored under. Although this option was

not selected for the demonstration, it may be useful in

reducing the number of iterations required to solve a

selected LP problem.

For this demonstration, option (3] has been entered to

show that the output format for the printer is identical to

that used in Module 2 for screen output.

DEFAULT OPTIONS

ENTER OPTION NUMBER TO CHANGE

1. PROBLEM TO SOLVE PRIMAL

2. SOLVE BY DUAL PIVOTS N

3. OUTPUT LOCATION SCREENI

4. OUTPUT FORMAT F FORMAT

5. TABLEAUS TO BE DISPLAYED
INITIAL Yj
INTERMEDIATE N = 1'
FINAL Y

6. NO CHANGES

$ SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-6) ? E3]

As shown below, the output default value reflects the

previous change. One must insure at this time that the

153

.... .. * - -- *-~~~***----

printer is turned on and is in a mode which allows printing.

Otherwise, the system will wait indefinitely for the printer

to accept information. To insure no confusion exists, the

output location refers to the device to which tabular data

will be transmitted. This selection has no effect on the

location of user Prompts and instructions. These will

always be displayed on the screen.

The option referring to which tableaus are to be

displayed will be demonstrated below. As an initial

default, all tableaus are to be displayed; however, since

these tableaus were shown in the Module 2 demonstration,

only the final tableau will be requested here. To change

these defaults, option E53 was entered.

DEFAULT OPTIONS

ENTER OPTION NUMBER TO CHANGE

1. PROBLEM TO SOLVE PRIMAL

2. SOLVE BY DUAL PIVOTS N

3. OUTPUT LOCATION PRINTER

4. OUTPUT FORMAT F FORMAT

5. TABLEAUS TO BE DISPLAYED
INITIAL Y
4TERMEDIATE N =1

FINAL Y

6. NO CHANGES

$ SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-6) ? [53

154

I=

The user is asked the sequentially shown questions

below. Since only the final tableau is desired, the

responses [N3, IN3, [Y] were entered. If the user had

desired to see a selected number of the intermediate

tableaus, a [Y] would have been entered for the second

response. The user would then be asked to enter a value for

the length of cycle between intermediate tableau output. if

a [2] were entered, the second, fourth, sixth, etc.

intermediate tableaus would be displayed on the selected

device.

PROBLEM SOLVER OPTION SELECTION

WHICH TABLEAUS WOULD YOU LIKE DISPLAYED""

INITIAL TABLEAU? (Y/N) [N]

INTERMEDIATE TABLEAUS? (Y/N) [N]

FINAL TABLEAU? (Y/N) [Y]

As shown below, the option 5 default value reflects the

changes to tills point. Once the user has made all desired

changes, option E63 is entered to continue.

155

DEFAULT OPTIONS
ENTER OPTION NUMBER TO CHANGE

1. PROBLEM TO SOLVE PRIMAL

2. SOLVE BY DUAL PIVOTS N

3. OUTPUT LOCATION PRINTER

4. OUTPUT FORMAT F FORMAT

5. TABLEAUS TO BE DISPLAYED
INITIAL N
INTERMEDIATE N = 0

FINAL Y

6. NO CHANGES

SEE DOCUMENTATION FOR EXPLANATION

WHICH OPTION (ENTER 1-6) ? [63 --

The user is next prompted to insert the disk which

contains the original model. Following that action, the

user is informed that disk LP2 must be available.

INSURE THE DISK CONTAINING THE

LPI:SAMPLE

MODEL IS AVAILABLE.

PAUSE

INSURE DISK LP2 IS AVAILABLE.

PAUSE

After the [RETURN] key or [SPACE] bar is depressed in

the above prompt, the program begins the formulation and

156

.. .

iterative solution process. Since the initial and

intermediate tableaus were not requested, the next display

is the final tableau. This tableau will be displayed on the

printer in the format identical to that of Module 2. The

tableau is shown below.

SAMPLE PROBLEM
BASIC SOLUTION #3
FINAL TABLEAU - OPTIMAL

TYPE! TYPE2 T0E3 SURPLS SURPLS
D X(2) X1 3) X(4) 11 5)

OBJ FUNCTIN 3.33317 .00000 .00000 1.66667 3.05554
CN NAME VAR g$$$la$$$fl$$111t~gugggzgu1gluggusgig$11t$11iulgtggllsslg
I PERSON 2 .16667 1.00000 .00000 -. 16667 .11111
2 EQUIP Z .91667 .0000 1.06000 .08333 -.?2222
3 PLANES 6 -.08333 .00000 .00000 .08333 . 111

SLACK ARTIF ARTIF
V! 6) X(7) X(8) RHS

OBJ FUNCTION .00000 29B.33300 296.94400 = -7000.00003
CN NANE VYAR lI*Ig;I1 1ggIl IggggsII a1:rsIII sIggs:
I PERSON 2 .00000 .16667 -.A111! x 200.00000
2 EQUIP 3 .00000 -.02331 .222,2 100.0COO
3 PLAN1E3 6 1.0000 -.9,.. -,1014 = !0.O000

The user is asked whether or not the basic variable

values and objective function value are to be displayed.

Again, to show the printer output +ormat, a E23 has been

entered followed by the output received.

157

WOULD YOU LIKE THE BASIC SOLUTION VALUES
DISPLAYED?

1. DISPLAY ON SCREEN

2. DISPLAY ON PRINTER

3. DO NOT DISPLAY

WHICH OPTION? 123

SAMPLE PROBLEM
BASIC SOLUTION #"

TYPE2 1(2) z 200.00000
TYPE3 = X(3) = 100.00000
SLAK z X(6) z 100.00000

Z: -7000.000u

The user must next respond if sensitivity analysis will

be performed on the solution. If so, a [Y] is entered

followed by a request for a diskname:filename to which the

solution parameters of Module 3 will be saved. As shown

below, ELPI:SAMCM3] has been entered with CN] entered to

show no corrections are needed on the filename. The user

must be careful not to use a previously used

diskname:filename of a file which is still required. If a

previously used name has been entered (for example

LPI:SAMC1I2 from Module 2), this would cause the previous

file to be destroyed.

158

j -,

TO PERFORM SENSITIVITY ANALYSIS ON THIS
MODEL, THE INFORMATION OF THE CURRENT
TABLEAU MUST BE SAVED TO DISK.

DO 'v WISH TO SAVE THIS FILE TO DISK?
EY]

SAVE LP MODEL TO DISK

ENTER THE DISK DRIVE NUMBER AND FILE
NAME YOU WANT THE CURRENT TABLEAU OF

SAMPLE PROBLEM SAVED UNDER.

ENTER EXACTLY AS FOLLOWS
DISK DRIVE:FILENAME

ES. *4:FILENAM

THE DRIVE:FILENAME MUST BE 10 CHARACTERS
OR LESS.

DO NOT USE THE SAME NAME USED WHEN THE
ORIGINAL MODEL WAS ENTERED.

DISK:FILENAME = ELP1:SAMCM3]

ARE CORRECTIONS NEEDED? [N] J

The following two messages reference disk availability

and should be carefully read, especially for the

one-drive-system users.

INSURE DISK LP2: IS AVAILABLE.

PAUSE

159

p- -

INSURE THE DISK TO CONTAIN THE FILE

LP 1: SAMCM3

IS AVAILABLE

PAUSE

An IN] has been entered below signifying that the

diskname:filename combination has not been used previously.

If one wishes to overwrite an old file, one may enter the

previously used diskname:filename above and a LY] below to

accomplish this.

HAS THIS DISK:FILENAME COMBINATION BEEN
USED PREVIOUSLY?

iARE YOU UPDATING A CURRENTLY EXISTING
FILE?)

(Y/N) rN]

The user is again prompted to insure the availability

of specific disks and files.

INSURE THE DISK CONTAINING THE

LP1 : SAMPLE

MODEL IS AVAILABLE.

PAUSE

160

INSURE THE DISK TO CONTAIN THE FILE FOR

LP12 SAMCM3

IS AVAILABLE.

PAUSE

INURE DISK LP2 IS AVAILABLE.

PAUSE

The user may specify that another model be solved at

this time by entering EYJ below. This would then be

followed by a disknae:filenane input of the desired model.

This allows the user to enter several models with Module 1

and then transition to Module 3 and solve all the models

without repeated moves between modules. This is the

recommended procedure for a multiple problem solving

session.

Since another model does not currently exist, [N3 has

been entered followed by a prompt for disk LP2.

WOULD YOU LIKE TO STUDY ANOTHER MODEL 1
WHICH HAS BEEN SAVED TO DISK? [N] J

SINSURE DISK LP2 IS AVAILABLE.

IPAUSE

The last inputs required in this module are those

161

:1 181

commands which cause the transition to Modulo 1. The

commands CX3 and ELPI:SYSTEM.STARTUP.] are entered with

control being returned to Module 1. From that point,

instructions on the commands to enter any module may be

requested.

TO ENTER THE LP DATABASE MODULE:

TYPE

X
LP : SYSTEM. STARTUP.

The next section will discuss the sensitivity analysis

module, Module 4, and its method of access and use.

162

Mgdulg 4. This module can only be used after a data

base has been established using Modules 2 or 3. Upon

completion of those modules, you will be directed to type

[X] (execute) followed by [LP2:SEN]. When this has been

done the following page will appear.

PLEASE SELECT ONE ITEM BY NUMBER

1) RANGE LIMITS ----- RIGHT-HAND-SIDE
AND ASSOCIATED Z VALUES

2) RANGE LIMITS ----- A(I,J) & C(W)

3) CHECK OPTIMALITY FOR MULTIPLE
A(I,J), B(I), OR C(J) CHANGES

4) ADD A VARIABLE OR A CONSTRAINT

5) EXIT PROGRAM

E1]

Four different sensitivity analysis options are

available. The first selection does right-hand-side ranging

and determines the associated value of z. The second option

does constraint coefficient and objective function

coefficient ranging. The third selection allows multiple

changes to the original problem and finds a new optimal

solution if desired. The fourth option finds a new optimal

solution after a new constraint or variable has been added.

163

'A-

Do YOU WANT THE OUT1,-jr TO GO TOz

S)CREEN

P) RINTER

OR

B)OTH

S SELECT S, P, OR B

Output is available on the screen or the printer or

both simultaneously if desired. The letter preceeding the

choice must be entered.

ENSURE DISK LP2: IS AVAILABLE

PAUSE

Disk LP2: contains a file which holds the name of the

current data file. This disk must be available or an

execution error will occur. This is fatal.

ii 164

THE CURRENT DATA FILE IS

LP2: SAMPLE

DO YOU WISH TO USE THIS TABLEAU

[Y]

The file name read from LP2: is shown. If a different

file name is desired, enter N. The program will then

request the new file name. The new file name must then be

entered.

ENSURE THE DISK CONTAINING

LP2: SAMPLE

IS AVAILABLE

PAUSE

The disk cnntaining the data file must be present to

avoid a fatal execution error.

165

I'

ENSURE LP2: IS AVAILABLE
PAUSE

The program disk, LP2, must be returned if it had been

removed.

RIGHT HAND SIDE RANGE LIMITS
CONSTRAINT * 1

ORIGINAL RIGHT HAND SIDE - 2000.00000
LOWER BOUND = 800.00000
UPPER BOUND - 3200.00000

AT THE LOWER BOUND--AT THE UPPER BOUND
X(2) = .00000 X(2) = 400.00000
X(3) = 200.00000 X(3) - .00000
X(8) = 200.00000 X(8) = .00001
Z = -5000. 00000 Z = -9000.00000

PAUSE

Output from selection I is shown. A similar amount of

data is presented for each constraint.

166

ifI

COEFFICIENT LOWERLIMIT UPPERLIMIT
A(1,1) = NO LIMIT 7.00000
A(1,2) - 5.00000 NO LIMIT
A(1,3) 1.33333 8.88884
A(2,1) = NO LIMIT 7.09093
A(2,2) = -6.00000 4.80000
A(2,3) - 5.05881 NO LIMIT
A(3,1) = NO LIMIT NO LIMIT
A(3,2) = NO LIMIT 1.50000
A(3,3) = NO LIMIT 2.00000

PAUSE

If option 2 had been selected, the same data input

routine would have been encountered. The constraint

coefficient ranging is shown.

COEFFICIENT LOWERLIMIT UPPERLIMIT

C(l' = 26.65660 NO LIMITI
C(2) = 12.50000 42.500201
C(3) = 11.25010 28.63640

PAUSE

The objective function coefficient ranging is presented

on a separate page.

167

TI

THIS PROGRAM ACCEPTS MULTIPLE CHANGES
TO A FINAL TABLEAU AND CHECKS WHETHER
OR NOT THE CURRENT SOLUTION IS OPTIMAL
FOR THE NEW PARAMETERS

PAUSE

If option 3 had been selected, the caption shown above

would appear following the data input routine.

SELECT THE PARAMETERS TO BE CHANGED

1) C(J)

2) A(I,J)

3) B(I)

4) CHANGES COMPLETE

5) RETURN TO MAIN MENU

[2]

Option 3 allows changes to any or all coefficients of

the original problem. After each type of change (1, 2, or 3

above) the menu is presented. The choice shown is E23

(changes to the constraint coefficients).

168

A - * . . *I-oil-

PLEASE ENTER THE ROW TO BE CHANCED

PRESS D)ONE IF COMPLETE

E2]

The user must first enter the row to be changed.

PLEASE ENTER THE COLUMN TO BE CHANGED

[23

The column to be changed is entered next.

THE ORIGINAL VALUE OF A(2,2) WAS
3.000

ENTER NEW VALUE (10 CHARACTERS MAX)

E1.5]

The original value is shown, the new value is entered.

169

,.4

PLEASE ENTER THE ROW TO BE CHANGED

PRESS D)ONE IF COMPLETE

ED]

II

When all changes to the constraint coefficients have

been completed, a ED] is entered. If you desire to make

more changes to these coefficients after other changes have

been entered, it is permissible and has no ill effect on the

outcome.

SELECT THE PARAMETERS TO BE CHANGED

1) C(J)

2) A IJ)

3) B(I)

4) CHANGES COMPLETE

5) RETURN TO MAIN MENU

E43

You may select 1, 2, or 3 as many times as desired,

including changes to coefficients which have already been

changed. On the second change, the original value will be

shown. When all desired changes have been entered, select

number [43.

170

****** SSTILL OPTIIAL**$*

PAUSE

The program determines whether or not the changes will

cause a basis change.

DO YOU WISH TO SOLVE THIS TABLEAU

SELECT 'Y' OR 'N'

[Y3

If you do not wish to see the new tableau, you may

return to the main menu by typing [N].

FINAL TABLEAU - OPTIMAL

IPAUSE

This banner announces that a final solution is

available and that it is optimal. Other conditions

(degenerate) would be shown if they existed.

I

. • r ..71.

DO YOU WANT THE OUTPUT IN

1) E FORMAT

OR

2) F FORMAT

E23

Output for the tableaus is available in either E or F

format. Enter the number of your choice.

P X(2) X! 3) X(4) X(5)
OBJ FUNCTION 2.67862 .00000 .0POLO 2.32143 2.61904
CN NAME VAR $$ $$ $ l$$1 a$1$$t$1wu¢ nsssw$1 suss¢us$

2 .14286 .(0000 ..0000 -. i4286 .09524
23 .16429 ,0(00:) 1. -0000 .- 3571 -. 19048

3 8 -.107!4 .00000 0(100 .10714 .09524

PAUSE

The final tableau is presented. The output is in 80

column format. To see the riaht 40 columns, type

[CONTROL-AJ.

172

X(6) x(7) X(8) RHS
OJ FUNCTION 297.67900 297.3e800 .00000 -7785.71000
CN NAME VAR **ts2SsU;Slmu u*$$msmssumuwssgnssmw$1
1 2 .14286 -.09524 .00000 171.42700
2 3 -.03571 .!9046 .0000 157.14300
3 8 -.107!4 -.09524 1.00000 71.42860

PUSE

The 80 column format allows 5 variables to be shown at

one time (both sides), The display is continued until all

data has been shown.

X(2) = 171.42900

X(3) = 157.14300
X(8) = 71.42B60

I Z = -7785.71000

PAUSE

The final solution is presented separately. Following

this display, the program returns to the main menu, just as

it did after the results of options 1 and 2 were shown.

173

THIS SEGMENT ALLOWS YOU TO ADD AN
ADDITIONAL CONSTRAINT OR VARIABLE TO
AN ALREADY SOLVED LINEAR PROGRAMMING

PROBLEM

PAUSE

This caption is shown after data retrieval when option

E4] was selected.

DO YOU WISH TO ADD A:

C)ONSTRAINT
OR

V)ARIABLE

SELECT 'C' OR 'V'

V]-

You can enter either one new constraint or one new

variable. Select the letter of your choice.

PLEASE ENTER THE COEFFICIENT FOR
THE OBJECTIVE FUNCTION

C(4) = E352

if a problem originally had three variables, the new

variable would be shcwn as number 4. The variables added

during the previous solution are moved to the right.

174

PLEASE ENTER THE COEFFICIENT FOR
EACH CONSTRAINT

A(1, 4) = [73
A(2, 4) - E53
A(3, 4) - C13

The constraint coefficients for the new variable are

entered next.

FINAL TABLEAU - OPTIMAL
MULTIPLE OPTIMAL SOLUTIONS EXIST

PAUSE

If the user requests a full solution (as shown in

option 3) the final conditions will be displayed. The full

final tableau will be displayed after this statement as it

was in option three.

175

Mow

TO ENTER THE LP DATA1BASE MODULE-z

TYPE

x
LP1 SYSTEM. STARTUP.

PAUSE

If option [5J on the' main menu is chosen, this

instruction is presented. By typing ELP1:SYSTAEM.STARTUP.3

after the EPAUSE3 and EX] (for execution), the program will

return to the master menu in Module 1.

:17

7
77 - 7- - 7

APPENDIX 8

PROGRAPMERS' GUIDE

177

I. Introduction 179

II. Microcomputer Dependent Features. 180

III. Disk File Structure 185

IV. LP Package Structure. 189

Module 190

Module 2. 191
Module 3. 192
Module 4. 193

V. Variable List 194

Main Variable List 195
Module I Variable List 201

Module 2 Variable List 203
Module 3 Variable List 207
Module 4 Variable List 210

VI. Program Listings 216

Module 1 218
Module 2 279
Module 3. 340

Module 4 378

178

t w

I Introductjon

The objective of the Programmers' Guide presented in

this Appendix is to provide general information and guidance

to those programmers and analysts who wish to modify and/or

expand the linear programming package developed in this

thesis. Information will be presented which will aid in the

location of specific code, the interaction of this code with

other units of code, and the specific purpose of each block

of code. A section of this guide discusses the user-created

disk files and the purpose of each file. Another section

explains those procedures which are known to be peculiar to

the Apple FORTRAN utilized in the LP package implementation.

This section will be of specific interest to those who wish

to translate all or a portion of this code for use on

another computer, either micro or mainframe. The last three

sections are devoted to the program code structure,

variables, and the text listings as implemented in this

thesis.

179

I I Mir'_cG2L0&uer Qgn ESntuEa

This linear programming package, which consists of four

distinct main programss, has been written in Apple FORTRAN as

supported by the Apple II and Apple II-plus microcomputers.

This FORTRAN version uses the Apple Pascal Operating System

which incorporates UCSD Pascal (Ref 1). Although the Apple

FORTRAN language was created with the American National

Standards Institute (ANSI) FORTRAN 77 subset as its primary

reference, certain limitations and extensions do exist. The

purpose cf this section is to note those areas which do not

conform to the ANSI 77 subset of FORTRAN. Those areas which

are noted should be carefully examined prior to translation

of these programs for implementation on other computer

systems. Only the areas not conforming to the ANSI 77

subset need to be examined when translating to other systems

which fully support the ANSI 77 language subset.

The first section discusses the areas in hich the

Apple FORTRAN language does not conform to the ANSI 77

subset. Although the ANSI 77 subset specifies that integer

and real data types will require the same amount of memory,

Apple FORTRAN does not. Integers require two bytes while

reals require four bytes (Ref 12220). This specification

places restrictions on the numerical range of both data

types and may be different from that of a system which

conforms to the ANSI 77 subset.

180

-'A.

Apple FORTRAN also supports some features which are

included in the full FORTRAN language but not in the ANSI 77

subset. Several of these features are used in this program.

Subscript expressionss Apple FORTRAN and the full

FORTRAN language support array elements as subscript

expressions while the ANSI 77 subset does not (Ref Is220).

For example, if X(1)=3, Apple FORTRAN allows the (32)

element of a Y matrix to be represented as YEX(1),2].

Conformance to this standard may be accomplished by

assigning to a temporary variable the value of the array

element and then using this temporary variable as the

subscript expression. For the above example, one must state

Z=X(1) and then denote the (3,2) element as YEZ,23. This

requires the designation of another integer variable, and

therefore, more memory will be required.

Limits of a DO statement: Apple FORTRAN, as does the

full language, places no restrictions on the integer

expressions representing the limits of a DO statement, while

the ANSI subset is somewhat restrictive (Ref 1:220).

Violation of the ANSI 1977 FORTRAN subset standard may be

avoided by designating a temporary variable to represent the

limit expression at the cost of memory. An example which

Apple FORTRAN allows but the subset does not would be:

DO 300 i1, A+B)

The equivalent statement for the subset would replace the

expression (A+B) by a single variable.

181

I

Expressions in the input/output list of a WRITE

statement: Again, the subset is the most restrictive and

does not allow expressions as elements of a WRITE statement.

Apple FORTRAN does support expressions in the I/0 list, but

the expression must not begin with a left parenthesis (Ref

1:221). This inconvenience may be overcome by using a

leading addition operator symbol. This peculiarity may be

removed in translation to another system through the use of

a temporary variable. This may require a larger memory

space. An example of this would be to replace the

expression (A+B) in the input/output list with a single

variable.

File structures: The file structure of Apple FORTRAN

extends beyond the subset. The ANSI subset allows only

unformatted, direct access files and formatted, sequential

files. Apple FORTRAN supports both formatted and

unformatted in either direct access or sequential files (Re+

1:221). Due to this difference, the OPEN and CLOSE

statements referring to these files may not conform to the

subset language. All data files of this software package

are unformatted sequential files and, therefore, do not

conform to the ANSI 77 subset. Consequently, the OPEN and

CLOSE statements of these files do not conform to the ANSI

subset. To translate these programs to a system whose

FORTRAN conforms to the ANSI 77 subset, one could add format

specifiers for each of the input/output elements of the READ

182

.0 -f - - liftl aPm

and WRITE statements and change the OPEN and CLOSE

statements accordingly. Specifically, these changes would

be required in files which use units 3, 4, or 7 as the

input/output units.

CHAR intrinsic function: Apple FORTRAN conforms to the

full language but not to the ANSI 77 subset (Ref 1:220-221).

The FORTRAN 77 subset does not specify a collating sequence

for all possible characters but does specify general

guidelines for such a sequence (Ref 3:193). This allows

differences to be present among implementations. Apple

FORTRAN uses the ASCII (American Standard Code for

Information Interchange) in its CHAR intrinsic function

implementation. If the new system does not use the ASCII

collating sequence, appropriate changes must be made to the

present programs prior to translation.

The following features are supported by the Apple

FORTRAN language but are not in the subset or the full

FORTRAN language (Ref 1:221). Compiler directives,

annotated by a "$" in column one, have been used to allow

the overlaying of compilation urits. Without this feature,

each program would have exceeded the memory capabilities of

the Apple 1I--plus microcomputer and prevented the

implementation of the software package. This is an area

which must be considered very carefully prior to translation

attempts. IF the new target system is not substantially

larger than the Apple II-plus (48K RAM plus a 16K language

183

card) or does not support some type of overlay operation,

translation of this software package may not be practical.

The edit control character "$" is a special Apple

FORTRAN feature. This character prevents a line feed

following a READ or WRITE statement (Ref 12222). This

feature has been used extensively in the WRITE statements

which prompt user inputs. This has allowed user input to

appear on the same line of the monitor as the prompt and

aids greatly in legibility. This feature could be

eliminated on translation with careful attention required

for the tableau displays.

The previous discussion has noted those areas which are

Apple FORTRAN specific. When translating these programs for

implementation on another. system, one must equally consider

the corresponding machine-dependent features of the new

target system. These features may coincide with those

discussed above and therefore require minimal effort.

However, features which are included in the ANSI FORTRAN 77

subset, but are not supported by the new system, must be

carefully researched to insure the possibility of a

successful translation.

184

mp w--

A-A124B804 FORRNCBASD LNEA PROGRAMMING FOR MIROCOMPU~ UH 315
AI FOARE NS AF TECH WRIGHT-PATTERSON AFB OH SHASL
0I ENGIBEEN RNO I RRAL AL DE 82

UNCLASSIFED AFI/OSAA 204 A/ 21 N

L111 12.2
lao 1112.0

L511111 = 1.1.6_

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1I963-A

I Ri ELL's StJ~uLV

The object code files, which contain the compiled and

linked FORTRAN source code files shown in Part VI of this

Appendix, are placed on one of two disks. Each disk also

contains a required data file. These two disks have been

given the volume names of LPi: and LP2z and contain the

following files:

LP1:
SYSTEM.STARTUP (Module 1)
ED.CODE (Module 2)
LPDATA (Data file)

LP2:
TAB.CODE (Module 3)
SEN.CODE (Module 4)
LPDATAW (Data file)

..

The code files have their corresponding module numbers in

parentheses to the right, and the two data files have been

annotated for future reference.

The four code files can be placed on a single disk due

to their combined size. This factor, combined with the fact

that each module is a separate program, required the

creation of the two data files named LPDATA and LPDATAW on

disks LPIs and LP2:, respectively. Both data files are

unformatted, sequential files which contain a character

string of maximum length 10. These character strings

represent the disk volume number or disk name and filename

of a user created data file. These programmer-defined files

185

contain the volume number or disk name and filename which

the user has input as the storage location of either the

data file of a model entered or the solution of a linear

programming problem.

LPDATA contains the user defined data volume or

disknmesfilename created by Module 1 when the user either

saved a LP model to disk or edited a model currently on

disk. The file also is used as an information carrier

(transfer file) to either Module 2 or 3. whichever is

selected when leaving Module 1. When the user attempts to

transfer from Module 1 (data base entry) to either of the

problem solver modules (Modules 2 and 3), the user is

prompted to input the name of the data file which will be

studied in the problem solver module selected. The user

inputs a volume or diskname:filename and this is written to

LPI:LPDATA. When the user begins either of the problem

solver modulesp LP1sLPDATA is read. The program then

di-ects the problem solver module to read the designated

file contained in LPlILPDATA.

The same logic is also present in the LP2sLPDATAW.

This file contains the user-defined volume number or disk

namerfilename of the data file created by either Modules 2

or S. The volume number or diskname, filename contained in

LP22LPDATAW is the file which contains the results of either

problem solver module. When the user begins Module 4q

LP2,LPDATAW is read to direct the sensitivity analysis

186

- ~ ~~WON"

module to read the designated file. LP2LPDATAW may also be

changed when transferring directly from Module 1 to Module

4.

The two files discussed above serve to link the various

modules together by identifying the location and name of the

needed data files. When a problem has been entered using

Module 1, the user is prompted to save this data under a

user-specified disk volume or disk name and filename." The

same sequence also occurs upon completion of the problem

solver modules. These files, whose volume number or

disknameofilenames are placed in LPDATA or LPDATAN, may be

saved to disk LPi:, LP21,, or any disk which the user

designates in the volume name.

The data files which store the LP models and solutions

of the model are unformatted, sequential files. Those files

created by Module I contain the LP model and are configured

in a manner so that Modules 2 and 3 may interpret them.

Those data files created by Modules 2 and 3 con-ain the

final results of an LP problem. These files are configured

such that Module 4 is capable of interpreting them.

The disk files which have been provided on the two

disks must remain as shown. If either LPIlLPDATA or

LP2sLPDATAW is removed, an execution error will occur since

the programs will attempt to open those files on their

respective disks. Any changing of files must be done in

conjunction with corresponding code changes to prevent

187

execution errors.

18

IV LPE sgff ftt uctmC

The four main programs. designated as Modules I through

4, which form this LP package have each been compiled in

separate units called compilation units. After the

compilation of each unit in a module, the units wre linked

into four distinct object code files and stored on disk

under a volumesfilename. This process of separate

compilation permits the use of the OVERLAY procedure which

allows a compilation unit to be resident in memory only

while in use. When the overlayed unit is no longer required

for processing, resident memory is available for use by

other overlay units. This OVERLAY procedure allows each

program to be much larger than would have been possible if

the entire object code of a module were stored in resident

memory.

Listed below are the module numbers followed by the

volume or disknamesfilename where each module is stored on

the two disks provided with this LP package. Next, for each

module, the compilation unit names are shown. Below each of

the compilation unit names are those text files which are

present in each compilation unit. The order of listing of

the unit and text file names are the same as shown in PART

VI. This will aid the programmer in locating the desired

text files.

189

L4W~jlgI

LPlsaSYSTEM. STARTUP

UINIT 10
PROGRAM DATAD

UNITI I
SUBROUTINE DATAS
SUBROUTINE DATAN

UINITi12
SUBROUTINE EDIT
SUBROUT INE VNCH

UINIT 13
SUBROUTINE ADVAR
SUDROUT I NE OBJCH

UNIT 14
SUBROUT INE CNVA
SUBROUTINE DELCON
SUBROUT INE DEL VAR

LINIT15
SUBROUTINE ICNRCH
SUBROUTINE ADCON
SUBROUT INE DI SPLY

UNIT 16
SUBROUT INE SAVE
SUBROUTINE INIT
SUBROUTINE DATAD
SUBROUT INE HEADER
SUBROUT INE MODUL (I NEW)
SUBROUTINE DOD
SUBROUTINE INTRO

SUBROUT INE DBE
SUBROUT INE DOUM

SUBROUT INE DEN

UNIT 17
SUBROUTINE CHECK (E I NYALRNEW)
SUBROUTINE CHECK2CED,HVAL. INVAL, INEW)
SUBROUT INE CHECK3 (E, INVALINEW)

190

LPl xED

UNIT20
PROBRAM EDUC

UNIT21
SUBROUT I NE OBMDU
SUBROUTINE OPTION

U NIT22
SUBROUTINE READY
SUBROUT INE CNMDU

UNIT23
SUBROUTINE OPT
SUBROUTINE TCAL

UNIT24
SUBROUTINE PIVOT
SUBROUTINE WORK
SUBROUTINE OVER (RES)

UNIT25
SUBROUTINE HEADER
SUBROUT I NE ASKQ (ASK)
SUBROUTINE OUESTN
SUBROUTINE BIGM
SUBROUTINE INDEX
SUBROUTINE NODIFA
SUBROUTINE INTRD

UNIT26
SUBROUTINE TDISPL
SUBROUT I NE BASD IS

UNIT27
SUBROUTINE CHECK2 (E, DIHVAL, INVAL, INEW)

191

AI

LP2v TAB

UINI T30

UN 43A PRODS

SUBROUT INE OPTN

UNIT33
SUJBROUJT INE WORK
SUBROUT INE OPTB

UNIT34
SUBROUTI1NE CONVRT
SUBROUT INE ACNCH
SUBROUTINE INRD
SUBROUTINE NFILE(N)

UN 1T35
SUBROUTINE PSHED
SUBROUTINE ASKQ (ASK)
SUBROUTINE DIS#1
SUBROUT INE INDEX
SUBROUTINE IIODIFP
SUBROUTINE PIODIFD

UNIT36
SUBROUTINE TDISPL

UNI137
SUBROUTINE CHECK2 (E, D, HAL, INVAL, INEW)

192

LP2s SEN

UNIT40
PROGRAM fAINSA
SUBROUTINE SELECT

UNIT41
SUBROUTINE COMRHS

UNIT42
SUBROUTINE COEFFR

UNIT43
SUBROUT INE IULCNG

UNIT44
SUBROUT INE ADDCON

UNIT45
SUBROUTINE SOLVE
SUBROUTINE OPTB
SUBROUT INE WORK
SUBROUTINE TDISPL

UNIT47
SUBROUTINE CHECK2 CE D, HVAL, INVAL, INEW)
SUBROUTINE CHECK(E, INVALRNEW)

UNIT413
SUBROUTINE RETRIV

COMIVAR. TEXT

193

V Varjj1g List

This section discusses all variables containsO in this

LP software package. It is divided into five subsections.

The first subsection discusses those variables which are

present in two or more of the four modules and are

identically defined. Those variables which are present in

two or more, but not all of the modules, have been

identified by indicating the modules in which they are used.

The next four subsections describe those variables which are

specific to just one the four modules. Also listed in the

individual module variable listings are those variables

which may have different meanings or value ranges in other

modul es.

A person studying the text files and requiring the

meaning of specific variables should first check the

respective module variable listing. If the variable is not

found there, it will be defined in the main variable

listing. Also, if the dimension of an array has been

specified by an asterik (M), the dimension of the array may

not be the same in each use. This notation is used only

when the array elements are assigned by a data statement

each time the subroutine is called.

1.
194

I'

A(20,6O) Real array which contains the models'
constraint coefficients, including the
surplus, slack, and artifical variable
coefficients. (Modules 1, 2, 3, and 4)

ALLOW(*) Character array with each element a maximum
length of 1. The array contains the integer
and symbolic characters which are allowed as
user inputs. It is used as a reference to
validate user input.

AO(20,20) Real array which contains the original
models" constraint coefficients prior to
pivot or tableau modification. (Modules 2,
3, and 4)

ARTV(20) Integer array which contains the constraint
numbers of those constraints which contain
artificial variables.

ASK Integer flag which specifies whether or not
another model is to be studied before
exiting present module. (Modules 2 and 3
only)

0 = Exit module
I = Remain in present module

B(20) Real array which contains the original right
hand-sides of the constraints. (Modules 1,
2, and 3)

BASIC Integer variable which contains the current
iteration number of basic solutions, both
feasible and infeasible. (Modules 2 and 3
only)

BM Real variable which contains the value used
for M in application of the "Big M" Method.
(Modules 2 and 3 only)

C(60) Real array which contains the original
objective function coefficients and also the
(Z(J)-C(J)) values during subsequent pivots.
(Modules 1, 2, and 3)

CB(20) Integer array which contains the variable
subscripts of the basic variables. (Modules
2, 3, and 4)

195

CN(20) Character array with each element a maximum
length of 6. The array contains the
constraint names assigned by user.

D Integer dummy argument which contains the
max i mum number of user input characters
which will be verified.

E(10) Character array with each element a maximum
length of 1. The array is a dummy argument
which is used by subroutines which validate
user input.

FMT Integer flag which denotes whether output is
in E or F format. (Modules 2 and 3 only)

0 = E format
I = F format

FN Character variable with maximum length 10.
It contains the disk name:filename of the
file currently being studied.

FNO Character variable with maximum length 10.
It contains the disk namefilename of the
file which has been modified by Module 2 or
3, while the new file (name presently in FN)
is being created for further study with
Module 4. (Modules 2 and 3 only)

GNES Real variable which contains the largest
negative (Z(J)-C(J)) during the iterative
process of determining the pivot column.
(Modules 2, 3, and 4)

HOLD Real variable which contains the tableau
element of the pivot column and row
currently being modified in the iterative
step. (Modules 2, 3, and 4)

HVAL Integer dummy argument which contains the
largest integer value allowed as user input.

IBTAB Integer variable which denotes the interval
between displayed intermediate basic
tableaus. (Modules 2 and 3 only)

0 - Do not display intermediate basic
tableaus

- Display every intermediate basic
tableau

2 = Display every second intermediate basic
tableau, etc.

196

I
I

IFLAG(1)-(1O) Integer flag. See variable list preceding
each module listing for specific meaning in
each module.

IFTAB Integer flag which denotes whether or not
final tableau is displayed. (Modules 2 and
3 only)

1 = Display final tableau
2 = Do not display final tableau

INDEXE Integer variable which specifies the
variable subscripts of the artificial
va iabl es.

INDEXG Integer variable which specifies the
variable subscripts of the surplus
variables.

INDEXL Integer variable which specifies the
variable subscripts of the slack variables.

INEQ(20) Integer array which contains the type of
inequality or equality of each constraint.

0 = Less-than or equal
1 = Greater-than or equal
2 = Equality

INEW Integer variable which is used as both the
actual and dummy arguments of the
subroutines which validate user input.

INVAL Integer flag which is used as both the
actual and dummy arguments of the
subroutines which validate user input.

0 = User input is valid

I = User input is invalid

ITAB Integer flag which denotes whether or not
initial basic tableau is to be displayed.

I - Display initial basic tableau
2 - Do not display initial basic

tableau

K Integer variable which contains the number

of constraints in the model.

KFA Integer variable which contains the column
number of the first artificial variable.

(Modules 2, 3, and 4)

197

Il ll

.. •.,

KFS Integer variable which contains the column
number of the first slack variable.
(Modules 2 and 3 only)

KFSA Integer variable which contains the column
number of the first surplus variable.
(Modules 2 and 3 only)

KFSU Integer variable which contains the column
number of the last surplus variable.
(Modules 2 and 3 only)

MM Character variable of maximum length 3. It
contains either "MAXu or "0MIN" for
maximization or minimization, respectively.

MXMN Inteqer flag which denotes whether original
problem was maximization or minimization.

I = Maximization
2 - Minimization

NEC Integer variable which contains the number
of equality constraints.

NBC Integer variable which contains the number
of greater-than or equal constraints.

NLC Integer variable which contains the number
of less-than or equal constraints.

OBN Character variable of maximum length 10. it
contains the name of the objective function.

OPTS Integer flag "hich denotes whether or not
last basic solution was optimal. (Modules
2, 3 and 4)

0 = Non-optimal
I = Optimal

OUTP Integer flag which denotes whether output is
to be displayed on screen or printer.
(Modules 2 and 3 only)

1 - Display on screen
2 = Display on printer

P(I0) Character array with each element a maximum
length 1. All user inputs are read as
characters. It is also used as actual
arguments to subroutine calls which verify
user inputs.

198

PELE Real variable which contains the coefficient
value of the pivot element designated by PK
and PR. (Modules 2 and 3 only)

PINEQ(20) Character array with each element a maximum
length 1. It contains the symbolic
representation of the equality or inequality
for each constraint.

PK Integer variable which contains the column
selected for the current pivot. (Module* 2,
3., and 4)

PN Character variable of maximum length 20. It
contains the problem name supplied by user

.for current model.

PR Integer variable which contains the row
selected for the current pivot. (Modules 2,
3, and 4)

SPR Real variable which contains the smallest
ratio of the right-hand side/pivot column

element for all constraints. (Modules 2, 3
and 4)

SUM Real variable used as temporary sum of a
summation process. (Modules 2 and 3 only)

T Integer variable which contains the number
of 80 column widths required to display
tableau.

TIE Integer flag which that denotes a tie exists
for entering or leaving variable. (Modules
2 and 3 only)

0 = No tie
1 = Tie

V Integer variable which contains the number
of variables in the model excluding surplus,
slack and artificial variables.

VN(20) Character array with each element a maximum
length of 6. It contains the variable names
assigned by user.

VT Integer variable which contains the total

number o+ variables in the model, including
surplus, slack and artificials. (Modules 2,
3, and 4)

199

XB(20) Real array which contains the constraint
right-hand sides of tableau.

Z Real variable which contains the current
objective function value.

12W0

MqdulM 1 Variable Listing

CHAK Integer variable which contains the column
number which the user has selected to make
coefficient corrections.

CHAN Character variable of maximum length 6. It
contains the new constraint name which user
has defined prior to its assignment to
CN(I).

CHARO Integer variable which contains the number
of the constraint which the user has
selected to make corrections.

D Integer dummy argument which contains the
maximum number of user input digits.

DECIMA Integer flag which denotes whether or not a
decimal had been found during the process of
user input validation.

0 - No decimal processed
1 - Decimal processed

IFLAG(1) Not used

IFLAG(2) Integer flag which denotes whether or not
model has been saved to disk since entering
of data or change of data

0 - Not saved to disk
I = Saved to disk

IFLAG(3) Integer flag which denotes whether or not
tableau is in proper form for initial pivot.

0 = Not in proper form
1 = Form is correct

IFLAG(4) Integer flag which denotes form of objective
function.

0 - Form is Z-X
1 - Form is Z-X-O

IFLAG(5) Integer flag which denotes whether or not
model contains variable, constraint and
objective function names.

0 - No name, subscripts only
1- Names and subscripts

20

IFLAG (6) Integer flag which denotes the changes
desired in a constraint.

0 = Change coefficient, inequality,
and right hand side

I - Change coefficient only
2 = Change inequality only
3 = Change right-hand side only
4 = Change constraint name only

IFLAG(7) Not used.

IFLAG(8) Integer flag which denotes the changes in
the objective function.

0 = Change cost coefficient and
maximization/minimization choice

I - Change cost coefficient only
2 = Change maximization/minimization

choice only

IFLAG(9) Integer flag which denotes whether to
display objective function and constraints
or objective function only.

0 = Display objective function and
constraints

1 = Display constraints only

IFLAG(10) Not used.

P1 Real variable which is a multiplier to
properly place the decimal in the verified
user input.

NEGAT Integer flag which denotes whether user
input was a positive or negative value.

0 - Positive input
1 - Negative input

RNEW Real actual and dummy argument to SUBROUTINE
CHECK2(E, INVALRNEW)

202

"ult 2 Variable Li injg

CO Character variable of maximum length 7. It
contains a character string for display
noting a correct response in SUBROUTINE OPT.

CO(20) Real array which contains the absolute value
of the constraint's original right-hand
side. It is located in SUBROUTINE
ASKQ(ASK).

D(1O) Character array with each element a maximum
length of 1. Actual argument in subroutine
call statements located in SUBROUTINE
OPTION. User input is read into this array.

F Character variable of maximum length 1. It
is located in SUBROUTINE OPT for reading
user responses.

IFLAG (1) Used as a dummy storage area to prevent
writing over other IFLAG(M) variables. Also
an integer variable which denotes whether a
basic solution is infeasible due to a
negative right-hand side, and if so, which
constraint contains the negative right-hand-
side.

0 = Solution not infeasible due to
negative right-hand side

I = Solution infeasible due to negative
right-hand side in constraint I

XFLAG(2) Integer flag which denotes whether or not
model has been saved to disk since entering
of data or change of data.

0 = Not saved to disk
1 = Saved to disk

IFLAG(3) Integer flag which denotes that screen is to
be cleared after display of tableau.

0 = Do not clear screen
1 = Clear screen

IFLAG(4) Integer flag which denotes whether or not
multiple optimal solutions exist SUBROUTINE
OPT. Also used in SUBROUTINE PIVOT as an
integer variable which contains the column
selection of the algorithm.

0 = No multiple optimal solutions
1 - Multiple optimal solutions exist

203

IFLAG(5) Integer flag which denotes whether or not
model contains variable, constraint, and
objective function names.

0 - No names, subscripts only
1 - Names and subscripts

IFLAG(6) Integer variable which contains the basic

variable subscript of the degenerate

variable in SUBROUTINE OPT. Also used in
SUBROUTINE PIVOT as an integer variable
which contains the row selection of the
algorithm.

0 - Solution not degenerate
else = Basic variable subscript which

is zero

IFLAG(7) Integer flag which denotes whether or not
current solution is unbounded or bounded

0 = Bounded
1 = Unbounded

IFLAG(8) Integer flag utilized in SUBROUTINE OPT to
determine if variable is a basic variable.

0 - Non basic variable
1 = Basic variable

IFLAG(9) Integer variable which denotes whether to
display current constraints only, current LP
model without noting basic variables, or LP
model with basic variables annotated.

0 o Current LP model without annotating
basic variables

1 - Current constraints only
2 - Current LP model with basic

variables annotated

IFLAG(10) Integer flag which denotes whether or not
further pivots are allowed or desired.

0 - Further pivots allowable and/or
desired

5 - Further pivots not desired
and/or allowed

INC Character variable with maximum length of 9.
It contains character string for display
noting incorrect response in SUBROUTINE OPT.

204

INEQ(20) Integer array which contains values
designating the type of equality or
inequality after constraints with negative
right-hand sides have been multiplied by -1.

0 = Less-than or equal
1 - Greater-than or equal
2 = Equality

INF1 Integer variable which denotes whether or
not a basic solution is infeasible due to an
artificial variable being negative, and if
so, the constraint number of the negative
artificial variable.

0 - Solution not infeasible due to
negative artificial variable

I = Solution infeasible due to
negative artificial variable in
constraint I

L Integer flag which denotes whether or not
primal pivots are permissible on the current
tableau.

0 - Primal pivot not permissible
1 - Primal pivot is permissible

M Integer flag which denotes whether or not
dual pivots are permissible on the current
tableau.

0 = Dual pivot not permissible
1 = Dual pivot is permissible

MOD Integer flag which denotes whether the user
or the algorithm should modify the initial
tableau into the proper simplex form.

1 = User modification
2 = Algorithm modification

NEC Integer variable which contains the number
of equality constraints after constraints
with negativ e right-hand sides have been
multiplied by -1.

NGC Integer variable which contains the number
of greater-than or equal constraints after
constraints with negative right-hand sides
have been multiplied by -1.

NLC Integer variable which contains the number
of less-than or equal constraints after
constraints with negative right-hand sides
have been multiplied by -1.

205

.... 11 1

NNU Character variable of maximum length 14. It

contains a character string for display
noting whether solution was not optimal,,
nondeganer ate, or unbounded.

ODB Character variable of maximum length 10. It
contains a character string for display
noting whether solution was optimal,
degenerate, or bounded.

OIU Integer flag which denotes whether the user
or the algorithm will identify optimal,
infeasible, and unbounded solutions.

1 - User
2 = Algorithm

PES Integer flag which denotes the method of
pivot element selection.

1 = User selects, algorithm checks
2 = User selects, no algorithm check
3 = Algorithm selects, no user input

PKS Integer variable which contains the user
selected pivot column.

PRS Integer variable which contains the user
selected pivot row.

RES Integer flag which denotes whether or not
the user wishes to perform a pivot with a
pivot element that is equal to or
aporoximately zero.

RATIO Real variable which contains the ratio of
the right-hand side of row I/coefficient of
row 1. column PK element.

S Integer variable which contains the proper
response value to question asked of user.

206

- ----------------

C2(20) Real array which contains the C(J)'s for the
dual problem (the X(I)'s of the primal
problem).

DUAL Integer flag which denotes whether or not
dual pivots are to be allowed in problem
solution.

I - Dual pivots are not to be used
2 - Dual pivots may be used

IE Integer counter which contains the number of
unconstrained variables added to the dual
model.

IFLAG(1) Used as a dummy storage area to prevent
writing over other IFLAG($) VALUES.

IFLAG(2) Integer flag which denotes whether or not
model has been saved to disk since entering
of data or change of data.

0 - Not saved to disk
I - Saved to disk

IFLAG(3) Not used.

IFLAG(4) Integer flag which denotes whether or not
multiple optimal solutions exist.

0 - No multiple optimal solutions
1 - Multiple optimal solutions exist

IFLAG(5) Integer flag which denotes whether or not
model contains variable, constraint, and
objective function names.

0 = No names, subscripts on)'/
I = Names and subscripts

IFLAGi6) Integer flag which denotes whether the
solution is degenerate or nondgenerate.

0 - Nondegener ate
I - Degenerate

IFLAG(7) Integer flag which denotes whether current
sol ution i s unbounded or bounded.

0 - Bounded
I - Unbounded

207

.1 * --.

IFLAG(S) Integer flag utilized in SUBROUTINE OPTO to
determine if variable a is basic variable.

0 - Non basic variable
1 = Basic variable

IFLAB(9) Integer flag which denotes whether or not
the current solution is to be displayed.

0 - Do not display current solution
1 = Display current solution

IFLAG(IO) Integer flag which denotes whether solution
of model was performed by primal pivots or
dual pivots.

0 - Primal pivots
1 = Dual pivots

IT Integer flag which denotes a constraint is
required to be added to insure that an
initial pivot may be performed.

0 = No constraint added
1 - Constraint added

INFP Integer flag which denotes whether solution
is feasible or infeasible due to either a
negative right-hand side or an artificial
variable at a positive level.

0 = Feasible
1 = Infeasible

K2 Integer variable which contains the numbs.
constraints of the dual problem.

N Integer actual and dummy argument which
denotes whether variables or constraints
have been added to the model.

I - Variables
2 - Constraints

NEC Integer variable which contains the number
of equality constraints after constraints
with negative right-hand sides have been
multiplied by -1.

NGC Integer variable which contains the number
of greater-than or equal constraints after
constraints with negative right-hand sides
have been multiplied by -1.

208

,--

NLC Integer variable which contains the number
of less-than or equal constraints after
constraints with negative right-hand sides
have been multiplied by -1.

PROBT Integer flag which denotes whether problem
to be solved is the primal or dual problem
of the current model.

1 - Primal
2 - Dual

TN Character variable of maximum length 11. It
contains a string to be displayed annotating
whether constraints or variables have been
added to the model.

V2 Integer variable which contains the number
of variables in the dual problem.

VN2(20) Character array with each element a maximum
length 6. It contains the variable names of
the dual problem.

209

-A.21 A M

Module 4 Variable Listing

AF(20,60) The matrix of real variables which are the
final tableau values of the full matrix.
These values are read from the datafile and
are then modified by some sections of Module
4 in order to obtain a new final tableau.

ARTVAR An integer variable used to count the number

of artificial variables in the problem and
to determine which column in B-inverse is
associated with the given constraint.

BASIC(2O) An integer variable used to indicate whether
or not a particular column in the A matrix
is in the basis.

0 = not in basis
I = in basis

BO(20) The vector of original values a+ the
right-hand side which were entered in Module

1.

BF(20) The vector of final values for the
right-hand side from Module 3 or, after

modification, the new final values.

C0(20) The vector of original objective function
coefficients from Module 1.

CF(20) The vector of objective function coefficient
in the final tableau from Module 3 or, after
modification, the new final tableau values.

CKILLI A real variable used to check whether or not
a lower bound will make the sensitivity
analysis ill-conditioned.

CKILL2 A real variable used to check whether or not
an upper bound will make the sensitivity
analysis ill-conditioned.

CLOWER A real variable used to compute the lower
bound on each objective function
coefficient.

COL An integer variable used to denote the
columns under consideration.

210

L- I -" 9 .. ++ p"(,- + • + &+. .. .

AL' ' +

CONSTR An integer variable used to denote the
constraint under consideration.

CUPPER A real variable used to compute the upper
bound on each objective function
coefficient.

DELADN A real variable used to compute the minimum
negative change to each element of the
original A matrix which would cause a
multiple optimal solution in the final
tableau.

DELAUP A real variable used to compute the minimum

positive change to each element of the
original A matrix which would cause a
multiple optimal solution in the final
tableau.

DELTAA(20) A temporary vector of real variables which
holds the values of the new column o4 an
added variable while the original values are
being multiplied by B-inverse.

DELTAA420,20) A temporary matrix of real variables which
holds the change (delta) to each of the
elements in the A matrix.

DELTAB(20) A temporary vector of real variables which
holds the change (delta) to each of the
elements in the 8 vector.

DELTAC(20) A temporary vector of real variablat ahich
holds the change (delta) to each of the
elements in the C vectu;&.

HEADI An integer variable ieich indicates whether
or not a heading has been displayed on the
screen.

0 = Heading has not been displayed
1 = Heading has been displayed

HEAD2 An integer variable which indicates whether

or not a heading has been printed.
0 = Heading has not been printed
1 - Heading has been printed

IFLAG(4) An integer variable used to indicate a
multiple optimal solution.

0 - Not multiple optimal
1 = Multiple optimal

211

IFLAG(5) An integer variable used to indicate whether
or not named resources and variables are
used.

0 = Names not used
1 - Names used

IFLAG(6) An integer variable which indicates whether
or not the problem is degenerate.

0 = Not degenerate
1 = Degenerate

IFLA6(7) An integer variable which indicates whether
or not the problem is unbounded.

0 = Not unbounded
1 = Unbounded

IFLAG(8) An integer variable used as a temporary
indicator when checking for multiple optimal
sol uti ons.

IFLAG(9) An integer variable used as an indicator to
prevent manipulation of possibly
ill-conditioned matrices.

IFLAG(10) An integer variable which shows when dual
pivots have been used during the initial
tableau solution.

0 = No dual pivots
1 = Dual pivots

ILL1 An integer variable which indicates whether
or not the lower bound of an element in the
A matrix may present an ill-conditioned
problem when solved through sensitivity
analysis.

ILL2 An inteoer variable which indicates whether
or not the upper bound of an olement in the
A matrix may present an ill-conditioned
problem when solved through sensitivity

analysis.

3 An integer variable generally used in DO
loops to denote columns I through V or VT.

LWBD(20,20) A real matrtix used during right-hand-side
ranging to compute the lower bound of a
column of the A matrix associated with a
particular constraint.

212

.- A -- -

LINES An integer variablq used to count the number
of lines which have been displayed on the
screen.

LINEP An integer variable used to count the number
of lines which have been printed on a page.

LWBD A real variable used to compute the lower
bound of an element in the A matrix.

NEWA(20,20) A real matrix used to hold the new (user
input) values of the A elements.

NEWB(20) A real vector used to hold the new values of
the right-hand side. The first element of
the vector (NEWB(1)) is occassionally used
as a temporary holding variable during
computations.

NEWCJ(20) A real vector used to hold the new values of
the objective function coefficients.

RMAX(20) A real vector used to compute the minimum
positive resource (right-hand-side) change
which would force a change ik% the basis.

RMIN(20) A real vector used to compute the minimum
negative resource (right-hand-side) change
which would force a change in the basis.

ROW An integer variable generally used in DO
loops to vary the constraints from I to K
while working with a different constraint
under the variable name CONSTR.

RSCH(20,20) A real matrix which holds the ratio between
the right-hand-side value and the A element
of the column associated with the constraint
under consideration. The minimum positive
and negative ratios determine the maximum
right-hand-side changes allowed for the
constraint while maintaining the current
basis.

RSLLIM (20) A real vector which indicates the lower
limit for each right-hand-side element.

RSUPLIM A real vector which indicates the upper
limit for each element of the right-hand
side.

213

&im i- -L...

r,
... .. .

.

SELI NP(10) A character vector used during keyboard
input of numbers. The "characters" are sent
to a subroutine to be checked and then
returned as numbers i f no errors are
detected.

SELSUB A character variable used to direct the
desired subroutine call.

SELOUT A character variable used to direct output
to the screenv printer, or both.

SELSOL A character variable used to indicate
whether or not a particular tableau will be
solved.

SLACK An integer variable used to count the number
of slack variables.

TEMP A real variable used to temporarily store
values during computation.

TEMPA A real variable used to temporarily store
values during computation.

TEMPA(20,20) A matrix of real variables which is used to
hold the columns of the B-inverse matrix
while the columns of the matrix are being
realigned to the identity matrix order.

TEMPCJ(20) A vector of real variables which holds the
values of the objective function
coefficients which are above the slack and
artificial columns while the columns of the
B-inverse matrix are being reordered.

UPBD A real variable used to compute the
upperbound of an element in the A matrix.

UPBD(20,20) A real matrix used during right-hand-side
ranging to compute the upper bound of a
column of the A matrix associated with a
particular constraint.

ZLP A real variable which holds the Z lower
bound value which will be printed.

1UP A real variable which holds the Z upper
bound value which will be printed.

I
•214

- .1

ZLS A real variable which holds the Z lower
bound value which will be displayed on the
screen.

ZUS A real variable which holds the Z upper
bound value which will be displayed on the
screen.

1 215

L ____________________

VI Etegram Litinac'g

The following listings are the text filies which have

been compiled and linked to form the code files of this LP

package. Preceding each program and subroutine listing are

comments which may assist a programmer in efforts to modifyq

expand, or translate the Apple FORTRAN source code.

The comment blocks contain several items of importance

in a standard format to assist future programmers. The

first item listed in each comment block is the module number

which the listed program or subroutine is a part.

Immediately following is the compilation unit name which

contains this program or subroutine. The next line is only

present in the comment block of the first listing of each

compilation unit. This line lists those compilation units

which contain subroutines called by this compilation unit.

Next, the name of the program or subroutine which this

comment block preceeds is shown. The following section is a

brief discussion of the program's or subroutine's purpose

and any special items of interest. The program or

subroutines which call this subroutine are listed following

the discussion. Next, a listing of those subroutines or

programs which may call this subroutine are shown. The last

section of the comment block identifies those variables

which either influence execution of the program/subroutine

or are changed during execution. The 4irst variables listed

216

with the heading USED are those which may be utilized, but

not changed,during execution. The second heading, MODIFIED,

lists those variables which may change in value during the

execution of the program or subroutine. Only those

variables directly used or modified by the programs or

subroutines have been shown. Therefore, if Program A calls

Subroutine B which changes the value of variable C, only

Subroutine B will list variable C as a modified variable.

Also, note that all arrays in which the specific array

element or elements used or modified may vary due to problem

size are annotated with an asterik ($). Numeric subscripts

are shown only where a specific element or elements are

known to be either used or modified during the execution of

the program or subroutine.

