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TIME-SERIES SEGMENTATION: A MODEL AND A METHOD .
STANLEY L. SCLOVE '.f
Department of Quantitative Methods, College of Business Administration :
University of Il1linois at Chicago 1
Box 4348, Chicago, IL 60680 "
ABSTRACT ';
3
-3 The problem of partitioning time-series into segments is treated. 'f
The segments are considered as falling into classes. A different ;j
probability distribution is associated with each class of segment. )f
s
Parametric families of distributions are considered, a set of parameter };
values being associated with each ciass. With each observation is i;
associated an unobservable label, indicating from which class the ’
observation arose. The label process is modeled as a Markov chain.
Segmentation algorithms are obtained by applying a relaxation method to 'i
1 J
maximize the resulting likelihood functionyt_ln this paper special T
attention is given to the situation in which the observations are -
cenditionally independent, given the labels. A numerical example,
segmentation of U.S. Gross National Product, is given. Choice of the o
number of classes, using statistical model-selection criteria, is E:
illustrated. 3
'.-J
Key Words and Phrases: Markov chains; maximum likelihood; maximum o
a posteriori estimation; Viterbi algorithm; relaxation methods; isodata 3
procedure; model-selection criteria; Akaike's information criterion (AIC). o
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1. Introduction

The problem of segmentation considered here is: Given a time series
{x¢ t = 1,..., n},
partition the set of values of t into segments (sub-series, regimes)
within which the behavior of x, is homogeneous. The segments are
considered as falling into several classes.

The observation X may be a scalar, vector, or matrix -- any element
of a linear space, for which the operations of addition and scalar multipli-
cation are defined. (If X is a scalar, operations such as Xy = CX¢.y,
where ¢ is a scalar, are required. If X is a vector or matrix, the

operation  x; = Cxy.), where C is a matrix, is required.)

2. _The Model .

One can imagine alseries which is usually relatively smooth but occa-
sionaily rather jumpy as being composed of sub-series which are first-
order autoregressive, the autocorrelation coefficient being positive for
the smooth segments and negative for the jumpy ones. One might try
fitting such data with a segmentation of two classes, one corresponding
to a positive autocorrelation, the other, to a negative autocorrelation.

The mechanism ge;erating the process changes from time to time, and
these changes manifest themselves at some unknown time points (epochs,

change-points). The number, say m, of segments and the epochs are

unknown. Generally there will be fewer than m generating mechanisms.
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The number of mechanisms (classes) will be denoted by k; it w.1l be
assumed that k is at most m. In some situations, k is specified;
in others, it is not. Estimation of k will be considered. Although
the process changes from time to time, it should be stationary in the
mean if it is to be segmented. Otherwise, one would merely be fitting
the drifting level of the process, and the larger the series length,
the larger the value of k that would be required. Thus, series must
be differenced to achieve stationarity before applying segmentation
techniques.

With the c-th class is associated a stochastic process, P., say.
E.g., above we spoke of a situation with k = 2 classes, where, for
¢ = 1,2, the process P, is first-order autoregressive with coefficient ¢.,
where ¢, is positive and ¢, is negative.

Now with the t-th observation (t = 1,..., n) associate the }label
Y¢» which is equal to lc if and only if x, arose from class ¢,
¢=1,..., k. Each time-point t gives rise to a pair

(xgs7e) s

where x; is observable and v, is not. The process {xt} is the
observed time series; the process {y,} will be calied the "label
process.'

Define a segmentation, then, as a partition of the time index set
{t: t =1,..., n} into subsets

S = {1,...,t3), Sy = {ty+1,...,t5}, ..oy Sp = {tpoy+l,..., n},

where the t's are subscripted in ascending order. Each subset Sg.
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g=1l,..., m, is a segment. The integer m is not specified. In the
context of this model, to segment the series is merely to estimate the v's.

The focus in the present paper is not on the change-points t;,
i=1,...,m. Rather, the idea underlying the development here is that
of transitions between classes. The labels v, will be treated
as random variables I, with transition probabilities

Pr(Cy=d|Ty_1=c) = pcgs
taken as stationary, i.e., independent of t. The k-by-k matrix of
transition probabilities will be denoted by P, i.e.,
P = [pcd]'

Restrictions on the process can be imposed by setting the appropriate
transition probabilities equal to zero. E.g., some processes are strictly
cyclic, such as the operation of an internal-combustion engine, with its
cycle of intake to compression to combustion to exhaust to intake, etc.
Similarly, one might Q?sh to describe the economy fn terms of transitions
from recession to recovery to expansion, not allowing transition directly
from recession to expansion.

