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Preface

The ALR-69 radar warning receiver on the F-16 has

been hampered by the presence of secondary lobes which

cause errors in the direction finding routine. This study

examined this problem in terms of cylindrical wave scatter-

ing from a large dielectric shell. The shell was modeled

as an ellipse since this was a conic shape that was close

to the actual shape of the radome. The intent of this

study was to examine the problem and see if the side lobes

." are caused by scattering.

The solution method was to use a Galerkin applica-

tion of the method of moments. The electric field expan-

sion function was the piecewise sinusoidal basis function.

The integral equation developed was Richmond's Integral

Equation which is valid for any dielectric cylindrical

shell. The shape of the object resulted in the use of

elliptic coordinates which is not one of the standard

orthogonal coordinate systems. The combination of ellip-

tic coordinates and Hankel functions made the integration

nonexistent in closed form. The resultant numerical inte-

gration took a great deal of computational time. This time

problem was further compounded by the presence of a line

singularity involving the Hankel function. Considerable

ii
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discussion is given the subject from both the mathematical

aspect and the programming aspect.

This thesis did not generate any far field plots

of the electric field since the program used to calculate

the reaction matrix elements produced erroneous data. The

exact reason is unknown. The theory employed by this work

is not new, it is only a different application. The simple

fact that it took over 1300 CPU seconds to fill a 33x 33

matrix and a 33 element vector on a machine as fast as the

CDC Cyber 175 indicates an impractability of the method

used.

A special note of thanks to my sponsors, Mr. William

Kent and First Lieutenant Robert Schneider, ASD/ENAMA.

The amount of help given by providing me with an ASD/EN

problem number and account for the cyber is immeasurable..

Thanks are due to my advisor, Captain Thomas W. Johnson,

who was personally excited and motivated by the research.

Finally, a special note of gratitude to Mary Browning,

Linda Stoddart, and Veleta Kendall, AFIT/LDE. These people

found information from the most unusual sources possible,

and were a real help in getting this project anywhere.
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Abstract

This thesis examines the scattering of cylindrical

waves by large dielectric scatterers of elliptic cross

section. The solution method was the method of moments

using a Galerkin approach. Sinusoidal basis and testing

functions were used resulting in a higher convergence rate.

The higher rate of convergence made it possible for the

program to run on the Aeronautical Systems Division's

CYBER computers without any special storage methods.

The program thus developed required very4 rge

run times. This makes the program impractiol for scatter-
ers of size greater than one wavelength. JThis report

includes discussion on moment methods, solution of inte-

gral equations, and the relationship between the electric

field and the source region or self cell singularity.

Since the program produced unacceptable run times, no

results are contained herein. The importance of this work

is the evaluation of the practicality of moment methods

using standard techniques. The long run times for a mid-

sized scatterer demonstrate the impracticality of moment

methods for dielectrics using standard techniques.

x
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SCATi -;NG OF CYLINDRICAL ELECTRIC

FIELD WAVES FROM AN ELLIPTICAL

DIELECTRIC CYLINDRICAL SHELL

I. Introduction

Background

The radar warning receiver (RWR) on the F-16 is

the AN/ALR-69 built by Dalmo Victor Corporation. Its func-

tion is to provide warning to the pilot of enemy radar

activity. It informs the pilot what the threat is, where

it is, and the current threat status (i.e. search, track,

missile launch, etc.). The performance of the ALR-69' s

direction finding (DF) routine is degraded by a side or

secondary lobe (SL) located 300 off the forward position

opposite to the main or desired lobe (1]. This is associ-

ated with the two forward antennas only. Figure la is a

sketch of the desired pattern. Compare this to Figure lb

which is a sketch of the actual pattern. Figure 2 shows

the location of the antennas on the aircraft. The SL

causes the DF routine of the RWR's processor to give

erroneous indications. As the aircraft approaches the

threat emitter, the RWR compares the received relative sig-

nal strength from each of the antennas. The threat is dis-

played on the side of the aircraft that received the

}11
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Left Antenna Left Antenna

Desired Antenna Pattern Actual Antenna Pattern
(a) (b) 11:21

Figure 1. Comparison Between Ideal and Actual
Antenna Patterns

rAIM-9.1MISSILE

Right Forward - 69.163 (TRUE)

Anen 957.87 2.2(RE

190.63 f7:12.05

19.2

---.- ------- ------- -------



stronger signal. However, due to the secondary lobe

several events may occur:

1. Both antennas receive the signal equally well;

put the threat in front of the aircraft.

2. Both antennas receive the signal equally well;

the RWR can't decide where to put the threat and the

result is:

a. Displays the threat location correctly,

b. Displays the threat on the wrong side, or

c. Displays "flip-flops" around to both sides

of the aircraft.

3. One antenna receives the signal better; dis-

plays the threat on that side of the aircraft which may or

may not be the correct side.

Flight tests run by the Tactical Air Warfare Center at

Eglin Air Force Base have verified condition 3 in that the

threat was displayed on the wrong side, the display

"wandered" around on the screen, and then jumped to the

correct side as the aircraft passed by the target [2].

Rationale

This situation must be corrected since it affects

the ability of the F-16 to perform its mission. All

threats identified forward of the aircraft are suspect as

far as their location since it is impossible to tell if

the signal is being picked up by the main or secondary

lobe. The pilot is not able to determine where the threat

3
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is, and he has no idea what maneuver to take when

approached by a threat. With the speed of the F-16 and

the speed of an approaching aircraft or surface-to-air

missile, indecision could result in lost aircraft and

lives. It should be noted that this condition has been

found with other aircraft RWR systems as well. Figure 3

is a sketch of the antenna pattern for the forward RWR

antennas of the B-52 AN/ALR-46 [3]. Figure 4 shows their

position on the aircraft. The ALR-46 uses the same

antennas as the ALR-69.

It is also well to note that the ALR-69 is used

on the A-10 aircraft. In this case there is no side lobe.

Figure 3. ALR-46 Antenna Patterns on B-52 (3]

4



The A-10 has a metallic nose cone. If the mechanism of

the side lobe can be understood, changes could be made to

correct this problem on the F-16, B-52, and on future

weapon systems.

Literature Review

The majority of literature on scattering by

dielectric objects concerns the scattering of plane waves

with either ice crystals and water droplets (meteorological

ALR-46 Antennal

Side View
B-52 Nose Section

Figure 4. ALR-46 Antenna Location
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interference with radar or data links) [6] or biological

tissue (affects of microwaves on humans) [7]. Holt,

Uzunoglu, and Evans were concerned with the meteorological

scattering. They developed an integral equation of the

Fredholm type directly from Maxwell's equation without

reference to the scatterer [6]. The equation developed

was a general second kind integral equation with a singu-

lar kernel. The singularity was removed by the use of a

transform function. The result is a pair of coupled inte-

gral equations that were solved by numerical quadrature,

which produced a numerically stable linear algebra equa-

tion, assuring convergence.

The disadvantage of this procedure is that now

there are two equations to solve. The storage require-

ments and the computational time increase rapidly as the

size of the scatterer becomes large.

Another method discussed was a finite element

method known as the "Unimoment Method" [8; 9]. The uni-

moment method offers the ability to apply the radiation

-K. condition without the use of complicated programming pro-

cedures as required in the past use of finite element

methods. Chang and Mei's procedure also reduces the

storage requirements, when compared to past finite element

programs [ 9: 761] .

K Chang and Mei essentially solved the problem using

the T-matrix procedure. After creating the artificial

boundary outside the scatterer, the interior problem is

6



solved using the finite element method. The field between

the artificial and the actual boundary is approximated by

linear combinations of functions which satisfy the Helm-

holtz wave equation. Chang and Mei used the Fourier

series [8:36]. The exterior fields were expanded in terms

of Hankel functions.

While this procedure does offer advantages by

separating the interior and exterior problems, for large

scatterers a significant algebraic equation still must be

solved. Thus this method will only handle up to moder-

ately sized scatterers without taking considerable time and

storage resources.

The standard method used in the past has been the

method of moments. Richmond [101 used this technique

in solving the problem of scattering from infinitely long

dielectric shells. The integral equation is generated by

examining the polarization current that results when the

scatterer is illuminated by the incident field. The

unknown electric field is expanded in terms of pulse func-

tions.

Since Richmond subdivided the shell into cells

that were approximately square, integration over each cell,

, - .including the self cell, could be accomplished analytically.

The cells were approximated by circles with a radius of

half the length of the cell.

The ability to analytically solve the integration

:- over circular cells forces the shell wall to be thin. If

7
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the wall is thicker, assumptions will have to be made

concerning the electric field in the shell. Using Rich-

mond's procedure, the electric field is assumed to be con-

stant over a cell. For anything very large, this would

'" require large amounts of storage and computational time.

It is possible to solve this scattering problem

in terms of orthogonal functions such as Bessel functions

for circular cylinders or Legendre polynomials for

spherical objects. In the elliptic cylinder, the resultant

functions are Mathieu functions. There is not, however,

a closed form solution to the problem. Dr. Cavour W. H.

Yeh has done .considerable work with scattering and travel-

ling wave problems in connection with elliptic shapes.

In each case. Dr. Yeh presented a solution in terms of

Mathieu functions.

In a study of sound waves scattering from pene-

trable objects, plane waves were incident on to an ellipse

at different aspect angles (111. The resultant patterns

contained side lobes that would move as the angle of inci-

dence changed.

The primary difficulty with this type of approach

is the Mathieu functions. Currently a library does not

exist on the base cyber computer facility for generating

Mathieu functions.

8
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Previous Work

Experimental [1; 2]. General Dynamics, the manu-

facturer of the F-16, attempted to remove the side lobe

through trial and error. They moved the antennas, the

radome, added material to the radome, the airframe, etc.

It was through this work that some important information

was obtained.

1. The SL is due to the presence of the radome.

When the radome was removed, the side lobe disappeared

2. The SL is not due to the metal/dielectric

boundary between the airframe-and the radome. The radome

was moved away from the airframe by a small amount. This

introduced a new boundary layer (metal airframe, air,

radome material) and the lobe became larger [2]:

3. The SL is not being diffracted or scattered

by the dielectric/metal boundary. The RWR antennas were

moved up to the radome, removing the break between the

radome and the airframe. The results did not change [2].

General Dynamics was able to reduce the magnitude of the

SL by adding radar absorbing material (RAM) to the air-

frame. Figure 5 shows the amount of reduction [1:5] and

the location of the RAM.

Theoretical. Schneider [4] modeled the radius of

curvature of the radome. He used a circular cylinder large

enough so that the curvature of the cylinder would come

9



- N.

Present Configuration Recommended Configuration
(a) (b)

0.120" thick RAM
under Radome and
forward of Antenna

Present

Location Recommended Configuration
(c)

Figure 5. GD Proposed Solution [1:6]
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close to the curvature of the F-16 radome (4:5,35,37] (5]1

This model results in a large radius (60 wavelengths)

[4:2,35,37]. Schneider used two methods, a series solution

and a numerical approximation, to solve the boundary value

problem.

In either method, Schneider was unable to repro-

duce the SL. He was hampered by a small computer solving

the large matrix (3700 x 3700 elements) that resulted

from applying point matching with the moment method. There-

fore, he presented results good only for the cylinder with

radii of 0.6 and 6.0 wavelengths [4:31,32; Appendix El.

The series solution for the 60 wavelength scatterer was

calculated, but the validity of the results is question-

able since deep nulls down to zero appear in the plots,

and the normalized maximums never go up to one (4:29,301.

Schneider admits that there is an error in the series

solution where the coefficient of one term is half of the

correct value [3:ii,iii]. This error will effect the 60

wavelength plot and may account for the deep nulls and low

peak values.

Proposed Solution

This paper will present a discussion on the

scattering of cylinderical waves from a large dielectric

'Note that this differs from the model used in
this thesis. In this work, the radome is being modeled
as an elliptic cylinder. Schneider modeled the curvature
of the radome.

11
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scatterer. The scatterer will be an infinitely long,

cylindrical shell with an elliptic cross section (see

Figure 6). This is an improvement over Schneider's model

in that: (1) the ellipse represents a closer approximation

to the F-16 radome, and (2) the ellipse has a much higher

0^ a - semi-major axis
P . b"- semi-minor axis

c - focal length

o" Cr' o £o

Figure 6. Scatterer

rate of curvature toward the tip of the surface. The

i'[ increased curvature around the tip of the ellipse will

e orp

cause the scattered wave to be "thrown" in a particular

direction. This hypothesis was suggested by the work done

by Chang and Mei (8:41] and by Poggio and Miller [12:210].

12
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S..To solve the integral equation, the method of moments will

be used. Harrington f13], and Stutzman and Thiele [14:306-

372], provide discussion for application of the procedure.

Assumptions

In doing this work it was assumed that the radome

could be modeled apart from the metal airframe. This
assumption was suggested by the General Dynamics study (11.

It was assumed that the thickness of the dielectric shell

is thin when compared to wavelength. This will simplify

the numerical analysis and is consistent with Schneider's

work [4:281.

Scope

This study is a theoretical study which is almost

entirely removed from the actual problem except for the

dimensional data and the basis for the models. The problem

will be limited to the two-dimensional case only. This

will not affect the results since the actual antennas are

coplanar. There will be no attempt made to solve the lobe

problem. The goal is to obtain polar plots of the total

electric field to see if the side lobe is caused by

scattering. The real need is to understand what is taking

place as the electromagnetic fields cross the boundary of

free space and the dielectric shell.

13



II. Development of a One-dimensional Fredholm

Integral Equation of the Second Kind

Solving the problem using moment methods requires

the derivation of an integral equation. The equation used

herein was developed by Richmond [10:335-3361, extended to

elliptic cylinder coordinates. Considerable difficulty

was encountered with the reduction from an area integral

to a line integral. This was further compounded by the

singularity of the kernel. This discussion will include a

description of the model, the Richmond integral equation

(IE) in elliptic coordinates, the handling of the singu-

larity, and the reduction of the IE to a line integral.

Appendix A provides further insight into the coordinate

system.

Model

Figure 6 is a diagram of the elliptic scatterer.

The shell of the ellipse is 0.05 wavelengths thick. This

value was chosen to insure applicability of the thin shell
approximation and to be consistent with Schneider's work

[4:28]. In elliptic coordinates the thickness must be

defined as a dimensionless quantity to be consistent with

the elliptical coordinate 1. Let the thickness of the

shell be defined as T. If v defined the mid-radii, then

the outer wall of the cylinder is o + T/2 and the inner

14



is -O -r/2. From Appendix. A, when v = 900, b = c sinh i.

This means that for the inner and outer walls,

b - T/2 = c sinh (N° - T/2) (2.1a)
0

b + T/2 = c sinh (NO + T/2) (2.1b)
0

Solving for the arguments of the hyperbolic sines and sub-

tracting (a) from (b), the result is

sinh -1 b + T/2 sinh-llb -T/2

Expanding the arguments of (2.2) in a Taylor series about

T and taking the small argument approximation of the

inverse hyperbolic sine,

T/c (2.3)
• 1 + (b/c)

2

or

~ T/a

since c2 = a 2 - b2 and a, b, and c are large when compared

to T, T, and X. This development was due to Johnson (151.

When making reference to a dimension (i.e., a or b),

it will be done with reference to an ellipse drawn through

the center of the shell. It is assumed that the thickness

is constant for all 3600 and that the focal length is the

same for the inner, middle and outer radii. The error

15



introduced by this assumption is small since the shell

is thin.

To insure a two-dimensional case, the shell and

current sources are infinitely long in both the +/-z direc-

tions. The relative permeability is constant for all

positions in the shell. The value for F is four. This.. r

will not be altered in the insuing programming. The

dielectric is perfect and no losses will be accounted for.

The line source is infinitesimally thin and has no losses.

Richmond Integral Equation

The equation developed by Richmond is applicable

since the scatterer is a dielectric cylindrical shell.

The equation, used by Schneider for moderately sized

scatterers [4:14,20], is

Ei(x,y) = E(x,y) + -2 (el)E(xY) o ((kp)dxdy 2.4)

* [10:336]

where

E (x,y) =E' + E

--- k 2I1 (2
ixy 0 H ()(kp) Ij (16:2241

The superscript i and s signify the incident and scattered

field, respectively. The primed terms are the source

terms on the shell. Due to the shape of the scatterer,

the use of the more widely understood polar cylindrical

16
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coordinate system could not be used. It was too cumber-

some to describe the angle-dependent radii that is present

in an ellipse. Therefore, the Richmond IE was converted

to the elliptical cylindrical coordinate system.

