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Three views of the function of computer simulation in cognitive
psychology are analyzed. The strong view that computer simulations
will produce more rigorously specified theories is seen to be over-
stating the case. Two more pragmatic views are supported. One looks
at computer method as a means of exploring or validating psychological

theories. The other looks to computer simulation as a source of useful

e concepts. Several recent simulation efforts are presented as illustrations
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simulation, the discussion turns to psychological simulation languages,
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SIMULATION SYSTEMS FOR COGNITIVE PSYCHOLOGY
Robert Neches

Learning Research and Development Center

University of Pittsburgh

1.0 OVERVIEW

Although the primary purpose of this paper is to discuss simulation
systems, how we view simulation as a methodology strongly affects our
perceptions of what constitutes a useful simulation system. Therefore,
the first part of this discussion considers several common views of the
role of simulation in cognitive psychology. In the process of
evaluating each of these views, I will be making some assertions about
useful principles of simulation, and reviewing instances of simulation
work which illustrate those principles. Once some perspective is
established regarding simulation’s uses, I will turn to a discussion of
where I believe simulation work is heading. That discussion will
consid;r the rise and fall of some past psychological simulation
languages, as a means of focusing attention on aspects of programming

environments that facilitate simulation work in general.

Finally, I'1l close with a discussion of a particular class of
psychological simulation languages, production systems. That discussion

will focus on the design of a new production system language called




PRISM, which 1is being developed in collaboration with Pat langley of

Carnegie-Mellon University (Langley & Neches, 1981).

2.0 SIMULATION AS POLICEMAN OF THEORETICAL RIGOR

I’d 1ike to start by exorcising a ghost, in the form of an extreme
argument for simulation that was propounded rather vigorously in the
late 1960°s and early 1970°s. This was the claim that computer
simulation was a superior formalism for enforcing greater rigor in

theory specification.

2.1 Five Claims For Computer Simulation

A strong example of this particular argument appears in Gregg & Simon’s
(1967) article using concept fofnation as a demonstration domain for
information processing models. Fmbedded in that article were five
claims for the advantages of requiring that running computer programs be

associated with psychological theories:

~ Inconsistencies would be prevented by the need to specify a
particular set of  operations in order to implement a
hypothesized psychological process. The same set of operations
would have to suffice for all cases in which that process was

evoked.

- Untested implicit assumptions would be rendered impossible by
the need to specify a complete set of processes. A program

which does not specify processes completely could not run.
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= Overly flexible theories which could too easily fit data would
be prevented by the fact that computer programs contain no

nunerical parameters.

- Untestable theories would be eliminated by virtue of the
specific sequence of operations generated by a program, which
could be treated as predictions about intermediate processes.
These predictions could be compared against process tracing
data, such as verbal protocols or eye movements, thus allowing

much more specific tests of a model (1).

- The need for a program to operate upon specific data would

prevent finessing critical questions about encoding and

- &
a

representation.

There are some positive examples supporting these claims. John
Anderson, one cognitive psychologist clearly influenced by the

simulation approach (Anderson, 1976), has produced a very detailed

theory which 1is often relatively specific in its claims. His work has

stimulated a number of studies, both supporting and opposing.
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However, in spite of positive examples such as his, it is hard to

Ll

say that simulation was the causal factor in the development of a
detailed model. Certainly the history of psychology contains a number

of comprehensive theories not cast in a computational formalism.

Y z‘.—-- Excmtraans

Footnote 1: This, and the preceding point, is particularly important if
one adopts Popper’s (1959) view of science. Popper suggested that the
dominant goal is to refute theories rather than support them, with a
theory being "accepted" only so long as no evidence can be found counter
to it. In that view, a theory is best if 1t 1s highly specific and
therefore amenable to disconfirmation. In that case, either the cause
for its disconfirmation leads to a new and better theory, or the failure
to disconfirm lends credence to {t.
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Page 4
2.2 Six Problems With The Five Claims

Furthermore, experience with simulation since the early days of Gregg &
Simon (1967) has shown that there are a number of ways to avoid rigor

while doing simulation work:

- A formal specification of a model needn’t 1imply a comprehensible
presentation; since programs are rarely presented in full with
accompanying documentation, we remain dependent on verbal
descriptions of the model. This can raise problems in determining
whether the prégram performs as it does for the reasons claimed by
its author. For example, see Hanna & Ritchie’s (undated) analysis
of Lenat’s (1976, 1977) AM program, a system which has received a
great deal of attention in the Artificial Intelligence community
for its apparent ability to re-discover a number of interesting
mathematical theorems. Hanna and Ritchie suggest several points
that contribute to its performance, but where the actual program
appears 1inconsistent with the general principles lenat presented.
They also raise instantiations of four of the five potential

problems listed below.

- Programs frequently involve simplifying assumptions in order to
facilitate implementation. These simplifications, however, cause

the program to diverge from the theory it supposedly represents.

- Programs can be written to work only for a restricted set of
examples, those presented in the write-up of the research. 1In the
abgence of some analysis of the formal properties of the domain,
there is no automatic guarantee that the‘examples presented are

representative of the domain, or that the principles required to
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Page 5

handle a given set of examples are sufficient to account for the

entire domain.

- The inputs or database for the program can be structured in ways
that simplify 1its task, but which are not necessarily
psychologically plausible. That is, the real work of performing a

task may be done before the program is started.

- Data or procedures supplied to the program to define different
examples for it to handle may, in fact, constitute non-numerical
parameters that give the program considerable flexibility in
fitting psychological data. Newell & Simon (1972, page 56), for
example, admit that the operators and table of differences supplied

to GPS constitute such parameters.

- The programmer may hold back data or procedures that would have
confused the program had it been available. That is, the program
may appear to perform well not because it has the capacity to
choose the correct action from all possibilities, but rather

because the difficult choices are not offered to it.

For all the above reasons, there is no immediate assurance that a

program’s consistency with psychological data means the program is of

psychological significance. Nor, on the other hand, 1is an.

inconsistency necessarily a sign of failure. For example, Newell &
Simon (1972, page 472) admit to a number of exceptions to GPS’ account

of protocols obtained from suﬂjects solving logic problems.
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Although Newell and Simon are fond of claiming that the test of a

a theory is a running program, this is no more true than claiming that

the true test of an experiment’s validity is a 0.05 significance level.

The real question is how and why a particular result was obtained. The

’§§ claim that computer simulation will necessarily lead to clearer and
E more rigorous psychological models does not hold up.

fﬁ‘ It is perhaps better seen from a historical perspective, as an

argument stemming partly from the days of simpler( programs, but
primarily from a need to make a case for the respectability of
simulation methodology compared to established mathematical modelling
and experimental approaches. Unfortunately, the proponents of
simulation approaches have, if anything, damaged the credibility of

their case by overstating it.

