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A Multivariate IFR Class

by

P Thouas H. Savit

ABSTRACT

- .onnegative random vector T is said to have a multivariate increas-

a in&- f Blt ate distribution (MIFR) if and only if E[h(x,T)] 
is log concave

i functions h(x,t) which are log concave in (x,t) and are non-

decreasii continuous in t for each fixed x. This class of distributions

Mclosed under deletion, conjunction, convolution and weak limits. It

_ contains the multivariate exponential distribution of Marshall and Olkin

and those distributions havin. a log concave density. Also, it follows that

if T is IFR and is nondecreasing, nonnegative and concave then *(T) is

IFR.

-- -sification: Primary 60K10; Secondary 62N05.
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tions having a log concave~dewity. it Jollows that if T is MIll

sad 0 Is nondoczeaIng, nonnegatIve and concave then js(T) is IPX.
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-6. Relation to the MIPRA clae.

In Block and Savits (1980), we defined a multivariate increasing failure

rate average (MIFRA) class as follows. A nonnegative random vector T is

1/cs
said to be MIFRA if Eth(T)] < E 1[h (T/ic)] for all 0< a<land all non-

1/es
negative nondecreasing functions h; equivalently, P(T E A) < P (T e oA)

for all 0 < a < 1 and all upper sets A. It is well known in the univariate

case that if T is IFR, then T is IFRA (see Barlow and Proschan (1975)).

It seems natural to expect the same conclusion in the multivariate setting.

Although we believe this to be the case, we only have some partial results.

Let T be MIFI and U its induced measure. Let A be an upper convex

set. Then for a> 0, h(at) = I A(t/a) is log concave in (a,t) and non-

decreasing in t for each fixed a. We may assume without loss of generality

that P(T>0)-1; otherwise P(Ti= 0) > 0 for some i. But Ti is IFR and soii

P(Ti= 0) = 1. We are thus reduced to the case of one less dimension.

Since T is MIFR, it follows that G(a) - E[h(a,T)] is log concave in a>0.

Also, since P(T> 0) - 1, we get that G(0+) - 1. Consequently, we conclude

that-log G(a) is star-shaped and so U(aA) p pa(A).

This result coupled with the fact that every upper set can be approx-

imated by a finite union of upper convex sets leads us to the following

conjecture.

(6.1) Conjecture. If T is MIIR, then T is MIFRA.

83 02 014209
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Now let C + 0.

(5.7) Corollary. A nonnegative random vector T Is NIFR if and only if

E~h(xT)] is log concave In x for all functions h which are log concave in

(x,t) and are nondecreasing in t for each fixed x.
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fixed X. Let h(Ay) = exp(-#(Ay)}. Then h is log concave in (Xy),

and continuous and nondecreasing in y for each fied A. Consequently,

h (A,y) - hn(X,y) has the same properties for each n. Using the fact that

T is HIFR and that hnO,,y) - ID(X,y) as n . -, we obtain the inequality

(2.4).

(5.5) Lemas. Let u be a probability measure and A an upper convex set.

Then given c> 0 there exists a closed upper convex set C c A such that

P .(C) > (A) - E.

Proof. Given c Ochoose a compact set Kc A such that ij(K) jp(A)- e.

If G is the convex hull of K, then G is a compact convex set satisfying

KcGcA. As in Block and Savits (1980), define C-={y+t: yEG, t>01.

It is not hard to show that C has the desired properties; i.e., C is a

closed upper convex set satisfying Kc Gc C c A. Consequently u (C) >iu(A) - c.

(5.6) Theorem . If v is a probability measure satisfying the inequality

u[XA+ (-)B] >_ u (A)u -X(B) for all 0< X< I and all closed upper convex

sets A,B, then the inequality remains valid for all upper convex sets
I

A,B.

Proof. It suffices to consider upper convex sets A and B having positive

U measure. Given E > 0, sufficiently small, we choose closed upper convex

sets CcA, DcS as in Lemma 5.5 such that u(C)>V(A)-E, u(D) > p(B)-c.

Hence

u[XA+ (1-X)BI _ iC+ (1-A)D]

A ( -( A 1-X
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h[Xx+ (1-k)x', Aw+ (1-X)W'] - P{D[Xx+ (l-X)x', Aw+ (l-A)w'])

> ii{XD(x,V) + (1-X)D(x' ,w')}

> u [D(x,W)h I- [D(x',w')] - h (xv)h 1X(x' ,w');

i.e., h is log concave in (x,w). Thus by Theorem 2.4, G is log concave in

X.

