" AD~A124 712 RUTDNRTED TOOLS FOR TEST AND RNRLVSIS OF RADAR HHRNING 172
RECEIVER SOFTHRRE(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI J R ROBERTSON
DEC 82 AFIT/GCS/EE/82D-28 ,FeG 1279 L

———
———
—

=L

L2s flis de ,-

2

EFEE
EFF

erceEFEEE R

=
=

MICROCOPY RESOLUTION TEST CHART ' .
_ NATIONAL BUREAU OF STANDARDS-1963-A ’

L::j
14 .
3 o /
[y =i
e
L -
o %
. 1 4
A IO A T A R TR AT O R R
ot T
! AUTOMATED TOOLS .
’ FOR TEST AND ANALYSIS OF
RADAR WARNING RECEIVER SOFTWARE
THESIS
]]
AFIT/GCS/EE/82D-28 JOEL R. ROBERTSON
/ / Clv USAF
This document has been approved DT‘ c
for public releasc and sale; its ELECTE
distribution is unlimited. \
) FEB2 2 1983
D= DEPARTMENT OF THE AIR FORCE A
= AR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

83 02

T FILE C

022 143

JJINCLASSIFIED

SECURITY CLASS'FICATION OF THIS PAGE (Whan Da:s Entered)

REPORT DOCUMENTATIGH PAGE BEFGKL COMPLE FING. ¥ ORM
I REPORT RUMDER T sovy ACCESSICN NO| 3 PECIT FR TS CATALOG NUMBER
AFIT/GCS/EE/82D-28 LAD-AILY Q12 ¢
4. TITLE (and Subtitle) T - -g--"_\;.ﬂ—.;; -F\;’a:\-T & PERIOD COVERED
Automated Tools for Test and Analysis
of Radar Warning Receiver Ssoftware MS THESIS

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) 8. CONTHACT OR GRANT NUMBER(s)

Joel R. Robertson, Civilian, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 oii‘i LEMENT. PROJECT, TASK
A wC

RK UNIT NUMBERS
Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
WR/ALC-MMRRVA December 1982 L
Robins AFB, Georgia 31098 3. NUMBER OF PAGES

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from Report)

18. SUPPLEMENTARY NOTES 4_‘,. JA“ 1[&8:3
Approved for pub11c release, IAW AFR 190-17 LYNW E. WOLAVER

Ali Toros lnstitute of Technology {ATC)
etson AFB OH 45433

19. KEY WORDS (Continue on reverse aside if necessary and identify by block number)

Computer Programming

Computer Programs

Computer Program Verification
Debugging (Computers)

20. ABSTRACT (Continue on reverse side if necessary end Identify by dlock number)

See reverse

Dean for Research and Professional Dev.loAl-

DD ':g:lgn 1473 =oITION OF | NOV 63 1S OBSOLETE

UNCLASSIFIED

T T T
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

PV S S YO AUAE SIS Y ST T WL PR Y.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

20, Abstract

The Data Extraction and Analysis System (DEAS) was
designed and implemented for the Electronic Warfare Avionics
Integrated Support facility at the Warner Robins Air
Logistics Center. The DEAS is designed to be used with
the ALR-46 Integrated Support System (ISS) to assist
testing and evaluation of operational flight software.

The system is written in DEC standard Pascal.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

U UM G AL YU

..........

AFIT/GCS/EE/82D-28 | L e
‘ f f3 Tan

Uranucunaced

i Justification

ikd

Diatritution/

Availabiliiy Codes
dvatl andfor
Dist | Spsersl

Al

J

P

AUTOMATED TOOLS
FOR TEST AND ANALYSIS OF
RADAR WARNING RECEIVER SOFTWARE

THESIS

AFIT/GCS/EE/82D-28 JOEL R, ROBERTSON
CIv USAF

Approved for public release; distribution unlimited

- - . " .
e alial sl A e Sl e ey b : . : . A m m— m M & - a_a a_"a al e e . T. L

AFIT/GCS/EE/82D-28

i AUTOMATED TOOLS
FOR TEST AND ANALYSIS OF
RADAR WARNING RECEIVER SOFTWARE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
@ Air University
in Partial Fulfillment for the Degree of

Master of Science in Computer Engineering

by
Joel R. Robertson, BSEE
CIv USAF
Graduate Electrical Engineering

December 1982

Approved for public release; distribution unlimited

PREFACE

W '.l "u'. S '." R

The ALR-46 Data Extraction and Analysis System was
developed for the Electronic warfare Avionics Support
Facility to assist in testing of the ALR-46 operational

flight program,

I would like to express my appreciation to my thesis
committee , and in particular Dr. Gary B. Lamont my thesis
advisor, for their assistance and guidance during this
thesis. Finally, I would like to extend my sincerest thanks
to my wife, Tami, for her encouragement and assistance in

typing this thesis,

ii

..
..................................

CONTENTS

ii

PREFACE
LIST OF FIGURES .« ¢ o ¢ + o o o ¢ o o o o o o o o o o o vii
LIST OF TABLES ¢ o « o o o o o o o o o o ¢ ¢ o ¢ o o o o Vii
ABSTRACT . ¢ ¢ o o o o o s s o o o o s o o o o o o o o Viii

CHAPTER 1 INTRODUCT ION

BACKGRwND [] [] L L] L] L [) * L [] * [] L) L] [] [] * [] 1
ALR"46 Radar Warning Receiver ® © ¢ ¢ o ® o o @ 2
Program Maintenance . . o« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « ¢ o« 3

PROBLEM * [] L] * L] L] [] [] L] [) L] L 2 * L] L] L] L] L] . * [] [] 4

SCOPE [] L) [* L] L] L] [] L] [] [] L) [) * [] L] ® L] L] * * * L] 5

STANDARDS [] L] * L] L] [L] [] [] [] L] L] * L] * * L] L * L] [2 6

APPROACH [] L] L] * L] * L [] L] [] * L] [] L] L] * * L) L] 6

THESIS DEVELOPMENT e o o o o o o o o e o s o e o 7

CHAPTER 2 SYSTEM REQUIREMENTS

INTRODUCT ION L] L) L] [] [L) L] [] L] * L[] L [] * [] L] * L) L] 9

ENVIRONMENT [] * L J L] L) L] L] [] [] L] * [2 L] L) L] [] [] L] * 1 o
Introa'JCtlon * []) L] L) L] - * L J L] L] . L] L] L] * L] 10
AI.IR- 4 6 IS S o @ e ©6 e o o e e ©®© © e e e ¢ o o 1 1
Interface Controller e o o o o o s o o o o o o 13
Edit And Assembly Station . . . ¢« ¢« ¢ ¢+ . . . 14

USER REQU IREMENTS . . ¢ o e e * » [} L] [] * e s o . 1 5
Interviews . . . e o o o o o o o s o o o o 15

HUHAN"FACTORS REQU IREMENTS . e ® o ¢ o © o o o o 1 7
Introduction « « « ¢« ¢ o o« o o ¢ o o s o o o o 17
Design Principles ., . « ¢« ¢ ¢ ¢ ¢ ¢ s o o o« » 17

AVAILABLE TOOLS [] L] [] [] L] [] [] [] L] ® L] L] L] L] L] [] [] 1 9
Static Analysis [) [] L] [] [] [] L] L] L] L] ® [] L] L] L 19
Dynamic Analysis . o o« ¢ ¢« ¢ o ¢ ¢ ¢ o ¢ o o o 20

TOOLS s ELECT ION L] L] [] [] [] L] L J - L] ® L L] L] * L] L] L] 2 3

SUMMARY * L] L] [] [] L] L] L] [* [] [] L [] L] L] L) L] L] [] L] 2 4

CHAPTER 3 SOFTWARE REQUIREMENTS

INTRODUCT ION L4] * L]] [] L] L] L d [] L] Ld] L] L] L] . L] 2 6
SOFTWARE MONITORS. . « « o ¢ o « o o ¢ s o o « o 26

CHAPTER

CHAPTER

CHAPTER

APPENDIX A

........

SOFTWARE REQUIREMENTS. .
Performance Analysis Mode
Coverage Analysis Mode
Error Analysis Mode .
Trackfile Mode
RWR Mode . « « & o « ¢

SUHMARY L] L [L L] * [] L] L[]

4 SOFTWARE DESIGN

INTRODUCTION. . .
DESIGN STRATEGY.
DESIGN TECHNIQUES.
SADT Diagrams. .
Structure Charts
Data Dictionary
SUMMARY, « ¢« ¢« « &

5 IMPLEMENTATION

INTRODUCTION., . « «
IMPLEMENTATION STRATEGY.
IMPLEMENTATION DETAILS.
Data Structures . .
Main Executive . . .
Subroutine Execution
Coverage Analysis
Error Analysis . .
TESTING. « « « o
White Box Testlng
Black Box Testing
System Testing . .
SUMMARY. « ¢« o ¢ o o

6 RESULTS AND RECOMMENDATIONS

RESULTS [] [] L] L] * [[] []
RECOMHENDATIONS. o o o

BIBL IOGRAPHY L] L] * [] L [L} L] L 4 L]

STATIC ANALYSIS TOOLS. .
DYNAMIC ANALYSIS TOOLS.

iv

s o ¢ o o o o He o
e

&
o

INDEX OF AVAILABLE SOFTWARE TOOLS

[) [] L] [L]
e © o o o o o
owr L R I
® & ¢ & o o e
e & o o o o o
e & o o o o o
® @ ¢ o o o o
e & o o o o o

e & o o o o o
[] L * [] L] - L]
[] L] L] [] * L] L]
L] L [) L] L d [] o
L] * L L] [L] L]
[] L] L) [] L] L] L
L] L] [] L[] L] L] L]
L] L L] . ® L] L]

TESTING

(1]
Q

o & o o o o o e o o o o
[
=]

® © o @ o o o jdo o o o o
]

e ® o o © o o (e o o s o
e

o o o o o o o De o o o o
=]

o ¢ o o o o o (3o o o o o
@ & ¢ e ¢ o & 0 0 0 ¢ o o

[] . L] L] * [] L]
* * * L * * *

L] L] L ® o L] L]
L] L] L] e o . []
. L4 L . @ L] [}

* L] . . [] [] L d
[] L] L] L L] L] L]
* L J] e L L] *

28
29
29
30
30

30

48
49

50

53
53

.........
PRSI WP ST W SUR RPN RIUEE WS UPAL PR P RP LI W WO JP L . WL 1P SV UL A SR P

- . . o . - - - - - . - - - T v N . P Al Y A e Bbae Shets SRiten vt v
.......... I T R T T N A TR I

& | APPENDIX B DATA EXTRACTION FILE FORMATS

EVENT/LOCATION SPECIFICATION FILE, 56
EXTRACT ED DATA FILE - L4 L J * L] [L) L) L L) L * L L] * 57

APPENDIX C SADT DIAGRAMS
DATA__ANAI‘YS IS [] L) L] ® L L] L J [] L [) * L] [) [] L] * [] 6 0
PERFORMANCE_ANALYS Is * L] L L] [] L] * L] . [] L L] [] L] 6 1
COVERAGE_ANAIIYS IS L L) L L J L] L[] [] L L[] L L] L) [] L] * 6 2
ERROR__ANALYS IS [] L] L] * [] L L] L] L] [] L] L] [) [] L] * [] 6 3
APPENDIX D STRUCTURE CHARTS
DATA ANAIIYS IS L] [] * L] L] L] L] L] L] L [L] L [2 L L * 6 5
Help U se r [] L] . ° L] [] L] * * L] L) * . [] [) * L] L] 6 6
Sel eCt MOde L] [] L] - L) L] L]) L] L] L] L * [] * * L] 6 7
Do Performance Analysis . . ¢« ¢« ¢« ¢« ¢« « « «» o 68
Do Coverage AnalyBis . ¢« ¢ ¢« ¢« ¢« ¢ ¢ o ¢« o o« o 71
DO Error AnalYSis * [] L] L] L) L] L] [2 L] * * L L . 74
APPENDIX E DATA DICTIONARY
SYMBOLS AND MEANINGS [) [) L L] L] L] * L L] L . L] * L] 78
@ DATA EL EMENTS * [) [] [] * L] L] - L] L] L) L] * [] * L] L) 7 9
DATA FLWS . L] L L - L] L L] L] L] L] L) * L] [) L] [] * L] 86
FILES [) L] [] [] L] [] L] * L) L] L] * [L] L] L] [) L] * L] * 8 9
APPENDIX F PASCAL SOURCE LISTING
PR%RAM DATA_ANALYS IS L] L] L] [] [] L [] * * [] o * [] 9 2
Procedure get_input . « ¢« ¢+ ¢ ¢ ¢ ¢ ¢ ¢« o « o 94
Procedure help_USEr . « ¢« ¢ « « o o« « « o o o 95
Procedure get_address . . ¢« ¢« ¢ ¢ o o ¢ o o o« 97
Procedure octal ., « ¢« ¢« ¢ o o o ¢ o s ¢ ¢ o« o 99
Procedure perf_help . « « ¢« « ¢« « « o « « » o 100
Procedure perf_build dx . . « ¢ « ¢ ¢ o« o « o 101
Procedure perf_collect_data . . . « ¢« ¢« « « o 103
Procedure push_stack . « ¢« ¢ « ¢ o ¢ o ¢« ¢ « o 104
Procedure popstack .« « « « « ¢ o o o o o o« o o« 105
Procedure perf_reduce_data , . . . « ¢« « . « . 106
Procedure do_performance . « « « o« o o« ¢ o o o 109
Procedure cov_help « « « ¢ o « ¢ ¢ o o ¢ « o o 110
PtOCEdUl‘e COV_build_dx [I} [} ¢« o o ¢ o . [} L] [1 11 !
Procedure cov_collect_data . « « o o o ¢ o o o 112
Procedure cov_tree_search . « ¢ ¢« o o ¢ o ¢ o 113
Procedure build_cov_tree . « « « ¢« ¢ « o o o o« 115
Procedure read_cov_tree . . . o« o ¢ o« o« o o o 117
Procedure cov_reduce_data . . « « ¢ ¢« « « o« o 118
Procedure do_COVErage . « « « o o o o o o o o 120

..... T T I PR
L T N T T T T T T Ce o) . : {
Py Py (™ A P) P SR N, W WG S W Y S W U SRS N S S S Gy P’ ER e _Aj

Fﬁ Procedure error_help o« « « o o o o o o o o ¢ o 121
= Procedure error_build_dx . « « « ¢ ¢ o o o« o o 122
. Procedure error_collect_data . . . « « « « o « 123
{ Procedure err_tree_search ¢ ¢ o « o « 124
D Procedure build_err_tree . « ¢« « ¢ ¢ o o o « o« 126
q I Procedure read_err_tree . o« s+ « « « o « o o« o 128
‘W S Procedure error_reduce_data . . « ¢ ¢ ¢« » o o 129
o Procedure dO_error ., « « o« « o o o o o o o o o« 131
= Procedure do_trackfile « « ¢« o« o o ¢ o ¢ o o o 132
Procedure dO_IWE . « « ¢ o o o o o o o ¢ o o o 133
Main Executive . « o« o ¢ o o o o o o o o o o o 134
: APPENDIX G TEST DOCUMENTATION
>‘. TEST PLANS [) L [] [] [] * [] * L] * * [2 L] L] L] L] * L] L] 137
‘: TEST DATA AND RESULTS . ° Y . ° [} L)) L) ° . . . 140
- Performance AnalysSisS . « o« o« o ¢« o o« ¢ o« o o« o« 140
': Coverage Ana].YSiS e © 8 e ® 8 e e o ® e e o @ 143
.‘ Error AnalYSiS . . . * o . . . ° [] . ° ° [} . 144
&
-: Vita L] L2 L] L L] L] * L] L] * L] [] * * [) L - * * [] [] [) * * [] L] 147
7
2
;.
:c:-: ::1’
3%
vi
g DI N TR i o S B s D

LIST OF FIGURES
Figure Page

1. ALR-46 Radar warning Receiver . . o« ¢ ¢ ¢ ¢ o o o 3
2, ALR-46 ISS NetWOrk . « s « ¢ « o o ¢ o o ¢ o o o« o« 10
3. ALR-46 ISS o o« o o o ¢ s o o o o o o o o s o o o ¢ 11
4, Bot Mock-up Subsystem . . ¢« « ¢« ¢ o ¢ ¢ ¢ o« o ¢« « 12
5. Data Extraction Subsystem ¢« ¢« ¢ ¢ ¢ . . o 14
6. DEAS Function Chart . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o 29
7. Box/Interface Arrow Definition . . ¢« ¢« ¢ ¢ « o ¢« « 35
8. SADT Diagram . « o« o« o o o ¢ o o o o o o o o o o o 36
9. Structure Chart Symbols . . ¢ « ¢ ¢ ¢ ¢ ¢ o o o « 37

10, Structure Chart . ¢« ¢ o o o o s o o o o o o o« « o 38

LIST OF TABLES

Table Page

l L] val id Commands L] L] . L] » L) L L] L) L] L] L L) . [L [L] 41

2., Equivalence ClaSsSeS . . o« « + s o ¢ o o o o o o« o« 46

vii

v v -
AR S AN
4 .. L
< e e
P Lttt
B
.
/
¢

ABSTRACT

!
t
r

The Data Extraction and Analysis System (DEAS) was
designed and implemented for the Electronic Warfare Avionics
Integrated Support facility at the Warner Robins Air
Logistics Center. The DEAS is designed to be used with the
ALR-46 Integrated Support System (ISS) to assist testing and
evaluation of operational flight software. The system is

written in DEC standard Pascal.,

i

viii

CHAPTER 1
INTRODUCT ION

1.1 BACKGROUND.

The primary function of an electronic warfare (EW)
system is to detect radiation, identify and evaluate
threats, and generate appropriate responses (Ref 13:3). One
type of electronic warfare system is the Radar Warning
Receiver (RWR). The response produced by a RWR is to inform
the pilot when his aircraft is being illuminated by a
hostile threat., The two types of RWR's are analog and
digital (Ref 8). Analog RWR's were developed first and gave
only signal direction and relative signal strength
information, The digital RWR's contain an embedded computer
and identify the threat by comparing measured signal
parameters to those stored in a data base, The digital RWR
would then display the type and position of the threat on a
cockpit CRT display. The program that the RWR executes is
called the Operational Flight Program (OFP) and the data

base is called the Emitter Identification Data (EID).