3.0 SIMULATION AS A METHOD OF EXPLORING OR VALIDATING THEORIES

Therefore, I ‘d like to turn to some less ambitious views of
simulation, in which a computer implementation is viewed not as a
necessary formalism for expressing a model, but rather as simply one of

several means for gathering information about it. Even this more

regtricted view may still be controversial.
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3.1 The Significance Of A Running Program

One of the issues in the controversy is the significance of the fact

: that a program runs. L. Miller (1978) does a very nice job of

ii summarizing the debate, which he suggests stems from alternative
=

assumptions about the difficulty of theory validation. One side, he

claims, believes that theories are easy to generate but difficult to
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test. The other believes that a good theory is a significant and

P =

difficult accomplishment, and 1s accordingly more impressed by a

demonstration of a model’s sufficiency through the successful

implementation of a computer program.

A related question has to do with the ultimate discriminability of
psychological models. Anderson (1978), for example, has claimed that
many different models can produce empirically identical predictions,

and has even gone so far as to suggest that it is futile to try to

distinguish which alternative is correct by experimental me* ds.
Naturally, this claim has been disputed. Hayes-Roth (1979) has of -ed

one of the more detailed responses, basically arguing that if two -

of processes are not identical, then it should be possible to find some
form of process tracing data for which the two sets make different

predictions. Without taking a firm position on the ultimate resolution

to these questions, we still can say that simulation gives a means of
exploring the plausibility of models where theoretical sophistication

exceeds the state of the art in empirical testing.

In such cases, there are a number of ways that modelling can aid
our thinking. The demonstration that a theory is sufficiently powerful

to guide implementation of a working program is certainly encouraging
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for its credibility. Efforts to produce working programs can also lead

to a better understanding of the computational requirements of a task, .
(A
which in turn can help to constrain the set of plausible theories. B
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Page 8
3.2 Empirical Analyses Of Programs

Another important contribution of simulation comes from our greater
freedom to perform psycho-surgery on a program, since no clearance from
a Human Subjects Committee is required in order to modify a computer
simulation. This permits use of simulation for experiments that would
be unethical or impossible with human subjects, experiments that can
help in understanding the interactions between components in complex
models. I°’d like to offer McClelland & Rumelhart’s (1981) model of

word perception as an interesting example of this.

McClelland & Rumelhart (1981) were concerned with explaining a
number of phenomena in the perception of words and letters in
tachistoscopically presented displays. Among their key concerns were:
(a) modelling the process of recognizing words and letters within
words; (b) explaining the facilitating effect of pseudo-words for
letter recognition; (c) explaining the sensitivity ¢f the pseudo-word
effect to expectations about what will be presented; and, (d)

explaining the differential effects of various kinds of masks.

The model which they built assumed a highly-linked structure of
nodes, representing hypotheses at various levels about what stimulus
was presented. An example of such a structure is illustrated in Figure
1. Each node has an activation 1level associated with it, which
represents the model’s confidence at the current time in the hypothesis
represented by the node. Hypothesis nodes vary in their baseline

activation level.

YTy YTy vy YTy,

i A




Figure 1




Page 10

Each node has a large number of weighted links to other hypothesis
nodes. Excitatory links send activation to hypotheses consistent with
a node. Inhibitory 1l1links decrease activation of inconsistent

hypotheses.

The activation of a node at any point in time is a function of its
baseline activation and the excitatory and inhibitory activation
received from related hypothesis nodes. The function wused modulated
the activation level to keep it within a restricted range and allow for
time decay. Activation reverberates through the network, and at some
point in time whichever hypothesis is most active at that point is

accepted as true.

In this model, the word superiority effect and the facilitating
effect of words on letter recognition were explained in terms of
activation flows to and from nodes at the word hypothesis level. The
facilitating effect of pseudo-words on letter recognition could be
understood as an outcome of partially activated word hypotheses
reinforcing the letters. For example, the pseudo-word "TROP" contains
letters which would activate hypotheses such as, "TRIP", "TRAP", and
"PROP"; these, in turn, would send activation back to the hypotheses
for the letters "T", "R", "0", and "P". Finally, the effects of
various kinds of masks were explained in terms of the relative times at
which activation for the mask grew to levels sufficient to interfere

with activation for a target.

This last effect deserves discussion in some more detail, because
it nicely illustrates some of the advantages obtained through computer
modelling. The general phenomena which McClelland and Rumelhart tried

to capture was as follows. When a tachistoscopically presented target
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Page 11

display is followed closely by presentation of a mask display, a number

of factors affect the extent to which the mask will interfere with

recognition of the target. The basic findings of interest involve
comparing letter and word recognition for three different kinds of
masks: feature masks consisting of letter-like geometrical shapes,
letter masks consisting of non-word letter strings, and word masks. A
number of studies have shown that letter recognition is about equally
affected by all three kinds of masks, while word recoénition is

markedly less affected by feature masks than by letter or word masks.

Given the formulation of their model, the uniform effects of the
three different Lkinds of masks on letter recognition are easily
understood. All three kinds of masks quickly engender competing
hypotheses at the letter level. These can depress the correct
hypothesis’ activation through their inhibitory 1links before that

hypothesis can reach its peak activation level.

In the case of word recognition, the difference in effects between
feature masks and others is somewhat more complicated to understand.
McClelland & Rumelhart, in spite of a long and fairly detailed
discussion of their model, do not make it clear why it produces the
desired effect. (This is worth noting, in the light of Gregg & Simon’s
claims that computer simulation would eliminate exactly this kind of

uncertainty.)

It appears their explanation is that random feature displays
weakly activate many different letter hypotheses, rather than strongly
activating a few. Thus, none of the competing alternatives have enough
strength for their inhibitory links to have an immediate effect on the

activation for the correct hypothesis. One indication that this is

MEP T ~

A

B TN _J

_ .,.
s B RN

; g
2. "ais’a o

B LW




e R e S Sysiat it Al Sl Tl ‘A A G N S S e i e " i Mo A ML Skl el il Bt AT S S g e Al

Page 12

indeed the intended explanation comes from their report that the
program was very sensitive to the degree of similarity between features

in the mask and the target.

This is an interesting point, because we see here that the program
is perhaps just as complex for am outsider to understand as a verbally
stated model. However, there are some real differences in the value of
a program over a verbal model in situations where the complexity of a
theory obscures its implications. With the program -- wunlike a
verbally expressed theory -- it is possible to perform manipulations to
help understand exactly what factors contribute to 1its performance.
For example, having determined that the program was sensitive to
similarities at the feature level, McClelland and Rumelhart set out to
equate their stimuli in order to eliminate that confounding factor.
Doing that required coming up with feature, letter, and word masks
which all three had just as many features same/different with respect
to the target display. Worse yet, to properly equate the stimuli, the
equivalences had to hold letter-bhy-letter, for each letter position in

a four character string.

This would be a rather daunting task if the stimuli had to be
created for human subjects in an experimental design of any statistical
rigor. It is difficult to create even one grouping of a target word
and three masks which would satisfy these criteria. Fortunately, in
evaluating the performance of the program, ome is all that is needed.
Since the program 1is a deterministic entity, there is no concern of
statistical error. When running experiments with a program, the only

concern is with finding a range of inputs that verify the generality of

the results. The need to be concerned with noise, or the statistical
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reliability of measurements of the program’s performance, is

eliminated.

