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Three views of the function of computer simulation in cognitive

psychology are analyzed. The strong view that computer simulations

will produce more rigorously specified theories is seen to be over-

stating the case. Two more pragmatic views are supported. One looks

at computer method as a means of exploring or validating psychological

theories. The other looks to computer simulation as a source of useful

rconcepts. Several recent simulation efforts are presented as illustrations

of these latter views. After establishing some perspective on the uses of

simulation, the discussion turns to psychological simulation languages,

and to aspects of programing environments which facilitate simulation

work. A new simulation language, PRISM, is described. PRISM's design is

intended as a response to some of the issues raised in this paper.
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SIMILATION SYSTEMS FOR COGNITIVE PSYCHOLOGY

Robert Neches

Learning Research and Development Center

University of Pittsburgh

1.0 OVERVIEW

Although the primary purpose of this paper is to discuss simulation

systems, how we view simulation as a methodology strongly affects our

perceptions of what constitutes a useful simulation system. Therefore,

the first part of this discussion considers several common views of the

role of simulation in cognitive psychology. In the process of

evaluating each of these views, I will be making some assertions about

useful principles of simulation, and reviewing instances of simulation

work which illustrate those principles. Once some perspective is

established regarding simulation's uses, I will turn to a discussion of

where I believe simulation work is heading. That discussion will

consider the rise and fall of some past psychological simulation

languages, as a means of focusing attention on aspects of programming

environsents that facilitate simulation work in general.

Finally, I'll close with a discussion of a particular class of

psychological simulation languages, production systems. That discussion

will focus on the design of a new production system language called



Page 2

PRISM, which is being developed in collaboration with Pat Langley of

Carnegie-Mellon University (Langley & Neches, 1981).

2.0 SIMULATION AS POLICEMAN OF THEORETICAL RIGOR

I'd like to start by exorcising a ghost, in the form of an extreme

argument for simulation that was propounded rather vigorously in the

late 1960's and early 1970's. This was the claim that computer

simulation was a superior formalism for enforcing greater rigor in

theory specification.

2.1 Five Claims For Computer Simulation

A strong example of this particular argument appears in Gregg & Simon's

(1967) article using concept formation as a demonstration domain for

information processing models. Embedded in that article were five -

claims for the advantages of requiring that running computer programs be

associated with psychological theories:

Inconsistencies would be prevented by the need to specify a

particular set of operations in order to implement a

hypothesized psychological process. The same set of operations

would have to suffice for all cases in which that process was

evoked.

Untested implicit assumptions would be rendered impossible by

the need to specify a complete set of processes. A program

which does not specify processes completely could not run.

:. -. ..-.-.... .-...-...-< .-......... .. . . ,.... .... .,. . .. ,, . .
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Overly flexible theories which could too easily fit data would

be prevented by the fact that computer programs contain no

numerical parameters.

- Untestable theories would be eliminated by virtue of the

specific sequence of operations generated by a program, which

could be treated as predictions about intermediate processes.

These predictions could be compared against process tracing

data, such as verbal protocols or eye movements, thus allowing

much more specific tests of a model (1).

- The need for a program to operate upon specific data would

prevent finessing critical questions about encoding and

representation.

There are some positive examples supporting these claims. John

Anderson, one cognitive psychologist clearly influenced by the

simulation approach (Anderson, 1976), has produced a very detailed

theory which is often relatively specific in its claims. His work has

stimulated a number of studies, both supporting and opposing.

However, in spite of positive examples such as his, it is hard to

say that simulation was the causal factor in the development of a

detailed model. Certainly the history of psychology contains a number

of comprehensive theories not cast in a computational formalism.

lootnote 1: This, and the preceding point, is particularly important if
one adopts Popper's (1959) view of science. Popper suggested that the
dominant goal is to refute theories rather than support them, with a
theory being "accepted" only so long as no evidence can be found counter
to it. In that view, a theory is best if it is highly specific and
therefore amenable to disconfirmation. In that case, either the cause
for its disconfirmation leads to a new and better theory, or the failure
to disconfirm lends credence to it.
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2.2 Six Problems With The Five Claims

Furthermore, experience with simulation since the early days of Gregg &

Simon (1967) has shown that there are a number of ways to avoid rigor

while doing simulation work:

- A formal specification of a model needn't imply a comprehensible

presentation; since programs are rarely presented in full with

accompanying documentation, we remain dependent on verbal

descriptions of the model. This can raise problems in determining

whether zhe program performs as it does for the reasons claimed by

its author. For example, see Hanna & Ritchie's (undated) analysis

of Lenat's (1976, 1977) AM program, a system which has received a

great deal of attention in the Artificial Intelligence community

for its apparent ability to re-discover a number of interesting

mathematical theorems. Hanna and Ritchie suggest several points

that contribute to its performance, but where the actual program

appears inconsistent with the general principles Lenat presented.

They also raise instantiations of four of the five potential

problems listed below.

- Programs frequently involve simplifying assumptions in order to

facilitate implementation. These simplifications, however, cause

the program to diverge from the theory it supposedly represents.

- Programs can be written to work only for a restricted set of

examples, those presented in the write-up of the research. In the

absence of some analysis of the formal properties of the domain,

there is no automatic guarantee that the examples presented are

representative of the domain, or that the principles required to
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handle a given set of examples are sufficient to account for the

entire domain.

- The inputs or database for the program can be structured in ways

that simplify its task, but which are not necessarily

psychologically plausible. That is, the real work of performing a

task may be done before the program is started.

Data or procedures supplied to the program to define different

examples for it to handle may, in fact, constitute non-numerical

parameters that give the program considerable flexibility in

fitting psychological data. Newell & Simon (1972, page 56), for

example, admit that the operators and table of differences supplied

to GPS constitute such parameters.

- The programmer may hold back data or procedures that would have

confused the program had it been available. That is, the program

may appear to perform well not because it has the capacity to

choose the correct action from all possibilities, but rather

because the difficult choices are not offered to it.

For all the above reasons, there is no immediate assurance that a

program's consistency with psychological data means the program is of

psychological significanre. Nor, on the other hand, is an.

inconsistency necessarily a sign of failure. For example, Newell a

Simon (1972, page 472) admit to a number of exceptions to GPS' account

of protocols obtained from subjects solving logic problems.