l.1.1 ALR-46 Radar Warning Receiver - The Electronic
Warfare Avionics 1Integrated Support Facility (EWAISF) at
Robins AFB provides hardware and software support for the
Air Force Electronic Warfare systems. One of the largest
systems maintained by the EWAISF is the ALR-46. The ALR-46
is a 2 to 18 Ghz digital radar warning receiver (RWR). It
is capable of analyzing and identifying up to 16 emitters
concurrently. The ALR-46 is the most widely used RWR in the
Air Porce inventory (Ref 23:193). The ALR-46, shown in
figure 1, consists of the following (Ref 16:6,13): four
amplifier/detectors located at 45, 135, 225, and 315
degrees, an omni-directional low band receiver, the signal
processor, up to two azimuth indicators, one "threat display
and control unit" for each azimuth indicator, and interfaces

to aircraft avionic systems,

Two hardware versions of the ALR-46 are currently
maintained by the EWAISF, the original version and an
updated version., The original version of the ALR-46 has a
five board CPU and draws the CRT display symbols with
software, The updated version has a single board CPU and
has a dedicated graphics processor for drawing the symbols
on the CRT. The different hardware configurations require
different versions of software. The Tactical Air Command
(TAC) and the Strategic Air Command (SAC) have different
mission requirements and therefore use different versions of
software for each hardware configuration, Therefore, each

of the two hardware configurations have two versions of the

-2 -

PRIEPS, - pann T WENE SR EPIFIF S T TP WS WP WOE W W BPN TO W W I PR W U S S S T S T

v
-

~ T = - —

Dkt i= s »I'. vLe

R Lt
K

AMPLIFIER/DETECTOR (4) INTERFACES
BANDS 1-3
45°
e BLANKING & JAMMER
INTERFACES
135° e INTERCOM
—-;ﬁ ALR-46 DIAMOND
- DESIGNATED
225 SIGNAL DATA HAND-OFF

PROCESSOR pomee PROCESSOR DATA BUSS

315

j— OTHER AVIONIC
INTERFACES

BAND 0

T TTYY

RECEIVER

N JL
AZIMUTH
INDICATOR

THREAT DISPLAY
5l & CONTROL UNIT

Figure 1. ALR-46 Radar Warning Receiver
operational flight software for a total of four software

versions.

1.1.2 Program Maintenance =~ Routine changes to the flight

software are made during a Block Change Cycle
(Ref 14: Sec 4, 7). A Block Change cycle is a scheduling
method to collect, develop, implement, and test computer

program changes in a fixed time frame (Ref 14: Sec 1, 4).

N

Program changes are collected to be processed concurrently
in each change cycle., Program changes are prioritized and
placed in a queue up to the block cycle cutoff date.
Changes received after the cutoff date are held for the next
change cycle. The software for each of the four versions is
updated once each year., The primary reasons for updating
the software are: to update the EID to include new
intelligence data or to reflect changing mission
requirements, to add new capabilities to the OFP, and to
corect errors found by either the user or by maintenance

personnel.

The ALR-46 Integration Support System (ISS), provides a
facility for testing and evaluating the performance of the
ALR-46. Data can be extracted from the signal processor
without interfering with the program execution. The ISS
allows operation of the signal processor with up to 32K of
external RAM or with it's internal RAM/PROM, The use of
external RAM allows program modification or instrumentation

without "burning"” new PROMS (Ref 2: Sec 3,1).

1.2 PROBLEM.

The software delivered with the ISS enables the user to
load operational flight software into the ALR-46 signal
processor RAM, to extract data from the 32K external RAM
memory without interfering with OFP execution, and to

validate proper operation of the data extraction subsystem

(Ref 1: Sec 2,1),. Software has been developed (Ref 22) in

response to user requirements to duplicate the ALR-46 CRT on
- a Tektronix 4027 color graphics terminal and to display
extracted data on a video terminal. However, since no other
software tools have been developed for the ALR-46 1SS,
flight software is still tested and debugged with the
traditional co-resident debug program. Testing reqgirements
need to be established, and the necessary software tools
need to be developed to exploit the capabilities of the new

systems as fully as possible.

1.3 SCOPE.

This study has three goals. The first goal is to
establish the requirements for automated tools for test and
analysis of ALR-46 flight software. The second goal 1is to
identify software tools already available, The final goal
is to develop a system of test tools for use with the ALR-46
IsS. An overall system design of the tools will be done
before coding will begin. The tools will then be coded and
tested. Those tools which are not currently available but
outside the scope of this study will be recommended for
future investigation, The completed software will be

delivered to the sponsor (EWAISF).

1.4 STANDARDS.

j Top-down procedures of software development will be
adhered to. This means that program development will

proceed from program requirements to functional

specification, to design, to coding, and to validation and

verification.

The top-down approach leads to structured programs in
which the main program can be decomposed into smaller
subprograms. The design of subprogram "stubs” allow testing

to begin as code is developed (Ref 20:29,31).

Both FORTRAN and Pascal are available at the sponsor's
facility (EWAISF). Even though FORTRAN is the most commonly
used high level language at the EWAISF, Pascal was chosen as
the 1language for program development. Pascal is a block
orientated 1language and supports structured programming
constructs (Ref 7). The use of Pascal will enable the

develcpment of a more easily maintained system.

1.5 APPROACH.

The first objective of this study is to determine the
user's requirements for software testing, This is to be
done primarily through a series of interviews with EWAISF

personnel.

sl e s vy el R N bt ol 2 PRSP RN '- AT TP S S WP G U Sy PO R . N S T S AP P O S

.................

The second objective is to determine the software tools
requirements, A detailed literature search will be done to

determine which software tools are already available. A

Pt LT LAY N A
LN P PR >
. PRI s et T

f? feasibility study will be done to determine which tools are

e
L
’

within the scope of this effort., The third and major effort
!! is to design the system of test tools. The final objective

will be to code and test the software tools. An integrated

test plan will be developed. Final testing and installation
will be done on the ISS at Robins AFB at the prerogative of

the EWAISF.

1.6 TIHESIS DEVELOPMENT.

This thesis will be developed in five sections,
Chapter 2 covers the overall testing requirements for
electronic warfare embedded computer systems in general and
the ALR-46 RWR in particular, Chapter 3 describes the
requirements for the automated test tools which will be
developed during this study. Chapter 4 discusses the design
of the automated test tools. Chapter 5 describes the
implementation and the testing of the tools. The final
chapter covers results and recommendations for further
study. Appendix A contains an index of available software
testing tools. Appendix B contains the formats required by
the software tools, Appendix C contains the Structured
Analysis and Design Technique (SADT) diagrams. Appendix D
contains the structure charts. Appendix E contains the data

dictionary 1listed in alphabetical order, Appendix F

-7 -

R « e a L. L . L 0T e N L . - . -
s " b PV WP WP 1 : P LR A Gl S . W S L ——l bl PP

contains the source listing of the software tools. Finally,
Appendix G contains the test documentation for the software
tools.
-8 -
RO NN PO L

CHAPTER 2
SYSTEM REQUIREMENTS

2.1 INTRODUCTION.

A eoftware requirement is a need established for a
piece of software by an organization in order to achieve
certain goals. The requirement-generation activity
culminates in the approvals, negotiations, and commitments
of resources necessary to initiate, sustain, and complete
the software development., The software requirements should
identify the objectives of the program, its environment, the
configuration required for its operation, and the resources
required for its support. The software requirements should
be complete enough to allow development to proceed without

major changes in the requirements (Ref 21:2-3).

This chapter will discuss the overall requirements for
ARL-46 flight software testing., The environment in which
software testing is to be done will be presented, and user
requirements for software test tools will be discussed.

Available software tools which meet these requirements will

Ve
N
s
s Al

Lod 4
.t

also be described, Finally, the method used in determining

which software tools to develop will be discussed.

2.2 ENVIRONMENT.

2.2,1 Introductjon - The environment in which the software
tools must operate is composed of three ALR-46 Integration
Support Systems (ISS), an interface controller (VAX 11/780),
and an edit and assembly station (ECLIPSE S/230). The
interface controller is connected to the three ISSs and to
the edit and assembly station by a star configuration
computer network, as shown in figure 2. The network

utilizes the Digital Equipment Corporation DECNET protocol.

ALR-46
Iss

ALR-46 INTERFACE ALR-46
1ss CONTROLLER ISS

EDIT AND
ASSEMBLY

Figure 2. ALR~-46 1SS network.

- 10 -

2.2.2 ALR-46 1SS - Each ALR~46 ISS, shown in figqure 3,
consists of three subsystems, the hot mock-up subsystem, the
data extraction subsystem, and test equipment

(Ref 2: Sec 3, 1).

2.2.2.1 Hot Mock-up Subsystem - The hot mock-up subsystem,

shown in figure 4, supplies the required power for the
ALR-46. Test points, not available during airborne
operation, are provided for signal monitoring. The hot
mock-~up subsystem provides a means to control the operation

of the signal processor with its resident OFP,

The hot mock-up subsystem contains the AN/ALR-46(V)
radar warning receiver (RWR), the adaptor subsystem, the
system monitor panel, and the 400 hz power source

(Ref 2: Sec 3, 1~4).

TEST
EQUIPMENT
HOT MOCK-UP DATA EXTRACTION
SUBSYSTEM SUBSYSTEM

Figure 3. ALR-46 ISS.

-11 -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SYSTEM
MONITOR
PANEL

ALR-46 ADAPTOR
HARDWARE SUBSYSTEM

400 HZ
POWER SUPPLY

Figure 4., Hot Mock-up Subsystem

The operation of the signal processor is controlled by
the adaptor subsystem. The adaptor subsystem contains the
DX adaptor board, which provides the means to extract data
from the ALR-46 signal processor. The adaptor subsystem
also provides the basic I/O capability for the signal
processor (Ref 2: Sec 3 5,10). The adaptor subsystems are
slightly different for the two hardware configurations of

the ALR-46 (Ref 3, 4).

The system monitor panel provides test points, used
primarily to aid in detection and isolation of RWR hardware
problems. The system monitor panel also contains various

status indicators and controls.




2.2.2,2 Data Extraction Subsystem - The data extraction

subsystem, shown in figure 5, provides the means for
specifying data to be extracted and for collecting the
extracted data. The data exchanges between the data
extraction subsystem and the adaptor subsystem occur via a
DR11-B DMA interface. The data extraction subsystem
consists of a PDP-11/34 computer, a PDT-11/130 CRT, a LAl20
printer, a TEl1l6 magnetic tape unit, and two RLO1l disk
drives., The PDP-11/34 runs under the RSX-11M operating

system (Ref 2: Sec 3, 11-12).

2.2.2.,3 Test Equipment - The ISS contains test equipment
for monitoring signals at the test points provided by the
system monitor panel. The test equipment included are: an

oscillocope, a digital multimeter, and a universal counter

(Ref 2: Sec 3' 12)0

2.2.3 ]Interface Controller - The interface controller
consists of a Digital Equipment Corporation VAX 11/780

computer. The peripherals associated with the VAX 11/780
are, two REP06 disc drives, a TEU77 tape transport, a LAl120

console terminal, and four VT100 CRTs.

The interface controller performs two primary
functions. One function is to control the DECNET data
exchanges and the other is to do off 1line analysis and
storage of extracted data. The VAX 11/780 runs under the

VMS operating system.

-13 -




PDT-11/130 RLO1
CRT DISK
TEl6 PDP-11/34 RLO1
TAPE CONTROLLER DISK
LA-120
PRINTER

Figure 5, Data Extraction Subsystem

2.2.4 Edit And Assembly Station -~ The edit and assembly

Station consists of a Data General Eclipse §S/230
minicomputer. The peripherals associated with the Eclipse
are two 20 M byte disk drives, a 190 M byte disk drive, two
magnetic tape transports, a 1line printer, a printing
terminal, and three CRTs, The Eclipse runs under the Data
General Advanced Operating System (AOS). AOS is a

multi-user multi-tasking operating system.

The primary function of the Eclipse is to assemble the
ALR-46 flight software, The ALR-46 signal processor
executes the Data General Nova instruction set. Since the
Nova instruction set is a subset of the Eclipse instruction
set, the ALR-46 flight software can be assembled by the A0S
Macro Assembler, The assembled flight software is

transferred to the interface controller which in turn routes

it to the appropriate ISsS.

- 14 -




2.3 USER REQUIREMENTS.

2.3.1 1Interviews - A series of interviews have been held
with EWAISF personnel in order to establish requirements for
automated test and support tools. The Engineering and
Reliability Branch Chief, the EW Receivers System Section
Chief, the ALR-46 Unit Chief, five engineers, and one

technician participated in the interviews.

Eight requirements for automated test and support tools
were identified. The tools would be used for support of
software development and testing, The automated tools

requirements identified were:

1. Automated control of the threat generators, The
software to generate threat signals is schedule4 t v be
delivered with the threat generator system, The
capability to compare the response of the ALR-46 to the

threats generated has not been developed at present.

2. The capability to perform statistical analysis of the
decision paths executed, such as the percentage of times

one path 1is executed instead of another, and to

determine the testing coverage.

3. The capability to determine performance characteristics,

such as the execution time of programs and modules.

- 15 -

NI N VOLLY YNNG W G W W S L . o S oo PO TIPS Y




4.

A computer simulation of the ALR-46 system. This would

be used to evaluate hardware as well as software

modifications,

The capability to generate input buffers. This would
allow testing of the software without having to generate

actual RF signals and for repeatability of tests.

Automated generation of test data.

The capability to test programs and modules

independently.

The capability to assemble flight programs on the VAX
11/780. The specified function of the VAX 11/780 is
offline support of the I£S. This includes mass storage,
message routing, data analysis, and the production of
flight software. The Eclipse S/230 is being retained

for the sole function of assembly of flight software.

Two additional requirements not identified in the user

interviews are: the ability to identify variable out of

range conditions, and "hooks"™ for inclusion of previously

developed software (Ref 22),

- 16 -




T
i -

4

——

2.4 HUMAN-FACTORS REQUIREMENTS.

2.4.1 Introduction - Human factors is a discipline which

attempts to take into consideration human strengths and

limitations in the design of computer hardware and software
(Ref 19:108-132) . If human factors are not considered, a

computer system may be difficult for people to operate,

Human beings vary in intelligence, education, and
motivation., The general rule in considering human factors
in the design of a system is to consider the needs of the

intended users.

The relative importance of human factors varies with
the program environment and application., Four aspects of a
computer program to consider are: the number of users, the
diversity of the users backgrounds, program complexity, and

the consequences of user error.

2.4.2 Design Principles - Six human-factors design

principles which will be discussed are: provide feedback,
be consistent, minimize human memory demands, keep program

simple, match the program to the operator's skill level, and

sustain operator orientation,

When a user makes an action he needs to know when that
action has taken effect. If an entry is made and no
feedback is provided, the action may be repeated or another

action may be tried, which may have unintended results.

-17 -

U YN S S WS Wy Sy W S




Feedback should be immediate and appear in an expected

location,

The program should be consistent. Consistency allows
the user to learn the operation of one part of the program

and apply that knowledge to other parts of the program.

The program should minimize human memory demands.
Since computers have better memories than people, and
remember things exactly, the computers memory should be
relied on as much as possible. Selecting an option from a

displayed menu is generally preferable to entering memorized

mnemonics.

The program should be kept simple. A program which is

unnecessarily complex is both difficult to learn and use.

The program interface should be matched to the
operators skill level. The skill 1level of the intended

users should be determined before the program is designed.

The possibility of a user becoming disoriented should
be minimized, The user should be provided with messages
telling the user where the user is and how to return to

where the user came from,

- 18 =




.......

........

2.5 AVAILABLE TOOLS.

The software tools available for software testing fall

into two categories, static and dynamic,

2,5.1 Static Apnalysis -~ Static analysis of software uses

methods of validation which do not require the program to
actually be executed (Ref 11:83). Static analysis may use
some method of simulated execution, There are three types
of static analysis of programs. The first type provides
general information about a program, and are not designed to
find a particular kind of logical error. An example of this
type would be cross reference generators. The second type
uses techniques which are designed to find particular types
of errors or abnormal program constructs., This class of
techniques is called Static Error Analysis techniques. The
third type of static analysis is Symbolic Evaluation,
Several types of automated tools useful in static analysis

are described.,

2.5.1.1 Source Comparator - A source comparator is a

computer program used to compare two versions of the same

computer program source code. The program will identify

changes made to the source program or establish identical

configurations (Ref 18:55).

-19 -

—




" el DM AN A A Mg Al S AN A . G R A ittest i it St e i it Men g 20 ooy shoce mie TT—— TV W T T VW e . w —w

&

?f 2.,5.1.2 Crogs-Reference Generator - A cross-reference
= generator is a computer program which provides
g! cross-reference information on system components. A program

can be cross-referenced with other programs, macros or

parameter names, This program is useful in determining the
impact of a change made in one area to other sections of the

program by showing the scope of variables (Ref 18:55).

2.5.1.3 Flow-Chart Generator - A flow-chart generator is a
computer program used to show the 1logical control-flow
structure of a computer program. The 1logic flow is
determined from the program instructions and not from the
comments, The flow-charts generated by the program can be

compared to the flow-charts supplied with the code to

identify discrepancies (Ref 18:56).