We now consider the converse. Let A and B be upper convex sets. For

0<X<l, let CX - XA+(l-X)B. We define D - {(X,y): 0<X<l and yeCA}.

Then D is convex and so h(A,y) - ID(A,y) is log concave. It is not hard

to show that h is nondecreasing in y for each fixed X. By hypothesis,

then, g(X) - f h(Ay)pj(dy) is log concave in X. Hence

• " * *) 1-A 
A 1-A

rXA +(l-X)B] - g(X)>g Mg (O) (A)i (B).

(5.3) Theorem. Let T be a nonnegative random vector and t(dy)- P(Te dy)

be its induced measure. Then T is HIFR if and only if

(5.4) U[XA+ (l-X)S] !>_ pX(A) j-lX (B)

for all 0< X< 1, all closed upper convex sets A,B.

Proof. The same proof as in Theorem 5.1 shows that if (5.4) holds then T

is HIFR; if F(x,y) is also continuous in y for each fixed x, then the

sets (y: F(x,y)> z) are also closed.

Now let A,B be closed upper convex sets. As before, let C,= XA+ (1-X)B

for O<X<1 and set D-((,y): 0<X<l, yeC ). Now D is a closed convex

set. We set (X,y)-p(X,y),D) where p is the metric p(u,v) max Iu -v1I. Note

that # is continuous and convex. It is also a nonincreasing function iny for each
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£5. An alternative conditiou.

In this section (which is somewhat technicai) we derive an alternative

condition that T be MIFR; it is directly expressable in term of the induced

measure p(dy) -P(T e dy). This result, coupled with'some approximation ideas,

allows us to remove the continuity assumption on h in Definition 4.1.

We first recall that a set Ac e is said to be an upper set if when-

ever xeA and y>x, then yeA.

(5.1) Theorem. Let jp be a finite measure. In order that JF(x.yIL(dy) be

log concave in x for all log concave functions F(x,y) which are nondecreasing

in y for each fixed x It is necessary and sufficient that

(5.2) p[A+(-)B1 A B

for all O<X~l and all upper convex sets A,B.

Proof. We shall closely follow the argument given in Brascamp and Lieb (1975).

Suppose now that U satisfies (5.2) and let P(x,y) satisfy the conditions of

the theorem. For each real z> _0, let C(x,z) -{y: F(x,y) > zl and set

g(x~z) -P(CQx,z)]. Note that C(x,z) is upper and convex; furthermore,

G7.. - F(x,y)uz(dy) f S~x,zjuZ. If we make the change of variables zew

the GW h(x,w)ewdw where h(x,w) - (,,,w) - p[CN,ew)]. We also define

D(z,w) -C(x,e ). it is easy to show that DXx+ (-A)x', Aw+ (1-X)w'1

AD(X,v)+ (l-A) D(x',v') for all O<A<l, x,xV' ,W1v. Consequently, assuming (5.2),

ye obtain the inequality
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ponentially distributed random variables Sl,.. ,S nand subsets J1,...,J I of

{1,...,n) such that Ti = min. S J But (S11..., nS ) is IMIFR and

()- min a (1<im) satisfy the hypothesis of Theorem 4.3(v).

(4.6) Example 2. If T has a density which is log concave, then T is MIFR.

Apply Theorem 2.4.
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Si- W(T), 1 < £ < m, with T MIFR, then E~h(x,S)] E~g(x.T)1 is log concave

in x.

(ii) Let h(x,s,t) be log concave in (x,s,t) and continuous and nondecreasing

in (9,t) for each fixed x. We first assume that h is bounded. Since T is

MIFR it follows that g(x,s) - EI~h(x,s,T)] is log concave in (x,s). Also,

g is continuous and nondecreasing in s for each fixed x. Thus, since S is

MIFR, E(g(x,S)] is log concave in x. But, by Fubini, E~g(x,S)] - E[h(x,s,T)J.

If h is not bounded, consider instead hAn and pass to the limit (see Theorem

2.3(i)).

Mi If Jc {1,...,n), let ip ,(t)- t for je J. According to Theorem 4.3(v),

4 () - jTJ J is MIFR.

(iii) Since S and T are independent MIFR, (S,T) is MIR~ by Theorem (4.3(11).

Now take qJ(s,t) - s i + t1 and use Theorem 4.3(v).

(iv) Use Theorem 4.3(v) with W(t - a t.