- ' Even with the statistical issue of noise eliminated, though, it is

R v PEVDEIAN |

-ﬁ still difficult to comnstruct stimuli in this particular case.
ii McClelland & Rumelhart’s ability to do so illustrates yet another
! virtue of models implemented as running programs, the ability to turn

thought-experiments into real tests of a theory. To create stimuli

ﬁ- meeting the desired criteria, they simply modified the knowledge base
¥ of their program. For example, they selected as a target string the
. word, "MOLD". As a letter mask, they selecied the string, "ARAT". In
éi the specialized character font used in the experiments simulated, the
)

letters of "ARAT' and the letters of "MOLD" had, respectively, 2

3 similar features in the first letter positiom, 3 in the second, 2 1in

the third, and 2 in the fourth.

It was easy to produce a feature string with the same number of
similarities to the target string "MOLD". Where the constraints upon
the stimuli become tricky is in finding a common four-letter word which
also has the same pattérn of similarities. However, because a program

can be much more easily modified tham a human aind, McClelland &

Rumelhart were able to sidestep the constraint. After obtaining the "1
results of running their program with the letter string "ARAT" used as fi
the mask for "MOLD", they simply modified the program’s database so ;3
that "ARAT" was now represented as 8 known word. When they then ran ™
the program again, the results of the new run could be interpreted as ?é
representing a word mask rather than a letter mask. Thus, they were ii
able to explore the effect of top~down knowledge about words without jj
the confounding effects of feature differences due to different letter R
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strings.

To see where some of those confounding effects could be produced,
and to see another virtue of analyzing the performance of a computer
model, we need to consider some other observations made by McClelland &

Rumelhart.

Since programs can be modified at any point, it is possible to
insert code to record virtually any kind of data about its run-time
characteristics. This can permit one to make observations about
implications of a model which wmight not come out nearly as clearly
otherwise. For example, tracing the time course of activation £flow
enabled McClelland & Rumelhart to analyze three different factors

influencing activation level.

The first they called the "friends and enemies effect".
Activation 1s clearly going to depend on the number of excitatory and
inhibitory links from other active nodes. Thus, the 1likelihood of a
hypothesis being accepted, whether correct or not, is partly dependent
on the relative amount of knowledge which the system has stored about

ic.

The second effect they called the "rich get richer" effect, the
empirical observation that feedback 1loops inherent to the structure
greatly accentuate over time any initial differences in baseline
activation 1levels. This 1is one of several aspects of the model which
offer accounts of expectation effects. In particular, by making
baseline activation encode word frequency, they were able to simulate
common frequency effects. Figure 2 illustrates this, by showing how

small initial differences in activation due to differing frequency were
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Figure 2

the "rich get richer" effect
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enhanced over time for thrée alternative hypotheses entertained by the

program when presented with the string "MAVE". Note that all three

cod Raanta

hypotheses have three letters in common with the presentation string,

and thus all receive equal bottom=-up support. ;
The third effect was called the "gang effect". Observation of the i

program showed that strong hypotheses at a given level indirectly 1

reinforced a subset of their competitors at the same level, those that

depended on the same supporting evidence. This is because a hypothesis
node sends activation to lower-level nodes, which in turn send
increased activation not only back to that node, but also to all other
higher-level nodes to which they are linked. Figure 3, for exanmple,
shows how three additional hypotheses fare over time in response to the
same presentation string, "MAVE". Once again, all three alternatives
have three letters out of four in common with the string actually
presented, and so start out with initial bottom-up activation.
However, "SAVE" indirectly receives activation from five other word
hypotheses that boost the activation of the letters "A", "V"', and "E"

(e.g., "HAVE" and "GAVE"). Similarly, the program had stored five

other words 1involving the letters "M", "A", and "E", and those
alternative word hypotheses boosted the activation levels for “MALE" by 4
way of those three shared letter hypotheses. On the other hand, there
were no other hypotheses involving "M", "V", and "E" to indirectly
support the hypothesis that the word seen was "MOVE". Thus, its ;

activation is markedly lower than for the other alternatives.
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the "gang" effect
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3.3 There Are No Simple Standards

It is interesting to note that this simulation does not at all fulfill
the promised advantages of simulation outlined by Gregg & Simon (1967),
but instead illustrates the objections to their claims outlined in
section 2.2. We were promised specificity through parameter-free
models; McClelland and Rumelhart present a full-page table 1listing
parameters, and vary the settings in simulating different experiments.
We were promised deeper concern with encoding and representation; they
present a system which pre-codes information about letter position (and
which requires creating such a large number of 1links for exciting
consistent hypotheses and inhibiting inconsistent alternatives that one
has to wonder about the psychological processes required to add a new
piece of knowledge). Finally, we were promised extensibility to
related tasks; they presented a program which could not even easily be

modified to handle five-letter words.

However, these objections really do injustice to what we
instinctively know 1is a respectable piece of work. The problem is with
the standards offered by Gregg & Simon, which basically amount to a
promise that we will never again have to think hard to understand or
evaluate someone else’s work. Those standards do not fully capture

what can be gained by simulation,

McClelland & Rumelhart’s observations about interactions between
components of the model are significant because of their implications
for other work, a point which 1I°ll return to below. What 18 of
interest for the moment, though, 1s that the ability to perform

empirical analyses of a program has enabled them to provide greater

insight into the implications of their model. 1In addition to
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information about how well the model accounts for a body of data, the }

capacity to perform experiments and make observations on the program 3

means that we can also get information about why the model succeeds or ;

fails. »

$

4.0 SIMULATION AS A SOURCE OF NEW IDEAS q
Another view of simulation is as a source of new ideas about

processing mechanisms, which implies a close pa.:tnership between ;

cognitive psychology and artificial intelligence. Psychology, in spite j#

of recent claims to the contrary, has made several contributions to AIl. 2

Among them are the notions of means-ends analysis embodied in GPS f

(Ernst & Newell, 1969; Newell & Simon, 1972), of discrimination nets ‘:

(Feigenbaum, 1961; Simon & Feigenbaum, 1964), and of various semantic Ei

network representations (e.g., Kintsch, 1974; Notmaﬁ & Rumelhart, ﬁi

1975; Anderson, 1976). ?

35 Psychology has certainly been influenced by AI. Winograd’s (1972) -

*! SHRDLU, for example, was considefednpf sufficient importance to have an !ﬂ
?: entire issue of Cognitive Pgychology devoted to it. Another important,

3

;5 although perhaps not as well-known, example is the HEARSAY speech i

f‘ understanding system (Erman & Lesser, 1975). That system introduced N

- notions of a central memory structure shared by co-operating parallel E

Pi ' knowledge sources; these notions have influenced psychologists in ;;

:, - topics ranging from models of reading processes (Rumelhart, 1977) to ™
] planning (Hayes-Roth & Hayes-Roth, 1979). Scripts (Schank & Abelson,
;_ 1977), frames (Minsky, 1975), or schemata (Bobrow & Norman, 1975) have
r’ generated a number of lines of research, as has the work on story

grammars (Rumelhart, 1975; Mandler, 1977; Thorndyke, 1977).
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Although the examples just mentioned are all cases where ideas

about processes have been transferred fairly directly, simulation work
can have a much more subtle impact on psychological thinking. This is
because solutions to sub-problems encountered in the course of
implementing a program can turn out to have implications for
psychological 1ssues that the program was not originally intended to
address. Often, this can help us gain a teleological understanding of
mechanisms, by making us aware of constraints that necessitate their

existence or force them to operate in a particular way.

