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Preface

The ALR-69 radar warning receiver on the F-16 has
been‘ﬁampered by the presence of secondary lobes which
cause errors in the direction finding routine. This §tudy
examined this problem in terms of cylindrical wave scatter-
ing from a large dielectric shell. The shell was modeled
as an ellipse since this was a conic shapé that was close
to the actual shape of the radome. The intent of this
study was to examine the problem and see if the side lobes
are caused by scattering.

The solution method was to use a Galerkin applica-
tion of the method of moments. The electric field expan-
sion function was the piecewise sinusoidal basis function.
The integral equation developed was Richmond's Integral
Equation which is valid for any dielectric cylindrical
shell. The shape of the object resulted in the use of
elliptic coordinates which is not one of the standard
orthogonal coordinate systems. The combination of ellip-
tic coordinates and Hankel functions made the integration
nonexistent in closed form. The resultant numerical inte-
gration took a great deal of computational time. This time
problem was further compounded by the presence of a line

singularity involving the Hankel function. Considerable
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discussion is given the subject from both the mathematical
aspect and the érogramming aspect.

This thesis did not generate any far field plots
of the electric field since the program used to calculate
the reaction matrix elements produced erroneous data. The
exact reason is unknown. The theory employed by this Qork
is not new, it is only a different application. The simple
fact that it took over 1300 CPU seconds to fill a 33x 33
matrix and a 33 element vector on a machine as fast as the
CDC Cyber 175 indicates an impractability of the method
used.

A special note of thanks to my sponsors, Mr. William
Kent and First Lieutenant Robert Schneider, ASD/ENAMA.
The amount of help given by providing me with an ASD/EN
problem number and account for the cyber is immeasurable.
Thanks are due to my advisor, Captain Thomas W. Johnson,
who was personally excited and motivated by the research.
Finally, a special note of gratitude to Mary Browning,
Linda Stoddart, and Veleta Kendall, AFIT/LDE. These people
found information from the most unusual sources possible,

and were a real help in getting this project anywhere.
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Abstract

This thesis examines the scattering of cylindrical
waves by large dielectric scatterers of elliptic cross
section. The solution method was the method of moments
using a Galerkin approéch. Sinusoidal basis and testing
functions were used resulting in a higher convergence rate.
The higher rate of convergence made it possible for the
program to run on the Aeronautical Systems Division's
CYBER computers without any special storage methads.

The program thus developed required very[kéﬁge
run times. This makes the program impract}géf/for scatter-
ers of size greater than one wavelength.-j&his report
includes discussion on moment methods, solution of inte-
gral equations, and the relationship between the electric
field and the source region or self cell singularity.

Since the program produced unacceptable run times, no
results are contained herein. The importance of this work
is the evaluation of the practicality of moment methods
using standard techniques. The long run times for a mid-
sized scatterer demonstrate the impracticality of moment

methods for dielectrics using standard techniques.
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SCATY "~ING OF CYLINDRICAL ELECTRIC
FIELD WAVES FROM AN ELLIPTICAL

DIELECTRIC CYLINDRICAL SHELL

I. Introduction

Background

The radar warning receiver (RWR) on the F-16 is
the AN/ALR-69 built by Dalmo Victor Corporation. Its func-
tion is to provide warning to the pilot of enemy radar
activity. It informs the pilot what the threat is, where
it is, and the cufrent threat status (i.e. search, track,
missile launch, etc.). The performance of the ALR-69's
direction finding (DF) routine is degraded by a side or
secondary lobe (SL) located 30° off the forward position
opposite to the main or desired lobe [l1]. This is associ-
ated with the two forward antennas only. Figure la is a
sketch of the desired pattern. Compare this to Figure 1lb
which is a sketch of the actual pattern. Figure 2 shows
the location of the antennas on the aircraft. The SL
causes the DF routine of the RWR's processor to give
erroneous indications. As the aircraft approaches the
threat emitter, the RWR compares the received relative sig-
nal strength from each of the antennas. The threat is dis-

played on the side of the aircraft that received the
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Figure 1. Comparison Between Ideal and Actual
Antenna Patterns
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stronger signal. However, due to the secondary lobe
several events may occur:

1. Both antennas receive the signal equally well;
put the threat in front of the aircraft.

2. Both antennas receive the signal equally well;
the RWR can't decide where to put the threat and the
result is:

a. Displays the threat location correctly,

b. Displays the threat on the wrong side, or

c. Displays "flip-flops" around to both sides
of the aircraft.

3. One antenna receives the signal better; dis-
plays.the threat on that side of the aircraft which may or

‘may not be the correct side.

Flight tests run by the Tactical Air Warfare Center at
Eglin Air Force Base have verified condition 3 in that the
threat was displayed on the wrong side, the display
"wandered" around on the screen, and then jumped to the

correct side as the aircraft passed by the target [2].

Rationale

This situation must be corrected since it affects
the ability of the F-16 to perform its mission. All
threats iden;ified forward of the aircraft are suspect as
far as their location since it is impossible to tell if
the signal is being picked up by the main or secondary
lobe. The pilot is not able to determine where the threat

3
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is, and he has no idea what maneuver to take when
approached by a threat. With the speed of the F-16 and
the speed of an approaching aircraft or surface-to-air
missile, indecision could result in lost aircraft and
lives. It should be noted that this condition has been
found with other aircraft RWR systems as well. Figure 3
is a sketch of the antenna pattern for the forward RWR
antennas of the B-52 AN/ALR-46 ([3]. Figure 4 shows their
position on the aircraft. The ALR-46 uses the same
antennas as the ALR-69.

It is also well to note that the ALR-69 is used

on the A-10 aircraft. 1In this case there is no side lobe.

Figure 3. ALR-46 Antenna Patterns on B-52 [3]

...............................................
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The A-10 has a metallic nose cone. If the mechanism of
the side lobe can be understood, changes could be made to
correct this problem on the F-16, B-52, and on future

weapon systems.

Literature Review
The majority of literature on scattering by
dielectric objects concerns the scattering of plane waves

with either ice crystals and water droplets (meteorological

ALR-46 Antennal
0. |

=, =

Side View
B-52 Nose Section

Figure 4. ALR-46 Antenna Location
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interference with radar or data l1inks) [6] or biological
tissue (affects of microwaves on humans) [7]. Holt,
Uzunoglu, and Evans were concerned with the meteorological
scattering. They developed an integral equation of the
Fredholm type directly from Maxwell's equation without
reference to the scatterer {6]. The equation developed
was a general second kind integral equation with a singu-
lar kernel. The singularity was removed by the use of a
transform function. The result is a pair of coupled inte-
gral equations that were solved by numerical quadrature,
which produced a numerically stable linear algebra equa-
tion, assuring convergence.

The disadvantage of this procedure is that now
there are two equations to solve. The storage require-
ments and the computational time increase rapidly as the
size of the scatterer becomes large.

Another method discussed was a finite element
method known as the "Unimoment Method" [8; 9]. The uni-
moment method offers the ability to apply the radiation
condition without the use of complicated programming pro-
cedures as required in the past use of finite element
methods. Chang and Mei's procedure also reduces the

storage requirements, when compared to past finite element

programs'[9:761].
.Chang and Mei essentially solved the problem using
the T-matrix procedure. After creating the artificial

boundary outside the scatterer, the interior problem is

N0 * ERENDHEMRIONY |
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solved using the finite element method. The field between

the artificial and the actual boundary is approximated by
linear combinations of functions which satisfy the Helm-
holtz wave equation. Chang and Mei used the Fourier
series [8:36]. The exterior fields were expanded in terms
of Hankel functions. .

While this procedure does offer advantages by
separating the interior and exterior problems, for large
scatterers a significant algebraic equation still must be
solved. Thus this method will only handle up to moder-
ateiy sized scatterers without taking considerable time and
storage resources.

The standard method used in the past has been the
method of moments. Richmond [10] used this technique
in solving the problem of scattering from infinitely long
dielectric shells. The integral equation is generated by
examining the polarization current that results when the
scatterer is illuminated by the incident field. The
unknown electric field is expanded in +erms of pulse func-
tions.

Since Richmond subdivided the shell into cells
that were approximately square, integration over each cell,
including the self cell, could be accomplished analytically.
The cells were approximated by circles with a radius of
half the length of the cell.

The ability to analytically solve the integration

over circular cells forces the shell wall to be thin. If

7
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the wall is thicker, assumptions will have to be made
concerning the electric field in the shell. Using Rich-
mond's procedure, the electric field is assumed to be con-
stant over a cell. For anything very large, this would
require large amounts of storage and computational time.

It is possible to solve this scattering problem
in terms of orthogonal functions such as Bessel functions
for circular cylinders or Legendre polynomials for
spherical objects. In the elliptic c¢ylinder, the resultant
functions are Mathieu functions. There is not, however,
a closed form solution to the problem. Dr. Cavour W. H.
Yeh has done considerable work with scattering and travel-
ling wave problems in connection with elliptic shapes.
In each case. Dr. Yeh presented a solution in terms of
Mathieu functions. |

In a study of sound waves scattering from pene-
trable objects, plane waves were incident on to an ellipse
at different aspect angles [11l]. The resultant patterns
contained side lobes that would move as the angle of inci-
dence changed.

The primary difficulty with this type of approach
is the Mathieu functions. Currently a library does not
exist on the base cyber computer facility for generating

Mathieu functions.

.....




Previous Work

Experimental [l; 2]. General Dynamics, the manu-
facturer of the F-16, attempted to remove the side lobe
through trial and error. They moved the antennas, the

radome, added material to the radome, the airframe, etc.

i It was through this work that some important information
; ' was obtained.

i 1. The SL is due to the presence of the radome.
; When the radome was removed, the side lobe disappeared

35 [1:6].

§ 2. The SL is not due to the metal/dielectric

5 boundary between the airframe  and the radome. The radome
; was moved away from the airframe by a small amount. This
X introduced a new boundary layer (metal airframe, air,

radome material) and the lobe became larger [2].

3. The SL is not being diffracted or scattered
by the dielectric/metal boundary. The RWR antennas were
moved up to the radome, removing the break between the
radome and the airframe. The results did not change [2].
General Dynamics was able to reduce the magnitude of the
SL by adding radar absorbing material (RAM) to the air-
frame. Figure 5 shows the amount of reduction [1:5] and
the location of the RAM.

Theoretical. Schneider [4] modeled the radius of
curvature of the radome. He used a circular cylinder large

enough so that the curvature of the cylinder would come
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Present Configuration
(a)

Recommended Configuration
(b)

Forward Equipment
Bay Door

0.120" thick RAM
under Radome and
forward of Antenna

Present

Antenna

Location Recommended Configuration
(c)

Figure 5. GD Proposed Solution [1:6]
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close to the curvature of the F-16 radome (4:5,35,37] (5].!
This model results in a large radius (60 wavelengths)
[4:2,35,37]). Schneider used two methods, a series solution
and a numerical approximation, to solve the boundary value
problem.

In either method, Schneider was unable to repro-
duce the SL. He was hampered by a small compute; solving
the large matrix (3700 x 3700 elements) that resulted
from applying point matching with the moment method. There-
fore, he presented results good only for the cylinder with
radii of 0.6 and 6.0 wavelengths [4:31,32; Appendix E].

The series solution for the 60 wavelength scatterer was
calculated, but the validity of the results is question-
able since deep nulls down to zero appear in the plots,
and the nofmalized maximums never go up to 6ne [4:29,30]).
Schneider admits that there is an error in the series
solution where the coefficient of one term is half of the
correct value [3:ii,iii]. This error will effect the 60
wavelength plot and may account for the deep nulls and low

1

peak values.

Proposed Solution

This paper will present a discussion on the

scattering of cylinderical waves from a large dielectric

INote that this differs from the model used in
this thesis. In this work, the radome is being modeled
as an elliptic cylinder. Schneider modeled the curvature
of the radome.

11
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5% . scatterer. The scatterer will be an infinitely long,
ﬁi - cylindrical shell with an elliptic cross section (see
s Figure 6). This is an improvement over Schneider's model

in that: (1) the ellipse represents a closer approximation

to the F-16 radome, and (2) the ellipse has a much higher

o. a - semi-major axis
UY b - semi-minor axis
A c - focal length

Line] Source

. €
€o " Err¥o € ,HU

Figure 6. Dielectric Scatterer

rate of curvature toward the tip of the surface. The
increased curvature around the tip of the ellipse will
cause the scattered wave to be "thrown" in a particular
direction. This hypothesis was suggested by the work done

by Chang and Mei [8:41]) and by Poggio and Miller [12:210].

12




To solve the integral equation, the method of moments will
be used. Harrington [13], and Stutzman and Thiele [14:306-

372], provide discussion for application of the procedure.

Assumptions

In doing this work it was assumed that the radome
could be modeled apart from the metallairframe. This
assumption was suggested by the General Dynamics study [1].
It was assumed that the thickness of the dielectric shell
is thin when compared to wavelength. This will simplify
the numerical analysis and is consistent with Schneider's

work [4:28].

Scope

This study is a theoretical study which is almost
entirely removed from the actual problem except for the
dimensional data and the basis for the models. The problem
will be limited to the two-dimensional case only. This
will not affect the results since the actual antennas are
coplanar. There will be no attempt made to solve the lobe
problem. The goal is to obtain polar plots of the total
electric field to see if the side lobe is caused by
scattering. The real need is to understand what is taking
place as the electromagnetic fields cross the boundary of

free space and the dielectric shell.

13
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II. Development of a One-dimensional Fredholm

Inteqgral Equation of the Second Kind

Solving fhe problem using moment methods requires-
the derivation of an integral equation. The equation used
herein was developed by Richmond [10:335-336], extended to
elliptic cylinder coordinates. Considerable difficulty
was encountered with the reduction from an area integral
to a line integral. This was further compounded by the
singularity of the kernel. This discussion will include a
description of the model, the Richmond integral equation
(IE) in elliptic coordinates, the handling of the singu-
larity, and the reduction of the IE to a line integral.
Appendix A provides further insight into the coordinate

system.

Model

Figure 6 is a diagram of the elliptic scatterer.
The shell of the ellipse is 0.05 wavelengths thick. This
value was chosen to insure applicability of the thin shell
approximation and to be consistent with Schneider's work
[4:28]. 1In elliptic coordinates the thickness must be
defined as a dimensionless quantity to be consistent with
the elliptical coordinate u. Let the.thickness of the
shell be defined as 1. 1If Ho defined the mid-radii, then
the outer wall of the cylinder is Mg *+ 1/2 and the inner

14
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is Mg = t/2. From Appendix A, when v = 90°, b = ¢ sinh u.

This means that for the inner and outer walls,

b -T/2 ¢ sinh (uo - 1/2) (2.1a)

b + T/2

c sinh_(uo + 1/2) (2.1b)

Solving for the arguments of the hyperbolic sines and sub-

tracting (a) from (b), the result is

1 b+ T/2)_

=3 sinh X ) (2.2)

T = sinh_ 9_2?212

Expanding the arguments of (2.2) in a Taylor series about
T and taking the small argument approximation of the

inverse hyperbolic sine,

-~ T/c

’r —
(2.3)
V1+ (b/e)?

or

T — T/a

since cz = a2 - b2

and a, 5, and ¢ are large when compared
to T, t, and A. This development was due to Johnson [15].
When making reference to a dimension (i.e., a or b),
it will be done with reference to an ellipse drawn through
the center of the shell. It is assumed that the thickness
is constant for all 360° and that the focal length is the

same for the inner, middle and outer radii. The error

15
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introduced by this assumption is small since the shell

St
Ve
el

is thin.
To insure a two-dimensional case, the shell and
current sources are infinitely long in both the +/-z direc-

tions. The relative permeability is constant for all

positions in the shell. The value for €. is four. This
L will not be altered in the insuing programming. The
dielectric is perfect and no losses will be accounted for.

F The line source is infinitesimally thin and has no losses.

Richmond Integral Equation

The equation developed by Richmond is applicable
since the scatterer is a dielectric cylindrical shell.
The equation, used by Schneider for moderately sized

scatterers [4:14,20], is

: 2
EN(x,y) = E(x,y) + J]:—-ﬂ(er-l)ﬁ(x'.y') . HO(Z) (ko)ax'dy' (2.4)
o ' [10:336)

where

Lor a

E x,y) B

bl L
awa -t AL

| 4

« %1

Py =521 o) 7 [16:224]

t

Dl on a3 gl g
N as e

The superscript i and s signify the incident and scattered
field, respectively. The primed terms are the source
terms on the shell. Due to the shape of the scatterer,

§
E the use of the more widely understood polar cylindrical

16
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coordinate system could not be used. It was too cumber-
some to describe the angle-dependent radii that is present
in an ellipse. Therefore, the Richmond IE was converted
to the elliptical cylindrical coordinate system.