Elliptic Coordinates. The elliptic cylindrical

coordinate system describes one of two conic sections,

depending on which of the two coplanar parameters is held

constant. As Figure 7 indicates, if the angular coordin-

ate, v, is constant, the surface is a hyperbolic cylinder.

If p is constant, an elliptic cylinder results. The angle

v describes the angle of the asymptote of the hyperbola

that intersects the point in question. It can easily be

shown that the relation between the polar and elliptical

angles is

0 =tan- 1 [(b/a) tan vA (2.5)

The range of v is from 0 to 3600 and the range of

*is from 0 to -. The definition of p,

P = tanhI (b/a) = cosh - I (a/c) = sinh- (b/c) (2.6)

blows up when the ratio of a to b is one (or c is 0). See

Appendix A for a more detailed description of the coordin-

ate system.

17



3 V2

4/
=V/

1.3vl

0 < <2r

0~ < v < 2w

Figure 7. Elliptic Coordinate System
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The differential area functions for elliptic coordinates

are

';-:2::' cosh 2  cos 'Vi

dA c (2.7):".sinh 2 U + sin 2 v

Both of these expressions are equivalent. Using (2.7) with

(2.4), the Richmond IE in elliptic coordinates becomes

c4 0

(coo 2 1 v') di 'dv' (2.8)

Note that the c2 term from the differential area function

has been pulled out of the integral as well as the er -1

term.

The Singular Kernel

Since the unknown electric field is both part of

the kernel and the separate function, the equation is a

Fredholm Integral Equation of the second kind (FIE II).

The equation accounts for the interaction between the line

source and a point on the shell, and it accounts for the

interaction between that point and the rest of the points

on the shell. There are essentially two coordinate systems

within the framework of the problem. Figure 8a shows the

coordinate system for which the line source is considered

the source point and the shell is considered the observa-

tion point. In Figure 8b the point indicated in Figure 8a

19
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Line Source Shell Interaction
(a) (b)

Figure 8. Coordinate Systems

is now the source point and the observation point is any

point on the shell including the source point itself. As

the electric field from the line sources contacts the

scatterer, a polarization current is induced. This current

reradiates the incident field as the scattered field

which in turn reacts with the other points on the ellipse.

Each point on the scatterer is affected by two electric

fields; the incident field from the line sources and the

scattered field from the rest of the shell.

The problem in the mathematical analysis of (2.8)

is the consideration of the interaction between a point on

the shell with itself. This point on the shell, known as

the source region or the self cell, causes the Hankel

function of (2.8) to blow up as kp goes to zero. The source

region interaction with itself must be considered for

20
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this may make a non-neglectable. contribution to the total

S"field.

The contribution of the self cell is done by the

determination of a correction term. This correction term

accounts for the electric field generated at the source

region. Chen discussed the source region in terms of the

tensor Green's function (17:1201-1204]. In a volume the

electric field is determined at an arbitrary point outside

the source region by

E(r1) = G(r r) * Jrdv (2.9)

v,

where

G(rl'r) = j4 [I + k°2 *(rl,r)

-k

Orl,r)=- e o r

G is the tensor Green's function,

I is the unit dyadic, and

o is the free space scalar Green's function.
Accounting for the source region (2.9) becomes

E(ro ) =PV ro,r) J(r)dv + E (ro ) (2.10)
oz c

V

where the "PV" denotes the principal value (PV) integral

and Ec (r) is the correction term for the source region.

21
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0

b

Figure 9. Contour Integration About B

Principal Value Integral. Before discussing the

determination of the electric field correction term, it

would be prudent to define the principal value (or the

Cauchy principal value) integral. The principal value

(PV) integral of f(x) over [a,c] when f(x) is singular at

x = b is defined as

rc lm rb-r Cc
PVfaf(X& = r .o[Ja  f(x)dx + f(x)dx] (2.11)

provided the limit exists (18:195]. Essentially, the PV

integral is an integral taken across the interval excluding

the point of singularity. At that point a contour (or area

or sphere) is taken around the singularity. The radius of

that contour, r, is then allowed to approach zero (see

Figure 9). The correction term is the field from across

the excluded contour. The two-dimensional case involves

a. circular area and the three-dimensional case a spherical

volume around the point.

22
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The requirement that the limit exist is met in

the case of the Hankel function. According to A. N.

Tychonov, the improper integral

ffftdv (2.12a)
ffr

does converge as long as = <3 [19:294]. In the two-

dimensional case, the integral converges for a < 2. The

Hankel function is singular as in Ir . However, 1/r is

more singular than in Ir. Therefore, the area integral

- of the Hankel function exists.

Determination of the Correction Term. The value

of Ec (ro) is a function of the shape of the volume excluded

in the integral evaluation. In calculating Ec, Chen deter-

mined the surface charge density using conservation of

charge. The electric field can then be determined by the

gradient of the potential due to the surface charge.

.Ec(ro) =- (2.12b)
-. co..

Yaghjian presented a complete discussion of the

determination of the Green's function in NBS Technical Note

1000, A Direct Approach to the Derivation of Electric

Dyadic Green's Functions [20]. This approach does not

utilize delta-function techniques, but determined a general-

ized electric dyadic Green's function which is valid in

the source region. Yaghjian provided a table of the

23
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correction terms for various principal value geometries.

He determined the correction factor in terms of

"= J~ R2 ds' [20:56] (2.13a)

(See Figure 10.)

In the two-dimensional case the correction term becomes

i..f ' 1_dc' [20:591 (2.13b)

(See Figure 11.)

There the electric field is now determined by equation

(2.14).

E(r) = lim fJv, + - (20:12] (2.14)V -*V0 - 3WCo

Or, in the two-dimensional case

E(r = Ju li G • J dAl + [20:40] (2.15)
AA-o

A C - 0

In (2.14) and (2.15), the Vj-V, and Aj-A. represent the

integral excluding the source region, i.e. the principal

value integral.

Tables 1 and 2 present correction terms for vari-

ous principal geometries. The reader is encouraged to

read NBS Technical Note 1000 for further insight into this

problem.
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Table 1. Tabulation of Source Dyadic L, and Correspondence
to Previous Authors [20:60]

PRINCIPLE VOLUME P

(F AT CENTER) AUTHOR(S)

SPHERE

:'.T. TWILCOX (1957)

(z . -(1-cos IC X (z

: + Cos o 0 1

CIRCULAR OR SUIE
e. .(ENCILC

zez
•, COSoIt

ab t

e.. RECTANGULAR izBox Qxexex + Qyeyey + azez z  (Qx + Qy + Qz -4ir)

e - -y S1x y,- AND 0z ARE TWICE THE SOLID ANGLE

SUBTENDED BY A SIDE ..LTO THE x, y, and z,

x DIRECTION RESPECTIVELY.

e;,..CUBE CUERECTANGULAR CAVITY

I RAHMAT-SAMI I (1975)

PILL BOX RECTANGULAR WAVEGUIDE
z  eAND CAVITY

TAI (1973, 1976)
WAVEGUIDE ONLY

COLLIN (1973)

h4 wO RAHMAT-SAMII (1975)

27
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Table 2. Tabulation of 2-D Source Dyadic Z (20:61]

PRINCIPAL AREA
(T AT CENTER)

CIRCLE

0 It

(RECTANGLE 1

xx (e~ + e =2r)

SLIT

SQUARE AND
EQUILATERAL TRIANGLEWA t

28
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In the two-dimensional case, if the electric field

is aligned with the vector of infinite length (i.e. the z

axis in this case), then the electric field is determined

by

-E(z) (r) =J-z--- Jz 1 I dA' [21:261] (2.16)
A-A

and the correction term is zero. This is easily seen via

Chen's approach since the surface current distribution is

zero in this configuration since the normal is orthogonal

to J. For example, for the finite cylinder, the current

distribution is only across the top and bottom caps of the

cylinder [17:1203]. In the two-dimensional case, the top

and bottom of the cylinder are at +/- , and make no con-

tribution to the field. Looking at the integral that

Richmond evaluated in closed form for the self cell

[10:3361; for the case where n = m, Richmond determined

that the self cell integral of the Hanlel function was

l H0
(2 ) (ka) adp'd4' = j/2(wkaH2 (ka) - 2j) (2.17)

icelin

Richmond had approximated the square cells with

circular cells of radius a. If a is allowed, to go to zero,

then the value of the integral goes to zero. This was

verified with Bessel tables and a hand calculator. In

Richmond's formulation, there was no PV integral;

29
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therefore, a has a finite value and the source region

- (m = n cell) had to be calculated.

It would be well to note that not all of the

literature agree in the calculation of the correction

term. J. J. H. Wang compiled a list of discrepancies

[30:3-1]. Table 3 and Figure 12 list his results. Since

there is no correction term involved in the two-dimensional

case, this does not impact in this work.

Reduction of the Double

.. Integral to One

According to what has just been discussed, the

*principal value integral can be taken over the shell with-

out any major difficulty. It would simplify the solving

of the integral equation if it could be reduced.to a single

integral.

The integral in (2.8) is repeated in expression

(2.18).

Xpf2" f (+)/2 H( (kp)
o po-'T/220

(cosh 2 - cos 2 v') dp'dv' (2.18)

where

F 2

P = distance function between two points in
elliptic coordinates
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a

b

GOa tana

pill box

(d)

Figure 12. Various Shapes of A~V for the Calculation of

Principal-Volume Integration (30 :11]
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c[(cosh cos v- cosh j'cos v

+ (sinh V sin v - sinh V' sin 1 2

Note that the constant "c" is the focal length of the

ellipse, not the speed of light. The "c" was chosen since

this is standard notation for the focal length.

Since the thickness of the shell wall is small

(0.05 wavelengths) it was assumed that the electric field

was constant through the shell thickness. This assumption

is backed up by the work done by Lee, Sheshadri, Jamnejad,

and Mittra (22]. They showed that through dielectric

shells, with a thickness of 0.5 wavelengths, that the

electric field, pattern, was only slightly altered from the

no dielectric case (see Figure 13) [22:317]. Therefore

with T being X/20, the effect of the shell on the field

would be minimal. The electric field could then be pulled

out of the first integral.

Figure 14 is a diagram of the integral around the

self cell. The source region has an area ASR, which goes

to zero as V.i and v6 go to zero. Since the integral

exists, the limits about v and p may be taken indepen-

dently of each other. If v8 goes to zero first, the areas

indicated by a "1" become very small and their total con-

*tribution may be neglected. Therefore, the singularity

becomes a line singularity and the principal value is

taken over v only.
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Since the electric field is assumed to be constant

across the thickness of the shell, the V coordinate is a

constant and may be integrated directly. This procedure

is the same used by Stutzman and Thiele in the derivation

of Pocklington's integral equation for wire scatterers

[14:307-310]. Therefore, the resultant integrand is

F PV Ez(ov') Ho(kcpo) csh - v'l d' (2.19)

The Richmond integral equation reduced to one variable is:

( !,v) = E(i,v) + XF 'rPv E(ov')

Ho12 1 (XCP0 ) (cosh2 o -1co v') dv' (12.20)

I, where (from 2.4)

-2 1S(jv) =-k H (2)
(P")0 Zk)-

0

X j3k2c2/4

_(~hiivsinhtlosinv )2

In doing this integration, it was assumed that the

focal length, c, is constant for the entire shell. This

is justified by the thin shell approximation. Therefore,

c may be pulled out of p0.
3
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III. Solution of the Richmond Integral Equation

Sthe Method of Moments

Method of Moments

General discussion on moment methods and applica-

tion to wire antenna problems may be found in any of the

newer antenna texts. Stutzman and Thiele (14:Chapter 71

provide an excellent tutorial for the new student. Unfor-

tunately, discussion on the use of moment methods for non-

metallic scatterers is severely limited. Mittra's book,

Computer Techniques for Electromagnetics, has a discus-

sion of such problems in a very general sense [281.

Harrington [131 discusses the dielectric problem; however,

the discussion is based exclusively on Richmond's results

[101

Moment Methods are a general procedure converting

problems posed as integral equations into linear equations,

which then can be solved numerically. The method of

moments is a projection method in which the unknown is

*approximated or projected. The approximated equation is

then solved exactly (23:3]. Consider the relation

L(f) = g (3.1)

where L is a linear operator operating on f, and g is a

known result. The unknown to be determined is f. Expand

36
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f by a series of functions in the domain of L such that

N
f =E f (3.2)nn

These functions are known as basis or expansion functions.

Letting L operate on f, (3.1) becomes

N
Z£ L(f) =g (3.3)
n n n

An inner product is then taken with a weighting or

... testing function and L(fn) and g, respectively. This func-

tion is in the range of L. Therefore 3.3 becomes

N
<w ,L(f )> =<wng> m = 1,2,3,... (3.4)

n n m nm

In matrix form, this is

(h ( ) = (gMl

where

<wI,L (fl) > <Wl,Ll(f2) > <wI,L (f3) > .•..

<w." <2 , Llfll > <w2,Llf2} > <w2,Llf31 > •.•.
(m)- (3.5a)
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<w31g gm <w,g> (3. 5b)

n gM <w3,g>

Solving for nwith a nonsingular matrix, the unknown f can

be determined. The selection of fn and wm is as much art

n m

as science and has been widely discussed in the litera-

ture. A thorough treatment will be given later in this

chapter. This discussion on the general theory of moment

methods (s from Harrington [13:3-7].

With this brief introduction, the intent of this-

chapter is to apply the method of moments to solve a

Fredholm Integral Equation of the second kind; specifically

(2.20). This chapter will include the theory of moment

methods and the application to the elliptic scattering

problem.

General Application

Starting with equation (2.20),

| I ,I Eliu,v) + 7FT E 1 '1

2)n

SH12) (kcP) (cosh 2 o - Cos2 ' dv' (3.6)
*0 0

38
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expand the unknown electric field on the dielectric shell

(PP0in terms of the general basis function

z- n n

iNote that in (3.6) the "cut integral" symbolf is used

instead of "PV". This signifies that the singularity is

not included or has been "cut out"). This makes (3.6)

become

E (P~,v Cn P(V -V) + XiT-, EC P(V -Vz n n fJ0  n n

Ho (cP (csh2 o -co 2v9) dv' (3.8)

Now apply the testing function to (3.6) and (3.8).

Moving the summation sign outside of the integrals and

taking the inner product (as shown in (3.4), we obtain

c2 fmJflo E'Oi,V415.sV)s WN v.-v) (cosh P Co v) diIdV

=2Z r ~ 0 WV-vo v cs 2 1- cs2v 39
nm n
V~ p~'/ -r/2

nt-1 0

0
0

(2 2 2 2 2



The order of integration may be interchanged except that

the integration over v' must be done before the integra-

tion over v. This is due to the fact that v' is over the

entire shell and is part of the IE to be solved, whereas

the integration in v is done only over the domain of the

weighting function. This is not the most general since

it is assumed that P(vn) and W(vm) are sub-domain functions.

Therefore the functions are zero for v not within the

domain of P(v). The use of entire-domain functions, which

are valid across the entire range of v (the entire scat-

terer) is not considered here.

In this discussion, it should be noted that a two-

dimensional application of the method of moments is pos-

sible. Essentially, in assuming that the Ui coordinate was

a constant and could be integrated out, U was expanded by

a pulse basis function valid across the entire domain of p.

The integration over u was done in the same manner for the

voltage term (the term containing Ei) The "middle"

integrals (i.e., they are physically located in the

middle of (3.9)) were done directly since these integrals,

involving only the differential area function, exist in

closed form. After the integration over p, (3.9)

becomes

40
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,.".

"* 2 VrI.1l

c 2Erf(p 0 i,,i PSI5 V ) W(v m-v) (cs 21p0 - v)s 2 d

v rn-i

v
2 - n4-1

=- [coshi (211O) sinh(T) + ] n W(v -\))P(vn-v) dv

:-m--n
"W(v -v)P( I v -v) cos v dv

n$"' -1 n 2 ((3.10)

cn f rnn

)n-i

0 ( kp) (co cos2 v') (cos - cos 2 v) dvldv

where

Eil~ ~ ~ - 2p~"Ut 0 (2) ( )

PS [cosh 1 0 (cCos v-c sv 5 )FT2 2
+ sinh 110 (c sin v - c s sin )

s -vs line source coordinates

"10O v, v' scatterer coordinates (prined denotes11" source region)
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Equation (3.10) can be written as

V =CZ + Z' =C Z (3.11)
m nm n On

where the vector in the brackets Zm, is the single inte-

gral from the total electric field and Z' is the double

integral over v and v' involving the Hankel function.
Together these make up the reaction matrix, Z

mn

Solving (3.11) for Cn and using (3.7), the electric field

and the induced current can be calculated. The radiation

pattern can then be determined in the far field using

N eJkop  r-
-.. Az(p) = Z I J (p,)e j(

M171 l jop cell m (3.12a) 2
"-clm[16:2291

Ez =-jw oA [14:251 (3.12b)
o 0z

where J (p') is based on the integration over the cell of

the basis functions and the Hankel function. Equation

(3.12c) iz derived with H = V x A consistent with

Harrington [16:771.

