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A Multivariate IFR Class

by
Thomas H. Savits

ABSTRACT
3 ’T onnegative random vector T is said to have a multivariate increas-
= Tts;ﬁf ate distribution (MIFR) if and only if E[h(f,'{')] is log concave
functions h(x,t) which are log concave in (x,t) and are non-
coar & 1o5% Y ot &

decreasi continuous in t for each fixed x. This class of distributions

uclosed under deletion, conjunction, convolution and weak limits. It
contains the multivariate exponential distribution of Marshall and Olkin
and those distributions havin, a log concave density. Also, it follows that
if T is MIFR and y is nondecreasing, nonnegative and concave then ¢(T) is

~

IFR.

-espeler atiduq Wt hevorqal

' : udiueiC ‘
‘_..muwoubﬂct‘cns’aification: Primary 60K10; Secondary 62NOS5.
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§6. Relation to the MIFRA clapg.

In Block and Savits (1980), we defined a multivariate increasing failure
rate average (MIFRA) class as follows. A nonnegative random vector 'f is
said to be MIFRA 1if E[h(‘f)] < Ellalha(‘flu)] for all 0<a<land all non-
negative nondecreasing functions h; equivalently, P('fe A) < Pllu('fe oA)
for all O<a<1 and all upper sets A. It is well known in the univariate
case that if T is IFR, then T is IFRA (see Barlow and Proschan (1975)).

It seems natural to expect the same conclusion in the multivariate setting.
Although we believe this to be the case, we only have some partial results.
Let 'f be MIFR and u its induced measure. Let A be an upper convex

set. Then for a>0, h(n.f) = IA(E/a) is log concave in (“’f) and non-
decreasing in f for each fixed a. We may assume without loss of generality
that P('E>9) = 1; otherwise P(Ti-O) > 0 for some 1, But ‘1‘1 is IFR and so
P(T:l’ 0) = 1. We are thus reduced to the case of one less dimension.

Since ‘.1'.' is MIFR, it follows that G(a) = E[h(a,'{.‘)] is log concave in a >0,
Also, since P(T>0) = 1, we get that G(0+) = 1. Consequently, we conclude
that - log G(a) is star-shaped and so u(ad) > ua(A).

This result coupled with the fact that every upper set can be approx-

imated by a finite union of upper convex sets leads us to the following

conjecture,

(6.1) Conjecture. If T is MIFR, then T is MIFRA.

83 02 014209
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Now let ¢ ¢ 0.

(5.7) Corollary. A nonnegative random 'vector. T is MIFR {f and only if

E(h(x,T)] 1is log conmcave in x for all functions h which are log concave in

(x,t) and are nondecreasing in t for each fixed x.
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fixed A. Let h(A,Z) = exp{-ﬂx.!)}. Then h is log concave in (A,Z),

and continuous and nondecreasing in Z for each fixed A. Consequently,
hn(k.g) - h"(x.!) has the same properties for each n. Using the fact that
'E is MIFR and that hn(k,z) -+ ID(X,Z) as n + =, we obtain the inequality

(2.4).

(5.5) Lemma. Let 1 be a probability measure and A an upper convex set.
Then given € > 0 there exists a closed upper convex set C<c A such that

n(C) > n(a) ~¢.

Proof. Given €>0, choose a compact set K< A such that p(K) > u(A) -~ €.

If G is the convex hull of K, then G i3 a compact convex set satisfying
KeGecA. As in Block and Savits (1980), define C={y+t: yeG, t>0}.
It is not hard to show that C has the desired properties; i.e., C is a

closed upper convex set satisfying KcGcCcA. Consequently u(C) > u(a) ~«.

(5.6) Theorem, If p is a probability measure satisfying the inequality
u{AA+ (1-2)B] > u)‘(A)u]'-)‘(B) for all 0<Xx <1 and all closed upper convex
sets A,B, then the inequality remains valid for all upper convex sets

/

A,B.

!
Proof. It suffices to consider upper convex sets A and B having positive

u measure. Given ¢ > 0, sufficliently small, we choose closed upper convex
sets CcA, DcB as in Lemma 5.5 such that u(C) > u(A) - €, u(D) > u(B) -e¢.

Hence

u[MA+ (1-1)B] > u[AC+ (1-2)D]

> W@ ) > [uiar-e1 ueey-e1t 2.




hidx+ (1-A)x", Aw+ (1-2)w'] = u{D{Ax+ (1-A)x', Aw+ (1-2)w']}
> u{AD(x,w) + (1-2)D(x",w")}
> ux[D(f.W)]ul'x[b(f'.W')l = n x,wh M x W)

i.e., h 18 log concave in (x,w). Thus by Theorem 2.4, G is log concave in

X.

