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""/ Abstract

This report examines tuning a finite element model using vector

optimization techniques. Structural models using finite element theory

often need to be adjusted so they can accurately simulate the real

structure. The goal is to tune the model such that it will reproduce

data derived from the structure.

The tuning procedure is complicated by many factors. First of

all, the model nay be required to reproduce several sets of different

performance data which may have conflicting effects on the model. The

number and kinds of parameters to modify may be large or uncertain.

Also, there nay be many constraints on the model. With all these

considerations and several performance indices to extremize, there may

be many compromise solutions to examine in order to select the best

one.

Therefore, the problem has been broken into two parts. First, the

performance indices are extremized using multiple objective

optimization theory, producing a set of possible solutions. Next, the

solutions are rank ordered according to a decision maker's preferences.

The solution ranked number one is, then, the best answer.

The tuning process was applied to a T-38 horizontal stabilator.

Four static deformation and two natural frequency experimentally

determined data scts were used as the objective functions for the three

parameter model. '* This data was compared to the analytical data

computed by NASTRANI producing a set of over 200 models as the solution

for the constrained, non-linear problem. Numerous weighting

combinations indicated that only five of the solutions wre of

vi



interest. These five solutions contained a best static deformation

model, a best frequency model and three intermed iate comnbinat ions of

these two mdels.

The autcxuated procedure outlined in this report proved to be a

versatile method capable of solving many types of tuning problem5.

107i



. . .. - .°

STRUCIURAL MODEL IUNING

VIA VECTOR OPTIMIZATION

I Introduction

Structural models using finite element theory often need to be

tuned, or adjusted, before they can accurately simulate the real

structure. Tuning is necessary since the model nay not behave to

loading conditions in the same manner as the real structure. This

difference occurs because the structure's members are modeled by less

accurate finite elenents which can closely approximate, but not exactly

duplicate, all of the member's physical characteristics and boundary

conditions. The model can be improved by having its physical and

material properties adjusted until its performance duplicates the

multiple types of structural performance. Each of these performances

can be in any one of several different form such as displacements,

natural frequencies or mode shapes. Diverse performances such as these

may depend upon the model differently, possibly requiring the model to

have conflicting characteristics. Decreasing the difference between

the model's performance and the structure's actual performance is the

desired goal, or objective, of the tuning process. A procedure to

accomplish this tuning process for these multiple objectives will be

- presented in this report.

*e 1
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-Background

A finite element model is composed of a few simple types of

elements combined in a particular number and order in an attempt to

* represent the real structure as accurately as possible. The elements

are termed simple because they are simpler representations of their

- physical counterparts and cannot exactly duplicate the complex behavior

* of the actual structural members. Also, the model may be a less

complicated arrangement of pieces than the hardware in order to make

the analysis easier. Therefore, the model will probably not have

exactly the same physical capabilities as the structure.

The finite element model can be improved by either increasing the

number of nodes or adjusting the model's parameters. Increasing the

number of nodes will add more elements and joints, changing the model's

ability to deform. More importantly, though, more nodes increases the

number of equations to be solved in order to obtain the model's

* -displacements, leading to increased computer run time (i.e., cost). As

mentioned earlier, the elements used to represent the structural

components are simpler idealizations of those components which will not

exactly duplicate the component in bending and torsion if loaded

identically. Since the finite elements are not exact duplicates of the

real components, they need not necessarily have the same physical and

material properties. Increasing the number of nodes, then, may not

improve how an element duplicates a component, but altering the

element's properties ay. Therefore, the properties can be adjusted to

obtain the best simulation of the component. However, the total number

* of parameters to be adjusted for all the elements of a large model

could easily be prohibitive. The few parameters most effecting the

* 2



desired performances, then, must be determined to keep the variable set

small.

The selected parameters are adjusted to force the model to

duplicate a given set of characteristics which make up the objectives

of the tuning process. These characteristics may be experimentally

determined results from the actual structure, exact analytical

solutions or any other characteristic data the analyst has confidence

in. The characteristics for the finite element model will consist of

performance data such as the displacements of the model at various

nodes due to different loading conditions, the natural frequencies of

the model or the mode shapes for each natural frequency. The

performances may be in various forms. The displacements in units of

length and the frequencies in cycles per second are examples. Saxe of

these performances nay also be more reliable than others and should be

given greater emphasis in the tuning process.

Performances of different types such as these, which may also have

very different magnitudes, are difficult to capare. Same type of

normalizing procedure must be emplt-.d to non-dimensionalize them and

put them on a ccmparable scale. The performance data may be in the

form of continuous functions or tables of discrete data points with

respect to the independent property parameters. They may require

conflicting parameter values such as an abnormally large displacement

requiring more stiffness in the model to decrease the displacement and

at the same time a higher than desired natural frequency requiring less

stiffness to reduce it. The model tuning process must account for all

of these pcsibly conflicting concerns when it adjusts a parameter.

Each model is defined by a set of parameters (the decision

3
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variable vector) and has a set of per. rmances associated with it.

This vector lives in a multi-dkensional space with each point in the

space representing a different model. Likewise, the performance

indices could be said to represent a performance space. The

transformation of a point from the model space to the performance space

may be difficult. For simplicity, the transformation nay be thought of

as a "function" which transforms the decision variables into a

performance. Each performance requirement has a different "function."

For many tuning (cptimization) problens, the "function" is truly a

single mathematical statement. Even some complex performance

prediction processes can be modelled or curve fitted with a single

mathematical statement. The transformation for the finite element

model involves a finite element computer program with the relationship

we between the model and performances unclear. The program must be

envoked each time a new variable set is to be analyzed and will yield a

set of performances for the one decision variable vector. Further,

more than one model, or variable set, may produce the same performance

combination. The analyst or decision maker will then have to select

from among the many possible models the one which will best fit his

particular problem.

The desirability of a particular performance combination will

dictate which model is best for the decision maker's situation. The

finite element model will generally be able to imitate only a few of

the performances accurately. A model can usually be found easily which

duplicates one performance type very well, but multiple performance

* requirements ay lead to many models each of which will do a different

* combination of performances well. Altering the model nay tune it to

*t 4



one combination of performances while forcing it away from the original

set. The best model will be the one which duplicates that performance

set most pertinent to the problem at hand. The other performances

which were not considered may not be matched very well for that model.

The decision maker, then, has to determine which performance

characteristics he needs and then weight each performance to reflect

its importance. The best model will be a compromise which may not be

appropriate for a different situation.

Air Force analysts need to be able to tune finite element models

to accurately predict the behavior of real structures. The finite

element models for complex structures, such as aircraft wings, are

often in error enough to justify the time and cost of tuning the model.

The models are used to predict deformations due to loads such as stores

or naeuers and to predict aircraft flutter speeds. Flutter speeds

can be degraded by repaired battle damage, accidents or deterioration.

The changes to the flutter speeds must be known in order to set the

maximum safe flight speed. Since these predictions may help establish

aircraft performance or repair limitations or capabilities, they can

save or cost the Air Force valuable resources. It is important, then,

.to have accurate finite element models.

The Problem

This thesis will investigate the use of optimization theory to

tune a finite element model of a structure to accurately predict a

desired combination of performances. Since there may be many tuned

solutions for the multiple performances, the tuning process will be

defined as well as a method for selecting the best solution from among

all tuned candidates.

4 5



Approach to the Problem

A multiple objective optimization procedure and a performance

weighted model selection scheme will be used to solve this problem.

The goal of tuning a finite element model is to minimize the difference

betwen the predicted and the measured deformations and natural

frequencies. Various material and physical properties will make up the

decision variables. These variables will be adjusted to make the

desired deformation and frequency errors a minimum. Also, certain

physical and material constraints will be observed during the tuning in

order to maintain the credibility of the model. Multiple objective

cptimization theory (MOOT, Ref 1) has the capability to perform this

tuning process and will be the major tool of this study. The

performance errors for each model will be calculated by the MOOT

process based upon stored information. Then, the decision variable

vectot will be tuned to minimize the performance errors. A preference

for different combinatio. of performance errors will generate

different candidate solutions. A performance wighting method which

reflects the preference the analyst places on the set of errors will

then be employed to select the best solution (i.e., model) for his

4situation. The tuning process developed as outlined above will also be

demonstrated on a structure of current interest to the Air Force.

4
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II Tuning Procedure

Introduction

Multiple objective optimization theory can be used to locate the

problem solution (the finite element model) which minimizes the desired

combination of performance errors. As explained by DeWispelare in Ref

1, MDOT can be mechanized by implementing either the constraint or the

weighting technique. Using a scalar optimization routine, either

technique will generate the optimal solution for a discrete combination

of performance errors. The solution is then compared to other

solutions and is retained if it is not dominated by one of them. The

retained solutions make up the non-dcminated solution set. The

performance error combination is altered and the procedure repeated.

Whe the analyst is finished examining all possible combinations, the

decision maker can apply his own preference criteria to choose which

solution from the set is best for his situation.

The MDYT Process

The Problem. A multiple-criteria problem to be optimized by a

MDOT procedure consists of selecting a decision variable vector such

that a combination of objectives is extremized (either maximized or

minimized) while satisfying various constraints. The problem is stated

as follows:

0 extrenize z)

subject to gi(X) < 0 ; i=l,2,...,m

and hi(X) = 0 ; i=m+l,...,m+nm

- where Z is made up of all the performance indices for the problem which.i7



are each a different function of X. The m constraints gi(X) are the

inequality constraints and the mz constraints hi (X) are the equality

constraints. Constraints of xj 0, where j ranges from 1 to n, may be

added to ensure positive decision variable values. Here, n is the

total number of decision variables.

