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Abstract

This study consisted of two phases. During the first

phase, Lumbar intervertebral centra from healthy, adolescent

Rhesus Monkeys (Macaca Mulatta) were subjected to axial com-

pression loads of 15 and 30 pounds for a period of eight

hours and displacement-time data was gathered. An axisymmet-

ric finite element model was used to analytically determine

material parameters describing the observed creep for each

applied load. A Three-parameter Kelvin Solid was used to

represent the elastic and viscoelastic response. Parameters

were found by adjusting them until the analytical displace-

ment-time response matched the experimental response. The

1 parameters determined characterized the initial elastic

stiffness, initial creep rate, and creep stiffness.

'Analytical stress profiles in two horizontal planes

through the vertebral centrum indicated a predominance of

stress in Cortical bone and the transition of stress from

the Trabecular bone to the Cortical bone as creep proceeded.

According to the model, the Centrum behaved as though the

Cortex was acting like a thin shell constraining the outward

flow of a viscoelastic Trabecular bone region.

During the second phase,'viscoelastic constants deter-

mined for the Trabecular bone region were incorporated into

an overall model of the intervertebral joint minus the Arti-

0cular Facet Joint and associated spinous processes.

xvall
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Viscoelastic constants were then found for the disk. How-

ever, they proved to be unreasonably high, describing a very

stiff, creep-resistant disk. It was determined that the

rheological model used, two Three-Parameter Kelvin Solids

in series, was inadequate to allow one to determine unique

values of these parameters in the disk.

Final results indicate that an accurate model of the

intervertebral joint must incorporate a viscoelastic Centrum.

Creep behavior can no longer be attributed solely to the

disk.

1
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I

A FINITE ELEMENT ANALYSIS OF THE
CREEP RESPONSE OF LUMBAR INTER-

VERTEBRAL JOINTS IN THE RHESUS MONKEY

I. Introduction

1.1 Purpose

The behavior and mechanical properties of intervertebral

joints are of interest to researchers in several areas.

Among these are the effects of sustained loading, vibration,

and ejection forces, as might be experienced by aircrews in

high-performance aircraft, as well as problems associated

with disc degeneration.

Intervertebral joints have long been known to creep

under load. Previously, the disk has been treated as the

sole medium of the creep (viscoelastic) behavior. This study

was undertaken to discover material constants which may

account for such behavior experienced by the bony portion of

the joint external to the disk region. These values were

then incorporated into a model of the joint in order to de-

termine viscoelastic constants for the disk. In both phases,

stress redistributions resulting from creep behavior were

analyzed for the various internal regions. The results of

this study will be used to further refine a biodynamic model

of the spine.

I
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1.2 Anatomy

A thorough understanding of this thesis requires a brief

description of applicable anatomy. The spine will first be

discussed followed by a more detailed description of the

intervertebral joint.

The Rhesus Monkey spine is a complex structure composed

of a number of mobile vertebrae. It is divided into 4 reg-

ions, as indicated in Fig. 1.2-A. The concern of this study

was with joints in the Lumbar region, specifically at the

LI-L2 level (indicating the top lumbar joint).

Each joint consists of two vertebral bodies superior

and inferior to a disk (Fig. 1.2-B); two associated ligaments

joining the vertebral bodies with the disk, one running ver-

tically along the posterior edge, and one running vertically

along the anterior edge of the joint; and an Articular Facet

Joint.

The vertebral body consists of a centrum and a set of

processes (Fig. 1.2-C) which provide attachment points for

muscles and ligaments. The spinous processes are attached

to the centrum by two pedicles and extend rearward. Posterior

spinous processes from adjacent vertebral bodies form the

Articular Facet Joint near the edges of the pedicles. Two

lateral processes, one on each side of the centrum, extend

to the sides.

The centrum consists of spongy Trabeculae or Trabecular

2
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bone (Fig. 1.2-B) encased circumferentially in a thin layer

of denser Cortical bone (Cortex). The upper and lower sur-

faces are composed of still denser bone (relative to the

Trabeculae and Cortex) called the Bony End-plate, which

serves as a transition region between the centrum and the

disk.

The disk is made up of solid and fluid material in

three regions. In the center of the disk is a region known

as the Nucleus Pulposus (Fig. 1.2-D) comprised of a loose

network of fine fibrous strands in a muco-protein gel. Sur-

rounding this region is the Annulus Fibrosus, composed of

layers of collagen fibers imbedded in muco-protein gel.

These fibers are arranged in a helicoid manner, and fiber

directions are fairly uniform within each laminate. In the

human case, fiber principal directions alternate between

adjacent laminae at a fairly constant angle with respect to

the disk midplane (White et al, Ref 29). The orientation of

these fibers as well as the number of laminates is not known

for the Rhesus Monkey.

Not shown in the figure is the cartilagenous end-plate,

which is comprised of a hyaline cartilage structure. It

serves as a boundary region between a disk and its adjacent

vertebral body.

1.3 Background

Many studies have been performed in order to gain an

5
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( understanding of the elastic and viscoelastic response of

intervertebral joints. Brown (1957), Nachemson (1960),

Hirsch (1965), and Rolander (1966) all conducted experiments

on the basic load-deflection behavior of the unit. Kulak,

et al (1976) showed that the human disk behaved like a medium-

length thick-walled tube subjected to internal pressure (Ref

18). Lin, et al (1978) concluded that human joints exhibit

a nearly linear stress-strain relationship (Ref 20).

Evans (1957) experimentally examined the relative con-

tributions of human Trabecular and Cortical bone in supporting

axial loads and concluded that the latter contributed more.

Bell et al (1967), however, noted that the Cortex was too

thin to transfer the load. Rockoff, et al (1969) determined

that Cortical bone contributes 45 to 70% of peak strength of

human lumbar vertebrae (Ref 23).

Virgin (1951) examined the viscoelastic response of

human disks and determined that stress redistributions were

related to a fluid seepage phenomena occurring among internal

regions of the joint (Ref 28). Fung (1960) showed that stress

in some biological materials could be separated into an elas-

tic and a viscoelastic part (Ref 6). Kazarian, et al (1978)

showed that the creep response could be modelled by a three-

parameter Kelvin Solid (Ref 17). Burns (1980) developed a

method for determining values describing that model (Ref 4).

Lin et al used a three-dimensional model of the joint

in axial compression to show that posterior elements could

6



be ignored in such an analysis (Ref 20). Tencer, et al (1982)

confirmed that same conclusion for all possible loading con-

figurations except posterior shear and axial torque (Ref 27).

Belytschko, et al (1974, Ref 3) and Spilker (1980, Ref

24) independently employed axisymmetric finite element models

to study the elastic response of human disks. Hinrichsen

(1980) applied a similar approach to determine the creep

response of the human disk modelled as a three-parameter

Kelvin Solid (Ref 13). Allen (1981) used results from

Galante (1967, Ref 10), Lin, et al (1978, Ref 19), and Kulak,

et al (1976, Ref 18) to develop an inhomogeneous model of

the human disk incorporating an orthotropic Annulus Fibrosis

(Ref 2). Furlong (1981) examined the effects of degenerated

disks on the viscoelastic response of Rhesus Monkey joints.