Elliptic Coordinates. The elliptic cylindrical

coordinate system describes one of two conic sectiéns,
depending on which of the two coplanar parameters is held
constant. As Figure 7 indicates, if the angular coordin-
ate, v, is constant, the surface is a hyperbolic cylinder.
If u is constant, an elliptic cylinder results. The angle
v describes the angle of the asymptote of the hyperbola
that intersects the point in question. It can easily be
shown that the relation between the polar and elliptical

angles is
6 ='tan ! [(b/a) tan v] | (2.5)

The range of v is from 0 to 360° and the range of

u is from 0 to »., The definition of yu,
= -1 _ -1 TS |
u = tanh “(b/a) = cosh ~ (a/c) = sinh ~ (b/c) (2.6)

blows up when the ratio of a to b is one (or c is 0). See
Appendix A for a more detailed description of the coordin-

ate system.
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Elliptic Coordinate System
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The differential area functions for elliptic coordinates

are
amﬂ@ u-coszv

@a=cd2. g ) ) ‘dud\) (2.7)
' sinh® y + sin” v
Both of these expressions are equivalent. Using (2.7) with

(2.4), the Richmond IE in elliptic coordinates becomes

i a2 2
E- (1) = E(u,v) +J%c_ff§(u.,\,., 52 o)
sl

- (cosh® u' - cos® v') du'dy’ (2.8)

2 term from the differential area function

Note that the ¢
has been pulled out of the integral as well as the €p = 1

term.

The Singular Kernel

Since the unknown electric field is both part of
the kernel and the separate function, the equation is a
Fredholm Integral Equation of the second kind (FIE II).
The equation accounts for the interaction between the line
source and a point on the shell, and it accounts for the
interaction between that point and the rest of the points

on the shell. There are essentially two coordinate systems

within the framework of the problem. Figure 8a shows the
coordinate system for which the line source is considered
the source point and the shell is considered the observa-

tion point. In Figure 8b the point indicated in Figure 8a

19
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Line Source Shell Interaction
(a) (b)

Figure 8. Coordinate Systems

is now the source point and the observation éoint is any
point on the shell including the source point itself. As
the electric field from the line sources contacts the
scatterer, a polarization current is induced. This current
reradiates the incident field as the scattered field

which in turn reacts with the other points on the ellipse.
Each point on the scatterer is affected by two electric
fields; the incident field from the line sources and the
scattered field from the rest of the shell.

The problem in the mathematical analysis of (2.8)
is the consideration of the interaction between a point on
the shell with itself. This point on the shell, known as
the source region o6r the self cell, causes the Hankel
function of (2.8) to blow up a§ kp goes to zero. The soﬁrce

region interaction with itself must be considered for

20
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this may make a non-neglectable.contribution to the total

field.

The contribution of the self cell is done by the
determination of a correction term. This correction term
accounts for the electric field generated at the source
region. Chen discussed the source region in terms of the
tensor Green's function [17:1201-1204]. In a volume the
electric field is determined at an arbitrary point outside

the source region by

E(r) = ﬂz(rl,r) . Foav (2.9)

vl

where

Glry,x) = jou [T+ 51 oty
0

£<_ e A
4n|rfr|

¢ (rl,r) =

an

is the tensor Green's function,
I is the unit dyadic, and
¢ is the free space scalar Green's function.

Accounting for the source region (2.9) becomes

Er) =BV E(ro,r) - F(rav + E (r,) (2.10)

&

where the "PV" denotes the principal value (PV) integral

and Ec(ro)is the correction term for the source region.

21
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Figure 9. Contour Integration About B

Principal Value Integral. Before discussing the
determination of the electric field correction term, it
would be prudent to define the principal value (or the
Cauchy principal value) integral. The principal value
(PV) integral of f(x) over [a,c] when f(x) is singular at
x = b is defined as '

c lim b-r c

P"f fdx = »of| £ +f £(x)dx] (2.11)

a a bt+r

provided the limit exists [18:195]. Essentially, the PV
integral is an integral taken across the interval excluding
the point of singularity. At that point a contour (or area
or sphere) is taken around the singularity. The radius of
that contour, r, is then allowed to approach zero (see
Figure 9). The correction term is the field from across
the excluded contour. The two-dimensional case involves
a.circular area and the three~-dimensional case a spherical

volume around the point.
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The requirement that the limit exist is met in
the case of the Hankel function. According to A. N.

Tychonov, the improper integral

< av | (2.12a)
r

does converge as long as « <3 [19:294]. In the two-
dimensional case, the integral converges for « < 2. The
Hankel function is singular as 1ln |r|. However, l/r is
more singular than ln |r|. Therefore, the area integral
of the Hankel function exists.

Determination of the Correction Term. The value

of Ec(ro) is a function of the shape of the volume excluded
in the integral evaluation. 1In calculating E.. Chen deter-
mined the surface cha;ge‘density using conservation of
charge. The electric field can then be determined by the

gradient of the potential due to the surface charge.

Eé(rb) = -V¢ (2.12b)

Yaghjian presented a complete discussion of the

determination of the Green's function in NBS Technical Note

1000, A Direct Approach to the Derivation of Electric

Dyadic Green's Functions (20]. This approach does not

utilize delta-function techniques, but determined a general-
ized electric dyadic Green's function which is valid in

the source region. Yaghjian provided a table of the

23
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correction terms for various principal value geometries.

He determined the correction factor in terms of

- ﬁl '
L =%Wf —:%—-ds' [20:56] (2.13a)
s, R'

(See Figure 10.)

In the two-~dimensional case the correction term becomes

~

nl - [}
j Te'r i’ [20:59] (2.13b)
ce:

=
g =

Sl

(See Figure 11.)

There the electric field is now determined by equation

(2.14).

E(@ = juy, lim E-Tav +2%  [20:12] (2.14)

Vo Jvi-v Jueg

€ J ¢
~ Or, in the two-dimensional case

. = L 2.F
E(r) = Juy, Lim G.JTa + = [20:40]  (2.15)

Ao JAgA Jwe,

In (2.14) and (2.15), the VJ-Ve and A;-A_ represent the
integral excluding the source region, i.e. the principal
value integral.

Tables 1 and 2 present correction terms for vari-
ous principal geometries. The reader is encouraged to

read NBS Technical Note 1000 for further insight into this

problem.
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Figure 10. Notation Associated with a Principal Volume
V_ Used to Define the Dyadic T [20:56}
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Notation Associated with a Principle Area

Figure 11.
A, Used to Define the 2-D Dyadic T [20:59]
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Table 1. Tabulation of Source Dyadic L, and Correspondence

to Previous Authors (20:60]

PRINCIPLE VOLUME = PROB
(F AT CENTER) L Aumon(sg
SPHERE
EREE-SPACE_
-g- WILCOX (1957)

VANBLADEL (1961)

RIGHT CIEFULAR CYLINDER
ez 1\60

(1-cos eo)ez e,

CIRCULAR OR SQUARE
g, | PENCIL g,
o —p|0 |e—D It
a 2

a,b—>0 D—0
o e RECTANGULAR | 1, ~ - A A A A
: Z =
- — BOX Zi(nxex xt Gyeyey + Qzezez) (Qx + ny +Q, 4rw)
5 T-1—¢, Qs Qs AND 2, ARE TWICE THE SOLID ANGLE
X} / .
F ) SUBTENDED BY A SIDE . TO THE x, y, and 2z,
% € DIRECTION RESPECTIVELY.
3 CUBE RECTANGULAR CAVITY
E‘_‘
& ju . 1 RAHMAT-SAMII (1975)
o v 3.
i PILL BOX RECTANGULAR WAVEGUIDE
3 e, AND CAVITY
2 a oA TAT (1973, 1976)
o € &
WAVEGUIDE_ONLY
. COLLIN (1973)
H h—0 RAHMAT-SAMII (1975)
P L
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Table 2. Tabulation of 2-D Source Dyadic; {20:61]

PRINCIPAL AREA =
(Tt AT CENTER) L
CIRCLE
b '
2

e
/’ Y RECTANGLE 1, na . a
ﬁ'(exexex + eyeyey)
By —&, (6. + 0. = 21)
\ YT
By
- SLIT
F ex X X
- o | |t
;. d-0
F'-,:-
o ~ SQUARE AND
e EQUILATERAL TRIANGLE

A

~
(g

.4
[y

. -IF. Pt et St hat et
. AR A AN
Y-t LR A
\
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In the two-dimensional case, if the electric field
is aligned with the vector of infinite length (i.e. the z

axis in this case), then the electric field is determined

by

—'u)].lo (2) ooy | ey '
E,,(x) = — H '“|r-r'| J_(r) aA' [21:261] (2.16)

(z) 4 A=A © z

. J6 :
and the correction term is zero. This is easily seen via
Chen's approach since the surface current distribution is
zero in this configuration since the normal is orthogonal
to J. For example, for the finite cylinder, the current

distribution is only across the top and bottom caps of the

cylinder {17:1203]. 1In the two-dimensional case, the top

and bottom of the cylinder are at +/-», and make no con-
tribution to the field. Looking at the integral that
Richmond evaluated in closed form for the self cell
[10:336]; for the case where n = m, Richmond determined

that the self cell integral of the Hanlel function was

27 a (2) 2
f J’ H P (ka) ado'ap' = j/2(rkat,*(ka) - 2) (2.17)
Ocell do

Richmond had approximated the square cells with
circular cells of radius a. If a is allowed.to go to zero,
then the value of the integral goes to zero. This was
verified with Bessel tables and a hand calculator. 1In

Richmond's formulation, there was no PV integral;
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therefore, a has a finite value and the source region
(m = n cell) had to be calculated.

It would be well to note that not all of the
literature agree in the calculation of the correction
term. J. J. H. Wang compiled a list of discrepancies
[30:3-1]. Table 3 and Figure 12 list his results. Since
there is no correction term involved in the two-dimensional
case, this does not impact in this work.

Reduction of the Double
Integral to One

According to what has just been discussed, the
principal value integral can be taken over the shell with-
out any major difficulty. It would‘simplify the solving
of the integral equation if it could be reduced.to a single
integral.

The integral in (2.8) is repeated in expression

(2.18).
2m u+t/2 _
Ap wf f ° " Ew v 8P ko)
o Lb-¢/2
- (cosh® u' -~ cos® V') du'dv’ (2.18)
where
T
F= 3

- p = distance function between two points in
elliptic coordinates
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Various Shapes of AV for the Calculation of
Principal-Volume Integration [30:11]
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=¢c{(cosh u cosv - cosh u' cos v')2

X

+ (sinh p sin v - sinh ' sin v')?]

Note that the constant "c" is the focal length of the
ellipse, not the speed of light. The "c" was chosen since
this is standard notation for the focal length.

Since the thickness of the shell wall is small
(0.05 wavelengths) it was assumed that the electric field
was constant through the shell thickness. This assumption
is backed up by the work done by Lee, Sheshadri, Jamnejad,
and Mittra (22]. They showed that through dielectric
shells, with a thickness of 0.5 wavelengths, that the
electric field, pattern, was only slightly altered from the
no dielectric case (see Figure 13) [22:377]ﬂ Therefore
with T being A/20, the effect of the shell on the field
would be minimal. The electric field could then be pulled
out of the first integral.

Figure 14 is a diagram of the integral around the

self cell. The source region has an area A R’ which goes

S
to zero as Mg and Vs 9o to zero. Since the integral
exists, the limits about Vs and Me may be taken indepen-
dently of each other. vausgoes to zero first, the areas
indicated by a "1" become very small and their total con-
tribution may be neglected. Therefore, the singularity

becomes a line singularity and the principal value is

taken over v only.
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Figure 13. E-plane Radiation Pattern Through a
Spherical Radome [22:277] .

Figure 14. Integration Around the Source Region
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Since the electric field is assumed to be constant
across the thickness of the shell, the u coordinate is a
constant and may be integrated directly. This procedure
is the same used by Stutzman and Thiele in the derivation
of Pocklington's integral equation for wire scatterers

[14:307-310]. Therefore, the resultant integrand is

2r
3 2 el iy gut
: AFT PVJ; Ez(uo,v') Ho(kcpo) cosh M, = cos v') dv (2.19)

= The Richmond integral equation reduced to one variable is:

. 2n
ES (u,v) = E(y,v) + Ap rPVf E(u V')
Q

2 2

. g (2@ - " v
H ' (ko ) (cosh® u_ - cos® v') dv' (12.20)

where (from 2.4)

2
. %1 _
B v =—2— 1% wo i,
o]

o 2.2

Po = 1ﬁcoshucosv-coshuc’cosv'f +(sinhusin»-sinhuosinv')2

In doing this integration, it was assumed that the
focal length, ¢, is constant for the entire shell. This
is justified by the thin shell approximation. Therefore,

¢ may be pulled out of Po*
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III. Solution of the Richmond Integral Equation

by the Method of Moments

Method of Moments

. General discussion on moment methods and applica-
tion to wire antenna problems may be found in any of the
newer antenna texts. Stutzman and Thiele (l4:Chapter 7]
provide an excellent tutorial for the new student. Unfor-
tunately, discussion on the use of moment methods for non-
metallic scatterers is severely limited. Mittra's book,

Computer Techniques for Electromagnetics, has a discus-

sion of such problems in a very general.sense [28].
Harrington [13] discusses the dielectric problem; however,
the discussion is based exclusively on Richmond's results
[10].

Moment Methods are a general procedure converting
problems posed as integral equations into linear equations,
which then can be solved numerically. The method of
moments is a projection method in which the unknown is
approximated or projected. The approximated equation is

then solved exactly [23:3]. Consider the relation
L(f) =g (3.1)

where L is a linear operator operating on £, and g is a

known result. The unknown to be determined is f. Expand
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f by a series of functions in the domain of L such that

(3.2)

)
we
s M
I
h

nn

These functions are known as basis or expansion functions.
Letting L operate on £, (3.1l) becomes

N .

z < L(fn) =g (3.3)

n

An inner product is then taken with a weighting or
testing function and L(fn) and g, respectively. This func-

tion is in the range of L. Therefore 3.3 becomes

= <wm,L(fn)> =<wm,g> m=1,2,3,... (3.4)

= Bl

In matrix form, this is

(L) (=) = (g)

where
_ 1 -
<w1,L(fl)> <w1,L( 2) <w1,L(f3)> cas
<w 'L(f )> <w IL(f ,> <w 'L(f )> cee
(B )= 1 272 273 (3.5a)
<w3,L(f1)> <w3,L(f2)> <w3,L(f3)>
| <wn’L(fn)3
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.
l <Wl'g>
(°=n) ={"3 (gm) = |<wy,9 gm = <w_,g> (3. ?b)
al .
L D] | <W /92

Solving for “n with a nonsingular matrix, the unknown £ can
be determined. The selection of fn and Yo is as much art
as science and has been widely discussed in the litera-
ture. A thorough treatment will be given later in this
chapter. This discussion on the general theory of moment
methods is from Harrington [13:3-7]. |

With this brief introduction, the intent of this .
chapter is to apply the method of moments to solve a
Fredholm Integral Equation of the second kind; specifically
(2.20). This chapter will include the theory of moment

methods and the application to the elliptic scattering

problem.

General Application

o Starting with equation (2.20),

2r

?‘(u.v) = E(u,Vv) + Xprﬁ E(uo,v')

. Ho(z) (kce) (cosh2 “o - c052 v') @v' (3.6)

.
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expand the unknown electric field on the dielectric shell

(u=u°) in terms of the general basis function
E:z ~Z Cn P(\)n-v) (3.7)

(Note that in (3.6) the "cut integral" symbol f, is used
instead of "PV". This signifies that the singularity is
not included or has been "cut out"). This makes (3.6)

become

. 2m
1 = = "
Ez(u,v) b CnP(\)n V) + AFT fo z CnP(\)n V')

. Hoz(kco) (COShz My - cos2 v') av' (3.8)

Now apply the testing function to (3.6) and (3.8).
Moving the summation sign outside of the integrals and

taking the inner product (as shown in (3.4), we obtain

ml [V +1/2 _
2[ f El(u,v,us,vs) W(vm-v) (cosh2 u - cos2 v) dudv

Vm—l ”o.T/2
f mHl u +1'/2
c22c f W(v V) POV V) (coshzu- cos? v) v (3.9)
Hy -t/2
Vot My +1/2
+ AFTc ZC f f f W(v -v)P(v -v')
M -t/2 °

H°(2) (kep) (<=<>sh2 u- coszv) . (cost12 uo-cosz v')av' dudv
S0 m=1,2,3...
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The order of integration may be interchanged except that
the integration over v' must be done before the.integra-
tion over v. This is due to the fact that v' is over the
entire shell and is part of the IE to be solved, whereas
the integration in v is done only over the domain of the
weighting function. This is not the most general since

it is assumed that P(vn) and W(vﬁ) are sub-domdin functions.
Therefore the functions are zero for v not within the
domain of P(v). The use of entire~domain functions, which
are valid across the entire range of v (the entire scat-
terer) is not considered here.