The optimization of a vector of performance indices (objective

functions) cannot be accomplished mathematically in a generic fashion.

A possible approach to extremizing a vector of performance indices is

to repose the problem as a pseudo-scalar formulation which can then be

solved iteratively (Ref 1). The weighting technique and the constraint

technique are two methods to put the multiple objective problem into a

scalar form for the optimization routine. The weighting technique

extremizes a single function which is formed from a weighted sum of all

the objectives. Investigation of the feasible space is accomplished by

varying the set of weights. The constraint technique optimizes one

performance index while maintaining the other objectives at prescribed

values as constraints. Each prescribed set of objectives produces a

new solution. The constraint technique was chosen for this problem

since it can identify the solution set more accurately.

PROCES. A very versatile vector optimization routine which

incorporates the constraint technique is a program called PROCES (see

Appendix C and Ref 2). PROCES has been modified at the Air Force

Institute of Technology to include various scalar optimization methods.

The version of PROCES used in this effort contains the Sequential

Unconstrained Minimization Technique (SUMr, Ref 3) as the scalar

-| optimization routine. SUMT will adjust a decision variable vector to

optimize a linear or non-linear objective function while attempting to

* 8



satisfy numerous constraints. SUMT contains options for the

Newton-Raphson, steepest descent and McCormick modified Fletcher-Powell

minimization techniques. These minimization techniques require

* particular conditions on the number of decision variables. In order to

ensure that a minimum exists for the problei, there must be fewer

decision variables than equality constraints. Also, the inequality

constraints must each have one and only one minimum value (see Ref 3).

The finite element problem has the sufficient conditions, then, since

there are no equality constraints and all of the inequality constraints

are convex. Any of the constraints which are not satisfied by the

model are appended to the objective function, Zi(X), as penalties.

SUMT then minimizes the objective function which has been augmented by

the penalty terms. Maximization is accomplished by minimizing the

negative of the objective function. The constrained problem is in the

form of:

extremize Zi(X)

subject to gj(X) < 0 ; j=l,2,...,m

Sj()= 0 ; jm+l,...,m1z

xk> 0 ; k=l,2,. ..,n

and L1 < Z1 < U1  ; for all 1 with i.i.

L1 and U1 are the lower and upper bounds of each performance index ZI,

where 1 and i vary from one up to the total number of objective

-. functions. The lower and upper bounds can be established by such means

as professional opinion or experimental or theoretical results. These

bounds, then, depend upon the problem. Again, m is the total number of

inequality constraints, mz is the number of equality constraints and n

is the number of decision variables.

0 9



The vector optimization problem is transformed into the

minimization of a single objective function for SUMT by treating all

but one of the performance indices as constraints. The new problem

formulation is as follows:

minimize Zi(X)

subject to gX) < 0 ; j=l,2,...,m

h ) = 0 ,jm+l,...,m+mz

xk> 0 ; k-1,2,. n

and Zr = Zl ; for all li and l--r

where Ll< Zr< U1.

Now, Z i(X) represents only the ith objective function while 1 and r

vary over all the other performance indices. The Zr are prescribed

values of the performance index which are iteratively changed between

Wthe bounds Ll and U1 such that all of the objective function space is

examined.

The Constraints. The constraints on the finite element model

problem are the structural constraints, such as pins and rollers, and

the performance constraints, which consist of the prescribed values for

the Zr performance errors. The structure will have feasibility

constraints which will limit the solution. For example, if a physical

dimension such as thickness is being tuned, it will have some small

positive value or zero as a lower limit and some larger value as an

upper limit. The model will not be feasible beyond these limits due to

construction, overall structural weight, aerodynamic or other

applicable reason. Likewise, material properties such as Young 's

a Modulus will have limits. Also, all the variables for a finite element

model are usually required to be positive since they are all physical

* 10



K or material variables which cannot realistically have negative values.

The analyst can select which objective function to optimize while all

the other indices are constrained within a judiciously chosen

performance space. The solution must satisfy all of these constraints

at least within some specified tolerance.

Local Minimums. The three scalar ainimization techniques

available in PROCES are like other schemes in that they find only local

minimums (Ref 4). These schemes all use local information about the

performance index being optimized to locate the minimum. The scheme

may not move the X far enough from some local minimum objective value

to locate another minimum which ray be a lower value. The technique

nay stop at the local minimum, then, instead of searching for a global

minimun. One method to combat this difficiency is to begin the

procedure at various starting points in order to locate the global

minimum.

The ability to predict the presence and location of local minimums

a priori diminishes as the number of objective functions increases.

This local minimum problem is not apparent for a finite element model

with only one performance index. But, as multiple performances are

examined, the surface of feasible performance error combinations in the

multi-dimensional performance space becomes very complex.

Objective Functions

* The Goal. The objective functions augmented with any constraint

violations provide the measure of "goodness" for the X which helps

guide the solution process to the de-sired result. As the optimization

_ procedure alters the X, the amount of improvement in the Zi (M) and

penalties indicate whether or not the optimization technique is

* il



proceding in the correct direction through the performance space to a

minimum. The minimum is assumed when no more improvement can be

obtained. The performance indices, then, strongly influence the

answer. Changing the magnitude or shape of an objective function may

lead the optimization procedure to a different solution. The goal for

the finite element model is to make the measure of "goodness," or the

difference between the predicted and actual structural performances, as

small as possible, preferably zero.

The Objective Function Form. The objective functions can be in

any of several different forms. The particular form is of no

consequence to the optimization routine as long as a value exists for

each X and it can be numerically differentiated. When the optimization

routine calls for an evaluation for the current X, the evaluation

method must produce the apropriate performance set. Every

optimization routine will require the X evaluation as it searches

through the decision variable space no matter how sophisticated or

simple the search method is. Each routine will expect the objective

function's and constraints' values in return. The manner in which the

values are produced is not specified by the search routine.

For instructional purposes in optimization courses, each

performance index is generally a single mathematical statement (see Ref

4). This statement depends upon the variables X i. Usually, perhaps

*through curve fitting to data, this form can also be used to represent

almost any performance function. For example, an equation fitted to a

finite number of experimental data points may be a good representation

* of the performance. In this case, the equation could be used as the

objective function in place of the undetermined complicated function.

12



- '- -,As the problem representation becomes more complex, the functional

form may be a long series of complicated calculations, perhaps even an

S- entire computer program. The performance of a finite element model is

evaluated using a finite element computer program. If the program is

small and fast enough, it could be implemented directly under the

optimization routine. When an X evaluation is necessary, the program

could be called as a subroutine, computing and returning the

performance and constraint values corresponding to the X. In some

cases, though, the program is too large or time consuming to be placed

directly in the flow of the optimization routine. In such a case, the

program could be exercised separately from the optimization routine to

* evaluate discrete combinations of the X.

Tabular data can be used to simulate the structural analysis

program. Prior to optimizing, the performance values could be obtained

for discrete X's covering the decision variable space. The values

could then be represented by a single statement curve fitted to the

data or by a table of values. Either the equation or the table could

be used in place of the program to evaluate the X quickly. If a table

of values is used, a table look-up procedure would be required to

* obtain the performance values for any X in the decision variable space.

The finite element computer program used in this thesis is quite

large and too time consuming to be used directly, so performance data

* will be incorporated in the form of tables. The appropriate

performance values will be found with a table look-up routine using

linear interpolation. Figures 4 and 5 in Appendix C show how the data

* is used in subroutine RESTNT within PROCES. The subroutine SPACINr

called by RESTNT is the interpolation routine. Both of these

* 13



subroutines are contained in the SUMT block of Appendix C's Figure 3.

Solution Space Gape where no feasible solutions exist in

the solution space may exist due to the diverse and possibly

conflicting nature of the various kinds of performances and can stop

the automated progression of the tuning process. An X must exist for a

particular combination of performances before that set can be feasible.

It is possible that some of the constrained performance sets prescribed

while methodically examining the performance space may not have a

feasible X. Void regions way exist for even a single objective

function. For example, an objective function which is always positive

will have no feasible solution with the performance index less than the

value of zero. Requiring an X to produce a negative performance would

then be futile. Holes in the objective function space can become more

troublesome and much more likely as the number of objective functions

increases. Gaps in the solution space of the finite element model are

.* possible where performances are atteapting to drive the solution in

conflicting directions. Of course, this is problem dependent and may

or may not be of concern. If gaps do exist, the optimization routine

* - will not be able to locate solutions in those regions. A different

routine or paramenter adjustments (i.e., tolerance value, iteration

limits, etc.) may be required. The tuning procedure will have to be

flexible enough to allow a solution along the edge of the void, where

all the performance constraints will not be net very well. Thus, if

voids do exist, bunching of the solutions along the edges of the

performance gaps will have to be tolerated.