He assumed that the creep response of the joint could beS modelled by a homogeneous, creeping disk (Ref 8).

1.4 Assumptions

In this study, a disk and the adjoining vertebral cen-

trum will be considered an "intervertebral unit'. This unit

is treated from observation as axisymmetric about a vertical

centroidal axis, as was done by Furlong (Ref 8). The verte-

bral centrum is also assumed to have symmetry about a hori-

zontal midplane. Finally, the unit is considered to have

symmetry about the horizontal midplane of the disk. These

* assumptions will permit a simplified analysis requiring a

7

i-



minim% of computer resources.

Any observed creep is considered a quasi-static pheno-

mena wherein inertia effects may be ignored. The magnitude

of deformations are assumed small enough that linear elastic

response may be assumed (Ref 15). Resultant internal stresses

are considered small enough that yielding does not occur;

*hence, any plastic deformation will be ignored. The disk is

treated as nearly incompressible, as expressed by other

authors (Refs 2, 3, 13, and 8). Biological seepage among

regions is ignored. To permit analysis, each region is con-

sidered homogeneous and isotropic. Since the relative stiff-

nesses are unknown, the Bony end-plate and Cortical bone are

initially assumed to have identical material properties;

later, the former region will be assumed stiffer than the

latter. Both regions are considered elastic. Since the

anatomical nature of the annulus fibrosus is also not pre-

cisely known, the disk will be treated in a "smeared-out"

manner as one homogeneous unit. Any viscoelastic behavior

is attributed to both the Trabecular bone and the disk and

is considered linear for the magnitude of deformations experi-

enced.

1.5 Approach and Presentation

This thesis consisted of two phases. During the first

phase, vertebral centra were subjected to axial compressive

M loads of 15 and 30 pounds. Data were gathered concerning

8



axial displacement versus time. Loads were chosen to pro-

vide a measurable creep response, and not necessarily to

represent realistic anatomical loads. Finite element tech-

niques were used to model the centrum and determine material

constants which characterized the average experimental re-

sponse for each load value.

During the second phase, the viscoelastic constants

derived in the first phase were incorporated'into a finite

element model of the intervertebral joint minus the articular

facet joint and associated ligaments. Viscoelastic constants

were then determined for the disk.

Starting with a brief explanation of classical visco-

elastic theory, the following chapters describe some funda-

mental concepts necessary for an understanding of this thesis.

A detailed discussion of each phase of analysis follows.

9
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II. Theory

2.1 Linear Viscoelasticity

The theory of viscoelasticity accounts for accumulating

strains in some materials when subjected to a constant load

over a period of time. It also accounts for the relaxation

of stresses experienced by those same materials when subjected

to a constant strain over a period of time.

From a one-dimensional viewpoint, Hooke's Law relates

the stress and elastic strain experienced by a material hav-

ing a Young's Modulus, E. Such a response may be modelled

by a linear spring having a "stiffness" of E (Fig. 2.1-A).

Any strain produced by the application of stress would occur

instantaneously. The value of that strain would not change

unless the value of the stress changed.

Such is not the case in materials which exhibit visco-

elastic or creep behavior: strain may change, even at con-

stant stress values. The behavior of viscoelastic materials

may be modelled by various combinations of the linear spring

and dashpot, which represents the time-dependent material

response. The simplest such model is the Maxwell Fluid (Fig.

2.1-B) wherein the rheological elements are connected in

series. The total strain c is the sum of the elastic CE and

creep eC strains:

C CE + (2-1)

10
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Fig. 2. 1-A. Elastic Model

E

Fig. 2.1-8. Maxwell Fluid model



The application of stress would cause an instantaneous elas-

tic strain eE of the spring followed in time by an accumula-

tion of creep strain EC' which is related to stress by

a =Ti (2-2)

where n is the dashpot or fluidity constant. In theory, this

creep strain would be infinite; hence, this model represents

a "fluid" quite nicely.

A more realistic model for a solid material is repre-

sented by the Kelvin Solid (Fig. 2.1-C), in which the two

elements are connected in parallel. In this model

= E C (2-3)

so that

a = OD ° (2-4)

or

a Ee (2-5)

The application of stress would cause strain only after a

period of time, as the dashpot gradually permits strain to

occur; such strain would proceed until the stiffness of the

parallel spring will no longer permit further deformation.

Obviously, even this model is somewhat unrealistic in that

it does not permit any elastic (instantaneous) strain.

In order to permit both elastic and viscoelastic defor-

*• mation, the Three-Parameter Kelvin Solid (Fig. 2.1-D) is

used. It will be incorporated into this thesis. In this

12
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Fig. 2.1-D. Three-Parameter Kelvin Solid Model.
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model
e e = E + E C (2-5a)

so that

a E = E qE + qlC (2-6)

Instantaneous elastic deformation is performed by the series

spring of stiffness E. Creep strain rate C is limited by

the dashpot having a constant q1 " Ultimate strain is limited

by the parallel spring of stiffness q0 * Figure 2.1-E shows

a typical creep curve for such a model. Rearranging Eq (2-6)

results in

dt
dec C (a 0 C0~ (2-7)

which shows that incremental creep strain dec depends on

total accumulated creep strain eC for any incremental time

step dt. Rearranging Eq (2-7) again results in

dec Ca q0  (2-8)

dt q q q c

which indicates that ql is the fluidity constant for the

dashpot. This parameter is also the slope of the a versus

curve, as seen in Fig. 2.1-F.

Application of such a model to a multidimensional state

of stress is limited by its inability to accurately describe

the complex constitutive relation between stresses and

14
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strains. However, finite element techniques, discussed next,

will allow development of a relationship similar to Eq (2-7).

2.2 Finite Element Method

2.2.1 General Concepts. The complexity of many problems

*, in mechanics will not permit exact closed-form solutions. In

such cases, techniques have been used to obtain exact force-

displacement solutions at a finite number of points and approx-

imate solutions at other points in the body. The Finite

Element Method is one such technique.

This method presumes that the body of interest can be

subdivided into elements within which actual displacement

functions may be approximated by simple polynomials. Figure

2.2-A shows one such element. Other one-, two-, and three

dimensional elements have also been used successfully. Each

element has a set of node points and each node is permitted

*" certain rotational and/or translational degrees of freedom.

In the case of the triangular element shown, each node has

two orthogonal translational degrees of freedom.

Element displacements may be written as a polynomial

function of these nodal degrees of fzeedom. The choice of

displacement function within each element must satisfy three

requirements. First, displacements must be continuous be-

tween elements. Second, any rigid body motion of the element

must not produce strain within the element. Finally, as the

size of the element is reduced to zero, the strain within it

17
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must approach a constant value.