2.5.1.4 Standards Apnalvzer - A standards analyzer is a

computer program used to determine if predefined procedures,
rules, and conventions have been followed. The standards
analyzer can check for violations in conventions such as

program size, comments, and structure (Ref 18:58),

2.5.2 Dynamic Apalysis - Dynamic analysis primarily

involves program testing (REF 10:185). There are several

other techniques such as dynamic assertions and recovery

control blocks. |

- 20 -

P P PP . M i nade y NP PR !
- Bannthe LLLLL‘ALJAL‘L“ K P ‘L—.:.,ALALLL“LJ




Program testing involves executing the program with a
set of sample data as input. The test output may be program
output variables, intermediate values of selected variables,

or timing information in "real time" systems.

2.5.2,1 Test Data Generator - A test data generator is a

program which generates test data or test cases to exercise
the system under test, Test data generators are useful in

systems where "live" data is not available (Ref 18:56).

2.5.2.2 Data Base Analvzer - A data base analyzer is a

computer program which provides information on the usage of
data. It indicates whether the program inputs, uses,

modifies, or outputs the data element (Ref 18:55).

2.5.2.3 Debugger - A debugger is a computer program which
helps to identify and isolate program errors. It usually

includes commands such as DUMP, TRACE, MODIFY, CONTENTS,

BREAKPOINT, etc., (Ref 18:56, 9:426-428).

2.5.2.4 Simulator - A simulator is a computer program which
provides the system under test with inputs or responses
which "resembles”™ those which would have been provided by
the device being simulated (Ref 12:3-4). A description of

several of the various types of simulators follows:

- 2] =




2.5.2.4.1 Environment Simulator - An environment simulator

is a computer program which is used to test operational
programs on a host computer. The operational programs run
under simulated conditions as if they were operating within
the real-time constraints of a machine to which all the

components of the ultimate system are attached (Ref 18:56).

2.5.2.4.2 Peripheral simulator - A peripheral simulator is

a computer program used to present functional and signal
interfaces representative of a peripheral device to the

target system,

2.5.2.4.3 §System Simulator - A system simulator is a

computerized model of the system (hardware, software,

system simulator allows full control of inputs, and computer
characteristics, It allows processing of intermediate
outputs without destroying simulated time, and allows full

test repeatability and diagnostics (Ref 18:58).

2.5.2.4.4 Instruction Simulator - An instruction simulator

is a computer program used to simulate the execution

characteristics of a target computer, The instruction
simulator provides bit for bit fidelity with the results
that would have been produced by the target computer

(Ref 18:56).

- 22 -

interfaces) used to predict system performance over time, A

. - . . . . .
Y B B ol 2 . . . .
Lt evutndin et s ey ~ R ST QO WP T G LRS- S S ST S S S G TP G




2.5.2.5 JInteractive Tegst Bed - An interactive test bed
performs three functions. First, it preprocesses the module

under test so that instrumentation to measure testing

coverage can be inserted in the code, Second, it links the
instrumented module into a test harness which can control
these functions: l)Set-up of input data, 2)Intercept of
stub calls, 3)Supply of stub return data, 4)Capture of
output data, and 5)Reporting of coverage. Finally, it
documents the test actions so testing can be repeated

(Ref 18:58).,

2.6 TOOLS SELECTION.

Since the contractor is scheduled to supply software to
drive the threat simulators, the development of this
software will not be considered during this study. The
capability for closed 1loop testing by generating a threat
and then analyzing the response of the system cannot be
addressed until the specific implementation details of the

threat generators are established.

A computer simulation of the ALR-46 system has been
developed and is identified in Appendix A. This simulator
should be evaluated by the EWAISF before any other work is

done in this area,

- 23 -

S T 5 o - - .y - M S = . P - Y Py S Y .




The production of a software package to assemble flight
software on the VAX 11/780 is a large programming task but
would not have sufficient theoretical content to warrant

thesis level attention.

The tools selected for development meet the following
requirements: to determine the testing coverage, to
determine the execution time of modules, and to identify

variable out of range conditions,

It has been determined that the remainder of the user

requirements could not be accomplished in the time available

for this study.

2.7 SUMMARY.

Many software testing tools have been developed,
however most are software or application dependent. The
majority of these tools were developed for use with a
specific high 1level language, such as FORTRAN. Since the
ALR-46 flight software wri;ten is Nova assembly 1anguége,
the number of tools directly applicable is greatly reduced.
The tools found which are directly applicable are identified
in Appendix A. Further, the unique design of the ALR-46 ISS
data extraction subsystem requires custom software to be

written for it.

- 24 -




T
™
e
.
:
‘

This chapter has discussed the requirements for

software test tools and the types of automated tools

available to meet those requirements., Finally, the process

used in determining which software tools to develop during

this study was described.