The Non-Dcinated Solution Set and The Decision Maker

Each solution obtained through the vector optimization process is

* 14



a candidate for the non-dominated solution set. The best of all

possible situations would have one solution for the problem. This one

solution would extremize each performance index having each one greater

than or equal to the corresponding index of any other solution with at

least one performance index strictly greater than it counterpart. This

case, however, seldom occurs. Most constrained problems will have

.. particular performance indices which are extremized by one solution

while a different grouping of performance indices is extremized by

another solution. As some of the competing performance indices are

improved, others are made worse. No solution is obviously better than

another. Therefore, a large number of good solutions may exist, each

one having at least one of its performance indices better than the

corresponding one from another solution. The non-dominated solution

(NDS) can be mathematically defined as:

X' is a NDS iff %(X) C X

Such that Zr(X) > Zr(X') for some r=l,2,...,n

and Zs(X) > Zs(X') V sper

where X is the decision variable space. This states that a solution X'

is a NDS if and only if there does not exist a solution X which is

contained in the decision variable space such that a performance index

Zr(X) is greater than Zr (X') while all other performance indices Zs(X)

are greater than or equal to Zs (X'). Each of the solutions passing

this test is a member of the non-dcminated solution set (NDSS) for the

maximization case. For our finite element model minimization problem,

the same definition can be used with the signs of the performance

indices all changed.

* '



In practice, the NDSS is obtained by examining each candidate

solution for dominance. Each performance constraint combination in the

performance grid produces a candidate solution for Lhe NDSS. A

I. candidate has each of its performance indices compared to the

6performance indices of each member of the NDSS in turn. If a NDSS

member has each of its performance indices better than the candidate's,

the candidate solution is discarded since it is dominated. If a

candidate has even one of its performance indices better than the

member's, it is retained for comparison with the next member. If it is

retained through all NDSS member com:parisons, it becomes a new member

of the NDSS. The new member could also dominate some of the old

members, in which case the old member would be discarded. If, however,

the new and old members have the same performance indices, their X's

must be examined to determine if two different model produced the same

performances. If their X's are different, both are kept as NDS

members; if their X's are the same, either the old or the new member is

discarded. In this manner, only those solutions which are truly unique

are kept. Figure 4 outlines this entire procedure.

Each solution in the NDSS is not differentiable as better in its

vector form until some sort of preference scheme is applied to select

the best solution for the situation. The decision maker decides how

important each performance trait is for his situation and then we-ights

0each performance index according to its importance. In addition, the

weighting may be increased for those performance values in which there

is more confidence or which may be more pertinent to the given

0 situation. The performance values are then multiplied by their

S16
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corresponding weights and the results summed as the score. The score

obtained is a number indicating the amount of preference when compared

to other scores. The NDSS can be rank ordered by comparing the scores

for each NDSS mtember. Thus, the NDSS contains possible solutions of

the given problem. A modification to the problem would change the

NDSS; however, a modification of the weighting system may change the

rank ordering but not the members of the NDSS. If the importance of

any performance index is changed, the weighting system will change and,

therefore, the final solution may change. Non-technical issues, then,

as manifested in the analyst's performance weighting, will determine

which NDSS member is the most appropriate for the situation.

The performance indices are usually different in ranges and

.. magnitudes. Multiplying these values by the weights could apply a

higher than desired influence on the performance indices with the

larger values, biasing the scores in favor of these indices. This

biasing is compounded when a performance index changes more rapidly

than others as the X changes or has a wider range than other indices

since this index would be more sensitive to the weights than other

indices. These problems are eliminated by normalizing the performance

* Oindices with respect to their ranges and magnitudes and requiring the

weights to be a percentage with the total equalling 100. The

normalized performance is computed as follows:

SZ. - ZLB.
SNORM,'i = 1 1 - ; for all i.

NORM~i ZUB. - ZLB.

Here, ZLB and ZUB are the lower and upper bounds, respectively,

* for the performance index. The normalized performance indices are

always positive and less than one and the weights are percentages which
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will be between zero and plus one. Multiplying these tw, then, and

summing each value will produce a score which is always between zero

and plus one. The normalized performance indices allow truly unbiased

tradeoffs to be accomplished so the NDSS can be analyzed fairly.

This weighted selection procedure was used in this thesis in the

form of a stand-alone computer program. The interactive program was

derived from a version contained and demonstrated in the PROCES of Ref

2. The program was modified as necessary to contain the capabilities

explained above. The program was designed to be used to rank order the

NDGS in real time according to the analyst's (or decision maker's)

preferences. The analyst could then change his preferences as the

situation demanded or examine other possible preferences as he deemed

necessary.

Alications

The vector optimization process described above has been develop%

for the finite element model, but with only a few modifications it can

be adapted to other applications. As mentioned previously, the

objective functions can be in many forms. This opens the door to

almost any problem for which an optimum solution is desired. The

problem can have one or more objective functions and few or many

decision variables. The following paragraphs outline a few example

problems indicating the wide range of applicability of the tuning

process. The tuning process was not applied to these problems in this

thesis but they are examples in the literature of uses of parts or all

of the process. A detailed example of the tuning process for a finite

"O element model will be given in the next chapter.

A basic exarple showing the use of the optimization technique
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(SUM) used in this thesis is found in Ref 5. The example has one

objective function, two inequality constraints and three variables.

With only one objective function, only one pass through SUMr is

required to determine the optimum values of all three variables within

the constraints. In PROCES, this would not require the multiple

objective software but would give a NDSS with one member, assuming the

global optimum was found.

A simple example of the use of PROCES on a vector problem is seen

in Ref 2. The interactive version of PROCES used contained an

optimization technique for linear problems only with the objective

functions in the form of single mathematical statements. The vextor

optimization problem used three objective functions and five decision

variables. The two objective functions used as constraints were varied

between their lower and upper bounds such that 121 combinations of the

two were possible. After the 121 passes through the optimization

routine to form the 121 candidate solutions, a NESS with 81 members was

found. The 81 member NDSS was then rank ordered by two different

weighting combinations but without the normalization implemented for

this thesis. Each weighting combination produced a most preferred

solution.

Students in the Graduate Systems Engineering program at the Air

Force Institute of Technology have been using PROCES to optimize

missile and spacecraft designs. Ref 6 examines the case of a missile

design using a PROCES derivative called Advanced Effectiveness System

Optimization Program. Ref 7 is the use of PROCES to design a

* spacecraft. For these two problems, diverse performances such as cost,

survivability and capability have been u r-d as objective functions with

19



74

some performances being maximized and some minimized. Data for these

problems were simulated by single statement objective functions.

An example finite element model problem is outlined below in which

six objective functions and three decision variables were used. The

objective functions were in the form of tabulated data. The resulting

NDSS contained over 200 members which could be lumped into five unique

solutions depending on the relative importance of each objective

function.

I
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III Finite Element Model Exaiple

Introduction

This example of the tuning process will show how a finite element

model can be adjusted to reproduce experimental results. This problem

is one of current interest to the Air Force and represents how a real

problem can be analyzed with the procedure outlined in this thesis.

The presentation includes the nxodel tuning results and the analysis of

-* the NDSS.

History

The Purpose. The United States Air Force needs an inproved

flutter prediction capability for horizontal stabilators. The T-38

Talon jet trainer stabilator is such a structure. San Antonio Air

Logistics Center (SAALC) carries the responsibility for the engineering

and maintenance of these aircraft, repairing any structural damage on

the stabilators. The stabilators experience damage such as

delamination of the skin, holes, cracks and corrosion. Mass is added

to the stabilator during the repair since the repair material used in

place of the removed portions of core is more dense. This additional

* mass, as well as the damage itself, will typically decrease the flutter

speed. Because of flutter degradation limits, SAAW has had to replace

many stabilators rather than reuse them, running the spare stabilator

inventory quite low and costing the USAF thousands of dollars. SAAIW's

current analysis method is somewhat conservative, resulting in only

small repairs being allowed. Possibly, by using a rore accurate

degradation prediction technique, more stabilators can be repaired and

21
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reused.

SAALC began looking for a more accurate flutter speed prediction

capability in 1975. AFIT became involved in this project in 1979.

Several AFIT Aeronautical Engineering Master of Science degree students

have been examining various aspects of the project. This example will

further extend the effort by showing how the model can be tuned to

better simulate the stabilator. The tuned model will be a key piece in

the overall effort to assemble a more accurate flutter analysis

capability for the T-38 stabilator.

SAALC started their effort to improve their flutter speed

degradation prediction capability over their current method. The

method in use now calculates the unsteady aerodynamic forces on the

stabilator using Strip Theory (Ref 8). The wing is divided into

numerous chordwise sections, or strips, across the span. The

aerodynamic loads are determined based on the two-dimensional

aerodynamic coefficients down the middle of the strip. The strips do

not interact but can rotate (pitch) and move laterally (plunge). Thus

the motion of the wing is determined using bending and torsional modes.

Chordwise deformation of a section is not considered. Newr analysis

methods, such as the Doublet-Lattice Method, incorporate chordwise

deformation also. Results of flutter analysis using Strip Theory

generally yield conservative flutter speed decrements, leading to much

lower absolute flutter speeds than actually exist. Utilizing the newer

technology flutter speed analysis techniques incorporating the

Doublet-Lattice Method in a finite element computer program may improve

the flutter speed predictions.

AFIT thesis students have completed four investigations into an
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improved flutter speed prediction technique for SAALC. The two

versions of the T-38 stabilator were the subjects of these

investigations. The emphasis was placed on the Series 3 stabilator

since this version is currently in use (see Appendix A). John o.

Lassiter (Ref 9) began the projects by setting up the analysis

procedure using a finite element program and beginning work on

verifying the model. Roger K. Thomson (Ref 10) then compared the

model's static deflections to the Series 2 stabilator documented

deflections. He also measured the Series 3 stabilator's natural

frequencies and then predicted the frequencies using the finite elennt

model. These investigations led to the conclusions that the model

needed some adjustments to properly simulate the stabilator. Lex C.

Dodge (Ref 11) and Jack 0. Sawriv (Ref 12) continued the investigations.