-~

We now consider the converse. Let A and B be upper convex sets. For

0<1<1, let C, = M+ (1-1)B. We define D = {(},y): 0<2<1 and yeC,l.

A
Then D is convex and so h(iA,y) = ID(A,y) is log concave. It is not hard

to show that h is nondecreasing in y for each fixed A. By hypothesis,

then, g(A) = I h(A,y)u(dy) is log concave in A. Hence

uAA +(1-0)8] = gV > g (g o) = v ! B).

(5.3) Theorem. Let T be a nonnegative random vector and u(dy) = P(T ¢ dy)

be its induced measure. Then T is MIFR if and only if

(5.4) uira+ (1-08) > w* @ul 7 ®)

for all O0<2A <1, all closed upper convex sets A,B.

Proof. The same proof as in Theorem 5.1 shows that if (5.4) holds then T
is MIFR; if F(x,y) is also continuous in y for each fixed x, then the
sets {y: F(x,y) > z} are also closed.

Now let A,B be closed upper convex sets. As before, let C, = 2AA+ (1-1)B

A
for 0<A<1 and set D={(A,y): 0<)<1, ye Ck). Now D is a closed convex
set. We set ¢(A\,y) =p(),y),D) where p 1is the metric p(u,v) = max I“i-vil’ Note

that ¢ 1is continuous and convex. It is also a nonincreasing function iny for each
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§5. An alternative condition.
In thi; section (vwhich is somewhat technical) we derive an alternative
condition that 'f be MIFR; it is directly expressable in 'tem of the induced
measure u(dg) - P('f‘ d!) V‘I‘his' result, cbupled with some approximation ideas,
allows us to remove the continuity assunptiop on h in Definition 4.1.
We first rec#ll that a set Ac R® 1is said to be an upper set if when-

ever xc A and y> X, then y€A.

(5.1) Theorem. Let u be a finite measure. In order that IF(x,y)u(dy) be
log concave in x for all log concave functions F(x,y) which are nondecreasing

-~

in y for each fixed x it is necessary and sufficient that
WIS Y
(5.2) ulAA+(1-2)B]> y"(A)u~ "(B)

for all 0<\<l and all upper convex sets A,B.

Proof. We shall closely follow the argument given in Brascamp and Lieb (1975).
Suppose now that u satisfies (5.2) and let F(f,g) satisfy the conditions of
the theorem. For each real z>0, let C(:f,z) - {Z: F(:f,z) >z} and set

g(zj,z) = u[c(z_t,z)]. Note that C(:_:.z) is upper and convex; furthermore,

G(x) = I F(x,y)u(dy) = I g(x,2)dz. If we make the change of variables z= ew,
~ - - -

0
then G(x) = I h(x,w)e"dw where h(x,v) = g(x.ew) - u[c(x.e")]. We also define

D(x,w) = C(x,ew). It is easy to show that D[Ax+ (1-A)x', Aw+ (1-A)w'] >

AD(x,w) + (1-A)D(x’,w’) for all 0<i<l, x,x',w,w'. Consequently, assuming (5.2),

we obtain the inequality
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ponentially distributed random variables sl,..,sn and subsets Jl""’Jm of

{1,...,n} such that Ti = minjeJisj' But (sl""'sn) is MIFR and

Vv,(8) = min 8
1. jeJij

(4.6) Example 2. If T has a density which is log concave, then T is MIFR.

(1<i<m) satisfy the hypothesis of Theorem 4.3(v).

Apply Theorem 2.4.

T




s, = wi(T), 1 <1i<m, with T MIFR, then E[h(x,5)] = E(g(x,T)] 18 log concave

in x.

~

(i1) Let h(x,s,t) be log concave in (x,s,t) and continuous and nondecreasing

-~ - o~ -~ o~ .

in (s,t) for each fixed x. We first assume that h is bounded. Since T is

MIFR it follows that g(x,s) = E[h(x,s,T)] is log concave in (x,s8). Also,

- o~ o~

g is continuous and nondecreasing in s for each fixed x. Thus, since S is

MIFR, E(g(x,S)] is log concave in x. But, by Fubini, E[g(x,S)] = E[h(x,s,T)}.

If h is not bounded, consider instead han and pass to the limit (see Theorem

2.3(1)).

(i) If Je{1,...,n}, let wj(t)= t, for je J. According to Theorem 4.3(v),

- h|

{wj('r) =Tj; jeJ} is MIFR.

(111) Since S and T are independent MIFR, (S,T) is MIFR by Theorem (4.3(ii).

Now take ¢,.(s,t) = s, + t, and use Theorem 4.3(v).

3 h|

(iv) Use Theorem 4.3(v) with wj(t) = ajtj.