- 25 =

s WP SR W s a ‘_‘._.-,A_-'J



~~~~~~

CHAPTER 3
SOFTWARE REQUIREMENTS

3.1 INTRODUCTION.

Chapter 2 discussed the ALR-46 flight software testing
requirements, what software tools are available to meet the
requirements, and which tools were selected for development
in this study. This chapter will discuss the requirements

for the software tools.

3.2 SOFTWARE MONITORS.

Monitors for software testing can be divided into four
categories (Ref 17:405-406), The first category is composed
of monitors used for enforcing or ascertaining the traversal
of paths. The second category is composed of monitors used
for measuring path traversal frequencies. The third type is
used for detecting erroneous conditions, such as variable
out of range. The fourth type is the perfo. :ance monitor

which 1is wused for observing performance behaviors, such as

excessive delay.

- 26 -

2 PREUN PR AP - s e, - . e .
- . DrertocdarsiBmanon oo . P PUIT S S U A SO0 Sl S S LS. PP,

There are two approaches for ascertaining the traversal
of test paths. The /first method inserts code segments,
called flow controlling monitors, in the test paths., A flow
controlling monitor is said to be "closed" when it is set to
transfer control to the test supervisor, and "open",
otherwise. The use of flow controlling monitors requires
modification of the software under test. The normal
operation of the data extraction subsystem only allows
reading of data and not insertion, Therefore,
flow-controlling monitors will not be considered in this
study. The second method detects the traversal of paths by

analyzing the data recorded during the test run by a set of

monitors called traversal markers.

The following software monitors were selected for use
in the Data Extra&tion and Analysis system (DEAS) because
they could be implemented on the 1SS data extraction
subsystem, The ISS data extraction subsystem allows
extraction of data without insertion of probés into the code
under test. The monitors to be used will determine what
data will be extracted by the ISS data extraction subsystem,
Performance monitors will be used to determine the execution
time of modules, Traversal markers will be used to
determine the path traversal frequencies, Error detecting

monitors will be used to detect variable out of range

errors,

- 27 -

W.m,,,
. PO N P LS TR
B RN A
2,
.
‘»

———— Ty SRlndr Ao S 2 e b u

3.3 SOFTWARE REQUIREMENTS.

The DEAS operates in one of five modes. The first
mode, called the "performance analysis mode", measures the
execution time of each subroutine call. The second mode,
called the "coverage analysis mode", determines the
frequency of path coverage of marked paths during a
particular test. The third mode, called the "error analysis
mode", detects variable out of range errors. The fourth
mode, called the "trackfile analysis mode", and the fifth
mode, called the "RWR mode", are from a previous study
(Ref 22)., The organization of the DEAS is shown in figure

6.

The Data Extraction and Analysis System (DEAS) software
is composed of three tasks. The function of the first task
is to specify the data to be extracted and when it is to be
extracted. The second task controls the extraction of the
data and saves the raw data in a disk file, This software
was delivered by the contractor who developed the ISS (Ref
l). The third task analyzes and presents the data in
tabular format. This will provide the test engineer with
test results in a form which can be more easily decyphered

than large amounts of raw data.

- 28 -

i s e Oh e e ¢

MAIN

EXECUTIVE
PERFORMANCE TRACKFILE
ANALYSIS ANALYSIS
MODE MODE
COVERAGE ERROR RWR
ANALYSIS ANALYSIS ANALYSIS
MODE MODE MODE

Figure 6. DEAS Function Chart

3.3.1 Performance Analvsis Mode - The performance analysis

mode marks the time when a subroutine is entered and when
the subroutine is exited., The difference in these times is
the time .spent in execution. The entry and the exit point
of each subroutine is entered. The output is a table of

execution times for the subroutines,

3.3.2 Coverage Analvsis Mode - The coverage analysis mode

counts the number of times each of the selected paths are
executed. The addresses of instruction to be used for path
markers are entered. The output is a table of the paths and

number of times executed,

- 29 -

— e a s a A & . A . o ~l

DY B

\ g

L kot ma

3.3.3 Error Analysis Mode - The error analysis mode checks

for "variable out of range" errors, The addresses of
variables to be monitored are entered. The output is a

table of the variables and their minimum and maximum values.,

3.3.4 Trackfile Mode - The trackfile analysis mode displays
the contents of the emitter track file., Provisions will be

made to include the code for this function which was

developed by another study (Ref 22).

3.3.5 BRWR Mode - The RWR mode displays a copy of the ALR-46
CRT on a color graphics terminal. Provisions will be made
to include the code for this function which was developed by

another study (Ref 22).

3.4 SUMMARY.

This chapter has described the software requirements
for the Data Extraction and Analysis system. The
requirements were derived from the user, environmental, and
other requirements described in chapter 2. Briefly the

software requirements are as follows:

1. Determine module performance characteristics

2, Determine path traversial frequency

- 30 -

ISR 4 4
¢
!

PP UL 1P T WA S,

3. Detect variable out of range conditions
4, Provide for previously de§eloped software

The next chapter will describe the system design.

- 31 -

o B b el i o e - N

“
.

ey A JEN g an on g " YTy
D .« - o, #ee N AP
e v . P]

.".-.'1"' . ‘I'Ifl';
ot e PR :
.
;
'

CHAPTER 4

SOFTWARE DESIGN

4.1 INTRODUCTION.

The previous two chapters described the software
requirements. This chapter will discuss the design
methodology and describe the detailed system design for the
Data Extraction and Analysis System (DEAS). The design
strategy will be described followed by the techniques used
in the design of the DEAS.

4.2 DESIGN STRATEGY.

There are primarily two design strategies for
developing computer software. The first is top-down design.
In this method the major functions of a system are
identified and expressed in terms of lower level functions
(Ref 24:322), The process of functional decomposition is
repeated until all the subfunctions can be easily
implemented. A potential problem in strict top-down design

is that there may be no way to ensure that operations at one

- 32 -

d

ﬁﬁv.‘_Y_-_‘,—.‘_-.1_»1

YT
P

level in the hierachy are supportable by some resource to be

ARt
LR

provided at subordinate 1levels (Ref 20:21). The second

design strategy is bottom-up design. In this method, design
is started at the bottom of the hierachy before the design
at the top has been completely thought out (Ref 20:5). The

"bottom-up" approach can lead to difficulty in integrating

system components.

The top-down approach was chosen for the design of the
Data Extraction and Analysis System. The danger of having
system integration problems with the bottom-up approach out
weighs any advantages it might have. The top-down hierachic

decomposition leads directly to structured programs.

4.3 DESIGN TECENIOQUES.

Several techniques were considered for the design of
the DEAS. The techniques considered were: Structure Charts
(Ref 24:25), Data Dictionaries (Ref 24), Data Flow Diagrams
(Ref 24), Structured Analysis and Design Techniques (SADT)
(Ref 6), and Hierarchical Input-Process-Output (HIPO) (Ref
24) ., A combination of SADT, Structure Charts, and a Data
Dictionary were selected for the system design. SADT shows
more detail than Data Flow Diagrams, SADT allows the
inclusion of control flow into the diagrams, Data Flow
Diagrams do not. Structure Charts show the relationship
between the modules more clearly than HIPO, A Data

Dictionary is desirable for any design technique,

»
E!
b
[
W
-
.

o
&
*‘.
b
P.
T
S
>

e v Ty
L S

-

vy

DL 13-« SO NG

'_ .ll.l IR l v .'.'. ..v T — — IF_ -}I-. —— R T T T —— ———

4.3.1 SADT Diagrams. - To apply SADT to a problem, a model
is built which expresses a "complete" understanding of the
nature of the problem. SADT breaks a complex subject into
its component parts. SADT begins with the most éeneral
description of the system, represented by a single box, and
breaks that box into a number of more detailed boxes. Each
of these boxes is further brokea down into more detailed

boxes.

The number of detailed boxes, which any parent box is

broken into, is limited to a maximum of six and a minimum of

three. The upper limit prevents too much detail from being

introduced at any one level. The lower limit ensures enough

detail to make the decomposition worthwhile.

Each module in a SADT model is represented by a box,
The relationship between modules is shown by interconnecting
arrows. This box structure is shown in figure 7. When a
module is broken down into submodules, the interfaces

between them are shown as arrows,

The arrows on the left show input data, which are
transformed into output data, shown by the arrows on the
right., Controls, represented by the arrows on the top,
govern the way the transformation is done., Mechanisms,
represented by the arrows on the bottom, indicate the
pProcess or device which performs the activity

(Ref 6: Sec 4, 5,22),.

- 34 -

- - -, e e e B B el e B S LI Py A s e o Al

CONTROL

OUTPUT

T

MECHANISM

Figure 7. Box/Interface Arrow Definition,

A representative SADT diagram is shown in figure 8.

The SADT diagrams developed for the DEAS are contained in

Appendix C.

4.3,2 Structure Charts - Structure charts were used to

develop the detailed system design. Their use along with
top-down design causes the major functions to be developed
first (Ref 24:141-147). Figure 9 shows the symbols used in
the structure charts., A representative structure chart is

shown in figure 10. The structure charts developed for the

DEAS are contained in Appendix D.

4.3.3 Data Dictionary - A data dictionary defines all the
terms used in system development. A data dictionary entry
should contain a concise description of the term, all
associated aliases, and the composition of the entry

(Ref 24:150-163). The Data Dictionary for the DEAS is

contained in Appendix E,

- 35 -

L Lo At e s asel e e s mans st o

. HELP_LEVEL
-
- ' ENTRY+EXIT_ADDRESSES
3 USER_ BUILD
PERFORMANCE | DX_FILE 1
= INPUT | DX_FILE —

'

COLLECT
PERFORMANCE

DATA \

RAW_DATA_FILE

A 2
REDUCE USE}%
PERFORMANCE
DATA DISPLAY

FIGURE 8. SADT Diagram,

- 36 -

PP WS I - .

Module A calls Module
B passing data P,
Module B returns data

D and control Flag,
D
. 9|3
FLAG

Module A calls Module
B on the basis of a
decision made in A,
Module A calls Module
C on the basis of a
loop in A.

Figure 9., Structure Chart Symbols.

- 37 -

PSS S S SR SEY) CR

Dl BN o L aih
R = AOAOS
. o .'-’l.
:
'
]

DO
DATA
ANALYSIS

command

r ! noae N

i\

GET HELP SELECT
COMMAND USER MODE

Figure 10, Structure chart,

4.4 SUMMARY.

This chapter described the design strategy and design
techniques used in developing the DEAS. The use of SADT
diagrams, structure charts, and the data dictionary were
described., The SADT diagrams, structure charts, and data
dictionary used in the design of the DEAS are contained in
Appendices C, D, and E respectively. The next chapter

discusses the implementation and testing of the DEAS.

- 38 -

CHAPTER 5
IMPLEMENTATION AND TESTING

5.1 INTRODUCTION.

The implementation of the Data Extraction and Analysis
System was done in VAX/1l1l Pascal (Ref 7). The reasons
Pascal was chosen were discussed in Chapter 1. Appendix F
contains the source listing for the DEAS. The
implementation was accomplished in accordance with the
design set forth in Chapter 4., The data structures used
will be described followed by a description of each of the
functional components of the system, Finally, the testing

of the system will be discussed.

5.2 IMPLEMENTATION STRATEGY.

As in design, two strategies were considered. The
first 1is "top-down" implementation. With this strategy the
higher level modules are coded first with the next lower
level modules replaced with "dummy stubs" for testing.

Modules are coded working down until the entire design has

- 39 -

BN lres e ssen an S g gy suat S el e T— —

o -

been coded. The second strategy is "bottom-up"
implementation. With this strategy modules are coded
starting with the lowest level. For testing, the remainder

of the system is replaced with a "test harness".

\

The top-down approach was selected because modules
could be tested as they are coded without requiring a test
harness for each module. The top-down approach minimizes
interfacing problems by defining the interfaces in the

higher level modules.

5.3 IMPLEMENTATION DETAILS.

5.3.1 Data Structures - Consideration was given to three

types of data structures for temporary storage of
information: the array, the linked list, and the internal
file. The array is the simplest data structure. The size
of an array is fixed regardless of the amount of information
stored in it. The size of an array must be set to the
maximum amount of data to be stored. The handling of a
linked 1list is more complex than an array, but the storage
is allocated dynamically. The internal file is more complex
to handle than a linked list but can store large quantities
of data. The linked list was chosen for temporary data
storage because storage space can be allocated dynamically
and the expected amount of storage required did not justify

the extra complexity of internal files.

- 40 -

5.3.2 Main Executive - The main executive accepts commands
from the terminal. The complete list of valid commands is
shown in Table 1. A menu is printed if "help" was entered,
if a valid command was entered one of the five modes of

operation is started.,

The user cannot cause the program to abnormally
terminate by typing invalid data. User input is accepted in
an array of characters (string array). Command inputs are
compared against valid commands until a match is found or
the entire list has been searched. Data inputs are checked
for invalid characters then, if necessary, converted into
the appropriate data type. Upper or lower case characters
are acceptable as input since lower case characters are

converted internally to upper case.

Table 1.

Valid Commands,

HELP - Select from menu

PERFORMANCE - performance analysis

COVERAGE - coverage analysis

ERROR - error condition detection
TRACK - trackfile analysis

RWR - RWR color graphics display
QUIT - exit program

- 41 -

5.3.3 Subroutine Executjon Time Calculation - When this
mode 1is executed the user is instructed to enter a name,
useé to identify the subroutine; and its entry and exit
addresses. This mode builds an "event" type data extraction
file, as described in Appendix B. When the data for all the
subroutines have been entered the DEAS will begin to extract

the specified data.

After data collection is terminated the DEAS will
calculate the execution time of each subroutine call. Two
stacks are implemented for each subroutine. One stack
stores the entry time for each subroutine call and the other
stack stores the calculated execution time for each call.
Each time an event record is read, the event address is
compared with the entry address and the exit address for
each subroutine. If a match is found with an entry address,
the entry time is pushed on the "entry time"™ stack. If a
match is found with the exit address, the entry time is
popped off the "entry time"™ stack and subtracted from the
exit time to obtain the execution time. The execution time
is then pushed on the "execution time" stack. When all data
in the "raw data file"™ has been analyzed, the list of
subroutines will be searched and the execution time of each
call will be popped from the "execution time" stack and

displayed on the console.

- 42 -

W

W

EatC ety
'

LA s b DR S) oy
b . S
(.‘. N e

—

rv'ﬁv-vvv——.—‘
— "

5.3.4 Coverade Analysis - When this mode is executed the

user 1is instructed to enter an address to serve as a path
marker for each path to be monitored. The coverage analysis
mode builds a data extraction file to collect "event" data.
The format for this file is found in Appendix B, The
extracted data is reduced by inserting it into a binary
tree, A count is maintained of the number of traversals of
each path. An "in-order"™ traversal of the tree is made and
the paths traversed are printed out along with the number of

traversals of each path.

5.3.5 Error Analysis - When this mode is entered the user
is instructed to enter the address of each variable to be
monitored. The error analysis mode builds a data extraction
file to collect "location"™ data. The format for this file
is found in Appendix B. The extracted data is reduced by
inserting it into a binary tree, ordered by address value,
The minimum and the maximum value attained by the variable
is inserted into the binary tree. An "in-order" traversal
is made of this tree also. The addresses of extracted
variables, with their minimum and maximum values, are

printed out in ascending order,

5.4 IESTING.

Two levels of testing were done, white box and black
box. "White box testing"™ is done using knowledge of the

internal structure of the code. "Black box testing"™ uses

- 43 -

———y

the functional requirements and the system specification to

evaluate the performance of a system.

5.4.1 White Box Testing - White box testing started when
the first module was coded. "Dummy stubs®™ replaced the
modules which had not yet been coded. The primary method of
white box testing was path analysis. This testing technique

attempts to execute each decision to decision path.

5.4.2 Black Box Testing - After the entire DEAS system was