In this discussion, it should be noted that a two-
dimensional application of the method of moments is pos-
sible. Essentially, in assuming that the u coordinate was
a constant and could be integrated out, p was egpanded by
a pulse basis function valid across the entire domain of u.
The integration over u was done in the same manner for the
voltage term (the term containing Ei). The "middle"
integrals (i.e., they are physically located in the
middle of (3.9)) were done directly since these integrals,
involving only the differential area function, exist in
closed form. After the integration over u, (3.9)

becomes
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|
CcT

vm-l

ml_; 2 2
E (uorv;usu\)s) W(vm-\)) (cosh M, — cos v) &

2 . Yml
= % [cosh (2uo) sirh (1) + 1] Ecn] W(vm-v)P(vn-v) dv

vm-l

2

) f"mﬂ
-c°tt <, W(\)m-v)P(vn—\)) cos” v dv

Vm-1

Vm+1

2 2 Vnt+l '
+ AFT c ch] f W(vm-v)P(vm-v )

Ym-l  “n-1

(3.10)

. HO(Z) {kp) (cod'xz U, - cos2 V') (coshz‘uo - coszv) av'av
where
=i *T @) =
(orvriigrVg) = que— Ho (keg) iy
Ae = 33k%c/4
p. = [coshzu (ccos v-c <:osv)2
s o s s

. .2 . . 2
+ sinh My (c sin v cg sin vs) ]
Hgr Vg ~ line source coordinates

uo,v.,\)' ~ scatterer coordinates (primed denotes
source region)
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Equation (3.10) can be written as

Vv =¢C ' =
Vm cn[zm+zm] annn (3.11)

where the vector in the brackets Z . is the single inte-
gral from the total electric field and Z'mn is the double
integral over v and v' involving the Hankel function.
Together these make up the reaction matrix, Zmn’

Solving (3.11) for cn and using (3.7), the electric field
and the induced current can be calculated. The radiation

pattern can then be determined in the far field using

-jk p
N e (o) o) — h
Az(p) = 7 ET_ [[ Jz(p-)e jkp' cos (¢~ ¢ )ds' L2a)
=l jrk _p (3.12a
o cellm [16:229]
Ez = -jwquz . [14:25] (3.12b)

where Jz(p') is based on the integration over the cell of
the basis functions and the Hankel function. Equation
(3.12c) ic derived with H = V x A consistent with

Harrington {16:77].

Basis Functions

The rest of this discussion will center on- the

basis and weight functions, how they are applied in moment

2The summation over n from 1 to N shows that the
cor’ ribution from each cell must be summed together to
obtuin the total vector potential at a point.
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methods, and the set of functions used in this problem.
Harrington states that one of the main tasks in using
this problem solving technique is the choice of P(vn)
and Wb)m) (P(vn) and W(vm) are the basis and testing
functions, respectively). P(vn) needs to be as close an
approximation to f as possible and linearly independent.
W(vm) should also be linearly independent and chosen so
that the inner products with g depend on the properties of
g (the solution of L(f)). Additional factoré are the solu-
tion accuracy, relative ease in the evaluation of the
matrix elements, the number of segments required for con-
vergence, and the stability of the resultant matrix equa-
tion [13:7].

Bélow is a'lisﬁ of the standard basis and weight
functions commonly used. These are sub-domain functioﬁs
since they are defined to be zero outside the domain of the

function.

Piecewise Uniform (Pulse Function):

I, Z; <3< Ty

]
Jj(Z) = {3.13a)
a 0 elsewhere
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Triangle Function (Piecewise Linear):
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;2 -2, Z..<2<3,
Z. - 2, FL="="7
3 j=1
{(3.13b)
I.(Z. - 2)
+1
J.(2) = 2.<2< 2.
2. . - 2. - "=
0
Piecewise Sinusoidal:
I, sin [k(Z-2, ;)]
- Z, <2< 2.
k(Z. - Z. -1 =“=
sin [ (J 3-1” -1 -
(3.13¢)
I. sin (k(2.,,-2)]
3@ = mEm—oEyy %Py
J+1 3 ] J
0 elsewhere
Quadratic Interpolation:
2
A.+ B.(2-2.)+C.(2~2Z. 2. <2<232.
J( J) J( J) 3 =3l
Jj(Z) = (3.134)
0 elsewhere
Sinusoidal Interpolation:
A.+B. si Z2~Z,
B+ By sin [k( JH
+Cj cos [k(z-zj)] zj<_ Z2< zj+1
Jj(Z) = {(3.13e)
0 elsewhere [47:23,24]




Truncated Cosine:

. 2%, )
! cos(k(z - —1—1—2 N zj_1 <2< zj

Jj(m = (3.13£)
o 0 elsewhere - [28:10]

Figure 15 illustrates three of these functions.

The use of the piecewise functions, forces the
partitioning of the segments into two regions ranging from
Zj-l to Zj and from Zj go zj+l' The result of the integra-
tion is summed together to obtain the total contribution
for each cell. This division is due to the derivative
discontinuity at Zn [24:535]. Butler and Wilton discuss
methods of modifying certain functions in order to increase
the convergence rate. Specifically with (3.13e) in one
procedure the constants Bj and Cj are adjusted to force
the current and its derivative to be continuous at each
of the cell's endpoints. This results in a basis set which
causes the current and its derivative to be continuous
across the cell. 1In another procedure, the current in the

jth cell is required to satisfy Equation (3.14). This is

known as extrapolated continuity [24:535].

(3.14)
Jj(zj+1) = Jj+1(zj+l)
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b
z. z z,
-1 Piecewise sine 3+l
(a) (3.13c)
2z, ‘ z —Z.
-1 Piecewise Linear j+1
(b) (13.3b)
|z =z, .|
z. - —1 J=1"
3j 2
2z
Z..."2.
2y v argml
Sinusoidal Interpolation
(¢) (3.13e)

Figure 15. Basis and Testing Functions [24:535]
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Richmond used square pulses in calculating the
field in the dielectric shell [10:336]. Use of such func-
tions assumes a constant field across the shell, which is
a reasonable approximation if the shell is thin and the
scatterer small (small compared to wavelength). Hagmann,
et al. showed that larger cells may be used if variations
are allowed for the field. 1In the plane-wave correction
method, the field is represented by a superposition of

plane waves (3.15).

E (r',8') =T Bie‘jkr' cos (B'=a;)  [25:744] (3.15)
1

In the cylinderical-cell correction method, the square
cells are replaced by circular cells as Richmond did
(10:336,337]. The circular cylinder with TM excitation
will have fields with the cell determined by

®

E,= nio bn Jn(kr) cos (ne-ucn) (3.16)
where bn and Cn are determined by the incident wave
[25:746] .

In another example of methods for improved conver-
gence, Blue used different basis functions depending on
the geometry of the problem and the location of the seg-
ment in relation to that geometry. Blue showed that a
conducting strip, 60\ wide, could be done with 6nly 17

basis functions [26:1894]. Analyzing the problem before
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hand, Blue used three basis functions, each determined by
the domain of the function (26:1902]. As an example with
the problem being discussed in this paper; for the more
pointed end of the ellipse (as y goes to zero), Hankel
functions could have been used. This is based on the func-
tion which describes the electric field distribution in a
curved optical yaveguide [27:2125,2126]. A sinusoidal
function could have been used in the smooth part of the
ellipse (as x goes to zero) since the structure approaches
a dielectric slab wavequide. This would mean, however, a
tradeoff is being made for accuracy and convergence rate
versus simplicity of implementation.

Testing Functions and
Solution Methods

Testing Solutions. The choice of testing functions

is the same as for the basis functions. As discussed
earlier, the ideal testing functions would result in easy
implementation, high speed computation, and a fast con-
vergence rate to produce a highly accurate solution.
However, it is not possible to have all four criteria and
be able to solve all of the problems encountered.
Solution Methods. Table 4 provides five solution
methods or function pairs commonly used. Each of the
methods of Table 4 has advantages and disadvantages. Point
Matching provides a highly accurate solution, but the.
number of cells required makes this functional pair
impractical for scatterers of any significant size. The
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Table 4. Moment Method Functional Pairs

e e e

nth Term of A

Method (basis) Testing Function
Galerkin anbn(x) bm(X)

’ de (x)?!
Least Square anbn(x) Q(x) ——33;—
Point Matching an(S(x-xn) 5(x-xm)
Point -
Collocation anbn(X) §(x xm)
Subsectional P
Collocation V(xn) pil anpbp(X) 6(x-xm)

'!9(x) is a positive definite function of position
2§(x) is the delta function [12:188]

chief advantage of point matching is the easy implementa-
tion and quick calculation of matrix elements (low CPU
time). Galerkin functional pairs converge faster than
least square pairs, but a Galerkin pair will not always
converge to a solution. Sarkar showed that the least
squares method will always produce meaningful solutions,
even when the solution, g, is not within the range of L
(the linear operator from (3.1)) [23:2]). The results of
this study showed that Galerkin's method also takes con-
siderable CPU time to calculate matrix elements when the
elements have to be integrated numerically. This statement
would be true for any of the methods involving functions

that could not be integrated analytically.
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After careful consideration, the method used to
solve thé dielectric elliptical shell problem was
Galerkin's method with the piecewise sinusoidal function
set. This functional set, of the established ones, most
closely resembled the electric field as it propagates in
a dielectric slab. The use of Hankel functions, while
suggested by Blue's article, would be too complicated to
use even if a better match is obtained. Other reasons for
choosing this set were: one of the most popular methods,
well documented, and ease in understanding implementation.
The biggest drawback is the need for numerical integra-
tion for each matrix element.

Therefore, the basis and testing functions are:

sin [k(v ;-v)] sin [k(v'-y _,)]

sin (k(v_,~v 1" sIn k(v ~ 1]

Ehhyﬂ ;'Cn (3.17)
Please note that the (v-v') of equation 3.17
is the distance between the angles at v and v'. The dimen-
sion is in meters. This is consistent with the fact that
the dimention of the wavenumber, k, is rad/m. |
A good reference for the implementation of the
simusoidal basis function is Richmond's report, Computer

Analysis of Three-Dimensional Wire Antennas from The Ohio

State University [29]. While dealing with metallic
scatterers, the features such as segment division, inte-
gration, etc., are demonstrated better than in the text-

book dipole implementation.

50

P .
...........
, - - -




.~ et

......

..........

IV. Programming the Moment Method Solution

The final step in the procedure is the generation

equation of the second kind,

2T

B (1) = Eluv) + At )[ Elu,v) 8,2 tecp)

o

- (cosh® b - cos v') dv'

has been reduced to a linear algebra problem.

A, consists of two elements,_zt'dN and zM where

2 2 mtl mel
ZIJIN = AFI c’e, [ [ P(\)n-\)') W(vm-v)

2

%4= c

AY

Y m-1

m=-1

(2) 2 2,
. Ho {kcp) (cosh ub-cos‘v)

-(cosh21k,- coszxn dv'dv

Vel 1%;1/2
f Pv_~v) W(v_~)
Vel HoT/2

. (cosh?y ~ cos? v) dudv
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of code to implement the hethod of moments and solve the

linear algebra equation, (A)x = b. The Fredholm integral

(4.1)

The matrix,

(4.2a)

(4.2b)




and the voltage vector is

P(V_) no‘z’ kp,)

-k,ozc2 vn&l
Ly |
v

m-l (4.3)

. (coéhzl%)- cos%n av

where k is the wave number in the dielectric if integrating
for ZMN or ko(w2 “uoeo for free space when calculating

\' P(vn-V') and W(Vm-v) are the sinusoidal basis func-

MN
tions just discussed.

To calculate the matrix elements and solve this
the linear algebra problem will require special function
calculators, numeric integrators, and linear algebra
solvers. The self cell (cell where n = m) will require
special handling as will the cells at the +/-90° points.
This chapter will discuss the programs developed to solve
the linear algebra equation. The discussion will include
a description of the special functions and routines. The

chapter will close with a discussion on the problems still

unresolved with the program.

Machine

Due to the large core and time requirements, this
program was processed on the Aeronautical Systems Division's
CYBER computer system. The ASD system consists of two

Control Data Corporation (CDC) mainframes, CYBER 74 and 750,
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which operate in parallel. The 750 has 262,000 words of
central memory. The CYBER 74 has 131,000 words. The ‘
CYBERs have 14 significant digits for real variables. The
? machiﬁes support a variety of languages and support
packages. The system also includes interactive processing
(INTERCOM) , plotters (CALCOMP and DISSPLA), and special

libraries (IMSL, FUNPACK, etc.) [31:3].

Program Overview

éf | The language used in this program was FORTRAN V,

X with CDC extensions. Version 5 complies with the American
National Standards Institute FORTRAN 77 [32:V]. The CDC
extensions used were minor consisting of the use of sine,
cosine, and tangent functions in degrees, hyperbolic

l[. arctangent, the CPU SECOND functions (returns current pro-
cessing time elapsed since start), and CDC FORTRAN contrdl
statements. Due to the heavy use of the IF-THEN-ELSE
statements and the use of zero index values, this program
will not compile on a FORTRAN 4 compiler without major
modifications. The programs were run with the optimizer
set to 1 (OPT=1), where the compiler will optimize the
code by the following steps:

1. Redundant instructions and expressions are
removed.
2. PERT critical path scheduling is done to

utilize the multiple functional units efficiently.
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c 3. Subscript calculations are simplified and
values of simple integer variables are stored in machine
registers throughout loop execution for certain do loops

[32:11-7,8].

Despite the reduction in the amount of cells

required, the storage requirements for the program were

large when the full sized scatterer (semi-major axis of

12\, semi-minor axis of 6A) was run. It was not possible

to run all of the algorithms in one job. Therefore, it
? was necessary to break up the program into three programs
which were completely separate. Figure 16 has a flow
chart of the simple structure. The TRANSF control card
was used to control the flow. Using the TRANSF card, the
input program ran first, then the next job listed on the
TRANSF card ran. Program 3 could not run until 2 was
finished and 2 could not run until the first program was
completed. This offered several advantages. Each module
could be developed separately. Since the input program
created a permanent file, once the geometry was set up and
the file created, it did not have to be run again. It was
possible to reduce core requirements which decreased turn-
around time by running each program separately. This
structure was much easier to understand and develop than

using segmentation or overlays.
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INPUT SEMI-
MAJOR & MINOR
AXIS, THICKNESS,
SOURCE COORDS (IN
METERS AND FREQ
(IN GHz)

PROGRAM 1
INPUTPROGRAM

LIBRARIES USED:

PROGRAM 1
READS IN SCATTERER
AND SOURCE GEOMETRY.

FUNPACK

OUTPUT
TO DISK

LIBRARIES USED:

CALCULATES ELLIPTIC
COORDINATES - SEGMENTS
ELLIPSE FROM -90 TO +90° |

RESULTS STORED IN
PERMANENT FILE

PROGRAM 2
CALCULATES zmn' an

FUNPACK ARRAYS. SOLVES LINEAR

IMSL ALGEBRA PROBLEM.

LINPACK

IBM SSP

PROGRAM 2
DATA PROCESS
Figure 16. Job Stream on CYBER 175
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LIBRARIES USED:

IMSL
DISSPLA

PROGRAM 3
RESULTPLOTTER

Figure 16--Continued
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Library Subroutines

Due to the nature of the equation being solved,
special functions and procedures were needed. These
included elliptic integrals, Bessel functions, integrators
(numeric quadrature), and linear algebra equation solvers.
The ASD computer system has many functions and routines
already built in through several different program packages.
Rather than go through the procedure of developing and
testing these programs, the "canned" programs were used.
These offer the advantage that they are well known through-
out the industry and tried and tested on many different
machines.

Functions. The complete elliptic integral of the.
second kind was used to. calculate the circumference of the
ellipse. The Bessel, Jo(x), and the Neuménn, No(x) (or
Yo(x)), functions were used to calculate the matrix ele-
ments. The library selected to calculate these functions
was the FUNPACK library [33]. FUNPACK is a library of
functions and subroutines that can return the results of
Bessel functions of first and second kind, modified Bessel
functions, elliptic, exponential, Dawson's integrals, and
other functions. There are 13 programs in the current
library which was released in 1976 as FUNPACK Release 2.
FUNPACK was developed as part of the National Activity for
Testing Software (NATS) project. Obtained from the Argonne
Code Center, FUNPACK was specifically designed for the
CDC 6000-7000 machihes. The documentation that accompanied
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- the program [33], provides the description on how to use

the code, the accuracies and limitations of the routines,
and where they were tested. The results of the Bessel
functions for Jo and Yo were hand-checked against tﬁbles
and found to be accurate. The only limitation to accuracy
is the host's ability to accurate the values of the basic
functions such as natural log, sine, cosine, etc. [33:11].
The nicest part of the FUNPACK library is that the package
was developed for the CDC processors and take full advan-
tage of the 14 working numbers of accuracy in standard
precision. It was for this reason that the FUNPACK library
was chosen over the better known International Mathematical
and Statistical Library (IMSL). It should be noted that
the FUNPACK libraries are still being supported by Argonne
and will continue to receive support. Changes will bel
supplied automatically to users [33:11,22-23]. Another
advantage of the library is that the function calls
resemble the name of the function, making it much easier
for the future user to read the program and understand
what operation is being performed without a great number of
comment statements.

Integrators. As can be seen from equations

(4.1-3), the numerical integration is an important part of
the program. The integrals of (4.2a) and (4.3) do not
exist in closed form. While the single integral of (4.2b)
can be done analytically, the integral over the angle, v,
was done numerically to reduce the chance of algebraic
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error. The radiation routine used to calculate the far
field also needs a single integrator. The IMSL has a
single and double integrator; The documentation on IMSL
is limited and the accuracy of the routines is not known
except to rely on the reputation of the library. The

AFIT Digital Computer Manual called the package ". . . the

recommended routines" [34:55].