217

ow

C iIeIIIutlI III Iss IIIIIt iII I II
C NODULE I UNITIO I
C UNIT $USES. UNITII THRU UN]TI7 I
C

C PROGRAM DATAB
C USE: MAIN PROGRAM OF MODULE I LP PACKAGE. PURPOSE OF MOIULE IS THE I

C ENTRY OF NEW AND EDITING OF EXISTING LF NMDEL$ IN A FORM I
C ACCEPTABLE WITH MODULES 2 AND 3. MOrULE I CONSISTS OF 8 1
C SEPARATELY COMPILED UNITS iUNITIO THRU UNIT17) VITH ALL UNITS I
C EXCEPT UNITIO BEING OVERLAY UNITS. I
C PROGRAN DATAD ACTS AS AN OUTER COMMAND LEVEL WHICH SOLICITS I
C USER INPUT DESI6NATINS THE OPTION DESIRED. THIS DESIN I
C ALLOWS OVERLAY UNITS TO BE RELEASED FROM MEMORY PRIOR TO NEW I
c UNITS BEING CLLED HICI WOULD OVERLOAD MEMOR'.
C CALLED BY: NONE I
C CALLS : SUBROUTINE CHECK2(P,N,N,INVAL,INEW) I
C SUBROUTINE DATAD t
C SUBROUTINE DATAN I
C SUBROUTINE DATAS I
C SUBROUTINE DBE I
C SUBROUTIE DBHED I
C SUBROUTINE DBN 9
C SUBROUTINE DEN t
C SUBROUTINE DISPLY
C SUBROUTINE EDIT
C SUBROUTINE 6ENIF
C SUBRCUTINE HEADER
C SJBnl INE 1,411
C SUBROUTIA iNTRO
C SUBROUTINE NODUL(INEN) I
C VAPIABLES:
C USED: !FLA6(2),INVAL I
C MODIFIED: lFLAG(5:'.IFLAGi9),INEN,P() I

SUIES UCHECK IN UNITI7.CODE OVERLAY
$USES USAVE IN UNITIZ.CODE OVERLAY
SUSES UICKRCH IN UNITIS.CODE OVERLAY
$USES UCNVA IN UNIT!4.CODE OVERLAY

$USES UADVAR IN UNIT13.CODE OVERLAY
SUSES UEDIT IN UNIT12.C00E OVERLAY
$5ES JDATAS IN UNITII.CCDE OVERLAY

PRO6PAM DATAB

CIArACTER VN6,CNS6,PNS20,MN3,FNIIOPINEgS 4 P$1,OBJNS1O
INTEGER V
COMON/ClI4(20,bO) ,3(20) ,C16O)I,!NEG(2(iIFLA6IO)),NEC.,6C,NLCKY,

CORNON/C2!YN(6O),CN(2O),FN,NM,FN.P NE42O),P(2O),CBJN
OPEN(1,FILE='CONSOLE:')
OPENd(5,FILE-'CONSOLE:')
CALL HEADER

1)O W!0E(,'UiX,"ARE INTRODUCTORY REMRRKS DESIRED"'113,"(l
.N, RETURN) ',)')

218

READ(5,'(AI)')P(1)
IF(ICHAR(P(I)) .EQ. 89)THEN

CALL INTRO
ELSEIFICHAR(Pi1)) .WE. 78)THEN

WRITE(I,110)
110 FORMAT(15X,'INYALID ENTRY, PLEASE REENTER')

60 To 100
EKOIF

~iNEt=O
C USER SELECTS DESIRED MODULE

CALL NODUL(INEW)
CALL DBHED

C DATA BASE ENTRY OPTIONS DISPLAYED
120 CALL DBE
130 WfITE(I.'(!13X,"WhiCH OPTION? ",$)')

READ(5,'(Al)')P(0)
CALL CHESK2(P, I5,llNVAL, INEW)

IF(INVAL .E.1)THEN
NRITE i,II6)

60 TO 120
ENDIF
60 TO(!40,140,140,150.160)INEW

C ALL VALUES INITIALIZED TO ZERO
140 CALL INIT

4RITEtI,'(A)')CHA.R(2)

IF(INEW .EQ. 1)THEN
C USER HAS SELECTED TO ENTER MODEL WITH SUESCRIPTS

IFLA6(5)sO
CALL GENIF
CALL DATAS
eO TO 200

ELSEIF(INEN .EQ. 2)THEN

C USER HAS SELECTED TO ENTER MODEL WITH NAKES
IFLA6S5!=!
CALL 6ENIF
CPLL DATAN
60 TO 200

ELSE
C UEER NAS SELECTED TO READ MODEL FROM DISk

CALL DATAD

60 TO 200
ENDIF

150 CALL INTRO
C USER H4S SELECTED 10 REVIEW INTROPUCTORY REM4RKS

60 TO 120
160 SIOP
C DATA BASE fMANAEMENT OPTIONS DISPLAYED

200 CALL DBM
210 4RITE(I,'(,i3X."WHiCd OPTION? ",$)')

READ(3,'(A1)')P(1)
CALL CHECK2(F,I,5,INV4L.INEW)
IF(IOVAL .E2.I)THEN

'11

iORITE(1,110)
GO TO 210

END IF '
0RITE(I,' (A)')CHAR(12)
60 T04220,270,240,230,250,2700 INEW

220 !FLA619)zO
C INPUT MODEL IS DISPLAYED

CALL DISPLY
60 TO 200

C CONTROL PASSED TO EDITING SUBROUTINE
230 CALL EDIT

60 TO 20
C INPUT POVEL IS SAVED TO DISK
240 CALL SAVE

60 TO0120
C CHECKS TO INSURE MODEL SAV~ED TO DISK PRIOP TO TERNINATION
250 IF(IFLAG(2) .ED. W)HEN

WRITfil,260)
260 ORMTJ~i415X'WA~lNG!' 6X.'C1JRRENT FILE MILL BE LOST!'/i

I'JX,'CDN714UE? (YIN) ',I)

IF(ICHAR(P~i)) .ED. 89)THEN
IF(INEW E. W)HEN

C USER HAS CHOSEN TO RETURN TO hANA6E!IENT MENU
60 TO 120

ELSE
60 TO 280

ENDIF
ELSEIF(ICHAR(P(1*)) .EQ. 70)THEN

60 TO 200
ELSE

4RITE(. '110)
60 TO 250

ENDIF
ENDIF
IF(NEK .EQ. W)HEN

60 10 120
ELSE

GO TO 280
ENDrIF

270 4RTE(1,260)
REA0 ' (AP)F'l)
iF(ICHARIPII)) .EQ. 89)THEN

STOP
ELSE

Go TO lo
END IF

G EXECUTION MANAGEMENT OP11ONIS DISPLAYED
200 CALL OEM
290 NRITEfI,',U1I3X,'WHIC4 OPTION? "',W)

CALL CHECK2!P,J,5,INVAL.,INEN)

220

IF(INVAL .EQ. WHTEN
NRITE4I,110)
60 To 290

ElDIF
WRITE(1,' (A)')CHAR(12)
90TO0, 300,300,200,1601tINEN

C USER SELECTS NEXT PODULE DESIRED
300 CALL MODUL(INEW)

STOP
END

I &

C MODULE IUNITli
C UNIT SUSES. UWIT12 THRU UNIT17 t

C SUBROUTINE CATASI
C USE: SOLICITS INPUT OF OBJECTIVE FUNCTION AND CONSTRAINT I
C COEFFICIENTS, COINSTRAINT INEQUJALITIES AND RHS'S FOR LP MODELSI
C WHICH VARIABLES ARE DESIGNATED BY SUBSCRIPT ONLY. USED ONLY I
C FOR INPUT OF NEW MODELS.
C CALLED BY: NONE
C CALLS :SUBROUTINE ChECIK(P,INVAL.RNEW) I
C SUBROUTINE C4ECK3(P,INVAL, HEW)
C SUBROUTINiE IC1UPCH
C SUBROUTINE OBJCH
C VARIABLES: I
C USED: INE4,INVAL,K,hfM,PNE4,V I
C MODIFIED: A2t,()CIL62.FA()ILG4,FA()
C INE2(t),EC,0C,L.P($).PINEOi,) I

$USES UCHECK IN IINIT17.CODE OVERLAY
ISISES USAVE IN UNITI6.CODE OVERLAY
$USES UICNRCH IN UN1115.C93E OVERLAY
$USES UCNVA IN URItT-A.cODE OVERLAY
SUSES UJAD'.AR IN UNIfl349DE OVERLAY
SUSES iJEDIT lN Ui4ITI2.CODE OVERLAY

SiUBROUTINE DATAS
CHARACTER VN46,CNs6.FN:20,MM3,FNIOPIH4En;1,P:1,OBJNI'O
IN7ESER V

WITE11.0!OOCHAR(12)
100 FOR4AT (A)

WRITE(1,'1/Bv.''0BECTIVE FXNTION lKPT''i!ilX,''INPUT THE FUNETI
.04 AS IF IT WERE IN T4E'?/1lX,'2FOLLOYING FORK''/2.,'' X(Ih1+ X
.(2) + (3 +ET./'
WRITE(1 ,'()Y,''A MAXIMUM OF 10 ENTRIES PER COEFFICIENT"'
d./.INCLUDING DECIMAL AND SiSK ARE ALLGWED.''HiIX'IF COEFFICIE
XN IS ZERO, HIT 'REIURN''/ 10I,''4ITHOUT DIGIT ENTRY.'',6(/))')
pAUSE

li') WRITE'j,!0O)CHAF(12)
4RITE(I,I1tfPN,MM

120 FORMATi5.,PR3PLEN 1D; ',A2'1,/3X,'O2JECTIJE FUNCTION INPUT'/114X.A
.'IMIZATION',f

C OBJECTIVE COEFFICIENTS INPUT EY USER
DO 160 JzI,v

140 F0RNAT(8X,'-,,2.')

-CALL CHECK (P. INVAL,FNEW)
IF(INVAL El. I)THEN

:1 222

130 FORMAT(/5X,'INVALID ENTRY, PLEASE REENTER')
60 TO 130A

ELSE
C(j)RNEN

ENDIF
160 CONTINUE

NRITE(1, '(//)')
PAUSE

i* MODEL IS IN ZalX FORM
IFLAS(4)zO

170 NRITE(1.100)CHAR(12)
WRITE(1, 120)PN.MN
W~ITE I, 1801

180 FORMAT00i '/).7X,'ARE CORRECTIONS NEEDED? 'S

JFtdCHAR(P(1)) .ED. 89)THEN
!FLAS(B)zO

C CONIPOL PASSED TO OBJ FUNCTION EDITINS ROTUTINE
CALL OBJCH
so TO 190

ELSEIF(lCHAR(Pi(1) .NE. 78;THEN

SO TO !70
ENDIF

190 kRIIE(1.100)CHAR(12)
WRITE(1,'(I2XA.'CONSTPAINT !PPUT''//''INPUT CONSTRAINT VARIABLE CO
.EFFICIENTS)'/''AS IF THE CONSTRAINT WA IN THE"'/'FOLLOWING FORM

+ (2 Ai i 3 < , P~ill

WRITE!'1:r'TE VARIABLE COEFFICIENTS ARE A MAXIMUM''
.i'lF 10 CHARACTERS.''/''IF COEFFICIENT tS ZERO, ENTER 0 OR 4IT''
./''..RETUR.N" 41THOOT ENTRY.''iI)
WR1TE;1I,'I/''TE LESS-TPtAN ((0 REPRESENTS A LESS-THAN'I''OR EQUAL
l NE9UALITYf.''!' 'THE 6REATER-THAN 0)1 REPRESENTS A''!' 'REATER-TH

.AN OR EQUAL !NEQUALITf.''u''NEGATIVE RHS IS PERMITTED.'',')
PAUSE
WRITE(1,100)CPAR(I2)

C CONSTRAINT COEFFICIENTS INPUT BY USER
DO 270 I1,K

200 NRITE(I,210)PN,1
210 FORMAT(I,'FROBLEM I0: ',A20,/!3X,'CONSTRAIT ',12,/)

DO 240 J=1,Y
220 WRITE(:,270)J
230 FORMAT(IIX,'X(',!2.:) 'zS

CALL CRECK(P, INVAL,RNW
7FdINVAL EQ WIHEN

66 TO 220
ELSE
A I,J)sRNEW

ENDIFI240 COflT INUE

J 223

1 woo.p

C CONSTRAINT INEQUALITY INPUT BY USER
250 AIITE(I,46X,'INEQUALITY ",)

CALL CHECM? 'INVAL,INEW)
MFINVAL EQ. I)TI4EN
WRITE(1.150
5O To 250

ELSE
INEG(I-INEW

ENDIF
C CCUNI OF EACH TYPE INEQUALITY PEFFORMED

MIF(NEM .EQ. WTHEN
NLC=NLC 1
PINEQ(I)='('

ELCEIHINEW E.Ei)THEN4
N6szN8C +1

ELSE
4EC=NEC + I
PINEO(1z:

ENDIF
c CONSTRAINT RtiS INPUT BY USER
260 WRITE(1,'i13X,''PHS ="W

CALL CI4ECK(P, INV4L.RNEW)
IF(IINAL ,E9. I)THEN

GO TO 260
ELSE
;, I ,RNEW

Et4DIF
WRiTE(1,IQ00CHARG42)

270 CONTINUE
2801 ORIT;(1,100)CHARU12)

WRIrE (l1 !S)

4F(ICHAR(PWl) .EQ. 89!THEN
c CONTROL PASSED TO CONSTRAINT CH.MGE ROUTINE

CALL ICNPCH
6UTa 291

ELSEIF(ICHAR(1)) .ME. 73)THEN

60 TO 280
END IF

290 IFLAS6Q)uQ
IFL05(2) :0
RETURN
END

} 224

C 31 I 8 1 * 1 1 8 1 I I1 * 1 1 I I1 ItIIIII* IIIIItI
C NODULE I UNIT11
C
C SUBROUTINE DATAN
C USEi SOLICITS INPUT OF OBJFCTIVE FUNCTION A~ND CNSTRAINT I
C COEFF!CIENTS, 'CONSTRAINT INEGUALITIES AN~D RHS'S FOR LP MODEL I
C WHICH VARIABLES ARE DESIGNATED BY NAMED VARIABLITS, I
C CONSTRAINTS, AND OBJECTIVE FUNCTION. USED ONLY FOR INPUT OF t
c NEW MODELS. I
C CALLED DY: PROGRAN DATAB I
C CALLS :SUBROUTINE CHEC~iP,INVAL,RKEW)
C SUBROUTINE CHECK3(P.INVAL,INEW)
C SUBROUTINE !CNRCH I
c SUBROUTINE ODJIC 4
C SUBROUTINE VNCH I
C VAR IABLES: I
C USED: INEW,INVAL.)K,NM,OBJN,PN,RNEW,Y I
C MODIFIED: A411.),Di).C(),CN(),FLA(2?.IFLA(3)IFLA614), I
C IFLA6(e),IFLAg(8),INEg(1),NEC,NGC,NLC,PiZ),PINEit), I
C v"(9) I

SUBROUTINE DATAN
CHARACTER Vkl6,CNl6,PN120, fl#~3FN$!0,PINE~ll,PlI,OSjN1t0
INTE6ER V
COMIIONICl A(20,60),B(20) .C(,0) ,INED'210),IFLAB(10) ,NEC,N6C,NLC.K4V,
.MXNN

WRITEI, l0'))Ci4AR(12)
100 FORAT(A;

WRITE11.'(7I/),l0X.''VARIABLE NAMIE INPUT''II1X,''ENTER VARIABLE NA
.PES WHICH C0RRESPOND''!3X,':TO THE '!,17,?' VARIABLES THAT AFFECT
.''/15X,AIO//''NAMES ARE TO BE 6 CHARACTERS OF LESS.''.511)')V
.DBJN
PAUSE

N.RITEU1.12')PN
1270 F0PMAT,,X,'PRObLEM !D; ',A20)

WRITEiU, 130)
130 F0RhMi:IOX,'VAPIABLE NAME INPUT',)
C VARIABLE NAMES INPUT BY USER

Do) 10~ Jul,V1

50WRITE,1X, X(A .2,')

WRI E iDI, I' 'VJ

* I WRITEii,160)N
160 FDPMATU1'/ .7X,'ARE CORREMTONS NEEDED? *$)

IF(ICHAR(PUl)) .ED. 89)THEN:1 CON'tROL PASSED TO VARIABLE NAME EDWING ROUTINE

.w~225

CALL VNICH
ELSEIF(IC HAR IP(1)) .NE. 78)THEN

WRITE(I, 1701
170 FORMAT(/SX,'INYALID ENTRY, PLEASE REENTER')

PAUSE
soT10

ENDIF
180 WRITE(I,!00)C4AR(I2)

4IRlE(l,'4711,9X,'CNSTRAINT NAMlE IUT"/'ENTEP CONSTRAINT NA
NES5 WHICH CORRESPOND''!"TO THE "'.12," CONSTRAINTS WHICH AFECT'
.'IAIOII'NAIES ARE TO BE 6 CHARACTERS OR LESS.'',4Jl))')KOB1N
PAUSE
WPITEII, 100)CHAR(12)
WRITEI. 120)PN
4RI1E41, 190)

190 TORNAT(9x,"CoNSTRAIRT NAME INWUT'I)
C C.ORSTRAINT 3AMES INPUT BY USER

00 210 IIA
WRITEU,,'(9X,''CONSTRAINT 1:,12,''
READ(5,' (A6)')CNCI)

2610 CONTINUE
220 WRITE(1, 100)CHAR(12)

WRITEI!, 12'))PN
WlITE11, 190)
WRITE (1. 160 I
READ (5,'(AI)' iP(1

C FLAS ALLOWS ONLY CONSTPA!NT NAME CHANCE TO BE PERFORMED IN
C EDITING ROUTINE

IFLAGI6)2A
CALL ICNRCH
IFLA6(6)zO

ELSEIF(ILCHAR(P(1)) .#E. 78)THEN
WRITE(1, 170)
PAUSE
60 TO 220

END IF
230 WRITE'1.100)CAR(12)

WRITEt,'0~8I.''ObJECTIVE FPJNCTION INP6T"/I11, 'IPUT THE FUNCTID
.N AS IF IT WERE IN THE"/',1,-F9LLOWING FORN"/.1W'Z x Xij) + 1(
.2) + X(3) + ETC.'://lY,''A MAXIMUM OF 10 EITRIES PER COEFFICIENT"'

WRITE4i,''11!''INCLUDING DEC-IMAL AND 50GN ARE ALLOWED.''//IX,''I;
.COEFFICIENT IS IERO, SIT lRETbRN'"/10),''W1TH0UT DIGIT ENTRY.",
.4(/))')
PAUSE
VRITECI. OQ',ChAR(I2)
bRIIE(1, 240 IPN, OBJN, MM

240 fORMATC.5X,'PRGBLEM 10: ,~,B,'BETv FUNC11ON INPUT' /71,AIO
j ..2X,A3,lIMIZATION',/)

DO 280 .lal,V

C OBJECTIVE COEFFICIENTS INPUT BY USER

.226

250 WRITE1,260J,VNIJ)
260 FORA7(7i,'C(',I2,') ',A6,' ,$

CALL CHECK(P,INVAL,RNEW)
IF(INVAL .EQ. 1)THEN
MRITE(1, 170)
60 TO 250

ELSE
C (JJ RNEW

END IF
280 CONTINUE

PAUSE
C ADODEL 15 IN 1-1 FORM

IFLAS14)zO
2490 MRITE(1,100)CHAR(12)

WRITE(I.2409PNOBJN,MM
WRITE(l , 140)1

IF(lCHARiP!l)) .Ei. 811THEN
IFLA6i8)--0

C CONTPOL PASSED TO OBJECTIVE FUNCTION EDITING ROUTINE
CALLI OBJCH

ELSEIF(lCHARiP(I)) HNE. 7B)THEN
WRITE~il.1701
PAUSE
60 TO 290

ENDIF
500 WRITE(I,100)CHAR(12)

NRITE4I,'U12X, ' COPSTRAINT INPUT''/.!'INPUT CONSTRAINT VARIABLE Ca
.EFFICIENTS";''AS IF THE CONSTRAINT WAS IN THE'"I"FOLLOWIN6 FORM
* '!6X''Ii)+ X(2) + Xi3) (s) RHS'')')

WRITE(l,'(/''THE VARIABLE COEFICIENTS ARE A NAKINMN'
.I''OF 10 CHARACTERS''//''IF COEFFICIENT IS ZERO, ENTEP 0 OP HIT''
""O'RE'ilIRN' WIIHCUT ENTRY."')
WRiTEi,'(/''THE LESS-THAN (() REPRESENTS A LESS-THAN''$'OR EQUAL
*INEQUALITY."l/'THE GREATEF-rHAN 0>) REPRESENTS A''!''REATER-TH

:AN OR ERUAL. INEOUAL]TY.''/'NEiATIVE P145 IS PERNITTED.'',I)')
PAUSE
NR!TE(I, I00)CHAR(12)

C CONSTRAINT CUEFFICIEHTS 14PUT BY USER
DO 400 Iz1.K

310 WRITE(Z,i20lPN

DO 350 Jul,,V
30 WRlTEi1, 340)J,Vli(J)

340 FOPNAT'7J,'X(*',12,') a ',A6,' *'1

CALL CHECK ', !NVALMREW)
IF(NVA4L *EQ. I)T~iLN
WRITE1, 170)
6O TO 330I ELSE

227

END IF
350 CONTINUE
C CONSTRAINT INEQUALITY INPUT DY USER
360 #RITE II,' (7X,'"'INEQUALITY'',3X,S)')

READ(5.' (Al)')P(i)
CALL tHECK3(P, IKVAL, INEV)
:FUN~qAL .E2. HTNHEN

WRITE(1, 170)
60 TO 360

ELSE
INEG(I)zINEN

ENDIF
C COUNT OF EACH TYPE INEQUALITY PERFORMED

IF(INEV .ED. WHTEN
NLCn#LC + I

ELSEIFUEis .EG. 1)THEN
NGC=NiC + I

ELSE
IJEC:zNEC + I

END IF
c CONSTRAINT PHS INPUT BY USER
370 WRITEil,''7X,''RHS''.12X,''z I$,w))

CALL CHECK(P, INVAL,RNEW)
IF INVAL .EQ. ITHEN

WRITE(1,470)
60 TO 370

ELSE
B(I) :RNEH

ENDIF
WRITEIOOKHAR(12)

400 CONTINUE
410 NRITE(1,lf00)CNAR(1,)

WRITEU, 160)

IF(iCH4R(P(l)) .ED. 89)THEN
C C3NTROL PASSED TO CONSTRAINT CHANGE ROU'TINE

CALL CNRCH
ELSElF(lCdAP(P(:)) .NE. 79)THEN

60 TO40
END IF

430 IFLAS(3)x0
!FLA6t2lz0
RETURN
END

228

C MODULE 1 UNIT12 I
C UNIT $USES: UNIT13 THRU UNIT17
C
C SUBROUTINE EDIT
C USE: SOLICITS L'SER INPUT OF THE TYPE CHANGE REQUIRED TO MODEL, I
C SETS FLAGS AND CALLS PROPER SUBROUTINE TO PERFORM INFUTED t
C TYPE CHANGE. FLA6S CAUSE ONLY 1CHANGES REQUESTED TO BE I
C INITIALLY ACCESSIBLE TO USER. USED TO CORRECT MOST RECENT t
C NODEL INPUT OR EDIT MODEL READ FROM DISK. I
C CALLED NY: PROGRAM DATAD t
C CALLS :SUBROUTINE ADCON I
C SUBROUTINE ADVAR I
c SUBROUTINE CN'JA I
C SLUBROUTINE DELEON I
C SUBROUTINE DELVAR
C SUBROUTINE ICNRCH
C SUBROUTINE ODJCH
C SUBROUTINE VNCH I
C VARIABLES: I
C USED: INEN,INVAL I
C NODIFIED; lFLA6(2),IFLAG(b,,IFLAGi(8),P(f)

$USES UCHECK IN UNIT!7.CODE OVERLAY
$USES USAVE IN UNIT16.CSDE OVEELAY
$UJSES UICNRCHi IN UNIT15.CDDE OVERLAY
$USES UCNVA IN UNIT14.CODE OVERLAY
$USES L'ADVAR IN UNITI3.CDDE OVEFLAY

SUBROUTINE EDIT
CHARACIER VS.N6PS0NSN1~IESh,1~1
INTEGER V
COMMON/CI/Ai20.60),P2),tO) , INEg(20; ,IFLAG(1.)kNEC,NGeC,NLCK,V4
.MXMN
COMMON/C2/VM(60) .'.N120),PN,MP.,FN,PINEQ;20)..P(IO),OBJN

100 ORITE(1,110)CNAR(12)
110 FORMATI(A)

NR1TE(1,'(I2X,''DATA BASE ED1TOR''//'YOU MAY EDIT T4lE CURFENT MOD
.EL IN ANY OF''/''HE FOLLOWN MANNERS:''!"1. ADD A VARIARLE''!
."'2. ADD A CONSTRAINT"I'1. DELETE A VARIABLE''4 DELETE A
r ONSTRAINT'')')

WRITE(l,'(''5. CHANSE COEFFICIENT BY CONSTRAINT''l''. CHANE CO
*EFFICIENTS BY VARIABLE'')')
#RITE(1,'V''7. CHANGE RHS OF CONSTRAINT''/''. CHANGE CONSTRAIN
INEQUALITY''i''Y. CHANGE O~BJEC71VE FUNCTION :OST'/4X''CEFFICI

.ENTS' 'f'Jfl CHANGE NAXIM17ATION!t INIMIZATIDN"'')
W.ATEil,'-lX,-'CHOICE''/''1. CHANGE VARIABLE W''ES'I'12. CHANGE
*CONSTRAINT NARES''/''3. RETURN TO LAST MEW"!'4l,''(DATA FASE MA

C USER TNPUTS THE TYPE CHANGE DESIRED IN MODEL
10 WRITE(I,'(/I3X,''WHICH OPTION! '",W)I ~ CALL CHECK2(P,2. 13. IXVAL, INER)

2429

Kil

IF(INVAL .M. l)THEN
WRITEtl,'(5X,"NVALID ENTRY, PLEASE REENTER")')
60 TO 120

END]F

60T0(210,220, 230.240,250,260, 270, 280,290, O300, 310, 320, 330) INEb
C CONT.OL IS PASSED TO APPROPRIATE POUTINE WITH FLA6S DESINATINS
C TYPE CHANGE ALLOWED TO BE PERFRED
210 CALL ADVAR

-, TO 340
220 CALL ADCON

60 TO 340
230 CALL 9ELVAR

60 TO 340
240 CALL DEL.CON

3O10 3,40
250 IFLA64.,-)sI

CALL ICNP.CH
90 TO 340

260 CALL CNVA
GO TO 340

270 IFLA6461=3
CALL ICNRCH
60 TO 340

280 IFLA6(6)=2
CALL ICNRCH
60 TO 340

290 IFLA6(8):1
CALL OBJCH
60 TO 340

300 IFLA6(S).2
CALL BIJCH
60 TO 340

310 CALL ONCH
60 TO 340

320 IFLA6(6)-4
CALL ICNRCH
60 TO 340

330 RETURN
C FLA6S RESET TO DEFAULT VALUES
340 IFLA6(2isO

IFLA6(6)z0
1FLASiB) s0

60 TO 1')0
END

2!0

Ila - -

C SM I1

C SUDPOUTINE VNCH
C USE: PERFORMS USER DESIRED CHANIS TO VARIABLE NAMES OF A MODEL I
C WHICH HAS BEEN DES1GNATED IN1TIALLY AS A MODEL CONTAINING t
C NAMED VARIABLES.
C CALLED fif: SUBROUTINE DATAN
C SUBROUTINE EDIT
C CALLS SIUOI1E CHECK2(PqN,M,INVAL,INEW)
C VARIABLES:
C USED: IFLA6(5),INEW,INVlAL.V
C tl!3IFIED: IFLAG(22.P(l),RES.Vi$) I

SUBROUTINE VNCH
CPARACTER VIN8PSCN5,NI.IEI.SIN1,ES
INEBER V
CwOwCNC!:.A20,6,D(20)C(6(0,INEQ(2O.IFLA6QL)NE.NCNLC,K,V,

CONHON'jC2IVN(60) ,CN(2O),FN,I,FN,PINE9(20' ,P(1Q),OBjN
4RITE(1,100!CHAR(12)

100 FORMAT(A)
IF(IFLAG(5) .EQ. W)HEN
WR1'TE(!.'(7(i)i,161,''tiITAKE!"i/"THE 4ODEL BEING EDITED DNES N

.0714ICLUDE''!"VARIABLE WES, ONLY SUBVCIPTS.' /i'YOU ARE BEING
kcI'TJRNED TO THE DATA BASE''/*'EDiTTOR'''')
PAUSE
RETURN

ENDIF
110 WRITE(1.100)CHAR(12)

WPITEI,'(112'),''DO YOU WANT PRESENT N40ES DISPLAYED? ''.W))

IF(ICHARP(0)) zEV. 89)THEN
WRITE(1.1OO1CHAR(12)
MRITEil, '!!lX,"'VARIALE NAM ES"'fl)
DO 140 JmlV
WITE(1. l20)JVNiJ)

140 CONTINUE
PAUSE

ELSEF(ICHAP'P(1); XM. 78iTHEN
WRITE1, 160)

160 FORMAT(t5X,INYA.ID ENTRY, PLEASE REENTER'!
GO 70 1101

ENOIF
180 ORITE(1,100)CHAR(12)
190 RIEI' 6(/b,''HICH VARIABLE NAME 1S TO BE CHANSEDV'/b,"PLE

MAE ENTER SUBSCRIPT VALUE.";:)

M00 NRITE(W.(/l0W,'VARIADLE W') 1101

CALL CHECK2(P.2,V, INVAL, INEN)
IF(INVAL .EQ. W)HEN

231

WRITE;11l&0)
60 To 200

EJIDIF
WRITE(1,'U/10X,'PRESENT',7X,'DEIRED'/u,NAIE'O,"W'JE

WRITEil,' i0OX,46,BX,$)')VN(INEM)
READ (5,' (A&6 ' RES

C USER BIVEN WPILIN TO DELETE REQUESTED CHANGE
220 NRITE(I,'(/S,'i-"S CHANGE SlILL DESIRED? *',S)')

READ (5, '(AlJ()'
MFICHAR(Ptill) .EQ. 89)THEN
V4N(INEV)*RES
4Fl'TE(l,'(/11X,''l CHANGE COMPLETED")')
?AUSE

ELSEIFICNARiP(1Il .29. 78)IHEN
WR&'TE(l,'i/lIX,''NG CHANSES PERFO.RNED?')')
PAUSE

ELSE
IdRITECI, IbO)
60 TC 220

ENDIF
230 WRITEil,100)CHAR(12)

WRITE(ll,'dil'I),lX,'FUR-4EF VARIABLE NAME CPANGES NEEDED?''/19x,

READ(5q' (Al)' 'F(Ii
IF(ICHAR(P(1)) .EQ. 89)THEN
ORITE(l. 100)CHAR(12')
e0 TO 110

ELqEIF(ICHAt(P(1)) .EQ. 78)THEN
IFLAG(2)z0
RETURN

ELSE
NRITEil.160)
.sO TO0230

ENDIF

END

:1 232

-tw I A&

C 1 1 1 1 551 1 11111 11111*51 1 111 6 3 115
C MODULE I UNITI3
C UNIT IUSES: UNIT14 AND UNIT17
c
C SUBROUTINE ADVAR I
C USE: PERFORMS THE ADDITION OF A VARIABLE TO THE6 MODEL DY I
C SOLICITIN6 USER INPUTS FCR VARIABLE COEFFICIENTS IN ALL I
C CONSTFAINTS. MOD~IFIES NECESSARY VARIABLES TO REFLECT t
C ADDITION OF VARIABLE TO MODEL AND REORGANIZES DATA IN ARRAYS. I
C CALLED BY; SUBROUTINE EDIT I
C CALLS :SUBROUTINE CHECK(P,INVAL,PIJEN) I
C SUROUTINE CHECK2(PIN,M,INVAL,INEN,) I
C SUBROUTINE CNVA t
C SUBROUTINE OWNC I
C VARIABLES: I
C USED: f'NI8),IFLA5(5),IXE0,INYALX "RNEM I
C PODIFIED: (,,(),FA()P(,,N5
C15 5 51 1 1* 5 5$ 51 t*IiII IIIIII tIIft9 1 11t
$USES UCHECK IN UNIT17.CODE OVERLAY
$USES UCNVA IN UNIT14.CCDE OVERLAY

SUBROUTINE ADYAR
CHARACTER VN86.,CNI6,PNI2O,MMS3,FNI1O,PINEGIPSI,ODJN5IO
INIEBER V
COPONCIA2,6),(20),C(0),lNEU12,I), IFLAS(IO) ,NEC4NSC,NLC.KV,
.14xmN
COMMON/C2/VN(60),CN(20,),PW,MM,FN.PINE(20) ,P(IC.),CBJN

WOO VRITE11,1Z0)CHAR(12)
110 FORqAT(A!
C NUMBER OF VAPIAKtES INCREASED BY 1

WRITE(1,.130)PW
:30 FORMAT(5X,'PPOBLiN 'D: %,A20'
C DETER"!NES IF MODEL CONIAINS NAMES

IF(IFLAGi5) .EQ. W)HEN
C MODEL DOES CCNTAIN HAMES

WRITE(W('IOX.''VARIABLE NAME INPUT''/.'ENTER VARIABLE NAPE NWiI
.7H CORRESPONDS'/''TO VARIABLE ('.2')'I'AESARE TO BE 6
. CNARACTEIS OR LESS.'')v

WRITE(l.(IOX,''VARIADLE 4('',12,''):
READ4!,' (Ab)'JVN(V)
NRITE (1, 110) CHAR (12)
WPITE(1, 130)PN
0RlTE1l,'(7X,''V4RIABLE COEFFICIENT INPUT'/EX,''VARIABLE W(',I

.2,'') ',61IN
C VARIABLE COEFFICIENT INPUT FOR EACH CONSTRAINT

Do 200 Iv1,K

i50 FORMABiIX.'CONSTRAINT t' .!2, ') ',46,S)

CALL CEKIP. INVAL,RNEW)
IF(NVAL EQ9. WH~EN

23"4

. .. .AL

1710 FORMAT(!5X,'IMVALID ENTRY, PLEASE REENTER')
S0 TO 140

ELSE
Ai? V)=RNEW

ENDIF
20.) CONTINUE

PAUSE
ELSE

c MOIDEL DOES NOT 'CONTAIN MARES
VRlTE~l,'i7X,'VARALE COEFFICIENT INPUT''/1!,'ARIABLE W(",

DO 250 Ixl.K
:10 WRITEU1,220)1
220 FCRAT(bt,'CONSTRAINT #',I2A'

READ(5,'(!0Al)') (P(Lij,LzI,I0)
CALL C4ECK(P, INVALIRNEW)
IFtINVAL .EQ. I)THEN
WRITE(1, 170)
60 TO 210

ELSE
4(I,V)RNEW

ENDI
250 CONTINUE

PAUSE
ENDIF

760 ORITE(1,110)CHAR(12)
WRIT 1, 1301 PM

C VARIABLE COST COEFFICIENT INPUT BY USER
270 IF(lFLAG(S) .E9. 1)TiEN

WITEII,'M.",' OBJECTIVE COEFFICIENT INPUT' 'lx,' 'V4RIABLE ':W'.

WITE(I.280)u
260 FOR4ATt//I1,'Ct',I2,')

ELSE
ORITM1,'47X,''OBJECTIJE COEFFICIENT INPUT''/13X,''VARIABLE X('"

MAIiTE0l,26M)

EWDIF
CALL CHECK(P,IKV~AL.RPEW)
IF(INVAL 1E9. I-THEN

MITE 0. 170)
SO TO 270oI ENDIF

CIVYRNEW
290 NRITEII,11)CHARU2)I ~ORIME(,30O)
30)0 FORHlAT~l1(/),7X,'APE CORRECTI-INS NEEDED ON THIS VARIABI.E?'/19X,S)

READ(5'(A*W)P0P'1 iF(ICHARIP~I)) .EQ. W9THEN
WRITE (1, 110)CHW1 i2)

234

WRITE(l,'(8(/l,I0X,''CHAN6ES RE9UIRED IN:"/'5X,''1. OBJECTIVE C
.CST COEFFICIENT' /191,''OR'/5X,''2. CONSTRAINT COEFFICIENT'')')

320 WRITE'1,'(/13X,''4HlCH OPTION? '',W)

READ15,' (AWI))
CALL CHEEK2(P,!,2,INVAL,INEV)
IF(INVAL .EQ. WHTEN
WFITE1, 170)
so ro 3240

ENOIF
IW(INEW E. I)THEN

C USER ELECTS TO0 CHANGE COST COEFFICIENTS
"A,.LL OBJCA

ELSE
C USER ELECTS TO CHAPBE CCO)SSTRAINT COEFFICIENT

CALL CNWVA
ENDIF

ELSElFidCHAR(P(I)) .NE, 79)THEN
NRITE(I,170)
60 TO 290

ENDIF
330 WRITE(I,10)CPAR112)
3440 RHE(1,'f 1(/).8X4''ADD ANOTHER 'ARIABLL? '',W))

IF(ICHAR{P(I)? LiQ. 89)THEN
c USER 11AS SELECTED G ADD ANOTHER VARIABLE

60 io 100
EL5EF;]frHAhfp'i) RNE. 78)7HEN

60 TO 330
ENDIF
[FLAS(2?=0

RETURN

EN

:1 23M

C NODULE 1 UNIT13
C
C SUBROUTINE OBJCH
C USE: PERFOFNS USER INPUT CHANGES TO OB.JECTIVE FUNCTION I
C COEFFICIENTS AND MAXINIZATIONiIINIZATION CHOICE OF THE I
c CURRENT NOBEL. USED IN CORRECTION OF MOST RECENi NOEL INPUT I

C OP OVEL FReM DISK BEIN6 EDITED.
C CALLED BY: SUBROUTINE ADVAR
C SUIROUT INE DATAN I
C SUBROUTINE DATA$ I
C SUBROUTINE EDIT
C CALLS :SUBROUTINE CHECK(P,INYAL,RNEW)
C SUBROUTINE ChECK2(P,N,MINVAL,INEW)-
C VARIABLES:
C USED: IFLA6(5),1NEW,INYAL,OBJN,PN,RNENV,VN($) I
C MODIFIED: C'S) ,IFLAG(2),IFLAS(8),MM,MXMN.F(t) I

SUBROUTINE OBJCH
CHAPACTER ~S.N6PSOM3FlOPNO1P1D~~1
INTESER V
COMOiC(0.60),B2),(0),INEg(2O),IFLA6(10) ,NEC,NC,NLC,K,I

CONHON/C2/VN(60) ,CN(20O),PN,NN,FN,P!NEV2e) ,F(10),OB,,N
100 WRITE!1,110)CHAR(121
110 FORKATWA

IFtIFLA6(g) - 1) 120.200~,40
C ACCESS TO CHANGE ALL OF OBJ FUNCTIO1P

WRITE(1,130-.N.M
130 FOR"AT,'5Xv.'PRCBLE4 ID- ',.A201'7X.'OBJECTIVE FUNCTION CHAN6E'I,!4X,

.A3. INIZATION'/)
ELSE

VRIlTE4I, 140)PN,OBJN,MP
140 F0RNAl5),'PRGBLE? ID: ',A20/7X,'OBJE.CTIVE FUNCTION CPiANSE'/7X.A

ENDIF
4RITE(1,'tt,2X,''WHICH OF THE BELOW REQUIRES [I4ASES?''II41,''1. C
.GST COEFFICIENTS'I191,"3R'/4X,'. 4AXIMIlATION'MINIMhlATION CH
.OIE'')')

150 WRITE(1,'i/131,''WHICH OPTION? ~.)
READ(3,'CAI)''P(l'
CALL CHECK2(P, 1,2, INYAL, INEN)j IF(&INVAL .EQ. W)HEN

16C FORNAT(/51,'INVA.ID ENTRY, PL.EASE RiENTER')
56 TO 110

END IF
IAITE(I110)CHAR(12)

4SOTO: ' 0f,400O IN

C ACCESS TO CHANGE 31W FUNCISON COEFFIECIENIS ONLI

20) IF TFLAG(f .EQ. 0)THEN

.1 23M

WITE 11,130) P#, Nf
ELSE
WITEil, 140lPN.OfiJN,MM

END IF
210 Wl1TEf1,'(///i2X,''DISPLAY THNE PRESENT COEFFICIENTS? '',0)

READ (5. '(Al)M

IF(IC HAR (P(l) Efi. M9THEN

JF(IFLAB(5) ME. W)HEN
WRITE(1, 130)PN,NN

ELSE
WRITEI, 140) PN,GBJN, NM

ENDIF
DO 230 Jza,V

!F(IFLA6(5) .EQ. W)HEN~

ELSE
WRITE(1,' (SX,"CW''12,'') 7',Ab,' = ',iPE12.5)')JVNlJ)

ENDIF
230 CONTiNUE

PAUSE
WRITEi 11,110)CHARM1)

EL3EIFICAR IPM1) KE. 78)THEN
WITE(1,IoO)
60 TO 210

END IF
WRITE(1.110)CHAR(12)
IF(IFLAGM3 .EQ. ;))THEN
WRITEi. 130M.PN.M

ELSE
WRITEII, !40)PN,0BJN,MN

END IF
250 4RITEl.'((;/3x,''4HICI COEFFICIENT IS T3 BE CHANGED!''/6Y,''PLEASE

ENTER SUBS3CRIPT VALUE.'')')
260 WMITE'W7,''COST COEFFICIENT CM? = ,W

READ I5, (2A1,')P(), (2)
CALL CHECK2(P,2,V, INVAL, INEW)
IF(INVAL ME. WHTEN

60 TO 260
ENDIF

* ' C('',12 ' v IINEI, INEW

CALL CHECV(P, INVALRNEW)
IFIINVAL .EQ. WIHEN
WRMTE1,160
GO TO Z70

EDIf*1 260 WRiTE(,'(/8X,''IS CHANGE STILL DESIRED? '',W)

237

- 0t- A t

READ(5,' (A1)')P(1)
IF(ICNAR(P(1)) .EQ. 89)THEN

C(IWW)zP.NEW
KRITE(1,290)

290 F9JRMATlll1X,'1 CHANGE COMPLETED')
PAUSE

ELSEIF(ICHAR (()) .EQ. 78)THEM
WRITEil300)

300 FORI AT0i10X'ND CHANGES PERFORMED')
PAUSE

ELSE
NRITEil,160)
60 TO 280

END IF
310 WA'&TEil,110)CHARat2)

WRITE(1,' ',I(I),''FURTHER COST COEFFICIENT CHANGES? "',W)

IF!IICHAR(PU!)) .EQ. 89)THEN

6-2 TO 250
ELOSEIF(ICHAR(P(l) MNE. 78)THEN

65 TO 310

330 WRITE(1,110)CHiAR(2)
340 WRISTE0t1,3501
350 FORMAT(l ii). FURTHER OBJECTIVE FUNCTION CHANGES? '~

P.EADtS,' 'AW))P't
IF(ICHAR(1)) .E0. 09'IHEN

WRITE01,11Q0tHAR(12)
60 TO 120

EI.SEIFUC~rHAR(P'1)) .NE. 7B)1TIEN
WRITEi1, 160)
60 TO 330

ENDI F
60 TO 500

C ACCESS TO CHANGE MAX/MIN CHOICE
400 ORITEC1,1l0)CHAP(12)

IF(IFLAGS) .ER. WIHEN
WRITE (1. 130)PN, MM

ELSE
NRITE(1, 140?PN,0BJN.MP

ENDIF
WR!TEiI,'(ir,5A,''PRESEhl CHOI.E IS'A,'MZAIN''N

420) WRITE'1,'!/3k,''WOULD vV4 LIKE THIS CHiANSED7, '.W)I ~ ~READ(5.'(AW))PI 1)
IFUICHAR(P(I)) .EQ. gqi'HEN

IF~fiXMN .EQ.I)THEMI ~ ~ELSENl

238

i _______

NH:',IAX'
ENDIF
ORITE(1,290)

ELSEIF(*CUAR(P(1)) .EQ. 7B)THEN

ELSE
WRITE (, 160)
6O TO 420

PAUSE
GO TO 330

500 IFLA6(2)=0
IFLAS (8)=0
RE" IJRN
END

239

C MODULE 1 UNIT1.3
C
C SUBROUTINE SENIF
C USE: SOLICITS INPUT OF THE PRGELE MNE, MAIIMIZATION/MINIhIIATION I
C CHOICE, OBJECTIVE FUNCTION NAME, NUMBER OF CONSTRAINTS AND I

c ARIABLES FROM USER. USED ONL.Y FOR INPUT OF NEW MODELS. I
C CALLED BY: POGRAN DATAB I
C CALLS : SUBROUTINE CHECK2(P,N,N,INVAL,INEW) I
C VARIABLES; t
C USED: AFLA6:5), INKWINVAL I
C MODIFIED: KMNJ4X4N,OBJN,P(t),PN.V I

SUBROUTINE SENIF
CHARACTER VNI6,CNI6.PNS20,i0l3,FNtiO,PjNEI,PII,ODJNlIO
INTESER V

COMON/C2;YJN'60),CN2O ').,PN,MM.FN.PiNEQ(20),P(1O).OBJN
C PROBLEM NAME ENTERED FOR NEW MODEL

NR!lTE(1.'(//i7X,''ENTER A PFDBLEM IDENTIFIER''/7X?''(MAXIMUN OF 20
*CHARACTERS)''//3X,'PROPLEM ID "I,W)
READi5,' iA2O)''Pt

10(- #RITEUl,'(e0("'S''
C MAX/lIN CHOICE ENTERED

WRITEi1,7(4(;1.1X.'I5 PROBLEMS OBJECTIVE FUNCTION TO BE:''/! 14X,
"I '1 MXMIED'19X,''OR'',4A,7'2. MINIMIZED")]')

10 WRITE(, 1*:r,"%_ 'H1iOTXON? '$*

CALL CHECK2 (P, 1,2! INVAL, INEW)
IF(INYAL .E9, W)HEN
4RITE(l,. 120)

12i F3RMATCI5X,'lNYALID ENTRY, PLEASE REENTERP)
ED To It0

END IF
MYMNzINEW

C C4ARACTER STRING ESTABLISHED REPRESENTING ?AXiMIN CHOICE
IF(MXMN .EQ. WIHEN

ELSE

ENDIF
IF(IFLAS(5) .EQ. 1)THEN

C MODEL INCLUDES NAMES SO OBJ FUNCTION N44E INPUTI WRITE(1,' 'A,')CHRll2)
4RITEll,i7(l),lX,"WhAT 1S THE NAME OF TIE OBJECTI'VE YOU'/!F.

,11'WMANT TO '',A3,''IMlE7''/1X,-'(FOR EXANFLE, COST, MANPONER,
ETC.)''//1X.''MAYIMUN CF 1o CHAPACTERS ALLOWEO''I/61,''OBjECTIVE
MNE z

ENDIF
WPITE(1,' 'A) HAPI2)

240

L

C NUMBER OF CONSTRAINTS ENTERED
WRITEU,'(1/U11,"ENTER NUMBER OF CONSTRAINTS IN PRoaLM"11,''
.MAXIMUM OF 20)'')')

.30 WRITE(!I,''8X,''NUM8ER OF CONSTRAINTS
RE4D'(5,' (2A1)'lP(1),P(2)
CALL CHECK2(P,:,20.IWYAL, IWE4)
IF(INVAL .EQ. 1*,THEN
HVIEII,120)
60 TO 130

END IF
XmINEWd

C NUMBER OF VARIABLES ENIERED
WPITE(1, C//.2X,''ENTER NUMBER OF VARIABLES IN PRODLEMI'/13X,"' 'A
.X!N1tJ OF 20)'')'
140 ~lTE1,'U9A,'NIJBER OF V4RIABLES

CALL CHECK2(P,2,2o, INVAL, iNEW'
IF(INVAL .EQ. I)THEN

GO TO 140
END IF
V:INEW

RETURN
END

241

C MODULE 1 UNIT14
C UNIT SUSES: UNIT17
C
C SUBROUTINE CNVA
C USE: ALLCNS OEL COEFFICIENTS TO BE CHANGED BY VARIABLE.I
C SaLICITS INPUT OF VARIABLE COEFFICIENT TO BE CHANGED BY 9
C INPUTING VARIABLE NUMBER. VARIABLE COEFFICIENT OF SPECIFIED I
C VARIABLE MAY BE CHANGED BY DESIGNATING CONSTRAINT NUMBER AND i
C THE DESIRED COEFFICIENT.
C CALLED DY; SUBROUTINE ADVAR
C SUBROUTINE EDIT
C CALLS :SUBROUTINE CHECK:P,'NVAL,RNEN)

cSUBROUTINE CHECK2(P.K,N,INVAL,INEd) I
C VAR14BLES: I

C USEDs A(I,I),CNki1PIFLA6IS),INEN.INVAL,K,RNENV,,VNit) I
C MODIFIED: ChAI(,CHARO,IFL~fGi2),P($) I

$USES 'CHECK IN UNIT17.CODE OVERLAY
SUBROUTINE CNVA
CHARACTER VN$b.CN$6.PNIQ,lfl3,FNIIO.PINEOII,P1,ONNII
INTEGER V, CHRO, CHAK
COIMfON/C/A20,0),B20),,ci60,INEg42o,,IFLAGIIO),NEC,NSC,NLC,K,V,

COM)MON/C2I'/60),CN(2 0 .PWNMi,FN.,PINEQ(20) .PUIO),OBJN
100 ORITE(1,110)CHAR(12)
110 FORflAT)A)

WRITEI!,'i"WHICH VARIAPLE CO3EFFICIE4TS REUUIRE''/!6X'CHAN6ES?"!
.ItA,' PLEASE ENTER SUBSCRIPT VAL5E.!')')

130 ORITE(W:.'UI0X'VARIAPLE X4i') x"S
READ(5,')1(2A1)'")P(1).P(2*
CALL CHECK2(P,2,V. IN'IAL. INEW)
IF(INVAL .EQ. 1)THEN
WRITE(:JI40)

140 FORATW5X,'INVALID ENTRY, PLEASE REENTER')
60 TO 130

ENDIF
CHAkxINEW
WRITE010 i)CHAR(12)
WRITEi'12X.'VARIABLE COEFFICIENT BY CONSTRAINT'')')
IFHIFLAGS) .EQ. WJHEN

DO 160 Iwl,K
NRIrEil,'02,"CONSTRAINT *'IYAX1,1.6' C))

.A(I, CHAK)
i60 CONTINUE

PAUSE
ELSE

DO 180 I&I,K
WRITEWi.' X'CONSTRAINT I'',12,l0X.Eln.6)'II,A(I,CHAK)S1130 CONTINUE

242

Ri

PAUSE
ENDIF

190 KRITE(1,110)CIAR(12)
WRJE(1' (0(I,' WN C01(*STFAINT REQlUIRES A CHANGE IN'/9X,' THE

*X("',12,") COEFFlCIENT?'/4X, 'PLEASE ENTER CONSTRAINT NUMBER.''
*)I)C4AK

200 WITE(1.'0IA.''C0NSTRAINT NUMBER "W
READ(5,' (2A1))PIII1,P(?)
CALL CNECK2(P,2,K,INVM..1NEW)
IF(IIIVAL .EC. 1)THEN
ORITE1I,14')
60 TO 200

ENDF
CHAROv !NEW

.pF1fvl.12,p',?yi'' ')ChAK , CAK
WRITEi1q' 3XIPE12.5,9X.$)')AiCHR.CHA.)

CALL CHECK(P.!NVAL,RNEWt
!F(INVAL .EQ. W)HEN
WRITE(1, 140)
60 TO 210

END IF
220 WRITE(I,'('6i..''1E CHANGE STILL DESIRED? '',)

READ(5,' (Al)')p(1)
IF(ICHAR!P(l)) .EQ. 89)ThEN

A(CHiARG,CHAK) URNEW
~4RTE~1'(llX ''1CHA46E CWMLEED!')

PAUSE
ELSEIF(ICHA?,,!) .E2. 78)THEW

WRITE(1,-IIOE,''NO CHANGES PERFORMED'')')

EPAUSEj

NPITE1. 140)
30 TO 220

END IF
'30 ORITE01UOCH4AR1121

iWRlIE(1,'i10(I),''FURTHER COEFFICIENT CHANGES OF WAE''P'VARIABL
.E INi DIFFERENT COSTANT" 59,)')
READ(5.'(A1:')Pi1)
IF(ICHAR!Pi)) .EQ. 89)THEN
60 TO 190

ELSEIF(ICHAR(PII)) .EG. 7e)THEN
IFLAGI2!m0
RETURN

ELSE
WRITEi(1, 140)
60 TO0230

ENDIF
240 0R!TE(1,,I01lCHAR(I1

WPITE(1,'(10(/),''FURTHER COEFFICIENT CHANSE OF)IFFEFENT'V'AR

2143

IF(ICHAR(P(l)) .Eg. 89)THEN
60 TO 100

ELSE!F(ICHAP(P(1)) Al~ 78)TI4EN
IFLAG(2)zO
RETURN

ELSE
WRITE (1,140)
60 TO 240

ENDIF
EN~D

244

I7

C MODULE I UNIT14

C SUBROUTINE DELCON
C USE: PERFORMS THE DELETION OF A CONSTRAINT FROM MODEL BY I
C SOLICITING USER INPUT OF CONSTRAINT NUMBER. MODIFIES t
C NECESSARY VARIABLES TO REFLECT DELETION 9F CONSTRAINT AND I
C REORGANIZES DATA IN WRAYS. I
C CALLED BY: SUBROUTINE EDIT
C CAL.LS SUBROUTINE CHECK2(P,N,M.INVAL,INEW)
C VARIABLES: I
C USED: IFLPG(5).INEW.INVAL9V I
C MODIFIED: ASI,()~()1LG2,NA1..E,6,L,()
C PiNEG(t)

SUBROUTINE DELCOW
CHARACTER VNS6,CNg6,PNS2O,MMS3,FNI1O,PINEGI,PSI,OBJNI0
INTESER Y
CONMCM/CI/A420,b0),B(20) ,Ct6O),INiEa(20), IFLAG(IO) ,kEC,NGC,NLC,K,V,
.MXMN
COMMONiC2/YN'60) ,CN(20) ,PN,MN,FN,PINEQ{20) ,Pi10),OBJN

100 WRITEI1,11Q)CHAR(12)
110 FORMAT(Al

20 IF(tFLA6(5) .Eg. W)HEN
12 NRITE(I,':(lii,''NEED TO SEE CONSTRAINT NAME LIST? '',0))

READ{5,' (AI)'PC!)
IF(ICHWRPi1)) .E9. W9THEN

WRITEU1.110)CHAR412)
%RITE(I,'(8l,''CONSTRAINT NAME LISTING"))
DO 150 IzIlK

140 0RITE(!' '7X,"'CONSTRAINT 1 '',17,'' x ',AW))i,CN(I)
150 CONTINUE

PAUSE
ELSEIF(ICHAR(P(1)? .NE. 78)THEN

WRITE(1, 160)
160l FORMAT(/5X,'INVALID ENTRY, PLEASE REENTER'?

60 TO 100
ENDIF

ENOIF
200 NRIIE(II10)CHAR(12,

KRITEll.'(I')(i).''WHIC4 CONSTRAINT DO YOU WiSH TO DELETE?''/5X,''P
.LEASE ENTER CONSTRAINT NUMBER."I:)

220 0R!TE(1,'(l0X,''DELETE CONSTRAINT # ''.W)
READ(5,'(2A1)')P(l),Pf2)
CAiL CPECK2(P, ,K,INVAL,INEW)
!F(INYAL .EQ. !)THEN
NPITE01b)
6O TO 220

ENDIF
BlINEi4)a0.
DO 250 ljsI!VI AiINEN.J)u0.

245

250 CONTINUE
C COUNT BY TYPE OF INEQUALITY UPDATED SINCE I LESS CONSTRAINT

IF(INE(INEM) .EQ.)THEN
MLCsWLC - I

ELSEMFNE(INEM) .EQ.)THEN
NC=NSC - I

ELSE
AECZNEC - I

END IF
C IF CONSTRAINT NOT LAST CONSTRAINT, ALL ROWS WCVED UP I

IF(INEW .LT. W)THEN
DO 300 I=INE, K-l

IKE0'I)=INE(I+1)

FINED 1)PIEI+I)

CN(I)ZCN(I+I)
DO 290 J-1,V

A(l.J}=A(l+l,J)

290 CONTINUE
Sool CONTINUE

ENDIF
" NUfIBER OF CONSTRAINT DECREASED BY I

ykK-I

IFLA6 (2) v0
RETURN
END

246

CS I sI I III III : i ts Is a a Ii se u I sea IIIIII

C MODULE I UNIT14
C
C SUBROUTINE DELYAR
C USE: PERFORMS THE DELETION OF A VARIABLE FROM 40DEL DY SOLICITING I
C USER INPUT OF VARIABLE NUMBER. MODIFIES NECESSARY VARIABLES I
C TO REFLECT VARIABLE DELETION AN REORGANIZES DATA IN ARRAYS. I
C CAL.LED BY: SUBROUTINE EDIT I
C CAL.LS .SUBRCUTINE CHECK2(P,N,,NVAL,INEWI I
C VARIABLES; I
C USED: IFLAS(5),INVALINEW,K I

M ODIFIED3 (,1C*.FAi),P8 VNI

SUBROUTINE DELVAR
CHARACTER VNS16,CNh6.PN20.NN,FN10,PINEG1.F$1,DBJN510
INTEGER V
C0NNGN/C1/A(20,60),B(20).C-(60), INEgD-O),IFLA8(10),NECN6C.NLC,K,V,
M.NIN
CONHON/C2/VN(80),CN'20)..PM,NN.FN.PINE4(2i) ,P'10),OJBJN

00O WRITE(1,110)CHAR(12)
110 FORMAT(A)

IF(IFLA6(5) E.E I)THEN
C MODEL CONTAINS NAMES
10 WRITE(1,'(11(/),'NEED TO SEE VARIABLE NME LISTING? ",))

REAO(5.'(A)F(1)
IFdTCHAR(P(1&)) .EQ. qq)THEN
WRITE(1,1l0)CHAR12)
WRITE '(?X?''VARIABLE NAME LISTIKG''/)
00 150 3:I,V
WRITE%*W(IX,''VARIA0LE 'I2') ',':JVJ

19 CONTINUE
PAUSE

ELSEIF(ICHAR(Pi!)) .ME. 78)IHEN
OR IlL(1, 164)

160 FOR"AT(/5X,'INV4ALID ENTRY, PLEASE REENTER')
60 TO 100

ENDIF
ENDIF

200 WRITEi1,110)CHAR(12)
MRIE1I' 1('li ' WHIIiVARIABLE DO YOU WISH TO DELETE-)-'15X,'-PLE

.ASE ENTER SUBSCRIPT VALVE."'I")
220 4RITE(1,'19X."DELETE VARIABLE W) a ,W

PEA8(5,' (2AW))P(1),P(2)
CALL CHECK2(P,2,V,INVAL,lNEW)
IF'INVA .EQ. WIHEN

60 TO 220
END IF

C COST COEFFICIENT FOR DELETED VARIABLE ZEROED
C WNEW)0.