Element displacements are characterized by the total

set of nodal degrees of freedom {u}. In the case of the

element shown

{u} = {u1 v1 u2 v2 u3 v3  (2-9)

In this element, the displacement polynomials are written as

u =a1 + a2r + a3z (2 -10a)

v a4 + a r + a z (2-10b)
4 5 6

where the a. are constants to be determined.

For the element shown, the nodal displacements thus become

uI  r zI  a1

tu 1 r2 z] a2 (2-11a)

LL
and

. v1  r1 zI  a 4

v = 1 r z a 5  (2-11b)

v v3  L1 r3 z a

Solving Eq 2-3a and Eq 2-3b for the constants a and substi-L1
tuting them into Eq 2-2a and Eq 2-2b, respectively, yields

an expression for internal displacements in terms of nodal

-. displacements:

i!2u = NIU 1 + N2u2 + N3u 3  (2-12a)

-v = NIv + Nv + Nv (2-12b)
1 1 2 2 3 3(21b

" +19



where

N (a + bir + c z) (2-13)Ni -2A i . i

a. = rjZm- r z. (2-14)
1 j m j

b. = z. - z (2-15)bl 3 m

c. = r - r. (2-16)
1 3

and the area of the triangle is

1 r z
2~ 1i

A - det [ r z (2-17)
~r3 z 3

The indices i, j, and m are permuted cyclically in the order

given and are assigned integer values from 1 to 3. The pro-

blem therefore is to compute a vector of nodal displacements

after which interval displacements may be computed.

2.2.2 Analysis. Problems of a three-dimensional nature

in elasticity can be simplified by expressing the stress

tensor as the sum of a hydrostatic (volumetric) and a devia-

toric stress tensor, respectively:

x xY xz s xy xz

EX y yz  O Sy z

F- - -x ZY z zy JL ] 2-8

In this relationship, s is the hydrostatic st. ;s given by

20



s = (0 x + + )/3 (2-19)

and

S S + 0x x

,y =s + a (2-20)

a s + a'

z z

Hydrostatic and deviatoric strain tensors are related to the

total strain tensor in the same manner.

The viscoelastic analysis used in this thesis (Ref 6)

will assume that the total strain at any time can be expressed

as the sum of hydrostatic elastic strain and deviatoric elas-

tic/viscoelastic strain. The total solution will thus be

obtained by superimposing an elastic and a viscoelastic solu-

tion.

The elastic solution is obtained by solving

[K]{u} = {P} + {Q} (2-21)

for {u}, the nodal degrees of freedom, where [K] is the

elastic stiffness matrix, {P) is the vector of applied nodal

forces, and {Q} is the vector of nodal residual forces due

to initial strains. Appendix A describes the derivation of

[K] and {P} for an axisymmetric problem.

For the elastic/viscoelastic solution, the constitutive

relationship for the Three-Parameter Kelvin Solid is inte-

I rgrated over time (Ref 13) to give

21
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{AC" - At [3 [A]{a} - q 0 {ec}] (2-22)

where {AE } is a vector of creep strains accumulated over a

small time increment At, {ec} is the vector of total creep
c

strains, and [A] is given by

1 -Vc - c

1 -v o
[A] = c (2-23)

1 o

_Sym 2 (l+vc)

Since the creep strain is assumed incompressible, V c the

Poisson's Ratio for the creep strain is 0.5.

Figure 2.2-B illustrates the flow chart used in the

elastic/viscoelastic analysis. The quantity {A c } may be

considered an incremental initial strain {so }. Since the
0

initial strains enter into the governing equation (2-21) in

the residual force term {Q}, Eq (2-21) must be solved at each

timestep for {u}. Strains {c} may then be obtained from nodal

displacements {u} by

{F} = [B] {u} (2-24)

where

-0 c. o c. o ck
i  .- 2

[B] = bA bk (2-25)
2A d o d. o d o

k
c i b i c. b. ck bk
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and

d a i . (2-26)
r

As before, i, j, and k are permuted cyclically over the in-

tegers 1 to 3, inclusive.

Stresses {} are related to the strains {s} by the usual

constitutive relationship

{O} = [D] [] - {c } ]  (2-27)

where [D] is the elastic material property matrix for an axi-

symmetric body given by

1-V 1-V

E(I- )1 -" 0

( - [D] - (1-2 (2-28)

1 0

Sym 1-2v
2 (l-v)

Finally, since

{E} = {E } + {C (2-29)

E c

{ec } follows directly. These values of {a} and {ec } are thenc c

substituted into Eq (2-22), time is incremented, and the cycle

repeats itself until a maximum time is reached (Ref 13).

24
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III. Centrum Analysis

The first phase of this study involved obtaining material

constants describing the creep response of the Vertebral Cen-

trum. These viscoelastic characteristics were assumed to be

attributable exclusively to the Trabecular region.

During this phase, axial compression tests were performed

on Vertebral Centra from the Ll-L2 level of the spine of the

Rhesus Monkey (Macaca Mulatta). Six specimens (three Ll-L2

pairs) were loaded with 15 pounds (67 Newtons) and six were

loaded with 30 pounds (133 Newtons). The duration of loading

in both cases was 8 hours. A 16-hour relaxation period fol-

lowed.

3.1 Experimentation

3.1.1 Equipment. Figure 3.1-A shows the experimental

apparatus. Figure 3.1-B shows a related block diagram. Each

test chamber was connected to a humidifier. Data from each

test chamber was passed first to one of a set of four Dana

DC amplifiers, then to an Analog-to-Digital Convertor unit,

and finally to a Texas Instruments Silent 700 ASR Electronic

Data Terminal.

Each test chamber (Fig. 3.1-C), incorporated a DC-DC

Linear Variable Displacement Transducer (LVDT), and each

test cell was partially enclosed during testing. The front

of the unit is shown open for viewing in this figure. To

25



A - Test Chambers and Humidifiers

1- Dana DC Ampli1fiers

C - Analoq-to-Digital Convertor Unit

1)- Te~xas Instrumrents Silent 700 ASR Electronic Data

Te'rmninal1

Fig. 3.1-A. Experimental Apparatus
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Fig. 3.1-B. Block Diagram of
Experimental Apparatus

27



I I 'all

* I'' L



preserve the specimens during testing, 100% humid air was

provided by the commercial cool-mist humidifier.

Voltage from the LVDT was amplified at a gain of 500 by

an amplifier. Sampling interval was adjustable and amplified

signals were digitized, that is, converted to raw displace-

ment, by the convertor unit. Raw displacements were then

displayed and recorded on cassette tape by the data terminal.

Four data streams were available and selectable at the con-

vertor unit. Only two data streams were used, however. In

this manner, two tests could be run simultaneously.

3.]..2 Procedure. Spines from adolescent Rhesus Monkeys

(Macaca Mulatta) were radiographed to determine unacceptable

abnormalities. An Ll-L2 unit was excised from a selected

spine using a scalpel by cutting through the end disks and by

disarticulating the facet joints. Each unit was then separ-

ated into an Ll and an L2 segment by cutting through the

center disk midplane using the scalpel. All soft tissue and

musculature were removed as well as the cartilagenous end-

plate. Processes were removed by cutting through the pedicles

flush with the centrum using a low-speed diamond saw. The

prepared specimen was then frozen in a normal saline solution

to preserve it for testing.