The single integration routine, DCADRE, uses a
cautious Adaptive Romberg Extrapolation Algorithm. DCADRE
is computed as the sum of estimates for the integral of a
function, F(x), over suitably chosen subintervals of the
limits of integration. If the routine is unable to find an
acceptable estimate on a given subinterval, the subinterval
is divided and each of the new subintervals is handled
separately [35:DCADRE-1,2]. It is because of this process
of interval subdivision that DCADRE can take a great deal
of time. The acceptability of an interval is determined
by a relative error input in the function calling state-
ment. If the routine can not get within the limits sup-
plied, then the function writes out an error message and
supplies the best answer. However, even if the error mes-
sage is written, the best answer is still better than the
standard integration routines. DCADRE may return wrong
answers if the frequency of the integrand is very high,
but this problem may be overcome by dividing the interval

and calling the routine several times [35:DCADRE-2].
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The double integrator is DBLIN, which uses DCADRE
to do the single integration. However, use of the Romberg
integration routine in two variables increased run times
significantly. Therefore, the integral over v, was done

via a Simpson rule integrator [38:311] while DCADRE inte-

AR grated over Ve

i; Matrix Equation Solvers. The IMSL has two routines

for the solving of complex linear algebra problems: LEQT1C

and LEQ2C. There is also a library of linear algebra

routines from the Argonne National Library known as
LINPACK. LINPACK has come into being in the same manner
:! that FUNPACK did and is well documented [36]. The refer-
enced documentation includes a listing of all subroutines
i; . and tables of timing data on each routine for each of the
", test sites [36:B-1,D-11].
The best choice of these programs is not known.

Since the second program never fully worked and produced

correct answers, this question had not operationally been
decided. The plan was to run several jobs through each of
the programs and to see which came out best in terms of
accuracy, speed, and ease of operation. The result of the
test would decide which routine to use for the final runs.
For the problem here, time is the biggest problem, not

memory .
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Input Prog ram

The purpose of the input program was to:

1. Read in the geometrical data on the scatterer.

2. Calculate the elliptic coordinate system
parameters.

3. Determine the endpoints of the segments.

4, Calculate constants used in subsequent pro-
grams. |

The listing is given in Appendix C. The calcula-
tion of elliptic coordinates is done using the relation-
ships given in Appendix A. In calculating the coordi-
nates for the line source location, it was assumed that
the sources have the same Bo value as the scatterer does.
Therefore, only the source focal length, cs, and angle
coordinate, Vgr need to be determined.

Wave Number. As one of the constants, the wave
numbef in the dielectric was determined. It has a value
between, ko and kd' the wave numbers in free space and for

Assuming that the scatterer will locally act as a
flat slab waveguide, the electric field within the scat-
terer is of the odd type. This is based on the assumption
that the electric field is constant through the dielectric
shell and, tﬁerefore, the electric field is symmetric
about the middle of the slab. Since there is no variation
in the electric field in the y direction, the modes excited
are TMz.
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Figure 17. Dielectric Slab Waveguide

Figure 17 shows the coordinate system for this dis-

cussion. The electric and magnetic fields are

'jkyY
coskxlxe

—— x|< T/2
Z o kxl'r | |
cos(—-z—)

e.rxolxl —jk | |
—_— e x| > /2 (4.4)
e (I‘xo'l‘ 2)

e
. '-‘ll ‘.

N A iLpen sh
]

N
ot'.l

sin kxlxe Jkyy Eo

ST Fou |® < T/2

cos ( %)

; ; e-rxolxl -3k v

ﬁ. -_&sgn(x) EO —_-(T;ﬁz)e |x| > T/2
e

-~ Juu

]
L

. _.‘ .‘!1'_
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RIS

R 2 2 _ - 2

F kxl + ky kl Er ko

g 2 2 .2

; Fxo + ky” = ko

L

Forcing the tangential magnetic field to be.con—

tinuous at x = T/2

Yy
sin(k_,T/2)e ¥
% Bt
x1l © k&fr
cos (—3—ﬁ
{4.5)
e—FxoT/Z -jkyy
= - E e
x o =I' _T/2
%0
e
or
k.T k,T r. T
X1 %1, _ (X0
(4.6)
k ,T 2 r.T2 kT2
x1 X0 " o (e 1) (-2
(—2' +(—2— (e 1)(2

Since T is 1/20 wavelengths long, kxlT/Z is much

less than 1. Therefore

k .T 2 r.r
x1 ~ X0

and from (4.6)

k

xl x1 = -1) (2=
=3 + ) L B - (4.8)
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This means that an approximate value for kxlT/Z is

2 2
kT 1 kT

x1 =_1,1 O

with T = AO/ZO and €. = 4

ko T = .5262
kxlk = 10.5246
k0% = ek )? = g (4.10)
or
kylx = 6.87 [37:12-13;15]
The determination of segment and points was a
", ’ critical phase of the program. No segment was to have a

length greater than A/4 ([29:5]. It was decided that for
a radius of curvature of 2.5 or greater, that this segment
length was adequate since a straight line A/4 wavelength
long would vary little from the arc of the ellipse. For
the segments where the scatterer has a smaller radius of

curvature, the segments were to be p/l1l0 wavelengths long

. M '_'I h 'A“—"-".‘..".‘ . ’

where p is the radius of curvature. This was based on a
straight line extrapolation from the cutoff point of .25
for 2.5 (see Figure 18).

Based on this the cell end point (one was known)

was determined by taking the arcsine of the cell length

over the distance from the origin so that point as shown
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%; o in Figure 19. The cells ran from -90 to 90°, so the

' lower endpoint was always known. The angles were summed
until the total reache@ + 90°. The ellipse was segmented
from the ~-90 to 90° to take advantage of symmetry. For
the large ellipse (12\ by 6A) all segments were .25\ long.
For smaller ellipses, the number of cells increased near
the end points and decreased to the +/-90 points, as was
desired. Appendix C has a program listing of the input
program. It was not determined if more or less segments

=3 were needed. In the last program step; the input data,

elliptic coordinate information, and the array containing

the cell endpoints were written on disk and stored in

a permanent file.

Cell Length = 0.25)\
=
m
&
(]
=
%,
=3
%
[
7
% RADIUS IN CURVATURE (IN WAVELENGTHS) (p/A)
at} Figure 18. Segment (Cell) Length Determination
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Figure 19. Cell Endpoint Determination

Matrix Generation and
Algebra Solver

The second program has three main functions:
1. Determine the matrix elements of the reaction

matrix, zMN'

2. Determine the Vector elements for VMN'

3. Solve the linear algebra problem, VMN = E(ZMN).
The double integral generates a full matrix of com-
plex elements since the integral over the nth cell (primed

coordinates) is independent of the integration over the

mth cell. The total E field integral generates real numbers

only and contributes only to the matrix diagonal and to the
major codiagonals. Due to the E field integral, a blocked
IF-THEN-ELSE statement is used to test which contribution

66

................




.......................................

.......................

to include. The program calculates the real and the
imaginary parts separately because the IMSL integrators

are real functions.

Algorithm. The sinusoidal basis function had to

be divided up into two subintervals; Va-1 n

Vel {24:535] (see also Chapter III). 1In the double inte-

v v
to and n to

gral, the multiplication of the sinusoid for the mth cell
and the sinusoid for the nth cell results in four double

integrals for each cell.

m1

sinlk®_ v T T WK, -] |

v

f"mu fr&l sinfk(v=>_ .)] sin(k(v_,,-)]

m-1 n-1
sinfk(v'-v__.)] sin{k(v_,,=v')]
—_— — nl_ nt+l ,
gsin[k(vn-vn_l)] * sk n+1"’n”$dA dA (4.lla)

j‘ » ]' " sinle(mvy ) sinlk(v'-y, )] -
5 ! sin [k(vm-vm_l) Isin(k (vn-vn_l) 1
m-1 n-1
. ["m ]."n+1 sinl ((v-yy ) lsinlklvy, v
g ! sinfk(v v _,)Isinlk(v ,-v )]
[~ ml n
# \Y V.

ml .'n sin[k(vml-v)]sin[k(v'- n-l)]

e : —=— dA'dA
]\: sin(k(v ml-vm)Tsm[k(vn- n-1'!

’ntl  sinfk(v e~V 18RIk (v =v)]

m+1 .
[ sinlkly - )1sink (v, =v 7] dA'dn (4.11b)
\Y)
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S This also occurs in the total field expansion except the

integration is only over the mth cell as shown in (4.llc)

,353 jvm sin[k(vb)] sinfk(v-v _,)] . Sinik(vm-l"’” f @
;. b s;n[kvm>vnrl)] s:.n[k(vn n_l)] 51n[k(vn+l vn)]
(4.11c)
v

fml-l sinflk(v m,_l-v)] s:‘.n[k(v-vn_l)] sin[k(vm_l-v)] } @
+

s . — + —
) sank(vm+l-vm)] s1n[k(vn-yn_1)] s;n[k(vn+1-vn)]

m
where
dA'==c2«xmh2Lb-coszwﬂ) av'
daA = cz(cosh2 By = cos2 v) dv
Endpoints. Figure 20 is a graphical presentation
of the double integration over v and v'. The v =Vv' line

is the line singularity where the integrand is singular
due to the Bessel function of the second kind. Each cell
has four contributions according to equation (4.1l1lb).
This can be seen in Figure 20. As an example, let m = 4
and n = 2. The coverage goes back tom = 3 and up tom = 5,
The integration over Va has the same feature. The shaded
block represents the total contribution to the (4,2) cell.
Integration on the cells near the end points
presents a special problem. Since the scatterer is a con-
tinuous object, the contribution of all cells must be the
same. The affect of the current in an adjacent region,

but beyond the symmetric boundary must be included.
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Figure 21. Current Contribution from
Beyond the Line of Symmetry

For example, the (0,0) cell has three contributions below
the axis in Figure 20. Originally, the program handled
each case on the end points as a séparate entity, multiply-
ing the (0,0) and (N,N) cell contribution by four and the
ones in between by two (point G on Figure 20). However,
this resulted in a long, bulky program and it was difficulf
to ascertain if the contributions from cells beyond the
symmetric line were equal. Thus a question came up if

multiplying by a constant would produce correct results.

Therefore, a "negative cell" was created by folding the

cell on the +/-90° line over the other side. 1In other

LETL S e o
DA

words, one cell was created that was equal in length to
the 0th and Nth cell, but on the other side of the t 90°

lines (see Figure 21).

To assume that any cells on the other side of the
line were equal in length to the adjacent cell was an

70

PRGNS S W Sty W




2
)

.

........

............

excellent assumption since the region of concern is the
essentially flat region of the ellipse. In the case of a
circular shell, as the scatterer becomes more circular,
the length of the cells becomes more nearly equal. This
greatly simplified the program from now only contribution
from the total field expansion had to be checked.

Additional contributions from the other side of
the ellipse had to be considered due to the assumed sym-
metry of the problem and restriction of v to +/-90° (see
Figure 22). Since the line source is on the y axis (see
Figure 6), the incident energy on the right side of the
shell (+90 to =-90°) is equal to that which is incident on
the left side (180° to 270°). Therefore, only one-half of
the ellipse had to be directly evaluated, thus reducinag
the number of cells needed by a half. It would not be
correct to either neglect the other side or to simply
multiply the field by two.

In evaluating the Richmond integral equation
(equation (2.8)), the interaction between the field
generated by the source cell and the observation cell is
being calculated (see Figure 8). This must also be con-
sidered with the image cells as shown in Figure 22(a).
This was done in the program by integrating over a cell
180° opposite the observation cell.

To multiply the field calculated by two to account
for the image contribution would give erroneous results
for the distance changes as the position on the ellipse
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changes (see Figure 22(b)). The use of symmetry does not
reduce the number of calculations. It reduces the amount
of core required to solve the problem, a critigal factor
when large (greater than one wavelength) is considered.
singula;itx. The program had to evaluate the
principal value integral around the singular points. A
numerical integration routine can not take the limiting
value of a function and special routines must account for
these regions. In this problem, ther~ were three types
of singularities encountered which could be considered as
two classes. Table 5 gives the class and type of singulari-
ties encountered. Figure 23 is a graphic presentation of .

each class.

Table 5. Program Singularities

Cross-

Type of Reference to
Singularity Class Figure 20
Overlapping
cells

n=m line Region B

m=nzt1l line Region C
Corner

Vm = Vo point Point A

There were three separate methods tested in con-
sideration of the singular cells with a goal that accurate
results were returned, but with the CPU time being held to
a minimum. The first routine integrated up to the line
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singularity, but left an area surrounding the singularity.
James, et al. [38:339-342] suggested that the function be
expanded in a Taylor Series around the singular point,
integrating term by term. A test routine was written
integratiné 1n |x-x'| over -1 to 1 using a Simpson Rule
routine [38:331] and the IMSL DCADRE routine, but with the
singular region ignored. Testing only 10 subdivisions,
the error was -0.193 percent. Using 1000 subdivisions,
the error was -2.5 x 107> percent.

The point singularity was handled by excluding
the point. This problem occurred when the range of each
integration overlapped, say going from 1 to 2 and 2 to 3.
Using the 1ln |x-x'| function again, it was found that by
integrating the inner integral from 1 to 1.999999999999

and then the outer from 2 to 3, the results were limited

only by the limitation on the accuracy of the Simpson

routine and the number of subdivisions used.

v LRI gun e S0
Py . W e E
Al - Pl

The disadvantage of this is now special cases

v

have to be drawn up for the possible singularities. The
corner singularities were generally found by trial and

error (i.e., the program hit a divide by zero error and

A $ADENOMND

A k3 AU
,~]J' P

quit).

The first method discussed involved special pro-
grams and calls to avoid the problem. In either case, the
sinyular point was approached, but not integrated over.

;; However, it was decided that these special routines were
%! -— not necessary. Instead, if the argument of the Hankel
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function went to zero in the program, it was declared to

have a small value. The minimum value that the FUNPACK

128 . 2.938 x 10739,

4

routine could handle was 2~

to 10725,

The range of values tried was from 10"
This routine was very easy to program; however, the run
times doubled. The DCADRE integrator would continuously
subdivide the interval from the last actual value to the
declared value. Using a larger number did not resolve
the problem since the integrator would bog down in try-
ing to resolve the sharp cutoff that resulted.

The final routine involved "capping" the singular
point with a parabolic approximation. This cut run times

by one-half since now the singular region had a smooth

peak, as opposed to a sharp peak or flat top.

Equation (4.12) is the function used. Let
:* * !
N H* (§) = a, and H (¢§) = a;

' 2, = 2
- 'Y () =c +Cp (4.12)

The (§) used was 10'3. Using a, and a; with (4.12) results

in
el !
Co a, -3 CZ-EE (4.13)
é; Using this function simplified the problem since the
o result could be used by either class of singular reyion.
i The routine significantly reduced run times also.
:h Test Runs. To test the program, the scatterer
:E & was made to be as circular as possible. The resultant
b *

:E 76




zMN should be a toeplitz matrix. In such a matrix, all
of the elements along each diagonal are equal. The toe-
plitz matrix results because the array elements are cal-
culated on a basis of geometry [14:341l]. All of these
elements are the result of integration of equally sized
self cells. Schneider's results showed that this matrix
does result [4:18]. The test program included a repeat
of Schneider's results [4:27-30,47-49] for the small
scatterer. This would validate the program since his

results are correct and the solution is unique [40:532-534].

Unresolved Problems. The test case run did show

that the toeplitz matrix does result for the circular
scatter. This validates the fact that the geometry of
the problem is being described correctly by the program.
It does not validate that the values obtained are correct.
Herein lies the problem. The resultant reaction matrix
should be banded in that the elements of the main diagonal
and the right and left codiagonals are significantly higher
than the rest of the array. Additionally, the magnitude
of the voltage vector should increase as you evaluate from
the Oth cell to the Nth cell. This increase should be
significant.

Neither of the described conditions was met by
the resultant array or vector. The voltage vector gradu-
ally increases as you get closer to the line source, but
only by a factor of 3. ™he main diagonals are only an
order of 10 higher than the other elements of the reaction
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array. The other elements then varied in sign and magni-
tude across a row. Their magnitude did not go to zero as

expected.

Radiation Calculation

The final program was to calculate the far field
electric field and display the results. The current in
each cell would be obtained by going back to the expansion
function and putting the calculated Cn back into the equa-
tion. However, the far field is very insensitive to small
changes over a small area. Therefore, the electric field

for the cells was assumed to be VMN(M) across the entire

" mth cell. The far field approximation for the vector

potential is

-jk p
A= &2 ffJ (o1)eJke' cos (¢-¢") 45, (4.14)

z
\/Sjnk p
m [{10:229]

or in elliptic coordinates, if p is the distance from the

origin to the point on the ellipse

-3kp N 2.2 %

rc e J (u v,)e]k [a®cos®d + b“sin"¢] cos(v-v')dA.

z' "o’
2 V83 (4.15)

a = semi~-major axis

b = semi-minor axis
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tan"t((a/b) tanv)

\.E:-: ¢ =
o = tan"l ((a/b) tan v')
da' = (cosh2 By = c052 v') dv'!

The far field observation point is 2a2/x [14:24]. The far

field electric field is then determined from
Ez = ]nudAz ) [(14:25]

or

-jk o
3k2c4wu°T3e ° vn+1

E =
2 :
a' Sjm%f

Jz(uol\))

A
n

2

. ejk[azcoszcb + b%sin61% cos (v-v')

. kxmhzlb-cosz\ﬂ) av!