'V) Let h(x,t) be a bounded log concave function in (x,t) which is nonde-

creasing and continuous in t for each fixed x. Since T n-~ T in distri-

bution, Efh(x,T ) E~h(x,T)l as n + .But for eachn, E[h(x,T )] is

log concave in x. Consequently, E[h(x9T)J is V-g t"oncave in x. If h is not

bounded, use the argument as in the proof of part (ii).

(4.4) Corollary If T1 ... ,T are independent IFR random variables and
n

;P~it..'t is continuous, nonnegative, nondecreasing and concave, then

*(Til..,T is IFR.

(4.5) Example 1. The Marshall and 01kin MVE (1967) distribution is MIFR.

This follows since if T -(T 1 ,.**,T m is lIVE then there exist independent ex-
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§4. A multivariate IFR class.

(4.1) Definition. Let T be a nonnegative random vector. We say that T has

a multivariate increasing failure rate (MIFR) distribution if and only if

E[h(x,T)] is log concave in x for all functions h(x,t) which are log concave

in (x,t) and nondecreasing and continuous in t> 0 for each fixed x > 0.

(4.2) Remarks.

(i) Again note that according to Theorem 2.3(iii) we need only consider

functions h(x,t) with x a single variable instead of a vector.

(ii) In Section 5 we shall show that the continuity assumption is un-

necessary.

The class of MIFR distributions has many desirable closure properties.

(4.3) Theorem.

(i) If T is MIFR, then so are all marginals.

(ii) If S and T are independent MIFR, then (S,T) is MIFR.

(iii) If S and T are independent MIFR of the same dimension, then S+T is MIFR.

(iv) If (T1 ,...,T n) is MIFR and a, 0 (i-l,...,n), then (aT 1,...,anTn) is

HIFR.

(v) If T is MIFR and *l,..., m are continuous, nonnegative, nondecreasing

and concave functions, then (T)...,*m(T)) is MIFR.

(vi) If T1,T , " are MIFR and T converges to T is distribution, then T

is MIFR.

Proof.

(v) Let h(x,s) be log concave in (x,s) and continuous, and nondecreasing in

s for each fixed x. If *,., are as in (v), then g(x,t) - h(x,* l(t),...,m(t))

has the same properties as h (see Theorem 2.3(11)). Consequently, if
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Proof. Let R(t) - log F(t) be the hazard function of T. We set a-

sup{t> 0: F(t)-l1 and b - inf{t>0: F(t) -01 (inf 0- + -). If a-b,

we simply take V i a and we are done; otherwise 0 < a < b < + -. Since R is

convex and finite on (- .,b) it is continuous there; furthermore, it easily

follows that R is strictly increasing on [a,b). Let A- lim R(t) <+ -. If
t*b-l

denotes the restriction of R to (a,b), then its inverse - is continuous,

strictly increasing and concave on [0,A). The function * is defined by

*(s) = inf{t>0: R(t) > s). Clearly *(s) =- (s) for 0<s< A and *(s)- b

for s > A. It is not hard to show now that * has the desired properties.

(3.4) Theorem. T is IFR if and only if E[h(x,T)] is log concave in x for all

functions h(x,t) which are log concave in (x,t) and are nondecreasing

in t for each fixed x > 0.

Proof. Suppose T is IFR and let h be as in the statement of the theorem.

Then, according to Lemma 3.3, there exists a continuous nonnegative nonde-

creasing concave function * such that *(S) and T have the same distribution,

where S has the standard exponential distribution. Hence

E[h(xT)] - E[h(x,*(S))] - J h(x,*(s))e-Sds
0

is log concave in x. This follows from Theorems 2.3 (1),(ii) and 2.4.

To prove the converse, let h(x,t) - I (x,)(t). Then h is log concave in

(x,t) and nondecreasing in t for each fixed x. By assumption, then,

F(x) - E[h(x,T)] is log concave in x. According to Theorem 3.1, T is IFR.

(3.5) Remark. According to Theorem 2.3(iii), we need only consider functions

h(x,t) with x a single variable instead of a vector.

) j
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3. A new univariate IFR characterization.

The univariate class of increasing faliure rate (IFR) distributions has

played an important role in the mathematical theory of reliability (see

Barlow and Proschan (1975)). We shall first briefly review the definition.

Let T be a nonnegative random variable with survival probability

F(t) - P(T>t). Set b - inf{t'0: F(t)- 01 (inf 0-+ -). We say that T

has an IFR distribution if F(s+t)/F(t) is nonincreasing in t4E [0,b) for

each s> 0. It is well known that the following conditions are equivalent

(cf. Barlow and Proschan (1975)).