coded black box testing was done. Black box testing was
done using equivalence class testing and boundary value

analysis.

5.4.2.1 Equivalence Partitioning - Equivalence classes are

identified by taking each input condition and dividing it
into several groups (Ref 15:44-50). There are two types of
equivalence c¢lasses. The first type is "valid equivalence
classes™ which represents valid inputs to the program. The
second type is "invalid equivalence classes" which represent
all other possible inputs, A set of guidelines for

identifying equivalence classes is:

1, If an input condition specifies a range of values,
choose one valid equivalence class and two invalid

equivalence classes.

- 44 -

2, If an input condition specifies the number of values,

choose one valid equivalence class and two invalid

equivalence classes,

3. If an input condition specifies a set of input values
and if each input value is handled differently by the
program, identify a valid equivalence class for each

input condition and one invalid equivalence class,

4, 1If an input condition specifies a "must be"™ condition,
identify one valid equivalence class and one invalid

equivalence class.

5. If it is suspected that all elements in an equivalence
class are not handled identically by the program, split

the equivalence class into several smaller equivalence

Cclasses.

Several examples of equivalence partitioning are shown in

Table 2.

5.4.2.2 Boundary-value Analysis - Boundary conditions are

conditions which are directly or, above, or below the edges
of input and output equivalence classes (Ref 15:50-55).
Boundary-value analysis differs from equivalence
partitioning in two respects, First, boundary-value
analysis requires that elements selected from an equivalence
class be at the edge of the class rather than any element in

the class, Second, output and input conditions are

- 45 -

alam o &

Table 2.
Equivalence Classes.
VALID INVALID
INPUT CONDITION EQUIVALENCE EQUIVALENCE
CLASSES CLASSES
COMMAND PERFORMANCE ANY OTHER
COVERAGE WORD
ERROR
TRACK
RWR
QUIT
HELP
OCTAL ADDRESS 0..32767 > 32767
<0
NON OCTAL
DIGIT
MENU INPUT 1..6 > 6
<1

considered, rather than only the input conditions.

5.4.3 Systenm Testing - The specific tests used in
validating proper system performance are contained in
Appendix G. The test cases were chosen by applying
equivalence class analysis and boundry value analysis to the
system requirements., The expected response was obtained in

all test cases,

5.5 SUMMARX.

This chapter described the implementation and testing
of the Data Extraction and Analysis System. The design
described in Chapter 4 was followed in the implementation of
the DEAS. The language used in the implementation of the

- 46 -

ABLAEILS &0 AR

ama e

MMM A Me s a0amaca e aD .

DEAS was Pascal. The main data structures and the major
program sections were described. The DEAS was fully tested
according to the test plans in Appendix G. No known errors

exist in the program.

- 47 -

...........

S S v ek asus gnes ete- sumy megen

T
e »::.‘.f.r. S
3

CHAPTER 6
RESULTS AND RECOMMENDATIONS

6.1 RESULTS.

This study investigated the requirements for automated
tools for test and analysis of embedded computer software.
The user requirements along with external requirements were
considered in establishing the requirements for the Data

Extraction and Analysis System,

Once the requirements for the DEAS were established
system design began. A system model was produced using SADT
and the detailed system design was done using structure

charts combined with a data dictionary.

The DEAS was implemented using Pascal on the VAX 11/780
computer, The highly modular, structured design minimized

interfacing difficulties during implementation,

- 48 -

Both black box and white box testing was done. White
box testing was done as the modules were developed. Path
analysis was the primary technique used during white box
testing. Black box testing was done after the entire system
was developed. The techniques used for black box testing

were equivalence partitioning and boundary value analysis.

Installation and integration of the DEAS with the 1ISS
was not possible because of time constraints. No problems
are anticipated with installation since DEC Standard Pascal

was used and system calls were minimized.

6.2 RECOMMENDATIONS.

There are two user requirements, identified during this

study, which require further study.

The capability to generate input buffers could loosely
be thought of as a peripheral simulator. The simulator
would replace the RF and A/D portion of the system, This
would enable the exact duplication of conditions between
tests. this would also allow the simulation of signals

beyond the capabilities of the threat generators.

The Automated generation of test data would aid the
engineer in selecting good test data. The generation of
test data for the EID would be simpler than for the OFP,

because the EID is constructed using rigid rules.

- 49 -

P Loa PP Pu—y i — 3 C AR G S U P I ol PP PP S P PN S -~ PO

v . T —
P o 2 RS A
LR K et T R

s
. "YJ‘. AP
LT Tre e tat
.
B

10.

11.

12.

Bibliography

62F026000. AN/ALR-46(V)
Software
Inc,, 1981,

620026003. AN/ALR-46(V) Integration Support System User

Guide. Buffalo NY: Comptek Research Inc., 1981.

620026007. CM-442 Adapter Techpical Manual. Buf falo
NY: Comptek Research Inc,, 1982,

62U0026008. CM-442A Adapter Technical Manual. Buffalo
NY: Comptek Research Inc,, 1982,

620026009. DX Interface Technical Manual. Buffalo NY:
Comptek Research Inc., 1982.

9022-78R. An Introduction to SADT Structured Analysis
and Design Technigue. Waltham, Massachusetts: SofTech,
Inc,., 1976,

AR-H485A-TE. VAX-11 PRASCAL Uger's GUIDE. Maynard,
Massachusetts: Digital Equipment Corporation, 1979.

Bibbens, Terry E. "EW the Unique Weapon,"™ Signal.
Falls Church, Virginia: Armed Forces Communication and
Electronics Association, 18-22 (March 198l).

Fairley, Richard E. "ALADDIN: Assembly Language
Assertion Driven Debugglng Interpreter," IEEE
Iransactions on Software i Yol. SE=5. No.
4: 426-428 (July 1979).

Howden, William E. "A Survey of Dynamic Analysis
Methods,"™ Tutorial: Software Iesting & Validation

i , edited by Edward Miller and William E.
Howden. 184-206. New York, N, Y.: Institute of
Electrical and Electronics Engineers, 1978.

Howden, William E, "A Survey of Static Analysis

Methods," Iutorial: Software Testing & Validation
r edited by Edward Miller and William E.

Howden. 82-96. New York, N, Y.: Institute of
Electrical and Electronics Engineers, 1978.

Mitchel, Wwilliam B. Djigital Simulation as an EW

Software Maintence Tool. Presented at Electronic
Warfare Symposium VI, Robins AFB, Georgia: March 1981

- 50 -

Integration Support System
e Documentation. Buffalo NY: Comptek Research

> _*,r
v“:r:'.' (AR N R .
chee fe e ey LT

13.

14,

15.

16.

17.

18.

19,

20,

21.

22,

23.

24,

25,

——

Mitchal, William B. and Gary W. Little. "Performance

Analysis of Electronic Warfare Systems

Software, "

Presented at the National Aerospace Electronics

Conference, Dayton, Ohio: May 1978.
MMROI 800-01. Software

Change Processing/Configuration
Management for EW Systems. Robins AFB, Georgia: Warner

Robins Air Logistics Center, Directorate of Material

Management, Electronic Warfare Division, 1979,

Myers, Glenford J. The Art of Software Testing. New

York, NY: John Wiley & Sons, 1979.

R-3636-9234. The ALR-46A System Description and Related
Functjions. Belmont, California: Dalmo Victor

Support
Corporation, 1978.

Ramamoor thy, C. V., et al. '0pt1ma1 Placement of

Software Monitors Aiding Systematic Testi
Irangactions on Software YOL.
4: 403-411 (December 1975).

ng," IEEE
SE-1., NO.

Reifer, Donald J. and Stephen Trattner. "A Glossary of

Software Tools and Techniques," Computer, 5
1977).

2=-59 (July

Simpson, Henry. *A Human-Factors Style Guide for

Program Design®, BYTE, 7: 108-132 (April 1982

).

Tausworthe, Robert C. Standardized Development of
Computer Software, Part I, Methods. Washington D.C,:

U.S. Government Printing Office, 1976.

Tausworthe, Robert C. Standardized
Computer Software, Part II, Standards. Washin
U.S. Government Printing Office, 1978.

of
gton D,C,:

Thames, J. Wayne. The ALR-46 Computer Graphics System
£ ect i Warf Divisi

for the Robing

AEB
Engineering Branch Laboratory. MS Thesis.
Patterson AFB, Ohio: School of Engineering,

Institute of Technology, December 1981.

The International Countermeasures
Edition), edited by Harry F. Eustance.
Californa: EW Communications Inc., 1976.

Weinberg, Victor. Structured Analysis. New

York: Yourdon Press, 1980.

Yourdon, Edward and Larry L. Constantine.

Desian: Fundamentals of
Program and System
Prentice Hall, Inc., 1978.

-~ 51 -

a Discipline of
. BEnglewood Cliffs,

Wright
Air Force

(Second
Palo Alto,

York, New

Structured

New Jersy:

—— e o e B 0 ac L o e e o M I an o oo con
v ‘ . . v, .1, R b { ST Pgian
. . N, - T P A

APPENDIX A
INDEX OF AVAILABLE SOFTWARE TOQOLS

This appendix contains four software tools identified in
this study which are directly applicable for testing the
ALR-46 flight software. The name of the tool is given along
with its source and description., The tools are divided info
two groups, those used for static analysis and those used

for dynamic analysis.

- 52 -

T TRIL S PRI, JORRE JUPF SROP S ¥ . ' . . o h N < . - 2 N ¥ N
P PR PP W mliala i mtea s Ea dmsam e m

T ,V*E, ;rv“lﬁ‘ﬁ
. B « . '_..'.'.

TR S .
L T VRV W N

A.l STATIC ANALYSIS TOQOLS.

1. NAME: EID Tools

SOURCE : Comtek Reasearch Inc,

DESCRIPTION : Examines the EID database for violations

of structure rules,

2. NAME: SCOM

SOURCE: Data General Corp.

DESCRIPTION: Utility which is part of the Advanced

Operating System (AOS). Identifies the differences

between two source or text files. If the program finds

differences, it outputs either a message

or the

differences, The program will then attempt to

resynchronize,

A.2 DYNAMIC ANALYSIS TOOLS.

1. NAME: ALLADIN
SOURCE: Richard E., Fairley
DESCRIPTION: Assembly Language Assertion

Debugging Interpreter,

- 53 -

Driven

PG S S W SR N S

NAME: RWR Simulator

SOURCE: Comtek Research Inc.

DESCRIPTION: Simulator for the ALR-46 Radar Warning
Receiver, The RWR Simulator consists of three
components: an Environment Simulator, a Receiver

Simulator, and the operational flight software.

- 54 -

APPENDIX B
,i DATA EXTRACTION FILE FORMATS

This appendix describes the formats for the
event/location file and the extracted data file. The file
required by the data extraction subsystem 1is described
first, The file produced by the data extraction subsystem

is described second.

CONTENTS
l. Event/Location Specification File . . . « . . 56

2, Extracted Data File . . ¢ o« ¢ ¢ o o o o o o«

- 55 -

NI WG WUy VR WP AT W § S Y _ ‘ NV

B.1 EVENT/LOCATION SPECIFICATION FILE.

This file contains addresses which specify "event"
locations, and "location" address limits. An "event® occurs
whenever the data extraction subsystem detects a memory
"fetch” on a memory address flagged for extraction., A
"location" occurs whenever the data extraction subsystem
detects a "memory write"™ to a address flagged for
extraction, The format of the file is as follows
(Ref 2: Sec 4, 27):

address of event 1
address of event 2

addreés of event n

0

lower address - upper address of first contiguous data block
lower address - upper address of second contiguous data block

lower'address - upper address of final contiguous data block

The event addresses are entered first, one per line,
and are terminated by a line containing a zero. The zero
terminator must be present even if no event addresses are
specified. Event addresses are specified by a

right-justified, five~digit, octal number.

The data location address limits are entered following
the event addresses, The data address location address
limits consist of a lower address 1limit, followed by a

space, comma, or a hyphen, then followed by the upper

PSPy Y, e et B P - - 3 . . C .
2 . - P PP 2 Sonmaia

—

address limit. One pair of address limits are entered per
line. The address limits are right-justified, five-digit,
octal numbers as required by the event addresses., If a data
block is only one word long, both addresses are set equal to
the address of the word. The same address cannot appear as
both an event address and be contained a data block defined
by a location pair (Ref 2: Sec 4, 27-29). An example of an
acceptable event/location file follows:
00537

745
01243
0
07775 10003

20105,20105
22351-23200

B.2 EXTRACTED DATA FILE.

The data extracted by a "location"™ is the address
extracted and the value written to that address. The data
extracted by an "event” is a -1 marker, followed by its
address, followed by the high and low 16 bits of the clock.
The formats of the two data extraction sequences are

(Ref 5: Sec 3, 9):

1. Location
ADDRESS
DATA

2. Event
-1 MARKER

- 57 -

o P PGP SRV G L I ¢ AT WP TP U Y S e Sy .

L R PR
R T SRS S N NOPUUP ST U, SR

ADDRESS
CLOCK HIGH (MSBs)
CLOCK LOW (LSBs)

The 32-bit clock free runs at 1MHz, providing a 1 usec

LSD (Ref 5: Sec 3, 6).

dJd¢

- 58 -

.........

APPENDIX C
SADT DIAGRAMS

This appendix contains the Structured Analysis and
Design Technique (SADT) diagrams used in developing the

software requirements and data flow for the Data Extraction

and Analysis System.

CONTENTS

l. Data AnalysisS . « o ¢ o ¢ ¢ o o o« s s« « « « «» 60

2, Performance Analysis . . ¢« ¢« ¢ o« o« ¢« o o« o 61
3. Coverage AnalySisS . « ¢ ¢ s o o o o« o o o« » 62
4, Error Analysis . . ¢« ¢ ¢ o« o o« o o o« s o« o 63

- 59 -

P p—y il on VTP Sy SR Ny W sl R S WY Y adh . P PV b - A

C.l1 DATA_ANALYSIS

USER_INPUT
SELECT HELP_LEVEL
MODE
DO PERFORMANCE_DISPLAY
Ne——— 5 PERFORMANCE S
ANALYSIS
k\‘ DO COVERAGE_DISPLAY
COVERAGE >
ANALYSIS
2
_ DO ERROR_DISPLAY
—3 ERROR >
ANALYSIS
DO TRACKFILE_DISPLAY
TRACKFILE
ANALYSIS
DO RWR_DISPLAY
RWR EEP
ANALYSIS

..........

e

C.2 PERFORMANCE_ANALYSIS

USER_

INPUT

HELP_LEVEL

BUILD
PERFORMANCE
DX_FILE

ENTRY+EXIT ADDRESSES

—

DX_FILE

.\
COLLECT

DATA

PERFORMANCE P\}

RAW_DATA_FILE

\

W

S

REDUCE
PERFORMANCE
DATA

- 61 -

P W PP WU G 1

USER_

DISPLAY

C.3 COVERAGE_ANALYSIS

HELP_LEVEL

USER_ BUILD DX_FILE

COVERAGE
INPUT DX_FILE \

v

COLLECT
COVERAGE
DATA ™\
RAW_DATA_FILE

DATA DISPLAY

REDUCE USER_
COVERAGE pP———>

- 62 -

. - - * o a e - . . - . . . - - L}
s el s | RN PSPPIy GNP I ST W WU SV IOt YU P - a it PRIPRIPS Ty N |

C.4 ERROR_ANALYSIS

e v
o ‘T—H“ o
Lt 4 e

HELP_LEVEL

USER_ BUILD |DX_FILE
—3 ERROR
INPUT | DX_FILE

W
COLLECT
ERROR
DATA \
RAW_DATA_FILE
REDUCE USER_
ERROR —_—
DATA DISPLAY
- 63 -

APPENDIX D
STRUCTURE CHARTS

This appendix contains the structure charts used in the

detailed design of the Data Extraction and Analysis System.

CONTENTS
l, Data AnalysSis . « ¢« o ¢« o ¢ o s o « o« s ¢« « 65
2, Help USer . ¢ ¢ « ¢ s o ¢ o o ¢ o s ¢ o o 66
3. Select Mode . ¢« « ¢ o ¢ ¢ o ¢ o o o o o « 67
4, Do Performance Analysis . . « « « « . « 68
5. Build Performance Dx_file 69
6. Reduce Performance Data , . . .« « . « 70
7. Do Coverage Analysis . « « « o o o » » » 11
8. Build Coverage Dx_file . « ¢« « ¢ &« o« « 72
9. Reduce Coverage Raw Data ., . « « « « « 73
10. DO Error Analysis . « o« o o« ¢ o o o o o 14
11. Build Error Dx_file . . . « s+ ¢« ¢ o « 175
12, Reduce Error Raw Data . . ¢« o« ¢« « « o+ 16

- 64 -

CaE

...................

DO
DATA
ANALYSIS

GET HELP SELECT
COMMAND USER MODE
- 65 -
!

D.l.1 Help User -

'i:‘r‘r")

g i}
’ A
i DN P S

mode

HELP USER

PRINT
MENU

- 66 =~

wenu_input

GET
SELECTION

e

PR I
PO B T T

A

D.l1.2 Select Maode -

mode

SELECT
MODE

help_level

/.

DO DO
PERFOFMANCE TRACKFILE
ANALYSIS ANALYSIS

fhelplevel x

DO DO DO
COVERAGE ERROR RWR
ANALYSIS ANALYSIS DISPLAY
- 67 -
e e

A g e

....................

help_level

DO
PERFORMANCE
ANALYSIS

- Bl o Ba Do Be o S D

help_level/ head
DISPLAY REDUCE
PERFORMANCE head PERFORMANCE
HELP DATA
BUILD COLLECT
PERFORMANCE PERFORMANCE
DX FILE DATA

- 68 -

LI W PRI ULl S W

M SO S Wl S L. Y-

D.1.3.1

entry_address g

exit_address

J)

entry_addresss

Build Performance Dx file -

head

BUILD
PERFORMANCE

DX FILE
L A

N

v

BUILD
PERFORMANCE
FILE ENTRY

\¢

exit_address

GET
ENTRY
ADDRESS

GET
EXIT

ADDRESS

- 69 -

T

&

-

D.1.3.2 Reduce Performance Raw Data -

"l B AAv' v -
' ! . “ . Iy . .
£l o1 Pt

head

REDUCE
PERFORMANCE
RAW DATA

i\

SORT CALCULATE
PERFORMANCE EXECUTION
RAW DATA TIME

. Nrhad
S el
e b

T

- 70 ~

Rl SR A R G SR S
L

.

v

D.1.4 Do Coverage Apnalysis -

help_level
- DO
. COVERAGE
- ANALYSIS
L
help_leve?
! m DISPLAY REDUCE
3 COVERAGE COVERAGE
. HELP DATA
BUILD COLLECT
COVERAGE COVERAGE
DX FILE DATA

- 71 -

BUILD
COVERAGE
DX FILE
L A

N

cov_address

v

GET
PATH MARKER
ADDRESS

-72 -

s ot sk PSSy -~.—..,.‘__.4_'.\:A_n_*.1

D.1.4.2 Reduce Coverage Raw Data -

REDUCE
COVERAGE
RAW DATA

PR

total_adr J

SORT COUNT
COVERAGE PATH
RAW DATA TRAVERSALS

- 73 -

M P Sy

SO | ‘ s
-
!
2
- D.1.5 Do Error Analysis -
help_level
DO
ERROR
ANALYSIS
help_level
DISPLAY REDUCE
ERROR ERROR
HELP DATA
BUILD COLLECT
ERROR ERROR
DX FILE DATA
- 74 -

BUILD
ERROR

DX FILE
L A

YV

err_addr essg

V.

GET
VARIABLE
ADDRESS

- 175 -

P N ST Yl W ool o

PRI I T D

D.1.5.2 Reduce Error Raw Data -

REDUCE
ERROR
RAW DATA

7R\

total_adr J

SORT DETERMINE
ERROR MIN &
RAW DATA VALU%QX
- 76 -

APPENDIX E
DATA DICTIONARY

This appendix contains the description of all

processes, constants, and variables
Extraction and Analysis System. The
describing the data composition will be

the data dictionary.

CONTENTS
1. Symbols and Meanings . + « + ¢ « o @
2. Data Elements ., . . ¢« ¢ o ¢ o o« o &
3. Data FloWwS « « « o o o o o o o s &

4. Files L L] L4 L] L] L LJ L L L L4 L L] L) L)

- 77 -

used in the Data