Since program 2 never worked, the radiation program
was not developed. The contribution from each cell would
be summed over the entire 360°. The plot was to be dis-

played on the off line calcomp plotter using the DISSPLA

package.
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V. Lessons Learned

The exact reason that the program failed is not
known. Sources of error could have come from a myriad of
sources. Countless checks have been performed on the pro-
gram and no error can be found. A better method needs to
be used in the integration if the method of moments has to
be used to solve this problem. Blue's article showed that
the number of cells could be kept small by using different
basis functions [26]. A fewer number of cells would have
substantially improved this procedure Qince fewer integra-
tions would have been necessary.

Despite the program failuré, this thesis showed
that straight application of the moment method, even with
the use of the more complicated basis functions, is not
practical for larger scatterers. While the core problem
has been solved, a real time problem has surfaced. If it
takes 1300 seconds to process a 33 by 33 array, a 120 x 120
array would take way too long. The expense in that much
computing would be high.

When computing with wire scatterers, the observa-

Ei tion point is done on the inside of the metal, while the
source is considered on the outside skin. With this in
L , mind, the observation point could have been made just

above uo. Since the electric field, and therefore the
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current, is constant throughout, the electric field would
not have changed. The runs done so far show that the
singular cells take 10 seconds, nonsingular take 1.5 to

0.5 seconds, and the voltage matrix takes less than 0.1
seconds. Therefore, the problem is in the singularity.

The removal of the singular point would greatly speed opera-
tions. While time would not permit this condition, it is

worth continued investigation.
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VvIi. Conclusions

This study analyzed the scattering of cylindrical
electromagnetic waves off of dielectric scatterers. The
scatterer was an elliptic shell, designed to model the
radome of the F-16. The equation developed by Richmond
[10] was used and solved by the method of moments. To
reduce the amount of storage needed, the basis and test-
ing functions were the sinusoidal basis functions. The
result was a complicated integral that took a great deal
of time to compute over each cell.

The program never worked and there were no plots
produced. The exaét source of error is unknown, but the
most probable are either a programming or an error in thé
integration over the shell thickness. The study did show
that this method was impractical for iarge scatterers.
The amount of integfation required to £ill the reaction
matrix was far toé much to be practical. The cost of such
runs made justification difficult.

While the program never produced valid results,
it is felt that the conclusion that the method is impracti-
cal is valid. The evaluation of the individual contribu-
tions would still require 16 integrations to be done per
cell. Each integration takes considerable amount of time.

The improbable values of the array and vector elements are
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,§ s more likely due to the handling of the singular region
- rather than in a programming error. The removal of the

singularity may have removed the main reason for the side

-« .

T

lobe. Thus the array elements were only gradually varying.

.' . As recommendations for future study, Blue's method
of different basis functions bears more study. The reduc-

tion in the number of basis functions would greatly reduce

the number of integrations needed.

The method used here may be improved by breaking
up the singular cells into subregions. If the singular
area was square, Richmond's analytical integration [10:336]
could be applied. The rest of the cell would be considered
using the methods described in this report. The contribu-
tions ‘'would then be added together.

Looking at other methods, if an efficient program
could be written for the generation of Mathieu functions,
then a series solution would be possible. Finally, an
asymptotic evaluation of the integrals would then enable
a solution to the integral equation to be computed since

the integration would no longer be necessary.
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Appendix A
The Elliptic Coordinate System

The elliptic-hyperbolic coordinate system is one
of the eleQen orthogonal coordinate systems which is
formed from first- and second-degree surfaces. This appen-
dix will provide a compendium of information and relation-
ships useful in analyzing the elliptic shell. The best
overall source for coordinate system information was
Moon and Spencer's Field Theory Handbook ([42]. The

Schaum's Outline Series handbook, Vector Analysis by

Spiegel [43] and Morse and Feshback's Methods of Theo-

retical Physics also provide some valuable insight into

the systém. Moon and Spencer and Morse and Feshback have
considerable discussion on the separation of variables,
especially in terms of the Laplace and Helmholtz equations.
Burnside (44], had a very complete list of relationships
related to the elliptical geometry.

Figure A-1 shows the coordiqate system relative
to the xyplane. The positive 2z axis is up, out of the

page. The defining relationships are

X = c cosh yucos v
Yy = ¢ sinh y sin v (A.1)

z = 2
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s where ¢ is the focal length; y and v are the coordinates
of the system. Surfaces of constant, y, are elliptical
cylinders and surfaces of constant, v, are hyperbolic cylin-
ders.

p is defined as
u = tanh™! (b/a) (A.2)

where a is the semi-major axis and b is the semi-minor
axis. The limiting case for u+» describes a circle. The
range of u is from 0 to » and is radius independent.

The angular coordinate, v, is the angle from the
x axis to the asymptote of the hyperbola that intersects
the point in question (see Figure A-2). The polar angle ¢,

1 does not equal v except at 0, 90, 180, and 270°.

Figure A-2. Angular Coordinates
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The relationship between ¢ and v is
¢ = tan"l[(b/a) tanVv] (2.3)

This is based on the fact that a s c cosh U and b =
¢ sinh 4. The range of Vv is from 0 to 360°,

The unit vectors uu and ﬁv are

¢ sinh U cos Vv ﬁx + ¢ cosh U sin\)ﬁy

u -
u
jJrﬁsinhz H cos2 v+ cosh2 M sin2 v

- (A.4a)

v in v 1
- b cos ux + a sin HY

"\/sinh2 M cos2 v + cosh2 M sin2 v L

- ccoshu sin v ﬁx + ¢ sinh u cos v ﬁv

 ——

=>
"

cosh2 H sin2 v + sinh2 H cos2 v

(A.4Db)
a sin v ux + b cos v “v

—

WVGOshz M sin2 v + sinhzu cos2 v

~

7]

v is the vector tangent to the ellipse and ﬁu is the

vector tangent to the hyperbola or the outward normal from
the ellipse [44:310-311].

The following is then a list of relationships used

or noted during the course of this research:
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SO Differential area:
| da = c?(cosh® 4 - cos?v) duav [42:18] (A.Sa)

2

o aa = c?(sinh?y + sin?v) apav [43:139] (A.Sb)

These equations are equivalent.

Elliptic cylinders:
(x/c coshu)2 + (y/c sinhu)2 = 1 [42:17] (A.6)

2y arc length:

v
2 e
3 L .=J; Va2 sin® v + b2 cos® v [44:310] (A.7)
1

Circumference:

N L

4aE(a/c) [45:12]

&
e

m[3(a+b) - y/(a+3b) (3a+b)] [46:18] (A.8)

21 V1/2(a%+b?) [45:12]

e

E(a/c) is the complete elliptic integral of the second

kind.

# RO L

Area

A = mab {46:18] (A.9)

Ll PTRLECCCMON

4

Radius of curvature:

3/2

2 , + b2 cos?y)  /ab  [46:21] (A.10)

p = (a2 sin

PG 7 ¢ QLR
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¥
s
=
AT
3
£ V-E= — 1 T {% [(mdx2 u - cos? \)))‘BLI
clcosh™u - cos™ V]
o3 [42:18] (A.ll)
L .
7 + v [(cosh™ U ~ cos™ v) Bl + 33
1 530 o 3 o2
- Vp = [u + ] + 1 [42:18] (A.12)
= c[coshzu—coszv]l’ waw T H z 3z ,
N
o)
-. Vx§= 3 1 3 .
2 (cosh™ y - cos™ v)
‘::
:’.
N n (c:osh2 u - cos? v)]’ T} (c:osh2 U - cos> v)!’ u./a
. W v 2z
2 3 2 3
::: ou av 9z (A.13)
Z. G Eu(c::oeil'l2 T cos2 v)!’ E\)(c:'osh2 u- cc>s2 \a)!5 Ez/a
:.: 3 2 2
; 20 T— 5 | -i;», e [42:18] (A.14)
A c“[cosh™ 4 -~ cos™ V]  3u :\V oz .
- See [42] for equations related to the separation of
A Laplace's equation and the Helmhotz Equation [42:18-20].
o See [45] and [46] for the more novel relationships for
L
jf ellipse. Lockwood also has a great deal of information on
]
3:; the geometrical properties of curves in general.
-
i ‘:-."
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Appendix B

FUNPACK Release 2

The following is a copy of a listing executed from
the EDIT LIB Users Library. Since the special functions
were all generated using the FUNPACK library, and since
there is not a commercially published manual available,
this file is included as part of this thesis. More detailed
information on FUNPACK is available in AFFDL-TM-77-89-FBR
{33]. For detailed data on LINPACK and the IMSL see [36]

and [35], respectively.
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LFUN

THIS LISTING IS OUTPUT FROM PROCEDURE LFUN(LFN) EXECUTED FROM THE
EDITLIB USER LIBRARY. IT DOCUMENTS CODES SELECTED FROM ARGOMNE CODE
CENTER NO. 610, FUNPACK RELEASE 2, TO EVALUATE CERTAIN SPECIAL
FUNCTIONS. THE CODES DESCRIBED ARE IN AN EDITLIB USER LIBRARY AS
CENTRAL PROCESSOR PROGRAMS COMPILED UNDER FORTRAN EXTENDED, VERSION
4.5+414, USING THE ROUNDED ARITHMETIC OPTION. THE SOURCE CODES FROM
WHICH THEY ARE DERIVED ARE IN AN UPDATE OLDPL. B0TH THE USER LIBRARY
AND OLDPL RESIDE ON MAGNETIC TAPE. FOR FURTHER INFORMATION ON THESE
CODES OR TO ACCESS THEM FROM TAPE, CALL ’

DONALD S. CLEMM / AFWAL/FIBR / 513-255-5350 (Av 785-535C;.
t***i********,**t***t********tt***********************************t***t

ACC ABSTRACT 610

1. NAME OR DESIGNATION OF PROGRAM - FUNPACK RELEASE 2

2. COMPUTER FOR WHICH PROGRAM IS DESIGNED AND OTHERS UPON WHICH
IT IS OPERABLE - IBM360,370, CDC6000-7000, UNIVAC1108,1110

3. DESCRIPTION OF PROBLEM OR FUNCTION - FUNPACK IS A COLLECTION OF
FORTRAN SUBROUTINES TO EVALUATE CERTAIN SPECIAL FUNCTIONS. THE
INDIVIDUAL SUBROUTINES ARE - '
IDENTIFICATION DESCRIPTION i
NATSIO F210 BESSEL FUNCTION I-SUR-0
NATSI1 F2I1 BESSEL FUNCTION I-SUB-1
NATSJO F2JO BESSEL FUNCTION J-SUB-0
NATSJ1 F2J1 BESSEL FUNCTION J-SUB-1
NATSKO F2KO BESSEL FUNCTION K-SUB-0
NATSK1 .F2K1 BESSEL FUNCTION K-SUB-1
NATSBESY 'F2BY BESSEL FUNCTION Y-SUB-NU

DAW F1DW DAWSON'S INTEGRAL

ELIPK FIEK COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
ELIPE FIEE COMPLETE ELLIPTIC INTECRAL OF THE SECOND KIND
EI F1ELI EXPONENTIAL INTEGRALS

NATSPST F2PS PSI (LOGARITHMIC DERIVATIVE OF GAMMA FUNCTION)
MONERR FIMO ERROR MONITORING PACKAGE

4. METHOD OF SOLUTION - FUNPACK USES EVALUATION OF MINIMAX APPROXI-
MATIONS. -

5. RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM -~

6. TYPICAL RUNNING TIME -

7. UNUSUAL FEATURES OF THE PROGRAM - THESE ROUTINES HAVE BEEN
CERTIFIED UNDER THE NATS PROJECT FOR THE MACHINES AND OPERATING
SYSTEMS INDICATED IN ITEM 13 AND FOR THE COMPILERS INDICATED IN
ITEM 12. EXTENSIVE TESTING ON THESE MACHINES HAS SHOWN NO EVI-
DENCE OF PERFORMANCE DIFFICULTIES. EXCEPTIONS, IF ANY, FOLLOW -

CDC VERSIONS OF THESE SUBROUTINES ARE TUNED TO PERFORM BEST
USING THE ROUNDED ARITHMETIC OPTION ON CDC COMPILERS.

THE ACCURACY OF THE SUBROUTINES FOR THE ELEMENTARY FUNCTIONS
(EXP, ALOG, ETC.) CAN AFFECT THE ACCURACY OF FUNPACK SUBROUTINES.

THE IBM VERSION OF THIS PACKAGE ASSUMES THE IBM-SUPPLIED
TRACEBACK SUBROUTINE ERRTRA IS AVAILABLE.

THE NATS PROJECT FULLY SUPPORTS CERTIFIED ROUTINES IN THE
SENSE THAT REPORTS OF POOR OR INCORRECT PERFORMANCE ON AT LEAST
THE MACHINES AND OPERATING SYSTEMS LISTED WILL BE EXAMINED AND
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9.

10.

11.
12.

NECESSARY CORRECTIONS MADE. THIS ASSURANCE OF SUPPORT APPLIES
ONLY WHEN THE SOFTWARE IS OBTAINED DIRECTLY FROM THE ARGONNE
CODE CENTER AND HAS NOT BEEN MODIFIED.
RELATED AND AUXILIARY PROGRAMS - FUNPACK RELEASE 2 REPLACES
FUNPACK, AN EARLIER PACKAGE SUBMITTED IN JULY 1973 AND DISTRI-
BUTED BY THE CODE CENTER AS ACC NO. 610 PRIOR TO THIS RELEASE.
SUBROUTINES IDENTIFIED AS F1XX IN ITEM 3 ABOVE ARE UNMODIFIED
FROM THE PREVIOUS RELEASE, WITH THE POSSIBLE EXCEPTION OF THE
TEST MATERIAL FOR THE IBM MACHINES.
STATUS - ABSTRACT FIRST DISTRIBUTED JULY 1973.
IBM360,370 VERSION OF FUNPACK SUBMITTED AUGUST 1973,
- REPLACED BY FUNPACK RELEASE 2 SEPTEMBER 1976, SAMPLE
PROBLEMS EXECUTED BY ACC SEPTEMBER 1976 ON AN
IBM370/195.
€DC6000-7000 VERSION OF FUNPACK SUBMITTED AUCUST 1973,
REPLACED BY FUNPACK RELEASE 2 SEPTEMBER 1976, SAMPLE
PROBLEMS EXECUTED BY ACC OCTOBER 1976.
UNIVAC1108 VERSION OF FUNPACK SUBMITTED AUGUST 1973,
REPLACED BY UNIVAC1108,1110 VERSION OF FUNPACK
RELEASE 2 SEPTEMBER 1976.
REFERENCES - J. M. BLAIR AND C. A. EDWARDS, STABLE RATIONAL
MINIMAX APPROXIMATIONS TO THE MODIFIED BESSEL FUNCTIONS IO(X) AND
11(X), AECL-4928, 1974.
J. M. BLAIR AND A. E. RUSSON, RATIONAL FUNCTION
MINIMAX APPROXIMATIONS FOR THE BESSEL FUNCTIONS KO(X) AND K1(X),
AECL-3461, 1969. '
W. J. CODY, CHEBYSHEV APPROXIMATIONS FOR THE COM-
PLETE ELLIPTIC INTEGRALS K AND E, MATH. COMP. 19, 105-112 (1965).
W. J. CODY, R. M. MOTLEY, AND L. W. FULLERTON, THE
COMPUTATION OF REAL FRACTIONAL ORDER BESSEL FUNCTIONS OF THE
SECOND KIND, APPLIED MATHEMATICS DIVISION TECHNICAL MEMORANDUM
NO. 291, ANL, 1976.
W. J. CODY, K. A. PACIOREK, AND H. C. THACHER, JR.,
CHEBYSHEV APPROXIMATIONS FOR DAWSON'S INTEGRAL, MATH. COMP. 24,
171-178 (1970).
‘W. J. CODY, A. J. STRECOK, AND H. C. THACHER, JR.,
CHEBYSHEV APPROXIMATIONS FOR THE PSI FUNCTION, MATH. COMP. 27,
123-127 (1973).
W. J. CODY AND HENRY C. THACHER, JR., RATIONAL
CHEBYSHEV APPROXIMATIONS FOR THE EXPONENTIAL INTEGRAL EL(X),
MATH. COMP. 22, 641-649 (1968).
W. J. CODY AND HENRY C. THACHER, JR., RATIONAL
CHEBYSHEV APPROXIMATIONS FOR THE EXPONENTIAL INTEGRAL EI(X),
MATH. COMP. 23, 289-303 (1969).
MACHINE REQUIREMENTS -
PROGRAMMING LANGUAGES USED -
FORTRAN IV(C)
FORTRAN IV(G 21)
FORTRAN IV(G1)
FORTRAN IV(H)
FORTRAN IV(H 20.1)

1BM360/75,195, 1BM370/165,195
IBM360/65,75,91, IBM370/158
IBM360/75,195
1BM360/65,67,75,195, IBM370/165
1BM360/65,75,195, AMDAHL470V /6