Dodge manually tuned the model to match the Series 3 stabilator's mode

shapes and frequencies while Sawdy measured the Series 3 stabilator's

static displacenents and tuned the model to these. No one, though,

tuned the models for both the static and dynamic data at the same

tine.

Lassiter used the finite element technique embodied in NASTRAN

4 (NASA Structural Analysis computer program) as his basic analysis tool

(Ref 13). NASTRAN was used to analyze the static deformations of the

stabilators under load conditions and determine the structures' natural

* frequencies and mode shapes. Lass iter first developed a

two-dimensional finite element miodel of the stabilator, as described in

Appendix A, to represent the mass and stiffness distributions. He

found the torque tube to be a particularly difficult iten to model due

to its varied characteristics. Using NASTRAN, he determined the
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model's static displacements for given load conditions and found that

these ware close, but did not match those of the Series 2 stabilator.

Lassiter then obtained the natural frequencies and mode shapes of the

imodel with NASTRAN. These, also, ware close to the desired values.

The flutter analysis procedure requires an aerodynamic model and an

unsteady aerodynamic analysis method, such as Strip Theory,

Doublet.-Lattice Method, Mach Box Method, or Piston Theory, to be

chosen. For these efforts, the Doublet-Lattice Method was used to

produce the aerodynamic coefficients for the unsteady flow. The

flutter speed predictions, however, did not agree with other sources.

It was believed that the model needed to be adjusted to reproduce the

measured data. However, no static displacement data existed for the

Series 3 stabilator for comparisons with the model's data. Also, the

aerodynamic model had not been verified.

Roger K. Thomson examined both the finite element model and the

aerodynamic model. By increasing the elastic and shear moduli of the

model's elements, he was able to improve the model's reproduction of

the static displacements for the Series 2 stabilator. This analysis

could not be performed for the Series 3 stabilator because no static

'6 deflection data existed for that stabilator. Thomson analyzed the

aerodynamic model by comparing it to steady windtunnel data. He found

the model agreed very well with the limited experimental data.

4Finally, he performed a modal analysis on the Series 3 stabilator both

experimentally mid analytically. He measured the free-free modes and

natural frequencies of the stabilator and compared them with NASTRAN

* generated data. The NASrRAN frequencies ware lower than the

experimentally determined frequencies. However, the mode shapes agreed
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well. It was believed that an improved model could possibly remove the

discrepancies in the frequencies and static displacements.

Dodge's goal was to tune the finite element model so that it would

reproduce the experimental frequencies and mode shapes. Since the

model's frequencies are used in the flutter analysis, a more accurate

frequency model would hopefully lead to a better flutter speed

prediction. Thomson's experimental frequency values and mode shapes

were the reference values for Dodge's effort. Dodge manually varied

element parameters to force the model to reproduce the experimental

frequencies and mode shapes. The parameters varied included the

material properties of modulus of elasticity and shear modulus for the

plate and bar elements; the cross-sectional properties of bending and

polar moments of inertia for the spar, leading and trailing edge

* elements; the mass density of all the elements; and the plate

thickness. The parameters were varied based upon engineering

judgement, which improved as more insight was gained in how the

parameters effected the imel's frequencies and mode shapes. Dodge

discovered that increasing the plate thickness by 37% while holding all

the other parameters at their original values produced the model which

*i best simulated the stabilator in the free-free vibration condition.

This model also did very well with the aircraft installed boundary

conditions when compared to the measured frequencies.

* Dodge also varied the stabilator pitch spring value for the two

different boundary conditions. Two sets of boundary conditions were

created by the different installation attachments between the aircraft

* installed condition and the test configuration. When the stabilator is

installed in the aircraft, the pitch spring stiffness is a combination
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of the aircraft's hydraulic control system, actuator arm and torque

tube stiffnesses. This control stiffness varies depending on whether

one or two aircraft hydraulic systens is in operation. For the test

conditions, the pitch spring stiffness had contributions from the

actuator arm attachment (a reaction load measuring device), the

actuator arm and the torque tube. The best control stiffness for the

aircraft conditions was 4.4 X 106 in-lbs/rad (see Appendices B and C),

which was chosen to correct the first torsional frequency. See Table I

below for a summary of the results. The first tour natural frequencies

are listed as the first bending mode (lowest natural frequency mode),

first torsional mode, second bending mode and second torsional mode.

- The free-free boundary condition was measured by Thomson (Ref 10). The

aircraft installed condition frequencies were measured and calculated

* - by NAI (Ref 14) and are also in Table I. The Dodge model data refers

to Dodge's finite element model as hand tuned to the free-free

condition's first torsional frequency. The model tuning accomplished

by Dodge, though, did not consider the static displacements and did not

allow for the model tuning to be done in a mechanized procedure.

TABLE I

Measured and Calculated Frequencies

Mode Free-Free Condition Aircraft Conditions

Thomson Dodj_ NAI NAI Dodge
Measured Model Measured Calculated Model

Hz Hz Hz Hz Hz

ist Bending .. .. 17.3 17.61 17.45
Ist Torsion 100 105.5 44.9 44.89 44.41

" 2nd Bending 124 121.0 71.7 78.76 75.11
* i- -- 2nd Torsion 160 149.8 .... ..
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Sawdy investigated the model's static performance. He

experimentally determined the static displacements of the Series 3

stabilator under 10 different load conditions. He measured the

stabilator displacement at 25 surface positions for each of the 10 load

conditions and then tuned the model to these displacements. Sawdy,

like Dodge, used engineering judgement to determine how to change the

parameters. He introduced orthotropic plates to better model the

differences between chordwise and spanwise deflections. Sawdy then

varied the skin's chordwise and spanwise Young's Moduli, the torque

tube area moment of inertia and the plate thickness. He found good

results by increasing the chordwise modulus by 200% and decreasing the

inertia of the outboard section of the torque tube by 25%. He

formulated a mechanized method to perform this tuning process using the

remultiple objective optimization technique (MOGr) to allow choice of the

best model in the presence of conflicting goals. This formed the basis

for the present work.

Objective Functions

°* The Performance Errors. The performance indices for this effort

" consist of the displacement and natural frequency errors between the

predicted and actual values. Displacement errors between the model and

real stabilator for identical boundary and loading conditions and at

the same measurement locations tell how well the model simulates the

* structure's static load performance. Likewise, the differences between

the natural frequencies calculated and measured are figures of merit

for a dynamic model. Sawdy and Dodge developed good static and dynamic

*models, respectively, and these will be the starting points for the

tuning in this examnple.
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Displacement errors for four different conditions were derived

from available data. Sawdy measured the displacements of the

* stabilator at 25 different locations for each of 10 different load

conditions. Adding the error from all 10 loading conditions together

gives another set for a total of 11 sets of measured displacement data.

N1STRAN can predict corresponding displacement values for any

particular model, then compute the difference between the two sources

of data. Four of the 11 were selected for use in this thesis in order

to keep the problem small for ease of data handling and comprehension.

Also, since seven of the 11 loading conditions were combinations of the

other four, only four were necessary to represent the entire set.

Sawdy's cases 2, 4 and 10 and the combination of all 10 cases were the

four cases selected. Case 2 was an example of spanwise bending, case

10 was chordwise bending with torsion and case 4 a mixture of the two.

The displacement performance functions were formed from the square root

of the sum of squares of the 25 displacement errors for each case.

Mathematically, that is:

Zj(X) = (X)ij,NASTRAN - X)ij; j,2,...,0

where w(X)ij,NASTRAN is the displacement for the jth loading condition

as predicted by NASTRAN and w(X)ij,EXp is the corresponding

4i experimentally determined displacement. Also, the addition of all 10

displacement errors gives:

I0Z11(X M zj (x).
Sj=1
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These performance indices indicate how accurately a model predicts the

static displacements of the structure. An error of zero would be

obtained for the perfect model.

Two frequency indices were similarly obtained for use in the

tuning procedure. The first three natural frequencies for the

stabilator were measured and published by the aircraft manufacturer

(Ref 14). The differences between these three values and the predicted

values form three more candidate performance indices. Summing all

three gives a fourth. We have:

,(_A) = (2p, - .)(X) ; j-1,2 or 3
jINASTRAN - j,EXP

and (A.) q(3 () (1 C4(X) ])~2 5

The first three natural frequencies are the first bending, first

torsion and second bending modes. The first torsional mode was thought

to be a better indicator of model performance since this mode most

influences flutter. Therefore, the first torsion and the total

frequency error were the two freqIuency indices chosen for this problem.

4Again, the better the model, the lower the performance error. Due to

the complexity of the finite element model, though, the best frequency

model may not also be the best static model. In fact, as will be seen

d later, these two models are at opposite corners of the decision

iariable space.

Mechanization via PROCES. The performance indices were put into

4 PROCES in the form of data tables. Appendix C illustrates how this was

acccmplished. The limits of the tables represent the boundaries of the
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decision variable space. The decision variable space was established

.3uch that it contained the original values of the variables and Sawdy's

static model. Dodge's frequency model could not be entirely contained

because of its increased thickness ratio. The decision variable space

was represented by a grid netwrk with each grid point corresponding to

a different model. This grid network filled with models is illustrated

below for two decision variables. The decision variables XA and XB

each range from a minimum value to a maximum value. Within those

ranges, two values were chosen for XA and three for XB. The variable

space is represented by the six intersection points of the two

variables. The coordinates of each point are a specific combination of

decison variables representing a particular model. Using NASTRAN and

the measured data with the variable space for the finite element model,

the performance errors for each intersection point were found and

placed in the tables. Each performance index had its own table with

* the dimensions equalling the dimensions of the corresponding variable

space.