* Prior to testing, the specimen was thawed and then the

superior and inferior surfaces were photographed at a magni-

fication power of two. These photographs were used to deter-

mine the surface areas, as will be discussed in the following
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section. Then, the end surfaces of the specimen was potted

I Ain dental acrylic using a special mounting device. The pur-

pose of the acrylic was to provide a smooth, flat surface

upon which the load could be evenly distributed. Figure

3.1-D shows a specimen just after being placed in one end of

the device. Figure 3.1-E shows the final configuration with

the specimen in the center. The potted specimen was removed

once the acrylic hardened.

Before testing could begin, the LVDT was zeroed and the

* "chamber displacement calibrated. Two cylinders were used for

this task (Fig. 3.1-F); one cylinder was 1/8 inch longer than

the other. With the longer cylinder in place in the test

cell, the LVDT attachment bolts were loosened and the LVDT

* moved vertically until zero was displayed on a selected data

stream at the terminal. The bolts were then retightened.

Once zeroing was completed, the longer cylinder was then

removed and the shorter cylinder placed in the cell. The new

output was recorded after which that cylinder was replaced by

the first cylinder and a third reading taken. In this manner,

outputs were compared to determine a value representing a dis-

placement of 1/8 inch as follows. The readings from the

longer cylinder (the one measured twice) were averaged and

the result subtracted from the reading using the shorter cy-

linder (the one measured only once). This measured difference

thus represented 1/8 (0.1250) inch. All test data was first

adjusted for zero and then multiplied by a factor based on

this difference:

30
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I'i7 i.1-D. Dental Acrylic Mounting Device,
Tnitial Configuration
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F'I*J Li]-E. lDurit-l Acrylic Mounting Device,
* 1Fi nal Configuration
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Ficq. 3.1I-F. Calibration Cylinders



Calibration Factor = 0.25 (3-1)
IMeasured Differencell0

The factor 10 was required in Eq (3-1) to convert this

measured difference to an actual displacement. The absolute

value is required to convert negative differences to absolute

differences. Appendix C presents an example of this calibra-

tion procedure.

IOnce calibration was completed, the specimen was mounted

I-.. in the loading chamber (Fig. 3.1-G) and the test commenced.

The recorder on the terminal was started, and the load was

added. Sampling times were approximately once every second

for the first ten minutes, once every ten seconds for the

following ten minutes, and then once every minute for the

remainder of the test.

After eight hours, the load was removed and the above

*sampling sequence repeated. After another sixteen hours,

the test was concluded and the specimen removed. Recorded

data was then passed to the computer and a displacement-time

plot generated for the test using an existing plotting pro-

gram.

Vernier Calipers were used to measure the specimen later-

ally and longitudinally, after which the specimen was cut

sagitally (front to rear) using a low-speed saw and a 1 mm

slice removed. This slice was mounted in a dissecting micro-

scope. The Cortex and Bony end-plate were then measured

34
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Figj. 3. -G.. Configuration of Specimen
for Testing



using a transparent graduated reticle.

S3.1.3 Results. Appendix B contains the experimental

results for each test. Displacement-time curves varied from

test to test, especially between vertebrae from different

animals. These variations were due to differences in size,

condition, and preparation of the specimens.

Discrete time values were selected from the first 10,000

seconds of the loading period and formed a basis for two

- . average experimental data sets, one for each load (15 and 30

pounds). Only the first 10,000 seconds were chosen in order

to preserve computational resources during the analytical

phase when these displacement-time values were matched. For

each test, displacements were extracted corresponding to

these times. Then, for all tests having a given load, either

15 or 30 pounds, these values were averaged at each time to

produce a set of average experimental displacement-time values.

Two such sets were thus produced, one for the 15 pound load

and one for the 30 pound load. Finally, each average experi-

mental displacement was divided by two. This was done in

- order that these displacement sets could be compared to the

respective analytically-generated sets of the finite element

mesh used, which assumed midplane symmetry and hence only dis-

placed half of what the full-size centrum would displace.

Figure 3.1-H illustrates these displacements for the 15

pound load case and Fig. 3.1-I shows the set for the 30 pound

case. The fun-,:ion
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u(t) = 1 + C2 t - C3 e - t (3-2)

where u represents axial displacement in Cm and t represents

time in seconds, was determined to provide the best equation

representing a curve through these points. The constants

C1, , C3 , and X for each load case are listed in Table 3-1.

TABLE 3-1

Constants of Curve-fit Equation
Representing Model Displacements

Load (lb)
Constant 15 30

C1  1.935 x 102 2.040 x 102

C2  1.900 x 10 - 7  2.140 x 10 - 7

C3  9.800 x 10 -  5.600 x 10 - 3

4 3

9.854 x 10-  1.115 x 10-

Figures 3.1-H and 3.1-I show that most of the creep

occurred in the first 2000 seconds of the loading period for

both loads. The initial slope of the creep curve for the 15

* pound load case was higher than in the 30 pound load case,

indicating a higher initial creep rate. However, as time

progressed past about 4000 seconds, the slopes were approxi-

mately equal. This fact would indicate that the creep rate

39
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depended on load only initially. Also, initial elastic

response for the 30 pound case was less than twice that for

the 15 pound case, as it would be if the elastic stiffness

was independent of load. Apparently, then, the initial elas-

tic response was a non-linear phenomena with load as was the

creep response. Finally, the final displacement at 10,000

seconds relative to the initial elastic displacement was

higher in the 15 pound load case, also indicating that the

stiffness for the creep deformation depended on load.

3.2 Analysis

3.2.1 Development of Model. In developing the finite

element mesh, two factors were considered. First, the exter-

:* nal shape and dimensions were required to accurately reflect

the test specimens. In order to assure that this require-

ment was met, average dimensions were used. The photographs

of the superior and inferior surfaces were used as a basis

for establishing an end-surface average radius: these areas

were averaged and the radius computed for a circle of equi-

valent area. The point of maximum waisting (where the cen-

trum was slenderest) occurred at the midplane. The midplane

radius was determined such that the ratio of the computed

end-surface average radius to this radius equaled the ratio

of corresponding average values obtained from the caliper

measurements. Finally, measured heights were averaged to

* obtain a height for the model.
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Internal measurements for the Cortical and Bony end-

plate were averaged in the respective cases. Each region

was modelled with a uniform thickness.

The second consideration was that realistic regional

material properties be used. Properties for the Cortical

and Bony end-plate were determined using a process developed

by Furlong (Ref 8), who formed the proportionality:

EHuman Centrum = EHuman Cortex EHuman Trabeculae
E E E (3-3)
Rhesus Centrum Rhesus Cortex Rhesus Trabeculae

This was done because the modulus of elasticity, E, for the

Rhesus Monkey Cortical is not known. The centrum values for

the human were obtained from Belytschko, et al (Ref 3) and

for the Rhesus Monkey from Kazarian and Graves (Ref 15).