FORTRAN 1IV(H 21.6) 18M360/75,91
FORTRAN IV(H 21.7) I1BM360/75
FORTRAN 1IV(H 21.8) 1BM360/65
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FORTRAN IV(H EXTENDED) IBM370/195
FORTRAN IV(H EXTENDED 2.1) 1BM360/75,91,IBM370/168,168-11
g s FORTRAN IV(WATF1V) IBM360/67
o FORTRAN IV(WATFIV 1.4) 1BM370/158
{ FIN CDC6400, 6500
fé FTN(4.642) €DC6600,CY173,175
5 FTN(3.0) CDC6400
3 RUN CDC6400, 6500, 6600~-6400, 7600
Y RUN(2.3) CDC6400
23 FUN CDC6400-6500, 6600, 6700
FIN V UNIVAC1108
3 FTN V(S10A-0) UNIVAC1108
... FTN V(MACC 1.175) UNIVAC1110
. 13. OPERATING SYSTEM OR MONITOR UNDER WHICH PROGRAM IS EXECUTED -
0S/360 IBM360/67
05/360(19.6) IBM360/65
0S/360(20.1) IBM370/165
05/360(20.7) IBM360/75,195
05/360(21.0) 1BM360/75,91
0S/360(21.7) IBM360/75,370/195
05/360(21.8) IBM360/75
0S/MVT(21.7) IBM370/165~11
0S/MVT(21.8) IBM360/65,91,IBM370/158
0S/YS2(1.6) IBM370/168
MTS IBM360/67 ,AMDAHLA470V /6
STANFORD UNIVERSITY 1BM360/67
PURDUE UNIVERSITY CDC6500, 6400-6 500
BERKELEY LABORATORY CDC6600, 7600
LIVERMORE LABORATORY COC6600, 7600
NCAR CDC6600, 7600
SCOPE(3.3) CDC6400
SCOPE(3.4) CDC6600
UT2D CDC6600-6400
EXEC 8 UNIVAC1108
EXEC 31.244E UNIVAC1108
» EXEC MACC 31.66 UNIVAC1110
X 14. OTHER PROCRAMMING OR OPERATING INFORMATION OR RESTRICTIONS -
S . LOCATIONS AND MACHINES USED FOR FUNPACK TESTING WERE -
] MACHINE TEST SITE
3 IBM360/65,1BM370/158  AMES LABORATORY, IOWA STATE
~ UNIVERSITY

1BM360/75,195,370/195 ARCONNE NATIONAL LABORATORY
5 1BM360/75,91 OAK RIDGE MATIONAL LABORATORY
5 IBM360/67,91,370/168  STANFORD UNIVERSITY

IBM360/75 STOCKHOLM DATA CENTER
= IBM360/65 THE UNIVERSITY OF CHICAGCO
- 1BM360/75 UNIVERSITY OF ILLINOIS AT

URBANA~CHAMPAIGN
IBM360/67 ,AMDAHL4A70V/6 THE UNIVERSITY OF MICHIGAN

IBM360/67 THE UNIVERSITY OF NEW MEXICO
I1BM370/165,165-11 UNIVERSITY OF TORONTO

CDC6600 KIRTLAND AIR FORCE RASE/AFWL
CY173,175 ICASE/NASA LANGLEY RESEARCH CENTER
CDC6600, 7600 LAWRENCE BERKELEY LABORATORY
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CDC6600,7600 - LAWRENCE LIVERMORE LABORATORY
€DC6600, 7600 NATIONAL CENTER FOR ATMOSPHERIC
RESEARCH
CDC6400 NORTHWESTERN UNIVERSITY
CDC6400~-6500 PURDUE UNIVERSITY
CDC6600~6400 THE UNIVERSITY OF TCXAS AT AUSTIN
UNIVACL1108 ILLINOIS INSTITUTE OF TECHNOLOGY
UNIVAC1108 - JET PROPULSION LABORATORY
UNIVAC1108,1110 UNIVERSITY OF WISCONSIN
NAME AND ESTABLISHMENT OF AUTHOR -
W. J. CODY
CONTACT BURTON S. GARBOW

APPLIED MATHEMATICS DIVISION
ARGONNE NATIONAL LABORATORY
9700 SOUTH CASS AVENUE
ARGONNE, ILLINOIS 60439
MATERIAL AVAILABLE - MAGNETIC TAPE TRANSMITTAL
SOURCE DECKS (370-3902 CARDS, 7600-3983 CARDS, 1110-4115
CARDS )
DEMONSTRATION PROGRAM SOURCE DECKS (370-2083 CARDS, 7600-2151
CARDS, 1110-2211 CARDS)
DEMONSTRATION OUTPUT (370-61 PAGES, 7600~58 PAGES, 1110-44
PAGES)
MACHINE-READABLE DOCUMENTATION (370-4532 CARDS, 7600-4518
CARDS, 1110~4518 CARDS)
CATEGORY ~ P :
KEYWORDS - SPECIAL FUNCTIONS, EXPONENTIAL INTECRALS, COMPLETE ~
ELLIPTIC INTEGRALS, DAWSON'S INTEGRAL, BESSEL v
FUNCTIONS, NEUMANN FUNCTIONS, PSI FUNCTION
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Appendix C

Input and Segmentation Program

The following is a copy of the source code for
program 1. Detailed description of the program is pro-
vided in Chapter IV of this report and in the comments

located within the code.
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APPENDIX C. COORDINATE SYSTEM AND SEGMENTATIION PROGRA'! PAGE C-

PROGRA!! READIM(INPUT,OUTPUT,DATA, TAPE 5=INPUT, TAPL6=0UTPLT,

1 TAPE7=DATA)

THIS SECTION WILL READ IN THE VALUZS FOR THR SIZE OF THE
ELLIPTIC SHELL, COMPUTC THL ELLIPTIC COONDINATES, OUTPUT
THOSE VALUES, PLOT THE CYLINDER, AND SFETC! IX (WITH THE
SECEMENTS NIMBCRED) THE LOCATION OF THE SEQGMENTS.

DIMENSION RADII(O:100),RON(0:100), PHI(0:100)
REAL K,KNOT,LA'{DA

REAL MUNOT, MUIN, MUOUT, LENSIG(0:100), NUSEG(0:100)

PI = 3.1415926535898
READ(S5,100,END=9999)A,B,T, XS, YS, FREQ
FORMAT(6F10.6)
IF (A.EQ.B) TEEN
B =A* 0.999999992999
EWD IF
C = SQRT(A*#*2 = B**2)
E=C/ A
CIRCUM = 4.0 * A * ELIEI(E)
DISTSC = SORT(XS**2 + YSk#*2)
KNOT = 2.0 * PI * FREQ * 1.0C09 / 2.997925203
MUNOT = ATAMI(B/A) :
TAU = T/A
IF ((XS.EQ.0.).AND.(YS.GT.0.)) TIEN .
THETAS = 90.0
VS = 90.0
ELSE IF ((¥S.EQ.0.).AND.{¥S.LT.0.)) THEN
THETAS = 270.0
VS = 270.0
ELSE IF ((XS.EQ.0.).AND.(YS.EQ.0.)) THEN
THETAS = 0.0
VS = 0.0
ELSE
THETAS = ATAN(YS/YS) * (180.0/PI)
VS = ATAN(A*TAND(THETAS)/B) * (180.0/PI)
END IF
IF ((XS.EQ.0.).AND.(YS.EQ.0.0)) THEX
CS = 0.0
ELSE IF (XS.E0.0.0) THEN
CS = YS/(SINH(HUNOT)*SIND(VS))
ELSE
CS = XS/ (COSH(MUNOT)*COSD(VS))
END IF
WAVELT = 2.997925E08/(FREQ*1.0EN9)
AW = A/VAVELT
BYW = B/WAVELT
CV = C/WAVELT
TV = T/WAVELT

1

K = SQRT(16.0%(PI**2)=(80.0%SQRT(3.0%(PI**2)+100.0)-800.0))/WAVELT
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APPEINDIX C. COORDINATE SYSTEM ARD SEQMENTATIION PROGRAM PACE C~- 2

LAMDA = 0.75 %* (V*C)%%2
FC = ¥ % C * SIMI(2.0%MUNOT) * (TAU * COSi(TAU) - SINH(TAU)) /5.0
FCONS]1 = <(KNOT**2)/(8.0 * PI * FREQ * 8,.R54185E-3)
FCONS2 = (XNOT#**3) * (SINH(2.0 * MUNOT)*#%2)
1 * (TAU * COSII(TAU) = SINU(TAUL))
2 / (66,0 * PT * FREDQ * 38,854185C-03)
MUIN = MUNOT - TAU/2.0
MUOUT = :UNOT+ TAU/2.0
WRITE(6,1030)
1030 FORMAT('1',132('*')) .
URITE(6,1040) A, T, AW, TV, B, DU, XS, YS, C, &, CIRCUM
1040 FORMAT('0',15X, 'INPUT DATA:'/25X,'SEMI-MAJOR A¥XIS: ',F10.6,
1' MCTERS.',10X, 'SIELL THIC¥NESS: °',F10.6,"' METERS.'/
A 30X,'(',F10.6,' WAVELENGTHS)',15%,'(',F10.6,' WAVELENGTHS)'/
225X, 'SEMI-MIKOR AXIS: ',Fl10.6,' METERS.',10X,'(',F10.6,' WAVE-'
B ,'LENGTHS)'/25X, 'SOURCE X',
4' COORDPINATE: ',Fl10.6,' METERS.',10X,'SOURCE Y COORDINATE: ',
SF10.6,' METERS.'//15X, "CALCULAT'
6, 'CD DATA:'/25X,'FOCAL LEKNGTH:',5Y,F10.6,' STZRS.',10X,
7'ECCENTRICITY :',F10.6,'.'/25%, 'CIRCIMFEREICE: ',
6F10.6,' METERS.')
WRITE(6,1050) MUOUT, TAU,MULIN,MCOUT
1050 FORMAT('=',15X, 'CONSTANT ELLIPTIC COO2DINATES:'//,25X,
1'MCNOT: ',F10.6,'.',10%,'TAU(=T/A): ',F10.5/25%,"INNER °,
2'RADIUS: ',F10.6,10X,'OUTER RADIUS: ',F1C.6,'.')
WRITE(6,1055) MUOUT, VS, DISTSC, THETAS, CS
1055 FORMAT('0',15Y, 'SOUP.CE LOCATION: */15¥, '(SECHND SOURCE LOCATED '
1,'180 DCCREES FROM THS ONE INPUTTED)'//25X, 'ELLIPTIC COORDINATE:'
2,2X,F10.6,10X, 'ELLIPTIC ANGULAR COORDINATE: ',F10.6,' DEGREES.'/
325X, 'POLAR DISTANCE FRO!! CENTER: ',F10.6,' METERS.',10%,'POLAR ',
4'ANGLE: ',F10.6,° DEGREES.'/SOX,'FOCAL LENCTH FOR SOURGCE ELLIPSE’
5': ',F10.6,' METERS.'///)
WRITE(6,1065) FREQ,WAVELT,K,KNOT
1065 FORMAT(' ',15X, 'ELECTRO!AGNETIC PARAMETERS'/25X, 'FREQUENCY: °,
1F10.6,' GIGAHERTZ.',10X,'WAVELENGTU: ',Fl10.6,' METERS.'/25X,
2'WAVE NUMBER(DIELECTRIC): ',F10.6,'.',10%,'WAVE INUMBER(FREE ',
3'SPACE): ',F10.6,'.'////)

CONVERT ALL 'ETER MEASURES TO UAVELENGTH MEASURES.

CIRCIR{ = (CIRCUM/2.0)/7AVELT
J=0
Pi1I1(0)==20,0
LENSIG(0)=0.0
NUSEC(0)==9%0.0
CUF.LEN=0.0
THETA = -90.0
50 CONTINUE
ROW(J )= ( (AUXAWRSIND(THETA ) *STND(T!IETA) )+ ( BUABUACOSD(THETA) *
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APPENRDIY €. COORDINATE SYSTE'! AND SEGMEINTATIION PROGRAM PAGE C- 3

1 COSD(TIETA)) )**1.5/(AW*PW
RADII(J)=SORT(AW*AI/*COSD(THETA)*COSD(THTTA )+
1 BW*BURS THD(TUETA ) *S IND(TIETA))
J=J+1

IF(ROW(J=-1).CE.2.5) THEN
LENSIG(J) = .25
ELSE
LENSIG(J) = ROW(J-1)/10.0
END IF )
CHI=ATAN(LENSIG(J)/RADII(J-1))*180.0/P1
CURLEN = CURLEN + LENSIG(J)
THETA=THETA+CHI
PHI(J)=THETA
IF (PHI(J).EQ.=90.0) THEN
NUSEC(J) = PHI(J)
ELSE IF (PHI(J).EQ.90.0) THEN
NUSEG(J) = PHI(J)
ELSE
NUSEG(J) = ATAN((A/B)*TAND(PHI(J))) * 180.0/71
END IF
If (THETA.LT.90.) THEN
GO TO S0
ZLSE
LENSIG(J)=CIRCU~CURLEN
1I(J)=90.0
NUSEG(J )=90.0
END IF
WRITE(6,1060)
DO 60 XK=0,J
WRITE(6,1070)¥K,LENSIG(EX),PRI(KK), NUSEG (KK)
60 CONTINUE
WRITE(6,1080)
WRITE(6,1090)

1060  FORMAT('0’',5X,'SEGMENT NWMBER',6Y,'SEGHMENT LENGTH',8X,'END POI'
1, KT ANGLE',11X,'END POINT ANGLZI'/26Y,'(WAVCLENCTHS)',
26X, ' (DECREES-CYLINDRICAL)',6X, ' (DEGREES=ELLIPTICAL)"'//)

1070  FORMAT(' ',11X,13,13X,F19.6,12X,F10.6,12X,F10.6)

1080  FORMAT('1')

1090  FORMAT('+',25Y%,'END OF JOB.')

WRITE(7) PI,MUNOT,TAU,VS,CS,KN0T,K, AVELT,LA'DA, FC, FCONS1, FCONS 2,
1 ¢,J,NUSEG,PHI,A,R,T,FREQ
9999 CONTIMNUE
STOP
END .
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HUMBER

VBN TWBMESEWNN~ O

e pd e b e
LS WN=O

[
~J

18
19
20
21
22

M
-

24
25
26
27
28
29
30
31

)
Cn.ho

SEGMLNT LENGTH
(WAVELENCTIS)

0.000000
.025000
.025000
.025000
.025000
.025000
.025000
.025000
.025000
.025900
.025000
.025000
.025000
.025000
.025000
.025000
.025000
.025000
.C25C00
.025000
.025000
.025000
«025000
.025000
.G25000
025000
.025000
.025000
.025000
.025000
.025000
.025000

-.014602

- .
......

..............................
-----------------------

END POINT ANGLE
(DCCREES=CYLINDRICAL)

=-90.000000
-84.289407
-7£.578814
-72.868221
-67.157627
-61.447034
~55.736441
=-50.025848
-44,315255
-38.604662
-32.894059
-27.183475
~-21.472882
-15.762289
-10.051696
-4.341103
1.369490
7.080083
12.790676
18.501270
24.211363
29.922456
35.633049
41.343542
47.054235
52.76482
58.475422
64.126015
69.£96608
75.607201
81.317794
87.028387
90.000000
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EXND POINT ANGLE
(PEGREES=-CLLIPTICAL)

-=90.000000
-34.289407

-~78,572814

-72.868221

| -67.157627

-61.447034
=55.736441
-50.025848
-44.315255
-38.604662
-32.894069
~27.183475
-21.472882
-15.762299
-10.051696
-4.341103
1.369490
7.080083
12.790676
18.501270
24.211863
29.922456
35.633049
41.343642
47.054235
52.7642328
5R.475422
54.186015
69.896608
75.607201
21.31779%4
f7.028387
90.000000




Appendix D
Matrix Program and Linear Algebra Solver

The following is a copy of the source code for
program 2 set up for the small circular case. Descrip-
tions of the code are provided in Chapter IV of this

report.
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ﬁé APPE!DIX D. MATRIYX CALCULATOR AED LINEAR ALGERRA EQUATION SOLVER PACE D- 1
L
rﬁd PROCRAM ARRAY(DATA,OUTPUT,RESULT, TAPZ 7=DATA, TAPC6=0UTPLUT,
.t 1  TAPE&sRESULT) '
AN c
S o THIS SUBROUTINES CALCULATES THE FIELD ARRAY, ZMN, AND THE
‘ c SOURCE VECTOR, VMN. THIS IS DONE BY FINST CALCULATING THE
c 2N TERMS WITH M BEING HELD CONSTANT. BSFORE LOOPING THNI M
v c DO LOOP, THE COORESPONDING VOLTAGE VECTOR VALUE IS CALCULATED
= c BY CALLING THF SUBROUTINE KNOWN AS "VOLTS".
._:',: c
\:; COMMOK/CELLS/1US, U6, UL, NU2, NU3, NU4 , M, N, NOSEG, NUSEG
; COMMON/ELLIPS/MY,C,TAU,K
. COM:10N/CONST/IFLAC, FC,FCONS1, FCOS2, P1, LA*DA
- COM!ON/SOURCE/CS, KNOT, VS
. CO:{MON/STNGLL/AZERQ, AOVE
¥ REAL K,KNOT,LAMDA,MU, NUSEGD,HUSEC(D:32),NUL,NU2,KU3, 04, U5, U6
A COMPLEX 2MN(0N:32,0:32),ViN(0:32)
;" DIMENSION IPVT(32),2(32)
. c
S« CALL UERSET(1,IX)
7 REAN(7) PI,MU,TAU,VS,CS,KNOT,K,UAVELT,LAMDA, FC, FCONS, FCONS2,
o 1 C,NOSEG,NUSEC
-2 CPRINT %' ' pI," '.MyU,* ',TAU,' ',VS,' ',CS,' ',KNOT
2 if’ PRINT *,' ',K,' ',UAVELT,' ',LAMDA,' ',FC,' ',FCOUSY,’ '
s ' .PRINT*,' ', C,' ',NOSEG :
- RADCVT = PI/180.0
L D0 111 XRK=0,N0SEG
N NUSEGD = NUSEG(KKK)
. NUSEG(KKK) = NUSEG(KKK) .* RADCVT
PRINT*,' ' ,NUSEG(KXK),' ',NUSEGD
h 111 CONTINUE
L WRITE(6,30)
N 30 FORMAT('L',7¥%, '™",8X, 'N",12¥%, '"REAL", 14X, '"IMAGIOMARY ", 127,
1 "MACNITUDE',14Y, 'PHASE',14X,'TIME')
c
c CALCULATE CONMSTANTS FOR USE IN THE MAIN SUBROUTINE AKD RELATED
c FUNCTIONS.
. c
'ﬁ; FCONS2 = ((C**2)/2.0) * (COSI(2.0*%MU)*SINH(TAU) + TAU)
e AZERO = YNU(1.0E-03,0)
A AONE = =Y1(1.0E=-03)
. DO 20 =" NOSEG
DO 10 M = 0,NOSEG
CALL CLZMNR(ZMNR,ZMNI)
C .
c THC RETURNED VALUES FROM CLZMMR APE REVERSED DUE TO THE PRE-
c SENCE OF THE "J" IN THE EXPRESSION OF THE KERNAL. TUHIS IS
c LAMDA FOR THE FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND. '
c