symbols used in

defined followed by

E.1 SYMBOLS AND MEANINGS

10,

11.

12,

13.

<O

PR SUL YN WO YUY LG

is composed of

and

or

choose one of (exclusive or)

at least one of (inclusive or)

Iterations of the values from x to y times

Optional value

Comment

Less than or equal to

Greater than or equal to

Not equal to

Greater than

Less Than

- 78 -

P NPT S AP LU P TP S ST S R I A S U G U TP WL '~-\hnAx ORIy

........

<. E.2 DATA ELEMENTS

Jl 1., DATA ELEMENT NAME: bel
DESCRIPTION: ASCII bell

COMPOSITION: Character
ALIASES: None

2., DATA ELEMENT NAME: clock_high
DESCRIPTION: High 16 MSBs of elapsed time clock
COMPOSITION: Integer
ALIASES: None

3. DATA ELEMENT NAME: clock_low
DESCRIPTION: Low 16 LSBs of elapsed time clock
COMPOSITION: Integer
ALIASES: None

4. DATA ELEMENT NAME: column
DESCRIPTION: Column counter
COMPOSITION: Integer

ALIASES: None

5. DATA ELEMENT NAME: convert
DESCRIPTION: Conversion value for lower to upper case

COMPOSITION: Integer
ALIASES: None

- 79 -

PR . . - BN . . o TR LT N P A A l
Sl ST SRR SUPORL. PP NP e) ———— AP VT QY SN YR . S ST AP Al W ol SR SR ST WAL S, e P R e D TP U T W

--------- ‘ .. .
Y T W e O « e e . RPN
IS T SRl A NP PR YRS S AP AP I S S E WY VLK LI N ST AT LAY S LA AT S

7.

10.

o

DATA ELEMENT NAME: entry_text

DESCRIPTION: Entry address
COMPOSITION: String
ALIASES: None

DATA ELEMENT NAME: error_address

g ——.

DESCRIPTION: Error analysis "location" address

COMPOSITION: Integer
ALIASES: None

DATA ELEMENT NAME: error_text
DESCRIPTION: Text form of error_address
COMPOSITION: String

ALIASES: None

DATA ELEMENT NAME: esc
DESCRIPTION: ASCII escape
COMPOSITION: Character

ALIASES: None

DATA ELEMENT NAME: event_address
DESCRIPTION: Address of an "event"
COMPOSITION: Integer

ALIASES: None

haarl

—Y
FC]
PRI |

Lawex
« e

11.

12,

13,

14,

15,

DATA ELEMENT NAME: event_time

" DESCRIPTION: Time an "event" occured

COMPOSITION: Integrer
ALIASES: None

DATA ELEMENT NAME: execute_time

DESCRIPTION: Execution time of a routine

COMPOSITION: Integer

ALIASES: None

DATA ELEMENT NAME: Exit_text
DESCRIPTION: Exit address
COMPOSITION: String

ALIASES: None

DATA ELEMENT NAME: good_address
DESCRIPTION: Flag
COMPOSITION: [true, false]

ALIASES: None

DATA ELEMENT NAME: good_input
DESCRIPTION: Flag
COMPOSITION: [true, false]

ALIASFS: None

- 81 -

e - R . - . - . e T -l
B T T LR, WS PRSI, NS SO, SR S TR R LA LA PRSP)

16. DATA ELEMENT NAME: I

DESCRIPTION: Column counter
COMPOSITION: Integer

ALIASES: None

17. DATA ELEMENT NAME: input_text
DESCRIPTION: User input
COMPOSITION: String
ALIASES: None

18. DATA ELEMENT NAME: invalid_char
DESCRIPTION: Flag
COMPOSITION: [true,false]

ALIASES: None

() 19. DATA ELEMENT NAME: last
DESCRIPTION: Flag
COMPOSITION: [true,false]

ALIASES: None

20, DATA ELEMENT NAME: last_char
DESCRIPTION: Column count of last char

COMPOSITION: Integer
ALIASES: None

- 82 -

S T - . v . - . - Ce e . . - . . .
- - . . - - 3 RERR “
L T S S S AR S S R) - . .) . . P . . . R e . R I . LT

. SO S, N, S P A P S el alins e . b P VS G N ST G Y i SR SE S s S S W W _—"r _._J

21.

22,

23.

24,

25,

DATA ELEMENT NAME: marker
DESCRIPTION: ~1 marker of an "event" record
COMPOSITION: Integer

ALIASES: None

DATA ELEMENT NAME: menu_input
DESCRIPTION: Menu selection
COMPOSITION: Character
ALIASES: None

DATA ELEMENT NAME: new_node
DESCRIPTION: Pointer to new node in binary tree
COMPOSITION: Pointer

ALIASES: None

DATA ELEMENT NAME: new_stack
DESCRIPTION: Pointer to new stack entry
COMPOSITION: Pointer

ALIASES: None

DATA ELEMENT NAME: next
DESCRIPTION: Pointer to next linked list record
COMPOSITION: Pointer

ALIASES: None

- 83 -

26. DATA ELEMENT NAME: next_time
& DESCRIPTION: Pointer to time stack entry

COMPOSITION: Pointer

ALIASES: None

27. DATA ELEMENT NAME: octal_place
DESCRIPTION: octal_string column count
COMPOSITION: Integer

ALIASES: None

28. DATA ELEMENT NAME: octal_string
DESCRIPTION: Octal representation of decimal number
COMPOSITION: String

ALIASES: None

29, DATA ELEMENT NAME: quit_input
DESCRIPTION: User input for termination
COMPOSITION: Character

ALIASES: MNone

30. DATA ELEMENT NAME: routine
DESCRIPTION: Linked list element

COMiOSITION: routinename + entryaddress + exitaddress +
lin

ALIASES: None

- 84 -

AD-A124 712 AUTOMATED TOOLS FOR TEST AND ANALYSIS OF RADAR WARNING 2/2
/ RECEIVER SOFTWARECU) AIR FORCE INST OF TECH
RE Giy-PATTERGON AF3 OH SCHOGL OF ENL. |°C} R ROBERTSON
UNCLASSIFIED DEC 82 RFIT/GCS/EE/820-28 CF/G 1279

_. m—m.__mm_m_munhm

| j =

I
I

22 [l s

MICROCOPY RESOLUTION TEST CHART
.. NATIONAL BUREAU OF STANDARDS-1963-A

e

TR o
B -

e T
VNPT

. e

...
..

31, DATA ELEMENT NAME: stop_comand
DESCRIPTION: Flag
COMPOSITION: [true,false]
ALIASES: None

32, DATA ELEMENT NAME: tab
DESCRIPTION: ASCII tab character
COMPOSITION: Character

ALIASES: None

33, DATA ELEMENT NAME: tail
DESCRIPTION: Linked list pointer
COMPOSITION: Pointer
ALIASES: None

34, DATA ELEMENT NAME: terminate
DESCRIPTION: Flag
COMPOSITION: [true,false]

ALIASES: None

35. DATA ELEMENT NAME: transform
DESCRIPTION: Array
COMPOSITION: Array|[performance..test] of string
ALIASES: None

- 85 -

Tt te T e T e e et e e e e A . .
............. B - - L
TR AT I At S et iadal el A P P S U S IS S VA CU W - PR S S W PO S SR v

36.

E.3

4.

.........................

DATA ELEMENT NAME: weight

DESCRIPTION: Weight of a column in an octal digit
COMPOSITION: Integer

ALIASES: None

DAIA FLOWS

DATA FLOW NAME: address

DESCRIPTION: Memory address

COMPOSITION: Integer

ALIASES: exit_address, entry_address, cov_address,
error_address

DATA FLOW NAME: address_text

DESCRIPTION: String representation of a memory address
COMPOSITION: string '

ALIASES: entry_text, exit_text, cov_text, error_text

DATA FLOW NAME: adr_value
DESCRIPTION: Variable's value
COMPOSITION: Integer

ALIASES: None

DATA FLOW NAME: decimal
DESCRIPTION: Decimal number to be converted to octal
COMPOSITION: integer

ALIASES: cov_node_adr, error_node_adr, min_value,
max_value

- 86 -

...... . 3 e e LT PN LR . . "
-t 2 : S VR N SR NS WS S G SR S el . S . AR L - WP g Y

PN
PR

5. DATA FLOW NAME: error

DESCRIPTION: Flag
COMPCSITION: [true,false]
ALIASES: last

6. DATA FLOW NAME: father
DESCRIPTION: Pointer to node in binary tree
COMPOSITION: Pointer
ALIASES: None

7. DATA FLOW NAME: head
DESCRIPTION: Pointer to first linked list record
COMPOSITION: Pointer

ALIASES: None

L 8. DATA FLOW NAME: help_level
DESCRIPTION: Determine the level of help required
COMPOSITION: [min, max]

ALIASES: None

9. DATA FLOW NAME: input_string
DESCRIPTION: User input
COMPOSITION: String

ALIASES: None

- 87 -

...........................

10.

11.

12,

13.

14,

DATA FLOW NAME: mode
DESCRIPTION: data extraction mode

COMPOSITION: [performance, coverage, error track, rwr,
quit]

ALIASES: none

DATA FLOW NAME: newaddress

DESCRIPTION: Pointer to new node to be inserted into
binary tree

COMPOSITION: Pointer
ALIASES: None

DATA FLOW NAME: root

DESCRIPTION: Pointer to root node of binary tree
COMPOSITION: Pointer

ALIASES: None

DATA FLOW NAME: stack_top

DESCRIPTION: Pointer to top of stack
COMPOSITION: Pointer

ALIASES: entry_stack_top, time_stack_top

DATA FLOW NAME: stack_value
DESCRIPTION: Value of top of stack
COMPOSITION: Integer

ALIASES: entry_time, execute_time

W I L P P e . e T 3 .
PO Py PP A L.y o " e . L P SR Y

i d

15. DATA FLOW NAME: total_addr

DESCRIPTION: Total addresses read from rawdatafile
COMPOSITION: Integer
oo ALIASES: None

E.4 FILES

1. FILE NAME: dx_file
DESCRIPTION: Data ‘extraction specification file
COMPOSITION: Text
ALIASES: None

2. FILE NAME: raw_data_file
Q;-' DESCRIPTION: Data extraction raw data file
COMPOSITION: File of integer

ALIASES: None

- 89 -

" « ‘e Ta -'.' - B .s BN ~ ° : . - 0 - N A -
PP L PALIPUIPL FNLIFUID WIS S SR DU T U VW L S LS TP SO W U0 s 1P U VP U U, _*LA_/J

...................

APPENDIX F

PASCAL SOURCE LISTING

This appendix contains the source listing for the Data

Analysis and Extraction System,

CONTENTS

Program data_analysis &

Procedure get_input

Procedure help_user . . . « o o &

Procedure get_address

Procedure octal « « ¢ « ¢ o o o o

Procedure perf_help . . . « « . .

Procedure perf_build dx

Procedure perf_collect_data . . .

L'~} [+ -] ~ [+, w [w N ad
L]

Procedure push_stack

Procedure pop_stack . « « ¢ o o &

[
o
e

Procedure perf_reduce_data . . .

e
N
* []

Procedure do_performance«

................

...............

...........
......

92
94
95
97
99
100
101
103
104
105
106
109

PRI R WP Y N |

E 13. Procedure cov_help . . « ¢« « ¢« ¢« o ¢ +» ¢ + o 110
» 14, Procedure cov_build dx . + ¢ ¢ ¢ o ¢ o o o o 111
15. Procedure cov_collect_data . . « ¢« o o « o o 112
16. Procedure cov_tree_search . . « « « o« « « o o 113
17. Procedure build _cov_tree . . . « ¢« ¢« o« « o o 115
18. Procedure read _cov_tree . . . « 4+ ¢ ¢ o o o o 117
19. Procedure cov_reduce_data . « « o« « o ¢« o o o 118
20. Procedure do_COVErage . . « « « « « o o« o« & o 120
2l. Procedure error_help . o« « « « « o ¢ ¢ ¢ o o 121
22, Procedure error_ build_dx ¢ ¢ ¢ o o o 122
23. Procedure error_collect_data . . . o o« « . . 123
24, Procedure err_tree_search . . . + o« « « o o« o 124
25. Procedure build err_tree . . . ¢« ¢ ¢« o « o . 126
-~ 26. Procedure read_err_tree « ¢« o o o o o 128

‘27. Procedure error_reduce_data . . « . o« o ¢ o o 129

28. Procedure dO_errOr . . o o « « o o o o » o o 131

29, Procedure do_trackfile . . . ¢« « ¢ ¢ ¢ o o o 132

30, Procedure dO_IWL . . « o o o o o o o o o o o 133

31. Procedure main executive . . « ¢« o ¢ o o o o 134

- 9] -

F.1 PROGRAM DATA_ANALYSIS

hhhhkhhkhhhkhhhhhhhhhkhhhkhhkhhhhhkhkhkhhhhhhkhkhhkhkdhhhkhdkhkhdhhkskkkkk

PROGRAM data_analysis

Rhhkhhhhhhhkhhkhhhhhhhhhhhhkhkhhkhhhhkhhhhkhhhhdkhhhhddhhkdhhkhkhkd

VERSION 1.0 DEC 1982

AUTHOR:
Joel R, Robertson

LANGUAGE:
VAX-11 Pascal

PURPOSE:
This program builds the data extraction file,

collects data, and reduces the raw data.

REMARKS :
This program was developed as part of the author's
masters thesis at the Air Force Institute of
Technology.

***}

(*$s- ;suppress nonstandard warnings *)
(*$w- ;suppress variable length warnings *)

program data_analysis(input,output,dx_file,raw_data_file);

type
token = packed array [l..12) of char;
valid_mode = (performance,coverage,error,
track,rwr,quit,test);
help_mode = (min,max);
memory = integer;
address_string = cked array [l1..5] of char;
routine_ptr = “routine;
stack_ptr = “gtack;
cov_ptr = “cov_node;
err_ptr = “err_node;
dx_data = integer;
data_file = file of dx_data;

routine = record

routine_name packed array [l1..10] of char;

entry_address : memory;
exit_address : memory:;
entry_stack_top : stack_ptr;
time_stack_top : stack_ptr;
link : routine_ptr

end; {routine}

- 92 -

stack = record

stack_time : integer;
stack_link : stack_ptr

end; {stack}

cov_node = record
cov_node_adr : memory;
path_count : integer;
left,right : cov_ptr

end; {cov_node}

err_node = record
err_node_adr : memory;
min_value : integer:;
max_value : integer;
left,right : err_ptr

end; {err_node}

var

mode ¢ valid_mode;

good_input : boolean;

transform : array [performance..test] of token;

input_string : token;

stop_command : boolean;

help_level ¢+ help_mode;

esc, tab,bel ¢ char;

it, dx_file : text;
: raw_data_file : data_file;

value
stop_command

{end declarations

:= false;

- 93 -

TR N, XL W e e il alin

X T W

»
...

F.l.1 Procedure get_input -
RhkRRhhhkhhkhhhhhkhkhhhhhkhhhhkhhhhkbhhkhhkhkhhhkhhkdhkkkdkddhkkik

PROCEDURE get_input

khkhhhhkkhhhhhhhhhkhhkhkhkhhhhhhkhkhkhhhhhhhhkhkhhhdhdhhdkhhhhkhhss

VERSION: 1.0 12-SEP-82

PURPOSE:
Inputs a string from the console and converts all

lower case characters to upper case.

INPUT:
none

OUTPUT:
input_string

GLOBALS USED:
none

REMARKS :

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure get_input (var input_string : token):

var
I
convert

¢ integer; {column count}
: integer; {upper to lower case convertsion}

begin
convert := ord('a') - ord('A');
read(input_string);
for I :=1 to 12 do
if input_string(I] in ['a'..'2'] then
input_string[I] := chr(ord(input_string[I]) - convert);

end; {get_input

F.1l.2 Procedure help_user -
Rhhkhkkhkhkhhhkhhhhhhkhhhhkhhhhhhkhhhkhhhkhhhkhkhkkkhkhhkhkkhkhhkhkkhkhkkk

p] PROCEDURE help_user

Rhhhhhhkhdhhhkhhhhkhkhhhhhkhkhhhhkhhkhhhkhhhkhhhkhkhhkhkhkkhhkhkhkhkkkkk
VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure types a menu on the users console

and accepts as input a menu selection. Also the
help level is set to maximum.

INPUT:
none
OUTPUT:
mode
help_level
GLOBALS USED:
none
REMARKS :
CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure help_user(var mode : valid_mode;
var help_level : help_mode);

var
menu_input ¢+ char;

begin
help_level := max;

{set up menu}

writeln(esc,'{2J'); {clear screen}

writeln;

writeln;

writeln(tab,'ALR-46 DATA EXTRACTION AND ANALYSIS SYSTEM');
writeln;

writeln(tab,tab,'**** M E N U %*#%**1),

writeln;

writeln;
writeln(tab,'l. <PERFORMANCE> ANALYSIS'):

- 95 -

................

writeln;

writeln(tab,'2. <COVERAGE> ANALYSIS');
writeln;
writeln(tab,'3. <ERROR> CONDITION DETECTION');
writeln;
writeln(tab,'4., <TRACK> FILE DISPLAY');
writeln;
writeln(tab,'5. <RWR> GRAPHICS DISPLAY');
writeln;
writeln(tab,'6. <QUIT> PROGRAM');
writeln;

write('ENTER CHOICE [l..6] => ');

readln;
read (menu_input);
while not (menu_input in ['1'..'6']) do
begin
write (bel ’ 'ERROR, , . RE-ENTER => !) H
readln;
read (menu_input)
end; {while}

{ determine mode }
case menu_input of

'1' : mode := performance;
'2' : mode := coverage;
'3' : mode := error;

'4' : mode := track;

'5' : mode := rwr;

'6' : mode := quit

end; {case}

end; {help_user

- 96 -

F.1l.3 Procedure get_address -
RhhkhhkhhkhhhkhkhhhkhhkRhhrkhhhhkhkhhkhhkhkhkhhkhkhhhkhkhhhkhhkhkhhhkhhkhkhhkkd

PROCEDURE get_address

khkkhkhkhkhhkhhkhkhhhhkhkhhhkhhkhhhhhhkhhhhkhhkhhkhhkhhhkhhkhhkhhkhdhhkk

VERSION: 1.0 28-SEP-82

PURPOSE:
This procedure returns the the address value

plus a right justified string representation
of the address.

INPUT:
none

OUTPUT:
address
address_text

GLOBALS USED:
none

REMARKS :

CALLED BY:
perf_build_dx
cov_build_dx
error_build_dx

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure get_address(var address : integer;
var address_text : address_string);

var
last_char : integer;
column : integer;
weight ¢ integer;
good_address,
invalid_char : boolean;

input_text : packed array [l..5] of char;

begin {get address}
good_address := false;
repeat
address_text := ' '
invalid_char := false;
readln(input_text);

- 97 -

DR

..........

column := 1;
repeat
last_char := column;
column := column + 1
until (input_text[column] = ' ') or (column > 5);
for column := last_char downto 1 do
address_text [5-(last_char-column)] :=input_text [column];
for column := 5 downto (6-last_char) do
if not (address_text[column] in ['0'..'7']) then
invalid_char := true;
if invalid_char then
write('INVALID ENTRY => ')
else
good_address := true;
until good_address;

{convert octal string into decimal integer}
address := 0;
for column :=1 to 5 do
begin
if address_text[column] in ['1'..'7'] then
weight := ord(address_text[column]) -~ ord('0')
else
weight := 0;
case column of

1l : address := address + 4096 * weight;
2 : address := address + 0512 * weight;
3 : address := address + 0064 * weight;
4 : address := address + 0008 * weight;
5 : address := address + weight
end {case}
end {for}

end; {get address

- 08 -

L B T T ——

F.l.4 Procedure octal -
I R e R 2222222222222 2222222222222 222

PROCEDURE octal

RRERRRRRREERERE T AR RERI IR RR AR R R AR AR AN ATk Ak hhh ko

VERSION: 1.0 01-DEC-82

PURPOSE:
This procedure types on the console the octal

representation of the decimal number input

INPUT:
dec_number

OUTPUT:
none

GLOBALS USED:
none

REMARKS :

CALLED BY:
read_cov_tree
read_err_tree

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure octal (dec_number : integer);

VAR
octal_string : packed array [l1..6] of char;

octal_place integer;

begin
octal_string := !
octal_place := 0;

{build octal string}

repeat

octal_place := octal_place + 1;
octal_string[octal_place] := chr((dec_number mod 8)+48);
dec_number := dec_number div 8

until dec_number = 0;

{type out octal string}
for octal_place := 6 downto 1 do
write(octal_string[octal_place])
end; {octal

ey T r———

F.1.5 Procedure perf_help -
L2 22 X222 222222222222 2222222222222 X222 22 222222222322}

PROCEDURE perf _help

khhkhkhhhhkhhhkhkhhhkhkhhhhhkhkhhhkhhhhhhhhhhhhhhkhhkkhhhhhhkhhkhkkhkk

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure types instructions on the users
console if help_level is set to 'max’',

INPUT:
help_level

OUTPUT:
none

GLOBALS USED:
none

REMARKS :

CALLED BY:
do_performance

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure perf_help(help_level : help_mode);

begin
writeln(esc,'[2J'); {clear screen}
writeln(tab,'*** PERFORMANCE ANALYSIS MODE ***'),
writeln;writeln;
if help_level = max then
begin
writeln
(*This mode determines the execution for program');
writeln
('subroutines. An entry and an exit address must be');
writeln('provided.')
end;
end; {perf_help

- 100 -

e R

F.1.6 Procedure perf_build_dx -
RERRREE AR R RRENRAARRARRNRRNNARRERAR AR AR AR N SRRk kb h kR

PROCEDURE perf _build_adx

RERRRRR AR R AR E Rk R A kAR ARk Rk kR hkhhhhhkhhkkhhhhhhk

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure builds the performance analysis

dx file.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
dx_file

REMARKS :

CALLED BY:
do_performance

PROCEDURES AND FUNCTIONS CALLED:
get_address

**}

procedure perf_build_dx(head : routine_ptr);
var

entry_text : address_string;

exit_text : address_string;

quit_input : char;

terminate : boolean;

tail,next : routine_ptr;
begin

terminate := false;

tail := head:;

open(dx_file, 'DXFILE' ,new);