All computer programs are fundamentally concerned with issues of

control and focus of attention (or, to put it less elegantly, getting

the right things done at the right time). Thus, the process of
developing a simulation can suggest domain-independent mechanisms which
other researchers can apply in developing models of behavior in quite

different topic areas.

To illustrate these rather abstract claims, I will first discuss
some of my own work on a learning simulation called HPM, then describe
a simulation of eye fixations in reading (Thibadeau, Just, & Carpenter,
1981), and briefly return to McClelland & Rumelhart’s (1981) word
perception model. I will try to show how these disparate systems

contribute a model of sloppy errors in algebra problem-solving.

4.1 HPM: An Example Of A Spin-off Discovery

The HPM (for Heuristic Procedure Modification) program is a model of

learning through the incremental refinement of procedures (Neches,
1981a, 1981b). Although primarily concerned with learning, it turns

out to provide a new explanation for an old observation from the days

, .
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of gestalt psychology called the Zeigarnic effect. (For an English
description of this effect, see Lewin, 1935, pages 243-244.) The
effect, which Gestaltists interpreted as illustrating the phenomenon of
"closure", boils down to the observation that delayed recalls of a task
are richer and more detailed when subjects were stopped part-way
through the task than when they were a'lowed to carry the task through

to completion.

In order to make clear HPM’s account of this phenomenon, it is
necessary to provide some background abhout the program. HPM is a
production system, which means that it belongs to the class of
programming languages 1in which procedures are specified as a set of
condition-action rules and data is represented as propositions in a
working memory. The system runs through a cycle of finding the set of
productions whose conditions are satisfied by the current contents of
working memory, selecting a subset of those rules for execution, and
modifying the contents of working memory according to the actions

specified by the rules selected for execution.

The program was inspired by protocol studies by myself (Neches,
1981b) and others (e.g., Anzai & Simon, 1979) indicating that people
use a number of common-sense heuristics to improve their procedures on
the basis of experience applying them to a task. Most of the
simulation work has concentrated on getting the system to acquire an
addiction strategy similar to that used by many second-graders, given a
simpler strategy employed by most pre-schoolers. Figure &4 shows the
heuristics which seem to be most relevant to this task, along with a
sequence of strategies that the system discovers. The initial strategy

adds two numbers by counting out a set of objects corresponding to each
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addend, combining those two sets, and counting the total set. The
final strategy adds the numbers by incrementing the larger addend a

number of times given by the smaller addend.

HPM was designed as a vehicle for exploring the problem of
operationalizing heuristics such as those in Figure 4. Thus, the kinds
of questions I was concerned with were ones like, "What sort of
information about a procedure is necesssry in order to apply heuristics

like these?"

The answer embodied in HPM involves solving problems by setting up
a hierarchical goal structure not unlike Sacerdoti’s (1977) planning
nets. Productions in HPM respond to nodes in a partially-constructed
goal structure by adding propositions that further elaborate the goal
structure. Whenever a production fires, a 1linkage is established
between the propositions which satisfied its conditions (i.e., caused
its firing), and the propositions which were added as 1its actionms.
This information allows HPM to implement heuristics like those of
Figure 4 as sets of productions which look for configurations in goal
structures indicative of 1inefficiencies. The program represents
learning by using the information to construct new productions, with
conditions that cause them to fire in circumstances when the
inefficiency is likely to be repeated. The information allows the
productions to construct actions for the new productions that cause the

system to sidestep the inefficiency.

Figure 5 1llustrates the structures in HPM’s memory after
executing 1its first production for addition in response to an
externally supplied goal to add two numbers. When we remember that the

semantic network shown in this figure represents only knowledge about

ORI N S WY S Sy Y PUEI L WGP, SR UL SPREE S 3 SRS . N

1‘.' RIE R R

. '
Ak sk

Fo . e
A ’ Lo
" PN IR X

BT




Figure 5

+1 808 & ADD

I'e&”t
% .

(ACTIVE).

COUNT-UP

a\
then 6 y

*c2 ,\:befor e N *c3

(( *1goal ADD)
( *1 status (ACTIVE))
{ *1input *2)
( *2input-a *1)
( *1input *3)
*3 input-b *1)
)

(( *5 goal GENERATE-SETS) ( *1 subgoal *5)
( *5 status (ACTIVE)) ( *5 input *2)
( *2 input-a *5) (*5 input *3) (*3 input-b *5)
( *5 result *7) (*5 then *6)
( *6 goal COUNT-UP) (*1 subgoal *6)
( *6 status (SUSPENDED)) (*6 input *7)
( *7 input-a *6) (*6 result *8)

......

a_n

I8%eT s 4"

reta i e 2 aaat Al A Rls

N N R W SPIVY W L.

ko

SPGB

A K £ A & &:a




Page 25

the first of a large number of steps to be taken, it is easy to see
that a huge body of information must be retained in order for the
system to represent a complete problem—~solving sequence. (For an
explanation of the necessity of the information retained, see Neches,

1981b, section 5.2.)

From both the computational comsideration of minimizing the size
of the database to be searched, and the psychological consideration of
limited short-term memory, it was essential to have some mechanisms in
the system which would cut down the number of propositions required for

consideration without eliminating any critical informationm.

The mechanism adopted in HPM assumed an extremely rapid decay of
working memory contents; propositions drop out of working memory
unless used within two processing cycles; The propositions in working
memory consisted of those required to specify the current goal, plus a
set brought in from long term memory by a spreading activation process.
To reduce the number of propositions brought in from long term memory,
activation was assumed to spread unevenly through the semantic network,
with the primary direction in which it spread being dependent on the

processing status of the current goal.

Specifically, when a new goal is initiated, HPM sends activation
down through the network to retrieve information most likely to be
helpful in deciding how to process the goal. When an old goal 1is
terminated, HPM sends activation up the hierarchy towards higher goals
and sideways towards planned successor goals, thus retrieving
information most 1likely to be helpful in deciding what action to take
next. Although this part of the model was developed in response to

computational overloads produced by large semantic structures, it turus
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out in retrospect to provide a psychologically plausible account of the
Zeigarnic effect. In this account, the effect 1is an outcome of
associative retrieval processes primarily intended to minimize the size

of working memory needed for processing goal structures.

Assume that, as in HPM, a goal structure is built as a task and is
carried out 1in which goal nodes are represented as either active or
completed. In the case where the task 1is 1interrupted before
completion, the rapid decay process causes their loss from active
memory; they are, however, retained in long term memory. The
instruction to give a recall causes retrieval of some of the
higher-level nodes in the goal structure, since these are the nodes
that define the task. Because these goals are represented as active,
their return 1is treated as a re—ipitiation, and activation is sent down
the network according to the processes outlined above. This retrieves
a set of nodes which contains more detailed information about the task,
since 1t consists of the more specific sub-goals set up to perform the

task, along with information about the operands of those goals.