W) Let h(x,t) be a bounded log concave function in (x,t) which is nonde-

creasing and continuous in t for each fixed x. Since Tn + T in distri-

-

bution, E[h(x,Tn)] + E[h(x,T)] as n + ». But for eachn, E[h(x,Tn)] is

log concave in X. Consequertly, E[h(x,T}] 1s l¢g concave in x. If h is not

bounded, use the argument as in the proof of part (ii).

(4.4) Corollary If Tl""’Tn are independent IFR random variables and
w(tl,...,tn) is continuous, nonnegative, nondecreasing and concave, then

W(Tl,...,Tn) is IFR.

(4.5) Example 1. The Marshall and Olkin MVE (1967) distribution is MIFR.

This follows since if T = (Tl,...,Tm) is MVE then there exist independent ex-




§4. A multivariate IFR class.

(4.1) Definition. Let ? be a nonnegative random vector. We say that f has
, a multivariate increasing failure rate (MIFR) distribution if and only if

E[h(f,?)] is log concave in x for all functions h(f’f) which are log concave

in (x,t) and nondecreasing and continuous in t >0 for each fixed x > 0.
(4.2) Remarks.

(i) Again note that according to Theorem 2.3(iii) we need only consider

functions h(x,t) with x a single variable instead of a vector.

(1i1) 1In Section 5 we shall show that the continuity assumption is un-

i necessary.
The class of MIFR distributions has many desirable closure properties.

?‘ (4.3) Theorem.

(1) If T is MIFR, then so are all marginals.

-

(1i1) If S and T are independent MIFR, then (S,T) is MIFR.

~

) (111) If S and T are independent MIFR of the same dimension, then S+ T is MIFR.
L (iv) If (T,,...,T ) is MIFR and a, >0 (i=1,...,n), then (a,T,,...,a T ) is
1 n i 171 nn '

MIFR.

(v) If T 1s MIFR and wl,...,wm are continuous, nonnegative, nondecreasing

and concave functions, then (wl(T),...,wm(T)) is MIFR.

(vi) 1£T.,T,,... are MIFR and T converges to T is distribution, then T
~1°.2 .n - -
is MIFR.

f Proof.

§ (v) Let h(x,s) be log concave in (x,s) and continuous, and nondecreasing in
8 for each fixed x. If wl,...,wm are as in (v), then g(x,t) = h(x,wl(t),....wm(t))

has the same properties as h (see Theorem 2.3(ii)). Consequently, if

A g e S = AT xS s
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Proof. Let R(t) =-log F(t) be the hazard function of T. We set a=
sup{t>0: F(t) =1} and b = {nf{t>0: F(t) = 0} (nf @ = + »), If a=b,

we simply take y = a and we are done; otherwise 0 < a < b < + », Since R is
convex and finite on (~»,b) it is continuous there; furthermore, it easily
follows that R is strictly increasing on [a,b). Let A=1lim R(t) <+ », If

¢ denotes the restriction of R to {a,b), then its invers:*b-¢-1 is continuous,
strictly increasing and concave on [0,A). The function ¢ is defined by

Y(8) = inf{t>0: R(t) >s}. Clearly y(s) = ¢-1(s) for 0<s<A and Y¥(s) =b

for s > A. 1t is not hard to show now that ¢y has the desired properties.

(3.4) Theorem. T is IFR if and only if E[h(x,T)] is log concave in x for all
functions h(x,t) which are log concave in (x,t) and are nondecreasing

in t for each fixed x > 0.

Proof. Suppose T is IFR and let h be as in the statement of the theorem.
Then, according to Lemma 3.3, there exists a continuous nonnegative nonde-
creasing concave function ¢ such that $(S) and T have the same distribution,

where S has the standard exponential distribution. Hence

E[h(x,T)] = E[h(x,y(S))] = [ h(x,¥(s))e “ds
0
is log concave in x. This follows from Theorems 2,3 (i),(ii) and 2.4.

To prove the converse, let h(x,t) = I(x w)(t). Then h is log concave in
»
(x,t) and nondecreasing in t for each fixed x. By assumption, then,

F(x) = E[{h(x,T)] 1s log concave in x. According to Theorem 3.1, T is IFR.

(3.5) Remark. According to Theorem 2.3(iii), we need only consider functions

h(x,t) with x a single variable instead of a vector.
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§3. A new univariate IFR characterjization.

The univariate class of increasing faliure rate (IFR) distributions has

played an important role in the mathematical theory of reliability (see

Barlow and Proschan (1975)). We shall first briefly review the definition.
Let T be a nonnegative random variable with survival probability

F(t) = P(T>t). Set b = inf{t>0: F(t) =0} (inf @=+ =). We say that T
has an IFR distribution if f(s+c)/§(t) is nonincreasing in te [0,b) for
each s>0. It is well known that the following conditions are equivalent

(cf. Barlow and Proschan (1975)).

(3.1) Theorem. The following conditions are equivalent:

(1) T is IFR.