C CONSTRAINT COEFFICIENTS FOR DELETED VARIABLE ZEROED
DO 250 'lz1,K

247

A(KINEM)aO.
250 CONTINUE
C IF VARIABLE NOT LAST VARIABLE, ALL COLUMNS MOVED LEFT I

IFIN .LT, W)HEN
DO 300 JUINEW, V-I
C (J)=C(J+I)
IF(IFLAB'5) .ED. W)HEN

END IF
DO 290 IzI,K
A(I,J)=A(l,J+i')

290 CONTINUE
300 CONTINUE

EI4DIF
C NUMBER OF VARIABLES DECREASED BY I

Vxv-1
520 WRlTE(I .IIO)CIAR(12)

WRITE41,'d0(,),8L.''DELETE ANOTHER VARIABLE? '',0J')
READ(5,' (AI)')P(i)
IF-'ICHARI(I)) EQ. W9THEN

60 TO 100
ELSEIFPICHAR(P(1)) .NE. 7BITFEN

%RITEhI,160)
601TO 320

ENDIF
IFLAW!=Js
RETU'RN
END

:1 240

lIr i , , - ------_____________

C I I I I I$ I II I t II I I II I I I I I II

C MODULE 1 UNIT 15 8
C UNIT $USES; IINIT17
C
C SUBROUTINE WICNCH
C USE: SOLICITS INPUT OF CONSTRAINT NUMBER AD TYPE OF CHANGE I
C DESIRED IN CONSTRAINT. ALLOWS USER TO CHANGE CONSTRAINT I
C COEFFICIENT, INEQUALITY, RNS OR NAME. PERFORMS DESIRED 8
C CHANGE AND MIODIFIES THOSE VARIABLES WHICH THE CHANGE I

c NEEESSITATES. t
C CALLED BY: SUBROUTINE ADCON
C SUBROUTINE DATAN
C SUBROUTINE WAAS I
C SUBROUTINE EDIT
C CALLS :SUPROUTINE CHECK(P.INVAL.RNENI
C SUBROUTINE [8ECK2(P,N,M, IWVL, [NEW) I
C SWBOUTINE CHECK34P,INVAL,INEW) I
C SUBROUTINE DISPLYS
C VARIABLES:
C USED: lFLAS(5).INEWINYAL.K,RNEW,V
C MODIFIED: A(S,S:,Bi),CNAK,CHAN,CNARO,CN(U),IFLAS(2),IFLAG(h)i, t
C IFLAS(9q,1E).NENC,NL(K,PS),PNEi*) I

IUSEES UCHECK IN UNIT17.CODE OVERLAY
SUBROUTINE ICNRCH
CHARACTERVN6CS.N2,N3Fl0PHO1P1OJSHN6
INTEGER V, CHAK, CHARO

COMMONCIA (29, SO).B0 ,C(0J, INEQ42Q, IL6(1'), NEC, NGC, NLC.K, V,

110 F ORMAT(A)
NRITE1, 120)

120 FORMAT(IIX, 'CONSTRAINT CFANWE)
C CHECKS IF ONLY CONSTRAINT WE IS TO BE CHANSE

IFIFLA6(61 .EQ. W)HEN
60 TO 140

ENDI F

WRITE(,''1O(i').1X,'DiSPLAY THE PRESENT CONSTRAINTS? '',W)

IF(icHAP(P(lhi .Q. 78iTHENI
60 To 140

ELEEIF(ICHAP(P(1)) MNE. 69)1HEN
WRI'TE01. ISO)

130 FORMATI/5WI'NyALID ENTRY, ?LEASE REENTER'l
SQ TO 1W

END IF
C FLAG ALLOWS 01NLI CONSIRAINT3 TO BE DISPLAYED)

IFLAF(9)a1
CA.L DISPLY
4RITE!I,10)CHAR(12j

140 WRTE(1.'t 4i',''"WHICH CONSTRAINT DO YOU WISH TO CHANGE7'''5X,"'P

249

.LEASE ENTER CONSTRAINT RUMBER.")'.'
150 WRITE,'i/91,'CHAM8E CONSTRAINT *'',S)')

READf3,' (ZAI')P(!i,P(2)
CALL CHECK21P ,2. K ,NVAL,I?4EN)
!F(INVAL ME. IITHEN

60 TO 150
END IF
CHAROxIkEW

190 60T0(2,00,350,500,650,80) (IFLA6(b)+1)
C ACCESS TO CHANGE ANY PART OF CONSTRAINT ALLOWED
200 NRI'IE(1.110)CHAR(12)

WRITE 11,210)
.210 FERIATMlX,'CONISRAINT CHANCE,;

I&RJTE(1.'(1/?X,'CHANOE DESIRED IN CCtNGTRA147 #'',12,'' IS:''//SX,
."I. VARIABLE COEFFICIENT''.8I,'. IhE~q4iLIlY''fX,''3. RIIS'/SX,
,'"4. NO CHAN6ES'')')CARO

220 WRITEi1,'(/131,''NHICH OFTION? "'.fl')
READ(5,' (AI)')P(1)
CALL CilECK2'(P, 1.4, INVAL, [NEW)
MFINVAL .EG. 1)THEN
WRITE11,13O)

END IF
8OTO(35,00.50,1103) INEW

C ONLY VARIADLE r(JEFFICIENTS ALLOWED TO CE CHANGED
3,50 4RITE4,110)CHAR(12)

WPITE(1.'l5X,''WHICP VARIABL.E COEFFICIENT OF''/4X,''CONSTRAINT''
.12.'" REQUIRES CHANGS?'')2)CHARO

READIS,'(2Ai)')P(1),P(2)
CALL CHECK2!P.2.V.iNVAL.INEW)
lF(INVAL .EQ. ITHEN
WRITE(1, 130)
60' TO 360

END IF
CHAK:INEW

370 WRITEil,' (/6X.''PRESENT'',14X,''DESIRED''lIX,'Xi'',)2,'')',1bX,

CALL CHECIP 'INYAL,RNEW)
IF(INVAL .EQ. (ITHEN
WRITEII. 130)
60 TO 370

EWDIF
380 4RITEi,:,390)
390 FGRflAT(/8X,'iE CHANGE GUILL DESIRED? 'S

IF,'ICHAR(Pd1') ME. M~THEM
AICHARQ, CHAflmRNEWI WRITE11,400)

250

400 FORMAT(/1I,'l CHANGE COMPLETED')
PAUSE

ELSEIF(ICHAR(P(1)) .EQ. 7e)THEN
WRITE(1 , 410)

410 FORMAT(/!X,'NO CHANGE PERFORMED')
PAUSE

ELSE
NRITE'1,i30)
60 TO 4580

ENDIF

420 WRITE(1,110)CHAR112i
WRITE '1, 430)

430 FORNATUQ0(/),'FlURTHER COEFFICIENT CHW6NES TO THIS'13X, 'CONSTRAIN4T

READ(5,'(AI)')P(1i
IF(ICHARI(P(11) .EQ. 89)THEN
601TO 200

ELSEIF1IlCHAR(P(2)) MNE. 7B)THEK
4RITE(1, 130)
6O TO 420

ENDIF
60 TO 11,00

C ONLY lNEQUALITY CHANGES ALLOWED
500 ORITEfl,'(&,'COSTRAINT INEQUALITY CHANE)')
510 4RITE~i.i' (!bX,'PPESEM'',14X,''DESIRED'')')

CALL CRECK3(P. INVAL, INEW)
iF~iINVAL .ED. 1.'THEN

WRITE II, 130)
so To 310

ENDIF
570 WRITE11,390

lF(!CHAP.(P()) .EQ. 09)THEN
C COUNT DY TYPE OF INEQUALITY UPDATED

IF(INE9(CH4RO) .EQ. 0'THEN
NLCxNLC-1

ELSETF(AVQCHARO' JE9. I)THiEN
N6,Cs~ec-1

ELSE
REC=NEC-1

ENDIF
INEQ:CHARO)xINEW
IFUIK(ECHARD) .EQ.))THEN

htC&NLC,1
PINE94Ci4APOW",

ELSEIF(IEgICHARO) .EQ. !)THE1N
NeCsNfiC4 I

LPJNEO(CHAO)s''

251

NEC-,NEC+ I
PINE91CHAROWS',
ENDIF

ELSEJF(iCHAR(P(1&)) .ED. 78)TREN
WRITE(1,410)

ELSE
ORlTE1, 130)
60 TO 520

ENDIF
PAUSE
60 TO 1200

C ONLY RHS CHANGES ALLONED
650 WRITEfI,'(/X,COSTPAIKT RHS CHANE'''')
660 NWTE(!,'(bt,''PRESENT ',14X !DESIRED /l,'(,I,'')',16X,''

CALL CHECK(P, INVAL,RNEW)
liFINVAL .ED. W)HEN

WRITE(1, 130)
6010O t60

END IF
680 ORITEil.390)

REAO(5,' (A1)7)P(1)
IFiICHAR(P(1) .EQ. 891THEN

B(CIIARO)=RNEW
WRITEI1,40

ELSE!FUICHAR(P(l)) .EQ. 78)THEN

ELSE
WRITE (1.130)
60 TO 680

END IF
PAUSE
60 TO J200

C ONLY CONSTRAINT NAMES CHANCES ALLOWED
800 WRlTE!I,10)HAR(I2)

IF(IFLAB(5) .EQ. 014EN
C MODEL DOES NOT INCLUDE NAMES

OFITE(l .',7(/),16X."''NSTAKE!'',/'rHE MODEL BENB EDITED DNES N
-0T INCLUDE''/'CONSTRAINT NAMES, ONLY SL'DSCRIPTS."'/ /!''VU ARE BEl
.NG RETURNED TO DATA 8ASE?7iP'EDTR'(/)'.

PAUSE
RETURN

KRlTE(1,'(qX,'CONSTRAI.4T NAME CHANE')')

WRIT(W~i"PREENTNAME FOR CONSTRAINT W',12," --' W CA

810 WIll(//DSRrNAME FOR CONSTRAINT z',2' '',W6'CHARO

IF(ICHAR(P(1)) *EQ. 89)THEN
CM (CHARD) =CHAN
WRITE0l,400)

ELSE!FUACHR(P(1)) E. 78)THEN
NRATTE(1,410)

ELSE
NRJTEfl. 130)
Go TO 810

EMDIF
PAUSE

1200 OR17E(1,110)CHAR(12)
IF'1FLAGW6 .EQ, W)HEN
80 TO 1220

END IF
!210 NRITE11.110)CHAR(12)

WRITE,'1,'(I0(I),''FURTHER CHANGES TO THIS CJNSTRAINT? :',))
READ(5,' (AlI)P(1)
IF(ICHAR(P(l)) .EQ. 89)THEN
80 TO 200

ELSEIF(I^ZHAR(P(l)) .ME. 7G)THEN
OR ITE 0, 130)
60 TO 1210

ENiIIF
1220 WRITE(1,110?CHAR112)

NRITEi4 1(lO ,''FURTHER CHANGES TO ANY canSTRmmNT '',s,

IF(iCHAR(F(1))' EQ. 69,THEN
60 TO 100

~LSE1F(ICHAR(P(1)) .ME. 78)THEN
ORITE01.1301
6070O1220

END IF
1FI.AG 2) :0
IFLA6(6)20

1300 RETURN
END

*1Q 253

C NODULE I UNIT15 I
C I
C SUBROUTINE ADCON I
C USE: SOLICITS INPUT OF COEFFICIENTS, INEQUALITY, RHS, AND NAME OF I
C ADDED CONSTRAINT. MODIFIES NECESSARY VARIABLES TO REFLECT I
C ADDITION OF CONSTP.AINT Ta MODEL.
C CALLED DY: SUBROUTINE EDIT
C CAL.LS SUBROUTINE CHECKiP,IlNVAL,RNEW)
C SUBROUTINE CHECK3(PINAL,INEW) t
C SUBROUTINE ICNRCH f
C YARIABLES:
C USED: i.FLAS(5)qINEW,INVAL,PN.RNEM.qVV(I)
C MODIFIE):AtI,)CiJiL82,lElyqE,6,L,()
C PINEG(l)

SURUTINE AOCON
CHARACTER VN$6,CN*b,PNS20,fMI3,FNS1O,PINEOII,I,ODJNIIO
INTEGER Y
COMON/1/A(20,6),B20),C(60!,IEG(20) ,IFLA6I 10),NEC,N6C,NLC,E,V,

COflNN/C2/VN60oCN10,P,qN.FN,PINEQ(20 ,P(10),OBJN
100 WRITEIl,110)CHAR(12)
110 FORMAT(A)

%R!TEUl,'(12X,''CONSTRAINT INPUT''/f'IMPUT CONSTRAINT VARIABLE CO

.EFFICIENTS''/'AS IF THE CONSTRA14T WAS IN THE''/I3/,'FOLLOWIN6 F

+ X(2) + X(31 (=) qHS''//''THE VARIABLE COEFF
.!CIENIS ARE A MAXIMUM''/'0F 10 CHARACTERS.''/1'IF COEFFICIENT IS
u ZERO. ENTER 0 OR HIT'1/''mRETURN, WITHOUT E8TP.Y"//)'!

PAUSE
120 WRITE(1,1!0)CHAR(12
C NUMBER OF CONSTRAINTS UPDATED

VK+ I
ORITE(1, '130)PN

130 FORMAT(5X,7PROBLEn ID: ',A20)
IF(IFLA6(5) .EQ. l'THEN

C MODEL INCLUDES NAMES So CONSTRAINT NME INPUT BY USER
NPITEfl,'(19X."CONSTRAINT NAME INPUT''//''ENTER CONSTRAINT NAME
WHICH CORRESPONDS"/''TO CONSIRAINI S'',I2,''.'/I''AMES ARE TO

*BE 6 CHARACTERS OR LESS."''K

WRITE(Wi R/X,''CONSTRAINT 7',72" "1))

0RITEtI,' ('CDNSTPAIWT VARIAPLE COEEFICIENT INPUT"')~
WRITE(1,'(9X,''CONSTRAINT "',12," a '',Ao,/'K,CN(K)

c ADDED CONSTRAINT COEFFICIENTS IKPUT BY USER
30 200 Jxi,V

15O FORhAr(71,'XI',2,') xz,AW ' ',S)

254

owl 7 Io

CALL CHECK(P, INVAL,RNEW)
lF(INVA. .EQ. WbHEN
NRITEI160)

160 FORINAT(/51.'INVALID,ENTRY, PLEASE REENTER')
60 TO 140

ELSE
At K, 3) ZRNEN

END IF
200 CONTINUE

ELSE
VRITE(1.'i!3X,''C0NSTRAINT ''.12)')K
Do 250 121,Y

210 NRITE(1.220)J
220 FORMAT(6X,'Xf',12,')z ,

READi5,' (l0AI)')P(L),LZI,10)
CALL CHECK(P, 1NVAL,RkEW)
IFJINVA .EQ. WHTIEN

60 TO 210
ELSE

A (K, J) RNEN

250 CONTINUE
ENDIF
ADDED CONSTRAINT INEQUALITY INPUT BY USER

260 IFLASM5 .E0. W)HEN
WRITEII'll,'INE9UALITY '.))

ELSE

ENDIF

CALL CHiECK3;F, INYAL, INEVJ
IF(INVAL .EQ. W)HEN

60 TO 260
ELSE

INEG(K)INEW
ENDIF

C COUNT BY INEQUALITY TYPE UPDATED
IF(;EW ME. OiTHEN.
NLC=NLC + I
PINEG(K)z'('

EL33EIF(INEV EQ. lrHEN

PIKEG(K~')'
ELSE
NEC20EC + I
PINEA(K)=':'

ENDIF

C ADDED CONSTRAINT RHS INPUT VY USERI 280 IFi(FLA6(5) ME. W)HEN

255

ELSE

EIIDIF

CALL. CHECKtP,INVAL,RNEW!
IF(N'ML .EO. I)TrIEN

60 TO 280
ELSE

8 (K) 2NEV
END IF
PMUSE

290 VRJTEI(110)CHAR(12)
WITE(1,'('11(/7X,':ARE CORRECTIONS NEEDED,? ",)

READ15,' tA1)')F ii)
IF(ItHAR(Pilo) C'g. 69)THEN

CALL ICNRCII
60 TO 300

ELSEIFICIIAR14I) .EQ. 7SIT-4EN
60 TO 300

ELSE
WRITE (1, 160)
60 TO 290

ENDIF
300 WRITE(1, 110)CI4AR(12)
3101 WR1TE(lq'(llM/,SX,'ADO, 440TARE CONSTRAINT? '))

IMFCARIP(1)) .EQ. SO)THEN
60 TO 120

ELSEMFICHAR(P'1) .EQ. 78)THEN
IFLAG(I2)uO
RETURN

ELSE
WRITE(1b)
S0 TO 300

END IF
END

256

C MODULE 1 UNIT15
C
C SUBROUTINE DJSPLY
C USE: FORMATS TABLEAU OUTPUT TO BOTH SCREEN AND PRINTER. OUTPUTS I
C EITHER THE CONSTRAINTS ONLY OR THE COMPLETE TABL.EAU AS !NPUT S
c BY USER. OPENS AND CLOSES OUTPUT UNIT 3ESIGNATED DY USER. I
C CALLED BY: PROBRAN DATAD I
C CALLS : SUBROUTINE CHECK2(P,N,N,INVAL,INEW)
C YARIABLES:
C USED: ASS,()CSNSFA()IENJLKN,3N
C PIMEO(S),Pw,V,%VNmS
C MODIFIED: IFLAS(9),N,P(Si,T
C I II I t II I I I I Itts t II tI 1 s I I I I

SUBROUTINE DISPLY
CHARACTER VhN6.EN$,PN2O,NMSS,FNSIO,PINEgSI.?S1,BJNSIO
INTEGER VJ'
COPtONICliA(?O.6O),B(20 ,Ci60),INED(2(h),IFLA6i1O),NEC,N6C,NLC,K,V.

CONHON/C2/,VN460),CN(20),PNMN,FN,PINEO(2Q0) P(10).UDJN
WAIIE (1,1 C) CHAR (12)

110 FORMATIA)
WRITElI,'(8U.),X,'WOUL) YOU LIKE DISPLAY ONi:''I,3X,*'1. SCREEN'
* 'I20X,''OR' '/IX.''2. PRINTER")')

!20 WRITEi(,1.'I3x.'NHICH OPTION? '*,WJ)

CALL CHECK21P.1I,2.INVAL,PEW)I
IF(INYAL *EQ. 1)THEN
WRITE(1,130)

130 FORMAT(/1,'INVALID ENTRY, PLEASE REENTER')

END IF
C PROPER FILE FOR SELECTED OUTPUT DEVICE OPENED

IFIINEW EQ0. I)THEN
3PEm(2,FILEz' CONSOLE:')

ELSE
OPEN(2,FILE:' PRINTER: '

ENDIF
VOITE141, 110) CHAR 4 2)
lF(I&FLA60) .EQ. WHTIEN

r ONLY CONSTRAINTS ARE DISPLAYED
WRITE(2,220)PN

220 FQRMAT(1IOX.A20/10f, 'CURRENT CONSTRAINTS')
ELSE

C 01 FUNCTION AND CONSTRAINTS DISPLAYED
WfRITE(223)PN,N

270 FORPAI'A X0.A20/7W.CURRENT LP MODEL: ',A3,'IMIZE ',0)
!F IFLA60) ,EQ. 1:THEN

VfRITE (2,d 240)ODJN
240 FORNATWAO)

ELSE

257

ow

250 FORMAT(' '

END IF
ENDIF

C NMBER OF 80 COLUMN DISPLAYS REQUIRED DETERMINED
7. (YI5) 41
DO 470 tIu1,1

IF(IFLA643) .ED. I)THEN
C VARIABLE MAES PRINTED AS COLUMN HEADERS

VRITE(2.' (I3X,$)')
DO 270 JuiNl5)-4,Kl5

IF(J .ST. W)HEN
60 TO 270

ENDIF
WRITE(2,26011YN(J)

260 FOPRMAT(4X,A6,3X,$)
270 CONTINUE

VITE(2,''
ENDIF
WRITE(2,' (!3X,$)')
DO 290 Jz(Nt5)-4,N$5
IF(J .67. W)HEN

60 TO 290
END IF
WRITE(2,260)J

280 FOR?"ATi4X.'Xf',I2,')',4%,S)
290 CONTINUE
C IF LAST 90 COLUMN DISPLAY, DISPLAY RNS

IF(T .EQ. I ODR. N .EQ. T)THiEN
WRITE 12, 30)

ELSE
WP.ITE(2.'('''''

ENDIF
IFHlFLW) .EQ. O)THEN
WRlTE(2,'l'OBJ FUNCTION'',lX,$)')
DO 320 J=0N15)-4,0$5

IF(J XG. Y)THEN
60 TO 320

ENDIF
kRITE (2,3m ol(

310 FORMA7(IX,!PE12.5,fl
320 C ONIN UE

IF(T .E9.1 OR. N .EQ. TITHEN
NRITE(2,330)

30 FORMATIIX,'- Z1
ELSE

ENDIF
NPITE(2' "('COST HAME'',2X671''t'))

ELSE
WRITE(2 .'('CONST WANE'';')

ENDIF

258

C CONSTRAINT UMER, NANE, BASIC VARIABLE, COEFFICIENTS,
C INEQUALITY, AND RI4S DISPLAYED

DO 400 Lx1,K
IF(L ST1. WHTIEN

60 TO 400
EIIDIF
WRITE42,340)L

340 FORMAT ('CMI'.12,S)
IF(IFLAG(5) .EQ. W)HEN
WRITE 2, 350) CW(L)

350 FORMAT(11,A6,1X1S)
ELSE

NRITE(2. '(8X,lE')
ElDIF
00 370 3s(Nl5)-4,N$5

IF(J .87. Y)THiEN
60 TG 370

END IF
§RITrE(2,3b0)A(L,J)

36i0 FOPMATI1X, IPE12.5,S)
370 CONTINUE

IF(T .Eg. I DOR. N HE. T)THEN
WRITE(2,380)PINE~iL),8lL)

380 FORMAltIX,AI.1X,lPE12.5)
ELSE
NRITE(2,'4''")

ENDIF
400 CONTINUE
C SPACING APPROPRIATE HIR SELECTED OUTPUT OEVICE. IN9LENENTED

IF(INEW .EQ. IIT4EN
PAUSE
dRITE2&,lI I)CHAR!12)

ELSE

470 CONTINUE
iFLAB(9)zO

C OUIPUI DEVICE FILE CLOSED
* CLOSE (2)

RETURN

END

4.59

C II IIs S s aI l I 81 Ia~ I5 5 5 8 IS Ia III IIII
C NODULE I UNIT16 I
C UNIT $USES: UNIT17 I
C $
C SUDROUTINE SAVE I
C USE: SOL.ICITS VOLUNE:FILENANE OF DISK FiLt T3 STORE NEW OR EDITED I
C MODEL. ALSO SOLICITS INPUT WHICH IDENTIFIES INPUTTED FILE AS I
C A NEV FILE OR AN UPDATE OF FILE. SAVES DATA IN DISK FILE t
C (FN) AND ALSO WRITES (FN) TO DISKFILE LPI:LPDATA FOR TRANSFER I
C TO MODULES 2AND 3.
C CALLED BY: PROGRAN DATAD
C CALLS : NONE
C VARIABLES:
C USED: (., ()CSC5.FA ()IL5),L8(. S
C IFLAG('S),IFLAS(6),IFLA(7),IFL6i8),IFI.AB(9),IFLAG(!), I
C INEO(5J,K,M,NXHN,hEC,N6C,NLC,DUN,PINEQ(5L.PN,V,VNi5) I
C MODIFIED: FN,IFLAS(2),P(1) s

$USES UCIIECK IN UHIT17.CGDE 3VERLAY
SUBDROUTINE SAVE
CHARACTER VN$6,CN*6.PN120,hS,FH$!O,PINEQII,Ptl,ODJNSIl.RES$6
INTE6ER V
CONONK/Ci/Ai20,60),B420),C(60) ,INEgi2O),IFLA6i(I0),NEC,NGC,NLC.K,V,

COMMDWIC2/VN60)CN4 o),PN, M,FN, PINEQ20,(0). IOLIN
100 WRITEfI,110)CHARiI2)
110 FORMAT(A)
C USER INPUTS FILE NAME WHICH MODEL iii TO BE SAVED

WRI7E(1,'(t/YI,l'SAVE LP MODEL TO DISK''I12X,''ENTER THE DISK DRI
.VE ?4UNBER AND FILE"/bX,NAIE WHICH YOU WANT PROBLEM"'1OX,A20,/
.10 "''SAVED UNDER.'')')PN
NRiTE(I,'(i8X,-'ENTER EXACTLY AS FOLLOWS''/IOX,''DISK DRIVE:FILEMA
,ME''//12X,"'E6. #4:FILENAM"l//''THE DRIVE:FILENANE MUST BE 10 CH
.ARACTERS''/1bX.''aR LESS''/'IF THE ADOVE IS ENTEPED INCORRECTLY

.'/7X,''YOUR MODEL WILL BE LOST!!")')
VPITEiI,'1/7X,''DISK:FILENAE '.))
READi5,'(AIO)')FN

12)0 WPIlTEil,'(/7X.''ARE CORRECTIONS NEEDED? '))

READf5,' CAI)')F(1)
1FtICHAR(P(1)) .EQ. 89)THEN

60 TO 100
ELSEIF(ICHAR (?(I)) .NE. 78)THEN

WRITEII,200)
PAUSE
60 TO0120

ENDIF
NPITEf1, 110)CHAF(12)

c USE; PROMPTED TO INSERT DISK TO WHICH FILE 131 TO E SAVED
WRITE(i,'!9(/),2X,''INSURE THE DISK TO CONTAIN THE FILE''/l5X,410

Pt .113X''ISAVAILA3LE.'',6(/))'iFN
PAUSE
WRITE 1, Il,0iCHAR(12)

260

WRITE(,'(I,"AS THIS 01,SK:FILENMR CONOIIIATION BEEN''I2X,''U
.S~v PREVIOUSLY?"W/'(AE YOU MPATINS A CURRENTLY EXISTIN6''/17%,

150 lRITEI~,'(!6X''(Y/N) ",W)
READ(5,' (A)')P(1)

C PPOPER STATUS OF FILE DETERNINED AND OPENED
MFICHAR(PI(l)) ME. 89MTEN
QPERI3,FILE-FN,STATUSz'OLO'.FOR1I'UNFOFNATTED')

ELSEIF(ICHAR(P(l)) .E2. M8THEN
OPEW(3, FlLEzFN,STATUS:'NEO' .FORN'tJIERHATTED')

ELSE
WRITE (1, 200)

200 FeRNAT/5WINyALID ENTRY, PLEASE REENTER')
60 TO 150

ENDIF
C NOBEL WRTTEN TO DISK

WAItE (3) PN, NXNN,NN,K1 , NE-C, N6C,NLC
DO 250 121,10
WRiTE(3IFLA6%I)

250 CONTINUE
DO 300 lzl,K

MO 290 J10
WRITE(3)A(I.J

290 CONTINUE
300 CONTINUE

DO 350 34l,V
WRITEM3CMJ

350 CONTINUE
IF(IFLAS(5).EQ. WHTIEN

DO) 380 !zt,K
WRITE '))

380 CONTINUE
DO 400 Jx1,V

NRITEMSYN(J)
4 00 CONTINUE

WITE (3)OJ
ENDIF

$ IFLAG!?)zI
CLOSEU3.STATUSs'KEEP')
PRITE1,110)CHAR4I2)
WRITE'A,'Ql1'/,1X,''INSCRE DISK(LPI1 5I AVAIL43LE.'',7(/)'f
PAUSE

C NME OF NOBEL LAST SAVED WRITTEN TO TR.ANSFER FILE
OFEN(3,FILEx'LPIsLPDATA' ,STAT!JSa'UtD .FORII:UNFORNATTED')
WPITEM3FN
CLOSE (3, STATUS:' KEEP')
RETURN
END

261

C IODULE I UNITI6
C
C SUBRIOUTINE INIT
C USE: INITIALIZES ALL VARIABLES TO ZERO EXCEPT CHARACTER VARIABLES. I
C CALLED BY: PROGRAM DATAB I

C CALLS : NONE
C VARIABLES:
C USED: NONE
C MODIFIED: A4I,lII),C(I),IFLA6Q() THAU IFLA6(1,),INEQ($) ,KlEC, t
C N6C,NLC,V
C I I I t1 $ 8 1 I I I t I t I I t I I I t! I !i I I I t 1 1 1 1 1 1

SUBROUTINE 1IIT
INTEGER V
CIGQMN/CI. 'A20,60).3(20),C(60.INEQ(20), IFLA6(10),NEC,KEC,NLCKV,

DG 200 121,20

INEQ(1)=0
DO 100 j=I,60
AIIJ)s0.

100 CONTINUE
200 CONTINUE

DO 300 J1,60

300 CONTINUE
D0 400 1;10

IFLA641 :0
400 CONTINUE

NECz0
N6C=O

NLCzO
RETURN
END

262

-I

C MODULE 1 UMIT16
C
C SUBROUTINE DATAD
C USE: SOLICITS VOLUI.E:FILENAME FROM USER OF FILE 70 BE READ FROM I
C DISK. PROOPTS USER TO INSERT CORRECT DISK AND READS MODEL I
C REQUESTED FROM DITSK INTO MEMORY FOR FUTURE EDITING OR I
C DISPLAY. I
C CALLED BY: PROGRAM DATAB I
C CALLS : NONE I
C VARIABLES: I
C USED: NONE I
C MODIFIED: (.)SI,;).IS.NILS1 THRU IFILAO(10), t

SUBROUTINE DATAD
CHARACTER VN$b,CNt6,PN520,MM$3,FNS10,?INEg$1,PSI,OBJNI10
INTEGER Y
COMMON/C1/A(20,60),B(20),C(6Q),INEQ(20),IFLA(iO).NEC,4C,NLC,K,V
.MXMm
COMNON/C2/VN(60).CN(20),PN,1M,FN,P!NEQ420) ,P(10),DJN
WRITE 11,110)CHAR412)

110 FORMAT (A)
C USER INPUTS FILE NAPE OF MODEL TO BE READ

WRITEil,'(S(I),BX,''PEAD LP MODEL FROM DISK''/1/7ENTER THE DISK 0
.RIVE NUMBER AND FILE''/'NME WHICH HOLDS THE NODEL DESiRED.''118X
.,"'ENTER EXACTLY AS FOLL9WS''!1QK.'DISK 0RIVE:FILE4AlE''11t2X,"E
.6. #4:FILENAN'')')
WRITE'I, (/7X, ''1IK:FILENA E c"S
READ(5,' lA1) ')FN
NRITE(I11 0)CH.AR(12)

C USER PPOMPTED TO INSERT DISK rJNTAININ6 DESIGNATED FILE
WRITE(l,'(9(l),5(,"INSURE THE DISK CONTAINING TNE''//15X,AIO//IOX

., ''ODEL ;S AVAILABLE.'',7(/))')FN
PAUSE

C DESIGNATED FILE OPENED AND READ TO MEMORY
OPEN(3,FILEzFN,STATIS:'OLD' ,FORMz'UNFORMATTED')
READ(3)PN, MXMN, MM9K,V, NEC,NSC, NIC
DO 180 Iul,10
READi3) IFLAS(I)

180 CONTINUE
DO 250 Is,

20 READ(3)INEQ(%';.PINEQ(I?,BiI)

2 0 CONTINUE

IF~iFLAG(5! .ED. I)THEM

263

DO 280 Ix1,K
READM3CN(1)

280 COAT INUE
Do 300 JaI,V

READ 3)VN(J)
300 CONTINUE

READM()ODJN
LNDIF
IFLA8(2)x1
CLOSE (3, SlATU9-' KEE.P')
ORITE(I,11,O)CHARM1)
VRlTE(I,'(1I(/),Il''.JSRE DISK LPI IS AVAILABLE.'',7(!))')
PAUSE

C LAST READ FILE NAME IS WRITTEN TO TRANSFER FILE
0PEN(3,FILEa'LiLPDATA' ,STATUSZ-OLD' ,FORz' UN4FORMATTED')
NRITEM3FM
ruLOSE(3, STATUSz'KEEP')
RETURN
END

.464

C MODULE I UNIT 16
C
C SUBROUTINE HEADER I
C US'E: FORMATS AND DISPLAYS TITLE/AUTHOR PAGE. I
C CALLED BY: PROGRAM DATAB
C CALLS -.NONE
C VARIABjLES: NONE

SURUTINE hEADER
WRITEll ,'(A))CHAR 12?
WRIE,9X,''''p/Y1X~o~'''3X FORTPANI BASED'',4,"W

/9,'''2O,''''~X,';LINEAR PROGRAMNIN6 W'19X,''R',20X,''S

RETURN
END

:1 265

C KODULE 1 UNITb $
C I
C SUBROUTiNE MODUL(INEW)
C U3E: UPOX INITIAL ENTRY INTO rODULE, SOLICITS INPUT AS TO WHICH $
C NOD.E OF THE SOFTWARE PACKAGE IS DESIRED. PPOVIDES I

C INSTRUCTIONS AS TO WHAT PRIOR ACIONS ARE REQUIRED TO ENTER t
C EACH KODbLE AND ThE COPOANDE REQUIRED TO GAIN ACCESS 10 THESE I
C NODULES. IF USER SELECTS TO ENTER ANOTHER MODULE, NODULE I t
C PRO6RAN IS TEPHINATED W2TH INSTRUCTIONS ON SCREEN SHOWING THE I
C COMMANDS REQUIRED TO ENTER SELECTED NODULE. OTHERWISE, USER t
C ENTER3 NEW 0ODEL OF EDITS MODEL WITH THIS NODULE. $
C CALLED BY: PROGRAM DATAB $
C C4LLS : SUBROUTINE CrECK2tP,A.M,iJVAL,INEW) I
C VARIABLES:

USED: INVAL S
C IODIFIEDz FN,INEW,Plli I~CIIt$SSS5515111gS1$I$$I$11115I115

SUBROUTINE MODUL INEN)~ARACTER vNfb, CHs6,P? $20, lI3,FN IO,P!NEG$iP l.OBJHslO
COMMC?'/C2IVN(0) ,CNC20) ,PN.MNFN,PINEQi20) ,P(10),.OBJN

C DETEPHINES IF MODULE DESIRED ALREADY SELECTED
IFiINEW . NE. O)THEN
iNEO=INEW+

60 TO 200
ENDIF
ORITE!i,110)[HAR(12)

110 FGRMAT(A)
OISPLAYS MODULE OPTIONS

WR!TE(l,'(!12X,"NODULE SELECTION"//"THE FOLLOWING OPTIONS APE A
.VAILABLE:"/"'1. DATA BASE ENTRI (ENTER DATA BASE OR"/3X,"E)T
. CURRENT DATA CASE'"//"2. LP INSTRUCTIONAL MODULE'/!'3. LP PRO

.BLEH SOLVER MODULE")'
4RITE(l.'(!"4. LP SENSITIVITY ANALYSIS IODULE"//"(NOTE: OPTIONS
.2, OR - REQUIRE ThAT A"i"ATA BASE BE CURRENTY STORED ON DISX)

WRlTE(i,'(i,"(NOTE- OPTION 4 REQUIRES THAT A DATA"I"FILE HAVE B
.EEN SAVED UPON LEAVING THE"/"OPTIgN 2 OR 3 nODdLES AB3.)')

120 NRITE(1.130)
130 FORNAT(/13X,'WHICH OPTION? l)

READ(5,' (A1)'iP(l)

CALL CHECK2(P,.4.INVAL.INEW)

IF(INVAL .Eg. I)THEN
WRITE0,140)

14C FOR14T(.'SX,'INVALID ENTRY, PLEASE REENTER')
60 TO E20

ENDIF

IF INEW .EQ. I)THEN

C ISER ELECTS TO ENTER MODEL
RFTURN

END IF

200 ORIlE1I,I1O)CHARi12,

266

* ,-

IF(INEN .E . 41THEN
C USER ELECTS TU PERFORM SENSITIVITY ANALYSIS AND PROMPTED TO
C INSERT DISK LP2 TO WRITE FILE NAME IN TRANSFER FILE

WRITE(1.'!ii/, ,"'INSURE DISK L02 IF AVAILABLE.",7(/.

PAUSE
C TRASFER FILE OPENED

DPEN(3,FiLE='LP2:LPDATAW' E.TATUS='OLD',FORM='UNFORMATTED')
ELSE

C USER HAS SELECTED OTHER THAN SENSITIVITY ANALYSIS AND PROMPTED

C TO INSERT DISK LPI
WFITE(1,"iH(/),IXo"INSURE DISK LPI IS 4UAILABLE.",7(I)

PAL SE
C TRANEFER FILE GFENED

OPEN(3,FILE='LP:LPDATA',STATUS='OLD'FFOHRM=UNFORMATTED')
ENDIF
WRITE 1.II0)CHAR(12)
iF(INEW .EQ. 2)THEN

C USER ELECTS EDUCATIONAL MOULE
WRiTE(!,'i8V."LP 11STRUT1!ON4AL MODULE")')

ELSEIF(INEW ,E9, 3)THEN
C USER ELECTS PRDPLEM SOLVER MODULE

WRITEfl'(3',"LP PROSLEM SOLV/ER MOULE")')
ELSE
WRITEl!,'(5.'LP SENSITIVITY ANALYSIS MODULE")'"

ENDIF
C MODEL FILE NAME IN TRANSFER FILE READ

READ(3)FN
CLJSE!3,STATUS='KEEP')
_RlTEUI, '(,''TO USE THIS MODLE, A DATA BASE MUST"/"4A0E BEEN P
.REVIUSLY CREATED USING THE"/"DATA BASE ENTRY !MODULE 1) AND SAY

.ED TO'/'DISK,'
,RITElI,'("''THE DATA LASE WHICH IS CURFENTLY"/"IDENTIFIED AS TH

.E PROBLEM TO BE STUDIED"'i'"IS:"I5X,AIO)')FN
C U3ER DETERMINES IF PROPER FILE NAME IN TRANSFER FILE
230 WRITE(Wi,',/"IS THiS THE MODEL YOU WISH TO STUDY? ",$)')

REA6i 'IA)'iP(!W
iF(ICh(Pl) ,EO. E9)THEN

6O TO 70
EL3EIF(ICHAR('IJ)) .E. 78)THEN

C USER ENTERS DESIRED FILE NAME TO BE ENTERED IN TRANSFER FILE
WRITE(1. (/"PLEASE ENTER TPE DISK DRIVE NUMBER AND"/"FILENAME
OF THE FILE YOU NISH TO STUDY."!"INSURE THIS I5 ENTERED EXACTL

,Y AS IT")')
NR1TE(!,'("NAS SAVED PREVIOUSLY AND ALSO THAT THE"/"PPOPER DI

.S is IN THE PROPER DRIVE.)";')
WRITE!i,'(/4X,"MODEL TO BE STUDIED

FEAD45,'i ' !O ')FN
250 WRITE(!,'(/,7X,"ARE CORFECTIONS NEEDED? ",S)')

IF(iCHAR'P(I)) .EQ. 89)THEN

27

SD TO 200
ELSEIFICHARIP(I)) .ME. 7W~HEN

WRITEi1, 140)
60 TO 250

ENDIF

IF(INEM .ED. W)HEN

C USER FROWPED TO INSERT DISK LP2 AND FILE NAilS 1S WRITTEN
WRITE(1,'flIf,UX,'IN5URE DISK LP2 IS AVAILADLE.",7

PAUSE
OPEN'3,FILEu' LP2:LPDATAN' ,STATIS='OL,' .FORN='UNF0RNATTSED'I

ELSE
PODEL FIi WAE WITTEN TO TRANSFER FILE FOR OTHER THAN

C SENSITIVITY ANALYSIS
WRITE(I,'li1Itl,IX,''INSURE DISK LPI lS A:JAILABLE.'',7

FAUSE
OPEN(3,FILE:'LPI:LPDATA'.STATJS='OLD',FORM='UNFORNATTED')

ORITE (3)F
CLOSE(3, STATIJSz'KEEP')

ELSE
WRITEII,!40)
so0TO 23t)

'NDIF
WRITEil,1I0)CHAR (12)

WRI~i1'(I(),I~'INSREDISK LPI IS AVAILABLE.'',7Wmf';
PAUSE

30 NRITE~14iQ)CIARi12)
L INSTRUCTIONS TO ENTER WhlER PNODULES DISPLAYED

IF(INEO .Eg. 7)THEN
WPITE4i.'(GOU),1X.'TO ENTER THE LP INSTRUCTIONAL MODULE:"''/!I71

.,''TYPE''/119X,''X'/i7X,'LPI:ED'',3(/))')
STOP

ELSEIF(IJEW .EQ. 3)THEN
4RiiE0l,'(81/),1X,''T ENTER THE LP PROBLEM SOLVER MODULE:''//17

X~,'' TYPE!'1'/19X."X''/16X,'LP2:TAB"',Z(/))')
STOP

ELSE
WRITE'1.' (8(/),'X,''TO ENTER THE LP SENSIiIVITY ANALYSIS" !161,

STOP
END IF
RETURN
END

j 26a

C MODULE I UNIT 16 9
C I
C SUBROUTINE DBHED
C USE: DISPLAYS TITLE PA6E OF MODULE I, DATA BASE ENTRY MODULE. I
C CALLED 8Y: FRO6RAM DAAB
C CtALLS : NONE
C VARIABLE3: NONE
cssisssss!issi;;ssssssisss$11ssssss

SUBROUTINE DBDED
VRITiI,'1AP')CHARQ2)

, 'S'I5,/X.'"I",2OX,"$'"/'gx, ,8yX,' 'ASE'",BX,"'',' '1,,' '

N! JTE41,' (9g,'''",71," 'ODULE"',TX.'"I",2(!91," I" ,20Ot",'

*,.) ')

PAUSE
RETURN
END

2.9I

m m mm • m llrm umlm llli~llml mi~llli~lm ," -...26!

C11SI$IIII1 5 I$ I$II I a$IIII IIIII

C MODULE I UNiTI6
C
C SUBROUTINE IN1RO I
C USE: PROVIDES OVERVIEW OF LP PACKAGE AND PROVIDES BRIEF REFERENCE a

MARKERS TO DOCUMEIITATION. 9
C CALLED BY: PROGRAM DATAB I
SCALLS : NONE
C VARIABLES; NONE
C 1I$IIItI$$I$1155115115111155111¥$

SUBROUTINE INTPO
WRITlE(,l:A)' CHAR(12)

WRITE(I,'(2X."LINEAR PPO6ANNI-16 SOFTWARE PACKA6E-"//"THIS PACKA
.SE IS DESIGNED TO ALLOW"/"STUDENTS TD IMPROVE THEIR UNDERSTANDIN
.6""/OF THE SIMPLEY ALSORITHI AND ALSO";"PROVIPE THE MANA6ERS A
.D ANALYSTS WITH A"/"PRGBLEM SILVING TOOL."'))
WRITE(I,' (/,"THE PACV.A6E CONSISTS OF FOUR DISTINCT"/"PROORAS
.ANNOTATED AS MODULES) WIiOSE";"FUNCTIONS ARE AS FOLLOWS:"115X,"
.AODULE i: DATA OASE ENTRY"i5X,'°MODULE 2: LP INSTPUCTION"5X,'MN
.ODULE 3: LP PROBLEN SOLVEF"/6X,"MODULE 4. SENSITIVITY ANALYSIS"

WRITE(I,'(/,"ALL LP PROBLEMS MUST BE ENTERED INTO A""DATABASE
* USING NODULE 1. MODULES 2 OR"' 3 MAY BE USED TO DETERMINE A SO
.LUTION TO" "A PROBLEM AND THIS MUST OCCUR PRIOR TO"/"NTERIN8
M MODULE 4.")')

FAUSE
WRATEiI,'(A)')CHARQ12)

0!TF'I,'(/,"INSTRUCTIONS ON HOW TO ENTER EACH KEODULE"I"WILL BE
.FREiENTED WHEN APPROPRIATE." /"ANSWERS TO SPECIFIC gqESTGINS CON
.CERNIN'/"'ANY MODULE WILL BE FOUND IN ThE U ERS"/'"UIDE (APPEN
•DIX A) OF THE THESIS":'DOCUFENTATION.")')
WRITE(I,'(i,"ALL RESPONSES REGUIFE A [RETURN] TO NOTE"!"THE CON
.PLETION OF INPUT."//'"ALSO, ALL YES/NO INPUTS MAY BE ENTERED"/"
.BY iY3 OR IN], RESFECTFULLY.")')
PAUSE
FElURN
END

270

-~~~.J A ' - - - .- -..

C MODULE I UNI1i. t

C SUBROUTINE DBE
C USE: DISPLAYS MENU OF DATA BASE ENTRY OPTIUNE (MN MODEL, READ t
C EXISTINS ADDEL.QUIT,INTRODUCTORY REMAPKS). I
C CALLED BYi PROGRAM DATAB t
C CALLS : 409 1
C VARIABLES: NONE I
C t91$ 11 18181 1h h£1 51111 51 31 1 1 1

SUBROUTINE DBE
WFiTE~i,' (A)' tCAR(12)
WRITE(,'(12X.''DMA BASE E4TRY''!!X,''TG ENTER LP MODEL DATA BAS
.E''j4X,''YOU HAVE THE FOLL04ING OPTIONS:''/I/'1. CREATE MODEL ',NT
.ERACTIVELY:SUBSCRIPTS'' 13,'' (VARIABLES ANNOTATED BY SUBSCRIPrS,''
./3X.' CONSTRAINTS ANNOTATED1 BY NUMBER ONLY)'")'!
PRITEtI.'W(''2. CREAT7E MODEL INTERACTIVELY:NAMED'/3X,''VARIABLES
A ND CONSTRAINTS ARE''/31.''AFSI6NED NAMES)''I/'3. READ FROM DISK

.''/31,'(PREVIOUSLY CREATED BASE)'')
WRITE~l,'(1''4. DISPLAY INTROEUCTORY REMARKS''/f''. QUIT PRO6RA'

RETURN
END

271

C tI 11tI I I I I I •

C MODULE I UNIT16 I
C I
C SUBROUTINE DIN
C USE: DISPLAYS NENU OF DATA BASE NANA6EENT OPTIONS (DISPLAYEDIT, I
C SAVEENTER NEW NODELSOLVE, UIT) I

C CALLED BY: PRO6RAM DATAB I
C CALLS NONE I
C VARIABLES: NONE I
CIIIIIIIs1 111 1IIIIIIII 1 $ 1s II II

SUBROUTINE DIM
WRITE(I;' (A)')CHAR(I2)
WRITEII,' IO1,''DATA BASE MANAGENENT"I"''THE FOLLOWING OPTIONS AR

.E AVAILABLE:"/"I. 5ISPLAY CURRENT LP MODEL"/31,"(SCREEN OR PRI

.NTER)"i/'"2. EDIT CURRENT LP ODEL' '/3X,' CIANSE 4NY PARAMETER)

.'"//"3. SAVE CURRENT MODEL TO DISK FILE"/31,'"I(AY THEN EDIT TO
* ANCiRER MODEL)")')
VRITEl,'(i'"4. ENTER NEW NODEL"/3X,"(CURRENT MODEL LOST IF NOT

ON DISK)"/'/5. SOLVE PROBLEM"/3X,"(INCLUDES EDUCATIONAL, PROD
.LEN OLVER,' '4X,' 'AND SENSITIVITY ANALYSIS)''I1" ' OUIT:UNSAVED

* FILES DESTROYED!")')
RETURN
END

272

go d ;, 1. -ST - ,

$6 fODULE I UNiT16 I

C SUBROUTINE DEM I
C USE: DISPLAYS MENU OF OPTIONS RE64RDIN6 WHICH MODULE IS DESIRED TO I
C BE EXECUTED NEXT. ALSO OP7IONS OF RETURNING TO DATA BASE I
C MNABENENT OR TO 901T THE LP PACKAGE ARE DISPLAYED. I
C CALLED BY: PR06PAP DATAD
C CALLS : §5NF
C VARIABLES. NONE

SUBROUTINE DEM
WRITE(1,' (A)')CI4AR(12)

WR'I (1X 'EXECUTION IANAGEMENI''lI' THE FOLLDWINS OPTIONS AR
.E AVAlLA8LE:"''iI''. LP' INSTRUCTIONAL MOD'JE'/3X, '(EACH TABLEAU
.MAY BE DISPLAYED)''II'2. PROBLEM SOLVER flODLLE"''3X,"(NO USER I
.NTERACTION)"II''3. SENSITIVITY ANALYSIS MODULE "')')
WRITEd,'(/''4. RETURN TO DATA BASE MAKAGEMENT MENU''/''S. QU!T:U
.NSAVED FILES WILL BE LOST!"!')
RETURN
END

9 273

C MODULE I UNIt17
C U IT $USES: NONE S
C
C SUBROUTINE CHECK(E, INAL,RE NN)
C USE: VERIFIES USER INPUT OF REAL NUMBERS WHICH HAVE BEN READ INTO
C SINGLE ELERENT CHARACTER STRINS. CHECKS ELEMENT BY ELEMlENTI

C THAT EACH CHARACTER STRING IS A NUMERIC, A VALID OPERATOR, OR 1
C DECIMAL POINT. IF ALL ARE VALID, TRANSFORMS CHARACTER I
C STRING REPRESENTATION INTO NUMERIC REAL. IF INVALID
C CHARACTER IS FOUND, FLAG SET WHICH CALLING ROUTINE CHECKS TO I

SIGNAL USER TO REINPUT NUMBER.
C CALLED BY: SUBROUTINE ADCON
C SUBROUTINE ADVAR S
C SUBROUTINE CNVA I
C SUBROUTINE DATAN I
C SUBROUTINE DATAS
C SUBROUTINE !CNRCH
c SUBROUTINE ORJCH I
C CALLS NONE I
C VARIABLES: t
C USED: ALLONI1),E I),M I
C MODIFIED: DECIMA,INVAL,NEGAT,RNEN I

SUBROUTINE CHECKIE, INVALRNEW)
CHARACTER ALLOWI ,ElI
DIMENSION E(IO),ALLOW1(4)
REAL N
INTEGER DECIMA
DATA '1LLOW/'1','2','3' '4','5','6','7', ','9'.'0,,','.~., '/

RNEMsO. 0

INVAL=O
DECIMA=O
NEGAT=O
00 400 lu.10

C CHECKS FIRST FOR BLANK CHARACTERS
IF IECI) .E. ALLONI14)) THEN

60 TO 4O(.,
ENDIF

C CHECKS EACH CHARACTER TO INSURE ACCEPTABILITY
C60 200 Jul.13
IF EiI) .EQ. ALLONWJ) THEN

IF (DECIMA .E9. 1) THEN
60 TO 00

ELSEIF (E(I) ,EQ. THEN
NE6ATml
GO TO 400

ELSEIF(E(I) .EQ. ',') THEN
DECIMA=
60 TO 400

274

Lii

II

ELSE
RNEW.IOIRNEW + (ICHAR(E(l)) -48)
60 10 400)

ENDIF
150 RNEWRNEW +(ICHAR(E(I))-48)tN

6010O 400
ELSEIF J~ M. 13) THEN

INVALz
RNEN2O.0
RETURN

ENDIF
200 CONTINUE
40 CONTINUE

IF (NE647 .EL 1) THEN
RNEW' -1. 1 MN

END IF
RETURN
END

] 275

no
:-.""Room"

C MODULE I UNIT17
C
C SUBROUTINE CHECK2(ED.HYL.,INVALlNEW)
C USE: VERIFIES USER INPUT OF INTESER NUMBERS WHICH HAVE BEEN READ I
C INTO SINGLE ELEMENT CHARACTER STRINGS. CHECKS ELEMENT BY IC ELEMENT THAT EACH CHARACTER STRING iS NUMERIC OR BLANK. IF I
C ALL ARE VALID. TRANSFOR4S CHARACTER STRING PEPRESENTATION I
C INTO NUMERIC INTEGER. IF INVALID CHARACTER FOUND, FLAG SET I
C WHICH CALLING ROUTINE CHiCKS TO SIGNAL USER TO REINPUT I
C NUMBER.
C CALLED BY; PROGRAM DATAB
C SUBROUTINE ADYAR
C SUPROUTI 4E CNVA
C SUBROUTINE DELCON I
C SUBE.OUTIE DELVAR
C SUBROUTINE DISPLY I
C SUBROUTINE 6ENIF I
C SUBROUTINE ICNRCH
C SUBROUTINE MODUL(INEW)
C SUBROUTINE OBJCH I
C SUBROUTINE VNCH I
C CALLS : NONE
C VARIABLES:
C USED: ALLOWI),0,E~t),HYAL I
C MODIFIED: INENINVAL I

SUBROUTINE CHECK2fE.D,HVAL. INVAL, IrE4)
CHARACTER ALLOWS ,1 El !
DIMENSION E;10),ALLW(t1)
INTEGER D,HYAL
DATA ALLW/;I';'r'3';4','5' ' ','7',','9, , /
INEW=O
INVAL-O
DO 3')0 il,D

DO 230 32I,l0
C CHECKS FIRST FOR BLANK CHARACTERS

IFiE(I) .EQ. ALLOW(il))THEN
60 TO 300

ELSEIF' E(I) .EQ. ALLOW4J)TAEN
INEW=IENt$IO + (ICNAR(E(I))-48)
8O TO 100

ELSEiF(! ,EQ. lOiTHEN
,NVAL=I
INEW2O
RErURN

EN-.IF
200 COKTIN'JE
300 CONTINUE

IF(]NE. .EQ. 0 .3R, INEW .ST. HVAL)THEN
INVALx!
TNEW20

276

RETURN
END IF
RETURN
END

ii 277

- .- -Opp---".

CS 1111121St * 211211IIIIII IlllS *I

C MODULE 1 UNITI7
C 1
C SUBROUTINE CHECK3(EINVALINE)
C USEi VERIFIES USER INPUT OF INEQUALITY AND EQUALITY SYMBOLS. t
C IF ELEMENT IS iNY4LID, SETS FLPG WPICH CALLING ROUTINE CHECKS I
C TO SIGNAL USER TO REINPUT SYMBOL. 1
C CALLED BY: SUBROUTINE ADCEN S
C SUBROUTINE DATAN 1
C SUBROUTINE DATAS
C SUBROUTINE ICNRCH S
C CALLS : NONE 1
C VARIALES: S
C USED: ALLOW(S),E S) $
C " NODIFIED, INEWINVWAL
Cl1III$11155t5i$II!II$Ill11151511

SUSFOUTINE C0ECK3{E, I%AL, INEW)
CHARACTER ALLOWIIElI
DIMENSION EilOi,ALLON(3)
DATA ALLOW/'f','=' 49'/
!NEWl)
INVAL=O

IF(ICHAP(E{I) .EQ. 60)THEN
I NEW.