Basis Functions

The rest of this discussion will center on-the

basis and weight functions, how they are applied in moment

2The summation over n from 1 to N shows that the
cor 'ribution from each cell must be summed together to
obt4.n the total vector potential at a point.

4
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methods, and the set of functions used in this problem.

Harrington states that one of the main tasks in using

this problem solving technique is the choice of P(vn)

and W('m) (Pvn) and W(vm) are the basis and testing

functions, respectively). P(vn) needs to be as close ann

approximation to f as possible and linearly independent.

W(Vm) should also be linearly independent and chosen so

that the inner products with g depend on the properties of

g (the solution of L(f)). Additional factors are the solu-

tion accuracy, relative ease in the evaluation of the

matrix elements, the number of segments required for con-

vergence, and the stability of the xesultant matrix equa-

tion [13:7].

Below is a list of the standard basis and weight

functions commonly used. These are sub-domain functions

since they are defined to be zero outside the domain of the

function.

Piecewise Uniform (Pulse Function):

Ij Z. < Z < Z
-j+1

JM(Z) = (3.13a)

0 elseadere

43
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Triangle Function (Piecewise Linear):

..(Z -Z z ZZ
z -z;'-.1

(3.13b)

I.(Z+ - Z)..- J (Z) lI + Z Z. < Z < Zj+

0

Piecewise Sinusoidal:

sin [k (Z-Zj_)]
sin k (Z. - Zj)] Z1 <Z<Z.

(3.13c)

Ii sin [k(Z -Z)I
Ji(Z) = - 2. < Z < Z
" sin [k(Z - Z)] - j+l

0 elseutme

Quadratic Interpolation:

A.+ B (Z-Zj)+C (Z-Zj) Z < Z < Zj+ 1
Jj(Z) = (3.13d)

0 elsewhere

K' Sinusoidal Interpolation:

4 *~A.+B. sin (k(Z-Z.)
r:.vi' "+Cj cos [k(Z-Zjl Zj < Z < Zj+ 1

J}(Z) = 0,- (3.13e)

V0 elswere [47:23,24]
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Truncated Cosine:

cos[k(Z 7- ,Zi-!)] Zj_l < Z

Jj(Z) = (3.13f)

0 elsewhere [28:101

Figure 15 illustrates three of these functions.

The use of the piecewise functions, forces the

partitioning of the segments into two regions ranging from

Zj_ 1 to Zj and from Z. to Z The result of the integra-
t jv

tion is summed together to obtain the total contribution

for each cell. This division is due to the derivative

discontinuity at Z [24:535]. Butler and Wilton discuss
n

methods of modifying certain functions in order to increase

the convergence rate. Specifically with (3.13e) in one

procedure the constants B. and C. are adjusted to force
) )

*the current and its derivative to be continuous at each

of the cell's endpoints. This results in a basis set which

causes the current and its derivative to be continuous

across the cell. In another procedure, the current in the

jth cell is required to satisfy Equation (3.14). This is

known as extrapolated continuity [24:535].

J (Z. l 1(Z
' j J- - j-

(3.14)

Jj (Zj+ " Jj+(Zj+I)

45
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z.z
j-1 Piecewise sinejl

(a) (3.13c)

z z,~
Piecewise Linearj+

(b) (13.3b)

Iz.-z. i-
2

z

2

Sinusoidal Interpolation
(c) (3.13e)

Figure 15. Basis and Testing Functions (24:535]
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Richmond used square pulses in calculating the

field in the dielectric shell [10:336]. Use of such func-

tions assumes a constant field across the shell, which is

a reasonable approximation if the shell is thin and the

scatterer small (small compared to wavelength). Hagmann,

et al. showed that larger cells may be used if variations

are allowed for the field. In the plane-wave correction

method, the field is represented by a superposition of

i.; plane waves (3.15).

Ez(r,,6') = ( .e i  25:744] (3.15)zi1

In the cylinderical-cell correction method, the square

cells are replaced by circular cells as Richmond did

(10:336,3371. The circular cylinder with TM excitation

will have fields with the cell determined by

Ez = b J (kr) cos (n+Cn) (3.16)

where b and C are determined by the incident wave
n n

[25:7461.

°K In another example of methods for improved conver-

gence, Blue used different basis functions depending on

the geometry of the problem and the location of the seg-

FT ment in relation to that geometry. Blue showed that a

conducting strip, 60X wide, could be done with only 17

basis functions [26:1894]. Analyzing the problem before

47

E°.



hand, Blue used three basis functions, each determined by

the domain of the function (26:1902]. As an example with

the problem being discussed in this paper; for the more

pointed end of the ellipse (as y goes to zero), Hankel

functions could have been used. This is based on the func-

tion which describes the electric field distribution in a

curved optical waveguide [27:2125,21261. A sinusoidal

function could have been used in the smooth part of the

ellipse (as x goes to zero) since the structure approaches

a dielectric slab waveguide. This would mean, however, a

tradeoff is being made for accuracy and convergence rate

versus simplicity of implementation.

Testing Functions and

Solution Methods

Testing Solutions. The choice of testing functions

is the same as for the basis functions. As discussed

earlier, the ideal testing functions would result in easy

implementation, high speed computation, and a fast con-

vergence rate to produce a highly accurate solution.

However, it is not possible to have all four criteria and

be able to solve all of the problems encountered.

Solution Methods. Table 4 provides five solution

methods or function pairs commonly used. Each of the

methods of Table 4 has advantages and disadvantages. Point

Matching provides a highly accurate solution, but the.

number of cells required makes this functional pair

impractical for scatterers of any significant size. The
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Table 4. Moment Method Functional Pairs

nth Term of A
Method (basis) Testing Function

Galerkin anb (x) bm (x)n n
(x)1

Least Square a b(x a
m

Point Matching a 6 (x-x n ) 6(x-xm )n n m

Point a b (x) 6(x-x )
Collocation nn m

Subsectional V(x E anb W 6(x-x
Collocation n p=lnp p

'Q(x) is a positive definite function of position
216(x)- is the delta function [12:1881

chief advantage of point matching is the easy implementa-

tion and quick calculation of matrix elements (low CPU

time). Galerkin functional pairs converge faster than

least square pairs, but a Galerkin pair will not always

converge to a solution. Sarkar showed that the least

squares method will always produce meaningful solutions,

even when the solution, g, is not within the range of L

(the linear operator from (3.1)) (23:21. The results of

*this study showed that Galerkin's method also takes con-

siderable CPU time to calculate matrix elements when the

* . elements have to be integrated numerically. This statement

would be true for any of the methods involving functions

that could not be integrated analytically.
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After careful consideration, the method used to

solve the dielectric elliptical shell problem was

Galerkin's method with the piecewise sinusoidal function

set. This functional set, of the established ones, most

closely resembled the electric field as it propagates in

a dielectric slab. The use of Hankel functions, while

suggested by Blue's article, would be too complicated to

use even if a better match is obtained. Other reasons for

choosing this set were: one of the most popular methods,

well documented, and ease in understanding implementation.

The biggest drawback is the need for numerical integra-

tion for each matrix element.

Therefore, the basis and testing functions are:

E )-VCn sin [k (vn+l-v)] + sin (k(Vn-VM 1 ) ] (3.17)
E(v) n' sin [k(nv)Isn(kv -nvn, )I (.7

Please note that the (v-v') of equation 3.17

is the distance between the angles at v and v'. The dimen-

- sion is in meters. This is consistent with the fact that

the dimention of the wavenumber, k, is rad/m.

A good reference for the implementation of the

simusoidal basis function is Richmond's report, Computer

Analysis of Three-Dimensional Wire Antennas from The Ohio

State University [29]. While dealing with metallic

scatterers, the features such as segment division, inte-

gration, etc., are demonstrated better than in the text-

book dipole implementation.
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IV. Programming the Moment Method Solution

The final step in the procedure is the generation

of code to implement the method of moments and solve the

linear algebra equation, (A)x = b. The Fredholm integral

equation of the second kind,

'E'(w = Eip,v) + XFrfE(Uov) Ho 2 ) (kcp)

0 (4.1)

(cosh 2 PO - cos 2 v') dv'

has been reduced to a linear algebra problem. The matrix,

- i A, consists of two elements, Z and Z where

2 V mi 1  V mil
Z XiT c 2 Cn f P(vn;-v') Wvm-V)

. (2) (kcp) (cosh2 1 ° - cos 2 ') (4.2a)

(coh Po - c2 v) dv'dv

= PlNn-v) Wlvm-v)

vM 1 f 0 T/2 (4.2b)

(cosh2 L- cos2 v) dudv
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and the voltage vector is

2 2 v s1
-k0  0(2 M+

m-1 (4.3)

(cosh2 l1° - cos2v) dV

where k is the wave number in the dielectric if integrating

for ZMN or k ( 2 W 00 for free space when calculating

VMN P(vn-v ) and W(vm-V) are the sinusoidal basis func-

tions just discussed.

To calculate the matrix elements and solve this

the linear algebra problem will require special function

calculators, numeric integrators, and linear algebra

solvers. The self cell (cell where n = m) will require

special handling as will the cells at the +/-90* points.

This chapter will discuss the programs developed to solve

the linear algebra equation. The discussion will include

a description of the special functions and routines. The

chapter will close with a discussion on the problems still

unresolved with the program.

Machine

Due to the large core and time requirements, this

program was processed on the Aeronautical Systems Division's

CYBER computer system. The ASD system consists of two

Control Data Corporation (CDC) mainframes, CYBER 74 and 750,
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which operate in parallel. The 750 has 262,000 words of

central memory. The CYBER 74 has 131,000 words. The

CYBERs have 14 significant digits for real variables. The

machines support a variety of languages and support

packages. The system also includes interactive processing

(INTERCOM), plotters (CALCOMP and DISSPLA), and special

libraries (IMSL, FUNPACK, etc.) [31:3].

Program Overview

The language used in this program was FORTRAN V,

with CDC extensions. Version 5 complies with the American

National Standards Institute FORTRAN 77 [32:V]. The CDC

extensions used were minor consisting of the use of sine,

cosine, and tangent functions in degrees, hyperbolic

arctangent, the CPU SECOND functions (returns current pro-

cessing time elapsed since start), and CDC FORTRAN control

statements. Due to the heavy use of the IF-THEN-ELSE

statements and the use of zero index values, this program
°..

will not compile on a FORTRAN 4 compiler without major

modifications. The programs were run with the optimizer

set to 1 (OPT=l), where the compiler will optimize the

code by the following steps:

1. Redundant instructions and expressions are

removed.

2. PERT critical path scheduling is done to

utilize the multiple functional units efficiently.
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3. Subscript calculations are simplified and

values of simple integer variables are stored in machine

registers throughout loop execution for certain do loops

[32:11-7,8].

Despite the reduction in the amount of cells

required, the storage requirements for the program were

large when the full sized scatterer (semi-major axis of

12X, semi-minor axis of 6X) was run. It was not possible

to run all of the algorithms in one job. Therefore, it

was necessary to break up the program into three programs

which were completely separate. Figure 16 has a flow

chart of the simple structure. The TRANSF control card

was used to control the flow. Using the TRANSF card, the

input program ran first, then the next job listed on the

TRANSF card ran. Program 3 could not run until 2 was

finished and 2 could not run until the first program was

completed. This offered several advantages. Each module

could be developed separately. Since the input program

created a permanent file, once the geometry was set up and

the file created, it did not have to be run again. It was

possible to reduce core requirements which decreased turn-

around time by running each program separately. This

structure was much easier to understand and develop than

using segmentation or overlays.
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Figure 16. Job Stream on CYBER 175
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LibrarV Subroutines

Due to the nature of the equation being solved,

special functions and procedures were needed. These

included elliptic integrals, Bessel functions, integrators

(numeric quadrature), and linear algebra equation solvers.

The ASD computer system has many functions and routines

already built in through several different program packages.

Rather than go through the procedure of developing and

testing these programs, the "canned" programs were used.

These offer the advantage that they are well known through-

out the industry and tried and tested on many different

machines.

Functions. The complete elliptic integral of the

second kind was used to calculate the circumference of the

ellipse. The Bessel, J (x), and the Neumann, N (x) (or

Y(X)), functions were used to calculate the matrix ele-

* ments. The library selected to calculate these functions

was the FUNPACK library (33]. FUNPACK is a library of

functions and subroutines that can return the results of

Bessel functions of first and second kind, modified Bessel

functions, elliptic, exponential, Dawson's integrals, and

other functions. There are 13 programs in the current

library which was released in 1976 as FUNPACK Release 2.

FUNPACK was developed as part of the National Activity for

Testing Software (NATS) project. Obtained from the Argonne

Code Center, FUNPACK was specifically designed for the

CDC 6000-7000 machines. The documentation that accompanied
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-the program [33], provides the description on how to use

the code, the accuracies and limitations of the routines,

and where they were tested. The results of the Bessel

functions for J and Y were hand-checked against tables

and found to be accurate. The only limitation to accuracy

is the host's ability to accurate the values of the basic

functions such as natural log, sine, cosine, etc. [33:11].

The nicest part of the FUNPACK library is that the package

was developed for the CDC processors and take full advan-

tage of the 14 working numbers of accuracy in standard

-. precision. It was for this reason that the FUNPACK library

-. was chosen over the better known International Mathematical

"- and Statistical Library (IMSL). It should be noted that

- the FUNPACK libraries are still being supported by Argonne

and will continue to receive support. Changes will be

* -.'supplied automatically to users [33:11,22-231. Another

- advantage of the library is that the function calls

resemble the name of the function, making it much easier

for the future user to read the program and understand

what operation is being performed without a great number of

comment statements.

Integrators. As can be seen from equations

(4.1-3), the numerical integration is an important part of

the program. The integrals of (4.2a) and (4.3) do not

exist in closed form. While the single integral of (4.2b)

can be done analytically, the integral over the angle, v,

was done numerically to reduce the chance of algebraic
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error. The radiation routine used to calculate the far

field also needs a single integrator. The IMSL has a

single and double integrator. The documentation on IMSL

is limited and the accuracy of the routines is not known

except to rely on the reputation of the library. The

AFIT Digital Computer Manual called the package ". . . the

recommended routines" (34:551.

The single integration routine, DCADRE, uses a

. cautious Adaptive Romberg Extrapolation Algorithm. DCADRE

is computed as the sum of estimates for the integral of a

function, F(x), over suitably chosen subintervals of the

limits of integration. If the routine is unable to find an

acceptable estimate on a given subinterval, the subinterval

is divided and each of the new subintervals is handled

separately [35:DCADRE-I,21. It is because of this process

of interval subdivision that DCADRE can take a great deal

of time. The acceptability of an interval is determined

by a relative error input in the function calling state-

ment. If the routine can not get within the limits sup-

plied, then the function writes out an error message and

supplies the best answer. However, even if the error mes-

sage is written, the best answer is still better than the

standard integration routines. DCADRE may return wrong

answers if the frequency of the integrand is very high,

but this problem may be overcome by dividing the interval

and calling the routine several times [35:DCADRE-21.
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The double integrator is DBLIN, which uses DCADRE

to do the single integration. However, use of the Romberg

integration routine in two variables increased run times

significantly. Therefore, the integral over v was done

via a Simpson rule integrator [38:311] while DCADRE inte-

grated over v

Matrix Equation Solvers. The IMSL has two routines

for the solving of complex linear algebra problems: LEQT1C

and LEQ2C. There is also a library of linear algebra

routines from the Argonne National Library known as

LINPACK. LINPACK has come into being in the same manner

that FUNPACK did and is well documented [36]. The refer-

enced documentation includes a listing of all subroutines

and tables of timing data on each routine for each of the

test sites [36:B-I,D-I1].

The best choice of these programs is not known.

Since the second program never fully worked and produced

correct answers, this question had not operationally been

decided. The plan was to run several jobs through each of

the programs and to see which came out best in terms of

accuracy, speed, and ease of operation. The result of the

test would decide which routine to use for the final runs.