A broad range of values were listed for the Rhesus Mon-

key modulus of elasticity (Ref 15). Hence, it was determined

that two values of the modulus would be used representing a

lower and upper bound, and that viscoelastic constants would

be determined in both cases. The values determined were

3,400 Kp/Sq cm and 22,000 Kp/Sq cm, respectively, for the

Cortex modulus of elasticity. Since the Bony end-plate and

Cortex were assumed homogeneous, the Bony end-plate was

assigned an identical modulus in each case. Poisson's ratio

was 0.25 for both regions.
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Figure 3.2-A illustrates the mesh used and its rela-

tionship to the actual Intervertebral Joint. Internal regions

are also shown.

3.2.2 Solution Technique. An existing finite element

program developed by Hinnerichs (Ref 12) was used to deter-

mine the material values for this analysis as well as the

follow-on analysis of the entire joint. Values of E, q0'

and ql were adjusted between computer runs so that the

average end-surface displacement-time response of the finite

element model matched the average experimental data.

3.3 Results

As was discussed in the previous section, two values of

the modulus of elasticity were used for the Cortex and Bony

end-plate. These cases will be referred to as the "flexible"

and "stiff" cases, and correspond to the low- and high-modulus

values used.

It was experimentally observed that the Trabecular region

reacted viscoelastically as a function of load. Thus, for the

flexible case, finite element solutions were obtained to match

two load levels, 15 and 30 pounds. Since the overall analysis

can be observed at a given load, it was assumed sufficient to

" study the stiff case considering only the 15 pound load.

3.3.1 Flexible Case. Figure 3.3-A shows the solution

for the applied 15 pound load, and Fig. 3.3-B shows the solu-

tion for the 30 pound load case. Viscoelastic constants
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which produced a model-experimental curve agreement for the

pound case were E = 160 Kp/Sq cm, q= 39 Kp/Sq cm, and

q = 77,400 Kp/Sq cm-sec. The values for the 30 pound case

' were E = 218 Kp/Sq cm, q= 176 Kp/Sq cm, and q = 281,400

Kp/Sq cm-sec.

Two planes (Fig. 3.3-C) were chosen for analysis purposes

in order to study the radial variation of stresses as well

as the effects of creep on the manner in which stresses were

redistributed radially. These planes were selected for a

better appreciation of the effects on stress patterns brought

about by the proximity of the Bony end-plate. The two ele-

ments were chosen to gain an even greater understanding of

these effects, as well as others to be discussed in the fol-

P. lowing paragraphs. For these elements, stress components

were studied as they varied with time. It was determined

that a combined analysis of stress in a given plane as well

as stress in a given element in that plane would provide the

* greatest insight into the nature of the stress distribution

- in the Centrum. Hereafter, the top plane and element in

Fig. 3.3-C will be referred to as the "boundary" set; the

lower plane and element will be referred to as the "midplane"

set.

* The original finite element model assumed identical

properties for the Bony end-plate and Cortex. However,

the former region is known to be stiffer, although precisely

* how much stiffer is not known. The results using the
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homogeneous assumption for these two regions was therefore

compared to the results for an assumption of inhomogeneity,

wherein the Bony end-plate was assigned a modulus of elas-

ticity double that of the Cortex. Thus, the effect of in-

creasing the Bony end-plate stiffness (relative to the

Cortical) on creep deformation, stress distributions, and

stress redistributions could be analyzed in order to deter-

mine if a more precise stiffness relationship between the

two regions is required to adequately model the Centrum.

Two cases were therefore analyzed for the applied 15 pound

load, a "homogeneous" and an "inhomogeneous", depending on

whether the Bony end-plate was equally stiff or twice as

- stiff, respectively, as the Cortex. The analysis incorpor-

ating the 30 pound load will hereafter be referred to as

the "higher load" case and will assume that the Bony end-

plate and Cortex are homogeneous only.

In each case, stresses were plotted as a function of

radius and time for the two planes. Two time values were

selected, 0+ and 1100 seconds, to represent stresses existing

immediately after the initial elastic deformation and after

-' some creep deformation has occurred, respectively. To aid

in locating and comparing these plots, symbols are used

(Fig. 3.3-D). These will be annotated in the upper right-

hand corner of the page having a given plot for a particular

case. Plots are grouped by stress component for comparison
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'70

*purposes among the three cases.

Figures 3.3-E through 3.3-P show these plots in the

- boundary plane. Generally, stress patterns varied little

among the cases. The highest stress was typically in the

Cortex. (Note: the Cortex position is represented in each

plot by the single point having the largest radius; all

other radii are points in the Trabecular region). The effect

of creep was to transfer stress from the Trabecular region

to the Cortex. Axial stress (Figs 3.3-E through 3.3-G)

increased most notably in the Cortex. Radial stress (Figs

3.3-H through 3.3-J) increased in compression throughout.

Hoop stress (Figs 3.3-K through 3.3-M) increased in compres-

sion in the Trabeculae but transitioned from compression to

(4 tension in the Cortex. Shear stress (Figs 3.3-N through

3.3-P) decreased in the Trabeculae while increasing in the

Cortex. These trends suggest that, in the boundary plane,

the Centrum is behaving like a thin-walled cylinder in which

the Cortex is a shell constraining the Trabecular.

The effect of increasing the load on the stress in this

plane was most noticeable in the hoop stress component (Fig.

3.3-L). The maximum tension reached in the Cortex (at 1100

seconds) was actually less than in the homogeneous case,

even though the stress at 0+ seconds was greater in the

higher load case. Since the creep rate was shown to be less

in this case, the stress redistribution was also less.
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Comparing the inhomogeneous with the homogeneous case

shows much less effect on the stress in this plane. For the

inhomogeneous case, all Cortex stress components were slightly

higher than the values in the homogeneous case, except for

the shear stress. Apparently, the stiffer Bony end-plate

had a role in transferring relatively more stress to the

Cortex as it deformed.

Figures 3.3-Q through 3.3-X show the effects of homo-

geneity and load on the time variation of stresses in the

boundary element. The manner in which each stress component

varied with time was generally the same in all three cases.

The greatest effect was caused by the higher load of 30

* 'pounds, which nearly doubled each stress component at each

time value as compared to the homogeneous case.
-p

Again, the inhomogeneous case differed much less than

the higher load case in terms of its effect on these time

response characteristics. Generally, the stiffer Bony end-

plate caused slightly higher stresses in the element, paral-

. leling the results for the entire boundary plane.

Stresses in the midplane. also generally followed a con-

sistent pattern. Axial stress (Fig. 3.3-Y through 3.3-AA)

generally followed the radial variation pattern determined

in the boundary plane, but the variation of radial stress

* (Figs 3.3-AB through 3.3-AD) was exactly opposite the trend

in the boundary plane: the lowest stress was in the Cortex.