. , - ' ,' - . - . i : " -" ' ', ." -' . i " . , ' .. . ." ' . ' ' V



Page 6

Although Newell and Simon are fond of claiming that the test of a

a theory is a running program, this is no more true than claiming that

the true test of an experiment's validity is a 0.05 significance level.

The real question is how and why a particular result was obtained. The

claim that computer simulation will necessarily lead to clearer and

more rigorous psychological models does not hold up.

It is perhaps better seen from a historical perspective, as an

argument stemming partly from the days of simpler programs, but

primarily from a need to make a case for the respectability of

simulation methodology compared to established mathematical modelling

and experimental approaches. Unfortunately, the proponents of

simulation approaches have, if anything, damaged the credibility of

their case by overstating it.

3.0 SIMULATION AS A METHOD OF EXPLORING OR VALIDATING THEORIES

Therefore, I 'd like to turn to some less ambitious views of

simulation, in which a computer implementation is viewed not as a

necessary formalism for expressing a model, but rather as simply one of

several means for gathering information about it. Even this more

restricted view may still be controversial.

3.1 The Significance Of A Running Program

One of the issues in the controversy is the significance of the fact

that a program runs. L. Miller (1978) does a very nice job of

summarizing the debate, which he suggests stems from alternative

assumptions about the difficulty of theory validation. One side, he

claims, believes that theories are easy to generate but difficult to
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test. The other believes that a good theory is a significant and

difficult accomplishment, and is accordingly more impressed by a

demonstration of a model's sufficiency through the successful

implementation of a computer program.

A related question has to do with the ultimate discriminability of

psychological models. Anderson (1978), for example, has claimed that

many different models can produce empirically identical predictions,

and has even gone so far as to suggest that it is futile to try to

distinguish which alternative is correct by experimental me ds.

Naturally, this claim has been disputed. Hayes-Roth (1979) has of -ed

one of the more detailed responses, basically arguing that if two

of processes are not identical, then it should be possible to find some

form of process tracing data for which the two sets make different

predictions. Without taking a firm position on the ultimate resolution

to these questions, we still can say that simulation gives a means of

exploring the plausibility of models where theoretical sophistication

exceeds the state of the art in empirical testing.

In such cases, there are a number of ways that modelling can aid

our thinking. The demonstration that a theory is sufficiently powerful

to guide implementation of a working program is certainly encouraging

for its credibility. Efforts to produce working programs can also lead

to a better understanding of the computational requirements of a task,

which in turn can help to constrain the set of plausible theories.

i
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3.2 Empirical Analyses Of Programs

Another important contribution of simulation comes from our greater

freedom to perform psycho-surgery on a program, since no clearance from

a Human Subjects Committee is required in order to modify a computer

simulation. This permits use of simulation for experiments that would

be unethical or impossible with human subjects, experiments that can

help in understanding the interactions between components in complex

models. I'd like to offer McClelland & Rumelhart's (1981) model of

word perception as an interesting example of this.

McClelland & Rumelhart (1981) were concerned with explaining a

number of phenomena in the perception of words and letters in

tachlistoscopically presented displays. Among their key concerns were-

(a) modelling the process of recognizing words and letters within

words; (b) explaining the facilitating effect of pseudo-words for

letter recognition; (c) explaining the sensitivity cf the pseudo-word

effect to expectations about what will be presented; and, (d)

explaining the differential effects of various kinds of masks.

The model which they built assumed a highly-linked structure of

nodes, representing hypotheses at various levels about what stimulus

was presented. An example of such a structure is illustrated in Figure

I. Each node has an activation level associated with it, which

represents the model's confidence at the current time in the hypothesis

represented by the node. Hypothesis nodes vary in their baseline

activation level.
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Figure 1
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Each node has a large number of weighted links to other hypothesis

nodes. Excitatory links send activation to hypotheses consistent with

a node. Inhibitory links decrease activation of inconsistent

hypotheses.

The activation of a node at any point in time is a function of its

baseline activation and the excitatory and inhibitory activation

received from related hypothesis nodes. The function used modulated

the activation level to keep it within a restricted range and allow for

time decay. Activation reverberates through the network, and at some

point in time whichever hypothesis is most active at that point is

accepted as true.

In this model, the word superiority effect and the facilitating

effect of words on letter recognition were explained in terms of

activation flows to and from nodes at the word hypothesis level. The

facilitating effect of pseudo-words on letter recognition could be

understood as an outcome of partially activated word hypotheses

reinforcing the letters. For example, the pseudo-word "TROP" contains

letters which would activate hypotheses such as, "TRIP", "TRAP", and

"PROP"; these, in turn, would send activation back to the hypotheses

for the letters "T"' "'R' "0", and "P". Finally, the effects of

various kinds of masks were explained in. terms of the relative times at

which activation for the mask grew to levels sufficient to interfere

with activation for a target.

This last effect deserves discussion in some more detail, because

it nicely illustrates some of the advantages obtained through computer

modelling. The general phenomena which McClelland and Rumelhart tried

to capture was as follows. When a tachistoscopically presented target
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display is followed closely by presentation of a mask display, a number

of factot3 affect the extent to which the mask will interfere with

recognition of the target. The basic findings of interest involve

comparing letter and word recognition for three different kinds of

masks: feature masks consisting of letter-like geometrical shapes,

letter masks consisting of non-word letter strings, and word masks. A

number of studies have shown that letter recognition is about equally

affected by all three kinds of masks, while word recognition is

markedly less affected by feature masks than by letter or word masks.

Given the formulation of their model, the uniform effects of the

three different kinds of masks on letter recognition are easily

understood. All three kinds of masks quickly engender competing

hypotheses at the letter level. These can depress the correct

hypothesis' activation through their inhibitory links before that

hypothesis can reach its peak activation level.

In the case of word recognition, the difference in effects between

feature masks and others is somewhat more complicated to understand.

McClelland & Rumelhart, in spite of a long and fairly detailed

discussion of their model, do not make it clear why it produces the

desired effect. (This is worth noting, in the light of Gregg & Simon's

claims that computer simulation would eliminate exactly this kind of

uncertainty.)
U

It appears their explanation is that random feature displays

weakly activate many different letter hypotheses, rather than strongly

activating a few. Thus, none of the competing alternatives have enough

strength for their inhibitory links to have an immediate effect on the

activation for the correct hypothesis. One indication that this is 3
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indeed the intended explanation comes from their report that the

program was very sensitive to the degree of similarity between features

in the mask and the target.