For the problem here, time is the biggest problem, not

memory.
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Input Program

The purpose of the input program was to:

1. Read in the geometrical data on the scatterer.

2. Calculate the elliptic coordinate system

parameters.

3. Determine the endpoints of the segments.

4. Calculate constants used in subsequent pro-

grams.

The listing is given in Appendix C. The calcula-

tion of elliptic coordinates is done using the relation-

ships given in Appendix A. In calculating the coordi-

nates for the line source location, it was assumed that

the sources have the same po value as the scatterer does.

Therefore, only the source focal length, Cs , and angle

coordinate, v s, need to be determined.

Wave Number. As one of the constants, the wave

number in the dielectric was determined. It has a value

between, k and kd, the wave numbers in free space and for

0 d.1/4 k.

Assuming that the scatterer will locally act as a

flat slab waveguide, the electric field within the scat-

terer is of the odd type. This is based on the assumption

that the electric field is constant through the dielectric

shell and, therefore, the electric field is symmetric

about the middle of the slab. Since there is no variation

in the electric field in the y direction, the modes excited

are TMz.
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Figure 17. Dielectric Slab Waveguide

Figure 17 shows the coordinate system for this dis-

cussion. The electric and magnetic fields are

-jk y
.E. cos k kxe
z o kT xl<T/2

Cos 2~~L

erxolxt -jky
E E-F - 7.- e lxi >TV2 (4.4)::Z' E~~z = o e(rxoT/2) x > T/144

1 ax

-jk
=-kxsin kxle E 0 < V/2

(kT IxI T/
,:: ~C o s ( - -,:: -r~x l l

-rX,0c -. k
- r X gn(x) Eo  (rxT/2)e -y lxi > T/2

jWIJ e

62

;: ? : . .? > . , . - ..,, ;. ...



where

2 2 2 2
x y 1 r kokxl +k - = " C

-r + ky 2 = k 2
X0 0

Forcing the tangential magnetic field to be con-

tinuous at x = T/2

'" -jkCyy
sin(kxlT/2) 

e '

-kxl EO  kxlT

Cos 2
(4.5)::-r -xT/2 eJk y

X= -r E 0 -rT/2 e

e

or

l T k T r T

(4.6)
kiT 2  roT 2 kT 2
2 + (T) = (e-l) (-2

Since T is 1/20 wavelengths long, kX1T/2 is much

less than 1. Therefore

k.T 2 rxT
x - -= (-I-) (4.7)

2 2'

and from (4.6)

kxT 2. klT4 k T 2
'(--) + (L) = (Er- l) (--) (4.8)

22
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This means that an approximate value for k T/2 is

kT 2  1 kT 2

! _.__. -_ 1 1I+4 (rl-1+ - l +4( (- ) (4.9)
2 20rl

with T =X /20ande r  4

kxl T  .5262

kxlX = 10.5246

(k = rlkoX) 2 
- (kxl) 2  (4.10)

or

kyl = 6.87 [37:12-13;15]

The determination of segment and pints was a

W critical phase of the program. No segment was to have a

length greater than X/4 [29:5]. It was decided that for

a radius of curvature of 2.5 or greater, that this segment

length was adequate since a straight line X/4 wavelength

long would vary little from the arc of the ellipse. For

the segments where the scatterer has a smaller radius of

curvature, the segments were to be p/10 wavelengths long

where p is the radius of curvature. This was based on a

straight line extrapolation from the cutoff point of .25

for 2.5 (see Figure 18).

Based on this the cell end point (one was known)

was determined by taking the arcsine of the cell length

over the distance from the origin so that point as shown
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in Figure 19. The cells ran from -90 to 900, so the

lower endpoint was always known. The angles were summed

until the total reached + 900. The ellipse was segmented
from the -90 to 900 to take advantage of symmetry. For

the large ellipse (12X by 6X) all segments were .25X long.

, ... For smaller ellipses, the number of cells increased near

the end points and decreased to the +/-90 points, as was

desired. Appendix C has a program listing of the input

program. It was not determined if more or less segments

were needed. In the last program step; the input data,

elliptic coordinate information, and the array containing

the cell endpoints were written on disk and stored in

a permanent file.

., Cell Length = 0.25X

rz

p,,
-E-4

RADIUS IN CURVATURE (IN WAVELENGTHS) (p/X)

Figure 18. Segment (Cell) Length Determination
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V = v 1 + e
.°.1

V2

Cell Length

0.25X or (p/X)/10

Figure 19. Cell Endpoint Determination

Matrix Generation and

Algebra Solver

The second program has three main functions:

1. Determine the matrix elements of the reaction

matrix, ZMN.

2. Determine the Vector elements for VMN.

3. Solve the linear algebra problem, V = C(Z).

The double integral generates a full matrix of com-

plex elements since the integral over the nth cell (primed

coordinates) is independent of the integration over the

mth cell. The total E field integral generates real numbers

only and contributes only to the matrix diagonal and to the

major codiagonals. Due to the E field integral, a blocked

IF-THEN-ELSE statement is used to test which contribution
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to include. The program calculates the real and the

imaginary parts separately because the IMSL integrators

are real functions.

Algorithm. The sinusoidal basis function had to

be divided up into two subintervals; vn-i to v and v to

V n+l [24:535] (see also Chapter III). In the double inte-

gral, the multiplication of the sinusoid for the mth cell

and the sinusoid for the nth cell results in four double

integrals for each cell.

m~l ~lsn_[kv_- sin~k(v i- 1V)]

fn sin[k(Vm m- 1 ) sin[k(vm+-v)]

M-1 V 1

V n in] s~[k(v vn)]n s~vi-v J

+f"' f in[k(nV1 )-]5 +l( dA'dA (4.11a)

Vmfn sin [k (v-vm-l) I sin [k (v'-vm)]

• U+ sin [(k (vn_7m.l) I sin [k (v n -_v, )

V V+fv f" r ink"  m -v",,_, T" E k (n"-jn dA d
m-l vn

V V

+-lni [k (vr(*",7vl-Is [ -n 1[k (v'n-

|:.:~ ~ V ~ ,-0+ ssin( .- , [k (v,_-,v'1)
| +f I~l I~ siLn"k" M * 'i'' v" dA'dA (4.11b)si []),.- I si [klm' t vn+l-Vm'
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This also occurs in the total field expansion except the

integration is only over the mth cell as shown in (4.11c)

V
m sin[k(v-v M.1 )] sin[k(v-Vn-1 I sin [k (vn.+-v) If --- d
f in~kvMV -If sin~k(v-vQ]-v sin[k (vn1 -vn)]I

.m- (4,.11c)

1 sinIk (vR,, 1 -v) I sin [k (-v n-1 I sin [k (vn+1 -v)]

+jVMl sin~k(\~) V sin[k (v -vnQ sin~k(vn+-v n)
m

where

at = c2 (cosh2 Po - cos2 V') dv'

dA = c2(cosh2  -cos 2 ) dv

Endpoints. Figure 20 is a graphical presentation

of the double integration over v and v'. The v = vI' line

is the line singularity where the integrand is singular

due to the Bessel function of the second kind. Each cell

has four contributions according to equation (4.11b).

This can be seen in Figure 20. As an example, let m = 4

and n = 2. The coverage goes back to m = 3 and up to m = 5.

The integration over vn has the same feature. The shaded

block represents the total contribution to the (4,2) cell.

Integration on the cells near the end points

presents a special problem. Since the scatterer is a con-

tinuous object, the contribution of all cells must be the

same. The affect of the current in an adjacent region,

but beyond the symmetric boundary must be included.
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Figure 21. Current Contribution from
Beyond the Line of Symmetry

For example, the (0,0) cell has three contributions below

the axis in Figure 20. Originally, the program handled

each case on the end points as a separate entity, multiply-

ing the (0,0) and(N,N) cell contribution by four and the

ones in between by two (point G on Figure 20). However,

this resulted in a long, bulky program and it was difficult

to ascertain if the contributions from cells beyond the

symmetric line were equal. Thus a question came up if

multiplying by a constant would produce correct results.

Therefore, a "negative cell" was created by folding the

cell on the +/-90* line over the other side. In other

words, one cell was created that was equal in length to

the 0th and Nth cell, but on the other side of the ± 900

lines (see Figure 21).

To assume that any cells on the other side of the

S..line were equal in length to the adjacent cell was an
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excellent assumption since the region of concern is the

essentially flat region of the ellipse. In the case of a

circular shell, as the scatterer becomes more circular,

the length of the cells becomes more nearly equal. This

greatly simplified the program from now only contribution

from the total field expansion had to be checked.

Additional contributions from the other side of

the ellipse had to be considered due to the assumed sym-

metry of the problem and restriction of v to +/-90* (see

Figure 22). Since the line source is on the y axis (see

Figure 6), the incident energy on the right side of the

shell (+90 to -900) is equal to that which is incident on

the left side (1800 to 2700). Therefore, only one-half of

the ellipse had to be directly evaluated, thus reducing

the number of cells needed by a half. It would not be

correct to either neglect the other side or to simply

multiply the field by two.

In evaluating the Richmond integral equation

(equation (2.8)), the interaction between the field

generated by the source cell and the observation cell is

being calculated (see Figure 8). This must also be con-

sidered with the image cells as shown in Figure 22(a).

This was done in the program by integrating over a cell

1800 opposite the observation cell.

To multiply the field calculated by two to account

for the image contribution would give erroneous results

for the distance changes as the position on the ellipse
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Figure 22. Image Cells
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changes (see Figure 22(b)). The use of symmetry does not

reduce the number of calculations. It reduces the amount

of core required to solve the problem, a critical factor

when large (greater than one wavelength) is considered.

Singularity. The program had to evaluate the

principal value integral around the singular points. A

numerical integration routine can not take the limiting

value of a function and special routines must account for

these regions. In this problem, thern were three types

of singularities encountered which could be considered as

two classes. Table 5 gives the class and type of singulari-

ties encountered. Figure 23 is a graphic presentation of

each class.

Oi Table 5. Program Singularities

Cross-
Type of Reference to

Singularity Class Figure 20

Overlapping
cells

n = m line Region B
m = n± line Region C

Corner

Vm V n point Point A

There were three separate methods tested in con-

sideration of the singular cells with a goal that accurate

results were returned, but with the CPU time being held to

a minimum. The first routine integrated up to the line
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Figure 23. Singularity Classes
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singularity, but left an area surrounding the singularity.

James, et al. [38:339-342] suggested that the function be

expanded in a Taylor Series around the singular point,

integrating term by term. A test routine was written

integrating ln Ix-x'I over -1 to 1 using a Simpson Rule

routine [38:331] and the IMSL DCADRE routine, but with the

singular region ignored. Testing only 10 subdivisions,

the error was -0.193 percent. Using 1000 subdivisions,

the error was -2.5 x 10- percent.

The point singularity was handled by excluding

the point. This problem occurred when the range of each

integration overlapped, say going from 1 to 2 and 2 to 3.

Using the ln Ix-x'l function again, it was found that by
integrating the inner integral from 1 to 1.999999999999

and then the outer from 2 to 3, the results were limited

only by the limitation on the accuracy of the Simpson

routine and the number of subdivisions used.

The disadvantage of this is now special cases

have to be drawn up for the possible singularities. The

corner singularities were generally found by trial and

error (i.e., the program hit a divide by zero error and

quit).

The first method discussed involved special pro-

grams and calls to avoid the problem. In either case, the

*: singular point was approached, but not integrated over.

However, it was decided that these special routines were

not necessary. Instead, if the argument of the Hankel
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' function went to zero in the program, it was declared to

have a small value. The minimum value that the FUNPACK

routine could handle was 2128 or 2.938 x 10

The range of values tried was from 10 to 1025.

This routine was very easy to program; however, the run

times doubled. The DCADRE integrator would continuously

subdivide the interval from the last actual value to the

declared value. Using a larger number did not resolve

the problem since the integrator would bog down in try-

ing to resolve the sharp cutoff that resulted.

The final routine involved "capping" the singular

point with a parabolic approximation. This cut run times

by one-half since now the singular region had a smooth

peak, as opposed to a sharp peak or flat top.

Equation (4.12) is the function used. Let

H*(6) = a and H (6) =a
01

(2) (P) - C 2 (4.12)
H 0 ~~ 0 + 2P2 (1)

-3The (6) used was 10- . Using a and a with (4.12) results

in

C - - 2 2 (4.13)

Using this function simplified the problem since the1
result could be used by either class of singular rejion.

The routine significantly reduced run times also.

Test Runs. To test the program, the scatterer

... :'was made to be as circular as possible. The resultant
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ZM should be a toeplitz matrix. In such a matrix, all

of the elements along each diagonal are equal. The toe-

plitz matrix results because the array elements are cal-

culated on a basis of geometry [14:341]. All of these

elements are the result of integration of equally sized

self cells. Schneider's results showed that this matrix

does result [4:18]. The test program included a repeat

of Schneider's results [4:27-30,47-49] for the small

scatterer. This would validate the program since his

results are correct and the solution is unique [40:532-534].

Unresolved Problems. The test case run did show

that the toeplitz matrix does result for the circular

scatter. This validates the fact that the geometry of

the problem is being described correctly by the program.

It does not validate that the values obtained are correct.

Herein lies the problem. The resultant reaction matrix

should be banded in that the elements of the main diagonal

and the right and left codiagonals are significantly higher

than the rest of the array. Additionally, the magnitude

of the voltage vector should increase as you evaluate from

the 0th cell to the Nth cell. This increase should be

significant.

Neither of the described conditions was met by

the resultant array or vector. The voltage vector gradu-

* ally increases as you get closer to the line source, but

only by a factor of 3. 'he main diagonals are only an

order of 10 higher than, the other elements of the reaction
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-. array. The other elements then varied in sign and magni-

tude across a row. Their magnitude did not go to zero as

expected.

Radiation Calculation

The final program was to calculate the far field

electric field and display the results. The current in

* each cell would be obtained by going back to the expansion

function and putting the calculated Cn back into the equa-

tion. However, the far field is very insensitive to small

changes over a small area. Therefore, the electric field

for the cells was assumed to be VM(M) across the entire

mth cell. The far field approximation for the vector

potential is

e-jkop k cs(-)
eAjz-p leJkP' cos 1 - '1 dA' (4.14)

cell (10:229]
m

or in elliptic coordinates, if p is the distance from the

-* origin to the point on the ellipse

"  A 2 e- n+ jzIo,v)eJk [a 2cos 2 + b 2sin 2] hcos,(v-v idA
.8jp n (4.15)

a = semi-major axis

b = semi-minor axis
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, - tan -I ((a/b) tanv)

tan-I ((a/b) tan v')

dA' (cosh2 110 - cos2 v') dv'

The far field observation point is 2a2/X [14:24]. The far

field electric field is then determined from

E = jwuA [14:251 (4.16)

z 0 z

or

E A 2c4W 3 -jk0 P

z 8ji*kpf
n

.eJka2cos2+ b2sin2 ] cos (v_- ')

S(cosh 2 Uo - COS2 v') dv' (4.17)

Since program 2 never worked, the radiation program

" - was not developed. The contribution from each cell would

be summed over the entire 3600. The plot was to be dis-

played on the off line calcomp plotter using the DISSPLA

package.
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V. Lessons Learned

The exact reason that the program failed is not

known. Sources of error could have come from a myriad of

sources. Countless checks have been performed on the pro-

gram and no error can be found. A better method needs to

be used in the integration if the method of moments has to

be used to solve this problem. Blue's article showed that

the number of cells could be kept small by using different

basis functions (26]. A fewer number of cells would have

substantially improved this procedure since fewer integra-

tions would have been necessary.

: qy Despite the program failure, this thesis showed

that straight application of the moment method, even with

the use of the more complicated basis functions, is not

practical for larger scatterers. While the core problem

has been solved, a real time problem has surfaced. If it

takes 1300 seconds to process a 33 by 33 array, a 120 x 120

array would take way too long. The expense in that much

computing would be high.

When computing with wire scatterers, the observa-

tion point is done on the inside of the metal, while the

source is considered on the outside skin. With this in

mind, the observation point could have been made just

above Uo" Since the electric field, and therefore the
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current, is constant throughout, the electric field would

not have changed. The runs done so far show that the

singular cells take 10 seconds, nonsingular take 1.5 to

0.5 seconds, and the voltage matrix takes less than 0.1

seconds. Therefore, the problem is in the singularity.