On the other hand, if the task 13 allowed to go through to
completion, the goal nodes are all represented as completed when they
return to long term memory. If the same higher-level nodes are
retrieved due to a recall instruction in that case, HPM will try to
send activation up and sideways through the network. Since the goals
it works from are already near the top of the structure, there is
simply not much up to go. HPM therefore retrieves a smaller set of
propositions, which furthermore consist of more general and abstract

propositions because they are drawn from near the top of the goal

structure.
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The gignificant point of this example 1s that the demands of
formalizing a model in computational terms led to new ideas abou£
issues not initially seen as related to modelling learning processes.
HPM, although basically a model of learning, led to development of a
notion of directed activation -- a distinct variant wupon current
notions of unfocused spreading activation (Collins & Loftus, 1975;
Anderson, 1976). An additional property of the simulation is cthat it
gives us some insight into the teleological role of activation in an
information processing system. The simulation suggests that it should
be viewed not only as a mechanism for focus of attention or information
retrieval, but also as a component of a larger mechanism for minimizing
working memory 1loads. In that larger mechanism, activation may serve
to enable relatively drastic measures for eliminating propositions from

active memory, by providing an assurance that critical propositions

¢ e T e e e e TR e TR

will return when needed.

4.2 READER And CAPS: An Example Of Concern With Control Processes

It is worthwhile to consider another example of directed activation,
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Thibadeau’s READER model, which develops the notion in a much more

-, .,
PPN

sophisticated way. Thibadeau (1981; Thibadeau, Just, & Carpenter,
1981) has developed a production system language called CAPS in order

to implement the READER model. CAPS is a programming architecture of

some interest, .only in part because it illustrates another useful

property of simulation research: the development of general notions of

control and focus of attention.
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READER’s mission is to account for gaze duration data from eye
movement studies of reading. It 1is similar in some respects to
McClelland & Rumelhart’s word perception model, but differs in
implementation and models a broader range of processes. The
similarities stem from the notion of nodes representing hypotheses with
activation levels representing confidence in the correctness of the
hypothesis, excitatory relations to other hypotheses consistent with a
given hypothesis, and inhibitory relations to others which are
inconsistent. Rather than doing parallel processing on a feature array
representing a four-letter character string, as McClelland and
Rumelhart’s program did, READER sequentially processes a string of
letters and spaces representing a paragraph of text. Hypotheses in
READER are maintained at the letter-cluster, word, syntactic, and
semantic, levels. The system tries to do as much as possible at all
levels before moving on to the next inmput elemént. These properties
allow the model to explain gaze durations in terms of the time required
for hypotheses to rise above the threshold for acceptance and thus

allow the system to move on.

The READER model offers explanations for a number of effects. For
example, at the word encoding level, the sequential processing of the
input string causes the system to take more time to activate longer
words, reproducing the linear increase in gaze duration found in data
from human subjects. Gaze duration also turns out to be a log function
of word frequency, a phenomenon modelled in READER as essentially
similar to McClelland & Rumelhart’s "rich get richer" effect on
baseline activation levels. At the syntactic parsing level, the system
displays a number of effects similar to those observed in the human

data, most of which occur because of the way that interacting semantic
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and syntactic processes contribute to activation levels of syntactic

hypotheses.

Among other things, the collaboration between semantic and
syntactic processes allows the system to parse difficult noun phrases
like, "the greater the mass" (det adj det noun). It also produces the
negative correlation observed in humang between the number of modifiers
in a noun phrase and the fixation time for the head noun. The more
modifiers there are, the more semantic constraints imposed, thus
pre-raising the activation levels for likely candidates for the noun
itself, and thereby decreasing the time required to raise the correct
alternative above the threshold for acceptance. Much the same process
underlies READER’s ability to duplicate human subjects’ tendency to

skip over function words entirely.

Finally, the processing structure of the READER system, which
enables it to do as much processing as possible at all levels before
moving on to the next input, allow it to reproduce several effects at
the semantic level, such as increased gaze durations at the first

mention of a topic and at the end of sentences.

Thibadeau has found himself in the enviable position for a
modeller of having an extremely rich body of data against which the
performance of his program can be evaluated (cf., Just & Carpenter,
1980). And, in fact, the program does quite reasonably; without
special tuning of parameters, Thibadeau, Just, & Carpenter (1981) claim
that READER accounts for 79% of the variance in their data, in contrast
to the 72% accounted for by the model offered by Just & Carpenter
(1980).
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However, the principles embodied in the program are of even
greater interest than 1its account of the data, because Thibadeau has
done an especially impressive job of embedding his model of performance
at a particular task within an information processing architecture of
great potential generality. To see this, we need to look more closely
at CAPS (Thibadeau, 1981), the interpreter for the language in which

READER was implemented.

CAPS, which stands for "Collaborative Activation-based Production

System", is a LISP interpreter for a language oriented towards
concurrent processing of hypotheses at multiple levels. Its
fundamental processing units are productions, independent
condition-action rules. Its fundamental data objects are propositions,
consisting of node-relation-node triples with an associated activation
level. Activation represents the system’s current confidence or
certainty that the proposition 1s correct. The conditions of
productions specify some set of propositions, along with threshold
activation 1levels for each, below which the production will not be
eligible for execution. CAPS executes all productions whose conditions
are satisfied. Once a production becomes eligible for execution, it
continues to fire on each processing cycle until some event occurs that
causes it to stop. The primary action of a production is altering the
activations of specific propositions by some proportion of the

activation of one of the production’s evoking propositions.

Figure 6 illustrates this by showing the general form of CAPS
productions, and a hypothetical example paraphrased into English. The
example can be paraphrased further as saying, "If you think you're

seeing the letter T, but only if you think it’s starting a new word,
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GENERAL FORM OF CAPS PRODUCTIONS

EXAMPLE (PARAPHRASED INTO ENGLISH)

FPigure 6

(p production-name
( propositions to send activation

context in which to send
conditions for starting firing
conditions for stopping firing

-

(<spew from sending propositions

(p

to target propositions

and side-effect propositions ) ))

Letter-to-word
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( the letter seen was "T", activation 0.2 or greater

>

(<spew> from the letter seen was "T"

the letter begins a new word , activation 0.3 or greater

the word seen is "THE" , activation 0.01 or greater
the word seen is "THE" , activation 0.999 or less
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and you also think that the word might be THE, then increase your
certainty that the word in fact is THE by a proportion of your
certainty that you’ve seen a T." Note that the conditions are specified
in such a way that the production would begin to fire when the

hypotheses first began to be entertained, and would stop firing when

Wy ARV b

the target hypothesis is either accepted (activation greater than .999)

or rejected (activation drops to zero). -1

In actual CAPS productions, the proportion of activation
transmitted 1s specified in the production, but that proportion is
actually a multiplier for a global parameter which can be adjusted by

" an action of productions called "<REWEIGHTY". This is one of a number
of actions that allow the system to modify the rate at which activation
flows from ome hypothesis to another, along with thresholds for 2

acceptance or rejectiom.