This is an interesting point, because we see here that the program

is perhaps just as complex for an outsider to understand as a verbally

stated model. However, there are some real differences in the value of

a program over a verbal model in situations where the complexity of a

theory obscures its implications. With the program - unlike a

verbally expressed theory-- it is possible to perform manipulations to

help understand exactly what factors contribute to its performance.

For example, having determined that the program was sensitive to

similarities at the feature level, McClelland and Rumelhart set out to

equate their stimuli in order to eliminate that confounding factor.

Doing that required coming up with feature, letter, and word masks

which all three had just as many features same/different with respect

to the target display. Worse yet, to properly equate the stimuli, the

equivalences had to hold letter-by-letter, for each letter position in

a four character string.

This would be a rather daunting task if the stimuli had to be

created for human subjects in an experimental design of any statistical

rigor. It is difficult to create even one grouping of a target word

and three masks which would satisfy these criteria. Fortunately, in

evaluating the performance of the program, one is all that is needed.

Since the program is a deterministic entity, there is no concern of

statistical error. When running experiments with a program, the only

concern is with finding a range of inputs that verify the generality of

the results. The need to be concerned with noise, or the statistical
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reliability of measurements of the program's performance, is

eliminated.

Even with the statistical issue of noise eliminated, though, it is

still difficult to construct stimuli in this particular case.

McClelland & Rumelhart's ability to do so illustrates yet another

virtue of models implemented as running programs, the ability to turn

thought-experiments into real tests of a theory. To create stimuli

meeting the desired criteria, they simply modified the knowledge base

of their program. For example, they selected as a target string the

word, "MOLD". As a letter mask, they select.ed the string, "ARAT". In

the specialized character font used in the experiments simulated, the

letters of "ARAT" and the letters of "MOLD" had, respectively, 2

similar features in the first letter position, 3 in the second, 2 in

the third, and 2 in the fourth.

It was easy to produce a feature string with the same number of

similarities to the target string "MOLD". Where the constraints upon

the stimuli become tricky is in finding a common four-letter word which

also has the same pattern of similarities. However, because a program

can be much more easily modified than a human mind, McClelland &

Rumelhart were able to sidestep the constraint. After obtaining the

results of running their program with the letter string "ARAT" used as

the msk for "MOLD", they simply modified the program's database so

that "AAT' was now represented as a known word. When they then ran

the program again, the results of the new run could be interpreted as

representing a word mask rather than a letter mask. Thus, they were p

able to explore the effect of top-down knowledge about words without

the confounding effects of feature differences due to different letter

he
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strings.

To see where some of those confounding effects could be produced,

and to see another virtue of analyzing the performance of a computer

model, we need to consider some other observations made by McClelland &

Rumelhart.

Since programs can be modified at any point, it is possible to

insert code to record virtually any kind of data about its run-time

characteristics. This can permit one to make observations about

implications of a model which might not come out nearly as clearly

otherwise. For example, tracing the time course of activation flow

enabled McClelland & Rumelhart to analyze three different factors

influencing activation level.

The first they called the "friends and enemies effect".

Activation is clearly going to depend on the number of excitatory and

inhibitory links from other active nodes. Thus, the likelihood of a

hypothesis being accepted, whether correct or not, is partly dependent

on the relative amount of knowledge which the system has stored about

it.

The second effect they called the "rich get richer" effect, the

empirical observation that feedback loops inherent to the structure

greatly accentuate over time any initial differences in baseline

activation levels. This is one of several aspects of the model which

offer accounts of expectation effects. In particular, by making

baseline activation encode word frequency, they were able to simulate

comon frequency effects. Figure 2 illustrates this, by showing how

small initial differences in activation due to differing frequency were

*-: : . .: . • : : - . . * *, *:. . ." .* * * . . .
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Figure 21
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enhanced over time for three alternative hypotheses entertained by the

program when presented with the string "HAVE". Note that all three

hypotheses have three letters in common with the presentation string,

and thus all receive equal bottom-up support.

The third effect was called the "gang effect". Observation of the

program showed that strong hypotheses at a given level indirectly

reinforced a subset of their competitors at the same level, those that

depended on the same supporting evidence. This is because a hypothesis

node sends activation to lower-level nodes, which in turn send

increased activation not only back to that node, but also to all other

higher-level nodes to which they are linked. Figure 3, for example,

shows how three additional hypotheses fare over time in response to the

same presentation string, "HAVE". Once again, all three alternatives

have three letters out of four in common with the string actually

presented, and so start out with initial bottom-up activation.

However, "SAVE" indirectly receives activation from five other word

hypotheses that boost the activation of the letters "A", "V", and "E"

(e.g., "HAVE" and "GAVE"). Similarly, the program had stored' five

other words involving the letters ", "A", and "E, and those

alternative word hypotheses boosted the activation levels for "HALE" by

way of those three shared letter hypotheses. On the other hand, there

were no other hypotheses involving "IV, "V", and "E" to indirectly

support the hypothesis that the word seen was "MOVE". Thus, its

activation is markedly lower than for the other alternatives.

|"
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Figure 3
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3.3 There Are No Simple Standards

It is interesting to note that this simulation does not at all fulfill

the promised advantages of simulation outlined by Gregg & Simon (1967),

but instead illustrates the objections to their claims outlined in

section 2.2. We were promised specificity through parameter-free

models; McClelland and Rumelhart present a full-page table listing

parameters, and vary the settings in simulating different experiments.

:* We were promised deeper concern with encoding and representation; they

present a system which pre-codes information about letter position (and

which requires creating such a large number of links for exciting

consistent hypotheses and inhibiting inconsistent alternatives that one

has to wonder about the psychological processes required to add a new

piece of knowledge). Finally, we were promised extensibility to

related tasks; they presented a program which could not even easily be

modified to handle five-letter words.

However, these objections really do injustice to what we

instinctively know is a respectable piece of work. The problem is with

the standards offered by Gregg & Simon, which basically amount to a

promise that we will never again have to think hard to understand or

evaluate someone else's work. Those standards do not fully capture

what can be gained by simulation.

McClelland & Rumelhart's observations about interactions between

components of the model are significant because of their implications

for other work, a point which I'll return to below. What is of

interest for the moment, though, is that the ability to perform

empirical analyses of a program has enabled them to provide greater

insight into the implications of their model. In addition to

. .
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information about how well the model accounts for a body of data, the

capacity to perform experiments and make observations on the program

means that we can also get information about yhy the model succeeds or

fails.