' (1) F 1s a Polya frequency function of order two (PFZ)’ i.e., ?3;0 and

F(x,-y,) F(x,-y,)
i 171 ) 1772 >0
F(xz-yl) F(xz-yz)

for all ~ ©<X <K <@, —wLCy, <y, <o

(111) F 1s log concave.

- ; (3.2) Remark, If F has a density f, then T is IFR if and only if the hazard

i é : rate r(t) = £(t)/F(t) is nondecreasing on [0,b).

Before we state our new characterization, we need the following simple result.

[]
-

§ (3.3) Lemma, If T is IFR, then there exists a continuous nonnegative non-
i decreasing concave function y on [0,=) such that ¢(S) has the same

distribution as T, where S is distributed as a standard exponential.




The following facts about log concave functions are easily verifiable.

(2.3) Theorem,
i (i) 1I1f £ and g are log concave, so are f-g, fAg, cf and £2 for all

a>0, ¢>0.

(i1) If £ is log concave and nondecreasing and y is concave (and nonnegative),

then the composition fey 1is log concave.

(i11) £ is log concave if and only if for every x,y > 0, the function

g(t) = f{tx+ (1-t)y] is log concave on 0 < t <

(iv) If f is log concave, then for every z, the sets {f>z} and {f> z}
! are convex.

(v) If f is log concave, then f is continuous on the interior of the set

' {f>0}.

, ) We close this section with a very important result about log concave func- L
i tions. This result is sometimes known as the Prékopa Theorem (1971),

An independent and simpler proof is given in Brascamp and Lieb (1975).

s i A W S r e

(2.4) Theorem. Let F be log concave on R"x R®. Then G(x) = f F(x,y)dy
is log concave on ) (Here dy is Lebesgue measure on Rn).

] The above plays a crucial role in our development.
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§2. Log concave functionms.

Let A be a convex set in R" and f a nonnegative function defined on

A. We say that f is log concave on A if

(2.1) D+ 1-0y) 2 @A)

-Q(x)
for all 0<A<1, all x,ye A, Sometimes we write f(x) =e ~ where Q(x) is

convex, but with the understanding that Q may assume the value +=,

(2.2) Examples

(1) If Q(x) is twice continuously differentiable on an open convex set

A and has the property that at each point xe A, the matrix
3 Q(x) -Q(x)

] is nonnegative definite, then f(x) =e ~ 1is log concave

axiaxj

on A. Hence all Gaussian densities are log concave.

(ii) If A is any convex set in rR® , then the indicator function I A(x)

is log concave on RrR".
(1i11) If f is a nonnegative concave function, then f is log concave.

It is convenient to make the following simple observation. Let A and
B be convex sets in l{n and suppose that f is log concave on A. Clearly
then, f is log concave on B if Bc A. On the other hand suppose AcB. Then
the function ; , which is defined to be equal to £ on A and zero on B\A, is
log concave on B. Thus without loss of génerality we may assume that all
log concave functions are defined on the same convex set. In the context

of this paper, it 13 natural to work with the convex set R Hence, unless {
[] v

othertisé bgeciﬁed, the term log concave means log concave on R

. .
. .
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§1. Introduction.

\"‘5 Various univariate classes of life distributions have been introduced
in the mathematical theory of reliability, (see Barlow and Proschan (1975)
for a detailed discussion)me has been much interest in ob-
taining multivariate versions of these classes. Although there have been

7"/“5 d—-i:&"‘:’«‘r mcrfflans
many different approaches, ts®e;—e g ; thé review paper by Block-endSavits '~€

/\—-(-i%-)-)-;—w-nen&ee only' two because of their nice closure properties:
the multivariate IFRA class of Block and Savits &1980)-and the multivariate
NBU class of Marshall and Shaked (1982). Both of these classes are closed
under dg{etion, conjunction, convolution and weak limits.

\ . A s TAde EVSEREIN ,"4‘—"_\5
—Im a multivariate IFR class that has similar

closure properties. Its spirit also closely parallels that‘found in :,,jd‘
the two previously mentioned papers. Other definitions of a multivariate
IFR class have been proposed by Marshall (1975), but none possess all

desirable closure properties.
.

"
V2SR

’_3 -¥m- Section 2 heﬁrmne gome preliminary facts about log concave
functions. Section 3 contains a new characterization of the (univariate)

IFR class. The multivariate generalization and properties thereof are

given in Section 4. A useful alternative condition is- delineated
_ 15 romperehs
in Section 5. Finally, we~compare this class /with the multivariate
¢ i
IFRA class of Block and Savits (1980) in Section 6. s ——

All functions and sets in this paper are assumed to be Borel measureable
with respect to R". In most cases, however, we do not specify the dimension

n directly; it is usually clear from the context.