4 eXB

;'I

"0 KA

A table look-up routine was employed to determine the performance

* errors corresponding to a particular set of decision variables. The

table look-up routine could determine the performance errors for any
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model within that space, not just the grid points, so that the

performance errors would be continuous. A linearly interpolating table

look-up routine was used with a small table. A higher order routine

or a more dense table would have improved the accuracy of the

interpolated performance errors as obtained from the precalculated

values. Sparse tables were chosen to reduce the time required to

prepare the data for them. Examining the members of the NDSS with the

weighted performance index niythod or with decision variable graphs will

indicate the regions which contain the appropriate solution. These

regions can then be expanded in the tables or individual models can be

rerun with NASTRAN to get more accurate performance errors, if needed.

Although the decision variable space is continuous, the solution

space may not be. The decision variable space is complete with no

holes or gaps and will produce a performance set for any point within

the decision variable space. However, this does not guarantee the

continuity of the entire performance space. The performance space

could have voids or holes in it because of the nonlinear dependence of

the errors upon the parameters. In other words, there could be

performance error combinations which are infeasible and have no

.4 corresponding X.

Decision Variables

Three material and physical properties were chosen as the decision

variables. The variables chosen were the area moment of inertia for

the torque tube and the spanwise and chordwise Young's Moduli for the

orthotropic plate elements. These were global variables with the sane

percentage change in moment of inertia applied to all three portions of

the torque tube and the Young's Moduli changes applied equally to all
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plate elements. The small number of decision variables was chosen to

keep the problem manageable. These particular variables were selected

since they were the most influential variables examined in the other

four investigations for fine tuning the model. The spring constant and

the thickness to chord ratio were manually tuned by other students to

produce good results. The variables were given the freedom to change

above and below a reference value. The reference value was established

by the physical dimensions or the actual material properties of the

structure. Although all of these decision variables will have some

effect on both the static displacement errors and the frequency errors,

it should be expected that the effects will be conflicting. This is

evidenced by the two different models already developed. Any solution

to the problem, then, should be a compromise solution somewhere in

between the best static and best frequency models in the

three-dimensional decision variable space.

Constraints

The inequality constraints of the problem are the limits of the

decision variables. The three decision variables chosen are all

required to be positive for the model to be realistic. Although this

sets a lower limit for each variable, it will be trivially satisfied

due to the next, more stringent set of limits. This problem has the

practical limits of the performance error table boundaries. The large

number of manhours required to submit numerous runs to prepare the

performance error tables and then to analyze and make use of all thi-3

data sets practical limits on the table sizes. Extrapolation outside

the tables is possible but is subject to much uncertainty. Therefore,

the objective functions were required to remain on the table interiors,
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making the table boundaries the decision variable limits.

- - The constrained objective functions produce equality constraints.

These objective functions are constrained to different prescribed

values each pass through the optimization procedure. The lower and

upper bounds specified by the analyst should be the true problem

performance error limits as evidenced in the performance error tables.

These two types of constraints, then, limit the vector space which can

-. solve the problem and the performance space which indicates where the

solution lies.

Finite Element Model Results

Tuning the three decision variables to minimize the six static and

frequency errors produced five unique models. The five models were

determined from the NDSS by systematically cycling through many

combinations of the relative weightings between the static and

frequency errors. One model was predominantly a static model, one a

frequency model and the other three were compromises of the two.

The performance values were obtained by exercising NASTRAN on each

model (or grid point) in the decision variable space. This

three-dimensional space for the static cases was described by four

values of the torque tube area moment of inertia, three values of the

plate chordwise Young's Modulus and four values of the plate spanwise

Young's Modulus. The 4 by 3 by 4 tables, then, contained 48 models to

be examined by NASTRAN. The frequency data was handled using three6
values of the torque tube inertia, three values of the chordwise

Modulus and five values of the spanwise Modultu. These 3 by 3 by 5

tables created 45 NASTRAN runs. Therefore, the four static deflection

* error tables and the two frequency error tables were obtained from 93

6 33



NSTRAN runs. The performance tables are shown in Appendix B.

Starting points frn cpposite ends of the decision variable space

were used with the first developing 202 members in the NDSS and the

second 255 members. All the members of these two large sets were

variations of a few unique models as the performance values were

stepped methodically between their upper and lower bounds. Figures 6

and 8 in Appendix D show where the NDSS members are located within the

decision variable space. Figure 7 is a two-dimensional view of Figure

6. The coordinates of each X represent the values of the decision

variables (defining a model) of a non-dominated solution. These three

figures show graphically how the ptimal solutions reflect in the

variable space. One can see the gaps in the space in which solutions

do not exist and how the solutions bunch into certain feasible regions

and track along the edge of a hole. Various combinations of weights

were then applied to these NDSS's and five unique models were found.

As the weights were varied within a certain range, the two highest

ranked models were always in a particular group of solutions. The

approximate midpoint of that group was then used as the answer for that

weighting range. Five ranges and solutions were determined in this

manner. These five groups of models are circled in the figures.

Appendix D's Table IX lists the five final models with their

corresponding weighting ranges.

Each of the five final models is associated with a different

relative weighting between the static and the frequency cases. To form

a ccmparison with the combined problem's best static and best frequency

nmdels, the static cases were tuned without the frequency cases and the

frequency cases without the static cases. The tuned static case only
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model was almost the same as the combined problem's best static model

which had 85 to 100% of the weight applied to the four static cases.

* -" Without any influence from the frequency considerations, the static

model had a chordwise Modulus of 25% over the reference value compared

to 10% for the combined problem's static model. The frequency only

ndels were identical. The other three models were achieved by

observing the best solutions for many different combinations of

weightings in between the best static and best frequency models. As

seen in Table IX, 60 to 80% of the weight on the static cases produces

a unique solution, 25 to 55t another solution and 20% the third. The

NDSS contained all of the possible answers, although not all members of

the NDSS fell into one of the five best answers for this weighting

system. Now the decision maker could select which of the models is

best for his situation by applying his own preferred weighting criteria

and obtaining one of the five models as his solution.

Several conclusions can be deduced from the five models. First,

the five models are dependent only on the difference in ranking between

the static and frequency cases. The rankings between the four static

cases or the two frequency cases were insignificant. The model could

have been tuned using only two objective functions instead of six, one

static load deflection condition and one natural frequency condition.

Either an individual load or frequency case etror could have been used

or a total load or frequency error. In addition, the spanwise modulus

was higher as more weight was applied to the frequency performance.

However, the chordwise modulus was uneffected by the weights except for

a 65% change for the pure static model. Also, the decision variable

limits used were too restrictive. Four of the five models had one or
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more decision variables on or very near a limit. It is desirable to

have all models within the feasible region in order to be absolutely

sure the global minimum is chosen. The table limits should have been

wider. Finally, although two very different starting points were used

in the optimization process, the same models were obtained. For this

problem, it appears that the global minimum within the table boundaries

was found.

The five unique models obtained as the stabilator solution can

also be compared to the models hand tuned by Dodge and Sawdy. Table IX

also lists the pertinent data for each model. The PIECES tuned static

model is very similar to Sawdy's model in total deflection error. The

two models, however are not very similar in physical properties, as can

be seen by comparing the decision variables. This substantiates the

statement made earlier that more than one X could produce the same set

of performance indices. Although these two models seem to be equally

good, the PR0CES tuned modE 1 had the added influence of the frequency

constraints during the tuning procedure whereas the Sawdy hand tuned

model did not. Thus, the PROCES tuned static model may be a better

model for predicting static and frequency data than the hand tuned

*e Sawdy model.

The PROL S frequency model and the Dodge model are very different.

Dodge varied the thickness to chord ratio instead of the three decision

*variables used in the PROCES tuning procedure. The resultant physical

properties are much different than PROCES's. The PROCES tuned model

had the better total frequency error by 66% but a larger first

torsional mode error by 97%. Here, as in the static case, the hand

tuned model did n0L consider the static deflections during the tuning
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procedure whereas the PROCES tuned model did. If minimizing the first

torsional mode error is more indicative of the correct flutter speed,

then the Dodge model should be selected as the solution. Otherwise the

PROCES tuned model would be the better choice. Same other criteria

such as a flutter analysis may also be required to determine which of

the two models is preferred.

A flutter analysis was performed on three of the PROCES tuned

models. London (Ref 15) is improving the NASTRAN flutter analysis

procedure for repaired T-38 stabilators in a concurrent effort. He has

compiled a list of target flutt data for the stabilator from

available sources as shown in Appendix D in Table X. His analysis of

Dodge's model shows that the model matches the target data very well.

London also examined the PROCES tuned best static model, best frequency

model and best first torsional mode model. The best first torsional

mode model was that model which had the lowest first torsional mode

error without any influence from the other frequency errors or the

static deflection errors. This model was not tuned by the MOOT

procedure. The flutter analysis results of these models are shown in

Table X.

The PROCES tuned models did not match the estimated flutter data

very well. The two best frequency models produced the correct flutter

frequencies but not the proper flutter speeds. Conversely, the best

static mode] had a more accurate flutter speed but worse flutter

frequency. The untuned first torsional mode model matched the target

data just as well as the tuned frequency model. Perhaps a moxel tuned

4 to a static error case and the first torsional mode would produce a

better solution. Also, other decision variables such as the thickness
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to chord ratio used in Dodge's model nay be necesbary in the PROC.E5

tuned model to reduce the errors.