4.0 SIMULATION AS A SOURCE OF NEW IDEAS

Another view of simulation is as a source of new ideas about

processing mechanisms, which implies a close paztnership between

cognitive psychology and artificial intelligence. Psychology, in spite

of recent claims to the contrary, has made several contributions to AI.

Among them are the notions of means-ends analysis embodied in GPS

(Ernst & Newell, 1969; Newell & Simon, 1972), of discrimination nets

(Feigenbaum, 1961; Simon & Feigenbaum,. 1964), and of various semantic

network representations (e.g., Kintsch, 1974; Norman & Rumelhart,

1975; Anderson, 1976).

Psychology has certainly been influenced by AI. Winograd's (1972)

SHRDLU, for example, was considered of sufficient importance to have an

entire issue of Cognitive Psychology devoted to it. Another important,

although perhaps not as well-known, example is the HEARSAY speech

understanding system (Erman & Lesser, 1975). That system introduced

notions of a central memory structure shared by co-operating parallel

knowledge sources; these notions have influenced psychologists in

topics ranging from models of reading processes (Rumelhart, 1977) to

planning (Hayes-Roth & Hayes-Roth, 1979). Scripts (Schank & Abelson,

1977), frames (Minsky, 1975), or schemata (Bobrow & Norman, 1975) have

generated a number of lines of research, as has the work on story

grammars (Rumelhart, 1975; andler, 1977; Thorndyke, 1977). I
7
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Although the examples Just mentioned are all cases where ideas

about processes have been transferred fairly directly, simulation work

can have a much more subtle impact on psychological thinking. This is

because solutions to sub-problems encountered in the course of

implementing a program can turn out to have implications for

psychological issues that the program was not originally intended to

address. Often, this can help us gain a teleological understanding of

mechanisms, by making us aware of constraints that necessitate their

existence or force them to operate in a particular way.

All computer programs are fundamentally concerned with issues of

control and focus of attention (or, to put it less elegantly, getting

the right things done at the right time). Thus, the process of

developing a simulation can suggest domain-independent mechanisms which

other researchers can apply in developing models of behavior in quite

different topic areas.

To illustrate these rather abstract claims, I will first discuss

some of my own work on a learning simulation called HPM, then describe

a simulation of eye fixations in reading (Thibadeau, Just, & Carpenter,

1981), and briefly return to McClelland & Rumelhart's (1981) word

perception model. I will try to show how these disparate systems

contribute a model of sloppy errors in algebra problem-solving.

4.1 HPM: An Example Of A Spin-off Discovery

The HPM (for Heuristic Procedure Modification) program is a model of

learning through the incremental refinement of procedures (Neches,

1981a, 1981b). Although primarily concerned with learning, it turns

out to provide a new explanation for an old observation from the days
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of gestalt psychology called the Zeigarnic effect. (For an English

description of this effect, see Lewin, 1935, pages 243-244.) The

effect, which Gestaltists interpreted as illustrating the phenomenon of

"closure", boils down to the observation that delayed recalls of a task

are richer and more detailed when subjects were stopped part-way

through the task than when they were allowed to carry the task through

to completion.

In order to make clear HPM's account of this phenomenon, it is

necessary to provide some background about the program. HPM is a

production system, which means that it belongs to the class of

programing languages in which procedures are specified as a set of

condition-action rules and data is represented as propositions in a

working memory. The system runs through a cycle of finding the set of

productions whose conditions are satisfied by the current contents of

working memory, selecting a subset of those rules for execution, and

modifying the contents of working memory according to the actions

specified by the rules selected for execution.

The program was inspired by protocol studies by myself (Neches,

1981b) and others (e.g., Anzai & Simon, 1979) indicating that people

use a number of comon-sense heuristics to improve their procedures on

the basis of experience applying them to a task. Most of the

simulation work has concentrated on getting the system to acquire an

addition strategy similar to that used by many second-graders, given a

simpler strategy employed by most pre-schoolers. Figure 4 shows the

heuristics which seem to be most relevant to this task, along with a

sequence of strategies that the system discovers. The initial strategy

adds two numbers by counting out a set of objects corresponding to each
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Figure 4
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addend, combining those two sets, and counting the total set. The

final strategy adds the numbers by incrementing the larger addend a

number of times given by the smaller addend.

HPM was designed as a vehicle for exploring the problem of

operationalizing heuristics such as those in Figure 4. Thus, the kinds

of questions I was concerned with were ones like, "What sort of

information about a procedure is necesstry in order to apply heuristics

like these?"

The answer embodied in HPM involves solving problems by setting up

a hierarchical goal structure not unlike Sacerdoti's (1977) planning

nets. Productions in HPM respond to nodes in a partially-constructed

goal structure by adding propositions that further elaborate the goal

structure. Whenever a production fires, a linkage is established

between the propositions which satisfied its conditions (i.e., caused

its firing), and the propositions which were added as its actions.

This information allows HPM to implement heuristics like those of

Figure 4 as sets of productions which look for configurations in goal

structures indicative of inefficiencies. The program represents

learning by using the information to construct new productions, witi

conditions that cause them to fire in circumstances when the

inefficiency is likely to be repeated. The information allows the

productions to construct actions for the new productions that cause the

system to sidestep the inefficiency.

Figure 5 illustrates the structures in HPM's memory after

executing its first production for addition in response to an

externally supplied goal to add two numbers. When we remember that the

semantic network shown in this figure represents only knowledge about
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the first of a large number of steps to be taken, it is easy to see

that a huge body of information must be retained in order for the

system to represent a complete problem-solving sequence. (For an

explanation of the necessity of the information retained, see Neches,

1981b, section 5.2.)

From both the computational consideration of minimizing the size

of the database to be searched, and the psychological consideration of

limited short-term memory, it was essential to have some mechanisms in

the system which would cut down the number of propositions required for

consideration without eliminating any critical information.

The mechanism adopted in HPM assumed an extremely rapid decay of

working memory contents; propositions drop out of working memory

unless used within two processing cycles. The propositions in working

memory consisted of those required to specify the current goal, plus a

set brought in from long term memory by a spreading activation process.

To reduce the number of propositions brought in from long term memory,

activation was assumed to spread unevenly through the semantic network,

with the primary direction in which it spread being dependent on the

processing status of the current goal.