The removal of the singular point would greatly speed opera-

tions. While time would not permit this condition, it is

worth continued investigation.
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VI. Conclusions

This study analyzed the scattering of cylindrical

electromagnetic waves off of dielectric scatterers. The

scatterer was an elliptic shell, designed to model the

radome of the F-16. The equation developed by Richmond

[10] was used and solved by the method of moments. To

• . reduce the amount of storage needed, the basis and test-

- . ing functions were the sinusoidal basis functions. The

result was a complicated integral that took a great deal

of time to compute over each cell.

The program never worked and there were no plots

produced. The exact source of error is unknown, but the

most probable are either a programming or an error in the

integration over the shell thickness. The study did show

that this method was impractical for large scatterers.

The amount of integration required to fill the reaction

matrix was far too much to be practical. The cost of such

runs made justification difficult.

While the program never produced valid results,

it is felt that the conclusion that the method is impracti-

cal is valid. The evaluation of the individual contribu-

tions would still require 16 integrations to be done per

cell. Each integration takes considerable amount of time.

The improbable values of the array and vector elements are
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more likely due to the handling of the singular region

rather than in a programming error. The removal of the

singularity may have removed the main reason for the side

lobe. Thus the array elements were only gradually varying.

As recommendations for future study, Blue's method

of different basis functions bears more study. The reduc-

tion in the number of basis functions would greatly reduce

the number of integrations needed.

The method used here-may be improved by breaking

up the singular cells into subregions. If the singular

area was square, Richmond's analytical integration [10:336]

could be applied. The rest of the cell would be considered

using the methods described in this report. The contribu-

tions'would then be added together.

Looking at other methods, if an efficient program

could be written for the generation of Mathieu functions,

then a series solution would be possible. Finally, an

asymptotic evaluation of the integrals would then enable

a solution to the integral equation to be computed since

the integration would no longer be necessary'.
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Appendix A

The Elliptic Coordinate System

The elliptic-hyperbolic coordinate system is one

of the eleven orthogonal coordinate systems which is

formed from first- and second-degree surfaces. This appen-

dix will provide a compendium of information and relation-

*, ships useful in analyzing the elliptic shell. The best

overall source for coordinate system information was

Moon and Spencer's Field Theory Handbook [42]. The

Schaum's Outline Series handbook, Vector Analysis by

Spiegel [43] and Morse and Feshback's Methods of Theo-

V Wretical Physics also provide some valuable insight into

the system. Moon and Spencer and Morse and Feshback have

considerable discussion on the separation of variables,

especially in terms of the Laplace and Helmholtz equations.

Burnside [44], had a very complete list of relationships

related to the elliptical geometry.

Figure A-1 shows the coordinate system relative

to the xyplane. The positive z axis is up, out of the

page. The defining relationships are

x = c cosh U cos v

y = c sinh U sin v (A.1)

z- z
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y

Figure A-i. Elliptic-Hyperbolic Cylinder
Coordinate System
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where c is the focal length; U and v are the coordinates

of the system. Surfaces of constant, U, are elliptical

cylinders and surfaces of constant, v, are hyperbolic cylin-

ders.

- is defined as

ui = tanh 1 (b/a) (A. 2)

where a is the semi-major axis and b is the semi-minor

axis. The limiting case for wb describes a circle. The

range of u is from 0 to - and is radius independent.

The angular coordinate, v, is the angle from the

x axis to the asymptote of the hyperbola that intersects

the point in question (see Figure A-2). The polar angle 0,

does not equal v except at 0, 90, 180, and 2700.

Lv

x

a

Figure A-2. Angular Coordinates

91

, , o , o ._ ,. • . .- ... .. . , • ,. . -...- ,-. ... -, . .. . . . ... , . .. . • .%7



K s The relationship between * and v is

- - tan- [(b/a) tanV] (A.3)

This is based on the fact that a = c cosh U and b -

c sinh Pi. The range of v is from 0 to 3600.

The unit vectors 11 and 11 are

c csih Ucos v U + ccosh U sin V 11IAg = x

sinh 2 U Cos 2 v + cosh 2 11 sin 2 V

A (A.4a)
b cos v U + a sin v

inh 2 U co2 + cosh2  .2 in

A A

c A c cosh u sinv u x + c sinhij cos v p

cosh2 u sin v + sinh2 U cos2 V

(A.4b)
a sin v V + b cos v P

x
2 2 2

)/osh
2  sin v + sinh 1P cos

2

V is the vector tangent to the ellipse and U is the

vector tangent to the hyperbola or the outward normal from

the ellipse (44:310-3111.

The following is then a list of relationships used

or noted during the course of this research:
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*Differential area:

dA = c2 (cosh2  - Cosv2  ) ddv [42:18] (A.5a)

dA = c2 (sinh2 U + sin v dpdv [43:1391 (A.5b)

These equations are equivalent.

Elliptic cylinders:

2 2(x/c cosh ) + (y/c sinhj) U 1 [42:171 (A.6)

arc length:

.-.. 2

fV .2a 2 sin 2 v + b2 cos 2 v (44:310] (A.7)
1

* Circumference:

L - 4aE(a/c) [45:121

n [3 (a+b) - V(a+3b)(3a+b)] [46:18] (A.8)

'21rV1/2(a 2+b2) [45:12]

E(a/c) is the complete elliptic integral of. the second

kind.

Area

A = wab [46:181 (A.9)

Radius of curvature:

3/2
P = (a2 sin 2 v + b2 cos 2v) /ab (46:211 (A.10)
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cos - . cos2V

c.E osh 2 - V c 2 V-]I -r V i

[42:18] (A.11)

+ [(cosh2 U -COS2 v) E]} + LE

+ UV~~. t. [42:18] (A. 12). c~oosh2 P _ oo2 V]ji 10 au +v z 3z

-4

VxE= 2 2
.,(c cos vcos

a, 3• (A. 13 )
EP(cos2 P _ 82 ) Ev(cosh 2  _ cos2 v) Ez/a

2 C2cosh2 P - + a [ 42:18] (A. 14)
(co 2  2 v 3P2 2  z2

• See [42] for equations related to the separation of

Laplace's equation and the Helmhotz Equation [42:18-20].

+'4' See [451 and [46] for the more novel relationships for

ellipse. Lockwood also has a great deal of information on

a. the geometrical properties of curves in general.
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Appendix B

FUNPACK Release 2

The following is a copy of a listing executed from

the EDIT LIB Users Library. Since the special functions

were all generated using the FUNPACK library, and since

there is not a commercially published manual available,

this file is included as part of this thesis. More detailed

information on FUNPACK is available in AFFDL-TM-77-89-FBR

[33]. For detailed data on LINPACK and the IMSL see [36]

and [35], respectively.

AMW9
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LFUN

THIS LISTING IS OUTPUT FROM PROCEDURE LFUN(LFN) EXECUTED FROk THE
EDITLIB USER LIBRARY. IT DOCUMENTS CODES SELECTED FROM ARGONNE CODE
CENTER NO. 610, FUNPACK RELEASE 2, TO EVALUATE CERTAIN SPECIAL
FUNCTIONS. TILE CODES DESCRIBED ARE IN AN EDITLIB USER LIBRARY AS
CENTRAL PROCESSOR PROGRAMS COHPILED UNDER FORTRAN EXTENDED, VERSION

4.5+414, USING THE ROUNDED ARITHMETIC OPTION. THE SOURCE CODES FROM
WHICH THEY ARE DERIVED ARE IN AN UPDATE OLDPL. BOTH THE USER LIBRARY
AND OLDPL RESIDE ON MAGNETIC TAPE. FOR FURTHER INFOPIATION ON THESE
CODES OR TO ACCESS THEM FROM TAPE, CALL

DONALD S. CLEMM / AFWAL/FIBR / 513-255-5350 (Av 765-535C

ACC ABSTRACT 610

I. NAME OR DESIGNATION OF PROGRAM - FUNPACK RELEASE 2
2. COMPUTER FOR WHICH PROGRAM IS DESIGNED AND OTHERS UPON WHICH

IT IS OPERABLE - IBM360,370, CDC6000-7000, UNIVAC1108,1110
3. DESCRIPTION OF PROBLEM OR FUNCTION - FUNPACK IS A COLLECTION OF

FORTRAN SUBROUTINES TO EVALUATE CERTAIN SPECIAL FUNCTIONS. THE
INDIVIDUAL SUBROUTINES ARE -

IDENTIFICATION DESCRIPTION
NATSIO F210 BESSEL FUNCTION I-SUB-O

* NATSII F211 BESSEL FUNCTION I-SUB-I
NATSJO F2JO BESSEL FUNCTION J-SUB-O
NATSJ1 F2JI BESSEL FUNCTION J-SUB-i
NATSKO F2KO BESSEL FUNCTION K-SUB-O
NATSK1 .F2KI BESSEL FUNCTION K-SUB-1
NATSBESY F2BY BESSEL FUNCTION Y-SUB-NU
DUAW FIDW DAWSON'S INTEGRAL
ELIPK FIEK COMPLETE ELLIPTIC INTEGRAL OF TILE FIRST KIND
ELIPE FlEE COMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND
El FIEI EXPONENTIAL INTEGRALS
NATSPSI F2PS PSI (LOGARITHMIC DERIVATIVE OF GAMMA FUNCTION)
MONERR FIMO ERROR MONITORING PACKAGE

4. METHOD OF SOLUTION - FUNPACK USES EVALUATION OF MINIMAX APPROXI-
MATIONS.

5. RESTRICTIONS ON TILE COMPLEXITY OF THE PROBLEM -

6. TYPICAL RUNNING TIME -

7. UNUSUAL FEATURES OF THE PROGRAM - THESE ROUTINES HAVE BEEN
CERTIFIED UNDER THE ATS PROJECT FOR TilE MACHINES AND OPERATING
SYSTEMS INDICATED IN ITEM 13 AND FOR THE COMPILERS INDICATED IN
ITEM 12. EXTENSIVE TESTING ON THESE MACHINES HAS SHOWN NO EVI-
DENCE OF PERFORMANCE DIFFICULTIES. EXCEPTIONS, IF ANY, FOLLOW -

CDC VERSIONS OF THESE SUBROUTINES ARE TUNED TO PERFORM BEST
uSING THE ROUNDED ARITHMETIC OPTION ON CDC COMPILERS.

THE ACCURACY OF THE SUBROUTINES FOR THE ELEMENTARY FUNCTIONS
(EXP, ALOG, ETC.) CAN AFFECT THE ACCURACY OF FUNPACK SUBROUTINES.

THE IBM VERSION OF. TIllS PACKAGE ASSUMES THE IBM-SUPPLIED
TRACEBACK SUBROUTINE ERRTRA IS AVAILABLE.

THE HATS PROJECT FULLY SUPPORTS CERTIFIED ROUTINES IN THE
SENSE THAT REPORTS OF POOR OR INCORRECT PERFORMANCE ON AT LEAST
THE MACHINES AND OPERATING SYSTEMS LISTED WILL BE EXAMINED AND
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NECESSARY CORRECTIONS MADE. THIS ASSURANCE OF SUPPORT APPLIES
ONLY WHEN TIe SOFTWARE IS OBTAINED DIRECTLY FROM THE ARGONNE
CODE CENTER AND HAS NOT BEEN MODIFIED.

:'" 8. RELATED AND AUXILIARY PROGRAMS - FUNPACK RELEASE 2 REPLACES
FUNPACK, AN EARLIER PACKAGE SUBMITTED IN JULY 1973 AND DISTRI-
BUTED BY THE CODE CENTER AS ACC NO. 610 PRIOR TO THIS RELEASE.
SUBROUTINES IDENTIFIED AS FIXX IN ITEM 3 ABOVE ARE UNMODIFIED
FROM THE PREVIOUS RELEASE, WITH TIE POSSIBLE EXCEPTION OF THE
TEST MATERIAL FOR THE IBM MACHINES.

9. STATUS - ABSTRACT FIRST DISTRIBUTED JULY 1973.
1BM360,370 VERSION OF FUNPACK SUBMITTED AUGUST 1973,

REPLACED BY FUNPACK RELEASE 2 SEPTEMBER 1976, SAMPLE
PROBLEMS EXECUTED BY ACC SEPTEMBER 1976 ON AN
1BM370/195.

CDC6000-7000 VERSION OF FUNPACK SUBMITTED AUGUST 1973,
REPLACED BY FUNPACK RELEASE 2 SEPTEMBER 1976, SAMPLE
PROBLEMS EXECUTED BY ACC OCTOBER 1976.

UNIVAC1108 VERSION OF FUNPACK SUBMITTED AUGUST 1973,
REPLACED BY UNIVACL108,1110 VERSION OF FUNPACK
RELEASE 2 SEPTEMBER 1976.

10. REFERENCES - J. M. BLAIR AND C. A. EDWARDS, STABLE RATIONAL
MINIMAX APPROXIMATIONS TO THE MODIFIED BESSEL FUNCTIONS IO(X) AND
11(X), AECL-4928, 1974.

J. M. BLAIR AND A. E. RUSSON, RATIONAL FUNCTION
MINIMAX APPROXIMATIONS FOR THE BESSEL FUNCTIONS KO(X) AND KI(X),
AECL-3461, 1969.

W. J. CODY, CIIEBYSHEV APPROXIMATIONS FOR THE COM-
PLETE ELLIPTIC INTEGRALS K AND E, MATH. COMP. 19, 105-112 (1965).

W.J. CODY, R. M. MOTLEY, AND"L. W. FULLERTON, TilE
COMPUTATION OF REAL FRACTIONAL ORDER BESSEL FUNCTIONS OF THE
SECOND KIND, APPLIED MATHEMATICS DIVISION TECHNICAL MEMlORANDUM
NO. 291, ANL, 1976.

W. J. CODY, K. A. PACIOREK, AND 11. C. THACHER, JR.,
CHEBYSHEV APPROXIMATIONS FOR DAWSON'S INTEGRAL, MATH. COMP. 24,
171-178 (1970).

W. J. CODY, A. J. STRECOK, AND H. C. THACHER, JR.,
CHEBYSHEV APPROXIMATIONS FOR THE PSI FUNCTION, MATH. COMP. 27,
123-127 (1973).

W. J. CODY AND HENRY C. THACHER, JR., RATIONAL
CHEBYSHEV APPROXIMATIONS FOR THE EXPONENTIAL INTEGRAL El(X),
MATH. COMP. 22, 641-649 (1968).

W. J. CODY AND HENRY C. THACIIER, JR., RATIONAL
CHEBYSHEV APPROXIMATIONS FOR THE EXPONENTIAL INTEGRAL EI(X),
MATH. COMP. 23, 289-303 (1969).