rewrite(dx_file);
writeln;writeln;

repeat
writeln; writeln;
writeln('**l);
writeln;
writeln('ENTER NAME OF SUBROUTINE');
write('{10 char max} => ');
readln(tail”.routine_name);

- 101 -

writeln; writeln;

writeln ('ENTER ENTRY ADDRESS'):
write('[1..77777 octal]l => ');
get_address(tail”.entry_address,entry_text);
writeln; writeln;

writeln ('ENTER EXIT ADDRESS'):;
write('[1..77777 octal] => ');
get_address(tail”.exit_address,exit_text);
writeln; writeln;

{initialize stacks}
tail”.entry_stack_top := nil;
tail”.time_stack_top := nil;

writeln(dx_file,entry_text);
writeln(dx_file,exit_text);

write('terminate input [Y¥/N] => ');
readln{quit_input);
writeln; writeln;
if quit_input in ['Y','y'] then
begin
terminate := true;
tail®.link := nil
end
else
begin
new (next);
tail”.link := next;
tail := next
end;

until terminate;
writeln(dx_file,’ 0');

close (dx_£file)
end; {perf_build_dx

- 102 -

i aiadia e d

- P.l1.7 Procedure perf_collect_data -
ﬁ RE R R R R RN R A RN R R R R AR AR R RN RN AR AT RRR AR RN AR AR AR

! PROCEDURE perf_collect_data
- RRERRRARRARRRRRRRRRRRR R AR AR R ARR AR IR AR IR R ARk R khhhkhhhhkhk
) VERSION: 1.0 13-SEP-82
b PURPOSE:
) This procedure collects the performance analysis
3 data.
b .
4 INPUT:
OUTPUT:
GLOBALS USED:
dx_file
raw_data_file

REMARKS :
dummy module - contractor supplied routine

CALLED BY:
do_performance

T PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure perf_collect_data;

begin
writeln;
WEilteln (" *aaantd kAN AR R R AR AARRR R AR RRRRRARNRRRNAR),

writeln('*** procedure perf_collect_data called ***'),;
writeln('**');

. writeln
. end; {perf_collect_data

VT_.'""Y.Y'."tn‘:-.I

- 103 -

-k et -9 '{ - v
> RS NIRRT R
Tt E.'. UL

F.1.8 Procedure push_stack -
(I X222 22222222222 2222 2222222222

PROCEDURE Push_stack

Rk hhRRhhhhhRhhhhhhhkhhkhhhhhhhhhhhhhhhkhhhhhhhhkhhkhkhhhhd

VERSION: 1.0 12-0CT-82
PURPOSE: pushes a value on the stack pointed to by
stack_top.
INPUT:
stack_top -pointer to top of stack
stack_value -value to be pushed on stack
OUTPUT:
stack_top -new top of stack
GLOBALS USED:
none
REMARKS:
CALLED BY:

perf_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure push_stack(var stack_top : stack_ptr;
stack_value : integer):;

var
new_stack : stack_ptr;

begin
new (new_stack);
nev_stack”.stack_time := stack_value;
if stack_tog = nil then
new_stack” .stack_link := nil
else
new_stack”.stack_link := stack_top;
stack_top := new_stack
end; {push_stack

- 104 -

LI S i) hd . LIRS) LRSI, P ORE DU YOr I PRl PO Ta TP P PP W P LI g)

e ad

S S

LSRR NERTICENR

R B A

—— T
T T

e
0 8 s S

-

F.1.9 Procedure popstack -

PROCEDURE pop_stack
AERRRRERRERE AR ARERRARRR AR AR AR AR AN A AR AT b b o b hhhdhh
VERSION: 1.0 11~-0CT-82

PURPOSE:
pops value from top of stack

INPUT:
stack_top ~-pointer to top of stack
OUTPUT:
stack_value -value popped from stack
stack_top -new top of stack
GLOBALS USED:
none
REMARKS
CALLED BY:

perf_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure pop_stack(var stack_top ¢ stack_ptr;
var stack_value : integer;
var error : boolean);

begin
if stack_top = nil then
error := true
else
begin .
stack_value := stack_top”.stack_time;
stack_top := stack_top”.stack_link
end;
end; {pop_stack

- 105 -

.......

[AN B« QEATENDE

F.1.10 Procedure perf_reduce_data -
hhhhkhhhhhhhhhhhkhhhhdhkhhhhhhkhkhkhhhhhkkhhhkhhhkhhhkhhhkhhhkhkhhkk

PROCEDURE perf_reduce_data

t 2 AL AE XL 222222222 22 222222 R X2

VERSION: 1.0 21-NOV-82

PURPOSE:
This procedure reduces the performance analysis

data.

INPUT:
head -front of linked linked list

raw_data_file -file produced by dx system

OUTPUT:
none

GLOBALS USED:
raw_data_file

REMARKS :

CALLED BY:
do_performance

PROCEDURES AND FUNCTIONS CALLED:
push_stack
pop_stack

**}

procedure perf_reduce_data(head : routine_ptr);

var
tail s routine_ptr;
count ¢ integer;
{'’event' record}
marker : integer;
event_address : integer;
clock_high : integer;
clock_low : integer;
event_time,
entry_time,
execute_time : integer;
next : routine_ptr;
error,last : boolean;
next_time : stack_ptr;
begin

- 106 -

et e il

open(raw_data_file, 'DXDATA',01d);
reset(raw_data_file);
writeln;
while (not eof (raw_data_file)) and (not error) do
begin
read(raw_data_file,marker,event_address,
clock_high,clock_low);
if marker = -1 then
begin
next := head;
event_time := clock_low + 65536 * clock_high;
repeat
if next”.entry_address = event_address then
push_stack (next”.entry_stack_top,event_time);
if next”.exit_address = event_address then
begin
pop_stack (next" .entry_stack_top,entry_time,error);
execute_time := event_time - entry_time;
pugh_stack(next“.time_stack_tOp,execute_time)
end;
next := next”.link;
until next = nil
end
else
begin
error := true;
writeln('RAW DATA FILE FORMAT ERROR')
end {else}
end; {while}
close(raw_data_file);

{**}

{* FPormat and print out the execution times *}
{****t***************************************}

if error = false then
begin

writeln(esc,'[2J3'); {clear screen}

next := head;

repeat
count := 0; {reset count}
writeln;
write(tab,'EXECUTION TIMES FOR SUBROUTINE ‘);
writeln(next”.routine_name);

writeln

(tab, '==—== ——————— - - -
next_time := next”.time_stack_top;

repeat

last := false; {not end yet}
pop_stack (next_time,execute_time,last);
if not last then {stack empty ?}
begin 1
write(execute_time); ;
count := count +1 |

- 107 -

.... i LIt et It B - Reaet A e i T T, T — ——— - - T
................ . S [P . K - . PRt . P
...

end;
if count > 4 then
begin
count := 0; {reset count}
writeln {new line}
end
until last;
next := next”,link;
writeln;
writeln
(tab, '-===——cc e ————— - ———— - ")
until next = nil;
writeln;
end
end; {perf_reduce_data

|
J

o .ot T ~ . .t - s . C e ot Lt - N . . T
..... e . WS WL W P L W UYL NI L S U WU iy Ut G VU T SO W S _s_:.".._:.,-.*.J

D AP B JenaC e S s - Mbcch et I v ik’ 20de - Ihun Jbun v SUND “ues J0MhCEve e Jnoh 20n e g men v
............... R T T e e

F.1.11 Procedure do_performance -
khhhhkhkhkhhhkhhkhkhkhkhkhkhhkhkhkhhkhkhhkhhhkhkhkhkhhhkhkhkhkhhhkkkhkhkhkhkkkkk

PROCEDURE do_performance

Rhkhhhhhhkhhhhhhhhhhkhhkkhkhhhkhkhhhhhhhkhkhhhhhhhhkhhdkdhhkkkdik

VERSION: 1.0 13-SEP-82

PURPOSE:
This procedure does the subroutine performance

analysis

INPUT:
help_level

OUTPUT:
head

GLOBALS USED:
none

REMARKS:

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:
perf_help
perf_build_dx
perf_collect_data
perf_reduce_data

**}

procedure do_performance (help_level : help_mode);

var "
head : “"routine;

begin {do_performance}
perf_help(help_level);

{build the performance analysis dx file}
new (head);
perf_build_dx (head);

{call the contractor supplied data extraction routine}
perf_collect_data;

{reduce the extracted data}
perf_reduce_data(head);

end; {do_performance

- 109 -

F.l.12 Procedure cov_help =~
khkhkhkhhkhkhkhhkhkhhhkhhhkhhhkhkhkkhkhhkhhhhkhkhkthkhkkhkhhkhkhhhhkhkkhkkkd

:ﬂ PROCEDURE <cov_help

khkhhkhhkhhhhkhhhhhhhhhhkhhhhkhhkkhhhhhhhkhhkhhhkhkhhhkhkhhhkhhkhhkk

VERSION: 1.0 22-NOV-82

PURPOSE:
This procedure types instructions on the users
console if help_level is set to 'max',

INPUT:
help_level

OUTPUT:
none

GLOBALS USED:
none

REMARKS :

CALLED BY:
do_coverage

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure cov_help(help_level : help_mode);

begin

writeln(esc,'[2J'); {clear screen}

writeln(tab,'*** COVERAGE ANALYSIS MODE ***!).

if help_level = max then

begin

writeln
('This mode counts the occurances of path markers');
writeln('to determine the testing coverage.'):

NERSISAEE S 4 S AT AR
-l . HFI e LT e

end;
writeln;
: writeln('Enter path marker address <0 to end>')
' end; {cov_help
3
¥

.rr"rrr
B AN
et

- 110 -

F.1.13 Procedure cov_build_dx -
KRR IR RRRRRRRI kR R AR KRR ARk hhhkhhhhkhhhhhhkhhhkhdhk

PROCEDURE cov_build_a4dax

Ty Y Y R I I T T TSI
VERSION: 1.0 22-NOV-82

PURPOSE:

This procedure builds the coverage analysis
dx file, dx_file will be an 'event' type file.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
dx_file

REMARKS :

CALLED BY:
do_coverage

PROCEDURES AND FUNCTIONS CALLED:
get_address

**}

procedure cov_build_dx;

var
cov_address ¢ memory;
cov__text : address_string;
begin

open(dx_file, 'DXFILE’' ,new);

rewrite(dx_file);

repeat
write('PATH MARKER [1..77777 octal] => ');
get_address(cov_address,cov_text);
writeln(dx_file,cov_text)

until cov_address = 0;

close(dx_£file)

end; {cov_build_dx

- 111 -

2 IR :
a0

DN

F.1.14 Procedure cov_collect_data -
khkhkhRhkkhkhhkhhkhkhhkhkhkhkhkhhkhkhhkhkhhhkhhkkhhkhkhkkhhkhhhhkhkkhhhkhhkhkkhk

PROCEDURE cov_collect_data

hhhkhkhhkhhhkhkhhkhhhhkhkhhhhkhrhhkhhkhkhhhhkhkikhkhkhkhhkhhkhhhkkhk

VERSION: 1.0 27-SEP-82
PURPOSE:
This procedure collects the coverage analysis
data,
INPUT:
none
OUTPUT:
none

GLOBALS USED:
dx_file
raw_data_file

REMARKS :
dummy module - contractor supplied routine

CALLED BY:
do_coverage

PROCEDURES AND FUNCTIONS CALLED:

**}

procedure cov_collect_data;

begin
writeln;
Writeln (" ** ek ARt h kXA RRRAARRRARRAARRAARRRAARARRRRAT)

writeln('*** procedure cov_collect_data called ***');
writeln('***');

writeln
end; {cov_collect_data

~e

- 112 -

LSO VA SPS Amd itk 2 4 A b WSS U W W DU S G G S U P I Gy W P e

F.l.15 Procedure cov_tree_search -
Rhkhhhhhhhhkhhhkdhhhkhkhkhhhkhkhkhkhhhhkhkhkhhhkhkhkhkhhhkhkhkhkhkhhkhkkhhhikk

PROCEDURE cov_tree_search

222 AT 222222 22222222222 R 22X R 22222 22 2 X 22 X}

VERSION: 1.0 21-NOV-82

PURPOSE:
This procedure searches the binary tree for an

address, If the address is found the path count
is incremented, otherwise the address will be
inserted into the binary tree.

INPUT:
father
new_address

OUTPUT:
none

GLOBALS USED:
none

REMARKS :
this is a recursive procedure

CALLED BY:
build_cov_tree

PROCEDURES AND FUNCTIONS CALLED:
cov_tree_search

**}

procedure cov_tree_search(var father : cov_ptr;
new_address : memory);

var
new_node : cov_ptr;

begin
if new_address = father”.cov_node_adr then

{we found it update count}
father” .path_count := father”,.path_count + 1
else
if new_address < father”.cov_node_adr then
begin
if father”.,left = nil then
begin
new (new_node)
father”.left := new_node;
with new_node” do

- 113 -

PGS WY U S A . . Y o R A T A
- i PR, P SR S AP SR . S R U S S

A

begin
cov_node_adr := new_address;
ath_count := 1;
eft := nil;
right := nil
end {with}

end
else
begin
father := father®.left;
cov_tree_search(father,new_address)
end
end
else
if father”.right = nil then
begin
new (new_node) ;
father”.right := new_node;
with new_node” do
begin
cov_node_adr := new_address;
path_count := 1;
left := nil;
right := nil
end {with}
end
else
begin
father := father".right;
cov_tree_search(father,new_address)
end {else}
end; {cov_tree_search

- 114 -

e IR - . B . A - . L
mednadl i Bo e Slocts S B St et B S s B B AP PSP ST Gy S S VLT S W VI WO, S U S .

Ty

p g
i G by G tefes
Tt T

4

—

Wt 4

- B —————— Y TYTY v
e I.ﬁ,. . REAP AR CMOM M
R o T @A

<T“ﬁﬂ.-‘
AAK RN
. -n LI

F.1l.16 Procedure build_cov_tree -
REEREERRRRRRERERRRRRR R KRR AR AR AR R RNk ARk hkhkkhkhk

PROCEDURE build_cov_¢tree
RRREKRREREERERERRRRERERRRRRERRR R R RRRRREA AR AR AR kR h®
VERSION: 1.0 21-NOV-82

PURPOSE:

This procedure builds the coverage analysis
binary tree.

INPUT:
root
total_adr
OUTPUT:
none

GLOBALS USED:
raw_data_file

REMARKS :

CALLED BY:
cov_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
cov_tree_search

**}

procedure build_cov_tree(var root : cov_ptr;
var total_adr : integer):;

var
new_address : memory; {address to be inserted in tree}
new_node, {pointers to nodes}
father : cov_ptr;

begin {build_cov_tree}
open(raw_data_file, 'DXDATA',01d);
{insert the first word in the root node}
reset (raw_data_file); {discard marker}
if not eof (raw_data_file) then
begin
get(raw_data_file); {get address}
new_address := raw_data_file";
total_adr := 1;
with root” do
begin
cov_node_adr := new_address;
path_count := 1;

~ 115 -

P -
A PADANRRER
- S [P N

T TTETEW . TuryTyTY
» B R
e T L e S e

left := nil;
right := nil
end; {with}
get(raw_data_file); {discard clock high}
get(raw_data_file); {discard clock low}
end
else
root := nil;

{attach each address to its father}
get(raw_data_file); {discard marker}
while not eof (raw_data_file) do
begin
get(raw_data_file); {get address}
new_address := raw_data_file”;
total_adr := total_adr + 1;
father := root; {first father is root}
{insert each path address into tree}
cov_tree_search(father,new_address);
get(raw_data_file); {discard clock high}
get(raw_data_file); {discard clock low}
get(raw_data_file); {discard marker}
end; {while}
close(raw_data_file)
end; {build_cov tree

- 116 -

- ' 3 vj—'vw’

3
4

Tl T

)~ By

o ~rrv—rs
,’ v ¢ 8 l‘l . .
AN T

LA I S A o]
BRARAAY

P

vy
A,

A o ol
DI

F.l1l.17 Procedure read_cov_tree -
(2 2222322222222 2222222222222 2222222222222 222222 X 2

PROCEDURE read_cov_¢tree

khhRhhhARRRA R IR IRR IRk hhhhhkhhkhkhhhhhhhkhkkhhhhhhhhkhkd

VERSION: 1.0 01-DEC-82

PURPOSE:
This procedure does an in order traversal of the
binary tree.

INPOT:
root

OUTPUT:
none

GLOBALS USED:
none

REMARKS :
recursive procedure

CALLED BY:
cov_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
read_cov_tree
octal

****************i*************************************}

procedure read_cov_tree(root : cov_ptr);

begin
if root <> nil then
begin
{stoping state not reached ~ perform recursion}
read_cov_tree(root”.left);
write(tab);
octal (root”,.cov_node_adr);
writeln(' => ' root”.path_count);
read_cov_tree(root”.right);
end {if}
end; {read_cov_tree

- 117 -

e e s - . M . - 1 - T - N A‘~‘L,,-_;_n_‘,‘g;.4-i

e SSE S Aours s ol o

P.1.18 Procedure cov_reduce_data -
RRRRRARRAkRhhhhhhkhhhkhhkhhhkhhkhhhkhhhhhhhkhhkkhhkhkhhkhhkhhhkhkhkhhkk

PROCEDURE cov_reduce_data

khhhhhkhkhkhhhhhhkhhhkdhhhhhkhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhdhhd

VERSION: 1,0 21-NOV-82

PURPOSE:
This procedure reduces the coverage analysis
data, First it builds a binary tree and counts
the number of traversals. second, it does an
inorder traversal of the tree and prints out
the number of traversals.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
raw_data_file

REMARKS :

CALLED BY:
do_coverage

PROCEDURES AND FUNCTIONS CALLED:
build_cov_tree
read_cov_tree

**}

procedure cov_reduce_data;

var
total_addr : integer; {number of addresses read}
root : cov_ptr; {root of tree}

begin
writeln;

new(root); {create root node}
build_cov_tree(root,total_addr);
if total_addr <> 0 then
begin
writeln(esc,'[27'); {clear screen}
writeln;
writeln(' ADDRESS NUMBER OF TRAVERSALS'):
writeln(' scemccce ||| cemrmccmcemcee—ecea- 'Y:
read_cov_tree(root):;
writeln;

- 118 -

e e Ban 2 4

_‘r' .7. :‘f'T .‘Y’ e

—\‘lz’v'v*r-'v r'r‘rly ey
She e . v

write ('TOTAL NUMBER OF PATHS COVERED = ');
writeln(total_addr: 2)
end
else
writeln('FILE EMPTY')
end; {cov_reduce_data

- 119 -

.................

PR INP P W W WL L PR P s N S I S UL I W D PGP R P W S

T ——— ey TP p————— " R ey

F.1.19 Procedure do_coverage -
'Y YT 22222222222 23XX22222 22222822222 X2 2212222 222222l dd

PROCEDURE do_coverage

ARRRRRFPRRNRRRNRRRAN R AR IR AR AR h bRk kA bk hkdk

VERSION: 1.0 27-SEP-82
PURPOSE:
This procedure does the coverage analysis.
INPUT:
none
OUTPUT:
none

GLOBALS USED:
none

REMARKS :

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:
cov_help
cov_build_dx
cov_collect_data
cov_reduce_data

**}

procedure do_coverage (help_level : help_mode);

begin
cov_help(help_level);

{build the coverage analysis dx file}
cov_build_dx;

{call the contractor supplied data extraction routine}
cov_collect_data;

{reduce the extracted data}
cov_reduce_data;

end; {do_coverage

- 120 -

PR W

Tf~ .
PAPNEE A LA a
. l.l" . "':--‘4.
. i L PR A .
.
.

F.1.20 Procedure error_help -
hhhkhkhhkkkhhkhkhhhkhkhkhkkhkhhhhkhhkhkkhhkhkhhkhhhhhhhkhkhkhkhhhhkhhkhhkhkhdhk

PROCEDURE error_help

RRRERERERRRREKRRRRRRRRRRRRR AR R R AR KRR RA TR AR kA hhh

VERSION: 1.0 22-NOV-82

PURPOSE:
This procedure types instructions on the users

console if help_level is set to 'max'.

INPUOT:
help_level

OUTPUT:
none

GLOBALS USED:
none

REMARKS :

CALLED BY:
do_error

PROCEDURES AND FUNCTIONS CALLED:
none

**}

procedure error_help(help_level : help_mode);

begin
writeln(esc,'[2J'); {clear screen}
writeln(tab,'*** ERROR ANALYSIS MODE **#*').
if help_level = max then
begin
writeln
('This mode determines the minimun and maximum'):;
writeln
('values obtained by a program variable during'):
writeln('a particular test run,')
end;
writeln;
writeln
('Enter variable addresses to be extracted in octal');
writeln('end entry with 0.')
end; {error_help

- 121 -

E; o
%i

F.l.21 Procedure error_build_dx -
khkhkdhhhkhkhkhkhkhhkhhkhkhkkhhhhhhhhkhhkhhhkhhkhkhkkhkhkhkhkkkhhkhhhkkhkhkk

PROCEDURE error_build_d4dxzx
hkhkhhkhkhhkhkhhkhhkhRhhhkhhhkhkhkhkhhkhhhkhhkhhkhkhkkhkhkhhkhhkkhhhhhhhhkkk
VERSION: 1.0 22-NOV-82

PURPOSE:

This procedure builds the error analysis dx file.
The dx_file is a 'location' format file.

Ty —— >
DR RS-) (RPN

. R R AR PR L
R R . .

v

INPUT:

none

OUTPUT:
none

GLOBALS USED:
dx_file

REMARKS :

E;Z CALLED BY:
N do_error

o PROCEDURES AND FUNCTIONS CALLED:
get_address

**}

var
error_address : memory:;
error_text : address_string;

2
S
ii procedure error_build_dx;

k3
2

LI I 4 r
T
4 4t & v AT e

YT,
- :

begin
open(dx_file, 'DXFILE' ,new);
rewrite(dx_file);
writeln(dx_file,! 0%);
repeat
write ('ADDRESS [1..77777 octal] => ');
get_address(error_address,error_text):;
if error_address <> 0 then
begin
writeln(dx_file,error_text,',',error_text)
end
until error_address = 0;
close(dx_file)
end; {error_build_dx

T
BI04

o

- 122 -

....... - - - C. . - 5 . e - AN TR
o o abnaatbntand PP G TP P I T W WP W Sy o PRI W e

F.1.22 Procedure error_collect_data -
RERR R R RR R R RN RRRRRRRNR AR R RR R RN RRRR AR AR AN ARk kA hd %

PROCEDURE error_collect_data

LA AR 2R RS2 RdR2RaR 222222R2222X222222R 2222]

VERSION: 1.0 27-SEP-82