Specifically, when a new goal is initiated, PM sends activation

down through the network to retrieve information most likely to be

4 helpful in deciding how to process the goal. When an old goal is

terminated, HPM sends activation up the hierarchy towards higher goals

and sideways towards planned successor goals, thus retrieving

information most likely to be helpful in deciding what action to take

next. Although this part of the model was developed in response to

computational overloads produced by large semantic structures, it turns
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out in retrospect to provide a psychologically plausible account of the

Zeigarnic effect. In this account, the effect is an outcome of

associative retrieval processes primarily intended to minimize the size

of working memory needed for processing goal structures.

Assume that, as in RPM, a goal structure is built as a task and is

carried out in which goal nodes are represented as either active or

completed. In the case where the task is interrupted before

completion, the rapid decay process causes their loss from active

memory; they are, however, retained in long term memory. The

instruction to give a recall causes retrieval of some of the

higher-level nodes in the goal structure, since these are the nodes

that define the task. Because these goals are represented as active,

their return is treated as a re-initiation, and activation is sent down

the network according to the processes outlined above. This retrieves

a set of nodes which contains more detailed information about the task,

since it consists of the more specific sub-goals set up to perform the

task, along with information about the operands of those goals.

On the other hand, if the task is allowed to go through to

completion, the goal nodes are all represented as completed when they

return to long term memory. If the same higher-level nodes are

retrieved due to a recall instruction in that case, HPM will try to

send activation up and sideways through the network. Since the goals

it works from are already near the top of the structure, there is

simply not much up to go. HPM therefore retrieves a smaller set of

propositions, which furthermore consist of more general and abstract

propositions because they are drawn from near the top of the goal

structure.
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The significant point of this example is that the demands of

formalizing a model in computational terms led to new ideas about

issues not initially seen as related to modelling learning processes.

HPM, although basically a model of learning, led to development of a

notion of directed activation - a distinct variant upon current

notions of unfocused spreading activation (Collins & Loftus, 1975;

Anderson, 1976). An additional property of the simulation is that it

gives us some insight into the teleological role of activation in an

information processing system. The simulation suggests that it should

be viewed not only as a mechanism for focus of attention or information

retrieval, but also as a component of a larger mechanism for minimizing

working memory loads. In that larger mechanism, activation may serve

to enable relatively drastic measures for eliminating propositions from

active memory, by providing an assurance that critical propositions

will return when needed.

4.2 'READER And CAPS: An Example Of Concern With Control Processes

It is worthwhile to consider another example of directed activation,

Thibadeau's READER model, which develops the notion in a much more

sophisticated way. Thibadeau (1981; Thibadeau, Just, & Carpenter,

1981) has developed a production system language called CAPS in order

to implement the READER model. CAPS is a programming architecture of

some interest, ,only in part because it illustrates another useful

property of simulation research: the development of general notions of

control and focus of attention.
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READER's mission is to account for gaze duration data from eye

movement studies of reading. It is similar in some respects to

McClelland & Rumelhart's word perception model, but differs in

implementation and models a broader range of processes. The

similarities stem from the notion of nodes representing hypotheses with

activation levels representing confidence in the correctness of the

hypothesis, excitatory relations to other hypotheses consistent with a

given hypothesis, and inhibitory relations to others which are

inconsistent. Rather than doing parallel processing on a feature array

.representing a four-letter character string, as McClelland and

Rumelhart's program did, READER sequentially processes a string of

letters and spaces representing a paragraph of text. Hypotheses in

READER are maintained at the letter-cluster, word, syntactic, and

semantic, levels. The system tries to do as much as possible at all

levels before moving on to the next input element. These properties

allow the model to explain gaze durations in terms of the time required

for hypotheses to rise above the threshold for acceptance and thus

allow the system to move on.

The READER model offers explanations for a number of effects. For

example, at the word encoding level, the sequential processing of the

input string causes the system to take more time to activate longer

words, reproducing the linear increase in gaze duration found in data

from human subjects. Gaze duration also turns out to be a log function

of word frequency, a phenomenon modelled in READER as essentially

similar to McClelland & Rumelhart's "rich get richer" effect on

baseline activation levels. At the syntactic parsing level, the system

displays a number of effects similar to those observed in the human

data, most of which occur because of the way that interacting semantic
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and syntactic processes contribute to activation levels of syntactic

hypotheses.

Among other things, the collaboration between semantic and

syntactic processes allows the system to parse difficult noun phrases

like, "the greater the mass" (det adJ det noun). It also produces the

negative correlation observed in humans between the number of modifiers

in a noun phrase and the fixation time for the head noun. The more

modifiers there are, the more semantic constraints imposed, thus

pre-raising the activation levels for likely candidates for the noun

itself, and thereby decreasing the time required to raise the correct

alternative above the threshold for acceptance. Much the same process

underlies READER's ability to duplicate human subjects' tendency to

skip over function words entirely.

Finally, the processing structure of the READER system, which

enables it to do as much processing as possible at all levels before

moving on to the next input, allow it to reproduce several effects at

the semantic level, such as increased gaze durations at the first

mention of a topic and at the end of sentences.

Thibadeau has found himself in the enviable position for a S

modeller of having an extremely rich body of data against which the

performance of his program can be evaluated (cf., Just & Carpenter,

1980). And, in fact, the program does quite reasonably; without

special tuning of parameters, Thibadeau, Just, & Carpenter (1981) claim

that READER accounts for 79% of the variance in their data, in contrast

to the 72% accounted for by the model offered by Just & Carpenter

(1980).

40
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However, the principles embodied in the program are of even

greater interest than its account of the data, because Thibadeau has

done an especially impressive job of embedding his model of performance

at a particular task within an information processing architecture of

great potential generality. To see this, we need to look more closely

at CAPS (Thibadeau, 1981), the interpreter for the language in which

READER was implemented.

CAPS, which stands for "Collaborative Activation-based Production

Syst", is a LISP interpreter for a language oriented towards

concurrent processing of hypotheses at multiple levels. Its

fundamental processing units are productions, independent

condition-action rules. Its fundamental data objects are propositions,

consisting of node-relation-node triples with an associated activation

level. Activation represents the system's current confidence or

certainty that the proposition is correct. The conditions of

productions specify some set of propositions, along with threshold

activation levels for each, below which the production will not be

eligible for execution. CAPS executes all productions whose conditions

are satisfied. Once a production becomes eligible for execution, it

continues to fire on each processing cycle until some event occurs that

causes it to stop. The primary action of a production is altering the

activations of specific propositions by some proportion of the

activation of one of the production's evoking propositions.