ELSEIF(ICHAR(E(I)) ,EO. 6)THEN
'NEW21

ELSEif(ICHA RE(I)) .EQ. 1)1THEN
INEW:2

ELSE
INVAL:l

ENDIF
RETURN

END

ifl

278

-A

C MODULE 2 UNIT20 g
C UNITS SUSES: UNIT21 THRU UNIT27 *
C I
C PROGRAM EDUC I
C USE: MAIN PRO6RAM OF MODULE 2, LINEAR PRORAMMING PACKAGE. I
C PURPOSE OF MODULE IS TO PROVIDE A TUTORIAL WHICH PROVIDES s
C GUIDANCE IN THE SEOUENCE OF STEPS OF TRANSFORMING A SIVEN 4
C PROBLEM INTO THE TABULAR FORM WNICH THE SINPLEX METHOD IS I
C APPLIED. ALSO THE MATHEMATICAL OPERATIONS ARE EhPHASIZED BY t
C SOLICITING RESPONSES FROM THE USER UPON THE VIEWING OF EITHER I
C NUMERICAL MANIPULATION OPTIONS OR OBJECTIVE SELECTION OPTIONS.
C USER 19 GIVEN IMMEDIATE FEEDBACK ON CORRECTNESS OF OPTION I
C iELECTICN WITH A BRIEF INSTRUCTIONAL NtTE FOLLOWING INCORRECT t
C RESPONSES. hODULE 2 CONSISTS OF S SEPARATELY COMILED UNITS t

(UNIT 20 THRU UNIT 27) WITH ALL JNITS EXCEPT UNi120 BEINS I
C OVERLAY UNITS. I
C PROGRAM EDUC ACTS AS A MEMORY FELEASE LOCATION. 9HEIIEVER THE t
C PRORAM CONTROL RETURNS TO THIS UNIT. ALL OVERLAY UNITS PRE I
C RELEASED FROM MEMORY PRIOR TO NEW UNITS BEING SUMMONED.
C CALLED BY: NONE
C CALLS : SUBROUTINE ASKQ(AEK)
C SUBROUTINE BIGH
C SUBROUTINE CNMDU
C SUBROUTINE HEADER
C SUBr'UTINE INDEX
C EUBROUTINE tHIRD
C SUBROUTINE MODIFA
C SUBROUTINE OBMDU
C SUBROUTINE OPT
C SUBROUTINE OPTION

SUBROUTINE PIVOT
C SUBROUTINE QUESTN
C SUBROUTINE READY
C S.BROUTINE TDISPL
C VARIABLES:
C USED: ASKqBIOBITABIFL9S(1).IFLAS(7),IFLAG(IO),ITABKFA, I
C no00NECNSC.OPTSOUTPPN I
C MNPDIFIED: PASICC($),DUALFLAO(2),PilPES

SUSES UCHECK2 IN UNIT27.CDDE OVERLAY
$USES UTDISPL IN UNIT2b.CODE OVERLAY
0SUES UHEAPER IN UNIT25,CODE OVERLAY
$USES UPIVJT IN UNIT24.CODE OVERLAY
$USES UDPT IN UNIT23.CODE OVERLAY
$USEb 50EAY IN UN;T22.CODE OVERLAY
SUJES UOBDMLU 1N UNIT21.CODE OVERLAY

PRISRAN EDUC
ChARACTER VNSOCNIO.PNS2,,F t OPINEDIIPIIDB.N!V
INTESER ARTY,BASIC,PK,PKSPRPRS.OPTS.V ,VT,COPES, a!U, UAL. OUTF,

.TIE.FMT.RSK
COMMON/EI/AiO,60),ARTV!20),C(60),Z,INE0(2Q),iFLA6(IO),Ci20)

279

IF
- 1

.,NECN6C,NLCIA,INDEXE,INDEX6, INDEXL,XB(20)
CONI1QN/E2!DASIC,K.KFA,KFS,KFSA,KFSU,OPTS, PK.PKS,PRPRS,VT,NlkI~
COMON/E3/NDD,PESIOIU,OUAL,OUTP, ITAD, iBTAB, IFTA8,IN,TIE,FNT
COhMON/E4VN40), .N(2),PN,MM,FN,P!NEg(20) ,P(1Ol),OBJN
DPEN(I,FILEz'00NSGLE:')
OPEN(5,FILE='ClONSOLE:')
NRITE(1, IIOICHAR(12)

110 FORMAT(A)
CALL HEADER

C ROUTINE WHICH ALLOWS USER TO CHAN6E DEFAULTS CALLED
130 CALL OPTION
C ROUTINE WHICH INITIALIZES VARIABL.ES AND READS MODEL CALLED

CALL INTRD
C CETERPINES WHETHER USEP OR AL60RIT40 TO PLACE IN TABULAR FORM

IFiMOD .EQ. ITHEN
C USE? TO PLACE IN TABUJLAR FORM

CALL OBMDU
CALL C.INDI

ELSE
C AL60RITHM TO PLACE IN TABULAF FORM

CALL NODIFA
ENDIF

C ROUTINE biHICH ADDS SLACK, SURPLUS, AND ORTIFICAL YARIABLES CALLED
CALL INDEX
IFilOD .EQ. I)THE4

C ROUTINE WHICH QUESTIONS USER 'I' TABLEAU FORM CALLED
CALL READY

ELSE
DO 200 J=KFAqVT

200 CONTINUE
ENDIF

C CHECKS IF ARTIFICAL VARIABLES HAVE BEEN ADDED
IF((NEC+WGC) .NE. O)THEN
CALL BIGM

ENDIF
IF(IIAD .EQ. 2)T4EN

BASIC4?ASIC' 1
60 To 30

ENDIF
C IF USER HAS SELECTED SCREEN QUT,,UT AND ALSO TO S.ELECT PIVOT
C ELEMENTS, ROUTINE WARNS IJSER TO STUDY TABLEAUS CAREFULLY

IFiPES .NE. 3 .AND, OUTP ,EG. i)THEN
CALL DVESTN

ENDIF
WRITE 1, 110) CHAR (12)
iF(PES .EQ. 3fTHEN
IF((NEC-NGC; .NE. O)THEN

WFPITE)I,220)
220 FORMAT(11~i),BX.'IN1TIAL BASIC SOLUTION'.7 /))

ELSE

JRITEil,240)

280

AD0A24 804 FORTRANBASD LNEA PROGRAMMING FORB BCOCOMPTRSU Vf5
AI ORCE INS 0F TECH WRIGH-4 PATTERSON AFB OH SCHOOL

OF ENGINEERING T R FRAEY ET AL. DEC 82

UNCLASSIFIED AFIT/GOR/ / 82D-4 F/G 12/1 NLEmimilliiEEE
mhhhmm.EmmmhE

mmhmhhmhmmmm
mhmhhhmhhEEEEE
ElnEEllEEEEEEE
EEElhhhnEnnhEI
mEEElhlhnhnnEI

W1 112.

* 1I 1L2 31 .jl6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS-1963-A

of'

'o"N

i .3.. 7 2 ThXT

240 FORHTIIII),51,'INITIAL BASIC FEASIBLE SOLUTION',7(/))
ENDIF
PAUSE

END7
C VSER SELECTED OUTPUT DEVICE FILE OPENED

IF(OUTP .EQ. I)THEN
OPEN(2, FILEz' CONSOLE:')
4RITE(2,II0)CHAR(I2)

ELSE
OPEN(2FILEz'FRIWTER:')

END IF
C TABLEAU HEADER PRINTED IF USER PAS ALLOWED ALGORITHM Ta SOLVE
C WITHOUT USER INTERFACE

!F(PES .EQ. 3'THEN
IF((NECNG) .NE. O)THEN
WRITE(2,' 4101,A2O)IeX, 'tHITIA. BASIC SOLUTION' 'fl')PN

ELSE
NRITE(2, (101,A20/X,''INITIAL BASIC FEASIBLE SOLUTION' ')')PN

ENDIF
ELSE

I'll
0RITEi2,290)PN. I

END IF
C BASIC SOLUTION COUNTER INCREMENTED
280 BASICSBASICtd

IF(BASIC .ME. I)THEN

WRITE (2, 290) PK, BASIC
290 FOR1A~i(IX,A20!1O0X,'BASIC SOLUTION #',124i)PN.BASIC

ENDIF
C FLAG DENOTES TABLEAU WITH PASIC VARIABLES ANNOTATED BE DISPLAYED

IFLAG(9)=2
CALL TDJSPL

C ROUTINE CALLED WHICH DETERMINES EXISTENCE OF OPTIMALITY
300 CALL OPT

IFIOPTS .EQ. ! .OR.-!FLAGf'?) EQ. I .OR. IFLAG(I) .ME. 0THEN
C TABLEAU IS EITHER OPTIMAL, UNBOUND)ED, OR INFEASIBLE
320 NPITE0l,11O)CdAR(12)

4P1lTEiI,'4i0(/),-''WOULD YOU LIK~E TO PERFORM FURTHER PIVOTS''/1IX
,'ON THIS TABLEAU? '",w)'
READ(5I' (AI)'1P(I
1F(ICNAR(PiI?) .EQ. 7B)THEN

C ROUTINE ALLOWS EXIT FROM NODULE
CALL ABRO(ASK)
IF(ASK .ED. I)THEN

so To 130
END IF

ELSEIF(ICFAR(P() .EQ. 89)THEN
IF(DUAL .E2. 1)TREN

PESa2
WPTD ,(I()'TE PINOFPROLN6DA IVT A'

WRITE(I, ZI0)CHAR(12)

'SI

./6,''DEEN ACTIVATED AT THIS TIME.",9/)P')
ENIF

ELSE
WRITEfl,'(/5X,''INVALID ENTRY, PLEASE REENTER"//)')
PAUSE
66 TO 320

ENr.IF
END IF
CALL PIVOT
IF(IFI.AGfl0) .EQ. 5)THEN

C FLAGi INDICATES FURTHER PIVOTS NOT DESIRED OR ALLONED
CALL ASK91AS()
IF(AS. .EQ. WHTIEN
S0 TU 1,0

ENOIF
EIVIF
MR ITE (1, 11') CHAR(C12)

C DETERMINES IF INTERMEDIATE TABLEAU TO BE DISPLAYED
IFGiITAB NME. 0THEN

IFf (FLOAT(BASIC*1I)/(FLOATI(IBTABm .EQ. FLOATUiBASIC-W)IPrABi
JTHEN

IF(OUTP .E9. W)HEN
OPEN(2,FILEz'CONSOLEz')

ELSE
OPEN(2,FILE='PRiHTER:')

ENDIF
60 To 280

ELSE
8ASIC:DASIc,1
60 TO 300

ENDIF
ELSE
BASICDP.SIC+1
go 10 300

ENDIF
STOP
END

282

C NODULE 2 IJNIT2 7
C UNIT SUSES: UNIT27
C
C SUBROUTINE 004U9
C USE: DISPLAYS OIDECTIVE FUNCTION AS !NPUT IN NODULE 1, SOLICITS I
C RESPONSE TO MENU OF OPTIONS OF OPERATIONS 6N!CH NAY BE I
C APPLIED TO PLACE OBJECTIVE FUNCTIOA IN IAXINlZATION AND Z-XsO I
C FORM. PROVIDES INEDIATE FEEDBACK AND DISPLAYS OBJECTIVE I
C FUNCTION AFTER PROPER MODIFICATION. ONLY UTILIZED IF UER t
C ELECTS TO PERFORN OBJECTIVE FUNCTION NODIFICATION. I
C CALLED BY. PROSRAN EDUCI
C CALLS : SUDROUTiNE CHECK2(P,N,N,INVAL,INEW) I
C VARIABLES: I
C USED: IFLA6(5),INECINVAL,NNIMXNN,VVN(l)
C NODIFIED: C($),P'it,T
CIIIIIIII*$*1 $tIIII tII II II I II II
$USES UCHECK2 IN UNIT27.COBE OVERLAY

SUBROUTINE GBNOU
CHARACTER VNCN,PN$2NNV FHZ;OPIE:,P1.OB N11O
SITEGER ARTVBASIC,PK,PKSPRPRS,OPTSVVTC1,PES.OiUDALOUTP,

.TIEFMT,T
COflONiEI/A(O'O,60),ARTV(20 ,C(60),I.. NE9(-0).IFLA6(10),CB(20)
.,NEC.NBCNLC.IA,INDEXE.INDEYG.1NDEXLIB%20)
CCINNN/E2/BASIC.K,KFA.YFS,XFA,kFSUOPTS.PPK,PKSPRPRS.V. VT.N'XN
CONNON/E~lNODPESOI U.DLCU F,!TftB, IiAD,[F1ABBN,1IEF T
COHNON/E41VN(20) ,CN 2O),PNNMFN4,?INEQ 2Og .P(10),ODJN

100 WR1TEl1,I1OCHAR(12
110 FORNAT(A)
C OBJECTIVE FUNCTION DISPLAYED AS INPUT BY USER

NRITE1,'14X."OBJEETIVE FUNCTION MODIFICATIGN"8(/),"THE OBJECT
.(VE FUNCTION, AS ENTERED. NWILL"I"BE DiSPLAYED NEXT. AFTER THE D
.ISPLAY,"/"YOU WILL BE ASKED TO SELECT THE OPTIGN')'i
WRITE(I,'("WHICH WILL TRANSFORM THE OBJECTIVE"/"FUNCTION INTO T
,HE PROPER TABLEAU FORN"/"FOR THE SIMPLEX ALSORITHM.",71/))')
PAUSE
WRITE1. 110)CH4R(12)
WRITE1I,120)

120 FORNAT(4X.'OBJECTIVE FUNCTION MODIFICATION'/71,'PRESENT OBJECTIVE
.FUNCTI EN' ")

C NUNBER OF 90 COLUMN DISPLAYS REPUIRED DETERMINED

DO 300 N=IT
IF(IFLA6S() .EQ. IITHEN

C VARIABLE NAMES PRINTED AS COLUMN HEADERS
WRITECI.' (101,$:')

00 180 Js(NIS)-4.N15
IF(J .5T, V)IHEN
60 To 180

ENDIF

130 FORNAt(7V,A6,1X,$1

283

180 CONTINUE

ENDIF
MRITE (1,'i IOX, S)')
DO 250 Ja(k#5)-4,N$5
IF'.J ST1. Y)T1IEN

60 TO 250
END IF
WRITE(1,200)J

200 FGFMAT(71,'l4',I2,')',21,Sl
250 CONTINUE

WRJTE4II'('' ")')
IF(N .EQ. I)THEN

ELSE

END IF
C OBJECTIVE FUNCTION COEFFICIENTS DISPLAYED

Do 290 Jz(N$5)-4,NIS
IF(J .6T. V)THEN

60 TO 280
ENDIF
IF(FMT .EQ. O)THEN

ELSE
WRITE(I,' (IX,''+' 1 X.FiI.4,$)' IC(J)

ENDIF
280 CONTINUE

'400 CONTINUE
P AUSE
WRITEiI,Ii0)CHARf12)
WRITE1Ii.320)

C OPTIONS DISPLAYED WHICH USER SELECTS THE ONE WHICH PROPERLY
c MODIFIES OBJEZ71VE FUNC11ON
320 FORAAT(4X,'ODJECTIVE FUNCTION MODIFICATION')

WRIT~l,1il'TOPLACE THE OBJECTIVE FUNCTION IN THE''/'PROPER F
.ORNAT FOR THE SIMPLEX ALSORIT)4N''/'WHICH OF THE FOLLOWING SHOULD
*BE DONE?"/I)')
WRITE(1,'''I. ADD -C(J) TO BOTH SIDES OF EQUATION.''lI''2. MULTIP
.LY EQUATION BY -1 AND~ ThE%4 ADD"/3X,''-CIJ) TO BOTH SID'ES OF EQUAl1

*iO.'I/'3.NO CHAKEES ARE NECESSARY.'')')
330 WRITE(U.340)
340 FORMAT(/i7X,'WICH OPTION IS CORRECT? '"si

CALL CHECK2(PI.3, INVAL,IlNEN)

WRITE'i,360)

Wh FORhAT(/5X,'IkVALID ENTRY. PLEASE REENTER')I 60 TO 330
ENDIF

C 033 FUNCTION PROPERLY MODIFIED AND USER RECEIVES FEEDBAC.

284

]FiNXNN EQ. I)THEN
DO 370 Jxl,V

Cfj)u-C(j)
1,70 COWTIVtUE

!F(INEW E. I)TFEN
WRITE(1,3901 iNEW

380 FORNAT(/IOX,'OPTION #'.11,' 1S CORRECT.'//)
PAUSE
6O TO 500)

ELSE
417TE(1,400) INEV

400 FORtAT0,9X,'0FTIGN,,I, IS INCORRCT.'//4X,'THE PROPER RESP
.ONSE WAS OPTION #I.'//)

PAUSE
60 Yo S00

ENDIF
ELSEI(XI, .EQ. 2)THEd

iF(INEW .EQ. 2)THEN
WRITE(I,380)INEM
PAUSE
so To 500

ELSE
MITE(1,420)INEW

420 FORMiAT(/9X,'OPTIGN #',11,' IS INCORRECT.'/!4X,'THE PROPER RESP
.DONSE WAS OPTION #2.'/!)

'PAUSE
ENDIF
Mx'AX'

ENDIF
.00 4Rf(TE(l,iI0,CHAR(I2)
C PROPERLY MODIFIED ODJ FUNCTION DISPLAYED

WRIIEil,' (2Y. 'AFTER THE PROPER MODIFICATION. TI4E''I6, ''BJEiTIVE
.FUNCTION FORN 15;"'!V11
TziV/5),
DG 700 Xz1,T

IF(IFLAi(5) EQ9. I)THE4

DO 554) Jx(1415)-4,N*5
!F(J SGT. Y)THEN

60 TO 550
ENDIF
WRITEI1.520)00)J

520 FORi AT(7X,A6,I1,$)
550 CONTINUE

ENDIF

DO 600 J=(NS5)-4.Nl5
IF(J .61. V)THEN

60 10 600
ENDIF

WRITE11,570)J

285

570 FMRNT(7X,'X(',12,'17,-I,S)
600 CONTINUE

IF(N AE. W)HEN
IF(NMIN AQ. W)HEN

ELSE
WRITE(I.'(2X,''NAX (-Z)",S')

ENDIF
ELSE

WRITE(I,' (101,V')
ENDIF
9O 650 Ju4Nt5)-4.Nl5

IF'J X6. V)THEN
60 TO 650

END IF
IFRT EQ. 0)THEN

ELSE

ENDIF
650 CONTINUE

WRITE(I,'(''" ')
ELSE
MR!TEll,'C'''"

ENCIF
700 CONTINUE

PAUSE
RETURN
END

286

Css I II tI II 1 1 1 11 1 1 11 I I I II 18 11
C NODULE 2 UNIT21 I
C t
C SUBROUTINE OPTION I
C USE: DISPLAYS DEFAULT OPTION VALUES AND SOLICITS RESPONSE TO t
C CHANGE THESE DEFAULTS. IF OPTION 'AS SELECTED TO BE CHANED, I
C USER REViEWS MENU AND SELECTS DESIRED METHOD AND IS RETURNED I
C TO DEFAULT OPTION DISPLAY. SeIPE OPTIONS ARE CHANGED UPON I
C SELECTION DUE TO ONLY TWO KETHOD SEIN6 POSSIBLE. OPTIONS ARE I
C RESET TO PROGRAMMR SPECIFIlED DEFAULT UPON EACH CALL TO THIS I
Cl SUBROUTINE. I
C CALLED BY: PROGAM EDIIC
C CALLS SUBROUTINE CHECK2(D.N.M,l&NVAL,lNEW)
C VARIABLES:
C USED: INEN. INVAL I
C MODIFIED; D,DUAL.FMT, IBTADI IFTAD, ITAB,NODOI&U.DUTP,PES I
L I IS* S SS* ItI IIIt IIIISI I II SSIISIISStI

SUBROUTINE OPTION
CHARACTER D(10)I1
INTEGER PES,OIU,DUAL,OUTP,TIE,FT
NN)ON/E-VR/CD,PES,OIU,DUAL.DUTP, ITAB,IBTAI, IFTAD,BM,TIE,FNT

PESz1
DUALs I

ITABDI
IDTA~st
IFTAB~t

100 WRITE(1,1I0)C4AR(12)
110 FORMAT(A'
C DEFAULT OPTIONS DISPLAYED

WITE(,'f12X,''nEFAULT OPTIONS''5X,''ENTER OPTION NUMBER TO CHAN

NRI7tE(,'(''1.TABLEAU FOP.MATION''.1 1X,S)')
IF(MOD .ED. I -THEN

ELSE
WRTE(i,' 1,'ALSORITN"'i'

E?.DIF
hRITE1,'(l''2.PIVOT ELEPENT SELECTION,5X,$)')
IF IPES .E9. I)THEN

VPllTEl,'(1I,'USER SEL''I3iX,''ALGOR CHIC')')
ELSEIF(PES .ED. WHTEN

NRITE~'iI4X,''USER SEL''i3lX,''NO CHiECK"')')'1 ELSE
WRITE(I ,')/,''3.D~lAL PI'40TS'',26X.S)')
IFIDUAL .EQ. I0THENI WRITE(l,' (''Nd')')

297

ELSE
MRIM~Il,' ')')

ENDIF
WRITE(I,' ('4.INFEASIDLE.LIBOUNDED,OPTINAL''/4X,''SELECTION IDENTI
.FICATION",21,)
IF(OlJ .EQ. IITHEN

ELSE
SAITE II,' (IX, 'ALSDRITHN'')')

END IF
NRITE(I.'(/,''LTADLEAUS TO BE DISPI.AYED''/4X,''INITI-AL'',19X,I)')
IF1ITA1 .EQ. W)HEN
NRIIE(I,'I9X,''Y''')

ELSE

END IF

IFtIFTAB .EQ. WHTEN
WRITE(1.'(9X,''Y')')

ELSi

ENDIF
WRITEi1,',"'6.MTPUT LDCATION'',13X,Wl)
iF(OUTP .ED. I)THEN
WRJTE(1,'(4X,''SCREEN'')')

ELSE

END IF
NRITEi1,',I,"7.OIJTPIJT FGRMAT'',15X 4)

I~FT .EQ. O)THEN
WRITE(CI.' (2X,''E FORMAT"')'!

ELSE
WRITE(W.t211

1'F FORIIAT'?')
E'IDIF

W~iE4I ('.NOCHANSES'I SEE DOCUMENTATION FOR EXPLAINATION
.''/.'71.'WHICH OPTION (ENTER I-BP" '.W)

CALL CHECKCD, 1,8, INVAL, INEW)
!F(INVAL .EQ. W)HEN
0RITE',5X,''INVALI9 ENTRY PLEASE REENTER"')')
60 TO 100

END IF
6OTO(130,220,270,3O0,400,500,530,56Q INEW

C MODIFICATION OPTIONS DISPLAYED
WITEil,140)

14') FORMAT(2](,'EDUCATIONAL MODULE OPTION SELECTION'/I)
*1 NRITEkI,'(''IN ORDER TO PLACE THE LP MODEL INTO THE'"'"PROPER FOR

.0 FOR THiE SIMPLE(ALSORITHN''"1'OJECTIVE FUINCTION CHANGES, ADDITf .IDN Of''/'SLACK OR ARTIFICAL VARIABLES), WHiCH''i''ETHOD IS DESI

288

VAITE(1,'(''l. USER SELECTS NODIFIC.ATION AND''/3X,''ALSORITHM CHEC
.KS"II8,''O~//'2.AL60RITII PEFFORMS MODIFICATIONS.''/3X''(No

*USER INPUT)")')
160 WRITE(1,170)
170 FORNlAT(/13X,'WHICH OPTION? I,$)

READ'.5,7(A1)'l)Di1)
CALL CHECK2(D, 1,2. INYAL, INEN)
IF(INVAL *EQ. 1)THEN

WRITEi1, 180)
80 FORN4T(i5X,'INVALID ENTRY, PLEASE REE1NTER')

60 TO 160
ELE

MOD=INEW
SPIDIF
30 TO 100

720 WRiTE(!.IlQ!ZHAR(12)
C PIVOT ELEMENT SELECTION OPTIONS DISPLAYED

NRITEI, 140)
NP.lTEi(.',''lN SELECTION OF PIVOT ELEVNTS FOR THE7'/''SIMPLEX AL6
*ORITHM, WHICH IETHt'D WCULD''/'YOU LIKE?'")')

~RIT41,'U','1,USER SELECTS, AL-5RITHO CHECKS.''!3X,''(NAY CH
,ANSE SELECTION AFTER CHECK)''/1''2. USEP SELECTS, NO AL60RITHR CHE
.CK.''!l'3. ALIIOPITHM SELECTS, NO USER INPUT."~)')I

240 0R1TE(1,170)

CALL CHECK2(D,1,3,lNVAL,INE*)I

GO TO 240
ELSE
PESzJNEW

ENDIF
so 70 100

2470 NRITE(1.110)CHARiU2)
C DUAL PIVOT OPTIONS DISPLAYED
280 WRITE(1,140i

NRITE(WI')(/)'WOULD YOU LIKE TO BE ABLE TO PERFORM''!0,''DUA.
PIVOTS? ''

WRIE i,'U''(UALPIVOTS ARE ALLOOED ONLY IF 4JER''/'SELECTS P1
AVT RON AND COLUMN ELEMENTS)''//13X.''(Y/N,,REIUPN) ",$)'i

IF(ICHARID(l)) .EQ. e?)THEN

EL5ElF(IC1-ARiD(1)) *EQ. 78)IHEN
DUAL: I

ELSE
j WRITE0I.160)

60 TO 270

END IF
60 TO 100

300 ORITE(1 4110)CHAR(12)

C IDENTIFICATION OF FINAL TAPLEAU OPTIONS DISPLAYED

WRITE(1, 140)
WRITE(l,'("AS OPTIMAL, INFEASiIBLE, OR UNBOUNDED"/''SOUTIONS C
UIR, WHICH NETHOD WOULD YOU''/"LIKE?")')
WRITE(1,'(2(I),''1. USER ATTEMPTS TO IDENTIFY, AL6ORITN-''13X.-CH

.EC S.'II'2.SYSTEM IDENTIFIES AND REPOP.h AS"/31,''OCCURS.")')
120 WRITE0l1 70)

REAO(5,' (AI)')P(1I
CALL CiECK21D,l,2,l&NVAL, IAEW)
!F(INIAL .ED. I)THEN
WRITE (1,180)
60 TO 320

ELSE
OIU-INEV

END IF
SO TO 100

40)0 WRITE11,1lO)CHAR(12)
C TABLEAU DISPLAY OPTIONS SHOWN

WRITE(1, 140)
WRITE(1,'(''NHICH TABLEAUS WOULD YOU LIKE DISPLAYED?'')')

420 WRITE(1,'U!5X.''INITIAL TAaLEAD? (YIN) ',$P')
READ(5I' (AI)')Di1)
IF(ICHARiD(1)) .ED. 69)THEN
ITAB2I

ELSEIF(ICHAR(D(1)) .ED. 78)THEN
iTAB=2

ELSE
WRITE(1, 180)
60 TO 420

END IF
440 WRITE(W, ilX.'INTEPMEDIATE TABLEAUS? (YIN) ')'

READ(5,' 'AI)')D;1)
IF(ICHARID1l)) .ED. 69)THEN
NPITE(W.(i''EVERY NflH) INTERMEDIATE 1BEAU VILL EE'15X,''DI

.SPLAYED.")~')
450 WRITE(1,'ii4X,"lWHAT VALUE DO YOU DESIRE FOR N?1117X,''N

READ(5.'(2A1)')Dl).Di2)
CALL CRECK2(0.Z,99, INVAL, INEW)
IF(INYA. .E. 1)THEN

IRITE(, 10)
PAUSE
60 TO 450

EN91F

ELSElF(ICMAR(D00)) .EQ. 7B)TI4EN
IBTA~zO

ELSE
VRITE~i, 180)
60 TO 440

END IF
460 W0I!Eil,'i/5X,''FINAL TABLEAU? (YIN) ''.$)')

290

Ll a

IF(ICIIA(D(1)i .EQ. 89)THEN
IFTAB-I

ELSEIFUCHAPQ(D(I) .EQ. 76)THEN

ELSE

60 TO 440
END IF
GO TO 100

C OUTPUT LOCATION OPTION CHANGED
500 I'OU1P .EQ. !)THEN

ELSE
OUTPal

ENDIF
60 T0 1,30

C OUTPUT FORMAT CHANSED
530 IFtFMT .EQ. W)HEN

FMT=O
ELSE

ENDIF
GO TO 100

W)0 RETURN
END

waIWmWrmw m

C NODULE 2 UNI7)22
L UNIT $USES: UNIT26 AND UNIT27

C SUBROUTINE READY
C USE: DISPLAYS QUESTIONS CONCERNING WHETHER OR NOT THE TABLEAU I
c WHICH 1S DISPLAYED IS A INITIAL BASiC SOLUTION AND READY FOR I

C THE INITIAL. PIVOT OF THE SIMPLEY ALSORIIHM.IFRIFIA
-c VARIABLES HAVE BEEN ADDED, THE '8I6 N' METHOD "LIST HAVE BEEN I

C APPLIED TO THE VARIABLES SPECIFIED BY USER. USER IS 6IVEN I
C IMMEDIATE FEEDBACK AND TANSTRUCTIONAL COMMENTS 411H BOTH I
C CORRECT AND INCORRECT RESPONSES. ROUTINE MODIFIES TABLEAU I
C CORRECTLI RESARDt.ESS OF lUSER INPUT. I
C CALLED BY; PR06PAM EDUC
C CALLS :SUBRlUTIN4E CHECK2(P,N,A,i4VAL,INEW'
C SUBROUTAINE TDISPI I
C VARIABLES3
C USED; BM.ISEW.INVAL.KFA,NECSC.VT
C MODIFIED. C~t),IFLA613),IFLA6(9),PII1

$USES UCHECK.2 IN UNIT27.CODE OVERLAY
$USES UTDISPL IN UNIT26.CODE OVERLAY

SUBROUTINE READY
CHARACTER YNI6, CNS6.PN*20Mt,FN10,PINEI1,PIOBJNII0
!NTEGER ARTVBASIC,PK,PkS.,PR,PRS.OPTB-,V,VT,CB,PES.,OU.rUAL.OUTP,
* TIE. FlT
CO ON/EI!AAA20.6), ARTV (20) .C (60).1, INED(210). IFLAG (0) , CD(20)
* ,NEC,46&.NLC. IA, INDEXE, INDEXG, INDEXL. xB'20)
COMMDIt!E2'BASIC,.KFA,KFS,FA.:FSUOPTS,PK,PKSPR,PRSV,VT ,N
CDMMON/E3/MUC , ES, OIU,DUAL,OL'TF,ITA B,IBTAB,.IFTAB,BM.TI E,FNT
COIMQN!44VNi2' N2)PMNPN2),U)O

100 WRlTE01I)CHARi12)
110 FURMAT(A)

WRITEl1.'(4'/) ,'THE TABLEAU AS MODIFIED PREVIOUSLY,"I!'WILL BE D
*ISPLAYSD.''/l"YOUI WILL THEN BE ASKED IF THE TABLEAU 1S"'!'IN THE
*CORRECT FORM FOR THE SIMPLEX'/"AL60RITHM."'hl)
PAUSE
NRITE!1. IIQ)CHAR(12)

C FLAGS ALLOW DISPLAY OF TABLEAU WITHOUT BASIC VARIABLES ANNOTATED
IFLAG(3)z1
IFLAS69)=2
DPEN(2,FILEv'CCN3OLE:')
CALL TD1SPL
WRITE(1,II0)CHAR12)
WRITEII.'(a:/).iX.'IS THE TABLEAU IN THE PROPER FORM FOR''/IOX,''
*THE INITIAL PIVOT? ',)

IF((NEC+NSC) .EQ. O)THEN
IF(ICHARiP(li) *EQ. 89)THEN

WRITE(I,130)
IS0 FOR%4T(/l71,'YOUR PESPONSE WAS CORRECT.' 2X,'THE TABLEAU IS IN

THE PROPER FORM.'./

292

PAUSE
60 TO 300

ELSEIF(ICHAP(P(1)) .EQ. 7B)THEN
WRITE(1. 150)

150 FORMAT(liiX,'VOUR REPI*' WAS INCORRECT.'!)
WRITE(I1 lo)

ho FGRMA11i/'NLY SLACK 4ARiABt.ES HAVE BEEN ADDED, SO'/2Y,'NO FURT
.HER MODIFICATIONS ARE NEEDED.'/13X,'YUU PRESENTLY HAVE AN INITIAL
*BASIC'115X,'SOLUTION.'iI)

PAUSE
60 TO 300

ELSE
WRITE (1,1e0)

180 FORMAT(ISX.'INVALID ENTPY. ?LEASE REENTER')
WRITE(I,' (2(i))')
PAUSE
60 TO 10O

ENDiF
ELSEIF(ICHAR(P(1)) .EQ. 78)THEN

WP.IT E (1, 200)
200 F9RllAT(//PX.""CllR RESPONSE WAS CORRECT.' 12X.'FURTHER MCDIFICATIC

.NS ARE REQUIRED.'/!)
PAUSE
60 TO 300

ELSEIF(ICHAR(P(I)) .EQ. E9)THEN
WRITE(1.150)
ORITE!,2201

220 FORMATt/'4fiTIFICAL VARIABLES HAVE BEEN ADDED,. YET'i'THE OBJECTIV
.E FUNCTION HAS NOT BEEN'i' COIFIED (016 K) TO REFLECI TlS.';Jl

PAUSE
60 TO 300

ELSE
WRIIE'!, 1B0)
WRiTE)),' (2(I))')
PAUSE
60 To 100

ENDIF
300 IF(iNSC+NEC) ,NE. OITHEN

WRITE 1,110) CHAR (12)
WRITEII, (9(/).'THE TABLEAU WILL BE DISPLAYED AND fCU''I'WILL
B E ASKED 7O IDENTIFY THOSE''I''ARIABLES WHICH THE 6I6 P PETHOD I

£ PAUSE

IFLA60() :1

OPEN(21FILEu'CONSOLE:')
#RITE(1,110CHAR(12)
CALL IDISPI

310 WRITE(1,1I0)CHAR(12)
WRITE) 1.370)

320 FOPMAT1I.WNHICH VARIABLES REgUIRE THE USE OF THE'.116I M 4IE
TH0D?'/19X.'(ENTEF SUBSCRIPT VALUES)',!)

293

WRITE(1,'(9X,''FIRST VARIABLE? '',S)')

CALL CHECK2(P,2, VT, INVAL,INEWJ
IF(INVAL .E9. I)THEN
WRITE(1, 180)
PAUSE
S0 TO 310

END IF
IF(INEW Efi. KFA) PEN

WRITEI1,340)KFA
340 FORNAT(//7W.'OUR RESPONSE VAS CORRECT.'/l1A2,' 15 THE FIRST

*ARTIFICAL VARIABLE AND'I5X,'REOUIRES THE USE OF THE B16 At.')
EL SE

kRITEi1,360)KFA
340 FORMATi1'IbX.'YOUR RESPONSE WAS IhCOFRECi.',1lX,'lHE CORRECT RES

.PONSE WAS VARIABLE ',1!'THIS IS THE FIRST ARTIFICAL VARIABLE AND'

.'2W.REQUI0RES THE USE OF THE B16 At METHOD.')
ENVIF
PAUSE

30WRITE(1,110)CHAR(12)
WRITE(1.'(3X,''VARIABLES "',12," 1HRU Xi?) REWUIRE THE''/13X,''

J.IS Mt METHOY''l)'iKFA
WRITE(1,'(9X,''LAST VARIABLE? ",fl')

CALL CHECK2(P.2,VT,iNYAL,INEW)
IF(INVAL .ED. ITHEN

WRITE (1, 1&))
PAUSE

END! F
iFiINEW .ED. VT)THEN

WRITE{ 1, 400) VT
400 FCRKAT(//7X.'YOUR RESPONSE WAS CORRECT.jilX,!THE LAST ARTIFICI

.AL V4RIABLE Is #',12.' AND'/2X1I THE LAST TO REQU(RE THE USE OF
*TKE'/14X4'BlIS M METHOD.')

PAUSE
ELSE

ORITE(420) VT
420 FORftAT(/I6X,'fG'R RESPONSE WAS INC0RRECI!,.'/IX,'THE LAST ARTIFI

*CIAL VARIABLE IS #',12.' AND'/iX,'15 THE LAST TO REQUIRE THE USE 0
JF THE'ii4X.' BIB M PETHOD.')

PAUSE

DO 450 J-KFA,VT
C(J)z-30

0~0 rONTINUE

WRIE~l'(0(I.f.''hETABLEAU WILL BE DISPLAYED, THEN YOU''12
."iWLL BE ASKED IF IT IS IN THE PROPER''/6X.'F0R4 FOR THE INITI
.AL PIVOT.'''i)'I PAUSE
c FLAGS ALLOW TABLEAU WITH BASIC VAFIABLES ANNOTATED TO LE

294

C DISPL.AYED
IFLAGIS)uI
IFLA609)c:
0FEN12,FtLEx' CONSOLE:'l
4RITE(!, IOJ)CHAR 12)
CALL TDISPL

480 WRITEiI1O)CNARUl2)
kRITE(I,'('1X,''l THE TABLEAU IN THE PROPER FORM FDR''/IOX,''THE

*INITIAL PIVOT? '',$)')

lF4iCHARIP(1)) *EQ. 78)TI4EN
4R!TEi1,'(//7X,''YOUR RESFONSE WAS CORRECT'')')
0 1ITE (1. 50'

500 FeR"AT('THERE !S NO INITIAL BASIC SOLUTION SINCE'i'THE OBJECTI
.VE FUNCTION COEFFiCIENTS OF'I'THE ARTIFICAL VARlAPLES ARE NOT ZERO

ELSEIF(JCPAR-(P(I)) *EQ. 89)7HEN
WR!TECI,' //6I,'YOUR RES?3NSE WAS INCORRECT."')
WRITI1,500)
PAUSE

ENDIF
END IF
RE TURN
END

295

C MODULE 2UINIT22
C
C SUBROUT tHE CNMDU
C USE: DISPLAYS THE CONSTRAINTS AND A MENU OF OPTIONS WHICH MAY BE I
C APPLIED TO CONSTR4INTS TO PREPARE THE CONSTRAINT FOR THE I
C SIMPLEX ALGORITHM (ADD VARIABLES. MULTIPLY BY -1). SOLICITS I
C USER INPUT AND PRESENTS IMMEDIATE FEEDBACK. IF INCORRECTg I
C RESPONSE GIVEN, BRIEF INSTF.UCTIONAL COMMENTS ARE DISPLAYED. I
C CONSTRAINT IS MODIFIED CORRECTLY REGARDLESS OF USER INPUT. I
C CONSTRAINTS WITH NEGATIVE PHS'S ARE MULTIPLIED DY -1. 1
C CALLED DY: PROGRAM EDUC I
C CALLS :SUBROUTINE CHECK2fP,N,MINVAL,INEW) I
cSUBROUTINE TDISPL I

C VARIABLES: I
C USED:;NSFA()IENA~..NS
C MODIFIED: Ad$,t:,IFLA(3),IFLAS(9,INEQSI,GC,NLCPINEiS', I
C P(il,S,T,'JT,XBIl I

SUBROUTINE CNMDU
CHARACTER VNi6,CNSL6,PNI2O,MMS3,FN$,,O,PINEg11,PI,OCFJNI$I
INTEGER ARTY,BASIC,PK,PKS,PR,PRS,OPTS,V,VT,CB3,PES,OIU,DUAL,OUTP,

.TIE.FiT.TS
COMION/E!iA(2O0,6Q),ARTV!20),C(60,, ..1NEQ(20), IFLAG(10~ ,CE(20)
* ,NEC,NGC,NLCIIA, INDEXE, INDEA6,INDEXLXB(20)
COiMN/E'.iF'AEIC,KKFA,KFS,KFSA.KFSU,.3PTS,PKPKSPA,PRS,V,VT.MXMN
"OMPON/E3/IBODPES,OIU,DUAL,OUTP, lTAB.I8TAB, IFTAB.BM,TIEFMT

C FL.AS ALLOWS ONLY CONETRAINTS TO BE DISPLAYED
IFLAS (9) ul
0PEN12,FILE:'CONSOLE;';
ORITEII, iIO)CHAR'A2)

!10 FOPNAT(A)
WFITEQi, (E.,'CONSTRAINT flDIFICATION"4iB/).''THE CONSTRAINTS, A
S1 ENTERED. MILL BE''i'DISPLAYED NEXT. AFTER IMF DISPLAY, YOU',!
"'WILL BE SHOWN EACH OF THE CONSTRAINTS"')
0RITSI'(''INDIYIDUALLY AND ASKED TO SELECT THE''/'OPTODN WHICH
*TRANSFORMS THE CONSTRAINT'!''INTO THE PROPER SiMPLEX ALGORITHM F
*ORM.'',7(i))')
PAUSE
NRITiiI.IIOCHAR(12)

C SET VARIABLES IN FORM 4PPROPRIATE FOR TDISPL S'JBROUThJEt
VbVY

C FLAG INSURES SCREEN IS CLEARED AFTER EACH 80 COLUMN DISPLAY
IFLA6(3)m1
CALL. TDISPL
WR!TE(I,I1)CHAR 12)
WRITE 'I,'(''EACH LONSTRA;NT WILL BE SEPAPATELY''/' DISPLAYED, THEN
*THE FOLLOW!NE OPTIONS'!''WILL BE DISPLAYED FOR ECH CONSTRAINT.

WRITEl1,'1''YOU WILL SELECT THE OPi ION WHICH WILL'', ''RACE THE C
.ONSTFAINT IN THE PROPER''/'SIMPLEX ALGORITHM FORM."'I'

'1 29

WRITEU, 150)

150 FORN~,T('. ADD SLACK VARIABLE ONU.''12. SUB1IRACI SUROS VARIAll.
.E, ADD'I3X,'4R-I!FICAL VARiABLE.'II'3. ADD ARTIFICAL VARIABLE ONLY.

NR17E 11, 160)
160 FCRNA'!(I'4. AUtLTiPLY BY -1, SUBTRACT SURPLUS'!/3X,'VAR!AkiE, ADD AP

.TIFICAL VARIADLE.'//'5. MULTIPLY BY -1, ADD SLACK VARIABLE.'II'.
*MULTIPLY BY -1. ADD ARTIFICAL'/3X,'VARIABLE.')
PAUSE
ORITE41,110)CIAR(12)

DO 900 Icj,K
DO 400 Nxi T
IF(IFLA85) *ED. ITPEN

WRITE(I,'(131,l)-1
DO 270 J:lNr5)-4.Nl5

IF(J *ST. V)T4EN
59 TO 270

ENDIF
W11T0(,260) N(J)

,to F0RNAT(6iX,A6, 1X,fl
270 CONTINUE

WRITE(W.('''''
ENDIF

Do 290 :N)-,S
IFW *ET. U)TPEN
60 TO 290

END!F
WRITV! .2e0WJ

280 F9RHAT(6X2.Xi',I2.')'.2X.S)
290 CONTINUE

IF(T *EQ. I *OP. N .ED, T)THEN
WRITE0~, 300)

300 FOP)4A~e7, 'RHS')
ELSE

ENDIF
NP!TE (1, 340) 1

340 F0RNAT('CNI' ,J,,)
IFdIFLA8i5) .EQ. W)HEN

35 FRITE1;1bA0.1X,1

SLSE

ENDIF

1F93 .67. W)HEN
Gil TO 370

END IF

IF(FMI .EQ. ObTHEN

297

ELSE

END IF
370 CONTINUE

IF(T .EQ. I DOR. N .EQ. T)THEN
IFWFNT .EQ. 0WTHEN

ELSE
WITEUt,' (11,AI,F12.5,tI)-)PINEU(1)413(I)

END IF
ELSE

ORITEfI,', ")'''')
EASIF

40e COOTINUE
PAUSE

410 WRliE(I,110)CHAR(l2)
VRlTE(1,?113X,''CONSTRAINT C,2I))
VRITE4,~150)
WRITE , 164)
NRITE1 1,420)

420 FORMAT/l3X,'WIiCH OPTION? '$

REA0(5,' (AW))P'1)
CALL CHECX2(Pq I,6,I.NVAL,IRE4)
IF(IXVAL .EQ. I)THEN
WR17E(I.4301

430 FORMAT (/3X,'INVALID ENTRY, PLEASE REENTER')
PAUSE

60 TO 410
END IF

C COECKS FOR NESATIVE ROS
IF(XB(l) .ST. WTHEN
IF(INE~il) .EQ. WTHEN

C USER SELECTION CHECKED AND FEEDBACK PROVIDED
IF(IREW .EQ. WIHEN

WITE(1,450) INEW
450 FORMAT(IX,'OPTION 'I15I CORRECT.'/)

PAUSE
60 TO 800

ELSE

WRITE (1,460) INE#,S
460 FORMAT(/qWOPTION #',11,' 1S INCORRECT'1/1,'T4E PROPER R

.ESPONSE WAS OPTION *,1
PAbSE
60 TO BOO

ENDIF
ELSEIF{'INEUltl ,EQ. I)THEN

IFIINEW *EQ, 2)THEN
WRiTEi1.450)INEW
PAUSE
sc TO0800

ELSE

295

532
MITE (1, 460)1'NEW, S
PAUSE
S0 O 1000

ENDIF
EI.SEIF(INEW .EQ. 3)THEN

WRITE(1,430) INEW
PAUSE
60 TO 900

ELSE
S83
NRITE(1,460) 'NEWS
PAUSE
60 TO 300

ENDIF
ELSE

IF(INEgil) .EQ. C)TiEN
IF(14EW .EQ. 411)4EN
WRITE(1,450)INEN
PAUSE

ELSE
S=4
NPRITE(1.460) INEW,S
PAUSE

ENDIF
ELSEIF(INEG(I) .EQ. 1'THEN

IF(INEW .EQ. K.)THEN
NRIE(1,450)[NEO
PAUSE

ELSE
S-5
WRITEU1,460)INEW,S
PAUSE

END IF
ELEEIF(IMEW ME. 6)THEX

WRITE(l.450)INEW
PAUSE

ELSE
WRTE14a)NE,
PAUSEil40IE,
PAUSE

ENDIF
C CNSTINT iHNSTV HSNLILE Y

ID COSINT WITH MEAI(I)UTPLE Y-
Xpfl0O z1*y~

50Q ClITINUE

c COUNT OF INEQUALITIES BY TYPE CORR~ECTED DUE TO AULT BY -1'I 1INMEOI) .EQ. 01THEN
NLCsNLC-1IGEB~

g -Ll A.& -2IM

ELSEIFtINEI(1) .Eg. I)THENt

NLC=NL.C+1
INEV'I O
PINED(I)z'('

EAIF
800 MRITiI,110) CHAR (2)
900 CONTiNUE

P.ETURN
END

300

v .wM

C MODULE 'NI1T23
S UNIT SUSESt UNIT26 AND UNIT27

C
C SUBROUTINE OPT
C USE: DETERMIKES THE PIVOT ELEMENT. OPTIMALITY, UN3GUNDEDNESS, AND *

C FEASIBILITY OF THE CURRENT TABLEAU. DEPENDENT OF THE I
C INTERACTION OPTIONS SELECTED BY USEA, THE UBEF AILL BE ASKED I

C QUESTIONS ON ThE ABOVE CONDITIONS AND PRESENTED FEEDBACK I
C 4CCORDINGLY. ALSO DEPENDENT UPON OPTION SELECTION, THE PIVOT I
C ELEMENT MAY BE THAT SELECTED BY THE ALaORITHN OR AS lNPUT BY I
c USER. THIS ROUTINE ALSO DISPLAYS A TABLEAU HEACER ON THE I
C SELECTED OUTPUT DEVICE FOR DESISNATED TABLEAUS. USER MAY I

5ELECT PIVOT ELEMENT TO '.AUSE SYSTEM OVERFLOW ERROR, BUT USERI
C IS G;VEI OPTION TO ABORT PIVOT PRIOR TO OVERFLOW ERROR. I
C. CALLED BY: PROSRAM EDUC
C CALLS :SUBROUTINE BABDIS
C SUBROUTINE TEAL
C SUBROUTINE TDASPI I
C VARIABLES;
C JSED! A 1*.S),C(I)qCSI),IFTAB,K.FF.Oi,OUTP.VT.A.Bi;) I
C MODIFIED: C .F,6NEB,IFLA6(I,.i.FLAS(4),IFLA6(6),IF-LAB(1,IFLk6iB), I
C IFLAG(9;,,INC,INF2,NNUODB,OFTS,PK,PR,SPRTIE I

$USES UCHECK2 !N JNIT27.CODE OVERLAY
IUSES LTVISPL IN UNIT26.CUDE 00ELAY

SUfFOUTINE OPT
CHARACTER C0j7, NC$S,ODBtIO,NNJtI4.Fll
IMfEGER ARTV.BASlL,PK.PYS.PR,PRS,OPTS. J,JT,CB,PES,O!U,DUALOiIUTP,

.TIE.FIT

16*tN/E'/BAS1C.Y, VF A,. S. 1PSA, KFFU. CPTS, PK.P VS.PR,PFF5. V.VT, NXMN
COMNON,'E3/MOD,PES.OIU,DUAL,OUTP. ITAB, IBTAB. IFTAB,BM, TiE.FMT
IFLAfi0):0

IFLA6i4)xO

IAiFI=O

C CHECKS FOR INFEASIBILITY
DO 100 I12,4
IF (XB!I) LT. 0.0)THEN

c FLAB DENOTES VARIABLE AT NEBATIVE LEVELI IFLA6(1):I
ENDIF
IF(CB(il BSE. KFAPTHEN

C DETERIINES IF VARIABLE 1S AN ARTIFICIAL VARIABLE

FLAB DENOTES ARtIFICIAL 4ARIABLE AT POSITIVE LEVEL

ENDIF

ENDIF

301

1N

100' CONTINUE

C FINDS THE LARGEST NEGATIVE Z(J)-Ct(J)
20 200 Ju1.VT

IF(C(J) LT. GNE6)THEN
TIEz0
6NE6zC(J1
PlC:"

ELSEIF(Cli) .ED. SONEG)THEN
C TIE EXISTS FOR ENTERING BASIC VARIABLE

TIE-1
ENDIF

200 CONTINUE
IF 60EG .6T. -.0001 .40. iFLAGU) .EQ. O)THEN

C NO NE64TIVE Z(i)-C(J) EIIS'S AND RHS'S ARE POSITIVE
SO OPTIMAL

OFTSx I
ENDIF
Ca:' CORRECT'
INCz' NCDRRECT'
GtBx' OPTINAL1

NUa'NOT OPTIMAL'
210 IF(OIU .ED. I)THEN
C USER HAS SELECTED TO IDENTIFY 5PTIMALITY

WRITE(1 *220)CHARl 12i
220 FOPKAT(A)

WRITE(1,510)
WR~i~1.'~3~''WA Th PREVIOUS IIABLEAU C?7IMAL? ",$)')

READ(5,' (AI)')F
IF(ICHAR(F) .EQ. 84)THEN

C LISER ELECTS TO REVIEW TABLEAU
CALL TCAL
6O TO 210

ELSEi'F(sCHAR(F) .NE. 29 .D. ICHAR(F) .NE. 781THEN
WRITE(1,230j

230) FORMAT(/5X,'INVALID ENTRY, PLEASE REENTER'!/!)
6O TO 210

ENDIF
C USER INPUT CHECKED FOR CORRECTNESS 4ND FEEDBRACK PROVIDED

TF(GPTS .ED. I)THEN
IFiICHAR(F1 .ED. eq)THEN

240 roRAT//!6X.'YOlR RESPONSE OAS *,A9/2X,'THE LAST TABLEAU WAS
. A ./

ELSE
#RITE(I ,24Q) INC,ODB
WRITE(,I''TO BE OPTIIAL, ALL C(J) AND 19HS VALUES'/'MUST

*BE ZERO OR P93MTVE. THIS IS''/'CURRENTLY TRUE, THEREFORE THE T
.ABLEAU I'/'PIA.''

ENDIF
PME
60 TO 500

302

JI 1

ELSEIFIOPTS .E6. O)THEN
IF'ilCHAR(F) -EQ. 78)THEN
WRITE (1, 240)CD, NNU

ELSE
WRT TE(I,240) !NC,NNj
WRITEUI.'U'1O PE OPTIMAL. ALL C(J) AND RHS '4ALUES"'"MUST

BE ZERO OR POSITIVE. THIS is''/"CURRENTLY NOT TRUE, THEREFORE T
.HE"1"TABLEAU IS N07 OPT!MAL."''l

END IF
PAUSE

ENDIF
ELSE

C ALGORITHM TO IDENTIFY OPTIMAL SOLUTION
iF(OPTS .ED. IJIHEN

IFiINFI .EG. 0 .AND. IFLAifl .E9. O)aHEN
NRITE(i. 22))CNAR 'I2)'
WRITEi,1Ii,21, "THE LAST BASIC SOLUTION WAS OPTIMAL.",

ELSEIF(INFI HME. 0)THEN
WRIE'I'(I(i)2X.'AFEASIBLE iGLUTIOh POEE NOT EXIST.'/!

.X.''AN AR;F;CAL VARIABLE IS AT A P'SITIVE'9.,'LEVEL IN THE SOL

ELSEIF(IFLAS(I) .NE. W~HEN
WFITE(I,'11;0(I),21,''THi SOLUTION IS INFEASIBLE SINGE THE"/I

."'BASIC VARIABLE ~',2')1S NEATlVE.'')')C3tIFLA6(lh
ENCIF
PAUSE

ENDIF
ENDIF

500 OB-' FEASIBLE?
NW:' INFEASIBLE'

!10 FORMAT(SX,770 REVIEW TABLEAU, ENTER T',/fl
1:101U .E2. I)THEN

c USER HAS SELECTED TO IDENTIFY INFEASIBLE SOLUTIONS
W!El220)'%HAR U?)

VRITE 1.51 Cl
IFIOPTS .ED, l1tT4EN
WRITE(i,.'(lX,''IS THE OPTIMAL SOLUTION ALSO FEASIRLE?''i190,)

ELSE
~R1E(1'(I.'ISTHE SCLUT;ON F:iASIBLE7 ",s))

ENDIF

!F(ICHAR.(F) .EQ. B4)THEN
C USER ELECTS TO REVIEO TAPLEAU

CALL TOAL
601 To s

ELSEIF1CHAR4F) NME. 78 .AND. ICHAR(F) .ME, B9)THEN
WRITE0 . 230)
PAUSE
60TO 90I END IF

303

C USER PROVIDED FEEDBACK ON RESPONSE
IFlN4FI .ED. 0 .AND. IFLAO(1) .EG. W)HEN

IF(ICHAR4F) .EQ. 89)THEN
017Ef 1,240)CD.OD1B

ELSEI(ICH4AR(F) .EQ. 7WiHEN
WRITE(I. 240) INC,O0B
WRITE(1,'(1RI''THE CURREM4T TABLEAU 1S FEASIBLE SINCE''/2X,''

.ALL RHS VALUES ARE POSITIVE AND ALSO''/4W, ANY ARTIFICA. VARIABLE

.S ARE AT A''i4X,"ZERO /UE'/''
ENDIF
PAUSE

ELSE
IF'ICPAR(F) .EQ. 78)Th4EN

4JRITEU.,240) CO.%NU
!F'JNF! NME. 0:TREN

WRI rE I 540) CD 1NFI
540 FOSNATW/THE SGLUTION IS INFEASIBLE SINCE THE'/'ARTiII

.AIL VARIABLE X"',i2,') IS AT A'/'POSITIVE LEVEL.')
ELSE

560 FGRHAT!.'WEf SOLUT13N 7S 19FEASIBLE SINCE TiE'I'94SIC VA
MRAK'E W('IL'i IS AT A NE(,A1VE',"LEVEL.'l

ENDIF
ELEEIF(ICHAR(F) EQ. EW)HEN

WRITE(!.240?INC.NMU
!F(IN4FI NME. C;THEN

WRJTE0i.540)CEIINFI)
ELSE

WITE(l.560)EBUlFLA6(l))
ENDIF

ENDIF
PAUSE

ENGIF
ErNDIF
!F')OPTS .E9. 1 .AND. INFl ,NE. 0' .OR. (IFLAG'Ii .ME. 0 .;MD.
G NEG .ST. -.r00I))THEN

C OP71HiAL AND INFEASIBLE SOLUTIONS NOT 6^HE.KED FOR UNBOUN4DEDNESS
60 TO 840

ENDIF
ENDIF
ODBP: DE6EMERiTE'

a NMNUz' NOT DEGENERATE'
C SCLJTION C4ECKED FOR DEGENERACY

DO S20 Izt,K.1 ~ ~IF(Wl I .6T. -.0001 .AND. 0~(I) LT1. +,~00I)THEN
IFLAG~6)z

20 E.NDIF
60 CONTINUE

IF'01U .EQ. W)HEN
c USER HAS ELECIED TO IDENTIFY DEGENERATE SOLUTIONS

70 RITEil.2CCHAR(12)
NP!TE (l, 5! 0)

3,04

heIp

WRITE(I,'(''WAS THE PREVIOUS SOLUTION DEGENERATE? '',W))

READ(5,'(AI)')F
IF(ICHAR(F) .EQ. W4THEN

c JSER ELECTS TO REVIEW TABLEAU
CALL TCAL
80 TO 630

c'LSEIF(ICHAR(F) MNE. 78 .AND. ICHAR(F) .NE. 89)TI'EN
NiRITE(1,230)
PAUSE
60 TO 630

ENDIF
C USER RESPONSE CHECKED FOR CORRECTNESS AAD FEEDBACK PROVIDED

IF(IFLAei6) E. O)THEW
IFICHAR(F .ED. 7S)THEN

WRITE0(,240) CONNLI
ELSEIF(iC4AR(F) .EQ. 9?)THEN

NRITE(I, 240iNW, NNU
lRITEl1.'(IX,''THE CURRENT TABLEAU IS NOT DEGENERATE''SJN

.CE ALL BASIC VALUES ARE AT A 4Oh-ZERO''I7X,''LEVEL.''I)
ENDIF
PAUSE

ELSE
IF,,ICHAR(F) .EQ. @?YTHE4

WRITE(I,240)CO.ODB
WRIT::i,650)CB(IFLA6(6))

650 FORMAT1/2X,'9ASIC VARIABLE X.',12.') IS ZERO IN THIS'/-&X,'SO
.LUTIOW.')

ELSEIF(ICHAR(Fi .E9. 7S)THEN
4RIHE(1. 240)INC,ODB
NFITE(1,650)rB(IFLA6i6))

ENDIF
PAUSE

ENDIF
END IF
IF(OPTS .EO. O)INEN

C NWN-UPTINAL SOLdTIDN-FIVOT RON DETERNINED
SFR:1(4Ea
O 700 1:1,1'
iF:(A(I.PK) Li.E. .0001)THEN

S0 TO 70O
ELSEIF,'(XBii)/A(I,PK)) .GE. SPR)THEN

6O TO 700O
ELSE

PR2 I
ENDIF

70(, CONTINUE
IF(SPR .GE. 1O0Eb)TN

0 RATIO IS INFINITE, THEREFOPE SOLUTION UNBOUNDED

IFLAG ()=1
ENDIF
GDB-' BOUNDED'

3105

IFMOU .ED. I)THEN
C USER HAS ELECTED TO IDENTIFY? UNBOUNDEDNESS
710 kRITEtI,220)CHAR!!!)