The automated tuning process carried out above allowed a much more

thorough analysis to be completed than could have been accomplished

manually. The optimization routine examined hundreds of models in

building the NDSS which contained over 200 members and completed the

entire task very quickly. Manual optimization requires the analyst to

nave keen insight into the problem which he may not have or have time

to acquire. The automated process does not require as mch knowledge

of the problem.

The analyst assisted weighting scheme provided a good model

selection method allowing for the possibility of diverse decision maker

opinions and rapidly changing situations. This adds the flexibility of

quickly selecting the best answer without having to reacccwplish the

entire tuning procedure.

The sparse performance error tables were appropriate for this

tuning procedure. As can be seen in Appendix D in Table IX and Figures

6, 7 and 8, the weighting system located only a few (five in this

example) models within the decision variable space which were desirable

solutions to the problem. Since many models exist in the same region

but are represented as one desirable solution, the individual model

accuracies are lost in the averaging procedure. Therefore,

interpolating within a denser (more accurate) table and using a higher

order interpolation scheme to give nore accurate models, are not

warranted.

Extensions of Examle

Modal Tuning. Mode shape errors may be a better performance index
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than the natural frequencies for tuning the iodel for flutter speed

prediction. The natural frequency was chosen for this thesis to

simplify the tuning process. The mode shapes were never examined.

Dodge (Ref 11) manually tuned the frequency model to the natural

frequencies and corresponding mode shapes. He used visual inspection

to determine the mode shape accuracy. Since the mode shape is based on

a physical deflection envelope, these deflection errors could become

the objective function or additional objective functions. These

*i objective functions could be implemented like the static deflection

errors were.

An alternate method of making use of the mode shapes would be to

incorporate the mode shape as a constraint and maintain the natural

frequency as a performance index, or vice versa. This type of

constraint would require another table look-up but could be

accomplished just like the objective functions were for the example

problem. Now the mode shape error (or natural frequency error) would

be kept small while the natural frequency error (or mode shape error)

became one of the performance indices to be minimized.

*• Repair Tuning. The repair could be tuned to possibly reduce the

flutter speed decrement once the stabilator model is chosen. In this

case, the finite element model problem decision variables wuld be

replaced with the repair material properties and physical dimensions.

"* The performance table would be flutter speed degradations for various

combinations of the decision variables. Again, NASTRAN could be used

with the appropriate model properties to capute the flutter speeds to
*U fill in the table. Rather than using the smallest repair possible,

perhaps changing the repair's shape or material properties or
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additionally changing the stabilator's properties at some other

location would reduce the flutter speed degradation. Here, though,

limitations may have to be inposed due to repair costs, machinability

or stabilator static strength which will constrain the size or shape of

the repair that is possible. The optimization process could be carried

out just like the tuning of the finite element odel except now there

would be only one objective function, the flutter speed degradations.

In this manner, the repair which will give the minimum flutter speed

decrenent can be found.
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IV Conclusions and Reconmmndations

Conclusions

A method to tune finite element models to reproduce selected

experimental data was assembled. The method is automated, not

requiring the user to guess at how to improve the model. The process

incorporates multiple objective optimization theory and a weighted

performance ranking system. The process performs smoothly, although

much time and effort has to be expended to construct the data tables.

The method is versatile and can be easily adapted to various types of

model tuning or optimization problems.

A T-38 stabilator was tuned as an exanple. Of the over 200

members of the two non-dominated solution sets, only five models ware

unique solutions to weighted combinations of static and frequency

performances. In this example, there was no single solution which

simultaneously performed the static load conditions and the frequency

conditions best. The best static model, best frequency model and the

three intermediate combinations of these two are listed in Appendix D

in Table IX.

Recommendations

All the recommendations involve or are derived from the T-38

stabilator example. In this example, only the static deformation load

case errors and the first three natural frequency errors were used as

figures of merit. The mode shape may tune the model for flutter

predictions better than the static deformations or frequencies did.

The mode shape, then, should be investigated as the performance index.
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Also, the table limits should be extended to keep all the solutions on

the inside of the decision variale space. This insures that the

solution doesn't lie outside the space whenever an answer is found near

or on a boundary. This recommendation should be followed for all

problems. Finally, for this particular stabilator example, other

variables should be used which would reduce the performance errors to

zero. None of the decision variable combinations used in this example

appreciably zeroed any of the static errors. Perhaps the thickness to

chord ratio should be added as a decision variable.
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Appendix A

The T-38 Stabilator

The T-38 Series 3 stabilator built by Northrop Aircraft, Inc. is

the subject of the example presented in Section III. Figure 1 is a

picture of the stabilator. The stabilator has a circular cross-section

torque-tube with one main spar, a root rib, a tip rib and a leading

edge plate. The honeycomb core is sandwiched by aluminum skin. The

Series 2 stabilator was an earlier version with three additional ribs

aand another spar.

The Series 3 stabilator vas modelled by a two-dimensional finite

element model. The spar, ribs, and torque-tube were represented in

NASTRAN by bar elements and the skin/honeycomb core combination by

either quadrilateral or triangular plate elements. See Figure 2 for an

exploded view of the model. The model's elements were adjusted with

triangular sections and nodes out of uniform position to locate nodes

where loads were measured during :ie experimental tests. A caputer

program generated most of the data describing the model for input to

NASTRAN. References 9, 10, 11 and 12 describe the model more fully.

The same model was used for both the static and the natural frequency

cases. The model contained 166 grid points, 95 quadrilateral membrane

0 and bending elements, 80 triangular membrane and bending elements and

74 simple beam (bar) elements. Of the 898 possible degrees of freedom,

five were restricted to match the boundary conditions.

The static and frequency cases required different boundary

* 45



conditions. The different conditions are caused by the different

methods in which the structure was attached to the test apparatus for

the static deformation measurements and the aircraft installed

conditions for the frequency measurements. The test conditons for the

static case create an asymmetric loading condition with the boundary

conditions specified at the actuator arm and bearings. The spring

constant for the load cell at the actuator arm was held constant at the

6
best value of 1.18 X 10 in-lb/rad as determined by Sawdy. Rotations

in all directions at both bearing nodes were allowed but only movement

in the torque-tube axis direction at the outboard bearing was

permitted. For the frequency case, the spring constant for the
6

hydraulic actuation system was fixed at 4.40 X 10 in-lb/rad as found

by Dodge. Rotations and torque-tube axis movements were allowed at the

outer bearing. The torque-tube was permitted free movement on the

vehicle plane of symmietry. The torque-tube was also allowed to twist

about its own axis at the centerline since the pitching moment was

taken out through the pitch spring and actuator arm.
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Displacement and Frequency Data for the T-38 Stabilator

The performance errors for each grid node in the decision variable

space were calculated with NASTRAN. The decision variables were

systematically varied over the space with each set being the input

parameters for the data generation program which produced the NASTRAN

input data file. Table II lists the decision variable values used for

both the static load cases and the natural frequency cases.

Forty-eight possible combinations were used for the static analysis and

45 for the frequency cases. NASIRAN computed the load case errors and

• . total load case error for each combination of variables for the static

analysis and the first three natural frequencies for each combination

of variables for the dynamic analysis. The static load case

deflections found by NSTRAN were compared to those measured by Sawdy

using a DM@P ALTER routine in NASTRAN as discussed in Ref 12. The

natural frequencies estimated by NASTRAN were compared to the NAI

measured frequencies to determine the errors. The performance errors

for the four static cases and two frequency cases are shown in Tables

III through VIII. The unit of the static errors is inches of

displacement and cycles per second for the frequency errors.

6m 49



TABLE II

Static and Frequency Decision Variable Values*

Torque Chordwise Spanwise
Tube Modulus Modulus
ly

.75 .75 .75
Static .80 1.25 1.25
Cases .875 1.75 1.75

1.0 2.75

.75
Natural .75 .75 1.25
Frequency .875 1.25 1.75
Cases 1.0 1.75 2.25

2.75

1 *The factors listed are multiplicative factors of the
reference values of 3.04345, 1.8797 and 3.72 in 4 for the
area moments of inertia terms for the three torque-tube

- sections and 11.56 X 106 psi for the chord-ise and
spanwise Young's Moduli.
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TABLE III

Total Static Load Case Errors (In.)

Torque Chordwise Spanwise Modulus
Tube Modulus
Iy 0.75 1.25 1.75 2.75

.75 .75 4.2171 1.9802 2.3890 3.6716

.75 1.25 3.6294 1.7836 2.4857 3.9020

.75 1.75 3.3011 1.8317 2.6850 4.1328

.80 .75 3.6652 1.8330 2.6214 4.0701

.80 1.25 3.0947 1.7813 2.8093 4.3533

.80 1.75 2.7994 1.9356 3.0514 4.6001

.875 .75 3.0190 1.9429 3.0832 4.6829

.875 1.25 2.5049 2.0793 3.3656 5.0132

.875 1.75 2.2746 2.3211 3.6333 5.2690
1.0 .75 2.3661 2.4955 3.8931 5.6182
1.0 1.25 2.0023 2.7961 4.2463 5.9792
1.0 1.75 1.8975 3.0829 4.5279 6.2396

TABLE IV

Static Load Case 2 Errors (In.)