Figure 6 illustrates this by showing the general form of CAPS

productions, and a hypothetical example paraphrased into English. The

example can be paraphrased further as saying, "If you think you're

seeing the letter T, but only if you think it's starting a new word,

V-

iwI



Page 31

Figure 6
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and you also think that the word might be THE, then increase your

certainty that the word in fact is THE by a proportion of your

certainty that you've seen a T." Note that the conditions are specified

in such a way that the production would begin to fire when the

hypotheses first began to be entertained, and would stop firing when

the target hypothesis is either accepted (activation greater than .999)

or rejected (activation drops to zero).

In actual CAPS productions, the proportion of activation

transmitted is specified in the production, but that proportion is

actually a multiplier for a global parameter which can be adjusted by

an action of productions called "<REWEIGHT>". This is one of a number

of actions that allow the system to modify the rate at which activation

flows from one hypothesis to another, along with thresholds for

acceptance or rejection.

In short, Thibadeau has built not just a model of reading, but a

very general processing language for implementing a large class of

models based on a common theoretical framework. His work is a very

nice example of how a concern with control processes and focus of

attention can pay off.

4.3 Sloppy Errors: An Example Of Transfer To New Domains

There are many similarities between READER and McClelland & Rumelhart's

model, and many complementary features as well. Thibadeau offers a

model of parsing processes and a general control structure. McClelland

and Rumelhart provide an analysis of interactions in the transmission

of interaction under this sort of control structure -- namely, the

"friends and enemies" effect, the "rich get richer" effect, and the

.q p
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"gang" effect. They also offer some mechanisms for explaining how

expectations come into play: context-dependent adjustments of weights

on links between hypotheses at different levels. Thibadeau, in turn,

provides in CAPS processing mechanisms such as <REWEIGHT> that make it

possible to model those adjustment processes.

Together, they set the stage for a simulation of a seemingly very

different topic, "sloppy" errors in algebra problem solving, which I am

now working on in collaboration with James Greeno and Michael Ranney.

Greeno has collected a large body of protocols illustrating a common

and persistent problem. Novices make a large range of seemingly random

errors, which they themselves can sometimes detect as errors if asked

to review their own work. These errors occur with much greater

frequency in novices than experts. It is not that the subjects have

missing or incorrect rules for solving the problems, since they can

identify their own errors. Nor is it that they have buggy rules (Brown

& Burton, 1978), since they can iWentify the correct actions and since

the errors do not consistently occur.

The model we are developing to account for these observations

postulates an activation-based parsing process, like in Thibadeau's

READE, that is trying to build an internal representation of an input

algebra expression. The effects that McClelland & Rumelhart outlined

can cause the system to mis-rate some of its hypotheses about the

content of expressions. If one of the wrong hypotheses is accepted

before the correct hypothesis has time to gain sufficient strength, an

error will occur through the system applying correct algebra rules to

incorrect data. In our model, learning to avoid errors has two

components: learning the appropriate thresholds for accepting
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hypotheses of various types, and learning the correct weights to be

used in taking one hypothesis as supporting another.

r

What these examples illustrate is one of the most important

properties of the simulation approach: the development of general

concepts of information processing mechanisms. Regardless of the

particular topic area, all simulation systems must solve the same

problem: specification of control processes that will produce

appropriate focus of attention. That is, whatever the program is to

do, ensuring that it actually does it requires specifying mechanisms

that will select appropriate actions in the proper sequence. Since all

psychological simulations share the concern of modelling an intelligent

system, general concepts about these control mechanisms may be

developed which have applications in areas far removed from their

origin.

5.0 LANGUAGES FOR PSYCHOLOGICAL SIMULATIONS

So far, I've been talking about some simulations of interest and trying

to suggest some principles which they illustrate. At this point, I'd

like to shift gears a bit and consider the languages in which

simulations are implemented.

Although many different languages have been used to write

simulation programs for psychology, historically the three most

important are probably IPL, SNOBOL, and LISP. These are the languages

which introduced the key concepts of list processing, pattern matching,

imp and function notation.



Page 35

It's worth quoting two sentences about IPL-5 from Sammet's (1969)

review of programming languages, because they capture some critical

points about the fate of many special-purpose languages. The first

quote reads, "The most significant property of IPL-5 is that it has a

closer notational resemblance to assembly language than any other

language in this book..." The second quote brings some other sad news,

"The implementation and development of this line of language stopped

with IPL-5 because the people most vitally concerned were more

interested in the problems they were trying to solve than in further

language development."

It is these two factors, ease of use and certainty of support,

that suggest why LISP caught on to a much greater extent then IPL. By

and large, it has been such pragmatic factors that have influenced

attempts to develop simulation languages especially for psychology. It

would be a little grandiose to count the languages just mentioned as

strictly psychological, since their development fell more within the

bounds of AI and since they have also been put to use by other

cognitive scientists (such as the MIT linguists whose work with COMIT

led to the deve )pment of SNOBOL).

5.1 The First Generation Of Psychological Simulation Languages

Therefore, the first generatiov' of specialized languages should

probably be considered to have arrived in the early '70's with Newell"s

(1973) PSG production system, Norman & Rume rt's (1975) MEMOD

interpreter for the language SOL, and Anderson's (1976) ACT model.

These are all systems in which a number of specific simulations have

been implemented, but where the system itself was an object of

U
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psychological interest because it was seen as an analogy to at least

some global aspects of the human information processing system. Newell

emphasized event-driven processing and working memory limitations.

Norman & Rumelhart emphasized long-term memory and the notion of

active semantic networks". Anderson's system tries to integrate all

of these concerns. I will refer to all such systems as, "whole-system"

simulations; it is important to distinguish them from

"special-purpose" programs intended to simulate performance in a

particular domain.

It is worth noting that, although their developers are still

active in simulation work, all three of the systems just named have

been phased out. Their developers seem to have turned, instead, to

special-purpose programs designed to explore restricted aspects of

verbally specified theories. Rumelhart's model of word perception was

implemented in a program that did only that (McClelland & Rumelhart,

1981). Rumelhart & Norman (1981) have developed a complementary model

of typing; again, implemented in a special-purpose program. Anderson

has implemented some of his recent ideas about knowledge compilation as

a learning mechanism (Neves & Anderson, 1981) not in his own ACWTi

program, but in a simpler production system architecture which retained

only those features of ACT deemed immediately relevant to the task at

hand.