4RlTE!1,'(1X.''WAS THE PREVJIOUJS SOLUTION UNBCUNDED''hIX,''BASE
.D UPON THE NE)T PIVOT CCLUM9 (ROW!''/''EING THE CBLVKN (RCN) WITH
*THE L.AkifEST'1'X.''lEOATIVE l(J)-Cia) (B(Th) qALUE ' S

READ (5,(A. I'F
!F ICHARF:F *EQ. 24)THEN

C USER ELECTS TO REVIEW TABLEAU
CALL TCAL
6O TO 710

ELSEIFiICH4H(F) diE. 78 SAND. ICHAFIF) MNE. 99)THEN

PAUSE
S0 TO 710

ENDIF
C USER INPUT CHECKEDJ FOR CORRECTNESS AND FEEDBACK FROVIDED

IF(IFLAG(7) *EG. !IT.4EN
IF(ICHARtF) *EQ. 89)THEN

WRITE(l1240)COD,NNU
WRITE-1 720Q)PK

720 FORMAT''3X.'COL'PN '1,COEFFICIENTS 4RE ZERO CR'/1X.lNE
*6ATIVE, DR THE RATIO OF %B(I)lhdI,J'i1Oi0,'IS EXTREMELY LARBE.')

ELSEIF(ICHAR(F) *EG. 70)THEN
WRITEil,Z40) INC.NNU
WRITE-il720hP

ENDIF
PAUSE
66 TO 840

ELSE
IFi(ICHAR(r) *EQ. 78)THEN
WRITE(1,240)CO.OD9

ELSEIF(IC4AR(Fi *EQ. 89)THEN
WR17E(I,240) INC,OD8
VRITE(1.''2N,7'THE CURRENT TABLEAU IS BOUNDED SINCE''/!X,

."ALL THE A~I9J) VALUES lN CGLUMN "',12,'' APE'''9),"NT NEGATIVE
op ORERD.''II)')PK

ENDIF
PAUSE

E.ND I F
ELSE

$ IF(IFLAG7) *EQ. bltIhEN
WRITE(1,220)C9AR'I2)

NRIT(1,'1(/,1l.THELAST BASIC SOLUTION WAS UNBOUNDED.

PAUSE
60 TO 840

EINDIF
.ND IF

END IF

C CHECK FOR MULTIPLE OPTIMAL SOLUTIONS
00 760 JzI,VT

I4FLAG(8)sO
DO 750 IsI,K

IF(CB(I! .EQ. 0JiTHEN
IFLAB(6)zl

Et4DIF
750i CONTINUE

I~lIFLAG(G) .EQ. 0)THEN
IF(CiJ) .LT. .0001 .AND. C(J) .61. -.O001)THEN

IFLAO (4) .1
ENDIF

ENDIF
760 CUNTINUE

IFiOFTS .ED. 0THEN
IF(OIU .EQ. 1)THIEN

c USER HAS ELECTED 71O IDEN71FY PULTIPLE OPTIMAL 3FOtUTIONS
770 NRITE11,220)CHAR(12)

WRITE (1, 510)
WRITE(I.'(IX.''ARE THERE KULTIPLE OPTIMAL SOLUTIONS! 1',1)
REAO45,'(A1) ')F
lF(IC.NAR(F) .ED. 84)THEN

C USER ELECTS TO REVIEW TABLEAU
CALL ICAL
60 TO 770

ELSEIF;ICHAP(Fl .NE. 78 .AND. ICHARiF) .ME. 8?)THEN
WRITE'1,230)
PAUSE
60 TO 770

EMBIF
C USER PESPONSE CHECKED FOR CORRECTNESS AND FEEDBACK PROVIDED

IF(IFLA6(4) .EQ. I)THEN
!F(ICHAR(Fi .E2. 89)THEN

WRITE(1, 780) CO
7B0 FORMAT(i/oW.YOUR RESPONSE WAS ',A9Y!6X ,THERE ARE MULTIPLE

SOLUTIONS.')
NRITEil.800)

8oo FOPMATi/'A NON-BASIC VARIABLE HAS A ZERO' ,COEFFICIENT IN
.THE OBJECTIVE FUNCTION QF'iTRE OPTINAL SOLUTION.')

ELSEIF(ICHAP(F) .EQ. 78)THEN

WP!TE(1.780J INC

PAUSE
ELSE

IF(1CHAR(F) ,EQ. 781THEN
WRITE(1,820)CO

820 FoRMAT)//hX,'YOUR RESPONSE WAS ',AY?41,'1iIERE ARE NO MULTI
.PLE SOLUTIONS.')

ELSEIF(ICHAR(,Fl .E. 89)THEN
NRITE IXO82) INC
WRITE'I.'(,//IXC'THIS IS SINCE ALL NON-BASIC VARIADLES''/I

307

Mor
-- I. -"kilo=

.X."HAVE A VALUE OF OTHER THAN ZERO IN THE"/''OBJECTIVE FUNCTION
*RON. IF A ZERO YALUE''IU,''WAS PRESENT FOR A NOR-BASIC VARIABLE.

WRITE(I,'(1X,''INCREASINS THE VALUE OF THIS VARIABLE"'/%1
."WNOULD NOT CHANGE THE Z VALUE."')')

ENDIF
PAUSE

ENDIF
EADIF

ENDIF
iff OPTS .EQ. O)THEN

so TO 880
ENL'IF

340 IM'FTAD *EQ. 2)WHEN
C FINAL TABLEAU IS NOT TO BE DISPLAYED

RETURN
ELE
WRITE(.220)CHARI)
IF(OUTP .EQ. 1)THEN
0PEN(2,FILEv'CONSOLE:')

ELSE
OPENiZ,FILEu'PRINTE~i')

ENDIF
C TABLEAU HEADER ?PINTED

WRITEi2,'li0X,''8AS!C SOLUTION *'',I2)')BASIC
WRITEM2'4IOX,''FINAL TABLEAU-

IF'lNFI *NE. 0 DOR. IFLAG'l% *NE. OMTEN
NR17Ei2,' (''NFEASIfiLE''/'

ELSEIFIFLAGM7 .EQ. 1)THEN
WRITE02,' 'UKBOUNDED''/)')

ELSE

ENDIF
IFLAGM() 2
CALL TDISPL

880 CALL DASDIS
RETURN
END

LAWiw

C I I I I I I I I I I I I 1 a.9 1 1 1 1 1 1 a a a a a a a a a * a I I
C NODJLE 2 UNIT23

C SUBROUTINE TCAL
C USE: OPENS UUTPUT TO CONSOLE TO DISPLAY CURRENT TABLEAU ON SCREEN. I
C CALLED BY: SUBROUTINE OPT 4
C CALLS : SUBROUTINE TDISPL I
C VARIABLES. I
C USED: NONE
C MODIFIED: IFLA6)3),IFLA6(9)

SUBROUTINE TCAL
INTESER ARIV.CB
COiNOIEI/AI2Q b0) .ARTJ42O) ,C'60) ZINED(20). IFLA6(IO)4CB'209
,NEC. NBC, NC. IA, INDEXE#IND X6! IDE L,XB(20)

IFLA6(9)=2
IFLA6i3)=:
0PEN-2FILE='CONSOLE:')
NRITE42,''A)')CHAR(12)
CALL TOISPL
RETURN
END

309

MODULE 2 UNIT 24
C UNIT $USES: UNIT75 AND UNtIT27 I

C SUBROUTINE PIVOT I
C USE: DEPENDENT UPON USER OPTION SELECTION, EITHER SCLICITS INPUT I
C OF USER SELECTED PIVOT COLbfMN AND RON OR ?ASSES CONTROL TO 9
r. SUEROUTINE WORK US-IN6 ALiORITHM SELECTED PIVOT ELEMENT. I
C PROVIDES FEEDWAK, IF OPTION SELEC7tED. 4ND ALERTS USER OF I

- PIVOT ELEAENI SELECTION WITH VALUE OF APPROXIMATELY ZERO. I
rC WITH THE DUAL PIVOT OPTION, USER MUST SELECT PIVOT ELEMENTS. I

c ROUTINE WILL NOT ALLOW FLRTHER PIVOTS UPON REAC4I06 BOTW I
C PRIMAL AND DUAL OPT1MALIly 'ONDITIONS. I
C CALLED BY: PiOSR4M EDUC I
C CALLS :SUBROUTINE CH&IK2(P,N,M,lNVAL,!NEW) I
C SUBROUTINE OVER(RES) I
C SUBROUTINE WORKI
C VARIABLES: I
c USED: A(St,S)C($),SUAL,FMT,INEW,INVAL.K,PES,RES,VT,1B(t) I
C MODIFIED: IFLAB(4),IFLA(6),IFLAGlO)L,.PI),K.P(S,PRPRS. I

*RATIO,SDR,TIE I

$USES UCHECK2 IN UNIT27.CODE GVEFLAY
$USES UHEADER IN UNIT25.CODE OVEFLAt

SUBROU7INE PIVOT
CHARACTER VNIS.CNs6,PNa2I,M~s3,FNh1O,PINEQ;1,PI,O.JNaI0
INTEGER ARTV.DBA5IC,PK,PYKS,PRPRSOPTS,V,VT,CB,PES.OIU.DUALOUTP,
* T!E. FMT,RES, ASK
CONMON/El/A(2Q,60),ARTV(201 ,C(60 ,4. INEO(20).IFLA6(I0),C3(2O)
..NECNGC,NLC, IA, INDEXE.INDEXG,INDEXLXS(20)
COMMOH/E2/BASIC, ,KFIFS. KFSA, KFSL.OPTS,PK.PKS,PR1FRS.V,VT.NMN
COMMON/E3/NOD,PES,IJDLAL,OUTP, ITAD, IBTAB, IFTABDM. TIEFNT
COMMON/EVV/N(20) !CN%^O) ,PN,MN,FN,PINEU(240),P(1O),OBJN

C VARIABLES IPP,IPK CONTAIN ALGORITHM SELECTED PIVOT ELEMENT
IFLA6i4)mPK
IFLAGifb)mPR

100 NRjTE(:,10)CHARU12)
110 FORMIA0)

PK: IFLAS (4)
PR: IFLAG (6)
IF(PES .EQ. 3*-T4EN

C USER HAS ELECTED ALGORITHM TO SELECT PIVOT ELEMENT
CALL WOR.K
RETURN

E4DIF
IF(L .EQ. 0 A~ND. M -EQ. 0T?4EN

C NO NEG-ATIVE RHS OR Z(.) ((J; ELEMENTS EXIST
WRITE(I,'7y'OdAR T POPRY EROR DAL /
WRITE(WIOA(7 12)dAEUAL T RPRYPFFF ULIO

310

.4L OR P)RINAL Ta CONTINUE. ANY OTHER ENTRY WILL TERMINATE"'/

OR ITE (1, 110) CHAR (12)
IF(ICHARP(i) .EQ. 60)THEN

60 TO 1025
ELSE

C FLA6 DENOTES FURTHER PIVOTS NOT POSSIBLE
IFLA6(lO;sS

RETURN
ENDIF

'ENDIF
IF(DUAL .EQ. 2)THEN

C USER HAS ELECTED TO ALLOW DUAL PIVOTS
WRIE'1' ''/)31, NII4 ETHDO DO YOU WISH TO USE IN'/9X.''rE

.RFORNING THIS PV'7Xi.FR1NAL'II5X.''2. DUAL''
-1/5X.''3. NO FURTHER PIVOTS DESIRED"'/!)')

WRITE 11. 240)
READ(5, (Al)')Pl
CALL CHECK2'P, 1,3, INVAL, INEV)
IF(INVAL .E4. !)THiEN

ORITE(1,130?
130 FORMATi5X.'INVALID ENTRY. PLEASE REENTER')

n0 TO 100
ENDIF
IF(INEW .EQ. 7)THEN

C USER HAS ELECTED TO ATTEMPT DUAL PIVOT
60 TO 10(00

ELSEIF(INEW .EQ. 3)THEN
1FLA(M:95
RETURN

ENDIF
ENDIF

00 140 Jz;.YT
IF(C'J) LT. O.0?THEN

10 ENDIF 0TE

IdRITEII,,110)CHAR(12)
4FITE~l.''10(/),iX.''TO PERFORM PRIPAL PIVOTS, PT LEAST ONE'''3X

..''C(J) MUST BE NESATIVE. THIS IS NOT'''M,'PRESENT S0 A PRIPAL P
,IVOfT CAN NOT BE''I17f.''D0NE.' ilf)

FAUSE
60 TO 100

ENDIF

1:1
DO 150 I'I,K
IF(XD41) .LT. O.0)THEN

:1 311

LzO

WRITE(1,'(I0(/),''TO PERFOPM PRIMAL. PIVOTS, ALL RHS VALUES"/
."'MUST BE POSITIVE. THIS 1S NOT PRESENT SO''14X,''A PRIMAL PIVOT C

.AN 9OT BEDDE'/J)
PAUSE
60 To 100

ENCIF
150 CONTINUE

WRITE(1,110)CHAR(12)
WRITE010)

160 FORMATi9t/).2X,'WHICH COLUMN CCNTAINS THE CANDIDATE/IIX.ENTERIN6
.VARIABLE ?'/'

170 WRITE(1,1S0)
180 FORMAT(IIX,'COLURN a .

REAO(5,'(2A1)lP(JI P'2)
CALL CRECK2(P,2, VT, IKVAL, INEW)
IFiINVAL .EQ. W~HEN

WRITE(1.10)
60 TO 170

ELSE
CjKEZINEW

ENEIF
IFiPES .EQ. 2)THEN

C USER HAS ELECTED TO SELECT PIVOT WITHOUT CHECK
FK:-PKS
eO TO 300

ENDIF
ORITE(I110CH0R(2)

C USER SELECTiON CHECYED FOR CORRECTNESS ARE. FEEDBACK PROVIDED
IF(PK *EQ. PKS)THEN

190 F3RMAT(I(i),IXq'YaUR PIVOT COLUMN SELECTION MATCHES 7HE'/IOX,'A
L'30PIT4M SELECTION.'.BW/)
PAUSE

ELSE
IFITIE .EQ. IYTFEN

C TIE FOR PIVOT COLUMN EXISTS

;FtC(P~l-.O0I .6E, C(PVS) *AND. C;?K)-.001 *LE. CCPKS))THEN
C CH4ECKS IF USER SELECTION ONE OF TIES

WRI7Eil,19)

PAUSE
ENDIF

ELSE
WR;TE(1200'

2.00 FORMAT(50/,'YOUR BELECTICN OF PIVOT COLUMN DOES 'OT'/6X,'NATC
.H T4$AT OF THE ALGORITM.W21.W'HICH SELECTION DO YOU WISH T USE?

WRlTE(1 ,Z20)PKS, FK

AL60PITHM SELECTION COLUIN '0i2)

*11

Ini

230 NRITE1I,240)
240 FORMAfT(//131,'VHICH OPTION? 'S

READ(5,' (A1)')P(1)
CALL CNECK2(P,1,2, INVAL,INEW)
IF(INVAL E50. I)THEN

6O TO 230
ELSEiINN .ED. 1)THEN

PK=Pks
ENDIF

ENDIF

3130 01, -E I I O1)CHAR (12)
C RATIOS FOR PIVOT COLUMN CALCULPTED AAD DISPLAYED

KRITE(1.320KP
320 F-ORAT(l0X,'RATl.a5 FOR COLUMlN '.12/)

SPR:IQ.EB
TIE=O
00 400 1=1,K

iF(A(I,PK) .LE. .001'iTHEN

!F(XB(1) .LE. OemOi .AND. Xfif1) GSE. -.0001)TI4EN
WRITE(I.''''.0'')')

ELSE
WRITE(1,'(''tNFINITE'')')

ELSE

ENDIF
ELSEIF((XBi)/A(I.PK)) .SE. 10.E6)THEN
WRITEI'.1, VINFINITE'')')

ELSE

IF(FIT .EQ. O)TIEN

ELSE
NRITE(1,!lF12.5)')RATIO

END IF
1VFRATIO .LT. SPP)ThE4

TIEzO0
SPRZRATIO
PRzI

ELSEIF(RATID+.Q0001 .6E. SPM .0UD. RAT4O-.0001 .LE. SPR)THEN
T;E-1

ENDIF
EWDIF

400 CONTINUE
C USER SELECTS PIVOT ROWI NRITE(1,4 29)

410 FORMAT(i4l,'NHICHi PON CONTAINS THE CANDIOATE'/IX.'LEAVING VAR

.!B(1'

313

420 WRITE11,430)
430 FORMtAT(16X.'PRON '

READf5,'1(2AI)')P(I),P(2)
CALL ChECK2(P,2,K, INVA., ItEW)
IF(INV4L .EQ. I)THEN
WRITE(I, 130)
GO TO 420

ELSE
PRS=INE

ENiDIF
IFIPES AlQ 2THEN

PR2PRS
60 Ta 700

ENDIF
ORITEU1,110;CNAR(12)

C USER SELECTION CHECKED AND FEEDBACK PROVIDED
lF(PR .EQ. PRS)THEN

WRITE(1,450)
450 FORNAT(l1(I),lX,7YLiR PIVOT RON SELECTION MATCHES THE'/IOX,'ALGO

.RIHR SELECTION.'dih)
PAUSE

ELSEJF(TIE .EQ. 1)THEN
li(XBPR)/APR.+.001) GE. (XB(PRS:)/AIPPS,PK) .AND.

.UYDB(PRI !A/(PR,PK))-.0001) .LE. (XD(PRS)/A(PRS,PK)))THEN
WRITEi,4c.0)
PR-PRS
PAUSE

END IF
ELSE

ORITE(1,470)
470 FORHAT4!(i).2X,'YOUR SELECTION OF PIVOT ROW DOES NOT'/6X,'MATCH

*THAT OF THE AL6ORITHfl.'//2X.'WHlCH SELECTION DO YOU WISH TO USE?'

NRITEf1.490)PRS,PR
490 FDRNAT(!4.'!. YOUR SELECTION RON ',12/15X,'OR'"14X,'2. ALSO

.RITFN SELECTION RON z 1,12)
Soo NRITE(1,2401

Ck.L CHECk2!P, 1.2. INVAL, INENI
IF(INUAL *EQ. !)THEW

Np.ITEf1. 130)
60 TO 500

ELSEIF(INEW .EQ. I)THEN
PRu-PRS

ENDIF
[NDIF

C PIVOT ELEMENT CHECKED TO INSURE NOT ZERO
700 IF(AI'PR,PK) .0T. .0001 .AND. A(PR,PK) .6T. -.OOOP)THEN
C USER GIVEN OPTION TO CONTINIUE WITP ZERO PIVOT ELEMENT

CALL OVER(RES)
IFRS g T O)T
60RE TO~ 140 TE

314

.n WW

ENDIF
ENDIF
CALL WORK
RETURN

C DUAL PIVOT ELEMENT DETERMINED
1000 WPITE(1,I!0)CHAR(12)

0O 1010 J:I,Vl
IFiC(J) .LT. O.O)THEN
kRITE(i,'(IO%),"TO PERFORM DUAL PIVOTS, ALL C(J) hUST"/"'BE

* POSITIVE. THIS IS NOT PRESENT AT THIS"/"TINE 50 A DUAL PIVOT CA
.N NOT BE DONE."'!II)')

"so
PAUSE
5O TO 100

ENDIF
1010 CONTINUE

NCO

DO 1020 I-I,k
IF(AB(I) .LT. O.O)THEN

N=I
ENDIF

1020 CONTINUE
IF(P *EI. O)THEN
WRITE(I,'il0/),"TO PERFORM DUAL PIVOTS, AT LEAST ONE RHS"/

.NUST BE NEGATIVE. THIS IS NOT PRESENT AT"!"THIS TIME SO A DUAL P
.IVOT WILL NOT DE"''DONE."'I//)'.

PAUSE
Go TO 100

ENDIF
C J5ER SELECTS PIVOT ROW

NRITE(I,4101

1030 WRITE(1,430)
READ(5,'12AI)')P(l).P(2)

CALL CHECK2(P,2,K.INVAL,INEW)
IFiINVAL *EQ. I)THEN
WRIE(I, 130)
60 TO 1030

ELSE
PRS=INEW

ENDIF

IFiPES .Ei. 2)THEN
PRzPRS
60 TO 1300

ENDIF
C ALGORITHM SELECTS PIVOT RON

DO ;050 zI.LK
IF(XB([) .ST. SNEG)THEN
Go To 1050

ELSEIF(XB(I) .EQ. 6NEB)THER
TIE=I

ELSE

315

S

TIE-0
SNES:XD(1)
Mal1

END IF
1050 CONTINUE
C USER SELECTION CHECKED AND FEEDBACK PROVIDED

WRHTE(1,110)C"AR(1)
IF(r-R .ED. PRS)THEN

WRITE (1,450)
PAUSE

ELSE
W ITE0(1.470
WRITEl, 490)PPS.PR

0f70 NRITE(1,240)
REAM ".(AW))PUl)
CALL CHECK2iP., l2,INYAL.INEW)
IF(INVAL .EO. 1)THEN
WRITE(1.13C)
50O TO 1070

ELc.EIF:INEN .E2. W)HEN
PR=PRS

ENDIF
ENDIF

1300 WRITEI.110)CHAR(12)
C RATIOS FOR ROW CALCULATED

NRITEil,13201PR
1320 FORMATU1lX,'hATIOS FOR RON ',I21'

iPR-io.E8
DOQ 1400 J=I.VT
DO 1350 1~l,K

IF(C91I) .EQ. j)TREN
6O TO 1400

ENDIF
1350 CONTINUE

IF(A(PP,j) A6. -.0001)THEN
IFAP LE. .0001'THEN

IFIC(J .LE. .0001 .AND. CU) A. -.000I)THiEN

ELSE

OE II fIFNT"

ENDIF

END IFELEF(I)AP.,0-E 1. TE
WRIT~l,'(NEGAIVE IFINIE")'

IF(RATID BSE. SPR)THEN
PK=J
SPRzRATIG

EADIF
ENDIF

1400 CONTINUE
PAUSE
ORITEU1,110)CHAR(12)

C USER SELECTS PIVOT COLUMN

1420 WRITE11,180)

CALL C-HECK2(P,2,VT,INVAL,INEW)
IF(INYAL .EQ, I)THEN

WRIITE(1.130)
iO TO 1420

ELSE
PiKS=INEW

END IF
IFiPES .EQ. Z)THEN

PK=PKS
60 TO 1700

ENDIF
WRITEtl,110)CHAR(12)

C USER SELECTION CHECKED AND FEEDBACK PROVIDED
IF(PK .EQ. PKS)THEN
RRITE(1,190)
PAUSE

ELSE
WPITE(1,200)
WRITE(.'I-&2O)PKS,PK

1440 WPITEil140)

CALL CHECK2i.P,1,2.INVAL,INEW)
IF(INAL EQ. 11THEN
WRITEII, i3O)
60 TO 1440

ELS2EIF(INEN .EQ. I)THEN
PV.PKS

ENDIF
END IF
iFiA(F,PK) .LT. .00('1 .AND. A(PR,PK) .6T. -.0001)THEN

C USEP GIVEN OPTION TO CONTINUE WITH PIVOT ELEMENT OF ZERO VALUJE
CAL.L OVERIPES)
IFiRES .EQ. O)THEN
60 TO 100

ENI1F
END IF

1700 CALL WORKL RETURN
END

317

Ci I I I II I I 11 1 6 I I1 1 Its I tIII III III1

C MODULE 2 UN1T24

C SUDROoITIWE WORK
C USE: PEFOFRMS SINPLEX PIVOT USIR6 DESIGNATED PIVOT ELENERT. NO 9
C USER INTERFACE.
C CALLED BY: SUBROUTINE PIVOT

CCAL6LS :NONE
C VARIABLES:
C USED: KPK4PRIVT
C NODIFIED: AttS)C()C(i),4OLD,PELE,X3B(1J,Z I

SUBROUTINE NORX
INTEP PRTV,BASIC.PKqPK5qPR4PRSqOPTS,VVT,CDB,PES,CIU.DUALqaUTP
CoNA0iOt/1At'2(X0) ,ARTVJ(20),Ctb0i ,!,INEi2C),IFLA8I),CD(201

CONNONiE2i:BASIC,KKFA,KF,KFSA,KFSU,PTSPK.PKS,PR,PPS,V,?T,4flN
P ELEzA tPR. PK)
DO 200 J='I,VT
AlR~j) :4%PR.J) ,PELE

200 CO NIJE
XB(PR):ll!PR) IPELE
CDiPR)z:-K
DO "00 lzI,K

IF(I .EQ. PR)THiEN
60 10 3(00

ENDIF
ROLDzWI PK)
DO 250 J=1,VT

250 CONTINUE
X3(I),=XB(I) -FDLD$XB(PR)

300 CONTINUE
NOI.D=C(PK)
DO 350 3ZIV7
C (J)=C(J)-HOLDIA(PR.J)

350 CONTINUE
ZZ-i0LDlXB(PR)
RETURN
END

i

C AODULE 2 UNIT24 $
C
C SUBROUTINE OVER(RE3)
C USE: DISPLAYS STATEMENT THAI PIVOT ELEMENT IS APPROXIMATElY ZERO I
C AND PERFORMANCE OF PIVOT MAY RESULT IN SYSTEM OVERFLOW ERROR. I
C SOLICITS RESPONSE AS NHEIhER TO CONTINUE 4ITH PIVOT AND SETS I
C FLASS TO REFLECT THIS RESPONSE. I
C CALLED BY: SUBROUTINE PIVOT S
C CALLS : NONE
C VARIABLES: S
c USED: NONE I
C MODIFIED: P(l).RES I

SUBROUTINE OVER(RES)
CHARACTER PtI
-NTE6ER RES
RES=tl
ORITEil, 1))CHAR(12)

110 FOPAT(A)
WRITE(1,150)

150 FORMATS(/'.ZX,'THE PIVOT ELEMENT SELECTED IS NOT';2X.'SIGNIFICANT
.LY DIFFERENT FROM ZERO.'!llX,'THIS MAY CAUSE AN GVERFLOO ERRER'!
.7X,'!F THE PIVOT IS PERFORMED.')

160 oRITEiI,170
170 FORFMTU7X,'DO YOU WISH TO CGNTINJE? '.f)

READf3,'fAl'-')P

IF(ICHAR(P) .E2. 89)THEN
KSX1
RETURN

ELSEIF(ICHARP, .NE. 78)THEN
WRITE(I.'(15X."INVALID ENTRY, PLEASE REENTER")')
60 TO 160

ENDIF
RETURN
END

319

C MODULE 2 UNIT25
C UNIT SUSES: NONE I
C I
C SUBROUTINE HEADER t
C USE: DI3PLAYS TITLE P46E OF MODULE 2, EDUCATIONAL MODULE. S
C CALLED EY: PROGRAM EDUC $
C CA-LS : NONE
C VARIABLES: MORE S
C 1 1 1 1 1 1 1 $ 9 I I II I I II I I II II

SUbROUIIE HEADER

WRITEII, 1IOCHAR-12'
I!0 FOPMAT(A)

NIl1ElI.4,'i /,91 ,22 "'') ' "0 . ' ' X I',7, IE
SR"', 7,'':"!?9X"'''OX,"''/9I ,'t ",4 ,"pROS RA NS"'.5X,"'

"S''."0.2'19,"'*"/2X,"tI",4 ';,"E ,?X, T O ULEX" 2'....')

./IX (,' .'X,"'"' 22U";"),3U)) 1

PAUIJSE
RETURN
END

. . .

1;

* - -U

C MODULE 2 UNIT2A
C
C SUBROUTINE AS-kR(ASK)
C USE: ROUTINE PRO"PTS USER TO RESPOND WHETHER OR NOT FINAL 9
C SVLJTIOJ IS TO BE SAVED 'TO DISK FUR SENSITIVITY ANALYSIS. IFI
C USER REGUESTS FILE TO BE SAVED, A VOLUME:FILENAME 'AS I
C REQUESTED, THIS FILE IS OPENED AND FORMATTED SO AS fO BE t
C COMPATIBLE WITH MODULE 4 INPUT REQUIREMENTS. ALSO, THIS I
C FILENAKE IS WRITTEN TO DISK IN THE DATA FILE LP2:LFDATAW f
c FOR TRANSITION TO MCDULE 4. USER IS NEXT PROMPTED TO I
C DETERMINE WHETHER OR NOT ANOTHER MODEL ZS TO BE STUDIED WITH I
C THIS MODULE. IF NO OTHER MODEL IS TO PE STUDIED, MODULE 21ISI
c TERMINATED WITH INSTRUCTIONS ON ENTERING MODULE 1. 1
C CALLED BY: PROGRAM EDUCa
C CALLS : NONEI
C VARIABLES:I
C USED: ',)BI,()C()t()C()FL5),NE,
C INEg(S),KflM.MXMW,NEC,4GC,NLC,rJBJN.PlINEQ(S),PN,V, VT, I
c VN(0484B(I I
C MODIFIED: AO.($,%),ASK,FN.FNO,IFLA6II,IFLA6(1O),P(S) I

SUBROUTINE ASKQ(ASK)
CHARACTER VNS16.CNS6,PNS20,MMS3V,FNI10.PINEGII,PS1,DBJNgiO,FNOS1O
INTEBER ARTV.BASIC, PK,PYS, PR.PRSGOPTS, V,VT,CB, ASK
COI1MONiEIiA(20,60) ,ARTY(20) .C(60),Z.INEG(2Q).I.FLAG(1O).,CB(20)
* ,NEC.,N6C,NL'. IA. INDEIE, INDEXE, INDEXL, XB(240)

DIMENSION Ad(20,20),B(20,LC.O(.'0)
FNO:FN

110 FORMAT(A)

IFLAG(10)=Q
WRjTE% l (B(I),''TO PERFORM SENSITIVITY ANALYSIS ON THIS''I'MUDEL

THE INFORMATION OF THE CURRENT''/'ABLEAU MUST BE SAVED TO DISY

030 WRITE(W10) fOU NISH TO SAVE THIS FILE TO DISK? '".l)')
READ15 ' iAl')P(l)
If(ICHAR(P(1)) .EQ. 89!THEN

WPITE(1,'(//,"5''AVE LP NODEL TO DISK''IiI2IENTER THE DISK D
.RIVE NUMEER AND FILE'''2J.?'NANE YOU WANT THE CURRENT TABLEAU OF''
.I7lX.A2C,'' SAVED UNDER."'')FN

WR!TEII.'(i8X.''ENTER EXAC1l AS FDLLOWS'-/l0X,''DISK DRIVEzFILE
*NAME~iI25'~S. 4:FILENAh''i/''THE DRIVS:FILENA4E MUST BE 10

*LHARACTERS''!1oX,''OR LESS''I/1X,'DO NOT USE THE SAME NAME USED
*WHEN THE''/61.''OPI!NAL MODEL WAS ENTERED.'')')
ORITEil,''i7W,'DISK;FILE'AME a I$'I PREAD(5.' (Al0)')FN

io WRITE:!,'t'7.''ARlE CORRECTIONS NEEDED? ''.S)')

321

IF4ICI4AR(P(1)) .ED. 89)THEN
90 TO 100

ELSEIF(IC4AR(P(l)) .ME. 78)THEN
WRITE(1,'(l5X,''lNVALID ENTRY, PLEASE REENTER"')')
60 TO 150

EkDIF
WRITE(l,110)CHAR(12)
WRITE(1,-(1I1),1X,''INSURE DISK LP2 IS AVAILADLE.'',71/)

PAUSE
C TRANSFER FILE OPENED AND FiLE NA!IE WRITTEN

OPEN(3,FILE='LP2:LP'tTAW' ,STATUSa'OLD',FORNa'UNFORNATTED')
WRITE.3!FN

C TRANSFER FILE CLOSED
CLOSE i3, STATUSz' KEEP')

C USER PRgNPTED TO INSERT DISK 4HICH SCOLVED MODEL IS TO BE SAVED
VRITE(l,'(9f/),2X,''INSURE lHE DISK TO CONTAIN THE FILE'"//13X,

.AIOJII3X.''IS AVAILAfi!E.'',7t'))')FN
PAUSE
WRITE(I *11O)CHAR(12)

C CURREN4T STATUS GF FILE INPUT BY USER
WRITE(I,'I'/).''HAS 'HIS DISK:FILENAME COMBINATION BEEN''!12X,
.''iSE PRVIUSLY?'''/'(ARE fOU UPDATING A CURRENTLY EXISTING"/!

.17X,'lFILE?)'')!)

20 RE(1,' 1I1b'(YI ''1'

C FILE OF STATUS DESIGNATED BY USER OPENED
IF(ICHAR(P(I)) .ED. 89)THEN
OPEN'3. FIE:FNSTATUS:'OLD' ,FORN:' UNFORMATTED')

ELSEIFiICAR(F() .EQ. 76)IHEN
OPEN(3,FJLE:FN.StATUS:' NEW' ,FORM='UNFORMATTED')

ELSE
WRITEii. 210)

210 FORNA7(/5X,'IN4ALID ENTRY, PLEASE REENTER')
60 TO 200

ENDIF
c SOLVED MODEL WRITTEN TO DISK

WRITE(3)FN,MXMN,K,V, 1FLAS(5)
WRITE(1,110)CHAR02)
WRITE~1,' (9i/),5%,F'IN3URE THE DISK CONTAINING THE''//15X,AIO

* 'lICK, ''OD EL IS AVAILADLE.'',7(/)))FN9
PAUSE.1C OR16INAL MODEL FILE OPENED TO READ OPISINAL P4RAMETERS
OPEN(4,FILEzFNOSTATUSa'OLD' ,FORM:'UNFORMATTED')
READ (4)PM. MXMN, M, K, (EC, NBC.NIC
DO 220 I'1,10
READ (4) IFLA6 (P

220 CONTINUE
DO 240 ;=),K

322

DC 230 Ju1,V
RE4D14)AGII,J)

230 CONTINUE
240 CONTINUE

DO 250 jzI,V
READ (43 CO 1

250 CONTINUE
CLOSE (4, STAflISz' KEEP')
WRITE (1,1 10)OIAR (12)
WRITE(1,'(9(/)."INSURE THE DISK TO CONTAIN THE FILE''I/15X,A1O

.l/13,"IS AYAILADLE.'',7(!))')FN
PAUSE
DO 2170 I:1,K
NRITE(3)IXEQ(I) ,B(I)
DO 260 Jxl4V
WRITE (3) AG(I, J)

160 CONTINUIE
270 CONTINUE
C SOLVED MODEL WITH ORIGINAL PARAMETERS WRITTEN TO FILE

Do 27511 J=1,Y
WRITE(3)COi 'J)

275 CONTINUE
iFLAS1O)a0
NRITE(3)I'FLAG(10),VT
DO 290 I=1VK

WRITE(3,181);CB(u

DO 280 J=I ,YT

WRITE() (1)F

DO 3,00 jzI,4T
WRITE(3)C(J)

300 CONTINUE
NRITE (33 Z
!F(IFLA6(5i .EQ. 1)THIEN

DO 310 I-11,K
WRITE(S)CN(I)

310 CONTINUE
DO 320 Jx'I!V

NRITE(33N J)
320 CONTINUE

WRITE(3)OBJN
ENDIF
CULOSE t3.STATU~s'rEEP')
ORITE(I. i10)CHAR(12)

~RIE~,'(1().1,'INSREDISK L01 IS AVAILADLE.'',W()

PAUSE
ELSEIF(ICHAR(P(1)) NlE, 78)THEN

WRITE (1,210)

EN60 TO 130

323

NM i

390 WRITEII,110)CHAR(12)
WRZTE~1.'tlllJ),1X,'-WOULD YOU LIKE 70 STUDY ANO7HE NODE"/4,"
.WHICH HAS BEEN SAVED TO DISK?''5'
READ (5,' (Al)')P (1)
IF(iCHAR(P(!) .EQ. 89)THEN

400 WIUTEi!,110)CHARtI2)
WRITE(l,';9(/),2X.''EhTER DISK DRIVE NUMBER AND FILENANE''/4X,'

.WHICH THE MODEL IS SAVED UNDWER.'')')
ORITE(W (6,'NUDE. TO STUDY
READ(5, '(AIO) ')FN

450 WR17ECI.'(//7X,"ARf CORRECTIONS NEEDED? ''J)')
READ(5,''.AI)')P(1)
IF(ICHAR(P'l)) .EQ. 89)THEN

60 IC 400
ELSEiF~l1CHAR(P(1i. NE. 78)THEN

WRITE(1,' USX," INVALID ENTRY, PLEASE REENTER'')'!
60 TO 450

ENDIF
NRIE(1,I10)CHAR(12)

W~iE(1'(1(/)lX,'INUR D[ISK IPI iS AV41LABLE.',7(/)

PAUSE
C TRANSFER FILE OFERED AND NEW MO0DEL FILE NAME WRITTEN

OPEN (3, FILEa'LI! POATA' ,STATUS:' OLD' ,FQRN ' UNFCRMATTEP')
NRITE01)N
CLOSE(3, STATUS:' KEEP')
A SKIC 1
RETURN

FLSEIF(ICHAR(P(1)) .NE. 78)THEN
WRITEfl,'(/5X,''INYALlD ENTRY, PLEASE REENTER'')')
60 TO 390

ENDIF
NRITE(1,110CAMR(I2)

W~l~i,'(I(),1,'INSREDISK LP± 1S AVAILABLE.'',7(/))')
PAUSE
WRITE'!, 110)CI4AR(I2)
WRITEIl,'(8(/),JX.'TO ENTER THE LP DATABASE MODULEs''//17X.''TYPE

STOP
RETURN
END

324

j- ----.AL.-.- F~

C OD!ULE 2 UNIT25 I
C
C SUBROUTINE QUESTN
C USE: DISPLAYS INSTRUCTIONS TO USER NOTING THAT TABLEAU SHCULD BE I
C STUDIED TO ALLOW USER TO ANSWER IDENTIFIED QUESTIONS WHICH I
C FOLLOW. ONLY DISPLAYED IF USER IS SELECTING PIVOT ELEMENT I
C AND OUTPUT IS TO SCREEN.
C CALLED BY: PRO6RAM EDUC I
C CALLS : NONE t
C VARIABLES: NONE I
C s l I 11 1 $ $s 1s$ 1 S$s I II$I

SUBROUTINE QUESTN
iiRITE(1! ,.01CHAR 0 2)

110 FOIHATIA)
RITE,,'n2(l),'X"FfON THIS POINT ON, YOU WILL DE A.:ED"/9X,"'g

.UESTIONS CONCERNING:"//"1. PIVOT COLUMN SELECTIONS"i/"2. PIVGT

.RON SELECTIONS'"/)')
BPITE(!,'("3. DUAL PIVOTS(IF OPTION SELECTEO)"'"4. OPTIM4LITY,
. FEASIBILITY, BOUNDEDNESS"!3X" !IF OPTION SELECTED-)')
NP.ITE'1.'(//" E SURE TO EXAMINE THE SCREEN OUTPUT"/"OF THE TABL
.EAUS CiREFULLY BEFORE"/"CONTINUIN6 SO YOU MAY ANSWER QUESTIONS"
.."AS NOTED ABOVE."/t"
PAUSE
RETURN
END

.,25

C I I l II I I 1 1 1 t SI i I IIIIt I I I I I I t II I1
C NlODULE 2 UNIT25
C
C SUBROUTINE FIGfi
C USE: FEPFORr5 CALCULATIONS TO ACCU1PE A INITIAL BASIC SOLUTION t
C NO ARTIM!AL VARIABLES HAVE BEEN ADDED TO MODEL. NO USER I
C INTERFACE. I
C CALLED DY: PROGRAM EDUC t
C CALLS : NONE I
CVARIABLES: I

C USED. A'I,i).ARTV~S?,BR,KFA,NGC,Y,VT,XBIl)t

C MODIFIED: M)1#KFSU,IA,M.fL'h,Z I

SUBROUJTINE 816H
INTEGER AFTY,8A5IC,rFK,PKS,PR,PPS.. PTS,V.VTCB,PE5I',DUAL,DVTP,

*.TIE,FT
CMNONEi/A'20,6).ARTY20;C(60,Z,INEQ2'.ZFLA(1),CI20)
qNEC,h6C, L,14,INOEXE.lI~tEX6,]WDEXL,10(20)

COMMONIE3lNOD,PES,OIU,CrUAL,OUTP, ITAB, IBTAB, IFTAii,DN, TIE,FMT
10A-I
KF5U=V+NGC
DO 300 J:1.KFSU

SUM20.0
DO 200 1=1 'IA

SUfl:SUN+AiARTVI) ,J)
200 C04TINE

300 CONTINUE
0O 400 JaKFA,YT
C 'J 0. 0

400) CONTINUE
SUM0. 0
DO 500 laI,IA
SifliSUN+fB (ARTV (I))

500 CONTINUE

RETURN

END

3P26

LI mylab

CNODULE 2UNIT 25
C
C SUBROUTINE INDEX
C JSE: DETERMINES THE COLUMN POSITiON OF ADDED SLACK. SURPLUS, AND I
C ARTIFICIAL. VARIALES. PLACES THE APPROPRIATE COEFFICIENT IN I
C INE A(1,1) ARRAY FOR EACH AND IDENTIFIES THE IN17IAL BASIC I
C VARIABLE. CHIANGES ALL INEWJALITIES TO EgUALITIES IN PIPER($) I
C AND NMES THE ADDED VARIABLES FOR NAMED MODELS.I
C CALLED BY: PROSRAM EDUC I
C CALLS : NONE
C VARIABLES:
C USED; IFLAG'5),INED(S),K,NEC,NOC.NL.C.V I
C MODIFIED: A(,)ATV(S).CB(s),CN!;),IA.U4'DEXE,IND2-a,.INDEXL,KFA, I
C KFS.KFSA,KFS.UPINE(U,VN(S).VT I
C:SISI I $SSIS1s tI11 11t I II II tI 11 1t I

SUBROUTINE INDEX
CHARACTER VNS6.CNS6,PNt20,MNS3,FN*IO,PIEQ4i,PI,OBJNIlO
INTESER ARTV,BASIC,PK,PKS,PR,FRS,OPS, V, VT.C.B
COMNN/E/A '20, O) , A.RTV(2O) ,C460), 2.INEg(2O ,,1FLA6(1O ,CB,20)
.,N4EC.NSC.NLC, IA, !NDEXE,INDEX6,INDE.LIB(2Oj;
CONON/E/BASIC,K,KFA,KFS,KFSA,KFSUOPTS,PK,PKS,FR,PRS,V,YT,.XN
COMMONIE4IVN12O ,CN(20) ,PNEMN,FN,PINEQ'2 0),PtlOi OBJN

K~FSAaY+l
'ITmVt(2$KBC)+NLC+NEC
KFS=ViN6C+l

FAYF5+NLCI

IN~DEXEzV+N6C.LC+I
DO 20) 1=1,K

if7'INER(I) *ED. W)HEN
C SLACK VARIABLE ADDED TO CONSRAINT

CB1 s;INDEXL

INDEXLSNDEXL+1
ELSEIF(INEQ(I) .ED. I)THEN

C SURPLLUS AND ARTIFICAL VARIABLE ADDED TO CONSTRAINT
CDi I):INDEXE
ARTV'1A)xl
IAZIA+1

INDEXEcINDEXE. I
A!I,iNDEXSijz-I.
!NDE!SmINDEXG~l

ELSE
C AP71FICAL VARIABLE ADDED TO CONTRAINT

ARTY0IIA)
IAsIA+II CBi)zINDEXE

327

o*p I

A(I,INDEIE)=1.
INDEXEu1NDERE+l

ENDIF

20 CONTINUE
*FiIFLA8(5) .EQ. 1)THEN

DO 210 J#VFSA.KFS-1
YiJ)'SJPLS'

210 CONTINUE
DO 220 J-KFS,KFA-1

YN(J)a'SLACKC'
220 CONTINUE

DO0230 JaKF4.YT
VN'J"zARTIF

23') CONTINUE
END IF
RETURN
END

3^18

_ -s - .low"

C MODULE 2 UNIT25 I
c I
C SUORGUTINE MODIFAt
C USE: 2ERFORMS THE SAMlE F'JVCTO AS SUBROUTINE GBNDU AND SUBROUTINE I
C CNNDV EX~CEPT NO USER INTERFACE, NOTE THAT CONSTRAINTS KITH I
C MESATIVE RHcS'S ARE MU)LTIPLIED BY -1. t
C CALLED BY: PRGERAN ED'JC I
C CALLS : NONE
C VARIABLES;

c USED: K,NN,IPXIN,V I
C MOMWIED: (,ICSqN;S.NCNCPN9S~BS

SUSROUTINE 4QDIFA
CHARACTER V#86,CN1b.?9#20.NN3F*OPNQIPIOJI
IIMESER ARTV,BASIC.PK.PKS,PR,PRS,OFTS,V,VTCB

,NEC,NSE.NLC, IA, INDEXE, INDFX6,INDEXIL.13,",'0)
CO1ON/E2iPASC.K,KF,FS,KSA,K1FSU.OPTS.PK.PKS,PR,PRS,VV7.NXN
CONNON!E4!VN(20),CN(20' ,PN.NN,FN,PINEQ(210),P(10),OSJN
IF'NXMN .ED, W)HEN

C FROBLEh STATED AS NAXINIZATION
Do t~c e I'
CIJI:-C(P

160 CONTINUE
ELSE

END i
DO 30' IsI.K

IFiXP(I) ML. 0.O)THEN

Do 2100 J=1.V
A~(1,J) =-AiI I*J)

200 CONTINUE
C COUNT OF INEQUJALITIES BY TYPE MFATED DeE TO MULT BY -1

IMINERMI .ED. W)HEN
NLC:-NLC-1

ELSEIF:1NEWI .EQ, I)THEN

EDINE I~

RETUFN

:1 329

C III IIII IIII III*SI I I**IgIS;ISIsI ISI I
C MODULE 2 UNIT25
C
C SUBROUTINE INTF.D t
C USE: INITIALIZES ALL VARIABLESTO ZERO EXCEPT CHARACTER VARIABLES I
C AND READS NODEL DESISNATEr AS 10DEL TO SOLVE FROM DISK FILE I
C CREATED WITH NODULE 1. ALSO CALCULATES A VALUE TO BE USED IN I
C 1BI6 No METHOD. I
C CALLED BY: PROGRAM EDUC I
C CALLS -NONE I
C VARIABLES:

UISED: NONE
C 4ODIFIED: (,,AT()BSCDC()C(CJC1.FI, S
C IFLA6(1) THAU I&FLAS(10),INDEXEINDEX6.INDEX.INEQ(S),K, I
C NO,,NXMN,NECN6C .NLC,OBJN,OPTS,PINEQ9),PN,,VNI), I
C IB'.S,Z I

SUBROUTINE INTRO
CHARACTER VS.N6PSOMS 4 N1,IES.SBNI
INTEGER ART',BASIr.qPV5PKSPRF'RS,CFTS.,VVT.CB.FE5,UILI,DUALOUTP.

.IIE,FiIT
,ON/E1!A(20,60),ARTV(2),C(e0)qZINEQ(0),IFLAGt!O!,C(2)

..lNEC,NGC,NLL 1IA,INDEIE.IHSDEX6.INDEJL,XB(2'i

COMMON/E3'fOD,PES.CIU,Cj4L,OUTp. HABS IBTAB, IFTAB.BPo,T&IE,FNT

110 FORMATA
C 40RIABLEE INITIAL11iD

ART(I)zO

DO 17Ct 3=1.60

17 [ONTINUE
180 CONTI NUE

DO 190 12.

190 D~~

IFLA6(1)20
20') CONTINUE

NEC:CO

NLC=O

BASic.sO
OPTSxQI iNDElExO
!NDFXG=0

INOEXL=O
§ITE (1, 110) CHAR (12)

WRITE(1,'(11(/),lX,''INSJRE DISK LPI IS AYAILADLE.'',7(/))')
PAUSE

C TRANSFER FILE OPENED AND FILE NAME READ
OPEN(3,FlLEs'LP1:LPDAIA',STATUS:'OLD',FORN:'UNFORMATIED')
READ (3)F FM
CLOSE (3,STATUS:' KEEP')
NRITE (1. 110)CHAR(12)
WRITE(I,'(9(/),5X,''INSURE THE DISK CONTAINING THE''//15X,A1O
.l/l0X,''NODEL IAS AVAILABLE.',7(i))')FN
PAUSE

C F~ILE WHICH CONTAINS MODEL OPENED AND READ FROM DISK
OPEN(3,FILE:FN,STATUSx'0LD' JORN:'UNFORMATTED')
RE4D(3)PN.MXMN,HM,K, ,NEC,NOC,NLC
DO 220 1:1,10
READ (3) IFLAfiiI)

220 CONTINUE
DO 300 lzl,I(

0O 280 J=JV
READ '3*,A(I.J)

280 CONTINUE
300 CONTINUE

DO0320 JzjV
READ (.) C (3)

4,0 CONTINUE
IF(IFLA6(5) .Ei. ITHEN

DO 350 I:1,K
READ(3)CN(I)

350 CONTINUE
DO 360 J=j,V~

READ,3)VN()
360 CONTINUE

DO0380 JxV+1,20

380 CONTINUE
READ '3)03.1W

END IF
IFLA6i2)z1
CLOSE (3, STATUS-' KEEP')
WRITE(1,110)%PHAR(12)
NRITE(1,'Q1(/),IX,'INSURE DISK LPI IS AVAILABLE.'',7(i)')
PAUSE

C FIND APPROPRIATE VALUE FOR BlI N
Cjx.o
B"20.0
DO 400 Jai,V

IF(ABS(C(J)1 GST. ?M)THEN
BNuABS(C(3))I EKEIF

400 CONTINUE

IF(N .LT. 1.O)THEN

ENDIF
RETURN
END

332

css I si is I Ia s ; Is s: Iss Ias I tIIIIIIII
C MODULE 2 UNIT26
C UNIT WUES: UNIT27
C
C SUBROUTINE TDISPI
C USE; DISPLAYS EITHER THE CURRENT CONSETRAINTS, COMPLETE LP MODEL, 5
C OR THE CURRENT TABLEAU, DEPENDENT ON FL46S SET IN CALLING I
C SUBROUTINE. VAPIABLES AND CONSTRAINTS ARE DISFLAYED WITH I
C NAMES. IF PRESENT, AND THE BASIC VARIABLE OF THE CONSTRAINT I
C is IDENTIFIED WHEN DISPLAYING THE CURRENT TABLEAU. I
C CALCULATES THE NUMBER OF 80 COLUMN WIDTRS TO DISPLAY COMPLETE I
C TABLEAU AND PRESENTS ON OUTPUT DEVICE IN SECTIONS, NO USER *
C INTERFACE.
C CALLED BY: PR06RAN EDUC
C SUBPOUTINE CNNDU

SUBROUTINE OPT
C SUBROUTINE READY

C SUBPOUTINE TCAL
C CALLS NONE
C VARIABLES: 4
C USED: A(l,i),C $).CBI5),CN(*$),FMT,IFLAS(3),IFLA6(5),iFLAE(9), I
C K4n,OD.flUTPPINEQ;),PN,VN~t5;.VT,AB(I) I
C MODIFIED: NONKE i

$USES UCHECK2 IN UNIT27CODEOVRA
SUBROUTINE TDISPL
CHAFACTER ~I.NbP5CM5,N1,IEI.S.B~1
INTEGER ARTV,BASICPK,PKS,PR,PRS.OPTS,V,VT,CB,PES,OIU,DUIAL,OL TP
.TIE,FK'iTT
COMMN/E1IA2O,6O),ARTV2),C(60 ZINE(2),IFLAS(IO),CD42O)
* ,NEE,NG-C,NLC. IA, !NDEIE, INDEYG. INDEXLI 19(20)
COMMON/E2/BASIC.KKFA,kFS,KFSA,KFSJ,GPTS.PK,PK5.PR.PRS.V.VT,MXMN
COMN/E3I!MUD,PE5,OIU,DUAL,OUTr,,IIAB,IBIAB, IFTA6.BM,T!EFMT
COdMON/E4'!N4(0),C(0 PN.fM,FN,PINEQ(20),P(iO",OBJN

110 FORNAT(A
IF(IFLAG(9) .EQ. I)THEN

c ONLY CONSTRAINTS ARE DISPLAYED
WRITE(2,22,1)PN

20 FORMAT1vXA20/OIIXCURRENT CONSTAINTS'/)
ELSEIF(IFL46 (9) .EQ. O)THEN

C OBJ FUNCTION AND CONSTRAINTS DISPLAYED
WRI TE(2.230)PN,MM

230 F0RAT(!0,A('17X.'CURPEHT LP MODEL: ',43,'IZE *,S)
j IF!ILAS15) .ED.])THEN
* NRITE(1.240)OBJN

240 FORMAI&iAIO)
* ELSE

OPITEC'.250)
30FORMAT(' '

ENDIF
END IF

C N'JMFEP OF 8', r9LUMN DISPLAYS REQUIRED DETERMINED

333

SI ,- , ~ mw

EO 470 Nu1,T
IF(IFLA615) .ED. I)THEN

C VARIABLE MNIES PRINTED AS COLUMIN HEADERS

DO 270 J:(Nt5)-4,Nlgl
IF(J G61. VT)THEN
60 TO 270

ENDIF
WRITE (2,260) VN(J)

260 FORMAT(51,A6,2X.S)
2O CONTINUE

WRITE12,'i' '''

ENDIF

DO 290 J=(N$5)-4,N#5
IFiJ .6T. YT)THEN

GO TO 290
ENDIF
WRITE(2,280)J

280 FORMAT(5X,'X(',12,')',3X,S)
290 CONTINUE

C IF LAST 80 COLUMN DISPLAY, DISPLAY RHS
IFiT .ED. I DOR. N .EQ. T)THEN
*RITE (2, 300)

300 FORMAT(6l,'RNS')
ELSE

ENDIF
C DISPLAY IS WITH OBJ FUNCTION

IF(IFI.AG(q) .ED. 0 DOR. IFLA6(91 .EQ. 2)THEN
0F.ITE(2.'('O8J FUNC1WON''.X,$')
DO 320 J:($)-4.Nl5

IF(J 3T1. VT)THEH
10 T0 320

ENDIF
IF(FMT .ED. O)THEN

ELSE

ENE-IF
320 CONTINUE

IF(T 19G.1 DOR. N .EQ. T)THEN
'F(FMT .EQ. O)THEN
WRITE12.'('' ",IPfI2.5.1A)')Z

ELSE

ENDIF
ELSE

WRITE(2.'tI''''

END IF

'1 734

S~ .* .-. no

IFUWLAW() .ED. 2)THEN
C FASIC VARIABLES ARE TO BE ANNfETATED

WRITE1.2.'('CK MAME 'AR',2X,65(''''))')
ELSE

C CUNSTRAINT NUMBER4 NAME, BASIC VARIABLE, COEFFICIENTS.
C INEQUALITY, AND RNS DISPLAYED

IF(L X~. WIHEN
Go 10 400

ENDIF

ELSE
NPITE(2,' (12,7X!$))L

ENDIF
IF(IFLAS(9) *EG. 2)TI&N

ELSE

ENDIF
0O 370 Jz(N5)-4,Nf5

60 TO 370
ENDIF

ELSE

ENDIF
37 CONTINUE

Ic(T .EQ. I .OR, N .EQ. T)THEN
IFMr7 .ED, QOrHEN

ELSE

ELSE

!F(IFLAG(3) .EQ. WIHEN

60 TO0470

INI
________________________ ____________________________________

PUSE9

4P-T t*110CAR(2

ENDIF
470 CONiIMAi

IF.AG(73)=O

CLOSE!'2:
RETURN
END

336

CR5 I I I I I I I S IIIt I5 58 Ist II IR I

C IODULE 2 UNIT76

C SUBROUTINE BASDIS I
C USE: DE1ER~iRES WHETHER OJR NOT CURREM7 rAELEAU WAS REQUESTED TO BE I
C DISPLAYED AND IF SO, PROOOTTS USER WHETHER OR NOT THE BASIC I
C SOLUTION IS DESIRED IC BE DISPLA EP AAD ON WHAT DEVICE. IF I
C REQUESTED, DISPLAYS BASIC VARIAILES, XANES AND VALUES OF I
C CURRENT SOUTION AND THE OBJECTIVE FUNCTION VALUE. I
C CALLED BY: SUBROUTINE UPT I
C CALLS i SUBROUTINE CHE-:K2(P,N.NINVAL,llNEW) I
C VARIABLES; I
c USED: BASIC.CS~t).FHT. IFLAS3) ,IFTAE.INEN,INYAL, ITAB,K,OPTS, I
c PNlvN4S),xB(S,.z I

SUBRNiTINE VASDIS
CHARACTER VNI6I CNt6. PNS20,11N3,FIO,PINEQS1,PSI.ODjNhIO
INTEGER ARTU,BASIC,PK,FKS,PR.PRS,UPTS.V,VT,CB,PES,OIU,DUAL.OUTP,
,T!E.F15T

.*NEC,NECNLC. IA, INDEXE. INE.EXG. IFJDEIL, XB(20)
CNJMON/E2iDASIK.KFA,KFKFSA.-SU.OPTS.PK.PKS.PR,PRS,YVT,NXN
WKNOE3!MODPES.OIU.DUiAL.OUTP, ITAB. IBTAD,IFTAB,BNT TE,FMT

WRITE1l. 1I0iCHAR!17)
110 FOR4AT(A)
C tDE1EIFMINES IF USER AAS SELECTED TABLEAU FOR OUTPUTI
M IF(BASIC .EQ. I .AND. ITtU .NE.)T4EN

RETURN
ELiElI'ASIC MNE. I .AND. OPTS XN. I ,AND, IPTAB .EO. O:THEN

RETURN
ELSEIF(OPTS .EQ. I .AND. !FTAB EQg. '&)THEN

RETURN
ENDIF

C USER lNPUTS SELECTIeN OF OUTPUT DEVICE, IF 40Y
WF!TEdl.'(60/),"'NOULD YOX LIKE THE BASIC SOLUTION VALUES''1141,
'"DISPLAYED? "'j
WRI1E(1,'i/9X,-'1. DISPLAY ON SCREEN''l/9X,"'2. DISPLAY ON PRINTER
."'/91 '3. D0 OT DISPLA'')',,

210 WRITE(14''l//I.'X,''WHICH OPTION? "'0)

CALL CHECK2(P,I,3,iNVAL,INEW)
IF(INVAL .EQ. 1)THEN
kPITE11,2301

230 FOR.4AT(/3%,'INVALID ENTRY, PLEASE REENTER$)
Go To 2(-o

E:WIF
IF,'iNEN .EQ, I)THENI ~ OEN (2, FILEz' CONSOLE: '
ELSEIF(INEN *EQ. 2)THEN

31

0PEN(2,FILEa'PRINTER:')
ELSE

RETURN
ENDIF
WPITE41,11O)CNARU12)
WRITE(2,'(10X,A20110I.''DASIC SOLUTION *",12/')P4,6ASIC
IF(IFLA615) .ED. W)HEN
DO 250 !:I,K

lFfFMT .EQ. O)TNEN
WRITE,2,'15X,Ab,''z X("',12,'') V.'IE25)V(BI)

.Bil).XDII4)
ELSE

VRITE-'2,'(5X,Ab,'' Y' 4 ,' ',1.PV(DI)

20 ENLDIF

20 CNTINUE
IFiFNT .EQ. O)TI4EN

ELSE

ENDIF
ELSE

DO 280 IsI,K
IF(FHT .EQ. WHTIEN
hRITE(2,' (I0X~p'X(''.I2,') 2 'IE25')3IBI

ELE
WRITE(2,:(lOX,p'X(i".I2,P) z ''2.7)BI)JD

END IF
980 CONTINUE

IF(FHT AE. WHTIEN

WRTE(2,'(1X" a 'lE1.)