In short, Thibadeau has built not just a model of reading, but a
very general processing language for implementing a large class of

models based on a common theoretical framework. His work is a very - 1

nice example of how a concern with control processes and focus of _P

attention can pay off.

s 4.3 Sloppy Errors: An Example Of Transfer To New Domains

R
'i There are many similarities between READER and McClelland & Rumelhart’s ,i
;- model, and many complementary features as well. Thibadeau offers a 1
; model of parsing processes and a general control structure. McClelland
t‘ and Rumelhart provide an analysis of interactions in the transmission X
. of interaction under this sort of control structure =-- namely, the

"friends and enemies" effect, the "rich get richer" effect, and the -
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"gang" effect. They also offer some mechanisms for explaining how
expectations come into play: context-dependent adjustments of weights
on links between hypotheses at different levels. Thibadeau, in turn,
provides in CAPS processing mechanisms such as <REWEIGHT> that make it

possible to model those adjustment processes.

Together, they set the stage for a simulation of a seemingly very
different topic, "sloppy" errors in algebra problem solving, which I am
now working on in collaboration with James Greeno and Michael Ranney.
Greeno has collected a large body of protocols illustrating a common
and persistent problem. Novices make a large range of seemingly random
errors, which they themselves can sometimes detect as errors if asked
to review their own work. These errors occur with much greater
frequency 1in novices than experts. It is not that the subjects have
missing or incorrect rules for solving the problems, since they can
identify their own errors. Nor is it that they have buggy rules (Brown
& Burton, 1978), since they can ilentify the correct actions and since

the errors do not consistently occur.

The model we are developing to account for these observations
postulates an activation-based parsing process, like in Thibadeau’s
READER, that is trying to build an internal representation of an input
algebra expression. The effects that McClelland & Rumelhart outlined
can cause the system to mis-rate some of 1its hypotheses about the
content of expressions. If one of the wrong hypotheses is accepted
before the correct hypothesis has time to gain sufficient strength, an
error will occur through the system applying correct algebra rules to
incorrect data. In our model, learning to avoid errors has two

components: learning the appropriate thresholds for accepting
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hypotheses of various types, and learning the correct weights to be

used in taking one hypothesis as supporting another.

What these examples illustrate is one of the most important
properties of the simulation approach: the development of general
concepts of information processing mechanisms. Regardless of the
particular topic area, all simulation systems must solve the same
problem: specification of control processes that will produce
appropriate focus of attention. That is, whatever the program is to
do, ensuring that it actually does it requires specifying mechanisms
that will select appropriate actions in the proper sequence. Since all
psychological simulations share the concern of modelling an intelligent
system, general concepts about these control mechanisms may be
developed which have applications in areas far removed from their

origin.

5.0 LANGUAGES FOR PSYCHOLOGICAL SIMULATIONS

So far, I‘'ve been talking about some simulations of interest and trying
to suggest some principles which they illustrate. At this point, I’d
like to shift gears a bit and consider the languages in which

simulations are implemented.

Although many different languages have been used to write
simulation programs for psychology, historically the three most
important are probably IPL, SNOBOL, and LISP. These are the languages
which introduced the key concepts of list processing, pattern matching,

and function notation.
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It’s worth quoting two sentences about IPL-5 from Sammet’s (1969)
review of programming languages, because they capture some critical
points about the fate of many special-purpose lanjuages. The first
quote reads, '"The most significant property of IPL-5 is that it has a
closer notational resemblance to assembly language than any other
language 1in this book..." The second quote brings some other sad news,
"The implementation and development of this line of language stopped
with IPL-5 because the people most vitally concerned were more
interested in the problems they were trying to solve than in further

language development."

It is these two factors, ease of use and certainty of support,
that suggest why LISP caught on to a much greater extent then IPL. By
and large, it has been such pragmatic factors that have influenced
attempts to develop simulation languages especially for psychology. It
would be a little grandiose to count the languages just mentioned as
strictly psychological, since their development fell more within the
bounds of AI and since they have also been put to use by other
cognitive scientists (such as the MIT linguists whose work with COMIT

led to the deve >pment of SNOBOL).

5.1 The First Generation Of Psychological Simulation Languages

Therefore, the first generation of specialized languages should
probably be considered to have arrived in the early "70°s with Newell's
(1973) PSG production system, Norman & Rume +t’s (1975) MEMOD
interpreter for the language SOL, and Anderson’s (1976) ACT model.
These are all systems in which a number of specific simulations have

been implemented, but where the system 1itself wés an object of
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psychological interest because it was seen as an analogy to at least
some global aspects of the human information processing system. Newell
emphasized event-driven processing and working memory limitations.
Norman & Rumelhart emphasized long-term memory and the notion of
"active semantic networks". Anderson’s system tries to integrate all
of these concerns. I will refer to all such systems as, "whole-system"
simulations; it 1is important to distinguish them from
"special-purpose” programs intended to simulate performance in a

particular domain.

It is worth noting that, although their developers are still
active 1in simulation work, all three of the systems just named have
been phased out. Their developers seem to have turned, instead, to
special-purpose programs designed to explore restricted aspects of
verbally specified theories. Rumelhart’s model of word perception was
implemented in a program that did only that (McClelland & Rumelhart,
1981). Rumelhart & Norman (1981) have developed a complementary model
of typing; again, implemented in a special-purpose program. Anderson
has implemented some of his recent ideas about knowledge compilation as
a learning mechanism (Neves & Anderson, 1981) not in his own ACTY
program, but in a simpler production system architecture which retained
only those features of ACT deemed immediately relevant to the task at

hand.

Their new work 1is quite consistent with their old, so the
abandonment of the whole-system simulations cannot be taken as a
rejection of the theories. Rather, it seems more a question of
practical matters. I’d 1ike to speculate on a number of factors that

lead researchers to abandon large systems.
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- The systems become slow and expensive to run; there is a feeling
that the cost is not justified when portions of the system are not

directly related to the current topic of interest.

- The problems of developing and debugging a system grow as 1t
increases 1in complexity; trained psychologists may prefer

psychological research to hardcore computer science.

- Demand from others for chances to use the system are generally low;
many researchers, even if they have the facilities to bring up the
program at their own site, are hesitant to do so due to the
theoretical unwillingness to buy an entire set of assumptions, and

to the pragmatic fear of poor maintenance.

- At the same cime, the demands of the few who are interested in
adopting the system can become burdensome; one hesitates to commit
the resources required for documenting and extending a system 1in
order to make 1t usable outside the lab. (Norman and Rumelhart,
who produced a manual for their MEMOD system running over 100

pages, are a notable exception to this remark.)

There are a number of advantages of pre—existing 1languages 1like
LISP that make these difficulties seem especlally discouraging. LISP
is available on a wide range of machines in more-or-less compatible
dialects (e.g., DEC KL-10s and 20s, VAXes, IBM 360°s). With the
exception of MIT’s MACLISP variant, reasonably clear documentation is
readily accessible. The 1language is fairly well-structured,
symbol-oriented, and has many list processing and string manipulation
constructs. It {8 relatively easy to define new data structures.

Last, but by no means least, most variants of LISP offer fairly useful
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interactive debugging and trace mechanisms.