6
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Since the Cortex is relatively free to expand outwardly in

this plane, radial stress applied by the Trabeculae could

be relieved. This factor also explains why the Cortex exper-

ienced a greater proportion of hoop stress in this plane

(Figs 3.3-AE through 3.3-AG), since radial displacement of

the Cortex would tend to increase this stress. Finally shear

stress (Figs 3.3-AH through 3.3-AJ) decreased with time in

the Cortex and increased in the Trabeculae a a result of

creep, again opposite to the trend in the boundary plane.

These differences in the stress variations in comparing

the two planes suggest that the Bony end-plate has a dual

role in helping to restrain the radial displacement of the

Cortex, as well as transferring moment to it, as seen by the

rise in local axial, radial, and shear stresses. This moment

effect was even more pronounced when the Bony end-plate was

made stiffer. For planes nearer the midplane of the Centrum,

this restraining mechanism would not aid the Cortex allowing

it to bulge outward (Fig. 3.3-AK) and hence experience

greater hoop and radial stresses while relieving stress in

the Trabeculae. If one compares the variation of stress in

this plane, considering the higher load case with the homo-

geneous case, one notes that the hoop stress in the Cortex

d at 1100 seconds for the higher load (Fig. 3.3-AF) was about

equal to the value at that location and time for the homogeneous

case. Apparently, the hoop stresses within this plane, after

*I enough creep deformation has taken place, are independent of
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the load.

Doubling the Bony end-plate stiffness affected the

stresses more in the midplane that in the boundary plane.

Most apparent was the relatively small amount of hoop stress

redistributed in the Cortex (Fig. 3.3-AG) over the 1100 sec-

ond period for the inhomogeneous case. This shows that the

effect of a stiffer Bony end-plate has an effect on stresses

in the far field as well as in the near field.

An analysis of the stresses versus time for the midplane

element confirms this conclusion, as seen in Figs 3.3-AL

through 3.3-AS, especially for the axial and shear components.

Over time, for all three cases, the element experienced a

reduction in axial and shear stresses, while the radial and

tangential (hoop) components increased. Most interesting is

the fact that the radial and tangential components were less

in this element for the higher load case than for either 15

pound load cases. As before, this can be traced to the radial

displacement, as the element lengthened radially nearly 10%

more under the 30 pound load (Fig. 3.3-AT). In this manner,

the higher axial load caused the element to be relieved of

radial and hoop stress by these radial displacements, as the

element achieved a state of equilibrium.

The overall results for the flexible analysis imply

that the effect of load was to cause a greater radial dis-

placement of the Centrum midplane. The assumption that the

Bony end-plate and the Cortex are homogeneous is reasonable,
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since doubling the stiffness of the former had little effect

on the overall creep response of the Centrum. Unless the

Bony end-plate is significantly stiffer than was assumed,

- the homogeneous assumption is adequate.

3.3.2 Stiff Case. To account for the upper bound on

I -the range of values, the Cortex and Bony end-plate were next

assigned an E value much greater than before, and a new set

of viscoelastic parameters found for the Trabecular region.

These new values were E = 98.5 Kp/Sq cm, q0 = 14 Kp/Sq cm,

and ql = 28,140 Kp/Sq cm-sec. Each value was less than its

respective counterpart determined using the flexible Bony

end-plate and Cortex, again underscoring the influence of

the two regions on the creep response of the Centrum.

To provide a check on the results, Eq (3-3) of section

3.2.1 was used to compare the known ratio of Human to Rhesus

Monkey Centrum moduli of elasticity to the analytically

determined ratio of Human to Rhesus Monkey Trabeculae moduli

of elasticity. Using the information in that section as well

as a Human Trabeculae E value obtained from Belytschko, et al

(Ref 3), the two ratios were 6.2 for the Centra and 7.6 for

the Trabecular regions. Hence, Eq (3-3) is a useful method

to approximate Rhesus Monkey moduli of elasticity, in the

absence of precise values.

Figure 3.3-AU shows the analytical solution for average

top-surface displacement. To avoid repetition of the analyses

of the flexible case, only the 15 pound load data was matched.

Figures 3.3-AV through 3.3-BC show the stress distributions

96
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in the boundary plane and midplane, where the plots are

again organized by stress component for comparison purposes.

The same general trends existed in each plane regarding radial

stress variation and stress redistribution, as existed in

those planes for the homogeneous case (flexible Cortex) dis-

cussed in the previous section. Differences were in the

relative contribution of Cortex and Trabeculae in carrying

loads. In the stiff case, the Cortex carried a proportion-

ately larger share of radial and tangential stresses in the

boundary plane (Figs 3.3-AV and 3.3-AZ). Trabeculae stresses

also tended to be more evenly distributed in both planes.

The midplane element experienced the same general stress-

time response (Figs 3.3-PD through 3.3-BG), but the axial

stress for the boundary element (Fig. 3.3-BE) decreased with

time instead of increasing, as it did for the homogeneous

case of the previous section. The stiffer Bony end-plate/

Cortex combination allowed the axial stress to relax under

creep deformation.
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IV. Joint Analysis

The second phase of analysis for this investigation in-

volved obtaining viscoelastic constants for the disk modelled

as a homogeneous region. These constants described the aver-

age creep response reported by Furlong (Ref 8), who obtained

creep data on healthy intervertebral units from the Ll-L2

level of the Rhesus Monkey spine. He conducted his tests by

subjecting specimens to an axial compressive load of 15

pounds (67 Newtons) for 8 hours followed by a 16-hour relaxa-

tion period. Specimens were obtained by cutting the joints

through the disk midplane and through adjacent Centrum mid-

planes (Fig. 4.1-A).

4.1 Finite Element Model

The finite element mesh used for this analysis was ob-

tained from Furlong and is also shown in Fig. 4.1-A. The

material properties (E and u) used for the Trabeculae, Bony

end-plate, and Cortex were identical to those used in the

Centrum analysis previously discussed in this thesis. The

Bony end-plate and Cortex were assumed homogeneous with

E = 3,400 Kp/Sq cm and u = 0.25. The viscoelastic constants

(E, q0, and ql) for the Trabecular region were those found

in the Centrum analysis for the flexible case at an applied

load of 15 pounds. Poisson's ratio for the disk was 0.48.

E, q0, and ql for the disk were initially set equal to the

' -111
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values Furlong obtained for the disk as he modelled it.

4.2 Film Data

One major limitation of the method of analysis used in

this study was that one-dimensional data (top surface dis-

placement) was used to approximate properties describing a

two-dimensional displacement phenomena. A means was required

for confirming the validity of the analytical results ob-

tained from this standpoint.

A series of time-lapse films was used to provide such

a check. These films were taken by Furlong (Ref 8). The

test cell was filmed during each test; each film included a

clock to indicate elapsed time. The diameter of the disk

midplane (mid-height of the specimen) was measured using a

travelling microscope. Three tests were chosen (one test

per film) and five frames were selected from each film to

*obtain these measurements.