PURPOSE:
This procedure collects the error analysis data.
INPUT:
none
QUTPUT:
none

GLOBALS USED:
dx_file
raw_data_file

REMARKS:
dummy module - this routine is contractor supplied

CALLED BY:
do_error

PROCEDURES AND FUNCTIONS CALLED:

**}

procedure error_collect_data;

begin
writeln;
writeln(l***'

)
writeln('*** procedure error_collect_data called ***!')
writeln(l***l)

writeln
end; {error_collect_data

e WS W

- 123 -

PYRRAY VRN VY oy W AP Y Wy SN Y LA L. LI AP IV ST W TOUITIPN S f—

M A A P A - - ISR A At b 2t S “San i S s

F.l.23 Procedure err_tree_search -
hkhkhhkkhhkhkhkkhhkhhhkkhhkhhkdhhhkhkhkhkhdhhkhdkhkdhdkikdddkiikkdhikdkkkki

PROCEDURE err_tree_search

hhhkhhkhhhkhdhihhkhdhkhhkhdhhhdhhhkhhhdkhhhhhddhhhdhdkhhhdkdkdkkk

VERSION: 1.0 04-NOV-82

PURPOSE:
This procedure searches the binary tree for an

address. If the address is found new min and
max values will be calculated, otherwise the
address will be inserted into the binary tree.

INPUT:
father
new_address
adr_value
OUTPUT:
none

GLOBALS USED:
none

REMARKS :
this is a recursive procedure

CALLED BY:
build_err_tree

PROCEDURES AND FUNCTIONS CALLED:
err_tree_search

i***}

procedure err_tree_search(var father : err_ptr;
new_address : memory;

adr_value : integer);

var
new_node : err_ptr;

begin
if new_address = father”.err_node_adr then
begin
{we found it, calculate new min and max }
if adr_value > father”.max_value then
father”.max_value := adr_value;
if adr_value < father”.min_value then
father” .min_value := adr_value
end
else

- 124 -

.....

if new_address < father”.err_node_adr then
begin
if father".,left = nil then
begin
new (new_node) ;
father”.left := new_node;
with new_node” do
begin
err_node_adr := new_address;
min_value := adr_value;
max_value := adr_value:;
left := nil;
right := nil
end {with}
end
else
begin
father := father®.left;
err_tree_search(father,new_address,adr_value)

end
end
else
if father®.right = nil then
begin
new (new_node) ;
father”.right := new_node;
with new_node” do
begin
err_node_adr := new_address;
min_value := adr_value;
max_value := adr_value;
left := nil;
right := nil
end {with}
end
else
begin

father := father”,right;
err_tree_search(father,new_address,adr_value)
end {else}
end; {err_tree_search

“125— |

LN N ‘-1‘

50 YDA

—rr A
.
Sl

AR AR {

S P

FP.l1.24 Procedure build_err_tree -
Y Y Y 2 R 222 22223222 XZXX2TRRR 222 2XXXX2 2222222222 2 22 2}

PROCEDURE build_err_tree

XX I Y222 X 2222 22222222223 XXX X2 222X 2222 2 22 23
VERSION: 1.0 04-NOV-82

PURPOSE:

This procedure builds the error analysis
binary tree,

INPUT:
root
total_adr
OUTPUT:
none

GLOBALS USED:
raw_data_file

REMARKS:

CALLED BY:
err_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
err_tree_search

***************************t**************************}

procedure build_err_tree(var root : err_ptr;
var total_adr : integer):;

var
new_address : memory; {address to be inserted in tree}
adr_value : dx_data; {value written to a location}
new_node, {pointers to nodes}
father : err_ptr;

begin {build_err_tree}
open(raw_data_file, 'DXDATA',0l1d);
{insert the first word in the root node}
reset (raw_data_file);
if not eof (raw_data_file) then
begin

read (raw_data_file,new_address,adr_value);

total_adr := 1;

with root” do

begin
err_node_adr := new_address;

- 126 -

- rr_n(r‘vﬁr_

min_value := adr_value;
max_value := adr_value;
left := nil;
right := nil
end; {with}
end
else

root := nil;

{attach each address to its father}
while not eof (raw_data_file) do
begin

read(raw_data_file,new_address,adr_value);

total_adr := total_adr + 1;

father := root; {first father is root}
{insert each path address into tree}
err_tree_search(father,new_address,adr_value);

end; {while}
close(raw_data_file)
end; {build_err tree

- 127 -

TR agiitanie ~ -.*n"_?
. L . .

I R S S WP S S SE Gar S W S S G P |

F.1.25 Procedure read_err_tree -
Y I e Y X XYY Y 222X X2 2222222222222 222 222

PROCEDURE read_err_tree

RERRRERRRR AR AR AR Rhhhhhhhhhkhhhkhhhhhhhhhhhkhhkkhkhhhhhdhd

VERSION: 1.0 01-DEC-82

PURPOSE:
This procedure does an in order traversal of the

binary tree,

INPUT:
root

OUTPUT:
none

GLOBALS USED:
none

REMARKS :
recursive procedure

CALLED BY:
err_reduce_data

PROCEDURES AND FUNCTIONS CALLED:
read_err_tree
octal

**}

procedure read_err_tree(root : err_ptr);

begin
if root <> nil then
begin
{stoping state not reached - perform recursion}
read_err_tree(root”.left);
write(tab):
octal(root”.err_node_adr);
write(" =) '):
octal (root” .min_value);
write("' ')
octal (root” .max_value);
writeln;
read_err_tree(root”.right);
end {if}
end; {read_err_tree

- 128 -

PRSP SO W WS

P L. - e . ST . - - - .
. a A . . o Y PO T WY P A ala’ ala

F.1.26 Procedure error_reduce_data -
RERKBRREERRERRRRRRRRRRRR R AR kR R R Rk hkhkhkhkhhkhhhkhhhkhhhkhkhk

PROCEDURE error_reduce_data

(22222222222 22222222 X2 22222222 222X 2222222222222 12222 2]

VERSION: 1.0 27-SEP-82
PURPOSE:
This procedure reduces the error analysis data.
INPUT:
none
OUTPUT:
none

GLOBALS USED:
raw_data_file

REMARKS :

CALLED BY:
do_error

PROCEDURES AND FUNCTIONS CALLED:

**}

procedure error_reduce_data;

var
total_addr : integer; {number of addresses read}
root : err_ptr; {root of tree}

begin
writeln;

new(root); {create root node}

build_err_tree(root,total_addr);

if total_aadr <> 0 then

begin

writeln(esc,'[2J'); {clear screen}
writeln;
writeln
(tab, 'ADDRESS MIN VALUE MAX VALUE');
writeln
(tab,'==ccmceer ecmmececce ceceecee- '):
read_err_tree(root);
writeln;

- 129 -

write('TOTAL NUMBER OF ADDRESSES READ =');
writeln(total_addr :2)
end
else
writeln('FILE EMPTY')
end; {error_reduce_data

- 130 -

LA I .
W o 8 P PRI PP T, SRR, SR)

e]

T

T TV T T
..l l' c‘. .
- . N . Fra

“ : :
.- PR e .'.‘|‘n A‘l'(.A

ey g
.. " " i" ..'
£ 4] [y

UALEEENE PR AT
Lot N b S, e T
St LU
'
'
¢
.

AR e e e e o -
O AR P ARV
KON P SO P SRR

F
*

}.27 Procedure do_error -

L4
AR RS2 LTRSS SRR 2222222222 2 2

PROCEDURE do_error

REERRRERRRRERRRERRRRRERRRR AR AR AN AR R AR Ak bk hhhhkhhhhkk

VERSION: 1.0 27-SEP-82
PURPOSE:
This procedure does the error analysis.
INPUT:
none
QOUTPUT:
none

GLOBALS USED:
error_dx_file

REMARKS:
dummy module

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:
error_help
error_build_dx
error_collect_data
error_reduce_data

**************t***************************************}
procedure do_error (var help_level : help_mode);

begin
error_help(help_level):

{build the error analysis dx file}
error_build_dx;

{call the contractor supplied data extraction routine}
error_collect_data;

{reduce the extracted data}
error_reduce_data
end; {do_error

- 131 -

Sa NP DS WP UEP A DU (G SR S R A

T

e e 2]

e e o e g e —y _.1—.‘.-.‘.vﬁ,-¥

- F.1.28 Procedure do_trackfile -
<o 1222 222222222222 X 220X YT L YT YR T T T TRIE LT LY

PROCEDURE do_trackfile

hhhkhhREREIIRRA ARk N T hkhhh bk kR Ak kR ARk h kR hrhdd

VERSION: 1,0 12-SEP-82

PURPOSE:
This procedure displays the contents of the emitter

track file.

INPUT:
none

- OUTPUT:
- none

GLOBALS USED:
none

REMARKS :
Dummy module -~
Code for this module from previous thesis

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:

**}

procedure do_trackfile;

begin
writeln;
writeln('***');

writeln('*** not inplemented in thesis version **¥*');
writeln(l***'),

writeln
end; {do_trackfile

ey 1:

LA K SRR A a4 M "
ISETMMAD P uaiur ey

—
-t

NN |

-y
St
PR

- 132 -

F.1.29 Procedure do_rwr -
2 I Y 2 R 2 A 22X X2 222XXXX22X222X22 2222222222222 %% ¢4

PROCEDURE do_rwr

RERRRKRRRAREARRRRARARR AR R AR I AR R ARk kR TRk bk hhhhk

VERSION: 1.0 12-SEP-82

PURPOSE:
This procedure displays a simulation of the RWR

CRT on the color graphics terminal.

INPUT:
none

OUTPUT:
none

GLOBALS USED:
none

REMARKS :
Dummy module -
Code for this module from previous thesis

CALLED BY:
data_analysis

PROCEDURES AND FUNCTIONS CALLED:

**}

procedure do_rwr;

begin

writeln;
writeln(l***************************ﬁ*************l);

writeln('*** not inplemented in thesis version ***'};
writeln(|***l);

writeln
end; {do_rwr

- 133 -

F.1.30 Main Executive =
Y e T I I T T I I T T ST T L TSI ST,

THIS IS THE MAIN EXECUTIVE ROUTINE

***}

begin {data_analysis}

esc := chr(27); {ASCII ESCAPE}

bel := chr(7); {BEEP}

tab := chr(9); {ASCII TAB}

writeln(esc,'([23'); {clear_screen}

writeln

(tab,'*** AI,R-46 DATA EXTRACTION AND ANALYSIS SYSTEM **%!).
writeln;

writeln('Type <help> for menu');

writeln:

{initialize the transformation array}
transform[performance)] := 'PERFORMANCE ';

transform[coverage] := 'COVERAGE 's
transform[errorl := 'ERROR ':
transform([track] := 'TRACK s
transform[rwr] := 'RWR 'z

transform[quit] := 'QUIT ;
‘[3 repeat
help_level := min;
good_input := false;
{loop until valid command}
while not good_input do
begin
write ('ENTER COMMAND => ');
get_input (transform[test]);

{ select mode from menu or command }
if transform[test] = 'HELP ' then
begin
help_user (mode, help_level);
good_input := true
end
else
begin
mcde := performance;
{search the transformation array for a match}
. while transform[mode] <> transform[test] do
oo mode := succ(mode);
- {check for invalid input}
if mode = test then
writeln (bel,'INVALID COMMAND... try again')
else
good_input := true
end {else}

- 134 -~

(A4
v, .
L3

¥,

roa s 9

d MR RO
R AR AN Y)
S . AT

R Sr. 3

............

end; {while}

{command has been converted into an enumeration type}
case mode of
performance : do_performance (help_level);

coverage ¢+ do_coverage (help_level);
error : do_error(help_level);

track : do_trackfile;

Iwr : do_rwr;

quit ¢ stop_command := true

end; {case}
until stop_command
end. {analysis

}

- 135 -

...................................

APPENDIX G
TEST DOCUMENTATION

This appendix contains the test plans used in
validating the proper operation of the Data Extraction and
Analysis System, Test cases were derived from the software
requirements using equivalence partitioning and boundary

value analysis,

1. Test Plans L] [) [] L [] L] L] L] L] * [L] L] L L L] L] o 137

2 L Test Data L] [4 [] [] [[) L L] L L] L L] L] L L] L d L] L 140

[

EXPECTED OUTPUT
Command PERFORMANCE Enter performance
analysis mode
02 Command COVERAGE Enter coverage
analysis mode
03 Command ERROKR Enter error
analysis mode
04 Command TRACK Enter trackfile
analysis mode
05 Command RWR Enter RWR
analysis mode
06 Command HELP Print menu
07 Command QUIT Exit to operating
L system
08 Command INVALID Print error message
------ e S
09 Menu selection #1 Enter performance
analysis mode
10 Menu selection #2 Enter coverage
analysis mode
11 Menu selection #3 Enter error
analysis mode
12 Menu selection #4 Enter trackfile
analysis mode
- 137 -

""""" — ek B B N oD

s - - STt T v W o e e T e T T U T

TEST INPUT EXPECTED OUTPUT
CASE
13 Menu selection #5 Enter RWR

analysis mode

14 Menu selection #6 Exit to operating
system
15 Menu selection %7 Print error message
- o e G G G D T T G G G T R D G G G SIS S G S G G S G o b o o o v = e e P A S A e e = ———
Performance mode: 'DXFILE,DAT' contains

16 Entry address = 1..32767| right justified 5 char
Exit address = 1..32767 entry and exit addresses

Performance mode:
17 Entry address > 32767 Print error message

Performance mode:

; 18 Exit address > 32767 Print error message
ne | |
B Performance mode: Execute data collection
i& 19 terminate input Print module name and
- execution times
b |—meoom— o o e o= o e e - —— -—— e e i o e G G S — I S D G S T D S S - G G S S G G
& Performance mode:
'l 20 Empty data file Print module name with
5 4 no execution times
Coverage mode: 'DXFILE.DAT' contains
o 21 Path address 1..32767 right justified 5 char
15 path address
Ef Coverage mode:
5 22 Path address > 32767 Print error message
i Coverage mode: Execute data collection
- 23 Path address = 0 Print path address and
times executed
------- an arem e, v % e e o o e o G S S T G S s D Gu i S G G S SE G G G e G G G GIA GE SR SN G G Sun D G S S
Coverage mode:
. 24 Empty data file No data printed
4

ii - 138 -

i.‘ﬁ_‘ ot e S e . “ - .o
S . e B L, B e T el o i an_a Ml o m mam mt et e mtadanamt s e

............................

TEST INPUT EXPECTED OUTPUT

CASE
Error mode: 'DXFILE.DAT' contains

25 Variable address = right justified 5 digit
1..32767 text of addresses
_______ - —— —————————— ——————————— ———
Error mode:
26 Variable address > Print error message
32767
- - - - - - - —— . — — G . Sy G G - = -
Error mode: Execute data collection
27 variable address = 0 Print variable addresses

with min and max values

Error mode:
28 Empty data file No data printed

- 139 -

R Ve i) Bl g

G.2 IEST DATA AND RESULTS

G.2.1 pPerformance Analysis - This section contains the test

data used to validate the "performance analysis" mode of the

Data Extraction and Analysis System.

G.2.1.1 Input Data -

Subroutine Name - TEST1
Entry Address - 1l
Exit Address - 77777

Subroutine Name - TEST2

Entry Address - 400
Exit Address - 1000
Subroutine Name - TEST3

Entry Address - 2000
Exit Address - 4000

I G.2.1.2 Data Reduction Simulatiop Data - The following data
ié is data used to simulate the operation of the data

extraction subsystem. This data is in the internal decimal

L representation used by the DEAS, The format of the data is

described in Appendix B.

- 140 -~

R S R A IR - .
A3a Vol o hohoad CIPUTY . APPSR S ¥ L. i’ ia H PO S N - . PV Py Y. " L el M A W S L

10
256

512
30
1024

1
P&
A
L

2048

- 141 -

-t Lt R P S S T IR T ST et e e T R
PIPINTIRPTIL I T L a PSP SORr U MR SR SPRIr AU PR ST SPPU. VWO SO SO - Ja e o PRI L |

..

512
150

m -1
o 1

SRR 160
' 32767
170

G.2.1.3 Dx file Produced - The following is the data
extraction specification file to be used by the data
extraction subsystem., The file is a text file and is

verified by visual comparison with the input data.

77777
400
1000
2000
4000

G.2.1.4 Console Output - The following is the display
generated by the DEAS when supplied with the previously

described data.

EXECUTION TIMES FOR SUBROUTINE TEST1

10 50 10

EXECUTION TIMES FOR SUBROUTINE TEST2
10 30 10

EXECUTION TIMES FOR SUBROUTINE TEST3

10 10 10

........ P A - P
P T T e O e P A PR VN -, S Tt Y N N :
- S, WP Y. . AT S . I Y S G Y AN A N LA WY WP U WA S A S W S I G P

T R———y" T VAt a e Y - vae: S e s ua e e pm v g o aen ane T——— - ———rt——r
RN R o et e e e T . e . T . S T -
b=

G.2.2 Coveradge Analysis - This section contains the test

data used to validate the "coverage analysis” mode of the

Data Extraction and Analysis System,

G.2.2.1 Input Data -
PATH MARKER #1 1
PATH MARKER #2 400
PATH MARKER #3 1000
PATH MARKER #4 2000
PATH MARKER #5 4000
PATH MARKER $#6 77777

G.2.2.2 Data Reduction Simulation Data - The same

simulation file used for the "performance analysis®™ mode was

used for -this mode,.

G.2.2.3 Dxfile Produced - The following is the data
extraction specification file to be wused by the data

extraction subsystem. The file is a ¢text file and is

verified by visual comparison with the input data.

R

400
1000
2000
4000

77777

S

i
B DD

A B "
AP RSO
. .

- 143 -

PP AT LIS YA Wit . S a7 VR~ Wl Wi/ LI D WA D DRI T IR VL S TP S P (R S T U Uy SR S i

G.2.2.4 Console OQutput - The
generated by the DEAS when

described data,

ADDRESS

400
1000
2000
4000

77777

N

NUMBER OF TRAVERSALS

=>
=>
=>
=>
=>
=>

WWWwWwww

TOTAL NUMBER OF PATHS COVERED = 18

following is

the display

supplied with the previously

G.2.3 Error Apmalysis - This s.ction contains the test data

used to validate the

"error

Extraction and Analysis System.

G.2.3.1 Input Data -

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

$l
82
#3
$4
#5
$6
47

...............

66
504
1733
3720

77777
13055

.........................
.........

....

PR A I AT

analysis"

mode of the Data

G.2.3.2 Data Reduction Simulation Data - The following data

is data used to simulate the operation of the data
extraction subsystem. This data is in the internal decimal
representation used by the DEAS. The format of the data is

described in Appendix B.

1
0
1
D 456
N]
= 32767
- 32767
[32767
2 5677
3455
987
6546
54
786
324

G.2.3.3 Dxfile Produced - The following is the data
extraction specification file to be used by the data

extraction subsystem, The file is a text file and is

!
=
-8 verified by visuval comparison with the input data.
r_—v-

0
66, 66
; 504, 504
P 1733, 1733
o 3720, 3720
1, 1
77771,717717

- 145 -~

................

2y~ OUDMPIEINE MM “— WA

13055,13055

G.2.3.4 Console OQutput - The following is the display
generated by the DEAS when supplied with the previously

described data,

ADDRESS MIN VALUE MAX VALUE
1 = 0 77777
66 => 1422 77777
504 => 7640 7640
1733 => 24 14622
3720 => 620 620
13055 => 0 6577
77777 => 77777 177717

TOTAL NUMBER OF ADDRESSES READ = 12

- 146 -~

R 4 R A I 2 A S S S-S b M et e e 1o L pann) BCIE s S

VITA

Mr. Joel R. Robertson was born on January 24, 1952,
in Huntsville, Alabama, In 1969, he graduated from John
Marshall High School in Glendale, West Virginia. He
attended West Liberty State College from which he received
an Associate of Science degree in Electronics Technology in
1971. He then attended West Virginia University from which
he received a Bachelor of Science degree in Electrical
Engineering in 1975. Following graduation, he accepted a
position with the Federal Aviation Administration in
Atlanta, Georgia. He was employed with the FAA as an
electrical engineer installing radar systems until 1979 when
he accepted employment with the Electronic Warfare Division
of the United States Air Force at Robins AFB, Warner Robins,
Georgia, as a civilian electronic engineer working in the
Radar Warning Receiver Section. He entered the Air Force

Institute of Technology at Wright Patterson AFB, Ohio in

June 1981.

Permanent Address: 32 Seminole Road

Brunswick, Georgia 31520

- 147 -

......................................
..............