ELSE

PAUSE
ENDIF
RETURN
END

338

C MO00111 2 UNIT27
C UNIT $USES: NONE
C
t SLILFOUTINE CHECK2(E,0,HVAL,INVAL.INEW)
r USE: SEE MODULE 1, UNIT1?
CCALLED BY: SUBROUTINE DASDIS
c SUBROUTI1NE CNMDU
C SUBROUTINE CBDJ
C SUBROUTINE OPTION t
C SUBROUTINE PIVOT I
C SUBROUTINE READY I
C CALLS - N9N I
C VAPIABLES: SEE MODULE 1. UNIT17 I

C4ARAETER ALLONI14EII
DIMENSION E(10),ALLOW(IX)
INTESER D,HVAL
DATA ALW''* 2

9
3

q4 '''',7 '',''!! '

INVALaO

DO 200 Jxi,10
C CHECKS FIRST FOR BLANK CHARACTERS

!F4E(II .EQ. ALLOW01)PTHEN
60 TO :'O

ELSEIF(E{I) EQ. ALLOW(J)THEN
INEWzINEW1IO + (ICHARiE(l))-46)
60 TO0300

ELSEIF(j EQ. 1O)THEN

INEW-0
RETURN

ENDIF
200 CONTINVE
300 CGNTINUE

IF(INEW .Eg. 0 .OR. INEW ST1. HVALITHEN
INVALs-I
lNEWO0
RETURN

ENDIF
RETURN
END

C MODULE 3 UNIT3O
C UNIT SUSES: UNIT32 THRU UNIT57
C
C PROSRAN PRODS
C USE: MAIN PROGRAM OF MODULE 3. PURPOSE OF NODULE IS TO PROVTDE A I
C MEANS OF SOLVINS LINEAR PROSRAMRIN6 PROBLEM IN THE MOST t
C EFFICIENT SIMPLEX PETHOD. THIS MODULE ALLOWS THE USER TO I
C SPECIFY THE PRIMAL OR DUAL PROBLEM, AND FURTHER, PRIMAL OR I
C DUAL S!IPLEX APPLICATION TO THE SELECTED PROBLEM. SELECTED I
C DISPLAY OF OUTPUT ALLOWS USER TO LIMIT OUTPUT TO THAT I
C RE9UIRED. MODULE 3 CONSISTS OF 7 SEPARATELY COMPILED UNITS I
C (UNIT30O, UNIT32 THRU UNiT37) WITH ALL UNITS EXCEPT UNITO I
C BEIN6 OVERLAY UNITS.
C PROGRAM PRODS ACTS AS A MEMORY RELEASE LOCATION. WHENEVER I
C THE PROGRAM CONTRCL RETURNS TO THIS UNIT, ALL GVERLAY UNITS I
C ARE RELEASED FROM MEMORY PRIOR TO NEW UNITS BEING SUMMONED. I
C CALLED BY: NONE I
C CALLS SUBROUTINE ACNCH I
C SUBROUTINE ASKO(ASK) I
C SUBROUTINE D1M
C SUBROUTINE CONVRT
C SUBROUTINE INDEI
C SUBROUTINE INRD
C SUBROUTINE MODIFD
C SUBROUTIKE rCDIFP I
C SUBROUTINE OPTS

C SUBROUTINE OPTN

C SUBROUTINE PESED
C SUBROUTINE TOISPL
C SUBROUTINE WORK I
C 4ARIABLES:
C USED: ASK,BM,DLAL.IFLAG(7).IFLA6G9).KFA.NEC,NGCPROBT,VT I
C MODIFIED: BASIC,Cei)

USES UCHECK2 IN UNIT37.CODE OVERLAY

SUSES UTDISPL IN UNITb.CODE OVERLAY
SUSES UPSHED IN VNIT35.CODF OVERLAY
SUSES UCONVRT IN UNIT34,CODE OVERLAY
SUSES UWGRK IN LNIT33.CODE OVERLAY
$SES UOPTN IN UNIT32.CODE OVERLAY

PpOGRAN PRODS
CHARACTEP V4I6,CNIh.PNS20,NM$3,FNIIO,PINEGII.P(IO)IIOBJNSIO
1PTESER AATV,BASIC,PK,PR, PTS.V,VT,CD,DUALOUTP,FMI,PROBT.ASK
C O7ION/PlAil20o.).AATV,2: ,C(6O),Z.INEGtZ0J,IFLASilOi,CB(20),
. Di2i).K,VVT,PXNN.AS"C,OPTSBO
CONMON/P2/NEC.6C,NLC. IA, INDEYE. INL'S, INDEXL.KFA,KFS.KFSA,KFSU,
.PSS4PR

COIMON/P3/DjAL.OUTP.JTA. T!TAB,IFTAB,FMT,PROBT
COMMlON/P4tYNt20),CN 2O0PNMMFNPINQ(O),OP N

OPEN d,FILE'CONSOLE:'iIPEN(FILEx'CONSOLE:')

340

NRITEI1.110)CHAR(12)
110 FORMATtA)

CALL PSPED
C P.O4TINE CALLEC WHICH ALLOWS USER TI' CHANGE DEFAULTS
1-0 CALL OPIN

BASIC20
IF(PROBT .EQ. I .AND. DUAL .EQ. 1)THEN

C USEP HAS ELECTED TO SOLVE PRIMAL PROBLEM WITHOUT DUAL PIVOTS
60 TO 140

ELSEIFIPROBT .EQ. 2)ThEN
C USER 4AS ELECTED Ta SOLVE DUAL PROBLEM

CALL CONYRT
ENDIF
iFfDUAL .EQ. 2)THEN

C USER HAS ELECTED TO USE DUAL PIVOTS
CALL ACNCH

ENlDIF
C ROUTINE CALLED WHIICH INITIALIZES VARIABLES AND READS NODEL
140 CALL INRO

IF(DUAL EQ. 1)THEN
C DBJ FUNCTION MODIFIED FOR PRIMAL PROBLEM

CALL MGDIFP
ELSE

C OJ FUNCTION MODIFIED FOR DUAL PROBLEM
CALL llODIFD

EADIF
C ROUTINE CALLED WHICH ADDS SLACY,SURPLUS, AND ARTIFICAL VARIABLES

CALL INDEX
DO 160 j=KFA,VT
C (J~xB

160 CONTINUE
C CHECKS IF ARTIFICAL VARIABLES HAVE BEEN ADDED

IF((NEC+NGC) AdE. O)THEN
CALL 81GN

ENDIF
170 BASIC=BASIC+i

CALL 3PTS
IF(IFLA6i '9) .EQ. 1)THEN

C FLAG INDICAIES TABLEAU IS TO BE DISPLAYED
CALL TDISPL

END IF
IF(fOPTS .EQ. 1) .0R. (iFLAG(7) .EQ. 1))THEN

- LAST TABLEAU EITHER OPr!MAL OR UNBOUNDED
CALL ASKQ(ASK)I i1F!ASK .E9. I)THEN

J 6O TO 120
ENDIF

END!F
CALL WORK
60 TO 170
STOP
END

341

C5 5 1 5 I5 15 5 Iss Ii t tIIIItIItIIIIIIIII I ItIIs It I t 0
C NODULE 3 1NI732
C UNIT $USES: UNIT37
C
C SUROfUTINE OPTN
C USE: DISPLAYS DEFAULT OPTION VALUES AND SOLICITS RESPONSE TO I
C CHANGE THESE DEFAULTS. IF OPTION IS SELECTED TO BE CHANGED, I
C USER REVIEWS "END AND SELECTS DESIRED 14ETHOD, THEN IS 1
C RETURNED TO DEFAULT OPTION DISPLAY. SOME OPTIONS ARE CHANGED I
C UPON SELECTION DUE TO 0*0. TWIO METHODS BEiNGi PBSSIBLE. I
C OPTIONS ARE RESET TO PROGRAMMER SPECIFIED DEFAULT UPON EACH I
C CALL TO ROUTINE.
C CALLED BY: PROGRAM PRDIS5
C CALLS : SUBROUTINE CHECK2(P,N,M,INVALiNEWi
C VARIABLES:
C U!SED: IIIEKIN'JAL I
C MODIFIED: DUAL,FNT,FN,IBTAB,4FTAB, ITAB,OUTP,PN,PROBT I

$USES UCHECY2 IN UNIrI7,CODE OVERLAY
SUBROUTINE OPTN
CHARACTER VNI6,CN$6,PN520.Mft53,FN51O,PIhEQ51,PIIO151,QBZNs10
INTEGER ARTV.BASIC,PK .PR,OPTS,V,YT,t3.DUAL,OUTP,FMT,PROBT
COMMON * P3/DUAL,OUTP,ITAB,IBTAB, IFTAB.FMT,PR.OBT
COMNONIP4IVN(20) ,CN(20) ,PN,N,FN,PINED(L-0) ,OBLN

100 WRITE41,110)CHAR(12)
110 FaRMATfA)

WRITEil,'(11(i),1X,''INSURE DISK LPI IS AVAILAPLE.''.7(i))')
PAUSE

WRITEII 1.30)
V50 FORMAT(4X.'FROBLEN SOLVER OPTiON SELECTION'/I)
C TRANSFER FILE OPENED AND FILE NAME READ

OPEN(3,FILEs'LPI:LPDATA' ,STATUS:'OLD ,FORM:'VNFORAATTED')

CLOSE i3, STA*USv' KEEP')
150 WRZTE(1,'(''THE PROBLEM CURRENTLY IDENTIFIED AS THE"17Y,''PROBLEN

*TO BE STUDIED IS:'''IlSX,AIOV)F$
4RITEi,'(l/II THIS THE PROBLEM YOU DESIRE TO STUDY? '117'
READ(5 .' (AI')P(I)
IF(ICHAR(P(1)) .EQ. 7611THEN
WRITEUI,'U/X,''PLEASE ENTER THE DISK DRIVE PJUMPER OND''/'FILE
MAKE OF THE FILE YOU WISH TO STLDY.''/'1X,''INSURE THIS IS ENTER

.ED EXACTLY AS IT'')')
WRITEi1,'1lX,''WAS SAVED PPEVIOUSLY AND ALSO ThAT THE?''X,':PRO

.PER DISK IS IN THE PROPER DRIVE.!"')')
WRITE(1,'('4,''MODEL TO BE STUDIED z J:
READ(5, '(AlJl ')FN

to(, FCP.MAT(17X.'ARE CORRECTIONS NEEDED? 'J5)

iF(!CHAP(P'I)) EQ0. 89)THEN

6O TO 100

142

a -j- . 7-

ELSEICHAR(P(1)) XN. 78)T1&N
WRITE(1. 190)

190 FORNAT(/5X,'INVALID ENTRY, PLEASE REENTER'/)
PAUSE
60 TO 160

ENDIF

WPITE(l,'(l'(I),lX,l'lNSURE DISK LPI1 5I AVAILABLE.'',7(/)

PAUSE
c TRANSFER FILE REWRITTEN TO INDICTE HNd USER MODEL SELECTION

OPENC'3,F!LEaILP1:LPDATA' ,STAT'JS'OLD?,FORN'UNFRIATTED')
WRITE (3) EN
CLOSE (3, STATJS=' KEEP')

ELSEI~tICAP(PfI)) .NE. 99)THEN
WRITE' i.190) i

PAUSE
00 TO 100

ENDIF
4RITE0(, 110) ChP 12)

hRIE'1.'l().X.'~SREDISK 0P2 IS AVAYILABLE.'',70!)
PAUSE

C DEFAULT OPTIONS SET
PPOST: 1
DUAL: I
OUTP:!

!BTAP:!

200 WRTTE(1,110)CHAP112)
C DEFAUJLT OFTICNS DISPLAYED

$RiTE(l,'(12X,''DEFAULT aPTI3NS''/5X).'ENTER OPTION NUMBER TO CHAN

WRITE(J.'l. PROBLEM TO SOLVE''.11XJ)')
IF(FROBI *EQ. W)HEN

ELSE

ENDI F
WP'TE(l.'(/,"2. 3ELVE BY DUAL PIVO75''.69,WI)
lFiDUAL *EQ. W)HEN
4RIT~kd,'lll)

ELSE

ENDIF

IF(OUoP .Eg. W)HEN

ELSE

WRITE'1.(3X,''PRINTER'')')

ENDIF

34

WRITE1.,'(/,''4. OUTPUT FORNAT'',16X,))
IF(FKT .EQ. WTHEN

WRITE(1,'(''F FORIIAT'')')
ELSE

NRITE(9'(''E MOAT'')')
END IF
WRITE(ll,''/'5. TABLEAUS TO BE DISPLAYED'',i6A,''INITIAL",26X,S

IF(ITAB .EQ. 1)THEN

ELSE

IF'IFTAB ME. I)TEN
WRITE(W,('Y''f)

ELSE

ENDIF
WITE(1,'(/,''&. NO CHWNES ''I'' SEE 90CUMENTATION FOR EXPLANATI

WRITE(l . "WHICH OPTION 'ENTER 1-61 1101
REAM 5'. (Al))P(1)
CALL CHECK2(P. 1,6, INYAL, INEW)
IF(INVAL .EQ. W)HEN

WRITE)!, 1'0)
PAUSE
50 Ta 200

EADIF
SOTO (.30., 2, 430.350,460) iNEW

C PROBLEN TYPE TO BE SOLVED CHANGED
230 IF(PROBT .EQ. I)THEN

PRODTz/
ELSE

PROBT=1

C EUAL PIVOT OPTION CHANGED

DUALx2

END IF
SO TO 200

C OUTPUT 16OCATIOI CHANGED
290 IF(OUTP .EQ. W)HEN

OUTP=2
ELSE

GUT Pm
END IF
66 TO 200

344

C TABLEAU OUTPUT OPTIONS DISPLAYED
35(1 WRITE(1,i11)CHAR(12)

WRITE11, 130)
WRITE(1,'(''WHICH TABLEAUS WOUL.D YOU LIKE DISPLAYED?")')

3700 WRITEil,'(/5X,''INITIAL TABLEAU? (YIN) ",$)')
READ (5, (A!)')P()
IF(ICHAR(Pil)) .EQ. 89)THEN
IAG-!l

ELSEIFf1CHARtP(1)) .EQ. 78)THEN
ITADz2

ELSE

60 TO 370
ENDIF

390 WR*TEUI,' (i5Y.'INTERHEDIATE TABLEAUS? fYIN) "',021,

IFIICHAR(P(1)) E. 89)THEN
WPITE(1,'(I,''EVERY N6TH) INTERMEDIATE TABLEAU WILL BE''Il5X,

400 WRITEil.'i/4X,'-WHAT VALUE DO YOU DESIRE FOR N?''!I!IX.''N

CALL CHECK2(P,2,99! INVAL, INEW)
IF(INVAL .EQ. 1)TPEN
WRITE(1, 190)
PAUSE
60 TO 400

END IF
IBTAExINEW

ELSEIF(iCHARIP(l)) .ER. ?R)THEN
IBTAB=Q

ELSE
MIITE (1,190)
60 TO 390

END IF
410 NRlTE(i,'(/5X,'FINAL TABLEAU7 iY/N) "J.)')

READ(5, (A1)'IP(1)
IFHlCHAR(P1) .EQ. 89)THEN

IFTABzI
ELSEIF(ICHAR(P(l)) .EQ. 1S)TPEN

IFTAB22
ELSE

*PI TE(1 1%()I 60 TO 410
ENDIF
60 TO 20

C OUTPUT FORM47 CHANGED

430 IF(4T .EQ. I)THEN

ELSE*1 FMTs1

345

I ___r7__

y~. .'--

90 TO 200
460 RETURN

END

346

- "nip

C:: s Is ;: ; I I1 8~ I IIII III III s ~ ; ; I g
C ODULE 3 UNIT33I
C UNIT $USES-. NONE
C
C SUBROUTINE WORK
C USE: SEE MODULE 2. UN1T24, SUBROUTINE PIORK
Cw CALLED BY: PROGRAM PROBS
C CALL.S -ROME
C VARIABLES: SEE MODULE 2. UNIT24, SUBROUTINE WORK
CS 888 $ 811 8 111 118 8*8 188: 88888II88 IIt tIs

SUBROUTINE WORK
INTESER ARTV.BAS1C,PFPR.OPTS.VT,CB

.XBi2l) ,K .V,VT *.IlXN.BASHE,OP-1,BM
CONNON/P2INUEC,N6CNLC, 4, INDEAE. INDEX6. INDEXL,KFA,KFSKFSA,I.FSU.

.pr,PR
P ELE 'A (PF. P)
D0 200 JmI,VT
A(PR,J):A(PF,J1 /PELE

200 CONTINUE
XB(FP)nXBPk) /PELE
3(PR'-PK
O300 OIz1,K
iF(I .ER. PR)THEN

5O TO 300
ENDiIF
HOLD4AI,PK
51 250 Ju\. 4
AQ. *J)=4Q ~,J)-HCLD$41PR,J)

250 CONTINMUE
Ae(l)=XB(I)-HOLDlXB(PR)

300 CONTINUE
HOI.DzCiPK)
D0 350 vl=I*VT
C'.JC)-HOLDAPt.J)

350 CONTINUE
Z=Z-HOLDIXB(PR)
PET URN
END

347

* - -ell

I t I t t I I I I I$R, :t I1 g11g
C MODULE 3 UNIT33 t
C
C SUBROUTINE OPTB I
C USE: DETERMINES THE PIVOT COLUMN AND PIVOT ROW FOR BOTH PRIPAL AND I
C DUAL SIOPLEX PROCEDURES, DEPENDENT ON OPTION SELECTION. I

C DETERMINES AND SETS FLAFS ACCORDIN6 TO THE FEAISBILITY. I
C OPTIOA.ITY, UNBOUNDEDNESS AND DEGENERACY OF THE CULRRENT I
C SOLUTION. DEPENDENT ON USER SELECTION OF TABLEAU OUTPUT, I

c DISPLAYS TABLEAU HIEADER ON SELECTED OUTPUT DEVICE. t
C CALLED BY: PROGRAM PRODS

CALLS :NONE
C ARIAELES:

C USED: A0S. AIIC()DA.BAITBIA.,F 1 N
'IT XB(l)

C 401FID 6.4Ee.IFLAG(4 ,IFLAG4 i,IFLA6(7),IFLAB'G),IFLABt9),INFP, I
C OPTS,PK,PR,SPR

SUBROUTINE OPTS
CHARACTER VNS6, CNS6, PNS20,SM3FN$IQ,PINEGII,P(IO)SI,DBU-NtlO
INTEBER ARTV,BASIC,PK,PROPT'S,Y,VT,CB DUAL,OUTP,FNT,PROBT

.XBQO) ,K,V,VT,NMN 'BASIC,OPT3,BM
CONON/P2/NECNSCqNLC, IA.INDEXE! INDEK6,INDEXL.KFA.KFS,KF3A,KFSU,
.PK,PR
CCINMON/P3/DUAL,OUTP, !!AB. ISTAB, WFTADJFMTPRODT

IFLASt4)=O
IFLAS(0) :
INFP=O
GNEix0,.4

IF~iDUAL E2 2)THEN
C USER IAS ELECTED TO PERFORM DUAL PIVOTS

8O TO 300

C F"XDS LARSEST 7(J)-C(J)
110 DO 130 .]zl.VT

iF(C(J) '.6E. SNEG)THEN
60 TO 130

ELSE
ONE =C(J)

ENDIF
io CONIlNUE

IF(GNEG .ST. -.00C1 THEN
c NO NEGATIVE Z(J)-C(J) EX!ST SO OPTIPAL

GPTS2:1
END IF

C CHECKS FOR INFEASIBiLITY
DOIS 150 l ' j,

IFICP(I) .LT. YFAiTHEN

IF(XBVIa) .L0. O.D)THEN

348

INFPul
ENDIF

ELSEIF(XD(I) .LE. 0.0)TI4EH
s0 TO 150

ELSE
INFP~I

END IF
150 CONTINUE

IF(OPTS .EQ. WYHEN

c PREVIOUS SOLUTION NOT OPTIMIAL SO FIND PIVOT RON

SPR=10.EB
DO 190 Izl,K
WF(AUPK .LE. ,0001)THER

60 TO 1%(
ELSEjF((%B(I)IA(I,?Kl) .EE. SPR)THEN

60 To 190
ELSE

PRzI
ENDIF

190 CONTINUE
C CHECKS FOR UNBOUNDEDNESS

IF(SPR XL~. 10.EW)HEN
IFLAG(71=1

ENDIF
ENDIF
SO TO 500

C DUAL PIVOT CALCULATIONS PEFFOPMED

300 00 320 Jz1,VT
IFIC!J) ,LT. O.0)THEN

60 TO 110
ENDiF

3210 CONTINUE
DO 340 I:I,K

IffX5hi) .BE. HSBTHEN
60 TO 340

ELSE

PRXI
END IF

340 CONTINUE
IFiGNEB EQO. 0.0THE4

OPTES1
6010o 500

ELSE
SPRz-10.Ed
DO 370 JsI,VT
DO 360 I21'K

lFirB(1) .EQ. WIHEN

60 TO 170
ENDIF

360 COPTINUE

IF(AIPR,J) .6E. -.0001)THEN
60 TO 370

ELSEIFi(C(J)/A(PP,J)) .LE. SPR)TIIEN
60 TO 370

ELSE
SPRzCt4J)iA(PR,J)

ENDIF
370 CONTINUE

ENDIF
IF(SPR .LE. -l0.E6)T4Eh

IFLAB (7,) -

500 MFTS .EQ. W)HEN
I'F;INFP .EQ. WHTEN

6O TC 600
ENDIF

C CHECKS FOR MULTIPLE OPTIMAL SfLUTIO,48
DO 540 J=1,YT
IFLAG S) :
DO0520 lx1,K
IF(CBMI .EQ. J)THEN

IFLAG(S):!l
ENDIF

520 CONTINUE
IF(IFLA6(8) .EQ. 0)THEN

IF(CMJ M1.. .0001 -AND. CMJ .ST. -.0001)THEN
IFLASM-)1

ENDIF
ENDIF

540 CONTINUE
EhD IF
IF(IFLAG(7) .EQ. I)THEN

60 TO 609
ENDIF

C CHECKS FOR DEGENERACY
DO 560 1=,
IF(XBI G6E. -.0001 ..AND. XB(1 ,LE. .0001)THEN

IFLAG(6):1
ENDIF

560 CONTINUE
C DETERMINES VF PRESENT SCLUTION TO BE DISPLAYED

0c0 IF!BASIC EQ. I .AND. ITAB .E. WHEN

ELSEIFICASIC NME. W)HEN
IF(OPTS .Eg. 0 .AND. IDTAB NME. 0)THEN

1FI((FL0AT(DASIC-1)'IFLDA1'1B1AD))) .EQ. FLDATC(DASIC-1)/
IBTAB)).'?EM

60 TO 700
ELSE

IFLAS (9)z~
RET URN

350

ENDIF
ELSEIF(OP7S .EQ. I .AND. IFTAB EQ0. 1)THEN

60 TC 700
ELSEIF(IFLAG(7) .EQ. 1 .AND. IFTAB .EQ. I)THE4

50 TO '700
ENDJF

ENDIF
JFLAG(9)xO
RETURN

C PROPER OUTPUT DEICE OPENED AND 1ADLEAU HEADER DISPLAYED
70 IF(OUTP ME. WNEN

OPEK(2,FiLE='CINSOLEz')
WRIIE(1,'I(A)')CAR(I2)

ELSE
GPEN(2,FULE='PR1IER:.'l

END IF
0RITE(2.';!0X,A20!lOX,''BASlC SOLUTION t'',12)')PN,BASIC
IFOUPTS .EQ. . .OR. IFLAS(7) .E9. W)HEN
WR1TEi2,'i10X,''FINAL TABLEAU - "W
!F'!NFP .EQ. W)HEN
WRITE (2,'0''INFEASIBLE'')')

ELSEIFtIFLA647) .ED. I)THEN
WRITE(2,'V('UNBOUNDED'')')

ELSE

ENDIF
!FUFll'AG(6) .EQi. 1T

*115E(2,' (26X, ' DEGENERATE'')')
ENEIF

ENDIF
lFlOPTS .ED. I .AND. IFLA6(4) .EQ. I)THEN
NRITEf2.'(5X,"MbNIjIPLE OPTIMAL SOLUIO!NS EXIST")')

ENDIF

(FLAG (5) =
RETURN
END

Gr

CII 8t I I III II I I I tIt I I I It Itt111 *11 111
C MODULE 3 UNIT34
C UNIT $USES NONE
C
C EUBROUTINE CGNVRT
SUSE: DEPENDENT, ON USER IFTION SELE17IN, CONVERTS THE PRIMAL
C PROBLEM INTO ITS DUAL PROBLEM AND ADDS THE NEEDED VARIABLES I
C TO ALLOW FOR VARIALES WHICH ARE INCONSTRAINED. USER IS I
C INFORMED OF ADDED VARIABLES AND THEIR ASSOCIATION WITH I
C PRESENT VARIABLES. REWRITES DATA FILE i4ICH CORRESPONDS TO I
C DUAL PROBLEM. I
C CALLED BY: PRO6PAM PRODS I
C CALLS : SUBROUTINE INRD I
C SUBROUTINE NFILE(N) I
C VARIABLES: I
C USED: C($),IFLAS6I) THRU IFLA6tlO).K.OFJN,V t
C MODIFIED: A(It),CN(S),C2 it,IE.INEO(S),K2,M,MXMNN.NEC.N6C,NLC, I
C P!NEDI(),VN2(f,,V2,XB ()
C I I I5 5 51 II I 1 usII tI I 1111 5 I I Its

SUBROUTINE CONVRT
:HAFACTER VNI6.,CNt6kPNIIO,NNS,FN1O,PINEASI,PIO)IIOjNtl1QVN2t6
INTESER ARTVBASICPKPROPTS,V,VT,CB,DUAL,OUTP,FMTPROBT,Y2,K2
COMMON/PI/A(20,6O),ARTV(20),C(60),Z,INEi20),IFLA6(iO),CB(20),
.XB120),KV,VT,MXMN,BASIC,OPTS,BM
COMMON/P2INECONC,NLC.IA, INDEXE, INDEXG, IkNDELFA,KFSKFSA, KFSU,

CDMMON/P4/VN(20).C(2),"PN,1M.FN.PINEEc20).DBJN
DIMENSION C2120)VVN!20)

C ROUTINE CALLED WHICH INITIALIZES VARIAELES AND READS MCDEL
CALL INRD
!F(NXMN .EQ. I)THEN

C PROBLEM STATED AS A MAXIMIZATION PROBLEM
DC 110 I ,K

IF(IINED .EQ. I)THEN
D0 100 JvI,V

100 CONTINUE

ENDIF
110 CONTINUE

ELSE
DO 130 Iz1,r

!FiNEQ() .EO. O)THEN
00 120 al,V

A(I,j)a-AiI,J)

120 CONTINUE
XB(I):-XB(1)

ENDIF
130 CONTINUE

EN[IF
C RHS PLACED IN TEMPORARY STORAGE LOCATION

DO 150 IsI,K

352

150 CONTINUE
DO 160 !mK+1,2O
C2i I)zo. 0

160 CONTINUE
C PRIMAL CIJ)-ZiJ) VALUES CONVERTED TO RHS

DO 170 Jui.V

170 CONTINUE
C NUMBER OF DUAL VARIABLES INCLUDING UNCONSTRAINED VARIABLES FOUND

IFaNEC .%E. 0)THEI
V2aK*NEC

ELKE

END!!'
KZ:V

C COEFFICIENT MATRIX ROTATED AND PLACED IN UNUSED ORIGINAL A MATRIX
DG 190 iI,K
DO 180 Jsl,V

A (J. 1+20) :A(I,J)
180 CONTINUE
190 CONTINUE

C VARIARLSS ADDED TO ALLOW FOR UNCONSTRAINED VARIABLES
IF(NEC .ME. 0)THEN

IE=-
DO 210 'I=1.K

1FlE4) .EY. 2tTREN
!ExIE+1l
WRITEft,' (A)')CHAP(12)
RITE:''9m/,X,'ARIABLE '',12,'' HAS BEEN ADDED DUE TO

.''VAR14BLE '',17,'' BEINO UNCONSTRAINED IN SISN.'',7(/;')K+IE,
.1

PAUJSE
DO 200 Jm1,K2

IF(A(J,1+20) XN. O.O)THEN
A(J.K+IE420)x-1.01(A(J, 1*20))

ENDIF
200 C20TINUE

IF(C211) -NE. '.0)THEN
C2(K+lE)=-l,0lC2lI)

ENDIF
ENDIF

210 CONTINUE
A-DIF
IFIIEC .NE. 0)THEN

Na!
ELSE

Nz0

END IF
IIECsO*1 N6CaO

33

* ! !

C COUNT BY INEQUALITY TYPE PERFORNED
DO 220) 1-1,92
IVUIIN .EQ. I)THEN

INEG(IC+

EL SE
INEQ9) 0
PINEOW(I)I'
tILC4Lt41

ENDIF
220 CONTINUE

lF(HXMN .EQ. I)IHEN

MXMtN= I

NNM:' AX'
END IF
IF(IFLAE(5) .EQ. I)THEN

C MODEL. INCLUDES NAMES 5fl NAMES ARE C$ANDED TO REFLECT DUAL ?ROD
%)BJNZ'
)0 230 Isl.K

y2I)=CW (I)
130 CONTINUE

DO 240 3xI,Y
C.N(J)vKW)

240 CONTINUE

20 CONTINUE17

280 CONTINUE

00 30 I4,0

%PlTEZ)CWEl),PX2I,~I

DO 1.7 Js354

27 ONIU

300 CONTINUE
00 310 Jzl,V2

bRITEMY)N24J)
*310 CONTINUE

MR1TE (3) O3JN
* ENDIF

CLOSE (3,STATUS-' VEEP')

VRITEfI.'(11M/,IX.''IMSURE DISK LP2 IS AVAILADLE.'',7t1W)
PAUSE
RETURN
END

C NODULE 3 UNIT34
C I
C SUBROUTINE ACNCH
C USE: DEPENDENT UDON USER OPTION SELECTION, EXAMNES PRESENT MODEL I
C TO INSURE A NEBATIVE C(J) WILL SE PRESENT. IF .40T PRESENT , I
C CONSTRAINT IS ADDED TO INSURE AN INITIAL PRIMAL PIVOT WILL I
C BE POSSIBLE. USER IS NOTIFIED OF ADDED CONSTRAINT. ROUTINE I
C REWRITES DATA FILE WhICH CORRESPONDS TO MODEL WITH ADDED t
C CONSTRAINT. I
C CALLED 013 PROSRAN PROBS I
C CALLS =SUBROUTINE INRD I
C SUBROUTINE NFiLE!N) t
C VARIABLES: I
C USED: BM.Ct),IFLAS(1) THIRU IFLAG(IO),MM,MXMN,NEC,NeCOBJN, I
C PNV.N(*)
C MODIFIED: A(I,I.CNI$,INEQ(*!T,KNNLCPHEQ(II,19(I)

SUBROUTINE ACNCH
CHARACTEP VN$6,CNI6,FP 204,$M3,FNIIOPINEQII,P(IOI)g.OBJNIIO
!NTE6ER ARTV,BASICPK,PROPTS.V,VT.CBDUAL,OUTPFMT.,PROT
CUMNON/P!iAi2060' ARTV(2O). C(60). INEQ(20),IFLA6(I0),(B(20l,
.XB(2OI .k,V,VT,NXII,DASC,OPTS.BM

CCNMON/P21NECNGC,NLC, IA, INDEXE, INDEXS, INDEXLKFAKFS.KFSAKFSU,
.PKPR
CO! tON/P3/DLAL,OUTP, ITABIBTABIFTABFMT,PROBT
CORMON/P4!VN(20).CN(20) PN,MM,FNPINEQ(20),OBJN

C ROUTINE CA.LED 4HICH INITIALIZES VARIABLES AND READS MODEL
CALL 1N0
iT=0

IFiMXMN .EQ. !)THEN
C PROBLEM STATED AS A MAXIMIZATION FROBLEM

90 160 O=IY
IF(CJ) .ET. O.O)THEN
IT=I

ENDIF
160 CONTINUE

ELSE
DO 180 Jal,V

IF(CiJ) .LT. Q.O)THEN
IT=I

ENDIF
180 CONTINUE

ENDIF
C DETERAINE5 IF INITIAL PIVOT POSSIBLE

!F(IT .EQ. O)THEN
N=O

60 TO 200
EIDIF

C TO INSURE INITIAL PIVOT, CONSTRAINT ADDED
ORITEII,'(Al')CHAR(12)
KzY.+I

356

INEO(K0z0
PIlEQ(K)x'<'
NLCzNLC+1

DO 19') 1u1,V

190 CONTINUE
WpITE(1,' (A,)CHAR!I2)
#RITE(I.'(9l/),2X,"'A CONSTRAINT HAS BEEN ADDED TO THIS''/1Y,f'PRO
.BLEN TO INSURE AN INITIAL PIVOT NAY''115X,''DE PERFORMED.'II''THE
*CONSTRAINT IS THE SLIM OF XCI) THRU")')
WRITE(!,'15X,''X(',I2.'') 1S LESS-THAN OR EQUAL TO'''3X.IPEI2.5,2
.1,"(T4E VALUE OF 31)'.(I))YB
PAUSE
!FCIFL46(5) *EQ. h)THEN

CN(K ' !'AVDED'
ENDIF
N=2

200 CALL NFJLE(N)
C NEW FILE CONTAININ6 MODEL WITH ADDED CONSTRAINT WRITTEN TO DISK

DO 230 !1100
WR!TE(3)IFLAG(I)

230 CONTINUE
00 250 Pr1iK

DO 240 J=l,V

240 CO4Ti4UE
'50 CONTINUE

DO 27.) J=j*9
WRITE XC(J)

270 CONTINUE
!F:IFLAE(5) *EQ. 1)THEN

DO 290 lx,
WP.ITE(3)CNfI)

290 CONTINUE
DO3 310 j:j,v

VRITE(3)VNIJ)
310 C0NTINUE

DO 330 JzY.1,20

330 CONTINUE
WRITE!V3GOJ0

END I F
CLOSE (5,STATUSz' KEEP')
WR!TE;, (A' iCHAR'12)
WRITEU..'1(!!,X.''INSURE DISK LP2 1S AVAILABLE.'',7(/I'1
PAUSE
RETUFN
END

357

C MODULE 3 'JNIT34 I
C
C SUBROUTINE INRD
C USE: INITIALIZES VARIABLES TO IZERD EXCEPT CHARACTER VARIADLES. 5
C PR0'IPTS USER TO INSURE DISK WITH FILE TO BE STUDIED 1S
C PRESENT AND READS rILE FROH DISK.
C CALLED BY: PROGRAll PRODS I
C SUBROUTINE CONYRT

CSUBROUTINE 1MWD I
C CALLS INONE I
C VAP.IRBLES; I
c USED: 40NE I
C NODIFIED: I~~)AT()B5CL.()C~)CN5,NA
C iFLAGM1 THRU JFLA6U10),IND.EXEINDEXGaINDEXL, INEQits,K, I

C I I I t C I 1 1$ 11 11 1sP1NE(51,I1VN111), 1 5

SUPROIUTINE INRD
CHARACTER VNt6.CNI6,PN*20,Hfl1",FNt10.P1NEA*1,P(!)52.,OBJNIi0O
INTEGER ARTVDASIC,PK.PR,O-PTS,VT,CB.D1JAL,OUTP,FN1.PROBT

CONPION/F2/NEC,NSC,NLC, IA, INDEXE. INDEX5, INDEXL,KFA,KFS,KFSAKFSJ.
* PK, PR
COMhIONP4!VN(20) .CN(20O),PN,NN.FN.PINE'20) ,OBJN
DO0150 Izl,20
ARTV(I)=O
CB(i)--o
INEg(1)=O
XBi):o.9
Do0139 JsI,60

AlI,J)M0.0
130 CONTINUE
150 rONTINUE

'70 CONTINUE
DO 100 1=!, 10
IFLA6(I)u0

0~0 CONTINUE
NEC20

NLC=O
Z20.0
.A-0
9ASIC20
OPT~SO
INDEXE09
INDsXGso
!NDEXL00

WRITE,'('9(/),5X.''INSUPE 7HE DISK CONTAINING THE'!!i51,A10

35

.I/1OL."NODEL 1S AVAILABLE.'',7(/)')FN
PAUSE

C FILE WHICH CONTAINS MODEL OPENED AND READ
OPEN(3.FILE-FN,STATU~a' OLD' ,FORN:' UNFORMATTED')
READ(3)PN,NXNHN.K. VNEC, NGC,NLC
DO 210 121,40
READ (3) IFLAO I)

210 CONTINUE
Do 230 Isl,K

DO 220 JuI,.V
READ (3)A(I,J)

220 CONTINUE
230 CONTINUE

DO 250 Jtl,V
READ (3) C(J)

250 CONTINUE
IF;!FLAO(S) .EQ. I)TfIEN
DO 270 1:1,K

PEAD (3) CM ()
2.0 CONTINUE

DO 2490 JxI,V

290 CONTINUE
DO 310 JzV+1,20

310 CONTINUE

END IF
IFLAG (2) :1
CI.OSE 3. STA!USz' EEP')
WRITE(1,' (A)')CHAPR(12)
NRI7E(l,'(I4/,),1X,''INSURE DISK LP2 15 AYAILABLE.'',7()))

PAUSE
C FIND APPROPRIATE VALUE FOR BIG M

C1:0.i)
BNZ0. 0

IF(4PSiCtjl)) SBT. DPI)THEN
?NzABS%'C(J))

ENDIF
350 :ONTINUE

BN=(ANINT0B))110.0
IF(PM .LT. 1.0)THEN

SIpxi0.0
ENDIF
RETURN
END

359

c I I I I II I *I tIt t sI I ts I II II II II
C ijIDULE 3 UNIT34
C
C SUBROUTINE NF!LE(N)
C USE: DEFENDENT ON FLAG (K), DISPLAYS BRIEF EXPLANATION OF MN I
C FILE BEING CREATED. SOLICITS VOLUPE:FILENAME INPFJT BY USER I
C FOR CREATION OF NES FILE AND OPENS THi! FILE ON VOLUME I
C SPECIFIED.
C CALLED BY: SUBROUTINE ACNCH
c SUBROUTINE CONVRT I
C CALLS :NONE I
C VAR14BLES:
C USED: N

40DIF1ED% P(S',FN,TN

SdBRQL'Ti4E NFL;E(N)
CHARACTER V~.N6P~2,M3FSQPKQ1P1)SBN1,NI
COON/P4VN(20),CN(20),N,MNFN,PIE(2),lBJN
WR ITE0(110) CHAR (2)

110 FORNATIA)
IFIN .EQ. 1)1HEN

TN='VARIABLES'
ELSEIFiN .EQ. 2)THEN

TN:' CONSTRAINTS'
ELSE

WRITE'l,'iIX,''A NEW IISK:FILE4AME MUST BE CREATED SO''l'THAT T
.HE CRISINAL''.//15X.AlO//"WILL NOT BE -IESTROYE-D A.ND MAY BE REUSED.

601TO 130
ENDIF
'4RITE(1.'(lX.'DUE TO THE ADDITION OF "',All,', A''/'NEW DISN:FlI
.LE FUST BE CREATED TO CONTAIN'!''THE 4N MODEL. THIS WILL ALLOW T
.HE JSER'/'' TO REUSE''//i5X,Alc,,''AT A LATER TIME.'')')TN,FN

130 4RITE-(1.'(I,''FLEASE ENTER, IN it CHARACTERS OR LESS.''/2X,''A DRI
.VE:FILENAME '1O iTORE THIS FILE.'')')

!4P WRITEII,'(!.''NEW MODELS DRIYEFILENAME '')'
10 RE4D(5,' (AIO)*)FN
10WRITE0i,'(/;7X,''ARE CORRECTIONS NEEDED?''))

IF(ICHARiP~fll .EQ. BliTHEN
30 Ta 140

ELSEIF(lCNARA(P(1i) .NE. 78)THEN
j WRITE(1,160)

ia0 FOPMT(/5X,'INVALID ENTRY. PLEASE REENTER').1 60 TO 15(f'
WRITE(1,'(/.''HA.S THIS DISK;~FILEN4ME C~qnBINATION BEEN"''12,'USED
F REVlOUELV7''/'(AR! YOU UPDATING A CURRENTLY EAISTIN6';/:7X.'Fi

IF(ICHAR(P(l)) .EQ. 89),HEN

360

OPEN (3, FILE:N, STATU=' OLD' ,FQRN=' UNFORMATTED')
ELSEIF(ICHARiP(I)) LEO. 70)1IHEN

OPEN 3,FILE4FN, STATUS:'NEW' .FORM='UNFORNATTED')
ELSE

VPTE160)

ENC IF
WRITEI, 1IO)CHAR112)

WRIEU,(9().6.''NS'RETHE DISK TO CONTAIN'/II5X,Al0i/1QX,
'MNODEL 1S AVAlLABLE.'',M()"l)N

PAUSE
RETURN
END

f 361

C MODULE 3 UNIT35
C UN!T $USES: NONE I
C t
C SUBROUTINE PSHED I
C USE: DISPLAYS TITLE PAE OF MODULE 3, PROBLEM SOLVER MODULE, I
C CALLED BY: PROGRAM PRODS I
C CALLS : NONE
C VARIABLES: NONE

SUBROU4TINE PSHED
0I]TEQ (W!))CHAR(12)

.,7 X,'*'19,'i '',I"201,'"t"/9X2"i',X'PROEAMN'',''

WR..TE(i,' ' t'' " ,7XT' 'pR'3LEM'" ,X, "'I"/iX,'"$"',20X,'"$"' 'X,

,EoX,"I"')')

PAUSE
RETURN
END

--- A Ra.. .

C MODULE .3 UNIT35 I
C
C SUBROUTINE ASKO(ASK)
"t USE; SEE NODULE 2. UNIT25, SUBROU7INE ASK01ASY)
CCALLED BY: PROSPAN PROBS
C CALLS :NOE
C VARJAiLES: SEE MODULE 2, HIlT25. SUBROUTINE ASKOZASK)f

SUBROUTINE AS1KO(ASK)
CHARACTER N .C hN2,M3F*0PNQ1P1)IOJ1,

.FNOIO
'INTEGER -ARTY',BASICPK.PR,OPTS,V.V'T,n6P,DVIALOIJTP,FMT,PPOBTASK

.4 (20).,,TMMAIPSD
COMIN/P2/NEC,NGiC,NLC, IA, INDEXE. INDEK6, INDEXL,KFA,!(FSI(FSAKFSU,

.pK,PR
CONNLt4/P3tPUALOUTF.ITAB. lUTA.BIF1AB,FMT,PPOST
COHNONIP4IVN(20jC'N(10) .PN,NI,FN,PINEQ(20),OBJN

DIMENSION. A(02,B(20,40(20)
FNO=FN

00) 1TE(1,1104CHARH LI)
110 FORMAT(A)

!FLAi(O)zDUAL-l
kRI7TE(,'(e8U),''TO PERFORM SENSITIVITY ANALYSIS ON THIS'/''MODEL

THE INFORMATION OF THE CURPENT''/'TABLE40 MUST BE SAVED TO DISk

130 KPITE(W,(''DO YOU WISH TO SAVE ThIS F!LE TO D!S%?',*)

IFfICHAR(P" .EQ. 89)T4EN

WRITE'15,'uX,''SAl E LP MOEL TO DISK''//12Y.''ENTER THE DISK. 0
,RIE UMERAND FlE/2X,''NAME YOU WANT THE CUPRENT TABLEAU OF"'

WRITEIW'fiM'ENTER EIACTLY AS FOLLOWS''ilOX.''DISK DRIVE:FILE
,kAAE'/!12X."ES. 14:FI;ENAM''/P'THE DRIVE:F1LEAhE MUST BE 10
*CHARACTEFS'IlbX,'OR LESS.'''/1X.''DO NOT USE THE SA0E NAME USED
*WHEN THE''/6X,''RIGINAL MODEL. WAS ENTERED.'')')

READ (I,' 'A! 0 '))FN
150 WRITE(I,'(17 ,'-ARE COPPECTIONS NEEDED? ','

fft;CHAF.i ' 0 .EQ. 89;THEN
60 TO !00

WRITEil,(I/X,'NV'4LID ENTRY, PLEASE REENTER'')')

ENDIFIWRITE(1,'411I).l1X,'?INSURE DISK 0P2: IS AVAILABLE.'',7(h

363

L Id.

PAUSE
C TRANSFER FILE OPENED AND FILE NAME WRITTEN

OPEN(3,FILE:'LP2:LPDATAW' ,STATUS:'OLD' ,FORNu 'UNFRNATTED')
WRITEi '3)FN

C TRANSFER FILE CLOSED
CLOSE (3,5TATUSz' KEEP1)

C USER PROMPTED TO INSERT DISK WHICR SOLVED MODEL IS TO'?E SAVED
KRITE(I,'J9(i),2X,''INSlRE THE DISK TO CONTAIN THE FILE"11151,

PAUSE
NRITE{1,110)CHAR(12)

C CURRENT STATUS OF FILE INPUT BY USER
4RlTE(I,l 9(/),''4AS THIS DISK:.FILEJNE CONMThTION BEEN''/121,

.'"USED PREVIOUSLY7''/I'(ARE YOU UPDATING A CURRENTLY EXISTING"'/

200 4RITE(1,'(i/16X,''fY/N) '',i)'!