ZMN(M,N) = CMPLX(ZMNI,ZHNR)
RIAC = SQRT(ZINI**2 + ZMXR##2)

PHAST = ATAN(ZMNR/ZMNI) * 120.0/P1 Reproduced from
107 besi available copy.
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APPENDIX D. MATRIY CALCULATOR AND LINSAR ALGERRA EQUATION SOLVER PAGE D- 2
NS
28 IF (}.EQ.N) TIHEM ,
i WRITE(6,40) ,N,ZMMNT, ZM R, RMAC, PHASE
e ELSE
< WRITE(6,50)!, N, ZM T, ZMNR, P*AC, PHASE
' EXD IF
o 40 FOMAT('0',6('*'),13,6X,13,4(6¥%,F15.8))
50 FORMAT(' ',6X,13,6X,13,4(6X,E15.8))
S 10  CONTINUE
2 CALL VOLTS(VMN)
i 20 CONTINUE
c
- CALL CGECO(Z!fN,NOSEG, NOSEG, IPVT,RCOND,Z
. PRINT *,'RCOND = ',RCOMD
T CALL CGESL(ZMK,NOSEC,NOSEC, IPVT, VM, 0)
WRITE (8) VMN
i STOP
END
2
P
' ‘j ' SUBROUTINE CLZMMN®(ZMNR, ZMNI)
- c THIS SUBROUTINE DOES THE CALCULATION OF TiHE REAL AND TIE LMAG-
: c INARY PARTS OF ZMM. SINCE THE IMSL INTEGRATOR DOES ONLY REAL
- c ARITIZIATIC, THE PARTS HAD TO BE STPERATED. KINCE THERE IS NO
o5 c HANYEL FUNCTION SUBROUTINE AS MICIT BE EXPECTED.
i c
COMMON/ELLIPS /MU, C,TAU,K
2 COMMON/CELLS/1TUS, NU6, ¥U1, KU2, NU3, KU4, 1,1, NOSEG, NUSEG
COM!ON/CONST/IFLAG, FC, FCONS1,F1,PI,LA!IDA
- EXTERMAL FAl, FA3, FAS, FA7, FALl, FA3l, FASI, FA7I
£y CXTERNAL FSIAL,FSIA2,FSIA3,FSIA4,FSIZ1,FSIR2,FSIR3,FSIBS
,3 REAL LAMDA,K,MU,NUSEG(O:32),5UL,NU2,KU3, U4, NUS, U6
¥ :
- c IFLAG = 0 - REAL FUNCTION
o c IFLAG = OTHER - IMAGIIIARY FUNCTION
o (o4
c
, : PI2 = PI/2.0
: F1 = ((C**2)/2.0) * (COSH(2.0*MU)*SINI(TAU) + TAU)
- IF (*.CT.0) THEN
% NUL1=NUSEG(M=-1)
% ELSE
NU1l = =-P12 - (PI24NUSEG(1))
-~ END IF
SERASA RU2=MUSEC(M)
2 IF (M.E0.NOSFG) THEN

NU3 = PI2 + (PI2=-NUSEG(NOSEG=-1))
N 108
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ELSE
NU3=USCC(M+1)

END, IF

IF (.CT.0) THEN

NU4=NUSEG(N-1)

ELSE

U4 = =PI2 = (PI2+NUSEG(1))

END IF

NUS=NUSEG(M)

IF (N.LT.NOSEG) THEN
NUG=LUSEG(K+1)

ELSE

YU6 = PI2 + (PI2-NUSEG(NOSTG~1))
END IF

¢ ITEST =M =N
IF (ITEST.EQ.0) THEN
IFLAG = 0
MR =(SIDMSON(FAL,MU2,%U3, NUS, KU6,0.01,ERR, IER) + SIMSOM(FAS,
18U, ¥U2, K06, 3C5,0.01,ERR, ITR)
+ JIHSOK(FAJ,HUZ,NU3,HU4 NUS,0.01,ERR, IER)
+ SIMSMN(FA7,NUL,NU2,NUS,KUS,0. 01,unR IEZR)
+ STISON(FALL,NU2,MU3,PI-NUS,PI-
NU6,0.01,ERR,IER) + SIMSON(FA3L,NU2,
XU3,PI-NU4, PI-NUS,0.01,ERR, IER
) + SDMSON(FASI,YU1,NU2,PI-NU4,PI-
wus 0.01,ERR, IER) + °IWSOF(FA7I,u
U2, pr-vus PI-NU6,0.01,ERR
IER)) * LAMDA
IFLAG=1
ZMNI = STMSOK(FAL,NU2,NU3,NUS,NU6,0.01,ERR, IER)

NOWVEWLN - P>

1+ SIMSON(FAS,NU1,NC2,NU4,HUS,0.01,CPR, IZR)
A+ SIMSON(FA3,NU2,NU3,NU4,NUS,0.01,ERR, IER)
A+ SIMSON(FA7,NU1,NU2,%NUS,NU6,0.01,ERR, IER)
1 + SIMSON(FALL,NU2,NU3,PI-KUS,
2 PI-NU6,0.1,ERR, IER) + STMSON(FA3I,
3 U2, 5U3, PL-NU4  PI-NUS,0.1,
4 ERR, IER) + 3IMSON(FASI,KUL,NU2,PI
5 -NU4,PI=NUS,0.1,ERR, IER)
6 + SIMSON(FATI,NUL,NU2,PI-NUS,
7 PI-NU6,0.1,ERR, IER)
ZMNI = ZMNI * (-LADA)
1 + Fl * DCADRE(FSIA1,HNU1,NU2,0.0,1.E~1,ERR,IER)
2 =  TAU*C*C*DCADRC(FSIRL,NU1,XNU2,0.0,1.E-1,ERP,ICR)
3 . + Fl * DCADRE(FSIA4,NU2,NU3,0.0,1.%-1,E2R, IER)
4 =  TAU*C*C*DCADRE(FSIR4,NU2,NU3,0.0,1.E~1,ERR, IER)

ELSE IF (ITEST.EQ.1) THEN
IFLAG = 0
ZMNR = (SIMSON(FA7,NUL,XU2,MUS,NU6,0.01,5R%R, IER) + 5IMSON(FAL,
1 NUZ,NU3,
109 -
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NUS,%U6,0.01,ERR, IER)
+ STIMSON(FALI,NU2,KU3,PI-NUS,
PI-NU6,0.01,ERR, IER) + SIMSO(FA3IL,
U2, MU, PI=NU4, PI-NUS,
0.01,ERR, IER) + STMSON(FA3,NU2,NU3,
NU4,NUS, 0.01,ERR, IER) + STMSON(FAS,
NU1,NU2,KU4,NUS,0.01,ERR,
1ER) + SIMSON(FASI,NUl,HUZ,PI-NUh,PI-NU5,
0.01,ERR,IER) + SIMSO:(FA7L,NUl,MNU2,
PI-NUS,PI-NU6,0.01,ERR, IER)) * LAMDA
IFLAG=1
ZMNI = SIMSON(FA7, YUl,uLZ,NUS,NUG,0.0l,IER,ERR) +
SIMSON(FAL,NU2,NU3,?
NUG,O.I,ERR,IER) + SIMSON(FALI,
NU2,NU3,PI-NUS, PI-NU6,
0.1,ERR,IER) + SIMSON(FA3,NU2 NU3,
NU&,NUS,0.1,EPR, IER) + SLISOK(FAL,
U203, PT3U4, PI=2 S,0.1,ERR,
IFR) + SIMSON(FAS,NUL,KU2,NU4, NUS,0.1,ERR,
ER) + SIMSON(FASI,LUL,NU2,PI-UG4, PI-NUS,0.1,
ERR,IER) + SIMSON(FAZI, NUL,NU2, PL-NUS,
PI-KU6,0.1,ERR, IER)
2MNI = ZMNI * (-LAMDA)
+ FL*DCADRE(FSIA2,1IU1,HU2,0.0,1.E~1,ERR, IER)
- TAU*C*C*DCADRE(FSIBZ,NUI,“UZ €.0,1.E-1,ERR, IZR)

P OVWONOWVL S WV

W RN WLHSWN- -~

(A o

ELSE IF(ITEST.EQ.-1) THEN
IFLAG = 0

ZMNR = (SIMSON(FA3,NU2,KU3,NU4,NUS,0.01,ERR, IER) +

1 SIMSON(FAL,NU2,5U3,NUS,NU6, 0.0l ERR

1 ,1IER) + SIMSON(FALI,NU2,NU3,PI-NUS,PI-NU6,0.01,
2 ERR, IER) + SIHSOH(FABI,NUZ,NUB,PI-“UA PI-

3 NUS,0.01,ERR, IER) + STSOL(FAS,NUL,NU2,:U4,NUS,
4 0.01,ERR,IER) + SIMSON(FASI,U1,NU2,
5
6
7

v
i1
LN '}
P
i

VR
W

L% SR
[ a2

PI-NU4,PI-;US,0.01,ERR, IER) + SIMSOR(FA7,
NUl,NU2,MUS,KU6,0,01,ERR, TER) + SIMSON(FA7I,NUL,
NU2,PI-NUS,PI~NU6,0.01,ERR, IER)) * LAMDA
IFLAG = 1
ZMNI = STMSON(FA3,NU2,NU3, NU4,2NUS,0.01,ERR, IER)
+ SIMSOM(FALl,NU2,NU3,KUS,NU6,0.01,ERR
,IER) + SIMSON(FAlI,NU2,NU3,PI-NUS,PI-NU6,0.1,

_RR IER) + SIHSO‘(FA3I Nu‘,n~3 PI- :UA PI-
NUS5,0.1,ERR,IER) + SIMSON(FAS, zu1,uu2,xu4,nus,
0.1,ER?R, IER) + SIMSON(FASI,NUl,NU2,PI-NU4,
Pl-vxs .1,ERR, IER) + STMSON(FA7,XUl,NU2,NUS,
HU6,0.1,ERR.IER) + SIMSON(FAT7I,U1l,NU2,PI-NUS,

. PI-NU6,0.1,ERR, IER)

RN ZMNT = ZMNI * (-LAWD\)

+ F1*DCADRE(FSIA3,NU2,NU3,0.0,1.E-1,ERR, IER)

- TAU*C*C*DCADnF(FSIB3,n :,st,o.o,L.s—l,snR,IER)
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APPENDIX D. MATRIX CALCULATOR AND LINEAR ALGLBRA TOUATION SOLVER PAGE D~ 5

ELSE

IFLAG = 0

ZHNR = (SIMSOMN(FAL,MNU2 ,nU3 XUS, M6, 0.01,
ERR,IER) + SIMSON(FA3,KU2,NU3,

NU4,NUS,0.01,CRR, IER) + s DisOr '(FA7,
n01,xuz,uv5,nu5,o.01,ERR,
IER) + SIMSON(FAS,NUL,KU2,NU4,KUS
,0.01,ERR, IER) + STIMSON (FAII Nuz,NU3,
PI-NUS,PI-}U6,0.01,ERR, IER) +
SIMEON(FA3L, NU'2, KU3, PI~NU4 , P~
KUS,0.01,ERR, IZR) + STISON(FA?L,NUL,
NU2,PI-NUS, PI-}NU6,0.01,ERR,
IER) + SIMSON(FASI,NUL.NU2,PI-
NU4,PI-NUS,0.01,ERR, IER)) * LA'IDA
IFLAG = 1
ZMNT = (SIMSON(FAL,NU2,NU3,NUS,NU6,0.01,
ERR,IER) + SIMSOX(FA3,NU2,NU3,NU4
,NUS,0.01,ERR, IER) + STMSON(FAT,KUI
U2, NUS, 1106, 0. 01, ERR, IER) +
SIISON(FAS, UL, NU2, HU4, 105, 0.01,

" ERR, ICR) + 51~50\(FA11,“L2,AU3
PI-N 'S, PT=}U6,0.01,ER, IER) +
STSON(FA3L, NU2,¥U3, PL-NU4,PI=-
XUS,0.01,FRR, IER) + SINSON(FATI,NUL,
NU2,PI-NU3, PI-XU6, 0.01,CRR,

IER) + SIMSON(FASI,NUL,NU2,PI-NU4
,PI=NU5,0.01,ERR, ICR)) * (-LAMDA)
END IF
RETURN
EX

@ P OOONON D WN -

- 2y
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REAL FUNCTION DEL(V,VP)
COMIOY/ELLIPS /1L, C, TAU, K

CALCULATES THE DISTAMNCE BETWEEN TWO POINTS OF COKSTANT MU
ON THE ELLIPTIC S!ELL

oaoa0

REAL MU,K
DEL = SORT((COSH(MU)**2)*( (COS(V)=COS(VP))**2) +
1 (SIMH(MU)**2)*( (SIN(V)=SIN(VP))**2))

RETURN

END
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APPENDIX D.

REAL FUNCTION FKERNL(V,VP)

THIS FUNCTION DETERMIIES WHICH (REAL OR IMACINARY) SECTIONS IS
BCING CALCULATED BY THE DEFINITION OF IFLAG SET BY THE CALLING

PROGRAM. SEL APPENDIX C.

COMMON/CELLS/NUS, NU6, NU1, NU2, NU3, U4, M, ¥, NOSEG, NUSEG
CoMMON/ELLIPS /MU, C, TAU, K

COMMON/CONST/ IFLAG, FC, FCONS1,F1,P1,LAMDA
COMOK/SINGLE /AZERO, AONE

REAL X,MU,NUSEC(0:32),NUl,NU2,NU3,NU4,HUS,NU6

ARG = X * C * DEL(V,VP)
IF (IFLAG.EC.0) TUEN
FKERNL = (-1.0) * BESJO(ARG) * FKERL1(V,VP) * (C**2)
ELSE
IF (ARG.LT.1.0E-03) THEN
SEEN. = AZERC - (AONE * 5.0E-04)
SZETVWO = AONC/2.0¢-03
FYEZANL = =(SCEQ + SEETUO*(ANG**2)) * FYERLI{V,VP) * (C**2)
ELSE
FYIRNL = -YNU(ARG,0) * FRERL1(V,VP) * (C**2)
IND IF

RETURN
EN

REAL FUNCTION FKERL1(V,VP)

COMMON/ELLIPS/MU,C, TAU, K
COM*OMN/CONST/1FLAG, FC, FCONS1,F1,PI,LAMDA
REAL X,MU

FUNCTION CALCULATES THOSE EXPRESSIONS ASSOCIATED VITHL THE ZERO
ORNDER. HNANKEL FUNCTIONS.

FYERL1=(TAU**2)*( COSH(MU)**2=COS(V)**2)*(COSII(MU)**2=COS(VP)**2)

RETURN
END

MATRIX CALCULATOR AND LINEAR ALGEBRA EQUATION SOLVER PAGE D- 6




P - - -
e ST e . - O I -
v PRSI I LR T R . - o0 IS . - S~ .
. -t ' PRI e A et T e e e . . RS SN ..

.. ) v ) (.} Lad Bl S D % e O 2o FPary Pl 2 LN ek e oa b ‘ala ‘_A '_1. S e PRIy e 2. H‘- ..u L WG INLE. YN O S N, &

[N eNeNe]

[ N &)

(s N e}

(]

ST ST e s St S ek
R e P T S

CA i)

APPENDIY. D. MATRIX CALCULATOR AND LINEAR ALGERRA ECUATION SOLVER PAGE D~ 7

" REAL FUNCTION BASEL(V,K,VIINUS,WM)

CALCULATES THE BASIS FUNCTION FON THE VSUBMMINUSONE TO THE
VSUR!M TERM.

coMMON/ELLIPS /MU, C
REAL K, MU

DIFVWM = DEL(V,VMINUS)
DIFVMV = DEL(VM,VMINUS)
BASE1l = SIN(IZ*C*DIFVYW) / SIN(K*C*DIFWIV)

RETURN
EN

RTAL FUKCTION BASR2(V,¥,VPLUS,W)

FUNCTION FOR THE TALLING PORTION OF THE SINOSIBAL PORTION
OF TIHL BASIS CLMVE = IUTEGRATE FROM VSUBM TO VSUIMPLUSONE.