Two major difficulties were encountered in taking these

measurements. First, the amorphous nature of the biological

material as well as a lack of contrast made measurement

- - points hard to see at times. Secondly, the accuracy required

to measure the very small displacements of the disks between

successive frames very nearly approached the accuracy limits

of the microscope. However, using a technique where each

frame was measured several times, an average measurement was

then obtained for that frame.
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Only the first 2,000 seconds of each test film was used,

since that was the limit of the experimental displacement

time data modelled in this analysis. Measurements were taken

at approximately 400 seconds into each test and at 400 second

*intervals thereafter. Since frames were exposed once every

25 seconds, these intervals could only be approximated.

Disk midplane radii were computed from each diameter

measured by simply dividing by two. The difference in radii

between chronologically successive frames thus represented

an unscaled displacement over the interval. These values

will hereafter be referred to as measured interval displace-

ments, AUr. Each film yielded four such values.

These measured interval displacements were adjusted to

full-scale interval displacements, AUr, using a scale factor

obtained by dividing the measured disk radius for the 400-

second (earliest) frame into the disk radius used in the

finite element model (0.85 cm). Thus

0.85
Scale Factor = Disk radius at 400 Sec (4-1)

The actual interval displacements were therefore expressed as

AUr = AUr (Scale Factor) (4-2)
m

Interval median times were determined for each time

interval. These times were based on the 400-second initial

measurement as well as its corresponding time interval. Four
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average median times, tim A were then obtained from the four

time intervals in each of the three films.

Finally, for each time interval, the four values of AUr

from the films were averaged to obtain an average interval

displacement, AUr. The results of this procedure are listed

in Tables 4.2-A through 4.2-D. Good agreement existed

between these values and the analytical displacements re-

ported by Furlong (Ref 8).

4.3 Results

Experimental displacement-time values and the analyti-

cally generated data are shown in Fig. 4.3-A. The displace-

ment function described in section 3.1.3 (Eq 3-2) was again

used to provide a curve-fit to the experimental data. Con-

stants defining this curve were C1 = 0.0312, C2 = 9.333 x 10-6

C3 = 0.0055, and X = 0.0432.

Viscoelastic constants obtained for the disk were E =

1,000 Kp/Sq cm, q0 = 1,000 Kp/Sq cm, and ql = 99,000 Kp/Sq

cm-sec. It is the author's opinion, based on previous experi-

mental results reported by Furlong (Ref 8), Allen (Ref 2),

and Hinnrichsen (Ref 13), that these constants are unrealis-

tically high, indicating a disk which is stiffer and creeps

at a slower rate than the Trabecular region in the Centrum.

rT Efforts to match the experimental curve precisely resulted

in viscoelastic constants at least three orders of magnitude

larger than those determined. One possible reason for this
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TABLE 4.2-D

Average Film Measurement Data

Time Average Interval Average
Interval Median Time Interval
(Sec) tm (Sec) Displacement

Tr (cm)

400 - 800 610 0.00270

800 - 1200 1019 0.00224

1200 - 1600 1417 0.00196

1600 - 2000 1821 0.00143

I
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discrepancy could be that the rheological model, consisting

of two three-parameter Kelvin solids in series, used to

represent the creep deformation of the overall joint will

not permit determination of unique viscoelastic constants

for the disk given similar constants for the Centrum. Per-

haps a Three-parameter Kelvin Solid in series with a Kelvin

Solid would yield better results. Further investigation is

required to determine a viable model.

To provide a check on the creep deformation experienced

by the model, the film data determined in the previous sec-

tion for the radial displacement of the disk midplane was

compared to the model deformation of a corresponding node

located at the outer edge of the disk midplane. The results

f I-.of this comparison are summarized in Table 4.3-A. One notes

immediately that the model displaced several orders of mag-

nitude less than the film measurements predicted, further

implying that the disk has been modelled as being too stiff.

Despite the limitations of the analytical results, it

was determined that an analysis of stress patterns would

prove beneficial in describing the manner in which stresses

are distributed and redistributed in the intervertebral joint.

Two planes were selected for this analysis (Fig. 4.3-B).

Figures 4.3-C through 4.3-E present these plots for the disk

plane and Figures 4.3-G through 4.3-J present them for the

centrum plane. In the disk plane, radial stress (Fig. 4.3-C)

120
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TABLE 4.3-A

Comparison of Disk Radial Displacement
From Film Measurements and Analytical Results

AUr (cm)

Median Time (sec) Films Analytical

610 0.00270

644 - 0.0000124

1019 0.00224

1065 - 0.0000225

1417 0.00196

1465 - 0.0000084

1821 0.00143

1840 - -0.0000012
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- varied little with radius and generally increased in magni-

tude as creep occurred. Axial and tangential stresses (Figs

4.3-D and 4.3-E) also varied little. Hoop stress was tensile

near the edge of the disk, indicating that the disk is acting

like a shell. The greatest radial variation occurred in the

shear stress component (Fig. 4.3-F) where, over time, stress

magnitude generally increased for most radii. The fact that

little stress redistributed in this plane can again be traced

to the high ql value determined, indicating a relatively

creep-resistant material. These patterns are thus in dis-

agreement with prior studies (Refs 2, 8, and 13).

Stresses in the Centrum plane, however, are more real-

istic, parallelling the results for the midplane in the Cen-

trum analysis of this thesis. Radial stress (Fig. 4.3-G)

was compressive and increased in magnitude as creep occurred.

Axial stress (Fig. 4.3-H) was highest in the Cortex (data

point having the highest radius); stress was transferred to

the Cortex as creep progressed. Tangential stress (Fig.

4.3-I) was compressive in the Traceculae and tensile in the

Cortex; stress magnitudes increased at all radii. Finally,

shear stress (Fig. 4.3-J) varied considerably, especially at

the interface between the Trabeculae and Cortex, and also

increased in magnitude over time. These patterns reconfirm

the results of the Centrum analysis and again describe a

Centrum whose Cortex is behaving like a thin shell constrain-

* ing the outward flow of the Trabeculae.
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V. Conclusions and Recommendations

Centra from Rhesus Monkey intervertebral joints were

subjected to axial compressive loads for eight hours and

observed to exhibit viscoelastic (creep) behavior. Using

an axisymmetric finite element model of the Centrum which

incorporated a viscoelastic Trabecular bone, material para-

meters quantifying this behavior were determined for applied

loads of 15 and 30 pounds by matching one-dimensional experi-

y-. mental displacement data.

Significant stress redistributions occurred in the Cen-

trum as a result of creep behavior. It was found that the

Trabecular bone, as it creeps, transfers load to the Cortex.

Thus, the Centrum can be characterized as having a Cortex

which is acting like a thin shell constraining the outward

i. flow of the Trabecular bone.

It was determined that it is reasonable to consider the

Cortex and Bony end-plate as a homogeneous unit, in the

F-> absence of precise material properties for the latter region.