Their new work is quite consistent with their old, so the

abandonment of the whole-system simulations cannot be taken as a

rejection of the theories. Rather, it seems more a question of

practical matters. I'd like to speculate on a number of factors that

lead researchers to abandon large systems.
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- The systems become slow and expensive to run; there is a feeling

that the cost is not justified when portions of the system are not

directly related to the current topic of interest.

The problems of developing and debugging a system grow as it

increases in complexity; trained psychologists may prefer

psychological research to hardcore computer science.

- Demand from others for chances to use the system are generally low;

many researchers, even if they have the facilities to bring up the

program at their own site, are hesitant to do so due to the

theoretical unwillingness to buy an entire set of assumptions, and

to the pragmatic fear of poor maintenance.

- At the same cime, the demands of the few who are interested in

adopting the system can become burdensome; one hesitates to commit

the resources required for documenting and extending a system in

order to make it usable outside the lab. (Norman and Rumelhart,

who produced a manual for their MEMOD system running over 100

pages, are a notable exception to this remark.)

There are a number of advantages of pre-existing languages like

LISP that make these difficulties seem especially discouraging. LISP

is available on a wide range of machines in more-or-less compatible

dialects (e.g., DEC KL-10s and 20s, VAXes, IBM 360's). With the

exception of MIT's MACLISP variant, reasonably clear documentation is

readily accessible. The language is fairly well-structured,

symbol-oriented, and has many list processing and string manipulation

constructs. It is relatively easy to define new data structures.

Last, but by no means least, most variants of LISP offer fairly useful
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interactive debugging and trace mechanisms.

Thus, it may seem that the trends favor small special-purpose

simulation programs. However, to balance the picture, there are two

points to consider. First of all, there are new whole-system

simulations being developed. Thibadeau's (1981) CAPS and my own HPM

(Neches, 1981ab) are two examples of such systems. Second, the way

that CAPS and HPM were developed show that there are some benefits to

the whole-system approach in terms of generality and understanding of

unexpected inter-relations between components of the information

processing system.

Although it may turn out that the CAPS and HPM efforts are subject

to the same pitfalls as previous whole-system simulations, there is

another system tnder development which attempts to steer a.' middle

course between the alternatives of special-purpose modelling and

whole-system simulation. That system is called PRISM, for Program for

Research Into Self-Modifying systems, and is being developed by Pat

Langley of Carnegie-Mellon University and myself (Langley & Neches,

1981).

5.2 The PRISM Production System Architecture

PRISM is a production system interpreter implemented by augmenting

LISP with a number of special functions. It owes a major debt to

Forgy's (1979) OPS4, from which a large portion of its code is

borrowed.
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Production system programs are more difficult to follow than

traditional programs, because of their many conditional rules and the

absence of an explicitly specified order of execution for the rules.

This has probably been a major factor in limiting their acceptance.

Nevertheless, there are a number of attractive properties to production

systems, as Newell & Simon (1972, pages 804-806) and Langley, Neches,

Neves, & Anzai (1980) have pointed out. They can model both

goal-driven and data-driven processing, the program organization offers

a closer analogy to human memory limitations than other programming

formalisms, and the relative independence of individual production

rules gives programs a degree of modifiability which might facilitate

models of learning processes.

The design philosophy underlying PRISM is that there are too many

unresolved questions about the details of how a production system

should work. Thus, it is premature to fix a particular set of choices

and try to impose them upon users. Instead, PRISM seeks to identify

the key choice points in specifying a production system architecture,

offer plausible options at those points, and make it easy for

sophisticated users to implement alternatives to those options. Thus,

rather than being a whole-system simulation of a particular information

processing theory, PRISM defines a class of theories, and leaves it to

the user to specify the details.

In order to do this, PRISM expands somewhat upon th3 traditional

view of a production system as consisting of a data memory and a

production memory, with productions being selected and applied in a

repeating "recognize-act" cycle. Figure 7 shows the general structure

of the PRISM system. Fixed components are shown as rectangles, those

P.
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Figure 7
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involving user-controlled options are shown as circles. Arrows

indicate information flow.

For example, PRISM divides the process of modifying memory into

three components: add-to-w, which puts propositions into working

memory for temporary storage; add-to-net, which puts propositions into

long-term semantic memory; and, add-connections, which ties

propositions to others in a way that permits activation to pass between

them. Almost all operations performed by PRISM can be specified by the

user to be either default actions (performed on all propositions

asserted as the action of a production) or special-case actions

performed only on the propositions explicitly specified as their

arguments. Thus, the user has case-by-case control over how these

operations are applied.

Once a proposition enters working memory, it becomes subject to

policies selected by the user for determining how long it will reside

there. Among other things, users select a decay function to be used in

computing how activation will decrease over time, along with a

threshold below which propositions will be treated as inactive.

As Figure 7 shows, data can enter active memory from several

directions. In addition to explicit assertions of new data, old data

may return to active memory via a process of spreading activation, or

associative retrieval. We have seen several examples in this paper

illustrating why this is a useful component of a model. However, the

details in those examples differed enough for it to be clear why

options are worthwhile. PRISM offers three options.

pP
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The "Spread-to-depth" option assumes that activation is sent out

only from a subset of active nodes, and travels with decreasing

strength to all nodes within a specified distance. The

"Spread-to-limit" option also assumes that activation travels with

decreasing strength from a subset of the active nodes, but allows the

activation to travel from node to node until it drops below a threshold

level. The third option permits directed activation schemes similar to

Thibadeau's (1981). Like all PRISM options, it is relatively easy to

implement alternatives to those supplied, since all that is required is

to provide the name of a function which will be executed by PRISM on

the list of propositions from which activation is to spread.

That list of propositions is determined by choices made by the

user; as with other functions, the associative retrieval functions may

either be called as explicit actions of productions or specified as

default actions to be applied to all propositions asserted by

productions.

PRISM can operate with a wide range of policies for selecting

productions for execution, a process also known as "conflict

resolution". This turns out to be one of the key points of difference

0
between various production systems offered in the past. Anderson's

(1976) ACT, for example, fired some productions in parallel, but not

all of those eligible for execution. The complex restrictions imposed

by the system involved assumptions about varying lengths of time

required to select different productions, about generalized and

specialized variants of productions, and so forth. Allen Newell (1980)

offered a model of the human information processing system designed to

account for some effects in speech perception, in which he claimed that

V
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all satisfied productions containing constants could fire on a given

cycle, but only one production involving variables in its conditions.