'&F(CHAR(P(1). *EQ. 89)THEN
DPEW(3,FILE:FN,STATUS:.'OLD' ,FGRI='UNFORflATTEDi)

ELSE!F(lCHAR(P(l)) .EQ. 79)THEN
CPEN(3,FILE:FN.STATUS:'NEW'.FORN:'UNFORNAITED')

ELSE
WRITEd, 210)

210 FORNAV!/59,'INVALID ENTRY, PLEASE REENTER')
6010O200

ENDIF
C SOLVED MODEL WRITTEN TO DISK

%RI13)P4,AXMN,K, V. IFLAG(5)
WPITEil.10~QCHAR(!2)
4lRITEf1,'f9(i),5X,''INSURE ME DISY CCNlAIN!N9 THE''//15X,A1Q

l//iox,''MODEL IS AVAILABLE.'',7(/))')FNO
PAUSE

C ORISINAL MODEL FILE OPENED TO READ ORIEINAL PARAMETERS
OPEN(4,FILE:FN0.STA',hlS:'OLD' ,FORN&-UNFJRMATTED',I
READ .4) PH, N)N, NN,K, V. NEC, HOC. NLC
DO 220 1=1,10
READ(4)IFLAG(1)

220 CONTINUE
DO 240 1=11,K
READ(4!1NEgml,PIE(I),B;I)
DO 230 Jzl,.V

PEAD 41A1I.j)
230 CONTINUE
40 CONTINUE

DO 250 JzI.V
READ(4)CO1(J)

20 CONTINUE
CLgSE '4. STATUS=' KEEP')
4RTE (1,II-1.) CHAR (12.

VRITE'1,'i9(/),!'INSURE THE DISK TO CONTAIN THE FILE FOR''I/15X,

364

PAUSE
DO 270 IxI,K
ORlTEm3)NEGIl),91Z)
Do 260 Ju1,v

WRITE(3lAO(1,J)
260 CONIFINUE
270 CONTI1NUE
C SOLVED MODEL AND ORIGINAL PARAMETEPS WRITTEN TO D1S~k

DO 275 Jxj,V
WRITE (3) CO (J)

275 CONTINUE
lRITE (3) IFLAGI 0,VT
DO 2?o Il,K
WRITE!Q)XB(1).CB(I)
00 290 Jx1,VT
WRITE(3)A(I,J)

loo CONTINUE
290 CONTINUE

DO 300 Jxl,VT
WRITE(.')C(J)

300 CONTINUE
4RITE (3)
iF(lFLAS(5) .EQ. I)Tt(EN

0O 310 IvI,K
NRITE (3) CN(I)

310 0 N T 140E
30 320 Jz)*V
WRITE(3)VN(J)

320 CONTINtIE
WRITEi3) OBJN

ENDIF
CLOSEi3(S SATUS:-' EEP')
WRITE(If1I0)CHAR(121
WRITE(1,'(1I-./),X,''!NSURE DISK LP2 IS AYAILABLE.",l(i)

PAYSE
ELSE!ilCHAR(P(1)) XN. 7B)THEN

WRIIE (1,*210)
60 TO 130

A ENDIF

%PITEi1,'lU1(b,lX."WOULD YOU L!KE TO STUDY ANOTHER MODEL''!41.'
qWH!C HAS PEE4 SAVED 70 DISK' ',S)')
READ(59'(AI)')P(I)
lF(ICHAP(P'1)) EQ. 69)THEN

400 WRIT(1,I30)CHAR1)
W.~IJEfI,"'9(/) ,2X."'ENlER DISK DRIVE NUMBER AND FILENAME''4X1,'

.WHICH THE 40DEL 1S SAVED UNDER."')')
WRITE'(1,'(/X,''MGDEL TO STUDY -: f'
PEAP(5.' (AI0)')FN

450 NRlTE(1,'(/.7,''ARE CORRECTIONS NEEDED? ",flS)

365

VICIHARMPM) .EQ. 89)THEN
MO TO 400

ELSEMFICI4ARMP) .NE. 7OTHEN
WRITE(Il'lflX,''IhYALlD ENTRY, PLEASE REENTER'')')
50 7G 450

ENDIF

WRITE(I10'HU:,1,'IN'dRE DISK LPI 19 AVAILABtE.',JM

PAUSE
C TRANSFER FILE OPENED AND NEW MOrDEL FILE NARE WRITTEN

OPENI3,FILE2'LPI:LPDATA' .STATLIS:'OLD' ,FOHMz'UNFCRNATTED')
ORITEII)FN
CLCSE1(3, STATUS:' KEEP '
ASKxt
RETURiN

ELSEIF(CHARIPM1) RNE. 73'THEN
kPiTE(l,' (I5,'-INVALID ENTRY, PLEASE REEMER''')
60 TO M39

ENDIF

WFPITE(1,' i il(I;'4 X,'INSURE DISK LP2 IS AVAILABLE.'.7;/)')
PAUSE
WRITE(1,11Q)CHAR(12)
VRITE(I.'(8M/,;X,''TD ENTER THE LP DATABASE HODULE:''//17Y,''TYPE

STOP
!hETURfl
END

:1 366

C M4ODULE 3 UNIT31 $
C
C SUROUTINE SIGH
C USE: SEE MODULE 2. UNIT25, SUBROUTINE 01SH I
C CALLED BY: PROGRAM PRODS
C CALLS -. NOME
C VARIABLES; SEE 1.200LE 2, UNIT235, SUBROUTINE 816M

SUBROUTINE BIG"
iNTEF ARTV,BASIC,PY,PR,OPTS,V, VTCB,DUAL,OUTP,FHT,PROBT
COHHN!P!A(20,60),ARTV (20) ,C(60),14IEG (20),IFLA46(10),(2)

.ONN/P2!/NEC,NSC,NLC, IA, INDEXE, INDEX5, 1NDEXL.kFAKFS,KFSA,KFSU.
.PK,PR
COMM4/P3!DJAL,OOTP, ITAB, IBTAB, IFTABFT,PROBT
IA:I'A-1
KFSU-V+NGC
DO 300 jzI.KFSU

DO 200' 1=1,1A
SUh=SUM+AIPTV~l) ,J)

200 CONIINJE

300 CONTINUE
DG 400 J=KFA,VT

40j0 LV'NINUE
SUN:0. 0
DO 500 I:l,!A

SUH*SUM+XBIARTV(I))
500 CH~T1NLIE

RETUFN
END

367

Cg I I II tItItIIt I I *i st. I16 fes tsu IIII I II s
C MODULE 3 UNIT35I

C SUBROUTINE INDEX I
C USE: SEE MODULE 2, UNIT25, SUBROUTINE INDEX
C CALLED DY: PROGRAM PRODS
C CALLS -.NONE
C VARIABLES: SEE NODULE 2, UNIT75, SUBROUTINE N1NI
C tIII 338 1 1 881811 1 1 1 33II II38I3*It1tI

SUBROUTINE INDEX
CHARACTER V8,N6P5ON1,NIIEhU)1ON1
INTE6ER ARTV,BASIlC,PK,PR.OPTS V, VT.CD
CONN'iN/PlIA(20,6Q) ,AT')(20 ,C'0 , IE92) FL6 ,C 2k.XB'20) ,K,Y,VT.hXNN,BASIC,CPTSqBN
CONIN/P2/NEC,NBCSNLC, IA. INDEXE,INDEXS,INDEXL,KFA.KFS,VFSA,KFSU,
.PK,PP
CONMONIP4l1N(20) ,CN(20 ,PN,M,FN.PINED(20' ,LPN
IAz1
KFSAxV+l
VW=Ve(&*N6C)+NLCI NEC
iXF5=V+roC41
KFA=KFS+NLC
KFSU:V+NBC
!NDEX 6=V~1
INDEXL=V+NGC+1
INDEXE=V+NBC+NLC,1
DO 200 I=IK
IFUNWgI) .EQ. W)HEN

C SLACK VARIABLE ADDED TO CONSTRAINT
CB(I)cINDEXL
Ail, NDEXL)sI.
INDEXLeINDEXLs1

ELSEIF(INEDtI) .EQ. l)TI4EN
C SURPLUS AND AR71IFICAL VARIABLE ADDED TO CONSTRAINT

Ci(I):INDEXE
ARTV(lA *I-

!NDEXE=INDEXEt1
A;I,INDE16)n--I.
INDEXGxINDEX6+1

ELSE
C ARTIFICAL VARIABLE ADDED TO CONSTRAINT

ARIVIIA~zI
IA-IA+l
CB (1) INDEXE
AU',INDEXEkIl.
JNDEXE-INDEXE4I

ENDIF

P1 MEW I2g'
20 CONTINUE

IF(ilLAG(5) .EQ. W)HEN

-Wl

DO 210 JxKFSA.KFS-l
YN(J)x'SURPI

2110 CONTINUE
0~3 720 J-KFSKFA-1
V4(JWuSLAC.'

220 CONTINUE
DO 230 J=VFA,VT

VN(J)x' ART IF'

230 CONTINUE
ENDIF
RETURN
END

I6
Ida

C I fI II II II I I I I I II II II II I I I I
C MODULE 3 UNIT35 t

C SUBROUTINE MODIFP
C USEt TRANSFORMS ODJECTIVE FUNCTION FROMI MAX OR MIM Z=X FORM TO MAX I
C Z-Ia0 FORM. MULTIPLIES ALL CONSTRAINTS WITH NEGATIVE RHS'S I
C BY -1 AND CHANGES iNEQUJALITY ACCORDINGLY. ONLY USED W14EN I
C PRIMAL PROBLEM 115 BEING SOLVED.
C CALLED BY: PROGRAM PRODS
C CALLS , NONE
C VARIABLES:
C USED: IFLAO(4),V.,MXN,V
C MODIFIED:A',)C),Ef)NCLCHNE(,DS

SUBROUTINE MODIFP
CHARACTER VNI6,CNS6,PNS2(OMMS3,FNS10,PlNEQSIqP(1C')SIOBJNI10
INTEGER ARTV,BASIC,PKIPR,OPTSV,YT,CB
:ONNCN/Pl/A12O,6~0),ARTV(20),C(60) ,ZINEO(J'O) IFLAB(IO),CB(20,
* XD(20) .K,V,VT,MXMN.DAS'IC.OPTS,DM
COMMON/P2/NECNGC,NLC, IA, INDEXE. INDEXS1!NDEXL,KFA,KFS.KFSA,.KFSU,

C!IMMON/P4iVN(210) ,CNI-20t),PN,HM,FN,PINEQ;20: .DDJN
IFfMM .EQ. 1)THEN

C PROBLEM STATED AS MAXIMIZATION PROBLEM
Do 160 J-I,v
CIJ)=-C(J)

160 CONTINUE
ELSE

MR-'MAY'
END IF
iFLA614)zl
DO 300 Iz2 ,K

IF(X6(I) .LT. 0.0)THEM

DO 200 I:I,'l

200 CONTINUE
C COUNT OF INEQUALITIES UPDAIED DUE TO MULl BY -1

IF(INE9(I) *EQ. O)THEN
NLCzNLC-I
"Sczm6c+1
INEQ t) :1
PINED I 'W>'

ELBEIF(iNER(I) .Eg. I)THEN
NSCUNEC-1
NLCzNI.Ct1
INEP~l)z0

END IF
END:F

300 CONTINUE
RET URN

370

END

-77-

CMODLE 3UNIT135
C
C SUBROUTINE MODIFO
C USE: TRANSFORMS OBJECTIVE FUNCTION FROM MAX OR HIM ZxX FORM TO MAX I
C Z-14 FORM. TRANSFOR.S ALL CONSTRAINTS ITH SREATER-TIAN OR I
C EQUAL INE91UALITY TO LESS-THAN OR EQUAL. INEQUALITY. I
C CALLED BY; PROGRAM PROBS
C CALLS -.NONE3
C VARIABLES:
C USED: K,MXMN,V
C MODIFIED: A(,)C()1EQSK.NLC.NN,PlNEQ(l),X6(t)

SUBROtlTINE 0ODIFD
CHARACTER VN16,CN$6,PN920,fMS3,FN~I0.PINEQS1,PUIO)31,OBJNIIO
INTEGER ARYBSCPRCT,,TCULOTMRB
COMMON/PI/A(20,60) ,AR(Y2O) .C(60),Z,INEQ(20),IFLA6l)),CB420,f

COMMON/P2&/NEC.NBC,NLC,IA,INDEXE.INDEXS, INDEXL,KFrA,KFSKFSA,KFSU,
*PK, PR
CONMCNIP4IN(20) ,CN120' ,PNMM,FN,PINEO!20),OBJN
IF(MXMN .EQ. I)THEN

C PROBLEM STATED AS MAXIMIZATION PROBLEM
00 120 j:1,V
c(Jiz-clJ)

120 CONTINUE

ELSE

DO 150 I:1,K
IF(INEG(I) .EQ. 1)T4EN

DO 140 Jul.V
A(I.j)=-A(I,J)

140 C)NTINUE
COUNT OF INEQUALITIES UPDATED DUE TO MULY BY -1
FINEQ I)Z' ('
IMED(I)zO0
NGCuNGC-1
NLC.NLC~l

EPDIF
1110 CONTIOUE

RETURN
END

372

C MODULE 3 UNIT36 I
C UNIT $USES-. UNIT37

C SUBROUTINE TDISPL I
C USE: DETERMINES THE NUMBER OF SO COLUMN WIDTHS REgUIRED TO DISPLAY I
C TABLEAU. DISPLAYS TABLEAU TO USER SELECTED OUTPUT DEVICE. I
C ALSO SOLICITS INPUT FROM USER AS TO DISPLAYING THE BASIC t
C VARIABLES VALUE AFTER EACH DISPLAYED TABLEAU. IF REDUESTrD, I
C DISPLAYS THE BASIC VALUES ON SELECTED OUTPUT DEVICE WITH I
C OBJEC7IVE FUNCTION VALUE ALSO DISPLAYED. I
C CALLED BY: PROGRAMI PRODS
C CALLS :SUBROUTINE CHECK2(P.4N,M,INVAL,IlNEW)
C VARIABLES;
C USED: A(I,i),BASIC.C~i),CB(t),CN(t),FMT,IFLABi3),INEW4INAL, I
C KPINEDil),Pt4,V4(li..V1,XB(fl,Z I
C MODIFIED-. Pit) I

SUSES UCHECK2 IN UNIT37.CODE OVERLAY
SUBROUTINE TDISPL
CHARACTER VN&6,CNi6,PN$20,MM3l.FNIIOPIN4EGt1,P(10)t1,0BJN~I0
INTEGER ARTV.3ASIC,Pk,PR,OPTS,V,VT,CB,DUAL,OUTP,FMT,PROBT.T
COMMON/P1/A(2O0,60),ARTV(210,Cd60),ZINED(20) .IFLA6(IQ),CB(20),
* XD (2) ,K, V, I, MXM, BAS IC, OPTSZ,B
COMMON/P?/NEC.NSEC,NLC, TA. NDtXE, I?4E1,INDEXL,KFA,KFS,KFSA,KFSU,
* ?K. PR
COMMONP3iDUALDUTP.ITAB, ISTPB.!:TAB.FMT,PROBT

110 FORMATIA)
C NUMBER OF SO COLUMN DISPLAYS REQUIRED DETERMINED

Tz(VT!5) +!
DO 470 Nz1.T

IFIIFLA6:5) *EQ. I)THEN
C VARIABLES NAMES PRINTED AS COLUMN HEADERS

WRITEi2, (13X,l)')
DO 270 J:(Nl5i-4,Nl5

lF(J X6. VT)THEN
60T1270

ENDIF
WlAITE(2,260)VNiJ)

260 FORMAT(5X,A6,2X,fl
: 70 CONTINUE

WRITE(2,' C'''"
END IF
WRITE(2,' (131z,$)')
DO 290 Jz(N$5)-4,Nl5

IF(J X6. VT)THEN
60 TO 290

ENDIF
WRITE 12.284Y'j

280 FORMAT(5y,,I2,')',-X,s?
290 CONTINUE

373

C IF LAST 80 COLUMN DISPLAY, DISPLAY RNS
rlF(T .ED. I WO. N .ED. T)THEN

KRITE(2,300)
300 FORNAT (6X,'RHS')

ELSE

ENDIF
VRITE(2,'V'QB] FUNCTION'',IX,$)')
DO 320 Jv(Nt5)-4,Nl5

IF(J .6T. YT)THEN
60 TO 320

END IF
IFFMT .EQ. O)TI4EN

ELSE

ENDIF
320 .'ONTINUE

IF(T .E9.1 OR. N .EQ. T)THEN
IFiFMT .EQ. WHTIEN

ELSE

ENDIF
ELSE

END IF
WRITEi2,'('rN NAME A"2!(''h)

C CONSTRA INT NUMBER, NAME. BASIC YARIABLE, COEFFICIENTS
C INEQUALITY, AND RHS DISPLAYED

DO 100 Lzi,K
IF(L GT1. W)HEN
6010C400

END IF

ELSE
4RITE(2,' (I2.7X,$' 'L

ENDIF

ED 370 Jx(N*5)-4,Nl5
IF(J .6T. VT)THEN

60 TO !71
ENDIF
IF(FAT .EQ. W'HEN

ELSE

EDIF
370 CONTINUE

IF'T .ED. I OR. N .EQ. T)THEN
IF(FMT .EQ. O)THEN

374

ELSE

WEDF ,I,'25))IEiLBL

ENDIF

400 CONTINUE
lF(OUTP .EQ. IMTEN
PAUSE
WRITE (2, 110) CHAR(C12)

ELSE
NJTE(2.' (2f1))')

EIJDIF
470 CONTINUE

CLOSE (2)
C USER SELECTS DISPLAY LECATION OF BASIC VARIABLES AND VALVES
490 WRITEC1.11O)CHAR112'

WP.TE1,'C/,'~O)LDYO LIKE THE BASIC SOLUJTION V41LUES''l4X,

WRITE(1q'(/9qX.''I. DISPLAY ON SCREEN''119X,''2. DISPLAY ON PRINIER
.''1/9X,"'3. 00 NOT DISPLA)'''')

READ (5, '(Al)')P(1)
CALL CHECV.2fF,1,3,INVAL,INE4)
IF(INVAL .EQ. W)HEN
WRITE(1,530)

530 FOFMAT(!X,'1NVALID ENTPY, PLEASE REENTER''1
GO TO 500

ENDIF
!F INEN .E9. 1)THEN
OPENM2FILEr'CONSOLE:7)

ELSEIF(INEN ME. 2)THEN
OPEN(2,FILE='PRINTER: '

ELSE
RETURN

EIDIF

WPIT(2.(10,A20101''DSICSOLUTION *'',12,I)')PN,BASIC

DO 550 1=,
IF(FMT EQ. 0)T-HEN

ELSE
* N~~~RITE12,'M 4- =5.b'~ ''I,'

a C'),l()
ENDIF

55C CONTINUE

IF(FMT .EQ. QTHEN

EWRITE(2,'18X,''Z: '',1PEI2.5)'(l

37!

ENDIF
ELSE

DO 380 J:1,K
]F(FMT .EQ. W)HEN

ELSE

EKDLF .FZ5)"CommX(I)

580 CONTINUE
IF(FMT .EQ. 0' THEN

ELSE

ENDIF

YONE0 .EQ. !)THEN

ELSE
PAUSE

END IF
RETURN4
END

376

AD-A24804 D FORRAN BASED LINEAR PROGRAMMNG ORM RADMARU
AIR FORCE INST OF TECH WRIGHT PATTERSON AFB OH SCHO
0F ENGINEER ING T FRALEY ET AL. DEC 82

UNCLASSIFIED AEIT/GOR/OS/82D-4 F/G 1211 NL

EELEEIhEEllEEEEEEEEEEEEIIE

fl83

I., L321 .
1111W1.2 III -onI I

1.25 11.11 .6

MICROCOPY RESOLUTION TEST_ CHART

NATIONAL BUREAU OF STANDARDTS 1963-A

C NODULE 3 UNIT37
C
C SWROUTINE CHECK2(ED,HVALINVALINEN)
C USE: SEE MODULE 1, UNIT17, SUBROUTINE CHECK2(E,D,HVALINYAL,NEW)
C CALLED bY: SUBROUTINE 0PTN I
C SUBROUTINE TDISPL
C CALLS : NONE
C VARIABLES: SEE NODULE 1, UNIT17, SUBROUTINE CHECK2(E.D,HVAL,INVAL, I
C INEW) I
CII II Ir I sIt t ss s stt tI 1111 f IIIII

SUBROUTINE CHECKi(E,DKYAL,INVAL,INEW)
CHARACTER ALLCOWI,Elt
DIMENSION E(10).ALLON(II)
INTEER D,HVALDATA ALDN/'1','2' ,'3','4' ,'5' ,'6' ,'7',',',''' I

INEPzO
INVAL=O
DO 300 Iz1D

DO 200 131.10
C CHECKS FIRST FOR BLANK CHARACTERS

IF(E(I) .EQ. ALLOWII1))THEN
60 TO 300

ELSEIF;E(I) oEQ. ALLONWJ))THEN
INEW-INEW$IQ + (ICHAR(EI))-48)
80 TO 300

ELSEIF(J .EO. OI)THEN
INVAL=I
INEW-O
RETURN

ENDIF
200 CONTINUE

300 CONTINUE
IFINEW .ED. 0 .OR. INEW .6T. HVAL)THEN

!NVALm!
INEWuO
RETURN

ENDIF
RETURN
END

377

-A- -K

C
C MODULE 4 UNIT40
C UNIT SUSES: UNITS 41 THROUiH 45, 47, 48
C
C PRO6RAF M1INS ,
C USE: THIS IS THE MAIN PROGRAM IN THE SENSITIVITY ANALYSIS MODULE. I
C IT IS USED TO CALL OTHER SUBROUTINES IN RESPONSE TO USER I
C 1'4PUT AND TO CONTROL THE OVERLAY PROCESS WHICH ALLOWS LARFER 2
C PROGRAMS
C
C ALLED BY: NONE
C CALLS SUBROUTINE PETRIY
C SUBROUTINE C I* S
C SUBROUTINE COEFFk
C SUBROUTINE MIUI.CR6
C SUBROUTINE SELECT
C SUBROUTINE ADDCON t
C I
C VARIABLES: t
C USES : SELSUB I
C MODIFIES : SELOUT, IFLA(9). IFLAS(2) 2
C 2

SUSES UCHECK2 IN UNIT47.CODE OVERLAY
$USES URETRIV IN WL414S.CODE OVERLAY

$USES UCONRHS IN UNIT4I.CODE OVERLAY
SUSES 'JCOEFFR IN UNIT42.CODE OVERLAY
SUSES UAULCN6 IN UNIT43.CODE OVERLAY

SUSES UADOCON IN UNIT44.CODE OVERLAY
$USES JSOLVE IN UNI T'2.CODE OVERLAY

PROGRAN MAINSA
INTESER KVVT, IFLAS. INED. CB.INDEXSINDEXLINDEXENE6
REAL AOAFBOBFCOCF,Z,BN
CHARACTER SELSUB.SELOUT,SELSOL.FN210

COMMON/PI/OPTSKfA,PKPR
COMMON/GNE/SELOUT,FN
COMMON/TNO/VT, INDEXSINDEXL, INDEXEN6CNLC,4ECMEG(20)oMX1N,3M
COIMON'THREE/INFP

SINCLUDE CONVAR
OPENt1.FILE='CONSOLE:')
OPEN(5.FILEc'CCNSOLE:')

4000 WPITE1,'IA1,!)') CHAR(12)
C THE USER SELECTS THE DESIRED TIPE OF SENSITIVITY ANALYSIS.
40!0 WRITE~i,'(//,IX,"PLEASE SELECT ONE ITEM BY NUMBER"///

.,f3X,"I) RANGE LIMITS----RIPt.1-HAND-SIDE"/

.d, "AND ASSOCIATED Z VALUES "',/t

.,3X,"2) RANGE LIMITS -- A(IJ) t C(J)".I)')

WRITE(I,'(3X,") CHECK OPTIMALI1y FOR MULTIPLE",/
.,X, "A0])? BII), OR C(Q) CHANGES",//
.,"'4) ADD A VARIABLE OR A CONSTRAINT",I/

378

.3'')EXIT PROGRAM$'/)')
READ(5,' (Al)') SELSUD
IF(SELSUS .Eg.'5') THEN
60T0 4030

ENDIF
C CHECK FOR VALID INPUT

IF ((SELSUB .ME. 'I') .AND.(SELSUP .ME. '2') .AND. (SELSUB .ME.
*'3') .AND. (SELSUD MNE. '4)) THEN

NRITE4I,'(I,8X,''INVALID RESPONSE"',/)')
GOTO 4010

ENDIF
C CLEAR THE SCREEN AND SELECT OUTPUT.

WRITE(I,'(AI)) ChAR'l2)
4020 WRITE(l,'tA(i),4X,''DO YOU MANT THE OUTPUT 10 60 TO:''.///

.99, ''S)CREEN''.Il

.,9A, ''P)PINTER'',Wi)
NRITE~l,'113X,'OR'!
.1y, ''B)OTH',I/l/
..41,''SELEC-T S. P, OR ll'III)
READ5,' (Al)) SELOL'T
IF ((SELOUT .ME. 'P') .AND. (SELOI .ME. 'S') .AND.
*(SELOUT .ME. 'B3") THEN

4RITE(1,'(AI)) CHAR!12)

WRIE(1'I!81,INVLIDRESPONSE'')')I

IFSOT.E' 020LITED B'TE

ENDIF

C THE MAIN PART OF THE PROGRA. SUBROUTINE PETRIV READS ALL
C NECESSARY DATA FROM A DISK FILE AND THEN THE SUBROUTINE 'IS CALLED

TO COMPLETE THE SENSITTIYVTY ANALYSIS. FOLLOWING THE §?4ALYSIS,
C THE USER IS RETURNED TO THE MAIN MENU.

CALL RETRIV
IF !SELSUB .EQ. '1'i THEN

CALL COMRHS
6010 4000

ELSEIF (SELSUB .ED. '2') TIEN
CALL COEFFR
60TO 4000

ELSEIF iSELSUB .EQ. '3') THEN
CALL ML'LCNG
WRITE!W,(A)'. CHARI12)
IF(SELCUT.ED. 'S'.OR.SEI.OUT.Eg.DB')THEN

IFIIFLAS(9 .ED. 1) THEN
NRIiE(1,'('THlE ADDED CHANGES HAVE MADE THE PROBLEM'')''
iMITE(1,'(''ILL-CONDITIONED, RETURNING TO MAIN MENU'')')
P4USE

ENDIFI ENEIF
IF 'SELCUT. ED.'P' .OP.. SE.LfUT. ED. 'B')THEN

Il

IFUFLAM).EMM)TEN
WRIU4i,'i"THE AIDED CHANBES HAVE BADE TIE PROBLEM")')
VRITE(6,'(''lLL-CONDlTl0NED, RETURNINS TO MAIN MENU"')')
WRITE(6,' (AW))CIIAR(12)

ENDIF
ENDIF
IF(IFLPS(9).EL.I)THEN

IFLA6(Q'sO
60T0 40(00

END IF
1FflFLA613).E9. IHEKN

60T0 4000
ENDIF
CALL SELECT
3010 4000

ELSEIF (SELSL'D E. W4) THEN
!FLAGM2)=0
CALL ADDCON
P:i IFLAG (3). EQ.1) THEN

IF(SELDUT.Eg. '5' .R.SELOUT.ER. '3')THEN
NBIT(19
1 5U).1,''wnINOT FEASIBLE US'')

PAUSE
END IF
IF(SELOUT.EL.P'.OR.SEL OUT.EL.'B')THEN

NRI1(&,~(I)~X,':s~es:NOT FEASIBLE $h;''

ENDIF
SOTO0 4000

E.NDIF

IFfIFLAi(2) .EQ.0)THEN
CALL SELECT

END IF
6070 4000

ENDIF
4030 OITE(I.'(Atl') CHAP(12)

#RITE(l,'(8M/,1X,''TO ENTER THE LP DATABASE NDIJMa1117,
.'TYPE''//19X.''X' /IlI,''LPI:SYSTEN.STARTUP.' ,/!/)')
PAUSE
STOP
END

77-- -7

C I
C NODULE 4 UNIT40 I
C UN1T SUSES: NONE
C

C SUBROUTINE SELECT
C USE: THIS SUBROUTINE CALLS SUBROUTINE SOLVE IF THE USER DESIRES A I
C MEN FINAL TABLEAU.
C
C CALLED BY: PROGRAR NAINSA
C CALLS • SOLVE
C
C VARIABLES:
E USES : SELSOL t
C ODIFIES : NUKE

SUBROUTINE SELECT
CHAACTER SELSOL

4090 WPITE(t,'(5',5X.'"DO YOU 9ISH TO 3OLVE THIS TABLEAU"I')
WRITEll,' (!/,IOX."SELECT .'..Y''.. OR ...'Ny' . ..')
READ(5,'(Al)' SELSOL
WRITE(.' (A') CHARI2)
IF (SELOL .EQ. 'Y') THEN

CALL SOLVE
ELSEIF(SELSOL .ME. 'N') THEN

WRITE(I,:(!/,IOX,"IMPRUPER RESPONSE")')
SOTO 409-1

ENDIF
RETURN
END

381$ 5

C
C MODULE 4 UNIT41 I
C UNI7 $USES: NORE I
C
C SUBROUTINE; COWRS
C USE: THE SUBROUTINE DETERMINES THE MINIMUM AND MAXIMUM VALUES OF I
C EACH R1GHT-HAND SIDE IN TFE ORI1INAL EQUATION WHICH WOULD I
C NOT CAUSE A BASIS CHANGE. THE NEW SOLUT13N IS SHOWN FOR EACH I
C OF THESE UPPER AND LOWE BOUNDS.
C
C CALLED BY: PROSRA$I MAINSA*
C CALLS :NONE
c I
C VARIABLES: 9
C USES : RMIN(20) ,RNAX'20),RSCH120,2O),LWSD(20,20t .UPD20,2O), t
C RSUL1N(20i,RSLLIM(2Ot,ZLP,ZUP.1LS.ZUS,TENPfDN,SELOUT, I
C SK,VII,INEQ,IFLA6,NE6(20),C.OL,CONSTR,INDEXL,NXMN I
C MODIFIES : AFVAO,DF,80,CO,CF,Z I
c I

SUBROUTINE COMlRHS
INTEGER VT,V,K,J,CDL, IFLAG,IkEg,NES,

.CD.INDEIG.INDEXL. INDEXE,CONSTRJIII!N
REAL RMX(20),RMN20),AD,RSCH120.20),BO,CF,BF,TEMP,BN,

CHARACTER BELSUT,F4S I'
COMN-iNOEISELOUT,FN
COMMON/TWO/VYT, INDEXB, INDEXI. INDEXE.NGC.NLC,NEC,NEG(20) ,MYMN,BM

$INCLUDE COMYAR
C RIGHT-HAND-SIDE RANGING IS DONE FOP EACH CONSTRAINTI.

00 4120 CONSTR a ,
C THE COLUMN OF B-INVERSE ASSOCIATED kITH THE CURRENT CONSTRA!NT 3
C DETERMINED.

COL=CONSTF+iK0EXL-I
RMAX(CONSTR) a lOE12
RKINICONSTP) a-10E12

C DETERMINE RESOURCE LIMITS
C THE qINIMUM POSITIVE AND MAXIMM NEGATIVE VALUES WHICH WILL
C CAUSE A DESENERATIVE CONDITION ARE DETERMINED.

DO 4140 L z 1,K
IF (ABS4AF(L,COLl .GT. .0001) THEN

IF(ASS(BFiL)).6i. .O01)THEN
RSCH(L,CDNSTR) 2-BF(LI/AFlL,C0L)
IFiRSCI4(L,CONSTR) SGT. 0)THEN

RMA~iCONST$R)uAMIH1(RMAX(CONSTR) ,RSCN(L,CONTR))
ELSE
RflIN(CONSTR)vAMAXI (RMIN(CONSTR) ,RSCH(L,CONSTR))

ENDIF
ELSEIF(CB(L) .GE.INDEXE)THEN

RMAX (LONSTR~z0
RNINICONSTR) .0

382

ELSEIF(AF(L,COL) .LT. GITHEN
RP.AX (CDNSTR)uO

ELSE
RNlN(CONSTR?0O

ENDIF
END IF

4140 CONTINUE
RSULIN(CONSTfi) 2 O(CWSTR) 4 RI4CONSTR)
RSLLIN(CONSIR) a DO(CONSTR) + RKIN(CONSTR)

C IF THE CONSTRAINT HAS BEEN MULTIPLIED BY NINUS ONE, THE
C RESOURCE UPPER LIN17 (RSULIN) AND THE RESOURCE LOWER LIMIT
C RSLL1N AS NELL AS THE ORIBINAL RIGHT-4AND SIDE ARE REVERSED.

IF(NEG(CONSTR) .E9.1)THEN
TEMm-RSLIMINCONSTR)
RSdLIN (CONSTR) :-RSLLIN(CONSTR)
R3LLlK(CONS7R)x7EIP
30 (CONSTR] a-BG(CONSTRJ

END IF
C THE UPPER BOUND (UPBD) AND LOWER BOUND ILNID) FOR EACH RMS IN
c THE FINAL SOLUTION ARE OBTAINED.

DO 4150 L = 1,K
IJPDD(L.CONSTR) a AFIL,COL) I RMAX(CONSTR) *DF(L)
LWDL,CONSTR) a AF(.ICDL) I RNIN(1COkSTR) +DF(L)
IF (NEGICONSTR) .EQ. 1) THEN
TENPxUPD(L, CONSTR)
UPlD(L, CONSTP)zLWPD(L,CONSTR)
LWD L,CONSTR) sTENP

ENDIF
4150 CONTINUE

7U9-0
Z'LSzO
ZuP20
Z1P0

C THE RESULTS ARE PRINTED FOR EACH BOUND DEPENDING ON THE
C CONDITIOHS.

DO 4160 L a1,
IF(SELOUT .EQ. '9' .OR. SELOUT .Eg.'B')THEN

IF(L.Eg.1.OR.L.Eg.8.OR.L.EQ. 15)THEN
WRITEC,(AJ)') CHARM1)

WPITE(1,'(6X,('RIGHT HAND SIDE RANGE LINITS''))
WRITEi1,'(12X,''CON5TRAINT 1 "',12,/)')C0MSTR
WRITE(l,'(''ORIFINAL RIGHT HAND SIDE z'.F12.5)
P O(CONSTRi
IF(ADS(RSLLIN(CONSTR)) .ST.IE6) THEN

WRITE (1,' (131,'"LOWER BOUND x 4O LIMITV')
ELSE
WRITE(1,'(13X,''LONEfl SOUND z * .5'

* RSLLIN(CCNSTRI

E!4D1F
IF(ADS(RSULIN(CONSTR)).B1. IE6)THEN

VPlTE(1,'MX3,"dPPER BOUND z NO LIMIT")')

ELSE
WP.TE(,'(131,"UPPER BOUND l,1.)
RSIUM(CCNSTR)

ENDIF
WRITE(1.'(40("l'r t'
WRITE(1.'("AT THE LONER BOUND--AT THE UPPER

ENDIF
IF(CBIL) *LT.O)THEN

IF(4BS(UPD(L,CONS-TR)),.6E.IEb.AND.ABS(LNBD(L,CONSTR))
* .SE.lEi)THEN

4RITEQ,("X',I,') 40 LIMUIT XV',II,
1p O4 L1IIT"')

IF(CB'UJ *LE, V)THEN

ZUS~aZUS+IOEB
ZLSzZLS-ASE

ENDIF
ELEF(ABS(UPD(LCNSTR) *SE. 1E6)THEN

WRITEtI,'V (X ,I1,") a 'F25' (''
,11,') a40 LIKIT'')'lCB(L),LWRiD(L,CONSTR),

IF(CD(L) .LE.V)THEN
ZLSaZLS.CO(CR(L) I LNBD(L,CONSTR)
ZUS=ZUK+IOEB

END IF
ELSEIFiABS(LNBD(L,COKSTR)I.6E. IE6)THEN
-WRITE(I,1'W',hIl') c NO LIMIT 1',1

IF(CB(L) ALE. V)THEN
ZLSu-10,E9
lUS-fZJS+COiCB'l) $UPBU(L,CONSTR)

ENDIF
ELSE

UPBD(L,COKSTR)
IF(CB(L) .LE.V)THEN
ZLS:ZLS.CO(C11L) I LWBtO(L, CONSTRI
S ! CC(Ll IIbPB0(L,CONSTR)

ENDIF
ENDIF

ELSE
IFiABSiLUPBD4L,CDNSTR)),6E.IE6,.ABAS(LWBD(L,CONSTRI)

* *GAE.ZEWHEN
WRITEfl,'V'X('',I2,'')s NO LIMIT '4,

*P',) 40 LIMIT"')')
IF(CD(L) *LE.Y)THEN

ZUSzlUS+IoEe
ZLSxiLS-10EB

ENDIr

ELSEIF(ADS)UPID(L.CONSTR)) .SE. lEbITHEN

WRIE(I ('X(',1,')a ',F2.,''If

,12,')uNO LINIT"))C(L),LID(L,CWSTR),

1F(CD4L).LE.VJTHEN
lLSzZLS*CO(CBIL)) SLNDL,CONSTRI
ZUS27LlS+lOE9

ENDIF
ELSEIF(ADS(LdIDl(L,COMSTjR)).eE.IE6) THEN
WRITE(I,'V(''(,I2,'') NO LIMIT I(",12,

?"Fl2. 5)')CB(L),CB(L),UPBD(L,CONSTR)
IF(CB(L) . V)THEN
ZLSe-lOEB
iUSzZUSiCO'CB(L))IUPDD(L,CONSTR)

END IF
ELSE

* ")m ",FI2.5)!)C(L),LWBD(LP.ONSTR),CD(L),
* UPID(L,CONSTR)

lF(CV(L).LE.V)THEN
Z'LS'.LS+CO*CP (1))LWID(L,CONSTR)
ZUSzZWS+CO(CB'Li)*IUPBD(L,C(NSTR)

END IF
ENDIF

END IF
IFtL.E9.7.GR.L.EG. 14)THEN

PAUSE
ENDIF

ENDIF
!F'CONSTR .EQ. I .AND. L .ED. W)HEN
LI4E5:O

END1F
IF(SELOUT .Eg.'P'.DR. SELOUT .E9.1')THEN
IF (L.E I.)TNh
IF(CONSTR *NE. I)THEN

IF!LINES+K e61. W4THEN
WITE(6;(A) CIAR(12)
LINES=O

END IF
EIDIF
WRITE,' (I,J5X,AlO)')FN

4RITE%',(6X,'Rfi5HT HAND SIDE RANGE LIMITS'')')
VRITEf6,'(12X,''CONSTRAINT I '".112,i)')CONSTR
WRiTE'6,'('IiRI6!NAL RIENT HAND SIDE x ,25*

* BO(CONSTR)
IF (ABSRSLL1M4(CONSTR)) .SE. 1E6) THEN

WRITE(6,'1131,"LOWER BOUND * NO LIMIT'')')
ELSE

ORITEi6, (II3X,'LOWER BOUND ",1.5'
* RSLLIN(CONSTP)

ENDIF
IF (AGS(RSULIM(CONSTR)).GE.IEb)THEN

VRITE(6.'(13X,''UPP ER BOUND x NO LIMIT'')')

385

-7-1--

EWRITEi6,'(j3X,"'UPPER BOUN a "F25'
RSULIN(CCNSTR)

IMDIF

NRITE(6,'I''AT THE LOW DOMN",121,"AT THE UPPER '

LINES=LINES+15
ENDIF
IF(CI(L *LT.1) THEN

IF (ADS (UPD(L, CONSTR)) .BE. IE. MD.ADS (LNDD'L,CONSTR))
* .GAE.1ETHEN

WRITE!6,'(''.X(',11,") s NOLZI',X'X(,
H I.") -, 4 LINIT'1')
IF(CD(L) *LE.Y)THEN

ZL!PzZUP+IOEO
!LPzZLP-IOEB

EADIF
ELiEIF(AD5(UPDfLCO4STR)) .6E. IEbI THEN

NRITE(6,'(''X(',Il,' z'',F12.5, lOX,'' X("'
* .11.'') NO LIMIT'')')C8(L),LNBDfL,CONSTRl,

* CBML
IAF(CB(L) LE.V)THEN

ZL?'zZLP+CO(CD(L)) LWBD(L,CONSTR)
flFP2!UP+IOEB

ENDIF
ELSEIFiABS(LM9D(L,CONSTR)) .GE.IE6ITHEN

upaw ~ w~ll') x NO LIMIT'',IIX,'' Xt'
* 11,'') '' ,F12.5)')CB(L),CB(L),UPBD(L,CONSTR)

!FiCD(L) LE. Y)THEN

ZUPzWUP+CCDC(L) aUpBD(L,CONSTR)
ENDIF

ELSE

* '') ,F12.5)')CB(L),LWBD(L,CONSTR).CB(L),
* UPIDIL,CONSTR)

iF(CV(L! .LE.Y)THEN
ZLP:ZLP+CO(CD(L) j LWBD(L,CONSIR)
ZUPxZUP+CO (CD 'L)) WPDL, CONSTR)

END IF
END IF

ELSE
IF(ABW(PDD(LCONSTR)) .6E.1E6.AND.ABS(LWD(L.CNSTR))

* *SE.IE6)THEN
WRITE'6,' ('X(',12,'')x NO LNT'1t.'('

*1211)2 NO LINIT'')
IFICD(L) *LE.V)THEN

!tPuIUP.IOEB
ZLP=ZLP-i OEB

END IF
ELSEIF(ABS(UPDD(L.CONSTR)).GE.1E6)THEN

366

,12,'')= NO LlNIT")')CB(L),LDD(L,CONSTR),

IF (CliL) .LE.0T*PN
ZLPZZLP+CO(CD (L) $-LNBD(L,CONSTR)
ZLIPZ,'U-+ LOEB

ENDI!
ELSEIF'AI5(LWDD(L,ODNSTR)) .aE.1E6)THEN

WRIT(6,(''(''12,')a NO LINIT'',I2X,' X("'

!F(CI(L) .LE. Y)THEN
ZLPv-10E8
ZUPzZUP+CO(CB(L)) UPDD(L, CONSI.)

ENDIF
ELSE

* I')= '',F12.5)')CD(L),LWDDIL,CONSTR),CBIL',
* UPPD L. CZNSTR)

1F(C84L) .LE.V)THEN
ZLPxZLP4COtCB(L), ILWDD(L.COtNSTP)
lUJP;ZUP'COICP(L))IUP30(LCONSTR)

ENDIF
ENDIF

ENDIF
LINESzLINES~l

END!F
4160 CONTINUE

IFiNXMN .E9.2)THEN
ILP=-ZLP
zup:-ztUP
ZLS-ZLS

END IF
C IHE VALUE OF 7 15 PRINTED FOR EACH UPPER AND LOWER LIMIT.

IF'SELOUT .ED. 'S' -DR. SELOJT .EQ. '8'!THEN
IF(OBStZLS).5E. IE9.AND.ABS(ZUS).6EIEi)THEN

WRHTE(1.'(''1 NO LIMIT Za NO LIMIT''I')
ELSEIF(ADS(ZLS,.GE.lE9.AND.ADSCUS) .LT. 1E9)Y!hEN

NRITEIZ.'('Z= $10 LIMIT Ze ',F!6,!;')7US
ELSEIF(ADS(ZL5I .LL IEI.A*4D.ABS!ZUS) .SE. 1Ev) THN

WRITE(l,'(''Zs 'F6~' ZZ NO LW1IT'')ZLS

LWRITE~l,' (''7 ''.F16.5,'' Is ',F16.5)'u!LS,&US

ENDIF
IF,'SELOU7 .ED. 'P' DOR. SELOUT .EQ. D8')THEN
IF(ABS(ZLP).6E.1E9,ANDABS(ZUP) .SE.IE9)T!4

NRI7E(6,'("'Zz NO LIPIT'',1IK,

EL5ECIF(AID(ZLPI.DE.E.A4D.A4S(ZLP) .LT. IE')THEN

ORIT(6,'"Zx NO LINIT'',lIX,''Zx ",F16.5)')

ZUP

387

-L

ELSEIF (ADS(ZLD). LT. 1E9. AND. ABSiZUP). BE. 1E9) THEN
WRITE(6,'(''Z= ',FI6.5,1X,''2. NO LIMIT'"
)')ZLP

ELSE

END IF

LINESxLINES+2
ENDIF
IF(SELOUT .EQ.'S',OR.SEL9UT E.E'B')THEK
PAUSE

ENDIF
4120 CONTINUE

IF HELOQT -EQ. 7P OGP. SELOUT .EQ. 'B')THEN
WRITE(6,' (A))HAP(I2)

ENDIF
PRETURN
END

I.8
II

C.
C MODULE 4 UNIT41
C UNIT $USES: NONE
c
C SUBROUTINE COEFFR
C USE: THIS SUBROUTiINE DETERMINES THE MAXIMUM AND H.NIMUM VALUES
C FOR THE CONSTRAINT COEFFICIENTS AND THE ObJECTIVE FUNCTION I
C COEFFICIENTS WHICH WILL NOT CAUSE A BASIS CHANGE. I
.C

C CALLED BY: PROGRAM MAINSA
C CALLS - NONE I
C
C VARIAKtjS:
C USES : ,KV7,IFLA6,INEQINDEXG,INDEXL,CB,NEGINDEXE,AO.AF, i
C ?O,&F,CO,,-FjZ I
C !CDIF!ES :BASCa^(0~).ILLI, ILL2,HEABI,HEAD2,CLONER,CUPPER,IEMP, I
C TEMPA. DELAUP, DELADNICKILLI ,CKILL2

SUBROUTINE COEFFR
INTEEER V,K,J,VT,COL,IFLAS2NkE9,
* INDELG, INDEXL,CONSTh,LINES,CB,NE6,INDEXE,LINEP,
.BASIC(20'?,ROW,ILL1. ILL2.HEADI.HEAD2INXMN
REAL AO,AF,BQ,DF,CO,CF.Z,CLDNEP,CUPPER,UPBD,

.LWBD,TEMP,TEr.PA.DELAUIP,DELADN,CKILLl.C(ILL2&,BMl
CHARACTER SELOUTtI, N10i
C3"MON/GN5/SELOUTIFN
COMMON/TWOiVTi, NDEXG, INDEXI. INDEXE,N6C,NLC.NEE,NE6(20) .MXM,DM

$INCLUDE CONVAR
C EACH COLUMN IS CHECKED TO DETERMINE IF THE VARIABLE IS IN THE
C BASIS,

DO 41101 COL= I,YT
BASIC (COL) :9

DO 4202 CONSTR=I.K
IF(CB(CONSTR) 1E9. COL)THEN
BASIC ICOL;'a

ENDIF
4202 CONTINUE
4201 CONTINUE

PEAD;=O
HEAD2m0
LINEEzO
LINEP40

C THE RANGES ARE DETERMINED FOR EACH CONSTRAINT COEFFICIENT IN THE
C ORIGINAL PROBLEM.

DO 4210 CONSTRzi1X
DO 42120 COLzI,V

C A SEPARATE ALGORITHM IS USED FOR COLUMNS IN TH:- BASIS VS.
C THOSE NOT IN THE BASIS.

IF(BASiC(COL) .E9. I)THEN

DO 4230 RO~sI,K

c EACH RON IS CHECKED TO DETERNINE IF 1T 1S THE RON WHICH
C HAS THE BASIS VARIABLE OF THE COLLMni UNDER INVESIGATION.

IF(CD(ROW) .EQ. COL)THEN
DELADN-1OE8
DELAUPalOEB
DO 4245 Lsl!,VT

c THE ONLY COLUMNS WHICH HAVE AN OBJECTIVE FUNCETION
c COEFFICIENT WHICH COULD BE DRIVEN NEGATIVE ARE THOSE
C WHICH DO NOT HAVE AFTIFICIAL VARIABLES.

IF(L.LTINEXL.OLINE(CONSTR) .EQ.O)TI4EN
C ONLY NON-BASIC COLUMNS NAVE THE POlEN'TlAL TO ENTER
C TO ENTER THE BASIS.

IF(BASICL) .NE. U)THEN
DIVISION BY ZERO IS AVOIDED.
IF(ADSAFROW,C94TR4INDEXL-1)$CF(l) -AF(POW,

L4CF(COWSiTR+INDEXL-1)) .LT. .0O('0IITHEN

TENPA-9. 9EB
ELSE

TEMPAz-9. QE8
END iF

ELSE
c IF ALL CONDITIONS HAVE BEEN MET. THE VALUE

OF N4E CHANGES TO THE COEFFICIENT IS FOUND
C WHICH WOULD CAUSE AN OBJECTIVE FUNMTON
C COEFFICIENT TO BE DRIVEN TO ZERO.

TEMPA=-CF(LI (AF4ROW,CONTR+INDEXL-I)
ICF (U -AF(RON, L) CF (CONSTRIM,4DEXL-I)

iNDIF
C THE MINIMUM POSVTIVE AND MAXIMUM NEGAIIVE

C (MINIMUM AM.OLUTE) VALUES PE RETAINED.
IFlTEMPA SGT. 0)THEN

DELAUPAN iN! (ELAUP, TEMPA)
ELSE
DELADNuAPAXl (DELADN. TEMPA)

END IF
ENDIF

ENDIF
4245 CONTINUE

DO 4260 M:IA
C FCR EACH RON NOT POSSESSING THE BASIS VARIABLE UNDER

c INVESTIGATION, THE 'VALJE. OF THE rHAIN6E 70 TPE
c COEFFICIENT IS FOUND hHICH WOULD CAUSE A RIGHT-HAND-
C SIDE VALUE TO BE DRIVEN TO ZERO.

IF(C0) .ME. COLITHEN
IF(ABS(BF(N)tAF(ROW.CONSTR4IKDEXL-I)-BF(RON)I

j . AF(I COSTR+INDEXL1) .LT. .00001)THEN
#F(BFir' .LT. O)THEN

TEMP~z9. 9EH
ELSE
ENITEMPAs-9. 9EB

EN390

Im~

ELSEIFICD(N) .SE.INDEXE)THEN
DELAUP=0

* DELADNzO
ELSE

TEJIPAz-BF IN I (BF ti) AF (ROW. CONSTR+JMDEXL-) -
* BF(ROW)lAF(M,CGNSTR.IN0EXL-i)

C THE MINIMUM VALUES ARE COMPARED TO THE PREVIOUSLY
C FOUND MINIMUM VALUES, AND THE SMALLEST ARE
C RETAINED.

IF(TEMPA G6T.0)'IHEN
DELAUPSANINI (DELAUPTEMPA)

ELSE
DELADN-AMAXI (DELADN, TEMFA)

ENDIF
ENDIF

4260 CONTINUE
C THlE JUST DETERMINED MINIMUM VALUES ARE CNECKED FOR
C ILIL-CONDITIONIN6.

CKILLizl+DELADN$AF(RCW,CONSTR+INDEXL-)
CKILL2I=t+DELAUPIAF (ROW, CONS'TR+INDEXL-l1
IF(ABSiCKILLI).LT. .1 .OR. ABS(CKILL2).LT..)THlEN

ILLIc4
ILL2=1

ENDIF
ENDIF

4230 CDNTINUE
UJPBDA-O!CONSTR, CDL) +DELAUP
LW(D=AO(CCNSTR.COU +DELADN

ELSE
C THE UPPEP AND LOWER BOUNDS ARE DETERINED FOR THOSE
C COLUMNS 4ITh VARIABLES NOT IN THE BASIS.

UPBDZ4OEO

IF(ABS(CF(CGNSTReINDElL-11) X6. .000I)THEN
IF(CF(CC.NSTR.lWEXL-1~ e6T.O)THEN

LWBD=AO(CONSTP.,COL)-CF(COL, ICF(CONSTRtINDEXL-!,
ELSE
'PDDAO(CONSTR,COL)-CF'COU iCF(CONSTR+INDEXL-I)

END IF
ENDIF

ENDIF
IF(NEG(CONSTRI .ED. !)THEN
TE4PvUPSD

LWDIz-TEf.P
'6jHDIF

C THE CONSTRAINT COEFFICIENT RANGES ARE PRINTED ACCORDING TO
C THE CURRENT CONDITIONS.

IF(SELOUIT.EC. '5' OR.SELOUT.Eg. 'B' (THEN
IFiHEADI .E9. 0 D.ORLINES G6E.18)THEN
IF(LINES G6E,18)THIEN

*1 391

PAUSE
EJIDIF

NRITE(l,'(''COEFFICIENT LONERLIMIT UPPERLINIT"'))
LINES:-5
HEAD 1

E9DIF
IF (ADS(LNDD) .GE. 1E7. AND.ABS(UPED).GE. IEBuTHEN

* "NO LIMIT NO LINIT''I')CONSTR,COL
ELSEIF(Ar3(LNDJ .6E. IE7ITHEN

* "NO LINIT',F!5.5SPCONSTP,COL,U'PBD
ELSEIF(ABS(UPFD) .iE.lE8) THEN

NO LI?,IT")')C3KSTR,COL,LWD
ELSE

* F15.5) ')1NSTR,COL,LWBD,UPBD
EINDIF

IF(ILLA.Eg.1)THEN
0RI1E(lU8X,'NY BE ILL-COODITION4ED"I)

I !NEB=LINES.2
ENDIF
LINES=LiNES~i

ENDIF
IF(SELOUT .EQ. 'P' .OR. SELiJUT .EQ. '3'ITHEN

IFtIHEAD2 .EQ. 0 AR. LINEP A5E. 56iTHEN
IFULNEP .50bTHEN

WR!TE(6,' (A1)')CHAR(I2)
END IF

4RITE (6,' 15X,' 'COEFFICIENT LOWERIPIIT UPPERLIMIT''

READ221
LINEPx8

-4DIF
iF'ABS'tNDD) .EE. LE7.AND.ABS(UPBD'.SE. 1E8)THEN

"PCN LIMIT NO LINIT*')')CONSTR,CDL
ELSEIF(ABS(LWU,) .GE. 1E7)THEN

'NO LINIr'',FIL.S)')COOSTP.,COL,uIPsD
tL3EIF(ASiGP9O) .BE.lE8) THEN

?1 O4 LIHIT''')CCNSTR,C0L,LW9D

ELSE

* FI.5'CONSTR,CL,LNBD,UPD} 392

jag:

END IF
1FiILL2.ED.1)THEN

VRITE-(6, '(loX,"M'AY BE lLL-CONDJTIONED'/)')
ILL2'z0
LINEPxLINEP+2

ENDIF
LINEPzLINEP+l

ENDIF
4220 CONTINUE
4210 CONTINUE

LIKES a 0
IF ISELDUT .EQ. 'S' DOR. SELOUT E.'B') THENS

PAUSE
ORITE119'(AI)') CHAR,'2)

WRITE(l,' ('COEFFICIENT LOWERL1IV'
is UPPERLINIT''h)')

END IF
IF (SELOUT EQ, '?I .OR. SELOUT .EQ. '3') THEN

IF(L!NEP + k SBT. 43)THEN

LINEP z

WRlTE(b,' '41. 'COEFFICIENT LOWERLIMIT"
:. UPPERLINIT''/')

FNDIF
C OBJECTIVE ;UNCTION COEFFICIENT RANGING IS DETERMINED FOR EACH
C COLUMNN IN THE ORIGINAL PROBLEM.

DO 4240 COL z 1,d
CLUWERa-V0EG
6UPPERM IoEe

C DIFFERENT AL60RITHOS ARE USED DEPENDING EN WHETHER OR NOT THE
C COLUMIN'S VARIABLE 19 IN THE BASIS.

IF(BAS!C(COL) .EQ. I)THEN
DO 4270 CONSTRzl.K

C THE CONSrRAINT IS FOUND WHICH HAS T1HE VARIABLE INd THE
c ~BASIS ASSOCIA4TED WITH THE CURRENT COLUN.

IF(CD(CONSTR) .Eg.CCL)THEN
00 42-80 J:1,VT

C AL COLUMNS NlTH VARIABLES NOT IN THE BASIS AND NOT
C INCLUDING THE CURRENT COLUMN ARE CHECKED TO FIND THE
C C0~NGE 0iF ANY) WHICH WOULD DF!VE THE GBJECTIVE
C FUNCTION COEFFIC!ENT TO ZERO.

IFiBASIC(J).NE. 1)THElN
IF(' XNE.COL)T4EN
iF(495 AAhCONSTRJ)) .LT. *.001)TiEEN

TEMPxIOE8
TEMPs-IOED

ELSE

IF'NXMN 1.Q.)THEN

TEMPrCF(J) /AF(CONSTR,J)

ELSE
TEN~x-CF(J)IAF (CONSTR,J)

ENDIF
ENDIF

C NINIKUM VALUES ARE RETAINED.
IF(TEMP.GT.O)TWEN

CUPPER=ANIN1 (CUPPER,TERP)
ELSE

CLOWERvAeAX1 (CLONER, TEMP I
ENDIF

ENDIF
ENDIF

4280 CONTINUE
ENDIF

4270 CONTINUE
ELSE

C VALUES ARE FOUND FOR COLUMNS 4OT ASSOCIATED WITH PIE BASIS.
IF(MN .ED. 2)THEN

CLOWEPz-CF (COt)
ELSE

ClIPPERs CF(COL)
END IF

E~r!F
CL0#ERvCO(CGL) #CLGNER
CUPPER&CO (COL) +CUPPER

C 1.14E RESULTS ARE PRINTED.
IF (SELOUT .ED. '5' -DR. SELOUT .E9. 'B') 'MN
!F(ABS'CLONER).6E. lE7.AND.ABS(CUPPER .SE..1E7)TIN

WRIEU'(4,'C('.I.') NO LIMIT NOil

LINIT')'ICOL
ELSEIF ADS(CLGNER) .6E. 1E7)THEN
WRITEII.' '4X,'C('9,IWI,) NO LIMIT '',F14.5)'

* ICCL. ClPPER
ELSEIF(ADS(CUFPER) .GE. 1E7)THEN

NO LIN!T''rICOLCLOWER
ELSE

WRITE(I,'('4X,''C('',I1.'') 'F1.,,145
* CQL,CLOWER,CUPPER
ENDiF
LINES a LINES + 1
IF fLINES .6T. 8) THEN

ASLINES z 0

WRITE(1,'iAI',') C;HAR(12)
WRITE(i,'(''COEFFICIENT LONERLIMIT''
.,UPPERLMIT''IV'

ENDIF
END IF
ir'SELOUT *Eg.'P' *OR. SELOUT *EG.'B')TKEN

IF(ABS(CLOWER).6E.1E7.4ND.ABS(CUPPER) .GE.1E7)THE.N

URIE~.'8X''('.1,') a Na LIMIT NO"'

iUEL

'LINIT'')'COL,

ELSEIF(AlS(CLONER).6E. IE7)THEN
WR1TE6,18.''C~',I,'')NO LIMIT "',F14.5)'

* CCL,CUPPER
ELSEIFIABS(CUPPER) .6E. 15) HEN
WRITE(6.? (8X,''C('',I1,'' m'fF'14.5,

01 NO LINIT"P)COL,CLOWiER
ELSE

* COL.CLO)WER,CUPPER
END IF

END IF
C240 CONTJI'SI

IF(SELOUT *E9. 'F' *OR. SELOUT Eg9. 'D')THEN
IiRITE(6.' :A1)'CNARfl2)

END IF
IFiSELOUT.Eg.S'.CR.SELOJT.Eg.'3')THEN

PAUSE
END IF
RETURN
E4D

*1 395

C

C ODLE 4UNIT43
C UNIT $USES: UNiT 47
C
C SUBROUTINE M!ULCM6
C USE: THIS SUBRGUIINE ACCEPTS S'ULTIPLE CHANGES TO ANY OR ALL VALUES I
C OF THE ORIGINAL PROELEM. IT THEN DETERMINES THE TOTAL EFFECTI
C ON THE FINAL TABLEAU. I
C I
C CALLED BY: PROGRAM NAINSA I
C CALLS :SUBPOUTINE CHECi(2 I
C SUBPOUTINE CHECK I

SUBPOUTINE C~HMUL

C VARIABLES: I
C UiES : .K,IFLA6,INEg,CB.VT.NE6,AO,AF,B0,BF,CCCFZ,INDEXL I
C MODIFIES : EWA(20,240),NEND(20) ,NEWCIJ(2O),DELTAA(20.20),DELTAD(2O) I
C DETA(2Q)
C
C II It t II IIIIIIt I5*a5I5I5I5I5 I t5 I t I 515155 II
$USES UCPECK2 IN IUNI147.CODE OVERLAY

SUBROUTINE NUV"N6
INTEGER.VKJCLONIAIE,

.CONSTR,CB,7T.NEG
REAL AO.AF.BOjaF,CO.:.FZ.PN.

,rELTAA'20O.20' ,bELTAS(20),.DELTAC(20i)
CHAPACTER SELOUT.SELINP(I0)hI,P'1Q;SI,FNS!0
CON9ON/0?JE*SELOUT,FN
COMMON/7WO/VT. INDEx!INDlEXL.INDE.AE.M6C.NLCNEC!HEG(20).MNXNN.rM

SINCLUDE COMYAR
IFfSELGL'T .Eg.'P'.OR. SELOUT .Eg.'3B!THEN

ENDIF

..21,'THIS PR*IR4M ACCEPTS MULTIPLE CHANES"'/

.,2X,"O A FINAL TABLEAU AND CHECKS W4ETHER'I
..X.,'CR NOT THE CURRENT SOLLITION IS OPTIMAL"'/
.2X,''FOR T4E NEW PARANETERS''/)')
PAUSE

wRITu.'I,8.''SI5SSS~ssEANDv~sS:sSs~s''' CHAR(12)
C PERTINENIT VARIABLES ARE SET TO ZERO.

DO 4390 uCOLvI.V
DELTAC'COL)zC.O
NEWCJ (COL) zO.

4'.80 CONTINUJE
00' 430! CONSTRzI.K

DELTA~ ' ONSTRI n. 0
NEWB(CGN5TRiz0. 0
DO 4390 COLxI.V

DELTAA (CON9TR, COL) 0.)
NEWA (CONSTR, COL) -0. 0

43!O CONTINUE
4305 CONTINUE
4370 WRITEil,'(Al)') CHAR(12)
C THE USER CAN SELECT ANY OF THE THREE TYPES OF CHANGES. WHEN ALL
C CHANGES HAVE BEEN COM~PLETED, THE PROGRAM MOVES TO THE SOLVING
C PHASE.

NRITE(l,'f3X,''SELECT THE PARAMETERS TO BE CHA.NGED''/,

.6X,''3) AUJ''//.