Load level had an effect on the material parameters

found in the Centrum. In general, all three constants were

so dependent, as the overall creep response was non-linear

with load.

For the follow-on analysis, viscoelastic constants

determined for the Trabecular bone were applied to an overall
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model of the intervertebral joint (minus the articular facet

joint and associated ligaments) with the object of determin-

ing similar constants for the disk region. Constants deter-

mined were unreasonably high, indicating an excessively

stiff, creep-resistant disk. It was determined that the use

of two Three-parameter Kelvin Solids in series may be an

inadequate rheological model, since unique parameters for

the disk were unobtainable by the analytical method utilized.

It is recommended that other rheological models be considered

to ascertain a more viable model of the overall joint creep

response. Viscoelastic constants for the disk should then

be determined.

A crude optical technique was used wherein time-lapse

film images were measured to determine disk radial displace-

ments, and provide a check on the two-dimensional creep

response of the finite element model. It is recommended

tb.,t such a technique be explored to ascertain ways of

improving related photographic and measurement techniques.

The incorporation of a viscoelastic Trabecular bone

*0 region is necessary to precisely model the time dependent

deformation of the intervertebral joint. As such, the disk

cannot be considered the sole medium of creep behavior.
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APPENDIX A

Stiffness Matrix and Nodal Force
Vector For Axisyrmietric Problems

The derivation of the Stiffness Matrix and Nodal Force

Vector proceeds as follows for an axisymmetric problem.

A.1 Stiffness Matrix (Ref 31)

The general equation for the stiffness matrix of an ele-

ment is given by

T[k] = f [B] [D][B]d(volume) (A-1)
V

For an axisymmetric problem, this integration must proceed

over the entire ring. Hence,

[k] =2rf [BIT[Di [B]rdrdz (A-2)

Summing the contributions from each of the elements, the

structural stiffness matrix becomes, for N elements

N
[K] = E 27rf [B] T[DI [B]rdrdz (A-3)

n=l

Since [B] contains terms dependent on the coordinates,

*: straightforward integration may not be possible. An approxi-

- mate solution can always be obtained by evaluating [B] at a

O centroid defined by

r= (r I + r2 + r )/3 (A-4a)

z= (z 1 + z 2 + z3)/3 (A-4b)
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If we then define [B] to be [B] evaluated at the centroid,

one can obtain the approximate expression

NT -

[K] = 2ffA [B] [D] [B]r (A-5)
n=l

where An is the area of element n.

A.2 Nodal Force Vector Due to a Surface Traction

Consider a triangular element subjected to a surface

traction, F(r,z) (Fig. A.2-A). The Nodal Force Vector repre-

senting this traction is

1p} fA[N]T {F} dA (A-6)

For an axisymmetric problem, this becomes

T
{p} = 2rf s [N] {F1 r ds (A-7)

where

{F} = Fr (A-8)
".' FZkz
and Fr and F are force intensities (force per unit area) inr iz

the indicated directions. On the surface subjected to the

traction, the area coordinates and, hence, shape functions,

Ni l are

L =N =0 (A-9a)

L = N 1 (A-9b)

L N3 = (A-9c)
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• "where L is the length of the side. Since the element shown

is isoparametric, we may express the radius as a function of

the nodal coordinates:

r = Llr 1 + L2r2 + L3 r3  (A-10)

so that

S5
r= (I-L)r2 + r3  (A-11)

Substituting Eqs A-8, A-9, and A-11 into Eq A-7, one obtains

the following

]0
Plr 0

Plz 0

F2r F(r 2 /3 + r3 /6)

(S{p} 27TL (A-12)
p2z Fz (r2 /3 + r3/6)

'3r Fr (r2/6 + r3 /3)

P3z, Fz (r2/6 + r3 /3)

A structural nodal force vector {P) can then be obtained by

assembling element nodal force vectors.

U
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APPENDIX B

Experimental Data

This section contains experimental data for the Centrum

tests. It includes Calibration Data, Experimental Curves,

- . Extracted Data, and Internal and External Measurements.
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TABLE B-i

Calibration Data*

Specimen Load Calibration Factor Zero
ID(l)(10- in/in) (in)

KAZ 7(Ll) 15 0.9366 -8

KAZ 7(L2) 15 0.9198 +4

KAZ 10(Ll) 15 0.9901 +7

KAZ l0(L2) 15 0.9671 -3

KAZ 30(L1) 15 0.9398 +10

KAZ 30(L2) 15 1.0024 +8

KAZ 3(Ll) 30 1.0378 +7

KAZ 3(L2) 30 0.9634 +9

KAZ 6(Ll) 30 0.9679 -4

KAZ 6(L2) 30 1.0229 0

RHES 17(L1) 30 0.9992 +14

RHES 17(L2) 30 0.9785 +32

*Displacement (in) =Calibration Factor x (Digitized Value-

Zero)
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Superior Surface

28
I II

~03
Inferior Surface

Fig. B-i. External Measurement Code, Centrum Tests.
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APPENDIX C

Example of Calibration Procedure

This appendix presents an example of the procedure used

to determine the calibration factor described in section

3.1.2 of the text.

-: Consider the following successive displacement readings

taken at the data terminal for the indicated cylinders:

Cylinder Used Reading

Long -2712

Short -1413

Long -2699

The average reading using the long cyliinder is -2705.5. The

measured difference between this averace reading and the

reading from the short cylinder is therefore -1292.5. Finally,

the calibration factor is

0.1250
Calibration Factor IMeasured difference i0_ (3-1)

* 0.1250

1-1292.51 10-

Calibration Factor =0.9671
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APPENDIX D

Method for Predicting q,

. This appendix describes a method for graphically pre-

dicting an approximate value for the qmaterial parameter

described in this thesis. It is based on a knowledge of the

axial displacement - time behavior immediately after creep

strain begins.

I . Consider the axial displacement - time curve illustrated

in Fig. D-1, where uz represents the initial elastic dis-

placement at t = to , and uzl represents the displacement at

t = t1 , a short time, At, later. An approximate expression

for the initial displacement rate uo is the slope, a, of a

( <straight line between the two points, where

a 0 (D-l)

tl - t o

An approximate expression for creep strain rate, c' can thus

be obtained as

*ac L (D-2)
0

where L is an average axial length immediately after elastic

* deformation has occurred and before any creep strain has

accumulated. Using the fact that ql is related to the slope

* of the stress versus strain rate curve for cc =0 (see the

* main text for a discussion), and using an average axial stress,
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t t =t +At t0 0

Fig. D-l. Approximate slope of the displacement-time
curve after elastic deformation.
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SAVG , over the loaded surface at t = to, we can approximate

ql by

q °AVG (D-3)

c

Estimation will improve as At is made smaller, since the

true value of ql will then be approached in the limit as At

approaches zero. This approximate value can then be used as

a good first guess in which to begin the analytical technique

described in this thesis. The author found it useful, per-

mitting fewer computer runs to converge to a final value.
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