(3.1) Theorem. The following conditions are equivalent:

(i) T is IFR.

(ii) P is a Polya frequency function of order two (PF2), i.e., F>0 and

Fx 1 -y 1 ) FNx -Y2 ) > 0

F(x 2 -Y1 ) F(x 2 -y 2 )-

for all- <x 1 (x 2 <a, -a( Y1 < y < "

(iii) F is log concave.

- (3.2) Remark. If F has a density f, then T is IFR if and only if the hazard

rate r(t) - f(t)/F(t) is nondecreasing on (0,b).

Before we state our new characterization, we need the following simple result.

(3.3) Lema. If T is IFR, then there exists a continuous nonnegative non-

decreasing concave function * on (0,-) such that O(S) has the same

-' distribution as T, where S is distributed as a standard exponential.

wtw 4

22t
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The following facts about log concave functions are easily verifiable.

(2.3) Theorem.

(i) If f and g are log concave, so are f.g, fAg, cf and fa for all

a>O, c>O.

(ii) If f is log concave and nondecreasing and * is concave (and nonnegative),

then the composition fo* is log concave.

(iii) f is log concave if and only if for every x,y > 0, the function

g(t) - f[tx+ (1-t)y] is log concave on 0 < t < 1.

(iv) If f is log concave, then for every z, the sets {f> z} and (f>z)

are convex.

(v) If f is log concave, then f is continuous on the interior of the set

{f > 01.

We close this section with a very important result about log concave func-

tions. This result is sometimes known as the Prdkopa Theorem (1971).

An independent and simpler proof is given in Brascamp and Lieb (1975).

(2.4) Theorem. Let F be log concave on lm x Rn. Then G(x) - f F(x,y)dy
is log concave on I m. (Here dy is Lebesgue measure on in).

The above plays a crucial role in our development.
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§2. Los concave functions.

Let A be a convex set in In and f a nonnegative function defined on

A. We say that f is log concave on A if

(2.1) f[Ax+ (1-X)y > f (x)f1 (y)

-Q(x)
for all 0< X<1, all x,yeA. Sometimes we write f(x)=.e - where Q(x) is

convex, but with the understanding that Q may assume the value +-.

(2.2) Examples

(i) If Q(x) is twice continuously differentiable on an open convex set

A and has the property that at each point xiE A, the matrix

a 2Q(x) -Q(x)
[ - ] is nonnegative definite, then f(x) - e is log concave

x xj
on A. Hence all Gaussian densities are log concave.

(ii) If A is any convex set in En , then the indicator function IA(X)

is log concave on Itn .

(iii) If f is a nonnegative concave function, then f is log concave.

It is convenient to make the following simple observation. Let A and

B be convex sets in ]Rn and suppose that f is log concave on A. Clearly

then, f is log concave on B if Bc A. On the other hand suppose Ac B. Then

the function f, which is defined to be equal to f on A and zero on R\A, is

log concave on B. Thus without loss of generality we may assume that all

log concave functions are defined on the same convex set. In the context

n
of this paper, it is natural to work with the convex set IR+. Hence, unless

* . 9 9 -0 I

otherfis4 Upecified, the term log concave means log concave on IR.

A- ..
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i. Introduction.

_-' Various univariate classes of life distributions have been introduced

in the mathematical theory of reliability (see Barlow and Proschan (1975)

for a detailed discussion). Recently there has been such interest in ob-

taining multivariate versions of these classes. Although there have been

many different approacheS Tule, ' Knereview '( n .. -s. ......

98...., : only-two because of their nice closure properties:

the multivariate IFRA class of Block and Savits (1980) and the multivariate

NBU class of Marshall and Shaked (1982). Both of these classes are closed

under deletion, conjunction, convolution and weak limits.

-Tn e- ir .= tduea multivariate IFR class that has similar

closure properties. Its spirit also closely parallels that.'tpund in

the two previously mentioned papers. Other definitions of a multivariate

IFR class have been proposed by Marshall (1975), but none possess all

desirable closure properties.

. I-f Section 2 4re present some preliminary facts about log concave

functions. Section 3 contains a new characterization of the (univariate)

IFR class. The multivariate generalization and properties thereof are

given in Section 4. A useful alternative condition is delineated

in Section 5. Finally, weco mparthis class with the multivariate

IFRA class of Block and Savits (1980) in Section 6.

All functions and sets in this paper are assumed to be Borel measureable

with respect to In . In most cases, however, we do not specify the dimension

n directly; it is usually clear from the context. 7 . --

• ..

.i • U ..
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