11. MACHINE REQUIREMENTS -
12. PROGRAMMING LANGUAGES USED -

FORTRAN IV(G) IBM360/75,195,1BM370/165,195
FORTRAN I%(G 21) IBM360/65,75,91,IBM370/158
FORTRAN IV(GI) 1BM360/75,195
FORTRAN IV(H) 1BM360/65,67,75,195,IBM370/165
FORTRAN IV(H 20.1) 1BM360/65,75,.195,AMDAHL47OV/6
FORTRAN IV(H 21.6) IBM360/75,91
FORTRAN IV(H 21.7) IBM360/75
FORTRAN IV(H 21.8) IBM360/65
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FORTRAN IV(H EXTENDED) IBM370/195

FORTRAN IV(H EXTENDED 2.1) IBM360/75,91,IBM370/168,168-II
FORTRAN IV(WATFIV) IBM360/67
FORTRAN IV(WATFIV 1.4) IBM370/158
FTN CDC6400,6500
FTN(4.642) CDC6600,CY173,175
FTN(3.0) CDC6400
RUN CDC6400,6500,6600-6400, 7600
RUN(2.3) CDC6400
FUN CDC6400-6500,6600,6700
FTN V UNIVAC108
FTN V(S1OA-O) UNIVAC1108
FTN V(MACC 1.175) UNIVAClIO

13. OPERATING SYSTEM OR MONITOR UNDER WHICH PROGRAM IS EXECUTED -

OS/360 IBM360/67
OS/360(19.6) IBM360/65
OS/360(20. 1) IBM370/165
US/360(20.7) IBM360/75,195
OS/360(21.0) IBM360/75,91
OS/360(21.7) 1BM360/75,370/195
OS/360(21.8) IBM360/75
OS/MVT(21.7) 1BK370/165-I
OS/MVT(21.8) IBM360/65,91,1IBH370/158
OS/VS2(1.6) IBM370/168
HTS IBM360/67,A.DAHL47OV/6
STANFORD UNIVERSITY 1BM360/67
PURDUE UNIVERSITY CDC6500,6400-6500
BERKELEY LABORATORY CDC6600, 7600

_ LIVERMORE LABORATORY CDC6600,7600
NCAR CDC6600, 7600
SCOPE(3.3) CDC6400
SCOPE(3.4) CDC6600
UT2D CDC6600-6400
EXEC 8 UNIVAC1108
EXEC 31.244E UNIVAC1108
EXEC MACC 31.66 UNIVAC1lO

14. OTHER PROGRAMMING OR OPERATING INFORMATION OR RESTRICTIONS -

LOCATIONS AND MACHINES USED FOR FUNPACK TESTING WERE -
MACHINE TEST SITE

3IB360/65,IBM370/158 AMES LABORATORY, IOWA STATE
UNIVERSITY

IBM360/75,195,370/195 ARGONNE NATIONAL LABORATORY
IBM360/75,91 OAK RIDGE NATIONAL LABORATORY
IBM360/67,91,370/168 STANFORD UNIVERSITY

4BM360/75 STOCKHOLM DATA CE"TER
IBM360/65 THE UNIVERSITY OF CHICAGO
IBM360/75 UNIVERSITY OF ILLINOIS AT

URBANA-CHAMPAIGN
IBM360/67,AMDAUL47OV/6 THE UNIVERSITY OF MICHIGAN
IBM360/67 THE UNIVERSITY OF NEW MEXICO

IBM370/165,165-II UNIVERSITY OF TORONTO
CDC6600 KIRTLAND AIR FORCE RASE/AFWL
CY173,175 ICASE/NASA LANGLEY RESEARCH CENTER
CDC6600,7600 LAWRENCE BERKELEY LABORATORY
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CDC6600,7600 LAWRENCE LIVERMORE LABORATORY
CDC6600, 7600 NATIONAL CENTER FOR ATMOSPIIERIC

RESEARCH
CDC6400 NORTHWESTERN UNIVERSITY
CDC6400-6500 PURDUE UNIVERSITY
CDC6600-6400 THE UNIVERSITY OF TEXAS AT AUSTIN
UNIVAC1108 ILLINOIS INSTITUTE OF TECHNOLOGY
UNIVAC1108" JET PROPULSION LABORATORY

, UNIVAC1108,1110 UNIVERSITY OF WISCONSIN
15. NAME AND ESTABLISHMENT OF AUTHOR -

W. J. CODY
CONTACT BURTON S. GARBOW

APPLIED MATHEMATICS DIVISION
ARGONNE NATIONAL LABORATORY

9700 SOUTH CASS AVENUE
ARGONNE, ILLINOIS 60439

16. MATERIAL AVAILABLE - MAGNETIC TAPE TRANSMITTAL
SOURCE DECY3 (370-3902 CARDS, 7600-3983 CARDS, 1110-4115

CARDS)
DEMONSTRATION PROGRAM SOURCE DECKS (370-2083 CARDS, 7600-2151

CARDS, 1110-2211 CARDS)
OEM1ONSTRATION OUTPUT (370-61 PAGES, 7600-58 PAGES, 1110-44

PACES)
MACHINE-READABLE DOCUMENTATION (370-4532 CARDS, 7600-4518

CARDS, 1110-4518 CARDS)
1,17. CATEGORY - P

KEYWORDS - SPECIAL FUNCTIONS, EXPONENTIAL INTEGRALS, COMPLETE
ELLIPTIC INTEGRALS, DAWSON'S INTEGRAL, BESSEL
FUNCTIONS, NEUMANN FUNCTIONS, PSI FUNCTION
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Appendix C

Input and Segmentation Program

The following is a copy of-the source code for

program 1. Detailed description of the program is pro-

vided in Chapter IV of this report and in the comments

located within the code.

4

' 100
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APPENDIX C. COO0RDINATE SYSTEM AND SEG IEYTATIIO,". PR0GCRAI PACE C-1

PROGRA! READIN(I NPUT OUTPUT. DATA, TAPE 5-VINT,TAP- 6n(t".PLCT,
1 TAPE -DATA)

THISSECIONWILL RrAD I"' THE VALU:-S For tim SIZE OF THE

CELLIPTIC SHELL, Cfl:PLTC Tlr-. ELLIPTIC COO-DINATES, UTU
C THOSE VALUES, PLOT THE CYLINDER, At.D SIMTC' Ir: (VITH THE
c SECE.'!!NTS NtU-IBERED) THE LOCATION OF THE SE~fENTS.

DIMENSION RADII(O:100),ROU.(O:LOO0), PI1(0:100)
REAL K, MOT, LANDA
REAL MUNOT, MIN, MIJOU1, LEW.SICO0), USG(0:100)

PI - 3.1415926535898
READ(5,100,END-9999)A,R ,T,XS,YS, FREQ

100 FCRMAT(610.6)
IF (A.EQ.E) THEN

B - A * 0.999999999999
END IF
C - SQRT(A**2 - B**2)
E -C/A
CIRCUM - 4.0 * A * ELIE1(E)
DISTSC - S0%T(XS**2 + YS**2)
rKN'OT - 2.0 * PI * FREQ * 1.0E09 /2.997925E08
MNOT -ATANH(3/VA)
TAU -T/A
IF ((XS.EQ.O.).AN'-D.(YS.GT.0.)) THENI

THFTAS - 90.0
VS - 90.0

ELSE IF ((XS.EQ.O.).ANlD.(YS.LT.O.)) THErN
THIETAS - 270.0
VS - 270.0

ELSE IF ((XS.EQ.O.).AJND.(YS.EQ.O.)) THEN
THETAS - 0.0
VS - 0.0

ELSE£
THIETAS - ATA!:(YS/XS) * (180.0/PI)
VS - ATAIN(A*TAIND(THETAS)/B) * (l80.0/PI)

END IF
IF ((XS.EQ.O.).AND.(YS.EQ.O.O)) THEN

CS - 0.0
ELSE IF (XS.EO.O.O) THEN

CS - YS/(SIi'-I(!UNOT)*SIND(VS))
ELSE

CS - XS/(COSII(IkRNOT)*COSD(VS))
END IF
WAVELT - 2.997925E08/(FREQ*1.0E09)
AW - A/WAVELT
BW = B/WAvT.LT
C11 - C/WAVELT

T- T/WAVELT
K *SQRT(16.0*(PI**2)-(80.0*SQRT(3.O*(PI**2)+100.0)-S00.0))/WAVELT
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APPENDIX C. COOIDI::ATE SYSTEM AND SEGM!ENTATIION PIOGRAM PACE C- 2

LA.D 0.75 *(K*C)**2
FC ~ ~ ~ - -. SNI2OrUINT) *(TAU *COS:I(TA') -SINH(TAJ)) /8.0

FCON S I (NT*)(. PI * fC* .854185E-3)
FCOKS2 -(KNOT**3) * (SIN1(2.O * !UNOT)**2)

1 *(TAU * COSII(TAU) -SINM(TA
T))

2 I(64.0 * PI * FpR~n 8 .854185Z-03)
NIUIN - 'IUNOT - TAU/2.0
HUOUT - :lUr:OT+ TAU/2.0
WRITE(6, 1030)

1030 FORUAT('l',132('*'))
'JRITE(6,104O) A, T, Ali, TV, R, Mra, XS, YS, C, E, CIRCUM

104n FOP.MAT('0',15X, 'INPUT DATA: '/25X,'SEM!I-,kAJOR A4XIS: ',FIO.6,
1' lfrTERS.',1OX,'SlELL THICKN.ESS: ',FlO.6,' METERS.'/
A 30X,'(',F1O.6,' WAVELEI.CTHS)',15X.,'(',FlO.6,' WAVELENGTllS)'I
225X,lSEYI-XINlOR AXIS: ',FlO.6,' 'ETEPS.',1OX,'(',F1O.6,' WAVE-'
B ,'LEVC~lrS)'/2 5X, 'SOLURCE X'.
4' CORDINATE: 'FlO.6,' 'ETERS.',10X,'SOURCE Y COORDINATE: '

5F10.6,' !METEnS. '/l15X, 'CALCULJAT'
6,'ZD DATA:'1/2 5X, 'FOCAL LEl;GTH:',5M,F1O.6,' "ETrflS.',10K,
7'ECCEN'TRICITY : ',FlO.6,'.'/25X,'CIRCU IIEREP~'"I: '

;r.ITE(6,1050) MUOUT, TAU,. :UIN,M'OUTr
1050 FORMAT('-' ,15X, 'CONSTAFT ELLIPTIC COO2DINATES: 'I//,25X,

2'RADI'S: ',Fl0.6,1OX,'UTER RADIUS: ',FlO.6,'.')
WRITE(6,1055) M!U0UT, VS, DISTSC, THETAS, CS

'A' 1055 FORMllAT('0' ,15X, 'SOUP.CE LOCATION:1/15X, '(SEC0!.D SOURCE LOCATED
1,'180 DECREES FRO7.I THE ONE INP TZD)'//25X,"'ELLIPTIC COOP.DWATS:'
2,2X,F1O.6,1OX,'ZLLIPTIC ANGULAR COORDINATE: ',F1O.6,' DEGR.EES.'/
325X,'POL.AR DISTANCE FRO*,! CENTER: ',Fl0.6,' METERS.',1OX,'P0LAR ',I
4'ANGLE: ',FlO.6,' DE(MEES.'/50X,'FOCAkL LENGTH FOR SOURCE ELLIPSE'
5': 'P10O.6,' fETERS.'fI/)
WRITE(6 ,1065) FREQ,WAVELT,K,KNOT

1065 FOPJtAT(' ', 15X, 'ELECTRONAGNETIC PARAMETERS 1/2 5X, 'FREQUE' NY: '

1F1O.6,' GIGAHERTZ.' ,lOX,'WAVELENCTll: ',FlO.6,' METERS.'125X,
2'WAVE NUMSERCDIELECTRIC): ',FlO.6,'.',10X,'WAVE NUI!BER(FREE '

3'SPACE): ',F1O.6,'.'////)
C
C
C
C CONVERT ALL 'fETEr. 11EASURES TO WAVELENGTH! MEASURES.
C

CIPC'.-I - (CIRCUMt/2.0)/AVELT
J-0

LENS IG(O)-O.O
NUSEC(O)u-90 .0
CtRPLENO .0

-. THETA - -90.0
50 CO*.lTINUE

RO( J J)-( (AWI*AW*S I.ID(TIETA) *5 IND(T!IP.TA) )4.( BU*BW4*COSD (THIc-TA) *
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ArPEI:DIX C. COORDINATE SYSTVE I A... S £CklZTAT II0I PROCRXf PAME C- 3

1 COSD(TllETA)) *l. 5/(AW*BW)
flADI I(J )-S ORT(AtJ*At!*COSD (THE' 1A) *COS .9(TH::TA)+

J - J + 1
IF(ROiJ(J-1) .CE. 2.5) THEN

LENSIG(J) - .25
ELSE

LENSIG(J) - ROw(J-1)1O.0
END IF
CH!I-ATAN(LENSIC(J)/R.ADII(J-1 ) )"18O.0/PI
CURLEN - CURLEN + LE NSIC(J
THSTA-TIIETA+C1II
PIII(J )-THETA
IF (PHI(J).EQ.-90.0) THEN

NUSEC(J) - PHI(J)
ELSE IF (PHI(J).EQ.90.0) THEN

H:USEC(J) - PHI(J)
ELSE

NL'SEC(J) -ATAN((A/B)*TA!.D(PHI(J))) *180.0/?1I

END IF
4 IF (TI!ETA.*LT. 90.) THEN

GO Tn 5n
ZLS E

LENS IC(J )-CIRCUll-CURLEN
PuiI(j)-90.O
I"USEG(J)-90 .0

END IF
IJRITE6, 1060)

DO 60 KK-,J
WPTITE(6,1O70)KK,LE :sIG(K") ,PHI(KK) ,NUSEC(KK)

60 CONTrINUE
WRITE(6, 1090)

WRITE(6, 1090)
1060 F0R!"lAT('O',5X,'SEGHEN T NUT~BER',6X, 'SZG:ITEtT LE.NGTH',8X, 'ENID P01'

1,'NT A!NGLE',11X,'ElD !?01NT ANGL'/26X,'(WJAVELE&'.cT!!S)',
26X, '(DECRErS-CYLINDRICAL)' ,6X, '(DECREES-ELLIPTICAL) 'II)

1070 FOP.IAT(' ',11X,13,13X,F10.6,12X,F1O.6,12X,F10.6)
*1080 FORMAT('1')

1090 FORUAT(+1
325X,

t EhND OF JOB.')
WRITE(7) Pl. ?IUN:T, TAU, VS, CS, MOT, K, 1AVELT, LMDA, FC. FCS 1, FC'.S2,
1 C,J,NUSEG,PHIl,A,T,FR-EQ

9999 C0O."rINIuE
STOP
END

7.

103



414

4W

49

4-1

.. 1 W.* 4
-... ,

49
49

49
4

4 i

4 * C U3

4 (n 00 -eu

4. %4. cc -

w 04'c

4 C -2~

4 0 <

4L f- L * 0< )

4 Inc oe

ta a - .a4.

it U2 Lo k

4 0U

49
49

4
49 CL.*'

41 0- CC Q

C4 C.. N. CC

*1 4 CtBA C-
41 C- C 0U nWuw - - -

4 *

49 Ea .
49 W.-4 l

49
49 C ~ tC - .!
49 104

-. ~~4 * g~~
IN .ji .. ~-

49 !



*SEMIZrT 1.01BER SEGHM.NT LENGTH END 0ON ANGLE END POINT.r M.'CLE
(WA~VELENGTH1S) (DECREES-CYLINDRICAL) (DEG." EES-Z.LL1PT ICAL)

-J0 0.000000 -90.000000 -90.000000
1 .025000 -84.289407 -84.289407
2 .025000 -7.578814 -73.578-014
3 .025000 -72".868221 -72.868221
4 .025000 -67.157627 -67.157627
5 .01-5000 -61.447034 -61.447034
6 .025000 -55.736441 -55.736441

7 .025000 -50.025848 -50.025S48
8q .025000 -44.315255 -44.315255
9 .0251)00 -38.604662 -38.604662

10 .025000 -32.894069 -32.894069
11 .025000 -27.183475 -27.183475
12 .025000 -21.472882 -21.472882
13 .025000 -15.762289 -15.7622,09
14 .025000 -10.051696 -10.051696
15 .025000 -4.341103 -4.341103

16 .025000 1.369490 1.369490
17.02-5000 7.080083 7.080083

1s .025000 12.790676 12.790676
19 .025000 19.501270 18.501270
20 .025000 24.211363 24.211863
21 .025000 29.922456 2.922456

S 22 .025000 35.633049 35.633049
213 .025000 41.343642 41.343642
24 .025000 47.054235 47.054235
25 .025000 52.764F-18 52.764828

*26 .025000 58.475422 58.475422
27 .025000 64.1F6015 64.186015
28 .025000 69.896608 69.896608
29 .025000 75.607201 75.607201
30 .025000 81.317794 F1.317794
31 .025000 87.028387 87.028397
32 -.014602 90.000000 90.000000
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Appendix D

Matrix Program and Linear Algebra Solver

The following is a copy of the source code for

program 2 set up for the small circular case. Descrip-

tions of the code are provided in Chapter IV of this

report.
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APPEN!DIX 1D. THATRIX CALCULANTOR AND LINEAR' ALGZEPRA EOL"1T1ON SOLVERF PACF D-)-

rPOCRACMI ARRAY (DATA, OUTPUT,RESU'LT, TAP:Z7-D.ATA, TAPE 6-17PPUT,
1 TAPES-RESULT)

C
C THIS SUBRlOUTINES CALCU'LATES THE FIELD ARRAY, ZMN, An THE
C SOURCE VECTOR, VINY. THIS IS DONE BY Fl !'ST CALCULATING THE
C Z,'IN TERI-S WJITH M BEING M4ELD CONSTANT. PEFORE LOOPING TH;: M
C DO LOOP, TUE COORESPONDVZG1 VOLTAGE VECTOR VALUE IS CALCULATED
C BY CALLIKG THE SURqOITI'NE KNOWN AS "VOLTS'.