Thibadeau's (1981) CAPS, on the other hand, allows all matched

productions to fire. My own EPM (Neches, 1981a) divides productions

into seven classes, with different rules for each class, and fires the

union of the set of selections from each class.

PRISM's scheme for selecting productions for execution is shown in

Figure 8. Like HPM, PRISM allows users to divide their set of

production rules into independent classes which fire in parallel. In

PRISM, users can specify one to infinity such classes, although the

default is that all productions are placed in one common class. For

each class that users allow, they define a "filter", or set of tests

which must be passed for a production to be allowed to fire. Those

productions passing the first test are sent on to the second, and so

on. This allows the user to specify a wide range of conflict

resolution policies.

PRISM also has a number of options related to modelling learning

processes. In a production system, learning is mainly simulated by

building new productions or by modifying pre-existing ones. (It is

possible to also model learning in terms of changing or adding new

declarative structures to long-term memory, of course, but there is no

need to offer any special options in order for that to be done in

PRISM.)

Note that the ability to model learning easily has long been a

promise for production systems, ever since Newell & Simon (1972)

started arguing for production systems as a formalism capturing key

properties of the human information processing system. The argument

U1
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Figure 8
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has essentially been that learning models would be easier to implement

than in traditional programming formalisms because of the modular

properties of condition-action rules, with each production specifying

the range of situations in which it's applicable, independent of all

other productions (2). Up until quite recently, this promise was

little more than just a promise. In the last few years, though,

several different simulations have been developed in the formalism of

self-modifying production systems (e.g., Anzai & Simon, 1979;

Anderson, & Kline, 1979; Anderson, Kline, & Beasley, 1978; Langley,

1981; Neches, 1981ab; Neves, 1978; Neves & Anderson, 1981). The

models which have been offered have incorporated several different

features, and PRISM offers options related to each:

- Trace data: several learning models (e.g., Anzai & Simon, 1979;

Langley, Neches, Neves, & Anzai, 1980; Neches, 1981ab) depend r

heavily on a system's memory for past actions. PRISM offers

options that allow users to determine the form and content of the

memory representation that is built after each production

execution.

- Designation: since Waterman (1975), building new productions has

been a staple feature of production system models of learning.

PRISM contains a number of options governing the form of new

productions constructed by pre-existing productions.

- Strengthening and weakening: PRISM offers options governing means

for altering the likelihood of a particular production being

Footnote 2: This assumption puts a heavy burden on processes for
selecting appropriate productions for firing, one reason why PRISM is
designed with such a generalized view of conflict resolution.
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selected for firing.

- Generalization: there are also options governing mechanisms for

expanding a production's range of applicability through

substitution of variables for constants in the production's

conditions.

- Discrimination: there are a parallel set of options governing

mechanisms for restricting a production's range of applicability

through the insertion of additional conditions.

In summary, simulation work in PRISM starts with specifying a

processing environment that controls how productions will be

interpreted. The environment also includes long-term memory, active

working memory, and processes which manage their contents, learning

mechanisms. The system is built on top of LISP, and can therefore

implement any knowledge representation which can be expressed as LISP

data structures. PRISM can be thought of at two levels: either as a

kit from which whole-system simulation packages can be assembled, or

simply as a program ng language which collects features found to have

been convenient in other systems for cognitive simulations.

There are several motivations behind the development of the PRISM

system. Production systems have been a useful simulation tool, but it

is simply too early for any consensus to have arisen about the most

useful form for a production system language to take. PRISM is

intended to let researchers pick and choose the best combination of

features for their particular purposes, without being forced to build a

complete system from scratch. As I suggested in earlier sections,

there is a strong gain from the exercise of trying to work within a
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whole-system simulation. We hope that systems like PRISM, by

encouraging researchers to specify whole systems, will promote a

greater concern with the interactions between components -- that is,

with the question of how the pieces of the puzzle are going to fit

together. At the same time, PRISM's system of options, and the fact

that it is built on top of a powerful programming language like LISP,

are intended to make it relatively easy to modify and extend. This

property of flexibility means, we hope, that models of particular tasks

can be implemented within whole-system simulations without being forced

into the Procrustean bed of a fixed system.

6.0 CONCLUSION

One of the most exciting things about simulation work is that,

because of its necessary concern with control of processing and focus

of attention issues, ideas can come out of a simulation project that

are applicable in areas quite different from the domain in which the

original work was done. I've tried to illustrate that point in the

examples of simulation which I've presented. I have also tried to

touch on a number of factors which are making simulation work easier

and more accessible than ever before. One factor is the development of

simulation languages, like CAPS and PRISM, which do not force their

users to accept any single theory of the human information processing

system, but provide frameworks in which models of the system - or

components of the whole system -- can be developed and explored.

Another factor is the development of lower cost machines, such as

VAXes, with more powerful capabilities. A third factor is the

increasing availability on these machines of core languages such as

LISP, which facilitate direct implementation of special-purpose

p-
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simulations in addition to providing a foundation upon which simulaV

languages more specific to psychology can be constructed.

At the same time, though, I would like to avoid a presentation

from the messianic genre. As we have seen, there are a number of

advantages which have been claimed for the simulation approach that

really do not hold up in actual practice. A computer simulation does

not necessarily guarantee that a theory is more consistent or

comprehensible. Nor does a program's successful performance guarantee

that the theory is generalizable, or even that the causes for the

success are those predicted by the theory. The psychological

significance of a computer program can only be determined by close and

careful examination of each piece of work on a case-by-case basis.

There are also some practical limitations which will limit the spread

of simulation work for some time to come. It is still time-consuming

and hard to delegate. Interesting projects often have many of their

payoffs only at the end, with fewer publishable milestones along the

way. Computer hardware and software facilities are not always being

planned with the potential for simulation work in mind.

These difficulties are due in part to the fact that the promise of

simulation methodology -- the different levels at which it can

stimulate thought about psychological issues -- is not as widely

appreciated as it could be. I have tried in this paper to illustrate

some of the ways in which simulations can aid us in thinking and

reasoning about the human mind. They provide a tool for empirically

analyzing theories to better understand their implications and

predictions. They are a means of exploring interactions between

components of complex models. They pose a practical challenge to

I
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operationalize theoretical constructs, which can lead to incidental

discoveries about related processes. And, finally, they engender a

concern with issues of process control that contributes to the

development of general principles with broad applications.

-u
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