Thus, it may seem that the trends favor small special-purpose
simulation programs. However, to balance the picture, there are two
points to consider. First of all, there are new whole-system
simulations being developed. Thibadeau’s (1981) CAPS and my own HPM
(Neches, 198lab) are two examples of such systems. Second, the way
that CAPS and HPM were developed show that there are some benefits to

the whole-system approach in terms of generality and understanding of

unexpected inter-relations between components of the information

processing system.

Although it may turn out that the CAPS and HPM efforts are subject
to the same pitfalls as previous whole-system simulations, there is

another system under development which attempts to steer a- middle

course between the alternatives of special-purpose modelling and

han.on: A WCTE A o4 % &

whole-system simulation. That system is called PRISM, for Program for

Research Into Self-Modifying systems, and is being developed by Pat

langley of Carnegie-Mellon University and myself (Langley & Neches,

1981).

5.2 The PRISM Production System Architecture

PRISM is a production system interpreter implemented by augmenting
LISP with a naumber of special functions. It owes a major debt to
Forgy’s (1979) OPS4, from which a large portion of its code is

borrowed.
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Production system programs are more difficult to follow than
traditional programs, because of their many conditional rules and the
absence of an explicitly specified order of execution for the rules.
This has probably been a major factor in limiting their acceptance.
Nevertheless, there are a number of attractive properties to production
systems, as Newell & Simon (1972, pages 804-806) and Langley, Neches,
Neves, & Anzai (1980) have pointed out. They can model both
goal-driven and data-driven processing, the program organization offers
a closer analogy to human memory limitations than other programming
formalisms, and the relative independence of individual production
rules gives programs a degree of modifiability which might facilitate

models of learning processes.

The design philosophy underlying PRISM is that there are too many
unresolved questions about the details of how a production system
should work. Thus, it is premature to fix a particular set of choices
and try to impose them upon users. Instead, PRISM seeks to identify
the key choice points in specifying a production system architecture,
offer plausible options at those points, and make it easy for
sophisticated users to implement alternatives to those options. Thus,
rather than being a whole-system simulation of a particular information
processing theory, PRISM defines a class of theories, and leaves it to

the user to specify the details.

In order to do this, PRISM expands somewhat upon the traditional
view of a production system as consisting of a data memory and a
production memory, with productions being selected and applied in a
repeating ''recognize-act" cycle., Figure 7 shows the general structure

of the PRISM system. Fixed components are shown as rectangles, those

I T S U T L o L S S U S

DDA G I

N |

'y

afa A

- T
R I

A 2 alak




-. - Sl N USROS A T S AN TAE A o b iia et M SRCAERCR DN i ATRPAEAT A AUNGE EULUELEL LSl SRR SS et aio g Lenan e
3
”” W1
3 cnmwumé aniesepaq
& Honpoid /leuociysodoud
‘ [
& .
w_. N 7 |
s |
‘_ |
, Buiyoie
]
: J
{ mch_m_cmm:omE uoneARoY :
: s 2 Aedaq ) | pupesidg h,
g ~ a|ny ! |
4§ onewony |
-l
™ uonnosay |
301j3uo) )
: ‘@084 1 |
: (s)uononpoid peuiy ]
._ D WM
r\
;
]
3




— . i e e e LT T e T W
|nj¢41....r D Sacie - uds Jacnt andin ISR R} it DR RN AR . i -7 . PR

Page 41

i{avolving wuser-controlled options are shown as circles. Arrows

indicate information flow.

. ' For example, PRISM divides the process of modifying memory into

three components: add-to-wm, which puts propositions into working

memory for temporary storage; add-to-net, which puts propositions into

long-term semantic memory; and, add-connections, which ties

propositions to others in a way that permits activation to pass between
them. Almost all operations performed by PRISM can be specified by the }
user to be either default actions (performed on all propositions
asserted as the action of a production) or special-case actions

performed only on the propositions explicitly specified as their ™

e

arguments. Thus, the wuser has case-by-case control over how these

operations are applied.

PV TIPTIPLY YN

S §

Once a proposition enters working memory, it becomes subject to

e T
)

policies selected by the user for determining how long it will reside

a4

there. Among other things, users select a decay function to be used in

P TN

computing how activation will decrease over time, along with a

threshold below which propositions will be treated as inactive.

IRV R S

As Figure 7 shows, data can enter active memory from several

directions. In addition to explicit assertions of new data, old data j
may return to active memory via a process of spreading activation, or
associative retrieval. We have seen several examples in this paper 2

illustrating why this is a useful component of a model. However, the

details in those examples differed enough for it to be clear why

4 : options are worthwhile. PRISM offers three optioms.

, 3
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The "Spread-to-depth" option assumes that activation is sent out
only from a subset of active nodes, and travels with decreasing
strength to all nodes within a specified distance. The L
"Spread-to-limit" option also assumes that activation travels with
decreasing strength from a subset of the active nodes, but allows the
activation to travel from node to node until it drops below a threshold
level. The third option permits directed activation schemes similar to
Thibadeau’s (1981). Like all PRISM options, it is relatively easy to

implement alternatives to those supplied, since all that is required is

WWNTSSY N

to provide the mname of a function which will be executed by PRISM on

the list of propositions from which activation is to spread.

That list of propositions is determined by choices made by the
user; as with other functions, the associative retrieval functions may
either be called as explicit actions of productions or specified as ' p
default actions to be applied to all propositions asserted by

productions.

.2 m

PRISM can operate with a wide range of policies for selecting

ii? productions for execution, a ©process also known as "conflict

resolution". This turns out to be one of the key points of difference

SN VR W

- - between various production systems offered in the past. Anderson’s 1
E (1976) ACT, for example, fired some productions in parallel, but not
all of those eligible for execution. The complex restrictions imposed
- by the system involved assumptions about varying lengths of time <A
required to select different productions, about generalized and
specialized variants of productions, and so forth. Allen Newell (1980)
k- offered a model of the human information processing system designed to

account for some effects in speech perception, in which he claimed that
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all satisfied productions containing constants could fire on a given
cycle, but only one production involving variables in its conditions.
Thibadeau’s (1981) CAPS, on the other hand, allows all matched
productions to fire. My own HPM (Neches, 198la) divides productions
into seven classes, with different rules for each class, and fires the

union of the set of selections from each class.

PRISM’s scheme for selecting productions for execution is shown in
Figure 8. 1Like HPM, PRISM allows users to divide their set of
production rules into independent classes which fire in parallel. In
PRISM, users can specify one to infinity such classes, although the
default is that all productions are placed in one common class. For
each class that users allow, they define a "filter", or set of tests
vwhich must be passed for a production to be .allowed to fire. Those
productions passing the first test are sent on to the second, and so
on. This allows the user to specify a wide range of conflict

resolution policies.

PRISM also has a number of options related to modelling learning
processes. In a production system, learning is mainly simulated by
building new productions or by modifying pre-existing ones. (It 1is
possible to also model learning in terms of changing or adding new
declarative structures to long-term memory, of course, but there is no

need to offer any special options in order for that to be done in

PRISM.)