*C

COW!MONELLIPS/MU, C, TAU, K
COMtO/CON ST/ IFLAC, FC, FCONS 1, FCONiS 2, P1,LANiDA
COMWIO/SOURCE/CS, KNOT,VS
COMMtON /S INCkTLr/AZEPO , AONE

REL ,KOT,t.AllWA,M1U,NISEGD,NUSEC(O:32),NU1,NU2,U3,!.:tT4,N:U5,rU16
COt!iPLEX Z'EN(0:32,0:32),VI.IN(O:32)
DIMENSION IPVT(32),Z(32)

C
CALL LERS-1T(l,IX)
REAn(7) PI,MUL,TAUl,VS,CS,KNO-T,K,UAVCLT,LAMIDA,FC,FCON~Sl,FCO.N1S2,
1 c,NOSzG,!USEG

.PRI!NT*,' -,C,' ',NOSEG
RADC% T -PI/180.0
DO Ill KNtK-O,!NOSEG

!:JSEGD - '.USEC(KKYK)
NUSEC(KGC) -NUSEC(KKIK) .* RADCVT
PRINIT*, 'NUSEC(KKY),' ',NUSECD

ill CONTINUE
1WRITE(6,30)

30 FOR!!AT('l1,7X, 1-1, 8X, IN', 12X, 'ttAL', 14X, 'IMACIONANRY', 12K,
1 'ItAC'NITUDE ', 14X, 'PIIASE', 14X, 'TIH-E')

C
C CALCULATE CONSTANTrS FOR USE IN THE MAIN SUBROUTINE AND RELATED
C FUNCTIONS.
C

FCONS2 - ((C**2)/2.O) *(COSII(2**.W)*SI&H(TAU) + TAU)
AZERO YNU(l.OE-O3,0)
AONE -- Yl(1.OE-03)
DO 20 !-",!NOSEG

DO 10 N - O,NOSEG
CALL CLZMNR(%MNf1R, Z4NI)

C
C Tilt RETURNED VALUTES FROM CLZMNhR ARE R7'VERSED DUE TO THE PRE-

CSENCE OF THE "J" IN THE EXPRESSION OF 111E KERNAL. THIS IS
C LAMDA FOR TilE FRED110OLN I-.TEGRAL EQUATION OF THE SECOND KIND.
C

ZN( I, N)- CM1PLX (&ZfN.I , Z1NR)
RMAC -SQRT(ZfN1**2 + Zt NR**2)
PHIASE - ATAN(Z VRZIXNI) * 10.OIPIRerdcdfo

107es ~vaiablecopy..
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APPE~NDIX D. MATRIX CALCULATOr AFD LI-EAf ALCEnr-A EqUIATION SOLVER PAGE 0- 2

IF (!'.EQ.U) THE-2:
IJMITE(6,40) "!,ZI,ZNR ,RAC,PASE

ELSE
Wr ITE (6, 50)!!, N, Z',f I, ZMNR "?AC, PHASE

END'I IF
40 F02'AT('O',6('*'),13,6X,I3,4(6X,El5.8))
50 FOR:IAT(' ',6X,13,6X,I3,4(6X,E15.8))
10 CONTINUE

CALL VOLTS (VKNF)
20 CONT73INUE

C
CALL CGE CO (ZI, NOS EG,N'OSEC, IPVT, RCOND, Z)
PRINT *,'RCONI) - ',RCOND
CALL CGESL(ZMN,NOSEC,NOSEC,IPVT,v--*v:,O)
WPITE (8) IMN
STOP
END

# 9. SU3ROUT INE CL7.MNRMlN RZMNI)

C THIS SUBROU'TINE DOES THE CALCULATION OF T'iE rEAL AND THE MIAC-
C WnARY PARTS OF .ZMf. SINCE THE I'ISL INTEGRATO?. DOES ONLY REAL

*C A:1ITI!ATIC, THlE PARTS HAD TO BE SEPERATED. K.79.CE THERE IS NO
C lIA~KEL FUNCTION SUBROL'TINE AS V1IC.1T BE EXPECTED.

COW ?Of/ELLIPS/WJU, C, TAU, K
COMMON01/CELLS /11U5 ,NU6 ,NUl, K, NL'3 , MU4, 1,, NSG UE
COM! ON/CONtST/ IFLAG, FC, FCONS1, ,Fl , P, ,LA: MA
EXTERNAL FA1, FA3, FA5, FA7, MIl, FA3I, FA5I, FA71
EXTE-NAL FSIA1,FSIA2,FSIA3,FSIA4,FSI31,FS-II,2,FSIB3,FSIB4
r.EAL IAMDA,K,! U,N-USEG(0:32 ),N4Ul,,NUN?U3,!:X4,N*U5,L'6

C

C IFLAG - 0 - REAL FUNCTION
C IFLAG - OTHER - IMAGINARY FUNCTION
C

P12 -P1/2-0
Fl ((C**I)/2.O) *(COSII(2. O*MU)*Sill (TAU) +TAU)
IF (MI.GT.O) rHEN
NUl -NtISEC(M-1)
ELSE
VUI -P12 - (P12+USEG1)
END IF

IUNS EC( )
IF (%I.EO.N0SE.G) THEN
NU3 - P12 + (P12-NUSE:C(NOSEG-1))
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ELSE
J-NUSCC (!!+l)

END. IF
IF (.!.CT..0) TIMM
NUl4-NUSCG(N-1)
ELSE

* :m4 - -P12 - (P12+'IUSEG(l))
-,E ND IF

'I-N'S EG (N)
7-1 (?.L.SEG) THEN

'316-1', S EC (!,+1
ELSE

7U6 - 1"12 + (PI12-?,XSEC(l:os!:G-1))
END IF

C
ITEST - M- N
IF (ITES-l.EQ.0) T'IEN

IFLAG - 0NO % X6zm!NR -(Ss0Ns,(FA1,!u, 'v, . 5,u.,.01,ER,ISP.) +SIr'SO'(FA5,

A + :s~( 12 U, N3,NU4, NX5, 0.O01, ERR, IER)
A + SI'!S !(FA7,NU1,NIU2,NU5,,NU5,0.01,rR,IE-R)
1 + SrlsoN.,( FAlI, NU2 , NO3, ri-NU5, r-
2 NUT6,O.01,ERR,IFER) + SIMSON(FA3I,NU2,
3 N113, ri-NU4.PI-N'5, 0. 01, E:RT,IER
4) + S VISON(FA5, NUl, NU2, PI-N'U4, PI-
5 N~U5,0.01 ,MfR,IE1P) + SIS0rT(FA7I,NUl.
6 rU2, PI-U5, PI-NU6,.0.01, ER
7 IEP)) * LDA

IFLAG-1
Z.I - SI!tSON:(FA1,N4U2,NUL3,N u5,?:u6, 0 *01 ,ERR, IER)
1 + SIMISON(FAS,N.1 ,NL'2, NU4,NU5,0.0l,ERR,IE-I)
A + S I!tSON(FA3, NU2, NU3,-NU4, N.U5, 0.01, ERR, IER)
A + SII'SONI(FA7,NU1,NIU2,N'U5 ,NU6 ,0.O1,Err,IE-I)
1 + SISON(FA11,1M.'2, N3, II-1,10
2 PI-NU6,0.1,ERP,IRR) + S1P!S0N"(FA31,
3 NTU2,:;J3.PI-NU4,PI-NU5,0.1,
4 E'~fl,IEP,) + 3I!SON(FA5I,Nul,iMu2,ri
5 -NU4,PI-NU5,O.1,ERR,IER)
6 + SIMSON(FA7I,t7Ul,NU2,PI-NU5,

7 PI-NU6 ,0 .1,ERP,IER)

Z!INI - ZMNI * (-LAMDA)
1 + Fl * DCADRE(FSIA1INU1,NU2,0.0,1.E-1,ERR,IER)

*2 - TAU*C*C*DCADRE:(FSI1,1,N,.,U2,O.0,1.E-lEr.P,IV-7)
3 + Fl * DCADR(FSIA4,NU2,'U3,0.0,1.;.-l,ERR,IER)
4 - TAU*C*C*DCADRE(FSIR/4,NU2,N'U3,0.0,1.E-1,ERR,IER)

C
ELSE IF (ITEST.EO.I) THEN

Aso. IFLAG - 0
e NR41 - (SLM!S0N(FA7,N'1,N.U2,u'U5,,':U6,0.O1,EP,IER) + IMSON(FA1,

1 NU2, NI3,
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1 NU5,NU6,O.0l,-2R!,IER)
2 + SIMISON(FA1,'fL'2,NLU3,Pt-NU5,
3 PI-NU6,O010,ERR,IER) + SIMSO:!(FA31,
4 -U2,N113 , PTI-'X4, PI-NU5.
5 0.01,ERR,IF2) + SI-tSON(FA3,Nu2,:U3,
6 14 ,NUJ5, 0.01, ERP,IE~t) + SL:SON(FA5,
7 NUl,N1, NU4,N115,0. 01,EnR,
8 IER) + SIn1SOr".(F%51,NUl,m-IU2,Pl-NL'4,PI-NU5,
9 O.O1,ERRIER) + S3flSO(FA71,NIU,N'2,
A PI-NL'5,PI-NU6,O.O1,ERPt,IER)) * LAMDA

IFLAG-1
ZM?;I -SPISON:(FA7,t.Ul, .2,U5,NU6,o0o1 ,IER,ZRR)+

1 SI!1ISON(FAl,ML'2,?NU3,,TU5,
1 NU6,O.1,ERR,IER) + SIS0N(FA1i,
2 IIL2,NU3,PI-NI.U5,PI-;NvU6,
3 O.1,ERF,IE-M) + SflISQN;(FA3 ,1NU2,?.IW3,
4 ;4N5O1Er 5 Ir)+ SI'ISOrNCFA3I,

5 ::'2,P -U4,PI NU5,0.1,EKR,

6 IFR) + SIMSOt'(FA5,NU,U2,7U4,N.U 5,0. 1, EP.,
7 IR) + SIM'-SOZ;(FA5I,r:Ul,NU2,PI-:IU4,PI-N"US,o.1,

*-8 E-RR,IER) + SIMSON(FA7I, "I, "112, PI-NI!5,

Z!"11 - ZTII * (-LAMDA)
1 + Fl*DCADRE(FSIA2,UU1,u.U2,0.O,1.E-'1,ERR,IE%)
2 -TAkU*C*C"*DCADRE(FS132,NUI,::U2,O.0,1.E-1,ErR,I:-R)

ELSE IF(ITEST.EQ.-1) THEN
IFLAG - 0

ZMNR -(SI, 1SON,(FA3,NU2,NU3,1.:u4,4Iu5,0.O1,ERr,,IER,) +
1 SIMISONi(FA1,NU2 ,!:u3 ,lru5,4u6,O.0 1,ErR

1 ,IJER) + S3PISON(FA1I,NU2N3P-UIN6O0.

2 ERRIE) + SI'1SOI ,(FA3 , NU2,NU3,PI-!,IU4,PI-
3 .a5,O.01,ERR,IER) + SISOI:(FA5,NUl,NU, :4NS

4 O.01,ERRJER) + SISON(FA5I,!7J1,!T.U2,
5 PI-NU4,PI-NU5,0.0l,ERR,IER) 4 SIMSON(FA7,
6 NUl,NU2,:rU5,T:U6,0.ol,ERR,IEP.) + SIMSOM(FA7I,NUI,
7 ;U2,PI-NU5,PI-NU6,0.01,ERP,IER)) * LKA?')

IFLAG - 1
zI-T.:I S sI!TS0N(FA3, NU2, NU3, NU4,!TU-5,0.01, ERR, IER)

1 + SIMSONl(FA1,NU2,N'u3,NiU5,NU6,O.O1, ERR

I ,IER) +SISO::(FA1I,NU2,NU3,rI-N4U5,pI-NU6,O.1,
2 U51ERR,IER) + SIMSO1NF,NU, U2NU4,NU5,

4 0. 1,ERQIER) + SI.-fSON(FA5I,NU1,!NU2,PI-NU4,
5PI-NIU5II.l,ERR,IER) + St! SN(FA7,NUIN2, NL5

6 NU6,O.l,ERR,IER) + SIMSON(FA7,N-l,NU2,PI-NU5,
7 PI-NU6,O.1,ERR,IER)

ZMI - ZMNI * (LMA
1 + Fl*DCAD?%E(FSIA3,NU,N'3,0.0,.~,R,~~
2 -TAU*C*C*DCADRE(FSIB3,NU, ;U3,0.0, I.E-i ,ER~R,IER)
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ELSE
IFLAG -0
Z!-INT-. -(SIMSOI(FA1 ,,'1U2,1;.U3,NU5, L'60 *01,

1 ERR,IEr) +- SIi1SON:(FA3,1,U2,NU3,
2 :U4,NU5,O.01,rR,IER) + SIM.SO::(FA7,

3 F.1N21UV,.1ER
4 TER~) + SII!SO.':(FA5,NU1,f:t'2,NU4,N,%U5
5 P0.O1,ERIER) + SI'1SON(FA1I,NV2,:U3,
6 PI-NU5.PI-:;U6,O.O1,ERIER) +

7 SI~-ON(FA3I,N12,NU3,PI-NU4,Pl-
8 N-U5.O.O1,E.R,IZR) + sr1SO7(FA7I,.'Ul,
9 M~L2,PI-NU5,PI-NU6,O.O1,ERR,
A TER) + SIi1SOr:(FA5I,NL1,IVU2,PI-
B !L4,PI-NL5,O.O1,ERR,IER)) * LXMDA

IFLAG - 1
Z'.!NI - (SIHS0N(FA1,N2,?U3,f:U5,NU6,O.O1,

1 ERR,IER) + SIM,1SOX(FA3,NU2,NU3,NU4
2J ,N 0,.01,ERR,IER) + aIM. N(FA74L1,

3 TU)U5,?!'U6,O.OI,ERR,IER) +

5 ER7R,IER) 4-SIMSOX(FA1,1Nr2,1 NO,
6 rI-r; 5,P-!U6,.01,ERR, IE-) +
7 SI!!SO!:(FA3.31 , 2,k:'3 ,Pt-NU4, PI-
8 MU5,O.01,CR.,.,IER) + SID'SO:(FA7I,NU1,

A IEP) + SIMISON%(FA5I,,NUl,4X2,PI-NIU4
* B ,PI-NU3,0.O1,ER,IRn)) *(-LA"DA)

END IF

REAL FUNCTION DEL(V,VP)
C~1I!~/ELLPS /X, C, TAU,K

C
C CALCULATES THE DISTMC(E BETWEEN TWO POI.%TS OF CONSTAZT HU
C ON THE ELLIPTIC SHIELL
C

REAL MU,K
DEL - SQrT((COS 11(fU) **2)*( (COS (V)-COS(VP))*2

* 1 (SIDT1(MUl)**2)*((SIN(V)-SI":(vP))**2 ))
RETURN
END
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RFAL ?UNCTION FIREPNL(V ,vP)
C
C TIS FUNCTION' DETER'II1.'ES WHICH (REAL OF, IfIACINARY) SECTIONS IS
C BEING CALCULATED BY THE DEFINITION OF IFLAC SET BY THE CALLING
C PROGRJAM. SEE APPENDIX C.
C

CCVM"!ON/ CELLS/ NU5, NU6,NUl ,NV2, NU3,NU4, M, N, NOSEC, NUS EC
COMMO._j!:/rLLIpS/MU, C, TAU, K
COMIION. -/CON4ST/IFLAC, FC, FCONSL ,FI ,PI ,L& tDA
CO!1MON/S INGLE/ AZERO, AONE
REAL K,rHU,NUTTSEC(O:32),NU1,NU2,U3,N'4,N4U5,N'6

C
ARG K * C * DEL(V,VP).
IF (IFLAG.EQ.O) TIJEN

FKERNIL - (-1.0) * BESJO(ARG) *FYErLl(V,VP) *(C**2)

ELSE
IF (ARG.LT.1.0OE-03) THEN

SEE')- AZER0 - (AONE * 5.OE-04j
SZEEbO - AONE/2.OE-03
FIZRNL - -(S!EEO + SEETIUO*(Ar-**2)) FKERLl(Y,VP) *(C**-?)

ELSE
F=R',TL - -YN'.U(ARG,O) *FT:E7Ll(V ,VP) * (C**2)
.ND IF

ENDT
C

RE7URN
-" ED

REAL FUNCTION FIZERL1(V,VP)
C
C

COI PON /E LLI PS HU, C, TAL, ,

COIVION/ COS T/IF LAGC, FC, FCONS 1 , Fl1 , PI, LA'IDA
REAL !K,MU

C
C FUNCTION CALCULATES THOSE EXPRESSIONS ASSOCIATED 11ITII TUE ZERO
C ORDER IIANKEL FUNCTIONS.
C

FIMRL1u(-TAU**2) *(COSH(U) **'-'CS(V) **2)*(COS(lU) **2.COS (VP) **2)
C
C

RETURN
END
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REAL PUN';TION BASE I(V, K, INUS, VM)

C CALCULATES THlE BASIS FUNCTION~ FO~t THE VSU MIDt.SOMJ TO THE
C VSL'D? TERM1.