COMMCHN/ELLIPS /MU, C, TAU
TTAL ¥, MU

DIFVVP = DCL{VPLUS,V)
DIFVPV = DEL(VPLUS, V)
PASE2 = SIN(K * C * DIFVVP) / SIN(K * C * DIFVPV)

RETURN
END*
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REAL FUNCTION FA3(VP)

COUMOI/CELLS /HUS, U6, UL, KU2, NU3, U4 , M, X, NOSEG, NUSEG
COMMON/ELLIPS/MU, C, TAU, K

COMMON/VARY/V

RTAL K,fU,NUSEC(O0:32),%U1, U2, NU3, U4, US, NU6

FA3 = BASEI(VP,K,NU4,NUS) * RASE2(V,K,NU3,
NU2) * FFERKL(V,VP)

RETURN
END

REAL FUNCTION ROUSCE(V)

CO'MON/ELLIPS /MU, C, TAU,K
CoM O/ SOURCL/ CS, K0T, VS
REAL ¥, MU, COT

RONGCE = SORT((COSH(MUY**2) * ((C * COS(V) =~ CS * COSD(VS))**2)
+ (SIRH(UI*%2) * ((C * SIN(V) = CS * SIND(VS))**2))

RETURN

END

SUBROUTINE VOLTS (VMM)
COMION/CELLS/NUS, NU6, KU1, NU2, NU3, U4, ', N, NOSEC, SUSEC
COMMON/CONST/IFLAG, FC, FCONS1,F1,PI,LAMDA

REAL KNOT,NUSEC(0:32),NUL,NU2,NU3,NU4,1US,NU6
COUPLEX VMN(O:32)

EXTERNAL FS4,FSS

IFLAC = 0
VMKR = DCADRE(FS4,NU1,NU2,0.0,1.0E-3,ERR, IER
) +DCADRE(FSS,NU2,NU3,0.0,1.0E-3,ERR, IER)
IFLAG = 1
VMMI = DCADRE(FSS,NU2,1U3,0.0,1.0E-3,ERR, IER
y+DCADRE(FS4, UL, NU2,0.0,1.0E-3, ERR, IER)
VMM(!) = CMPLX(VNR,VMNI)
RMAC = SORT(VMNR*#2 + VMNI*#2)
PHASE = ATAN(VMNI/VMNR) * (180,0/PI)

WRITE(6,10) M, VR, WVMNI,RHMAC, PHASE

Reproduced |
best lvu:il.obhmc";lD
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b L APPENDIY. D. MATRIX CALCULATOR AND LINEAR ALCEBEA LOUATION SOLVER PACET D= 9
SIS :

i

i RETURN

. EN

REAL FUNCTION- FA7(VP)

; COMIION/CELLS /KUS, U6, UL, U2, U3, NU4, w,.\,r\osrc XUSEG
. COMMON/ELLIPS/3MU,C, TAU, K
’ . COMIION/VARY/V
REAL E,MU,NUSCC(O0:32),5U1,NU2,N03, U4, NUS, U6

: FA7 = BASEL(V,K,NU1,NU2)

N 1 * BASE2(VP,K,NU6,NUS) * FIERNL(V,VP)

N c

RS RCTURN

ERD

- REAL FUNCTION FS2(V)

A ”

¥ CosMOL/ELLIPS/ MU, C, TAU, ¥

- COMMON/SOURCE/CS, KNOT, VS
COMMOM/CONST/IFLAG, FC,FCONS1, F1, PI,LANCA

A REAL K,KNOT,'MU

- c

. IF (IFLAG.EQ.0) THEN

& FS2 = FCONSL * (C**2) * TAU * BESJO(KNOT#*ROUSCE(V))

2 1 *  (COSH(MU)**2 = COS(V)**2)

~ ELSE

. FS2 = FCONS1 * YNU((KNOT*ROUSCE(V)),0) * (C**2) * TAU

- 1 * (COSH(MU)**2 = COS(V)**2)

: END IF

-. c

N RETURY

; END

¥

-
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¥
ST A
R
i REAL FUNCTION FS4(V)
o c
COHMON/CLLLS/NUS, NU6, NUL, NU2, NU3, NU4, M, X, NOSEG, 1'USEC
. COMMON/SOURCE/CS, KIOT ‘
REAL KNOT,NUSEG(0:32),NU1,NU2,NU3,NU4,2US,KU6
c
FS4 = BASE2(V,KNOT,NU3,NU2) * FS2(V)
ﬁ‘- c
¥ RETURK
ol END
‘ J
o
% REAL FUNCTION FS5(V)
(- c
. COMMOK/CELLS /NUS, NUG, KU1, U2, 1:U3, HU4, 1, X, N0SZC, NUSEG
COM:ON/SOURCE/CS, KMOT
» RNAL KNOT,NUSES (0:32) ,NUL, NU2, NU3, NU4, NNUS, U6
o " c
o FS5 = BASE1(V,KiOT,NUL,NU2) * FS2(V)
o o
w RETURN
£ED
\ ’
REAL FUMCTION FAL(VP)
.: C
- COMNMON/CELLS/:1US, NU6, kUL, MU2, NU3, NU4 M, N, NOSEG, NUSC
" COMMOL/ELLIPS/:U,C, TAU, K
N COMMON/VARY /V
¥ REAL ¥,MU,NUSEG(0:32),NU1,NU2,NU3, N4, NUS,NU6
¢
. FAl = FKERINL(V,VP) * BASE2(V,E,NU3,NU2)
s 1 * BASE2(VP,K,NU6,NUS)
:. c
= RETURM
7 END
- |
: ;
[ _— :
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,‘
o REAL FUNCTION FAS(VP)

c

.
b COMION/CELLS /US, kU6, NUL, U2, KU3, NU4, M, N, MOSEG, NUSEG

. COMMON/ELLIPS/MU,C, TAU,K

¥ COMMON/VARY/V

REAL K,MU,EUSEG(0:32),%U1,NU2,KU3,KU4,NUS, U6

: c
A

o FAS = BASE1(V,K,NU1,NU2) * FKERML(V,VP)

1 * BASE1(VP,K,NU4,NUS) '

- C

RETURN
A END
P
N
N REAL FUNCTION SIMSON(FUNSON,A,B,C,D,E,ERROR,IER)

L ] r:

‘. EXTEINAL FUNSON

: COMMON/VARY/V1

- RFAL ®,INT,FUNSO

o c ‘
a @ c TIIS FUNCTIOM IS BASED ON ROUTINE CIVE! I¥: |
> -C |
" c 'APPLIED NUMERICAL METi!ODS FOR DIGITAL COUPUTATION
L c UITH FORTRAM AND CSMP','SECOND EDITION', BY M. L. JA'CS,
c G.M. SMITH, AND J.C. WOLFORD, FEW YORK: THOAS Y. CROWELL.
o PAGES 322,331,(1977).

c

':‘- H.(B.A)llo.

< StM=0,0

o " V1sA+d

o DO 101 = 2,10

o IF (MOD(I,2)) 20,20,30
- 20 CONTINUE

S {=SUA+4 . *DCADRE( FUNSON,C,D,0.0,1.E~1,ERROR, IER)

o GO TO 10

b\ 30 CONTINUE )

o SN = SUM+2.*DCADRE(FUNSON,C,D,0.0,1.FE=1,ERROR, IFR)

. 10Vl =Vl +H

x vVl = A

INT = (11/3.0)*(DCADRE(FUNSON,C,D,0.0,1.E-1,E2ROP, IER)

- 1+ su)

& VI =B

N " INT = INT + (11/3.0) * DCADRE(FUNSOM,C,D,0.0,1.E=1,CRROR, IER)
0 DELT = DEL(A,B)

DELT2 = DEL(C,D)

', c

2 "-‘ SIMSON = INT

v, RETURN

-
5
-
A
H
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EN

REAL FUNCTION FALI(VP)

COMMOL/CELLS /NUS, XU6, UL, KU2, U3, NU4 I, N, NOSEG, KUSEG
COMMON/ELLIPS/MU,C, TAU, K

COMMOK/VARY /V

REAL ¥, MU,NUSEG(0:32),MNU1,KU2,KU3,KU4, NUS, U6

FAll = FKERNL(V,VP) * BASE2(V,F,NU3,NU2)
1 * BASEI(VP,¥,NU6,HUS)

(2]

RETURN
_END

REAL FUNCTION FA3I(VP)

COMMON/CELLS/2US, NU6, kUL, NU2, U3, MU, !, K, KOSEC, KUSEC
corror/ELLIPS/MU, C, TAU,K

COMPION/VARY /V

REAL K,:U,NUSEC(0:32),NU1,NU2,NU3,NU4,NUS, KU

FA3L = FKERNL(V,VP) * RASE2(V,K,NU3,NU2)
1 * BASE2(VP,K,MNU4,NUS)

RETURN
END

118
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APPENDIX D. IMATRIX CALCULATOR AND LINEAR ALCEBRA FQUATION SOLVCN PAGE D= 13

REAL FUNCTION FASI(VP)

COMON/CELLS /HUS, U6, EUL, NU2, KU, KU, 1, 1, HOSEG, LUS EG
COMMOI/ELLIPS /MU, C, TAU, K

CO:{MON/VARY /Y .
REAL X, MU, r'usnc(0:32)..m1 MU2,NU3, NU4,NUS,NU6

FAST = FKERNL(V, VP) # BASEL(V,K,NU1,NU2)
1 * EASE2(VP,E,NU4,NUS)

RETURN
END

RTAL -FUNCTION FA7I(VD)

COMON/CELLS /HUS, U6, NUL, MU2, NU3, NUG M, N, NOSEG, MUSEG
COMMON/ELLIPS /MU, c TAU,K
COMMON/VARY /Y .

O AEAL ¥,MU,NUSEG(03:32),NUL,NU2,NU3,NU6,KUS,NU6

FA7I = FY¥ERNL(V,VP) * BASEl(V,%,NU1,KU2)
1 * BASC1(VP,K,NU6,NUS)

RETURN
END

REAL FUNCTION FSIA1(V)
COMMON/CELLS /NUS, 1iU6, NUL, XU2, XU3, NU4, M, 1T, NOSEG, KUSEG
: COMMON/ELLIPS /MU, C, TAU, K

-} REAL K,MU,NUSEG(O:32),5UL,NU2, U3, NU4,NUS, U6

FSIALl = BASE1(V,%,MU1,MNU2)
1 * BASECL(V,K,NU4,NUS)

RETURN
- END
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REAL FUNCTION FSIBL(V)
COMMON/CELLS /HUS, UG, KUL, NU2, NU3, ITU4, ', 1, NOSEG, NUSEG
COMOK/ELLIPS /MU, C, TAU, X

REAL K,'MU,NUSEG(O: 39),n' NU2, K03, U4, NUS, NU6

FSIRl = FSIAL(V) * (COS(V)**2)

RETURN
N

REAL FUKCTION FSIA2(V)
COMOK/CELLS /EUS, ¥U6, NUL »NUZ, M3, NU4, M, ¥, MOSEG, NUSEG
COMON/ELLIFS/MU.C, TAL, K

REAL K,MU,EUSEC(0:32),MU1,KU2, NU3, UG, NUS, LU

FSIA2 = BASEI(V,K,NU1,XU2)
1 * BASE2(V,K,NU6,US)

N JTmN
END

REAL FUNCTION FSIB2(V)

COt{MON/CELLS /NUS5,NU6, NUL, NU2, U3, U4, M, N, NISEC, ITUSEG
COMMON/ELLIPS/MU,C, TAU,K

REAL MU,K,NUSECG(0: 32) NU1,NU2, MU, NU4, NUS, NU6

FSIB2 = FSIA2(V) * (COS(V)**2)

RETURN
END

120
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APPENDIX D. MATRIX CALCULATOR AND LINEAR ALCEBRA EQUATION SOLVED PACE D= 15

P CRLICIS = DDA

i o
i REAL FUNCTION FSIAJ(V)
> c i
) COMMON/CELLS /US, ¥U6, UL, KU2, NU3, KiU4, 2, 1, KOSEG, NUSEG
= COMOL/ELLIPS /MU, C, TAL,K
o REAL MU,K,NUSEG(0:32),RU1,XU2,KU3,NG4, KUS, KU6
i c
e FSIA3 = 3BASE2(V,X,NU3,NU2)
o 1 * BASEl(V,K,KU4,NUS)
e, c
i RETURN
N EN
2
(S
»??‘:.-
T REAL FUNCTION FSIB3(V)
c
COMMO/CELLS /HUS, KU6, KUL, NU2 , NU3, NU4, 1, N, KOSEG, 1iUSEG
COMUON/ELLIPS/MU,C, TAU, K
REAL MU,K,NUSEG(0:32),5C1,NU2, U3, MNU4,NUS, NU6
.- FSIR3 = FSIA3(V) * COS(V)#*2
. RETURN
CND

REAL FUNCTION FSIA4(V)

c
COMMON/CELLS/NUS, NU6, NUL1, NU2,NU3, NU4, M, N, NOSEG, IUS TG
COM1ON/ELLIPS /21U, C, TAU,K
REAL MU,K,NUSEC(0:32),8U1,NU2,NU3,NU4,NUS, NU6

o

FSIA4 = BASE2(V,K,HU3,NU2)
1 * BASE2(V,K,NU6,NUS)

RETURN
END

)
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" - REAL FUNCTION FSIP4(V)

COMMON/CELLS /NUS, NUA, NUL,NU2  KU3,NU4, M, 1, HOSEG, NUSEG
COMON/ELLIPS /MU, C, TAU, K
REAL MU,K,RUSEG(0:32),NU1,NU2,KU3,NU4,NUS,HUA

(@]

FSIB4 = FSIAG(V) * COS(V)**2

RETURN
END
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REAL FUNCTIOU Y}(ARG)

r C .
. c .
c SURROUTINC FROM 'SYSTE'/360 SCIENTIFIC SUBROUTINE PACKAGE
s C (360A=CH-03Y) VERSION LI, PROCRAM'ERS MANUAL', 1120-0205-2,
et c INTERNATIONAL BUSINESS ‘MACHINES(IBM) CORPORATION, WHITL
L c PLAINS, !TW YORN. PAGES 157 & 158, 1957.
“k c SEE ALSO PAGE 275 FOR ACCURACY INFORMATIO!N.
o C
COMMON/CONST/IFLAG, FC, FCOIS1,F1,PI
IF (ARG.CE.4.) TIHEN
Tl = 4.0 / ARG
T2 = 16.0 / ARG*#2
Pl = ((((4.2414E-0A*T2-2,00920E=05)*T2+5.80759E-05)*T2
1 - 2.232030E-04)#*T2+2.9218256E-03)*T2+0.3030422819
01 = ((((=3.5594E=0A*T2+1,62200E-05)*T2-3.99708%-05)*T2
1 1.064741E~04)*T2-6 . 390400E=04 ) *T2+3 , 740083 6E-02
C NOTE: ERRORS WERE KOTED IN THE IRM WRITE UP OM PAGE 58. CODE
c USED 1S CORRECT. SEZ HITCLCOCK, A. J. M. “POLYNOMIAL APPROX-
c IMATIONS TO 3ESSEL FUNCTIONS OF ORDER ZERO AND ONE AlD TO
C RILATED FUNCTIONS®. T"MATEMATICAL TAELES AND OTHSR AIDS TO
c COMPUTATION', 'VOLIME 11°(58), PAGES 86-88, APRIL, 1957.
c .
AA=2 .0/SORT(ARC)
BB=AA*T1
D = ARG - P1/4.0
Y1=-AA*P1*COS(D)+RE*QL*SIN(D)
ELSE
XX*ARG/2.0
X2=XX#*YX
T =ALOG(XX)+0.577215A649015
c
c EULER'S CONSTANT FROM 'HANDBOOK OF TABLES FOR MATHENATICS',
c *THIRD EDITION', PAGE 5, 1967.
c

st = 0.0

APPENDIX D. MATRIX CALCULATOR AND LINEAR ALGERPA EQUATION SOLVER PAGE D= 17

TE®! = XX *# (T = 0.5)
YONE = TERM
DO 80 L = 2,16
SUM = SUM + 1.0 / FLOAT(L~1)
FL = FLOAT(L)
FL1 = FL - 1.00
"TS = T -~ SUM
TERM = (TERM*(=X2)/(FL1*FL))*((TS~0.5/FL)/(TS+0.5/FL1))
YONT = YONE + TERM
80 CONTINUE
PI2 = 2.0 / P1
Y1 = (-PI2/ARG) + PI2 * YOME
END IF
RETURN

END 123
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b Edward Arthur Urbanik was born on 31 July 1955 in
Burbank, California. He graduated from Henderson Senior
High, West Chester, Pennsylvania in May 1973. He attended
The Pennsylvania State University in the School of Engineer-

+ ing from which he earned a Bachelor of Science in Electrical

:: Engineering on 25 May 1977. Captain Urbanik received a

USAF commission on the same date through the ROTC program.

s He was subsequently assigned to the Air Force Electronic
Warfare Center (AFEWC), Kelly AFB, TX. He entered the
School of Engineering, Air Force Institute‘of Technology,

m in June 1981.
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