Torque Chordwise Spanwise Modulus
Tube Modulus
Iy 0.75 1.25 1.75 2.75

.75 .75 .38278 .12708 .22772 .41376

.75 1.25 .35279 .12722 .24128 .42485
4 .75 1.75 .32947 .13000 .25270 .43402

.80 .75 .33695 .12532 .26218 .45472

.80 1.25 .30712 .13322 .27689 .46603

.80 1.75 .28398 .14177 .28914 .47539

.875 .75 .27863 .14711 .31137 .50892

.875 1.25 .24915 .16206 .32694 .52045

.875 1.75 .22645 .17526 .33983 .52997
1.0 .75 .20287 .20235 .38204 .58313
1.0 1.25 .17456 .22137 .39822 .59483
1.0 1.75 .15334 .23720 .41157 .60449
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TABLE V

Static Load Case 4 Errors (In.)

Torque Chordwise Spanwise Modulus
Tube Modulus
Iy 0.75 1.25 1.75 2.75

.75 .75. .41708 .12581 .16172 .34084

.75 1.25 .33485 .09029 .20816 .39719

.75 1.75 .28742 .10955 .24924 .43674

.80 .75 .37226 .10544 .19525 .38296

.80 1.25 .29064 .10183 .24859 .44079

.80 1.75 .24465 .13632 .29094 .48064

.875 .75 .31559 .10757 .24499 .43860

.875 1.25 .23543 .14046 .30340 .49778

.875 1.75 .19264 .18319 .34658 .53787
1.0 .75 .24296 .15353 .31719 .51451
1.0 1.25 .16764 .20882 .37919 .57489
1.0 1.75 .13482 .25479 .42286 .61515

TABLE VI

Static Load Case 10 Errors (In.)

Torque Chordwise Spanwise Modulus
Tube Modulus
Iy 0.75 1.25 1.75 2.75

.75 .75 .24745 .19775 .16603 .13030

.75 1.25 .14190 .11127 .10102 .10533
4 .75 1.75 .11762 .10932 .11602 .13692

.80 .75 .21243 .16809 .14208 .11872

.80 1.25 .11295 .09927 .10384 .12490

.80 1.75 .10639 .11869 .13607 .16569

.875 .75 .18220 .15189 .13953 .13841

.875 1.25 .10973 .12399 .14247 .17368

.875 1.75 .12983 .16001 .18381 .21776
1.0 .75 .18065 .17751 .18401 .20311
1.0 1.25 .16259 .19515 .21984 .25481
1.0 1.75 .19896 .23728 .26362 .29897
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TABLE VII

Total Frequency Errors (Hz)

Torque Chordwise Spanwise Modulus

Iy 0.75 1.25 1.75 2.25 2.75

.75 .75 17.5563 12.5356 9.4532 7.3145 5.7106

.75 1.25 14.8703 9.3196 5.8913 3.6134 2.2457

.75 1.75 13.2794 7.4264 3.8712 2.0229 2.4010

.875 .75 16.8579 11.9225 8.8956 6.7879 5.1994

.875 1.25 14.1054 8.6113 5.2075 2.9123 1.5574

.875 1.75 12.4813 6.6561 3.0698 1.2909 2.3115
1.0 .75 16.2305 11.3882 8.4340 6.3839 4.8457
1.0 1.25 13.4165 7.9991 4.6625 2.4460 1.3496
1.0 1.75 11.7602 5.9943 2.4618 1.1393 2.6339

TABLE VIII

First Torsion Frequency Errors (Hz)

Torque Chordwise Spanwise Modulus
Tube Modulus
Iy 0.75 1.25 1.75 2.25 2.75

.75 .75 5.4601 4.5120 3.8270 3.2910 2.8520

.75 1.25 4.0900 3.1930 2.5560 2.0560 1.6450

.75 1.75 3.2350 2.3770 1.7750 1.3040 0.9140

.875 .75 5.3060 4.3540 3.6600 3.1150 2.6690

.875 1.25 3.9200 3.0280 2.3870 1.8810 1.4650

.875 1.75 3.0560 2.2090 1.6050 1.1300 0.7370
1.0 .75 5.1710 4.2100 3.5040 2.9490 2.4940
1.0 1.25 3.7710 2.8780 2.2290 1.7150 1.2920
1.0 1.75 2.8980 2.0550 1.4460 0.9650 0.5660

4
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Appendix C

Data Structure in PROCES

Modifications to PROCES. The version of PROCES used in this

thesis had the same structure as that in Ref 2 with a few exceptions.

The major difference is the type of optimization scheme used. Ref 2's

PROCES used a linear technique while this version uses a non-linear

routine called SUMP. Several modifications, all increases in

capability, were made to make the program more gener4l, as necessary

for this thesis. They include an option to add to an existing NDSS,

have a large number of members in the NDSS and compare X's before

eliminating dominated solutions. No changes were made to SUMT except

for an additional print option. A basic flow diagram of PROCES is

shown in Figure 3 with the areas modified expanded in more detail. The

SUMP box represents a series of subroutines making up about 90% of the

actual program. All the blocks below SUMP are the one subroutine where

the modifications were made.

The three modifications mentioned above were all made in the

subroutine which constructs the non-dominated solution set from the

SUMr solutions. All three changes were made as additional capability,

d not destroying any other capability. The first modification gives the

user the option of continuing to build upon an existing NDSS. This is

a useful option when the user must partition the performance space into

smaller sections due to execution time limitations. In the T-38

example, the six-dimensional performance space was divided into 32
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small: spaces which could each be examined in one interactive terminal

session. About 72 to 80 performance index combinations were

investigated in each of the smaller subspaces. Each combination

represents an optimization and a solution. The one session, then,

produces a total of 72 candidate NDS's. This modification was made in

the dashed area of Figure 3 labeled with a 1.

The next modification, represented by the dashed area and a 2,

shows that the NDSS is stored in an external file rather than in

internal arrays, allowing an almost unlimited number of NDSS members as

opposed to the size limited arrays. This external file storage does

pay the penalty, though, of being more time consuming. The arrays

limited the NDSS size because of computer memory space limitations

imposed on interactive programs. The NDSS members are recalled from

the storage file one at a time to compare with the current solution.

New NOSS members are then placed in the file as necessary.

The third area modified is also shown in Figure 3. Here, the X's

of dominated NDSS members and the dominating solution are compared.

Dominated members are kept if they are different. This modification

checks for the condition in which the same performance set nay be

.4 produced by different models in the decision variable space.

The last change was an additional print-out option for the entire

program. This option leaves all other options intact but gives the

* added convenience of getting only the final solution for each

optimization and the final NDSS when the program is finished, greatly

reducing the volume of output data. This option is very useful for

*production runs of many subspaces.

Data Structure. The performance indices and constraint values for
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a given X are required in SUMr and also in the portion of the program

depicted in the box immediately after SUMT (see Figure 3). A user

supplied subroutine named RESTNT is called to obtain the objective

function and constraint values. RESTNT contains the performance error

'functions' and constraint functions. A value is required for a single

constraint or performance error index when RESTT is called. The

constraints, which are the table limits here, must also be the

feasibility limits to the modelled problem. The constraints are

calculated by single statement equations. The constraint value is

equal to the decision variable value minus the appropriate limit.

In this finite element model case, the figures of merit are found

by interpolating within data tables. RESTNT contains the data tables

and tha call to the interpolating routine. RESTNT supplies the

appropriate data and X to the interpolator for the performance error of

interest and requires a performance error value in return. In turn,

I STNT coputes the performance error value, the inequality constraint

values and the performance constraint values and sends them back to the

calling routine. Figure 4 shows how this system works in block diagram

form and Figure 5 shows the version of RESTNT used in the stabilator

4 example. Most of the data has been deleted from Fig 5 for clarity. IN

is the index value indicating the particular constraint or performance

error value that is requested and VAL is the value of the requested

parameter. There are N tables, one for each performance. SPCINT is

the three dimensional interpolation routine used.
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Modification 2

I Read NDSS Mnber(I)
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*Figure 3A. PROCES Flow Diagram
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SUBROUTINE RESTIT( IN, VAL)

DATA Ta les 1 through N

Performance Function constraints Performance Functions
* Being Optimized Used As Constraints

CALL SPACINT (X, Data Table, ERROR) CALL SPACINT(LData Table,ERROR)
YJVAL=EROR 7VAi=ERROR-Prescribed Value

VAL= X - Table Limit Value.

INE SPACINT(X,Data Table,ERROR)

Figure 4. Data Structure in PROCES
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S11PROUTTNE RP.ST;'T([NVAl.)

CYl MON/ZH/7Z( 10) ,'1'0, IT
DDIMNSION E-RR\TI(4,3,4,),TT'rt1,(4) ,-Ty.(3),SI,-TL(4)
I ,RR2T(4,3,4),rRR4T(4,3,4),

2 FPIlOT(4,3,4),TTPTi.('),
3 SEFTRL,(5),rRuwTA1,3,9) ,"7!u" TT(3,3,-9)

1 4.2171, 1.98nlg, 2.3gnA, 3.672,
2 3.62941, 1.78155, 2. 0' hV,, ~'(
3 3.31)106, 1.93167, 2. () Wn , !.1 !1/

1 3.66523, 1.R3303, 2.6211!:, 4.07n,
2 1.09467, 1.7R127, 2. ROO h, 4.353,
3 2.7993P, I.q3564, 3. ("f I 1 4.600/

1 3.01901, 1 .94 2 RR, 3 .MS31L6, 4.*683,
2 2.590498, 2.07Q27, 3.16562, 5.013,
3 2.27460, 2.32108, 3.63332, 5.269/

1 2.36614, 2.49549, 3.89313, 5.61S,
2 2.00231, 2.79605, 4.24626, 5.Q979,
3 1.80~749, 3.08285, 4.52791, 6.240/
1)ATA((ERR2T(1 ,J,J),J1=l,4),I=1,3)/

DATA((T'IR4T(1,I,J),J=1,4),TI,3)/

DATA((ER8"PFT(1,I,J),J=1,5),T=1,3)/
1 17.5563, 12.5356,. 9.4532, 7.3145, 5.7106,
2 14.87n3, Q.31.96, S.RQ13, 3.6134, 2.2457,
3 13.2794, 7.4264, 3.9712, 2.0229, 2.4010/

DATA((ER.RFT(2,1,J),.T=1,5),T-1,3)f
D)ATA((Vr.RFT(.,,J),J=,5),T-l,3)/.