C~tIHO!/ELLIPS/MU, C
REAL K, MU

C
DIFVVMt - DEL(V,VMINUS)
DIP VMV -DEL(VM,VtIINUS)
BASEl SINOI'*C*DIFVVIH) /SIN,(K*C*DIFV?IV)

RETURN
END

R~EAL FUJNCTION: I3AS r2(V,K,VPLLUS,VtM)

CFUNCTION FOR TIlIE 7ALLING -ORTION. OF THE~ SIN0SIIDAL POR.TIONl
C OF TIMZ BASIS r-:t.'VE -TEGA FR(Y VSVIM TO V3U;-lMPL'SO'4E.

COM 10:;/ELLIPS / M,' C, TALI

DIFVVP - DEL(vPLUS,V)
DIFVPV - DEL(VL'S,V--t)
1ASE2 -SIN(1 C *DIFVVP) /SIN(K *C *DIFVPV)

C
RETUR N
END*
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!'FE-L FUNCTION FA3(VP)
C

CO?1MOT/CELLS/N*U5 , 'LJ6, ull , NU2 ,NU3 ,z;u4 , , , %,:'OSEC * LUSEG
CO)! ION/ELLIPS / M1, C, TAU, K
C(74"0 "./VARY /V

REAL K,*UL'SEC(O:32),U1l~,U,U3,.U4,U5,NU6

FA3 - BASE1(VP,K,NU4,,-RI5) *RASE2(V,K,tNU3,

1 NU2) *Ft:ERN-L(V,VP)

C
RETURN
E ND

Rr:AL FUNCTION R.OSCE(V)
C

C')' ION'/ELLTPS/fin, C,TATI, K

R~EAL K,'lU,240T

?ROUSCE - S(( Sl(!)*)* (( COS(V) -CS * COSvCvs))**2)
I. + (S~;i?*)*((c * S!NT(V) - CS *sN(S)*)

4. SURROUTINE VOLTS (VMN)
COIMllON/CELLS /NU5, NU6,UMl, NU2, NU3, NU4 , 1N, NOS -C,N'US EC
COxMION/CO0.:ST/IFLAG, FC, FCONS1 ,FL ,PI ,LA'!DA
R.'AL KNOT, TUSEC(O: 32) ,NU1, NU2, NU3, NU4, t1U5,N'U6
CO!IPLEX V41:(0:32)
EXTERNAL FS4,FS5

C
IFLACO
VMNRZ - DCADRr,(FS4, N'L1,N'I2,0. 0, I.O-3, ERR, IER

1 ) +DCADRE(FS5,NU2,NIU3,O.0,1.OE-3,ERR,IER)
IFLAC - 1
VMNI - DC.%DRIE(FS5, NU2,'NtL3, 0.O0,1. OE-3, ERR, IER

1 )+DCADRE(PS4, NU1, NU2,0. 0, 1.0r.3, ERR, IER)
VXNf~(!I) - CMfPLX(V?!NR,VMrI)

RMIAC - SQRT(VM M%**2 + VIINI**2)
PHASE - ATAN(VffN.I/VINT) * (180.0/PI)
W4RITE(6, 10) !! , V~!R%, V!NI,IUHAC, PHASE

10 FOTLiA('O',6X,n3,9X,4(6X,E15.8)) bs vial .
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REAL FUJNCTION* FA7(VP)
C

CO~l' ION /CELLS /1;U5, '.U6 , NUl, N'2. Zll'3, N'4 , MT, I, NOSEC, NU'SEG
CMOIN/ELLirsb!u, C, TAU, K
COt!! tON/VArY/V

C
FA7 -BASE1(V,K,NUl,NU2)

1 *RASE2(VP,K,NU6,lNlU5) *riERP:L(V,VP)

C

END

REAL FUJNCTION FS21(V)

COl k!O':/ELLIPS MU, C, TAU,K
Coti1llIN/SOfL-CE/CS,FN.OT, VS
COMION:/CONIST/IFLXC, FC,FC0!4S1l Fl, P1,LA1'IA
a.EAL K,KNrOT,!fU

C
IF (IFLAG.EO.O) TIIFN

FS2 -FCONS1 * (C**2) * TAU * BESJO0NO?*ROV'SCE(V))
I (COSH(MUL)**2 - COS(V)**2)
ELSE

FS2 -FCONS1 * Yl~l((Y~NOT*Rnt!SCE(V)),O) *(C**2) 'LTAU
1 *(COSI!(M'.')**2 -COS(V)**2)

C
RETURN
END
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MEAL FUNCTION FS4(V)
C

C(Y IO0N / C CLS PN, NU,!%Ul , NUL U3,N4!, :OSEG ,, NS C

cowLIoN/SO ;uCE/C-SM'OXT
'ZEAL KNOT, r.USE(0:32),!NUl,N.U2,NU3,NL'4,..5,N;U6

C
FS4 - BASIE2(VrM40T,NU3,.NU2) * FS2(V)

C

REFTURN
END

REAL FUNCTIN FS5(V)
C

CctIONI CELLS/ /NU5, *U6, N:U1 , IJU2 , I;U3 , !U4 , I,, N~,IOSE *NS EG

RIZAL O:1'.,NUSE(:32),NUl,NUTJ,?fL'3,NU4,NL'5,!:U6
C

FS5 - BASEI(V,r..iOT,f:Ul,,U-2) *FS1(V)

R ETURNl

REAL FUNCTION FAL(VP)
C

Cc7rfl ON/ CELLS/,IU5, NU6, NUl , NU2 , NO3, N U4, M, N,' 11OS EG, KUS IM
CoMOll/ELLIPSPIU, C, TAU, KC
CO!ION/VARY/V

REA iyN'"SEG(O:32),lI1,' 2,NU3,tNL'4,NU5,"U6

C
FAl FKER:'L(V,VP) * BASE2(V,I!,NL3,NIU2)
1 BASrw2(VP,I:,N.U6,NL9I5)

* C
RETLTIN
END
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REAL FUNCTION FA5(VP)
S., C

CM 1OV/ CELLS/ HU5, :U6, r.Ul,,i:TU2, U3,U 1M,MI ,'0SEG ,?US EG
cOmtor/nLLIs/mu, C,TAU, K
CO1WIONARY /V
rlEAL K, Uw ,NULSEG(0:32),N.U1 ,NU2 ,NU3 , t'4,'J5, :;-U6

C
FA5 -BASE1(V,K,NUI,NU2) *F.KCRNL(V,VP)

1 *BASE1(VP,K,NU4,!.-J5)

C
RETURN

REAL FUNCTION SIflISON"(FUNISON,A,B,C,D,!,,ERROR,IER)

X..-ENAL FUNSON
.,XINVAjZY/Vl

IFAL PH,INTFUNSON
C
C THIS FUNCTION IS BASED ON ROUTIN',E CIVENI IN:
-C

C 'APPLIED NUIMERICAL MIETH!ODS FOR DIGITAL COMULTATION
C V:ITH FO"..TR&k AFD CS4P','SECONlD EDITION', BY ',. L. JA'!ZES,

CG.M. SMITH, AND J.C. U1OLFORD, KEW YOK: THO!MAS Y. CROWELL.
*C PAGES 32k-,331,(1977).

C
ll-(R-A)I1O.

V 1-A+11
DO 10 1- 2,10
IF (MOD(I,2)) 20,20,30

20 CONTINUE
17m1.4+4. *DCADRE (FUNTSON. C, D,O. 01.-U 1,ErROPlIER)

GO TO 10
30 C ONT INUE

10 Vi 1+1

Vi A
INT -(11/3.0)*(DCADflE(FUN:SON,C,D,0.0,1.&-,ER0'.R,IER)

11 4-B

Ifrr - IN? +- (11/3.0) *DCADRE(FUrSON7,C,D,O.0,1.E-i~,RQ,IER)

DEL? - D!EL(A,B)
DELT2 - DEL(C,D)

~**-~:SINSON -INT

RETURN
-. 117



APflID 1 D. !MT1IX CALCULAtiO AND LINEAR ALGE1WRA rQUATION SOLVER PAGE D- 12

END

RflAL FUNCTION VA1I (VP)
C

CO'M!MO/CELLS/!IU5, II:U6, ,U1 ,NU2, NO, NU4, f!, N, NOSE, 7CSEC
COMMXOWJELLIPS/NU, C, TAU, K
COVIMON/VA'Y/V
REAL 1%?MUI'USE(:32),NUL1,N,'U2,NU3,NU4,NiU5,NL'6

C
FAIl - FKERML(V,VP) * BASE2(V,Y,". 3,N2)
1 * AS-EI(VP,K,NJ6,NU5)

V.

RETURN
END

REAL FUNCTION FA31(VP).

CQ-!10t-/CELLS /MN5, KU6, NU1, NU2 .U &M rU,?!, N,? ')SEC, NUS EC
CO!M1ON/ELLIPS/ t1J, C, TAU, K
COIN!ONVARY/V
MEAL K,',N~:USEG(O:32),f.'l,NU2,NIU3 ,NIU4 ,W5 ,NJ6

C
FA31 - FKEP?!L(V,VP) * PASE2(V,K,113,N'V2)

* -,1 *BASE2(vr,K,NIJ4,NU5)

.4,. C

EID

.4lie
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REAL FUNCTION FA5I(VP)
C

C& VIMr/ CELLS/MNU 5,,".U6, I:l'1 .7U2, IX3, NU4 1,: , 'NsE 7US EG
CMONOUELLIPS/IMU, C, TAU, K
COIMOV/ VARY/V
RE.AL K,M1t,I'USEC(:32 ),NU1,.32I,N'.U3,:U4,N U5,.U6

FASI - FKERNL(V,VP) * BASEI(V,K,NU1,NU2)
1 *DASE2(VP,r:,N:U4,?IU5)

C
RETUR11
E ND

RZAL .Fu"CTIO'A FA7I (VP)
C

MON O/CELLS/NU 5,, ,"6, NUl , M2 ' '.U3,NHU4 , ,OSEG,'NV'SEG
CO!!.t/rLLIPS /'U, C,TAUt.,K
COPTO',./VAftY/V
I'.AL r.nU,NUSr.G(O'-32),F.;U1,:;,NU,.U3,NIU4,NU5,NU6

FA71 - FvY.UZL(V,VP) * RASE1(V,!K,%N11,1U2)
1 *BASEI(VP,K,FU6,NU5)

-p C

RETUR.N

REAL FUN4CTION FSIA1(V)
C

* C~t1!1ON/CEL.LS/1NU'5, ,:U6, N'Ul,NU2 , NU3 , NU4 ,M, I:,.-:os E:C,*NtSEG
COMMOWlELLIPS / 1, C, TALI, K
REAL K,!U,&USEC(O:32),I.U1,NU2,NU3,NU4,1TU5,N:U6

C
FSIA1 - AASE1(V,KVl,1J2)
1 B ASE1(V,K,N114,NU5)

* C
RETURN
END
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REA'LL PUNCTION FSIB1(V)
C

CO MON/CZLLS /NU5 , fU6, NUI ,N2,~u U NSC, NUS EG
CO "1t/ELLIPS hrU, C, TAU, K
REAL 1K,U,'.'SE(O:32),UL1,NU2,N U3,NU4,NL'5,NUI6

FSIRI - FSIA1(V) *(COS(V)**2)

RETURN

REAL FUNCTION FSIA2(V)
C

COW40tO /CELLS /N.U5, N'6 , NUl * NU2 , NO, NU4, M, N, NOSEC, NUS EG

REAL K,.'1UL,'SEC(O:32),?t'l,N.U2,NUL3,N'U4,'5,iU6
C

FSIA2 - BASrM(V,:,i-Tl,'t.'2)
1 I BASE2(V,K,N"U6,N.U5)

RSTURN
END

REAL FUNCTION FSIB2(V)

COtWON/CELLS /NU5, NL'6, N4U1 , NU2 ,U3, NU4, H, N, %,')SEC, NuS EG
CO WNELLIPS/;,,TU

REAL IU,K,N#USEC(O:32),NU,U2,:U3,N.U4,NL',5,NU6

FSIB2 -FSIA2(V) *(COS(V)**2)

C

RETURN
END
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REAL FUNCTION FS;;:;V;

FSIA3 - 3ASE2(V,F,Nt''3,NU2)
I IASE1(V,K,NU4 NU5)

* RETL'RN

REAL FUNCTION PSIB3(V)

*CcM1MO/CELS/1JU5, NU6,NUl 'U!, NU3,NU4 , , NOS EG,! XS sG
CO11 ON/ELLIPS/MU, C, TAU, K
REAL NU

NFSIB3 -FSIA3(V) C009*

RETURN

REAL FUNCTION FSIA4(V)

Cc.'t!tOINfCELLS /foU5, TU 6 NUl , 0l2, NU3, NU4, H, N, NJOS EG * NUS:G
CO~1f 1th *'ELLlPS /WcJ.C,TAt?, K
REAL tiU,K,TLSEC(:32),U,1,U2,NU3,NU4,N.U5,NU6

FSIA4 - BASE2(V,K,iU3,t;hU2)
I BASE2(V,K,NU6,NU)

C

MID
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7.1-

4-

RMAL FUNCTION FSIR4(V)
C

* COMMOI/CELLS /N'5,L6 ,Nfl NU2, t-:U3,NU4,!I, NOSE,L'SEC
CO!1ON/ELLIPS/Ky, C,TAV, K
REAL '1L',iK,NUSE(:32) ,N.Ul,t1I2,N\J3,NU4,NUT5,NL'6

FSIR4 FSIA4(V) * CIOS(V)**2

R.EVtRN
END
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REAL FUNCTION Yl(ARCG)
C

C SUROL4TIN FRO'f 'SYSTE!/360 SCIENTIFIC SUBRtOUTINE PACKAGE

C (360A-C~t-03X) VERSION II. Pi',OcRAM1vzs tI:At.AL, 120-0205-2,

C ~ TRIATIONAL R3USINESS i1ACI1INES(IBMI) COPPOPRATtON, W'IT!:

C PLAINS, NITD YORK. PAGES 157 & 15S, 1967.

CSEE ALSO P~AGE 275 FOR ACCURACY INFORMATI:
C

CO?#N N /IFLGFC Mros I , F1 , Pi
I F (ARG.CE.4.) THEN
Ti - 4.0 1 ARC

T2 - 16.0 / AP.C**2
P1 - ((((4.2414E-O6*T2-2.0O92OE-O5)*T2+5.eO759E-o5)*T

2

1 + 1.671-4)T-.940 :0)T+.7400836E-02
C VOTS: ERRORS WERE NOTE IN Tr. IRM Wr.ITE UP OF PACE 5S.* CODE

C USED IS 'COR71ECT. SEE IITCHCOCK, A. 3. 1. -POLY1.0wMIAL APPIOX-

C IMATIOtNS TO BESSEL FUNCTIONS OF ORDER ZERO AND ONE AND TO

CRM.LTED FUT.CTIONS". 'MATEMATICAL TAPLES AND OTH7? AIDS TO

C CO'tLTATION's 'VOLUHE 11'(58), PACES 86-88, APRIL, 1957.

C
AA-2 .O/SORT(ARC)
BBuAAT 1
D - ARC - P1/4.0
Ylu-AA*P1*COS (D)+RB*Q1*SINI(D)

ELSE
XX-ARG/2.0

T ALOG(XX)+O.577215
66 4 9Ol5

C EULER'S C0.':STAfNTA FROM 'HA"'DHOOK OF TABLES FOR~ MATHr:[ATICS',

C 'TIIIRD EDITION', PAGE 5, 1967.
C

SU!! - 0.0

APPENDIX D. 'IATPIX CALCULATOR AND LINE.AR ALGM~A EQUATION SOLVER PACE D- 17

MCI~ - XX *(T - 0. 5)
YONE - TERMf
Do 80 L - 2,16

SUM -SMf + 1.0 / FLOAT(L-1)
FLt. FLOAT(L)
FLI- FL - 1.00
TS - T - SLM

TERM - (TER.M1*(-X2l)/(FL1*FL))*( (TS-O.5/FL)/(TS+O.5/FL1))

4 YONE - YONE + TERM
80 CONTINUE

(12in2;/PIC + P12 *YO1E

END IF
R ET'R N
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