,6X,4 CHANGES C30PLETE'';/,
.6X.''5) PE7JRN T3 MAIN MENU''!)')

iF (SELIWP I) .EQ. 'I) TEN
c INPUT OF CHANGES TO THE OBJECTIVE FUNCTION COEFFICIENTS. EACH
C ITNPUT COLUMN IS CH4ECKED FOR VALIDITY AS !S THE 'JEW VA16UE OF THE
C COEFFICIENT.
4315 NRITE(1.'(5(/),5X,''PLEASE ENTER THE CO.LUN'.,

*5X,"7J0 BE CHW)IED"/l,
*5),''PESS D)ONE IF COMPLETE"'/!')
READ(3,,,'2AJ)') SELINP(1),SELINPi2)
IF (SELINP'1) 16O.11 THEN

GCT3 4370
ENDIF
CALL CH'ECK2.!SELIHP.2,V, INVAL,CCL)
IF (INVAL .EQ. 1) THEN

WP.ITE(1,'(2(/),5X,"I'JLID RESPONSE, PLEASE REENTER''P'
SOTO 4315

ENDIF

4302 wamTEl,'i5X,'THE ORI6INAL VALUE OF C('.12.'') OAS ''I)'lCOL

VRITE(1,'(/.5X,''LEASE ENTER NEW VALUE"')')

CALL CHECKiP, INVAL.NE4Cu (C0L))
IF~iNVAL .EQ. I)THEN

h'~TE~'~/.''NVAIDRESPONSE. PLEASE REENTER")')

ENDIF

H--TE NFN VALUE iS '',1.)')COL,CD4COL),NENtJ(COU)
ENDIF

C THE CHANGE 1S DETERMINED.
5ELTAC(COL) xNEWCJ (COL) -CO(COL)

GOTO 43!5

ELSEIF CSELINP(l) .EG,!2') THEN

397

C CHUMSS TO THE CONSTRAINT COEFFIEIENT ARE DETERMINED.
4325 WRJTE(1,'(5f/),31,''PLEASE ENTER THE ROW TO BE CHANGED''I')

WRITE41,'(51''PRESS D)ONE IF COMPLETE"/I)')
READ''(1)') SELINP(1), BELINP02
lF (SELINP(1) .ED. '0') THEN
SOTO 4370

END IF
CALL CHECK2(SELINP,2,X,INYAL,[OhSTR)
IF (INVAL .EQ. 1) THEN

WRITE(1,'(A1)P) CHAR(12)
WRITE(11'(2(/),5X,''IXVALID RESPONSE, PLEASE REENTER"/I)')
SOTO 4325

END IF
WRITEiI,'(AIY) CHAR(I2)

4335 WRITE(l. '(5(!),2X,'PLEASE ENTER THE COLUMN TO BE CHAN6ED''/I)')
READ 5,*(2A1)') SEL!NP(I),FEL:NP(2)
CrLL CIECK2(SELIhP,2,V4 INVAL,C3L)
IF (INVAL .EQ. 1) THEN

WRITE,'~l2f/),5X.''iNYALID RESPONSE, PLEASE REENTER"/')
SOTO 4335

ENDIF
C IF THE CONSTRAINT HAD BEEN MULTIPLIED By MINUS 1, IHE V'ALUES

ARE SWITCHED BACK.
IF(NE6(CONSTR) .EQ. IITHEN
AO(CONSTRZOL) :-4(CO4STR. CULl

ENDIF
4312 IF ICO'STR.LE. 9) THEN

IF (COL .LE. I) THEN
WR.ITE!I.'(4X4''THE ORIGINAL VALUE OF L'I. ,I1

") WAS '',/I11.F15,7)') CONSTR,COL,AOfC0NSTR.COL)
ELSE

WRITE(11 (4x.'THE ORIGINAL VALUE OF A'q1'.'I
')WAS ",',II1XFli5.7)') CONSTRCL.AO(CONSTR.COL)

ENDIF
ELSE
IF iCOL .LE. 9) THEN

0RITE(I,'i4X,''THE ORIGINAL VALU'E OF A',2'.,1

?I)' WAS ",',IiIX. F15.7)') CONSTR,COL,AO(CONSTR,COL)
ELSE
WRITEU. (3X,?'THE OKSINAL VALUE OF ',1'.'1,

")' 4AS r'/IXFS7' ONSTR.COL.A0(CaNSTR.CO%.)
ENDIF

ENDIF
WRITE-:',1i ,3X, "ENTEF MN VALUE (10 CHARACTERS MAX)''/I')

CALL CHECK 'F, INVAL,NEWA(CONSTR, LOLl;
IF(INYA. EQ. 1 ThEN

VRITE!1,'('I,''INVALID RESPONSE, PLEASE REENTER''Im')
6070 4312I ENDIF

349

C1 A, AI

IF(SELOUT.EQ.'P'.OR.SELOUT.EQ. 'B')THEN
IF(CONS7R *LE.9)THEN

IFECOL .LE. 9)IHEN
WRITE(6,'i''THE OLD VALUE OF A'I'',1

* '') WAS '',F14.5,''---THE MN VALUE IS "',F15.7)')
*CONSTR,COL,AO(CONSTR,COL) INEWA(CONSTR,COL)

ELSE
WRITE(6,'i?'T E OLD VALUE OF AP,1 1 ,'12,
91') WAS '',F13.,,lp--THE NEW VALUE IS 11,FIS.7))

*CONSTR,COL,AO(CONSTR,COGLI ,IEWA(CONSTR,CDL)
END IF

ELSEIF(COL I.E. 9)THEN
WPITE(6,(''THE OLD VALUE OF A("',12111
") WAS R 1.,~-~ EV VALKE IS "',F!3.7)1)

ELSE
ORITE(6 ''THE OLD VALUE OF A'.2',',2

* ''~ WAS ''FZ5 --THE NEW VALUE 13 "',F15.7)')

*CONSTR.CGL,AOICONSTP,COL) .NENA(CONISTR.COL)
ENDIF

ENDIF
IF(NEG(CONSTR) .EO.l)TREN

AD (CONSTR,COL)=-AOfCS5TR,Cc~
WEWA'CONSTR,COL)x-NA(CO4S7R, COL)

ENDIF
DELTAA(CONSTR,.COL) aNEWA(CUNSTP.COL)-M(CNTR,COL)
WRITE0l,'(A1,') CHAR(12)
60TO 4325

ELSEIF (SELINP(l) *E&..'l THEN
C CHANGES TO THE RISHT-SAND SIDE ARE FOUND.
4345 WRITE(W,(50,), 5X,'FI.EASE E4TER THE ROW TO BE CSAR6ED'f,

*SX.''PRESS D)ONE IF COMPLETE")')
READ~r.,',2AlI)') SELINP(1).SELINP'2'
IF 'SELINP(I).EQ. 'D') THEN
SOTO 4370

CALL CHECK2(SEL]NP,2',)KINVAL,CONSTR)
IF (INVAL *EQ. 1) THEN
WPIJE(W,(A?') CHfRi2)
WP!TE(1,'(2(I',5X,'INVALID PESPONSE, PLEASE REENTER"/)
6010 4345

END iF
IF'NEG4CONSTR) .FQ. 1)THEN
?O(CDN5TR'.-PO lCONSTR)

ENDIF
1322 WRITE'!I'514'THE ORIGSINAL VALUE OF D(1,2'' AS "'I")

*CONSTR

WITf(I,'UOX,F1O.3"') 80,rCGKSTR)
WRITE(I,,'(i,5X,''ENTER NEW VALUE 1,1 CHARACTERS MAX)"!)')

CALL CKECK IP.INVALNEWB(CONSTR)i

IF(INVAL *EQ. I)THEN

NRITEfI,' (AW))CHAR(I2)
0019TEli,'(/,'INVALID RESPONSE. PLEASE REENTER'fl)')
60O 4522

END IF
!F'SELOUT.EO.'F'.3P.SELOUJT.Eg.'B')TdEN
WRIIE(6,'(''THE OLD VALUE OF B('',12,:') WAS '',FIO.3,
"--H MN VALUE IS ",FlO.W'CONSTR,BOtCONSTR),

* EWCONSTR)
ENDIF
IF 'NEG (CONS7R) .EQ. 1) THEN

DO (CCNSTR)u-DU (CONSTR)
WEMB(CONSfP)s-NENB(CONSTR)

ENDIF
DELTAB'CONSTP)aNEWB(CONSTR) -BO(CONSTR)

SOTO 4:45
ELSEIF (5ELINPt1).EL'4') !HEN

C MNEN ALL CHANGES HAVE BEEN ENTERED, THE NET EFFECT OF THESE
C CH ANES ON THE FINAL TABLEAU 1S DETERMINED. THIS GENERALLY
C CONSISTS OF MATRIX MULTIPLICATION. THE FINAL TABLEAU fi-INVERSE
C (PLUS OBJECTIVE FUNCTiON COEFFICIENT) 19 MUILTIPLIED BY ThE
C MATRIX CONTAINING THE CUMULATIVE CHANGES.

DO 21000 COASTRZI,Iv
Z:Z+DELTAD(CDNS.TR) #CF(CONSTR+INDEXL-1)
DO 2010 RCvzl,K

BFiCONSTR)zDF 'CONSTR)4DELTAD(RON)SAF(CONSTR,RN+INDEXL-1)
20.09 CONTINUE
200~0 CONTINUE

D3 2020 COLz1.V
IF(MXMN *ER. 2)TNEN

CFiCOL)-CF (COL) DELTAC (COL)
ELSE

CF (C0L) CF (CDL) -DELIAC (COL)
ENDIF
DO 20)30 CONSTRaloK
CF'COUBCF(COL)+DELTAA(CONSTR.COL ICF'CDNSTR+Ir4DEXL-1)

2030 CONTINUE
2920 CONTINUE

00 2040 CONSTRzl,K
DO 2050 COLzI,9

DO 2060 !zI.K

AFiLCONSTR,COL)AFCONST.CL+DELAAI,CGL)I
* AF(CONSTR,I+1NDEXL-1)

2060 CONTINUE
2050 CONTINUE
2040 CSNTIMUE

ELSE!F (SELINP (1) *EQ. '5') THEN
RETUN

ELSE

WRIIE,'(5(/?,5X,'INVALIlD PESPONSE, PLEASE REENTER)')
SOTO 4370

4W

END IF
CALL CONNUL
RETURN
END

401

C I
C NODULE 4 UNIT43 2
C UNIT $USES: NONE S
C S
C SUBROUTINE: COMUL 2

C USE: A CONTINUATION OF SdBROUTIHE MULCNO. THIS SUBROUTINE HAS S
C BEEN SEPARATED TO ALLOW COMPILATION. THIS SUBROUTINE 2
C RECEIVES THE MODIFIED FINAL TABLEAU FROM MULCNG AND CHANGES t

C IT INTO THE BASIC SOLUTION FORM $
C 2
C C4LLED BY: SUBROUTINE MULCN6 2
" CALLS AONE S
C 2
C VARIABLES: 2
C USES : AF,8F,CF,Z,V,VT,CBINEQ I
C MODIFIES : AF,BF.CF,Z I
C 2

SUBROUTINE CONMUL
C THIS SUBROUTINE IS A CONTINUATION OF THE ABOVE SUBROUTINE MERELY
C SEPARATED TO ALLOW COMPILATION.

INTEGER CONSTR,COL.IFLAG,VT, ROW,CB,V

REAL AO'AF,BO9,BFCOCF,Z,KENB(20),BM
CHARACTER SELOUT11,FN10

COM"ON/ONE!SELOUTFN
COMMON!TWOi'T,INDEEI.NOEXLINDEXE.N6C,NL,,HEC,NEG(2O. ,MIXN,SM

$INCLUDE COMVAR
IFLAS(9)=Q
DO 4303 CONSTR=I,Y

C THE MODIFIED FINAL T4BLEAU IS NOW RETURNED TO THE BASIC
c SOLUTION FORM.

NE#B(lizAF(CONSTR.CBiCONSTRJ)

1F(ABS(NEWB(I)).LT..O1)THEN
IFLAS(9)=l
RETURN

ENDIF
DO 4313 COL=I,VT

C EACH CONSTRAINT iS DIVIDED BY THE VALUE OF THE COEFFICIENT
C IN THE COLUMN ASSOCIATED WITH THE VARIABLE IN THE BASIS.
C THIS OILL PETURN THE COEFFICIENT TO A VALUE OF ONE (DIVIDED
C BY ITSELF).

AF(CONSTRCOL =AF(CONSTR,COL)INEWB(I}

4313 CONTINUE
BF(CONS1RS=F COMSTR)INEWB(1)

DO 4323 ROWzI.K
C THIS ZONStRAI; S THEN ADDED TO EACH OTHER CONSTROINr AND
C THE OBJECTIVE FUNCTION IN THE REQUIRED AULTIPLES TC DRIVE ALL

SOTHER VALUES IN THE COLUMN TO ZERO.
NEWB(2Az-AF(ROW.CB(CONSTR))
IF (POW .E. CONSTR) THEN

DO 4133 COL=I,VT

402

AF ROW, ZOIJ UAFLRDW, CDL)+NEWD(I AFiCONSTR,CDL)
4333 CON71NUE

DF(ROW)aBF(RDW)+NEWB(1I $F(CDNSTR)
ENDIF

4323 CONTINUE
lF(CP,'CGNSTR .LT. INDEXE)THEN
kEhDli1=-CFiC?(CDNSTR),
DO04343 C-lLxl,VT

CF(COI~aCF(CDL),PNEND,1) AFICONSTRCDL)
4343 CONTINUE

Z*Z+NENB(I $BF(CO'NSTR)
ENTIF

4303 CONTINUE
NE NB (1) 0.0
DO 4377 CBNSTR=1,K

C IF BIG M HAD BEEN SUBTRACTED FROM SOME OBJECTIYE FUNCTION
C COEFFICIENTS IN UNIT 48, THEY ARE ADDED BACK~.

IF(INEQ(CONSTR) .NE. C)THEN
CFtCONSTR4INDEXL-l)zCFiCONSTR4INDEXL-I) iBM

ENDIF
4377 CONTINUE
C A TEST 15 MADE FOR OPTIMALITY OF THE NEW BASIC TABLEAU.

0O 4353t COLx1,VT
IFtCF(COL) .LT.- 0.00001)THEN

NB(l)=100.
ENDIF

4353 CONTINUE
DO 4363 CONSTR=l.K

IF(BF(CONSTR) .LT. - 0.00001) THEN
NENG (II .jfl

ENDIF
4763 CON71IUE

!F(NEWB() .GT. 99.) TREN
DO 4373 CONSTRSI.V

lF(C~lCONSTR).6E. INDEXE)TH4EN
IF(BF(CONSTR) .GT.0)THEN

IFLA ' 3) zI
RETURN

ENDIF
END IF

4373 C[,NTINUE

ELSE
RITE(,(5/),SX,''ISISfl$STILL OPlIMALSI$$Rlhg'')')

ENDIF
PAUSE
RETURN
END

403

C

C NODULE 4 UNIT44
C LMIT $USES: UNIT 47
C
C SUBROUTINE ADOCON
C USE: THIS SUBROUTINE ALLOWS AN ADDITIONAL CONSTRAINT OR VARIABLE I
C TO BE ADDED TO A PROBLEM WHICH WAS ALREADY BEEN SOLVED BY I
C NODULES 2 OR 3. THE EFFECTS OF THE ADDITION APE CALCULATED I
C ND THE NEW TABLEAU IS PUT INTO A BASIC SOLUTION. I
C
C CALLED BY: FROGRAM NAINSA
C CALLS : SUBROUTINE CHECK2 I
C SUBROUTINE CHECK
C
C VARIABLES: I
C USES : V,K,VTIFLAG,iNEQNXN.,CI,NE6.NEC,NLC,N6C,AO,A,BO,BF, t
C CO.CF,Z,INEXL,BM t
C MODIFIES : INDEXL,V,YT,K.AF,BF,CF,Z,DELTANLC,NC,EC I
C t
C I I t I I t I I I I I I I I I t I I I I I I I I I t!I I I I I I I tI

SUSES UCHECK2 IN UNIT47.CODE OVERLAY
SUBROUTINE ADDCON
INTEER I,VK,JCDI.,VT, Ri3.IFLA, INEO,NXNN.NEC.N6C.NLC,
.CONSTR, CB
REAL A ,AFBO BFCO,CF,ZIELTP.A(20).BN
CHARACTER SELINP(2)i.,FNIIO,SELOUTSI ,P(10) I
CORON/ONE/SELOUT. FN
C£O ONiTdOiVT,INDEX6, INDEXL.INDEXE,N6C,NLCNEC,NE6(20), XMN, BR

[INCLUDE CONVAR
IF (V.EO.20 .dR, K .EQ. 20) THEN

WRITE(I,'(5(,),5,"THIS PROBLEM IS TOO LARGE FOR',/.4X
" 'ADDITIONS.)')
RETURN

ENDIF
NRITE(I,'(AI)'1 C$AR(12)

WRITE(I,' (/Ii,3X
.,"THIS SEGMENT ALLOWS YOU TO ADD AN",/.3X
.,"ADDITIONAL CONSTRAINT OR VARIABLE TO "j)')
WRTE(I,1(3X,"AN ALREADY SOLVED LINEAR PROeRA MMING ",/,3X
., PROBLENf",///0')

4'00 IRlTE(!,' (X,"D)O YOU NISH 710 ADD A:",//,14X

"C)ONSTPAIHT'',I,!8

IT(I,(14{,"V)ARIAB LE" 1,t/,OX
., ' '"SELEC:TC"' ... RV o,10))

READ!5,' (AI)') SELINPII)

IF (SELIPP(I) .EQ. 'V') 7HEN
C IF A VARIABLE IS ADDED, 1T IS PLACED JUST AFTER THE LAST
C VARIABLE IN THE ORIINAL PROBLEM, ALL VARIABLES TO THE RIHI
C AiE MOVED ONE COLUMN TO THE RISH7. ALL INDICES ARE RESET.

404

vav41
INDEXLzINDEXLfl
INDEIG.,lNDEX64 I
1NCEXEc1kOEXEt1
DO 44240 CCLaVT.Vf1,-1
CF(COLs-CF(COL-i)
00 4410 CflNSTP-1,K

AF('CONSTR, COL) :AF (CONSTR,COL-i)
4410 CONTINUE
4420 CONTINUE

DO 4485 CONSTRst,K
IF (CB(CONSTP) BGE. V)TH4EN

CD ICONSTRI sCD(CO WSTR) 1
ENDIF

445 CONTINUE

44111 WRITE(1.'(//,4X,"P.EASE ENTER THE COEFFICIENT FUR"',!,qX
'"THE OBJECTIVE FUNCTION'',!/I')
IF(Y .LT.10)THEN

ELSE
WRITE(l.'t/ 47X,'?C(',I2,-') ",)V

ENDIF

C THE INPUTS ARE CHECKED FOR VALIDITY.
CALL CHECKCP,INVAL.CD(V))
IF(INVAL .EQ. 1)TI'EN

NRITEUl,'(/"'.,5X.''INVALID RESeFNSE, PLEASE REENTER'')
SOTO 4411

ENC'IF
WRITE(I'(A,,1I/)') CHARI12)

4412 WRITEf1.'t//,4X,''PLEASE ENTER THE COEFFICIENT FD'R'',/,4X
,'EAC1 CONSTRAINT"',//)')
DO 4430 CONSTR=1,K

WRITE4Iz ? ''9$') CONSTR,V
REA~f5,'UOAI)'W) (P(L),L-1,IO)
CALL CHECX(P,INVAI.,AO(CONSTR,V))
TF(INVA. .Eia)THEN

VPITE'1,'i//,4X,''INVALID RESPONSE, PLEASE REENTER'',//1)
SOTO 4412

ENDIF
IF4NEG(CONSTP) .EQ. 1)THEN

AO(CONSTR, V) -ADfCDNS7R, V)
ENDIF

4430 CONTIKIE
CF(V't:-CO(Y)

C "HE NEW ADDIT'ONS ARE MULTIPLIED BY I-INVERSE TO SET A
C MODIFIED FINAL TABLEAU.I DO 4495 CONSTRul.K:1 CF(V)xCFiV)+AO(CONSTR,V) ICF(CONSTRINDEKL-1)

405

Mai""- -

DEI.TAA(ONSTR) :0.0
4495 CONTINUE

DO 44P7 CONSTR-1,K
DO 4499 Ia1,K

DELTAA 7 ONS1R)zDELTAA(CON5TR).AD(I. V)SAFICCNSTRf
!IlNDEIL-1)

4499 ZONTINUE
4497 CONTINUE

D~O 4498 CONSTRuI,X
AF (CONSTR, V) uDELTAA (CONSTR 1

4498 CONTINUE
C IF UNIT48 REMOVED THE BIB M VALUE, IT IS ADDED BACK.

DO 4476 CO4SIRal.K
IF(INED(K) MNE. O)THEN

CF 1C(t4STR.t0EXL-l uCF (CONSTR4INDEXL-1I)B
ENDIF

4476 CON4TINUE
ELSEIF 'SELINPi? .ED. 'C') THEN

r IF A C)NSTRAINT IS ADDEr, IT !S PLACE) AT T4E BOTTOM.
C INDICES ARE RESET AS REQUIRED, THE COLUMN OR COLUMS
C REQUIRED FOR THE NEW CONSTRAINT ARE ADDED TO !HE R16HT OF THE
C EIISTIN6 COLUMNS.

WRITEt(1,'(Al)') CHAR(12)
4413 WRITE!1,'(//,5X.''PLEASE ENTER !HE NEW CONSTRAINT'7)')

DO 4440 COL=1,V
WRITEfIl'/(i,1X.''A('',lfI ...I2.'-1 a ''$)') K.COL

CALL CHEl-%(P,INYALAF(KCOL))
IF(iNVAL .ED. I)THEN

WPITEiU,'//,4X,''INVALID RESPONSE.PLEASE REENTER"')')
60TO 4413

ENDIF
4440 CONTINUE

4441 4RITElI,'('/,4X,''I5 CONSTRAINT OF THE FORM ''0.)')
0p.ITEl1.'ilOX,') LESS THAW'',1f,10k

* ') GREATER TAN"',IOX

LALL C!4CK2C3ELINP,l,Z,INYALINEQ(K))

IF;INVAL .ED. 1)THEN

WRIT(I,)A)')HAR12) RESPONSE, PLEASE REENTER"')

INEQ(K)xINEQ I) -1'1 WORITE0Y (Al,II)') CHARM1)
4414 WR1TE(I,i//,4X,P'PLEASE ENTER THE RIMN HAND SIDE'.1r

408

CALL CXECK(P, INVAL,DF(K))
IF(INVAL E.L1THEN

VAITE(1.'(I//4X,''INVALID RESPONSE, PLEASE REENTER'')')
600 4414

ENDIF
TEMPsO. 0
DD 4439 C3L=Y*I ,VT

AF(LCOL)u0.0
4459 CONTI NIE

DO 4444 CONSTRz1,V.-1
TENPaTENP.DF (CONSIR) SAF 'K ,CB (CONSTR))

4444 CONTINUJE
IF(ISNEQD) .EQ. OTHEN

IF(TEMP X6. bF(K))THEN
60TO 4401

ELSEIFfIREG(K) .EV. I)THEN
!F(TERP .T. PF(K))THEN

6010 4401
END IF

ELSE
IF(TE4P .ME, BF(IK)1THEN

60TO 4401
ENDIF

ENDIF
NRITEi1 4 iA1l') CHAR(12)
WFTE(1,(/iI,''ThE NEW CONSTRAINT WAS SATISFIED BY THE'')')
VRIIEfI,'Ul,11X,''ORlSINAL SOLUTION'')')
IFLA6(2)x1
FAUSE
RETURN

4401 IF(INEO(K) .EQ. 0) THEN
C IF THE NEW CONSTRAINT IS A 'LESS THAN', A SINSLE COLUMN IS
C ADDED.

V TsVT'11
NLC=NLC4 I
DO 4450 CONETRzJX-1

AFfCONSTR.VTiz0.0
4450 CONTINUE

DO0 4460 COL 4V+I.4-1
AF(K,COL)=O.0

4440 CONTINUE
AF(IKVTtlj.Q

DO 4477 CONSTRzl,K
IF(INEC(CONSTR) MNE, 0:THEN

CF(CONSTR+JNDEXL-l.,zCF(CONSTP.INDEXL-i 4DM
ENDIF

4477 CONTINUE
ELSEIFliKE2(KY .EQ. li THEN

C ~IF THE NEW CONSTRAINT WAS A 'SREATER THAN*. TWO COLUMNS

C ARE ADDED AND THE ANDICES ARE ADJUSTED ACCORDINGLY.
VTxVT+2
N6CaNC+1
NEC=NErs1
DO 4400 COL.4JT-1,VT
CF(COL)0O.O
00 4470 CONSTRc1.K-I

4470AF(CONSTR,COUOmc.0
4470 CONTINUE

4480 CONTINUE
DO 4481 COLaV'1,VT-2
AF(K,CDNSTR)0O.0

4481 CONTINUE

AF!K,YT)-1.0

DO 449 CCLs1,VT
CF'C0U~vCF(COLj -AF(K,CUL)l5X

44"i CONTINUE

CF (VT)zk
DO 4478 CONSTRm1,K-1

IFIINEG(COKSTR) .ME. 0)THIN
CF (CONSTR+INDEXL-1) CF (CONSTR+INDEXL-1I)#

END IF
4479 CONTINUE

ELSEIFIINEQ(K) .EV. 2) THEN
C IF THE NEW CONSTRAINT IS AN 'EQUALS', A SINGLE ARTIFICIAL
C VARIABLE IS ADDED,

VJT=VT.1
NEC=NEC+!
DO 4405 CDL=V+1,VT-j

AF(K,COL)=0.O
4405 CONTINUE

DO 44!5 CONSTR1,.K-1
AF (CONSTR,VT)x0.0

4415 CONTINUE
AF (K. VT) .1.0
CDQ'iVT
DO 4425 COLEsYT

CF(COL)=CF (COL)-AF(K,COL' S8N
4425 CONTINUE

12Z-iBVI1 SI
DO 4479 CONSTRm.K

IF(INEQiCONSTR) .ME. 0)THEN
CFICDNSTR+INDEXL-1) =CF(CONSTR41NDEXL-1)+8N

ENDIF
4479 CONTINUE

ELSE

VRITE(I,1(///,3X,''IXPRDPER RESPONSE"',/IJ)')
6070 4441

409

ENDIF
C COEFFICIENTS IN THE NO CONSTRAINT WHICH REPRESENT COLUM
C WITH YARIABLES IN THE BASIS ARE DRIVEN TO ZERO, AND THE FULL
c CONSTRAINT AND RMS APNE ADJUSTED ACCORDINSLY.

DO 4435 CONSTM=,K-I
TEMP-AF (K, CD(CONSTF) P
DO 4445 CgLxI,VT

AF(K,COLJUAF(KICDU-AFCONSTR,COLUITEMP
4445 CONTINU)E

DF(K)s8F(K)-DF(CONSTR) STEAP
4435 CONTINUE

ELSE

WRITE-,'i,?/,''I,"MPROPEP RESPONSE''1,///)
607T3 4400

ENDIF

IFLAB (3) =0

C IF ALL OBJECTIVE FUNCTION COEFFICIENTS AND ALL RHS ARE
C NNEGITVE APD AN ART4'F1CIAL VARIAELE 15 IN THE BASIS AT
C A POSITIVE LEVEL, TNEN THE PROPLEN 16 INFEASIBLE
C

DO 4465 CONSTRall-K
*F(BF(CDNSIR) .LT. -.0001)THEN
Jzl

ENIIF
4465 CONIINUE

DO 4475 COL.:I,VT
WF(CF(COUi ML. -.00l)THEN
J-2 I

END iF
4473 CONTINUE

DO 4493 CONSTF=l,K

IF(DfiCONSTR) .GT..001)THEN
* IFLA6W3uI

EIDIF* I ENDIF
443CONTINUE

PETURN
END

C I
C MODULE 4 UNIT45 I
C UNIT SU5ES: UNIT 47
C
C SUOUTINE SOLVE
C USE: THIS SUBRIPJrINE ACCEPTS SIC TABLEAUS FROM SUBROUTINES I
C ILCH AND ADDCON AND D.RECTS OTHER SUBROUTINES TO DETERMINE I
C THE FINAL 3OLUTION AND ThEN DISPLAY AS DIRECTED.
C
C CALLED BY: SUBROUTINE SELECT I
C CALLS : SUBROUTINE OPTD
C SUBROUTINE WORK
C SUBROUTINE TOISPL
C
C VARIABLES: I
C USES : IFLA6i7),INFP,OPTS I
C MODIFIES : NONE I
C I
C I$ I I 1 8 1 1 1 1 1 1 1 1 1 a 1 I I I tt I $ t I I I I I I

SUSES UCHECK2 IN UNIT47.CODE OVERLAY
SUBROUTINE SOLVE
INTEGER PK,PR,OPTS,V,VT,CB
REAL 4AAF,9O,BF,CO.CFZ.BN

CHARACTER SELOUT, FNtIO
COWMONIPI/OPTSKFA,PKPR
CONNON/ONE/SELOUT,FN
NCN ONITWiJ/VT.INDEX6, INDEXLINDEYE,N6C, NLCNEC.E6 (20),NXlNN,BN

C03ffN/T.REE/INFP

$INCLUDE CONVAR
C SUBROUTINE OFTB IS CALLED TO DETERINE THE CONDITION OF THE
C 1ABLEAU. IF THE TABLEAU IS EITHER UNBOUNDED OF INFEASIBLE, THE
C PROSRAN RETURNS TO THE MAIN NENU. IF IT IS NEITHER OF THESE
C BUT I OPTIMAL, THE SUBROUTINE T)ISPL IS :ALLED TO DISPLAY THE

C RESULTS. CTHERWISE, SUBROUTINE WORK IS CALLED TO COMPLETE A
C BASIS CHANGE.
4500 CALL OPTB

IF(OPTS ,EQ. I ,OR. IFLA(7) *EQ. I)THEN
!F(IFLA67) .EG. I ,4R. INFP .EQ. I)THEN
RETURN

ENDIF
ENDIF
IF(OPTS .EQ. 1) THEN

CALL TDISPL
?REiUR"

ELSE
CALL WORK
GOTO 4500

ENDIF
RETURN
END

4tO

- . - , - , - -- - -- - -,• .

C
C MODULE 4 UNIT45
C UNIT $USES-. NONE
C
C SUBROUTINE: OPTB
C USE: THIS SUBROUTINE DETERMINES IF A TABLEAU IS OPTINAL,
c UNBOUNDD INFEASIBLE, MULTIPLE OFTIhAL, ON DEGENERATIVE. I
c IF IT 13 NaNE OF THESE, OTHER PARAAETERS ARE DETERMINED TO t

C PERFORM A BASIS CHANGE. I

C CALLED BY: SUBROUTI4NE SOLVE t
C CALLS : 0NE

C VARIABLES:
C UEES :VNGCNLCAO,AF,O0,DF,EO,CF,Z,CB
C MODIFIES IFLAG',INFP,SNES,XFA,PK,PR,OPTS,SPR t
C
C IIIIIII19111tIIIIIIII ISII£I:tSIISIS I II I :III

WUBROUTINE GPTB
INTEGER PK,PR.DPTS,V,VT,CB
CHARACTER SELOUT. FUR10
COMKON/ONE/ SELOUT,u
COIMODN/Pi 'OPTSKFAoPK,PR
CONMNTWOIT,INEA6,IIIDEXL,1WDEXE.N6C,NLCNEC,NE8C20) ,MXMN,BM
COMMON/THREE! INFP

$INCLU'DE COIPVAR
IFLA644)z0
IFLAi.6) '
IFL46i(7)aO
IFLAG(B)s0
IFLAS '9) '0
OPTSsO
lNFPwO
bNEiv0
XFAxV.NSC-NLC.1
6010 zoo

C TOE PIVOT COLUMN IS FOUND.
!10 33 130 JxjVT

IF (CF(J) G6E. SPES)THEN
60T0 100

ELSE
ONE~uCF (J)
PKSJ

ENDIF
130 CENTINUE
C OFTINALITY IS DETERN1IED.

IF ;ABS(SNEG) LT1. 0.0001) "HEN
OTS'1l

END.F

c INFEASIBILITY 1S DETERMINED.

411

IF (CB(1) .LT. KFA) THEN
IF(BF() .LT. -O.00001)THEN

INFP~l
ENDIF

ELSEIFIBF(I) .LT. -0-00001)THEN
SOTO 15i0

ELSE
INFPuI

ENDIF
150 CONTINUE
C THE LEAVING BASIC VARIABLE IS FOUND.

IF(OPTS .ED. O)THEN
SPRz10. E8
00 190 !I:,K

:FiAF(!,PK) .LE. .6001) THiEN
60TO 140

ELiEIF (B~fl)/AFII,PK) .6E. SPe) THEM
6O010 9

ELSE
5PP~uBF (I) /AFlI, PKl
PR=,.

ENDIF
10 CONTINUE

IF(SPR BGE. 10.E6)THEN
IFLAG(7)xl

E401F
END IF
a010 500

C DUAL PIVOTS A~RE UISED UNLESS A NEGATIVE OBJECTIVE FUNCTION
C COEFFICIENs 1S FOUND.
300 DO 370 JxLVT

IF 'CF() LT1. -0.00901)THEN
6010 110

ENDIF
320 CONTINUE
C THE PVOT ROW IS FOUND.

XC 140 IZI.K
AF-,BFtI)'.GE. SNESITHEN
60T0 340

ELSE

FR I
END)IF

'040 £(VNTINUE
!FIABBISNEB) .LT. 0.0001) THEN

OPTS: I
GOTO 500

ELSE
SFRs-1O.Eg
DO0370 xlI.VT

.FICBII) .EQ. J)THEN

417

SOTO 370
ENDIF

360 CONTINUE
IFiAF(PR.J) BOE. -.0001)THEN

SOTO 370
ELSE!FfCF(J/AF(PR,J) .LE. SPR)THEN

SOTO 370
ELSE

SPRuCF(J)/AF(PR,J)
PKzJ

END IF
370 CONTINUE

ENDIF
IF(SPR .LE. -10.Eb)THEN
IFLAGM-1s

ENDIF
500 IF(OPTS .EQ. WHTlEN

IFIINFP .EQ. 1) THEN
SOTO 600

ENDIF
DO 540 3.=1,VT

IFLASB~s0
DO 520 1-1,K

IFCB(1 .EQ. Ji) THEN
iFLAGiB)zt

ENDIF
520 Z:NTINUE

IF (IFLA6(81 .Eg. WHEN 1
IF(ABS(CF(J)) .LT. .0001)THEN
iFLAGM21z

ENDIF
ENDIF

540 CONTINUE
ENDIF
IF'IFA3() .EQ. WIHEN

60TO 600
ENDIF
DO 540 Iz1,A
lFiABSfEF(M) L. .0001)THEN

AFL~6(6):1
ENDIF

560 CONTINUE
C THE CONDITION OF THE TABLEAU IS PRINTED.
600 !F (SELGtiT .ED. 'S' DR!. SELOUT .EQ. 'P') THEN

IF (OPTS .ED. I .OR. IFLAW)7 ME. W)HEN
4RITE!l,'(l0X,''FINAL TABLEAU

ELSEIF(FLAW() .EQ. W)HEN
WPITE(1,'V('UNB0UMVED''Y)

ELSE
VRITE(1,'(''OPTIMAL'')')

413

T- I 5

ENDIF
IFVIFLAS(& .EQ. W)HEN

URITFE(1,' (21, "DE6ENERATE"'r
END IF
IF(OPTS *EQ. I .AND. iFLAG(4) .ED. I)ThEN
WRITE(l,-15X,-'MULTIPLE OPTIMAL SOLUTIONS EXIST'')')

END IF
PAUSE

ENDIF
E)IDIF
IF (SELOUT .EQ. 'P' .OR. SELOJT .EQ. '8') THEN
IF (OPTS .EQ. I .OR. IFLAG(7) .EQ. LiTHEN

4RITE(.'(lII4OZ,''FINA. TABLEAU - 1W
IF(INFP .EQ. W)HEN

ELSzIFiIFLAG7) EA. W)HEN
%RITE(6,' ('UNSOUNDED'')')

M WITE'6.'("'OPTIMAL"')')

ENGIF
IF(IFLAS(6) .EQ. IVTHEN

NRITE(6.' (26X."DEGENERATr')'
Ef4DIF
IVOPTS .E2. I .AND, IFLAG(4) EQ. I)THEN
NRITE(6.'(!X,"MULlIPLE OPTIMAL SOLUTIONS EXIST'')')

ENDIF
WRITE(6' (II)

ENDIF
ENDIF
IFLA6(9)=l
RETURN
END

IW

PrjA JM

C
C MODULE 4 UNIT45
C UNIT $USES: iI3NE I
C
C SUBROUTINE: WORK
C USE% THIS SUBROUTINE PERFORMS A PIVOT ON A BASIC TABLEAO I
C ACCORDING TO PARAM~ETERS DETERMINED BY SUBROUTINE OPTS. 9
C I
C CALLED BY: SUBROUTINE SOLVE I
C CALLS :NONEs
C
C VARIABLES: t
C USES : ?K.PR.OPTSIV,VT,CD I
C MODIFIES : AF,0F,CF,1 I

C I

SUBROUTINE WORK
INTEGER P1,PR,OP'.S,VVT. CS,KFA
REAL PELE.HOLD
CONMONiPi /3PTS,KFA,PK.FR
COBNMON/TWG/VT,INDEXG,I(4DEXL,INDEXE,NGC..NLC,MEC,NE(20, !,N!NBN

$ INCLUDE CONVAR
c THIS SUBROUTINE PEPFOPMS A BASIS CHAN6E WITH A PIVOI RON AND PIVOT
C COLUMN DETERMINED BY SUBROUTINE OPTS.

PELE=AF 'PR. PK)
DO 700 *]zj,VT'

,AFPR.,))AF(PR,J) !PELEL

CS (PP) jPK
Do 30Cc !=I.x

IF(I .EQ. PR)THEN
6010 300

END IF
NOLD=AF (I.PK)
DO 2150 vlvIVI
AF(I.j)*AF(I,j)-HOLDIAF(PRJ)

250 CONTINUE
SF (I)=SF "--HOLDISF PR)

300 CONTINUE
HOLDzCF!FK)
Do 350 Jz..T

CF (w)xCF,'J) -HOLD4AF (PR,)
350) CONTINUE

2:2-HDLDtBF(OR)
RETURN

41 5

now -- -o

C
C MODULE 4 UNIT45
C UNIT SUME; NONE

C SUBROUTINE: TDISPL
C USE: 1it1S SUBROUTINE DISPLAYS THE FINAL TABLEAU ACCORDING TO THE I
C FORMAT AND CONDITIONS SET BY THE USER. I
C I
C CALLED BY: SUBROUTINE SOLVE
C CALLS :NONE
C
C VARIABLES:
C USES :AF.BF.CF,Z,SELOUT.FMT
C MODIFIES :NONE
C

SUBROUTINE TDISPL
CHkRACTER P(10)hI,OBJNIOSELGUT,FNIO
INTESER PKPR.OPTS,V,V1.CB.DU.;L.T,FMT
COMMON !GXE;SELCUT. FN
COMPON/TNOVT.,INDE6. INDEIL. INDEXE,NGC,NLC,NEC,NE6(20 ,IiXMN.BN
COP(MON/PI/OPTS,KFA, PK,PR

$ INCLUDE COP.VAR
C THIS SUBROUTINE DISPLAYS THE FINAL 7ASiLEAU IN VARIOUS FORMA.TS ON
C SCREEN, PRINTER, OR BOTH SINULTANEOUSLY.

WRITE(I,'(AI)') CHAR(12)
100 WRITE(1.'(3(/).4X.''DO YOU WANT THE OUTPUT IN "I~')

WRITEil.'f/,IoX,''I) E FORMAT '1)1)

WRITE(I,'!1?l6X'OR))
WRJTE(l.'(iIox,''2) F FORMAT'')
READi5.'(Al)') P~1)
CALL CHECK2(P,I,2,INVAL,FMT)
IF (INVAL .ED. I) THEN

WRITE(l,'!1/,5X,''IMPROPER RESPONSE,PLEASE REENTER'')')
ROTO 100

ENDIF

110 FORNA1iA)
T=(VT/S)+l
IF(SELOUT .E9.'S'.OR.SELOUT .E0.1')TH4EN

DO 470 Nzl.T

PC 290 Ju(Nl55-4,Nf5
IF(J .ST. :T)THEN

SOTO 290
END IF
4RITE(1,280)J

280 FORM~l (5X,'X(',I~ ,3~
290 CONTINUE

IF(T .ED. I OCR. N EQ. T)THEN

416

MITE1.300)
3oo FORPAT(6X,'RHS')

ELSE
WRITE(14'('''''

ENDIF
KRITEII,'('053 FUNCTION''.1X45)')
DO 320 Jz(Nl5)-4.Nl5

IF(J .ST. YT)THEN
010 320

IFFT .ED. 11THEN

ELSE

ENDIF
320 CONTINUE

[F(T E.1 M~. N .EQ. TiTHEN
MFFi .EQ. 1) THEN

ELSE

ENDIF
ELSE

WRITE(1,'4' ')'

ENLIF

DO 400 Lz1,K

DO 370 J=(Nlf)-4,Nl5
IFfJ ST. VT)THEK
S0T0 370

ENDIF
lFiFNT ME. W)HEN

ELSE

ENDIF
370 COINTiNUE

IF(T 19g. 1 OQR. N .EQ. 1)T4EN

IFiF14T .ED. I)TiiEN

ELSE

ENDIF

ELRITEII.'I('
ENDIF

400 EgNT1NUE
PAUSE

417

470 CONTINUE
VRITE' I, l0)CHAR(12)
DO 580 Iul,K

IFIRNT EQ. W)HEN
PRITE~1,' (tX,'X('',12,''1 .'',IPElZ.5)')CB4IJ,BF(IJ

ELSE
WRITE(l,'(l0X,'"Xf'',2,'') a '',F12.5)')CBtI),BF(Pl

ENDIF
550 CONTINUE

IF(FMT EQ. 1)THEN

ELSE
WFITE(1,'(/14X.''l a .;5)!

ENDIF
ENDIF
IF(SELOUT .EG.'F'.GR.SELaUT .EQ,'B')THEN

DO 14710 Nxl,T
WRITE*a. (jl3YE)
DO 1290 Jx(Nl5)-4.N$5

IF(J S6T. YTTHEN
6OT0 1290

WRITE(612&))J
1290 FORMAT(H5X, !2, ')'.3X,51
12%0 CONTINUE

IF(T EQ. 1 .1W. N E. T)THEN
WRITE (6.1300i

1300 FLVHAT,6X,. RHSI)
ELSE
WR!TE(6.'(')'

END IF
WRI1E(6.'(''OBJ FUNCTIOr4'',1X.,')
DO 1320 jx(Nl5)-4,Ns5

IFtJ .67. VT)THEN
6010 1320

ENDIF
IF; FMT .EQ.'PThEN

WRITE(h,' 'iPE!2.5,IX,S)')CF(J)
ELSE
kRITEfk,' (FJ2.5. iX,s)'jCFIJ)

ENDIF
1320 CONTINE

IF(T E59.1 -OR. N .EQ. T)THEN
LF(FMT ED. 1) THEN
NRI1E(6' (''a '',1PEI2.5.lX)')Z

ELSE

ENDIF
ELSE

4RITE(6.'(''CN NAME VAR'',21,65(''''1))

418

D0 1400 Lzl,K
NRITEfi6,' (12,7X,$1')L
V*ITE(6,' 411,I2.IX,S)')C3(L)
10 1370 Jar(NS5)-4.Nl5

IFIJ S6T. YT)THEN
SOTO MO7

EOIF
IF(FKT .ED. 1)THEN

VRITE(6,' (IPE12.5.1X,')'AF(L,J)
ELSE

VRITE(6,' (Fl2.5,1X,S)'AF(LJ
ENDIF

13170 CONTINUJE
IF(T .ED. 1 MO. N ., T)THEN

IF(FNT .EQ. W)HEN

ELSE

ENDIF
ELSE

ENDIF
1400 -CONTINUE

1470 CONTINUE
Do01580 IZl,K

IF(FMT .EQ. lTHEM

ELSE

ENDIF
1580 CONTINUE

IF(FNT .EQ. WTHEN
NAITE(6,'(/A4X,''l -' P1.))

ELSE

ENDIF (Al'CA12

419

C
C NODULE 4 UNIT47
C UNIT MUSES. NONE s
r

C SUBROUTINE CHECK2 I
C USE: THIS SUBROUTINE ACCEPTS KEYBOARD NUMERIC INPUTS AS I
C "CARACTERS' AND RETURNS THE INTEGER EQUIVALENT IF THE I
C INPUT IS OF THE CORRECT TYPE.
C
C CALLED BY: SUBROUTINE MULCNG
C SUEROUTINE ADDCON
C CALLS : E
C

C
C
C VARIABLES:
C USES E,D.HVAL I
C MODIFIES : INVYL.INEU I
C
CII I St S 55$5IIIIIII IIII I S I SSI t I h I h$I 51*55I$

SUBROUTINE CHECK2(E.D,HVAL, IHVAL,IHEW)
CHARACTER ALLON(II)SIE(0)S1t

INTE6ER D.HVAL
DATA ALLOW/' ',3'2. , ' , '4' ,'5: ,"6','7','B','9','0',' '!

iNVAL:0

DO 4710 I=I,D

C EACH CHARACTER IS CHECKED FOR VALIDITY.
00 4700 Jl,10

IF'E(I) .EO. ALLOWili))THEN
C SPACES ARE ISNORED.

60TO 4710
ELSEIF(E(I) .EQ.ALLON!J))THEN

C IF THE CHARACTER IS A NURBER, THE VALUE OF THE NUMBER
C BEIN6 ASSEMBLED IS MULTIPLIED BY 10 AND THE VALUE OF THE
C NEW C.RACIER IS ADDED.

INEVzINEWl10tICHAR4E: I))-4B
SOTO 4710

ELSEIF(J .EQ. 10)THEN
C IF THE CHARACTER OES NOT FIT ONE OF THE ABGVE
C DESCRIPTIONS, AN INVALID FLAG IS SET, AND THE PROGRAN
C RETURNS TO BET A NEW INPUT.

INVY4.x
INEN2O
RETURN

ENCIF
4700 CONTINUE
4710 CONTUIUE

IF(iNEN .EQ. 0 .OR. INEW .ST. HYAL)THEN

INYAL2I

I NEW40

420

RETURN
ENDIF
RETURN
END

421

C
C NODULE 4 UNIT47
C UNIT tUSES" NONE I
C I
C SUBROUTIM CHECK I
C USE: THIS SUBROUTINE ACCEPTS KEYBOARD NUMBERIC INPUTS AS I
C 'CHARACTERS' AND RETURNS THE REAL VARIABLE EQUIVALENT I
C IF THE INPUT IS OF THE CORRECT TYPE. I
C
C CAL.LED BY: SUBROUTINE MULCN6
C SUBROUTINE ADDCON
C CALLS sNONE I
C
C VARIABLES:
C USES : E
C ODIFIES : INVAL,RNEW 9
C
Cr I t 1 1 1 1 1 1 1 1 $ $ t I I I t I I I I I I t I I I

SUBROUT;NE CHECK(E. INVAL.RNEW)
CHAR4CTER LLON 14ill,Efl0)!
REAL M
INIEGER DECIMA
DATA ALLO#I'r' , ',' , + .*

RNEa0..

!NVAL-
DECIMAO
NESAT=0
DO 4740 lal,10
IF(E(I) .EQ. ALLON(14))THEN

BOTO 4140
ENDIF
DO 4730 Jul,13

IF(E(li) .EQ. ALLONI))THEN
C IF VALID SPECIAL CHARACTERS ARE PRESENT, FLAGS ARE SET
C 4CCORDINGLY. IF THE CHARACTER IS A NURBER, THE NUBER
C WHICH IS BEIN6 ASSE.BLED 1 MUL7IPLIED BY 10, AND THE VALUE
C OF THE NEW CHARACTER IS ADDED.

IFiDECINA .EQ. ITHEN
60TO 4710

ELSEIF(ElI) EQ. '-')THEN
NESATa!

GOTO 4740
ELSEIF(E(]) .EO. '.')THEN

DECIPAI
S0TO 4740

ELSE
RMNEIRNENIIOsICHAR(E(I))-48
9010 4720

ENDIF

422

4710 RNEWRNEW+(!CHAR(E (1)) -48) IN

60TO 4720
ELSEIF(J .EV.13)THEN
IN VAt. 3
RNENv0. 0
RETURN

ENVIF
60TO 4730

4720 J213
47'30 CONTINUE
4740 Cn.NT1WJE
c IF THE NUMBER 1S NEbAT]YE, THE VALUE OF THE ASSEMBLED REAL NUMBER

c IS SNITCPED.
IF'NEGAT .E9. W)HEN

ENDIF
RETURN
END

423

........

CR8 3*333*133*33*33*

C MODULE 4 UNIT48
C UNIT $USES: NONE
C
C SUBROUTINE RETRIV
C USE-s THIS SUBROUTINE READS ALL REDUIRU SENSITIVITY ANALYSIS DATA I
C AND PARANETERS FROM A DISK FILE. IT REARRANGES THE DATA AND
c CONPUTES OTHER PARAMETERS TO ASSIST IN THE ANALYSIS.
C
C CALLED BYt PROGRAMN AINSA I
C CALLS :NONE I

C ARIABLES:
C USES :V,ik,T,IE,NE6,0O.IFLAGUIO).IFLA6(5i
C NODIFIES l NEO.NE6,AO,AF,B0,fiF,CF.DM I
C I

SUBROUJTINE REIRIV
INTESER I.,,KJ.CLROW.IFLA6,INEG,VT,C,C'NSTR,NEB
* SLACK, ARTYAR
REAL AO,AF.DO.DF,CO,C.F,Z,TE1WA(20,.2Q),TEMPC,"20),DN,

CHARACTER PNl70,FNl1Q,SELINP(1O)*1.SELOUT
COIUON/ONE/SELOUT, FN
COSMOt/TWOIV'. INDEXO. INDEXI, INDEXE,NO6C,NLC".NEC,NEG(20) ,NNm, 3

$INCLUDE CONVAR
WRITE(1,'fA1)') CHARMI)
*RITE(I,'(5(/').5X,'ENSURE DISK~ LP2: IS AVAIALABLE '.()'
PAUSE

C THE NAK OF THE FILE WITH PIE DATA IS READ.
OPEN(7,FILEx'LP2:LPDATAW' ,STATUS:'ODLD' .FOR.4u'UMFORNATTED')
REWD7) FN
WRITE'.1,'(Ai)') CHAR1I2)

C THE USER IS ALLOWED TO CHANGE THE DATA FiLE NAME IF DESIRED.
480O WRITE(1,'(5C'J),8X.''T4E CURRENT DATA FILE IS ''!I,14X,AlO,!lI)')Fk

MRITE(I,'l5X.''OO YOU WISH TO USE THIS TABI.EAU'',!(I));)
READ(5,' (All') SELINPil)
If ISELINP1') .EQ. 'N') THEN

WRITE(I,'(Su/).2X,''PLEASE ENTER THE HIEN VOLUNE:FILENAME''I)')
NRITE(l,'(1lX,''ES. LP2:TEST1'/i)'?
kEAD[NI',AIO)') FN
REWIND 7
VRITE(7FN

ELSEIF (SELiNPit) .ME. 'Y') THEN

WRITE(I,'(5l,''INALID RESPONSE, TYPE ''''yf'' OR ''''N'''' o

60TO 4eoo
ENDIF
CLOSE (7 ,STATUSo'KEEP')

424

NRITE(1,'(Al)') CHAR(12)
0AITE1,'f(fl,7X.?-ENSURE THE DISK CONTAINING")')
WRITE(1'/121,;l 0)') FN

PAUSE
C THE DATA FILE IS READ.

OPEN(3.FILEsFN,STATUSs'OLD' , FORN2UNFORNATITED')
READ (3)PNqI9IN, KV, IFLAG(5)
Do 4810 I12,4

READ(3) NQLSO1
DO 4920 Jz1,V
READM) 01,IJ)

4820 CONTINUE
4810 CCNTINUE

DO 4830 Jat,Y
READ(3) COQJ)

4830 CONTINUE
READ(S) IFLA6(10) .VT
D0 4840 I.1,K
READ(3) #F(I),CD(I)
DO 4050 Jc!,YT
READ(3) AF(I,JJ

0~50 CONTINUE
4840 CONTINUE

DO 4860 Jx1,VT
READ(3) CF(J)

4360 CONTINUE
READ(3) Z
CLOSE(3, STATUS.' KEEP')
NRIIE(1.'(AI)')CHAR(12)

PAUSE
W6Cz0
XLCvO
.qEC.0
NO 4861 CON4STRz14K

NE6(CONSTR) '0
4.361 CONTINUE
C EACH CONSTRAINT TS ALTERED IF THE PROBLEM WAS A MINIMIZATION AND
C THE CONSTR.AINT WAS A IGREATER THAN" OR IF THE ORIGINAL CONSTRAINT
C HAD A NEGATIVE RIENT-HANAD SIDE (NOT NINIPIZATIONi!.

DO 487) CONSTRil1-K
iF(IFLAG(10) .EQ.I)THEN

IFINEQtCONSTR) .EQ.I)THEN
INER(CONSTR) a 0
NES(CONSTP)aI
iOlCONSTR) '-8l0(LNSTR)
DO 4805 Ctfl,V
AO(CONSTR, COL)u-AO(CVONSTR,COL)

4805 CONTINUE
END IF

ELSE

425

47 J

IF IDO4CONSTR) .LT. -0.00001 THEN
NEE ICONSTRI aj

BO(CONSTR) a - DOICONSTR)
DO 4200 JsI.V

AO(CONSTR,J) a -AO(CONSTR.,I)
4200 CONTINUE

IF (INED(CDNSTR) .ED. 0) THEN
INED(COISTR) a I

ELSEIF (INEMCONSTR) .E2.1 THEN
INEQICONSTR) x0

ENDIF
ENDIF

END IF
C DErERNINE INDICES

IF (INEG(CONSTR) .EQ. 0) THEN
Ic aNLc +1

LSEIF ('ANEQ(CONSTR) .EQ.I THEN
NBC a NBC +1

4870 CONTINUE
iNDEX6 V + 1
1NDEXL z INDE1S + NBC
INDEXE xINDEXL t NLC
NE-C=K-N6C-NLC
SLACK x
AP.TVAR z 0
DO 111 CONSTR=I,K

TEMP ICDNSTR)xO
III CONTINUE

DO 4899 CONSTRzI,K
C FIND THE CDLUMI ASSOCIATED WTH THE CONSTRAINT

IF(INE2(CONSTR) .ED.0)THEW
COL:INDEXL + SLACK
SLACK z SLACK + 1
E
COLzINDEXE + ARTYAR
ARTVAR a ARTYAR 1

t ENDIF
C
C REARRANBE THE LAST K COLURNS TO PUT THEN IN THE I INVERSE ORDER
C TEXPORARILY HOLD THE VALUES OF CM) AND hil,J) IN TEMP UNTIL
C THEY ARE SORTED OUT
C

DO 4890 RON s I,K
TEKPAiRON,CONSTR)zAF (RON,C0L)
TEVIC (CONSTR) xCF (COL)
IF(CB(RON) .EgL1) HEN
TEMP (ROW)sCONSTR+INDEXL-1

ENDIF
4890 CONTINUIE
4899 CONTINUE
C

426

C PUT THE VALUES WHICH WERE HELD IN TEMP BACK INTO THE CORRECTED
C CJMAN A 11,J) COUMNS

C
DO 4899 CCLxI,K

CF(COL+iNDElL-1)uTEMPC(CGL)
DC 4897 CD$'STR=1,K

AF iCOhSTR.COL+IGDEXL-)=TENPA(CONSTR, COL)
IF(TENP(CONSTR) .ST.O) THEN
CB(CONSTR)sTEWP(CONSTR)

ENDIF
4097 CONTINUE
4898 CONTINUE

DO 4866 iJilv
IF4MDSCOMJ) GT. BN)THEN

bNvA9S 'CO (j)
ENDIAF

4866 CONTINUE
BN=ANIN7 ())110
IF(BM .LT. lOITHEN

NDIF
00 4877 CUNSTR1-,K
IF(INEe(CONSTR) .NE. OMTEN

CF(CONSTR+INDEXL-!)=CF (CONSTR+INDEXL-1) -BM
ENDIF

4877 CONT I NUE
RETURN
E NO

427

MMfNO/YAI /0 20,20), AF 2O,,1, 2),F 12),MUMe, CF160), Z
.qK,V,IFLAG(1O),INEQi29) ,CB(20)

428

VITA

Theodore R. E. Fraley was born in Greenville, Ohio on

13 April , 1943. After graduation from high school in

Atascadero, California, he atttended California State

Polytechnic College before joining the Air Force in 1964.

He received a degree in Aeronautical Engineering from

Oklahoma State University in 1968. Following pilot

training, he has been involved in tactical flight

operations. He entered the Air Force Institute of

Technology in June, 1981.

Permanent address: 6843 Santa Lucia
Atascadero, California
93422

Dale A. Kern was born in Huntington, Indiana on 25

February, 1953. He graduated from high school in

Huntington, Indiana in 1971 and attended Purdue University

from which he received a Bachelor of Chemical Engineering

degree in 1975. Following graduation, he received a

commission in the U.S. Army. He was assigned to Fort Sill,

Oklahoma until 1977. He attended the Defense Language

Institute of Monterey, California for one year of language

training and subsequently was assigned to TUSLOG, Group 67,

Turkey. Upon his return from overseas, he attended the

Ordnance Advance Course at Redstone Arsenal, Alabama and in

June, 1981 entered the Air Force Institute of Technology.

Permanent address: 9065 S. 900 W 35
Lafontaine, Indiana
46940

429

ITNfl ASSTFTR)
SECURITY CLASSIFICATION OF THIS PAGE (Wen Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

I. REPORT NUMBER J. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GOR/OS/82D-4 2___-,A/_ I)_ _ _

4. TITLE (and Subtitle) S. TYPE OF Kr."SORT & PERIOD COVERED

FORTRAN BASED LINEAR PROGRAKAIING FOR MS Thesis
IICROCMOMPUTERS

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) I. CONTRACT OR GRANT NUMBER(s)

Theodore R.E. Fraley Dale A. Kem
Major USAF Captain USA

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Air Force Institute of Technology(AFIT/EN AREA & WORK UNIT NUMBERS

Wright Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1982
13. NUMBER OF PAGES

429
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

Iea. DECLASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (o' this Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

I0. SUPPLEMENTARY NOTES

oved 1,,y releme AW AFR 190-17.

4 IrI1 :. 4''"

IS. KEY WORDS (Continue on reveres sid6 if necessary and identify by block number)

COMPUTER PROGRAM SENSITIVITY ANALYSIS UNBOUNDED
LINEAR PROGRAMMING INFEASIBLE OPTIMALITY
MULTIPLE OPTIMAL MICROCOMPUTER SIMPLEX
DEGENERATE EDUCATIONAL

20. AISTRACT (Continue on reverse aide if neceesery and Identify by block number)

Linear programming is an analytical technique used in
decision analysis. This paper describes the development and use
of a highly interactive, non-programmer oriented, linear
programming software package implemented on a microcomputer. This
software, written in FORTRAN and supported by the UCSD Pascal
Operating System, has allowed increased portability while providing
the capability of solving moderate-sized LP models. Also available
are extensive postoptimal sensitivity analysis capabilities,

DD , JN 1473 EDITION OF NOV 65 IS OBSOLETE
,IMAQ ANT FTFD

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered,

-v-e~ -

a .. '" .. .' , :" nn m ,L m * ,d

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20.
The modularly implemented package provides interactive,

instructional sessions with user input LP models. The user is
guided through tableau formulation and pivot element selection to
an optimal solution by a series of option displays and user
selections. This module also provides instructors the ability to
rapidly demonstrate the application of the simplex algorithm.

A separate module provides a more rapid problem solution with
minimal interaction. Options allow either primal or dual problem
solution with screen-oriented output to either a monitor or
printer. The sensitivity analysis capabilities include right-
hand-side, cost coefficient, and constraint ranging. Also
provided is the ability to add constraints and variables to the
original model.

S

"I

IlG~SEURIITY CLASSIPICATION OP THIS PAGE(IftIfl 0Date Elntered)
.. -+. .. . " + '