* DATA( (F, RFTT (1I., IJ),.T=l , 5,1-.1 3)

4Figure 5A. Subroutine RESTWr
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- ~DATA (TTTBI,(T), I1, 4) /

1 .75, .S0, .875, 1.0/
DATA(CETBL(I),I-1 ,3)/

1 .75, 1.25, 1.79/
DATA(SETRL(I), I=1,4)/

1 .75, 1.25, 1.75, 2.75/

DATA(TTFTRL,(I),I=1 ,3)/
1 .75, .875, 1.0/

DATA(SEFTBL(I),I=1,5)/
1 .75, 1.25, 1.75, 2.25, 2.75/

- - C

C USE IF (IN) 1,1,3 FOR USTNC TOTAL STATIC ERROR AS ZI AND

C DOING A STATIC OR STATTr AND FRFO. ANALYSIS
C USE IF (IN) 2,2,4 FOR USING TOTAL. FEPO. ERROR AS ZI AND
C DOING A FREQ. ANALYSIS ONLY
C

IF(TN) 1,1,3

C
1 CALL SPACINT(X(1),X(?),X(I),TOTERR,TTTBI.,CETLSETBL,ERRTBL,

1 4,3,3)
VAL-TOTERR

RETURN
2 CALL SPACINT(X(1),X(2),X(3),FREOER,TTFTBL,CETBL,SEFTBL,ERRFT,

I 3,3,5)
VAL=FREQER
RETURN

'" C

C C(ME IIERE FOR STATIC OR TOTAL ANALYSIS
C SET UP FOR: Z2 - CASE 2 STATIC ERROR

C Z3 = CASF 4 STATIC ERROR

C Z4 - CASE 10 STATIC ERROR
C Z5 = TOTAL FREO. ERROR

C Z6 - FIRST TORSION ERROR
3 T=I N-M +1

GO TO (10,15,20,25,30,35,40,45,60,65,70) IN
C
C CME HERE FOR FREQUENCY ANALYSIS ONLY
C SET UP FOR: Z2 - FIRST RENDINC ERROR

C Z3 = FIRST TORSION ERROR
C Z4 - SECOND BENDINC ERROR
4 ID=IN-Mi+l

GO TO (10,15,20,25,30,35,75,70,80) IN
a

Figure 5B. Subrouatine MUM1W

_! 61



CHERE ARE. TTIE TAPLC LPr!TT5' (INEQUJALITY CONSTPAINTS)

RETURN
15 VAL=1 .O-X (I

P-TURN
20 VAL:X (2) 7 9

111 1T ITJ
2 9 VAL-l.75-X(2)

RETURN
30 VAL=X(3)-.75

RETURN
39 VAL-2.75-X(3)

RETURN
r

C ORJECTIVE FUNCTION (701, TI'71S~ CEOEALITY CONSTRAINTS)
40 CALL SPACINT(X(l),Y(2),X(3),CA2R,TTTBL,CETL,SETBL,ERR2T,

1 4,3,3)
VAL=CAS2F.R-ZZ(Im)
rETURN

45 CALL SPACINTr(X(1),X(2),X(3),CAS4ER,TTTBL,CETBLSEThL,ERR4T,
1 4,3,3)
VAL-CAS4ER-7Z( P1)
RETURN

6nl CALL, SPACTNT(X(l),X(2),X(3),CAS1OR,TTTPL,CETRL,SETBL,ERRIOT,
1 4,3,3)

VAT.=CAFIOR-ZZ(TMl)

65 CALL. SPACINT (X(1 ),Y(2),x(3),PTQR,TT'TPL,CETBT,SEFTBL,
I FRRFT,3,3,5)

VAl.=IFRT'XER-ZZ( m-l)
R!ETURN

70 CALL, SPACINIT(X(1),X(2),X(3),T~rER,TTFTPL,CrTBL,SEFTBL,
1 FPRFTT,3,3,5)

VA TABTORER-7.7.(1 T')
RETURN

75 CALL. SPACINT(X(1),X(2),X(3),FBERR,TTFThL,CETBL,g

41 SEFTBL.,ERFTFR4,393,5)
VAL=FBERR-ZZ(TP1)
RETURN

p n CALL. SPACTNTT(Y(l),:M'(2),X''(3),-RFK, i)"ITFTR,$CThL,
I SEFTrI!.,E'RFTS13,3,3,5)

RETURN
END

Figure 5C. Subroutine R&STWT
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" "- Appendix D

Optimization Data for T-38 Stabilator Example

The tuning process was applied to the four static load cases only,

the two frequency cases only, and two different starting points for the

combined static and frequency case, giving four NDSS's. The combined

case had five different solutions based upon the relative weighting

between the static and frequency cases. The extremes of the five

weighted answers were the same as those solutions for the static

conditions only or the frequency conditions only.

Four NDSS's were built for this analysis. The case of only the

four static load conditions minimized the total deflection error for

each combination of cases 2, 4 or 10 deflection errors. Twenty

non-doninated members were identified for this NDSS. Nine weighting

*combinations for the four performance indices were tried with one

answer always being the best. Table IX lists this model. The

frequency case minimized the total frequency error while using the

first three natural frequency errors as constraints. This NESS had 61

members. The 12 weighting combinations tried showed that one answer

was always ranked first. Now combining the four static cases, the

total frequency error and the ]st torsional mode error, a NDSS of 202

members was obtained using the static answers as a starting point and

optimizing the total deflection error (see Figure 6). Thirty-seven

*weighting combinations indicated that only five different solutions

were necessary to cover the whole weighting range. These five
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solutions are actually seen in Figure 6 as the five clumps of solutions

which have been circled. The midpoint of the clump is the model

specified in Table IX. When the best frequency only model was used as

a starting point, the NDX3S had 255 members (see Figure 8). But, again,

after 20 different weightings, only the same five solutions as before

were evident. Figure 7 is a 2-D view of Figure 6. Comparing the

coordinates for the non-dominated solutions of the two pictures, one

can see how the solution procedure tracked along the edges of the

infeaii'4 ke regions, bunching up the solutions along these boundaries.

Therefore, of the 12 solutions obtained above only five unique

solutions existed. These solutions depend on how all of the static

cases are weighted against the two frequency errors. Also, the

solutions for the combination cases with different starting points are

almost the same so are averaged in Table IX. Thus, it can be seen that

the [i -,,e solutions of the averaged combined case contains all the other

solutions. The pure static and pure frequency cases are in opposite

corners of the variable space. Therefore, the static and frequency

models are not the same and the combination of the two creates a

ccorpromise.

Sawdy's and Dodge's models are also listed in Table IX, as well as

the performance values for all solutions. The PROCES tuned static

model is very close to Sawdy's total displacement error. The PROCES

4 tuned frequency model, though, is 66% better in total frequency error

but 97% orse in first torsion frequency error.

Three models were examined by a flutter analysis procedure. These

results are presented in Table X. The true flutter data is unknown but

te-stimateA values were determined by measurement and by comparisons with
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- known flutter data from other aircraft (Ref 15). These estimates are

the target data of Table X. Dodge's model was in the low end of the

flutter speed range but had very accurate frequency predictions. The

PROCES tuned best frequency model and the best first torsion model

predicted the flutter frequencies very well but were about 130 knots

too slow in flutter speed. The PROCES tuned best static model was only

100 knots slow but was about 3 Hz low also.
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TABLE X

Flutter Analysis Data

Model Variables Flutter Flutter ist Torsion
Speed Freq. Freq.
Knots Hz Hz

Target - - 913-996 29.0 44.3
Dodge'st 1.0,i.0,i.O 916.5 29.8 44.3

PROCES Static .79,1.1,1.24 815.9 27.9 41.4
PROCES Freq. 1.0,1.75,2.25 786.4 29.8 43.9
1st Torsion 1.0,1.75,2.75 787.0 30.2 44.3

tDodge used a 37% increase in thickness to chord ratio also.

t The variables are in the order of Torque-Tube Iy, Chordwise E
and Spanwise E.

14
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DATA( (PFRRFT (I ,J),.J-1, ),T=1 3)/
1 17.5563, 12.5356,. 9.4512, 7.3145, 5.7106,
2 14.8R7n3, q.-1196, S.RQ13, 3.6134, 2.24S7,
1 13.27%4, 7.4264, 3,8712, 2.0229, 2.4010/

DATA( (r.RRFT(3,TJ),.J-l ,5) ,T=1,3)/ ...

DATA( (FRRFTT(1, I,J),.J=1, 5) , I-1, )/

T)ATA( (FRFTFR( I, T .J),.J=1 ,5) 1=1, 3)/

fl.ATA( (ERMF-( 1, 1,J) ,.I = , 5) .1=1,.I)/

Figure 5A. Subroutine RES WI'
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