Note that the ability to model learning easily has long been a
promise for production systems, ever since Newell & Simon (1972)
started arguing for production systems as a formalism capturing key

properties of the human information processing system. The argument
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has essentially been that learning models would be easier to implement
than 1in traditional programming formalisms because of the modular
properties of condition~action rules, with each production specifying
the range of situations in which it’s applicable, independent of all
other productions (2). Up wuntil quite recently, this promise was
little more than just a promise. In the last few years, though,
several different simulations have been developed in the formalism of
self-modifying production systems (e.g., Anzai & Simon, 1979;
Anderson, & Kline, 1979; Anderson, Kline, & Beasley, 1978; Langley,
1981; Neches, 198lab; Neves, 1978; Neves & Anderson, 1981). The
models which have been ;ffered have dincorporated several different

features, and PRISM offers options related to each:

- Trace data: several learning models (e.g., Anzai & Simon, 1979;
Langley, Neches, Neves, & Anzai, 1980; Neches, 198lab) depend
heavily on a system’s memory for past actionms. PRISM offers
options that allow users to determine the form and content of the
memory representation that 1s built after each production

execution.

- Designation: since Waterman (1975), building new productions has
been a staple feature of production system models of learning.
PRISM contains a number of options governing the form of new

productions constructed by pre-existing productions.

- Strengthening and weakening: PRISM offers options governing means

for altering the 1likelihood of a particular production being

Footnote 2: This assumption puts a heavy burden on processes for
selecting appropriate productions for firing, one reason why PRISM is
designed with such a generalized view of conflict resolution.
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gselected for firing.

- Generalization: there are also options governing mechanisms for
expanding a production’s range of applicability through
substitution of variables for constants in the production’s

conditions.

= Discrimination: there are a parallel set of options governing
mechanisms for restricting a production’s range of applicability

through the insertion of additional conditioms.

In summary, simulation work in PRISM starts with specifying a
processing environment that controls how productions will be
interpreted. The environment also includes long-term memory, active
working memory, and processes which manage their contents, learning
mechanisms. The system is built on top of LISP, ;nd can therefore
implement any knowledge representation which can be expressed as LISP
data structures. PRISM can be thought of at two levels: either as a
kit from which whole-system simulation packages can be assembled, or
simply as a programming language which collects features found to have

been convenient in other systems for cognitive simulations.

There are several motivations behind the development of the PRISM
system. Production systems have been a useful simulation tool, but it
is simply too early for any consensus to have arisen about the most
useful form for a production system language to take. PRISM is
intended to let researchers pick and choose the best combination of
features for their particular purposes, without being forced to build a

complete system from scratch. As 1 suggested in earlier sections,

there 1is a strong gain from the exercise of trying to work within a




Page 47

whole-gystem simulation. We hope that systems 1like PRISM, by
encouraging researchers to specify whole systems, will promote a
greater concern with the interactions between components ~- that is,
with the question of how the pleces of the puzzle are going to fit
together. At the same time, PRISM’s system of options, and the fact
that it 1s built on top of a powerful programming language like LISP,
are intended to make it relatively easy to modify and extend. This
property of flexibility means, we hope, that models of particular tasks
can be implemented within whole-system simulations without being forced

into the Procrustean bed of a fixed system.

6.0 CONCLUSION

One of the most exciting things about simulation work 1is that,
because of 1its necessary concern with control of processing and focus
of attention issues, ideas can come out of a simulation project that
are applicable in areas quite different from the domain in which the
original work was done. I’ve tried to illustrate that point in the
examples of simulation which 1I°ve presented. I have also tried to
touch on a number of factors which are making simulation work easier
and more accessible than ever before. Ome factor is the development of
simulation languages, like CAPS and PRISM, which do not force their
users to accept any single theory of the human information processing
system, but provide frameworks in which models of the system -- or
components of the whole system -- can be developed and explored.
Another factor is the development of lower cost machines, such as
VAXes, with more powerful capabilities. A third factor 1is the
increasing availability on these machines of core languages such as

LISP, which facilitate direct implementation of special-purpose
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simulations in addition to providing a foundation upon which simulat:

languages more specific to psychology can be constructed.

At the same time, though, I would like to avoid a presentation
from the messianic genre. As we have seen, there are a number of
advantages which have been claimed for the simulation approach that
really do not hold up in actual practice. A computer simulation does
not necessarily guarantee that a theory is more consistent or
comprehensible. Nor does a program’s successful performance guarantee
that the theory is generalizable, or even that the causes for the
success are those predicted by the theory. The psychological
significance of a computer program can only be determined by close and
careful examination of each piece of work on a case-by-case basis.
There are also some practical limitations which will limit the spread
of simulation work for some time to come. It is still time-consuming
and hard to delegate. Interesting projects oftemn have many of their
payoffs only at the end, with fewer publishable milestones along the
way. Computer hardware and software facilities are not always being

planned with the potential for simulation work in mind.

These difficulties are due in part to the fact that the promise of
simulation methodology =-- the different 1levels at thch it can
stimulate thought about psychological 1issues =-- 1s not as widely
appreciated as it could be. I have tried in this paper to illustrate
some of the ways in which simulations can aid us in thinking and
reasoning about the human mind. They provide a tool for empirically
analyzing theories to better understand their implications and
predictions. They are a means of exploring 1interactions between

components of complex models. They pose a practical challenge to
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operationalize theoretical constructs, which can lead to incidental
discoveries about related processes. And, finally, they engender a
concern with issues of process control that contributes to the

development of general principles with broad applications.
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Washington, DC 20550

Dr. Susan Chipman

Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

Dr. Arthur Melmed

National Intitute of Education
1200 19th Street NW
Washington, DC 20208

Dr. Andrew R. Molnar
Science Education Dev.

and Research
National Science Foundation
Washington, DC 20550

Dr. Joseph Psotka

National Institute of Education
1200 19th St. NW

Washington,DC 20208

Dr. Frank Withrow
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. Department of Psychology
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DR. JAMES G. GREENO

LRDC

UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street

Santa Monica, CA 90406

Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street

Santa Monica, CA 90406

Dr. Kristina Haoper
Clark Kerr Hall .
University of California
Santa Cruz, CA 95060

Glenda Greenwald, Ed.

"Human Intelligence Newsletter"
P. 0. Box 1163
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Dr. Earl Hunt
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University of Washington
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Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Greg Kearsley
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300 N. Washington Street
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Dr. Walter Kintsch
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University of Colorado
Boulder, CO 80302

Dr. David Kieras
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University of Arizona
Tuscon, AZ 85721
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Harvard University
Department of Psychology
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Cambridge, MA 02138

Dr. Marcy Lansman

Department of Psychology, NI 25
University of Washington
Seattle, WA 98195

Dr. Jill Larkin

Department of Psychology
Carnegie Mellon University
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Science Education Dev. and Research
National Science Foundation
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. C/0 2824 Winterplace Circle
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Dr, Alien Munro

Behavioral Technology Laboratories
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Dept. of Psychology C-009
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Committee on Human Factors
JH 811

2101 Constitution Ave, NW
Washington, DC 20418
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Department of Mathematics
Hamilton College
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New York, NY 10016
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Rutgers University
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Stanford University
Stanford, CA 94305
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Yale University

Box 11A, Yale Station
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Hazeltine Corporation
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The Rand Corporation
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