Segmentation will involve the simultaneous estimation of several sets
of parameters, the distributional parameters of the within-class stochastic
processes, the transition probabilities, and the labels. Iin order to
develop a procedure for maximum likelihood estimation, obviously the
likelihood must first be obtained.

To do this, note that a joint probability density function (p.d.f.)

for the whole process {(Xt.Ft). t=1,..., N} can be obtained by
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successively conditioning each variable on all the preceding ones. The
label ¥ is considered as preceding the corresponding observation X,
The variable

Xy is conditioned on T;

Ty, on X; and T'y;

X3 on Ty, Xy, and Ty;

I3, on X5, Ty, X;, and Ty;

X3’ on P3, x2. rz. Xl. and PI;

etc. Using f as a generic symbol for any p.d.f., this leads to the

joint p.d.f.

n
(2.1) Flr) FOG [y I (g [ XpagoVpatoeeos¥) F(Xe | Ve o Xpo 1o Yeags-ee07y)
t=2

The working assumptions of this paper are the following.
(A.1) The label process {y,} is a first-arder Markov chain,
homogeneous in fhe sense of having stationary transition
probabilities, and conditionally independent of the observations;

i.e.,
(2.2) Frelxpsveerseeaxpry) = flrglre-y).
when +v¢.y = c and vy; = d, then
frelve-1) = Pegs

and these transition probabilities do not depend upon t.
(The first-order assumption is not critical.)

(A.2) The distribution of the random variable X, depends only
upon its own label and previous X's, not previous labels:

(2.3) f(xtIYt'xt-loYt-lo--o'x]o'Y]) - f(xtl')'tvxt-]o'---x])-
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With these assumptions (2.1) becomes

n

Note that this is
!! kK k n
2 (2.5) (@ Hpeg N Fly) Flxplyy) B Flxe|vpsXpaqoeeesxy)s

i c=] d=] t=2

where the (unobservable) quantity n.q is the number of transitions

from class ¢ to class d.

This model, with transition probabilities, has certain advantages over

a model based on the change-points. The change-points are discrete
parameters, and, even if the corresponding generalized likelihood ratio were
asymptotically chi-square, the number of degrees of freedom would not be
clear. On the other hand, the transition probabilities vary in an interval
and it is clear that t@gy constitute a set of k(k-1) free parameters.

s
Examples. (i) If each class-conditional process Pe is a
first-order Markov process, then

(2.6) FXe|YeoXpaiseonnX)) = FlXe|vesxeq).
(ii) If in addition the ¢-th class-conditional process is Gaussian
first-order autoregressive with autoregression coefficient ¢
and constant 4., with common o2, then (2.6) holds with
fxe|vgmcixga)) = (2m02) 712 expl-up 2/ (2091,

where
Ute = Xg¢ = (bexg-y + 60)

E.g., the value of the likelihood for

Yy =)l =y = ... =y, and Vp4) T2 = Yy = ... =Y,

is, for given xq,

by i A
-t
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Py ]m-lplzpzzn-m-z (2702) - (n-1) /ZGXP[-q/ (202)],
where
r n
q = Z[xt - (¢]Xt-] + 5])]2 + E[Xt - (¢2xt-] + 52)]2 .
t=] t=r+]
In regard to (A.2), in the simplest case the X's are (conditionally)

independent, given the labels. That is, the distribution of X,

depends only upon its label, and not previous X's. Then
f(Xp|YgoXpatreeesXyoy)) = flxelye) .

We shall pay special attention to this case in the present paper. In this
case the p.d.f.'s f(xlvt-c). c=1,.,.., k, are called class-conditional
densities. In the parametric case the class-conditional density takes

the form |

(2.7) ;(xtlvt-c) = g(x43BQ)

where £ is a parameter indexing a family of p.d.f.'s of form given

by the function g and Bc is its value for the c-th class, Ffor
example, in the case of Gaussian class-conditional distributions Bc

consists of the mean and variance for the c-th class.

3. An Algorithm
3.1. Development of the algorjthm

The likelihood L is (2.5), considered as a function of the

parameters, for fixed {x,}. From (2.5) and (2.7), the likelihood L
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can be written in the form

Hence, for fixed values of the +v's and 8's, L is maximized with

respect to the p's by maximizing the factor A. But

k &k n
A = I I py cd.
c=1 d=I|

The n.q are determined by the <v's. So from the usual multinomial
model, it follows that maximum likelihood estimation of the p's, for fixed
values of the other parameters, is given by takjng the estimate of p.4q to be
(3.2) Neg/Ne »
where
N ™ Ney +neg+ oo 0
Further, given the p's and +¥'s, the estimates of the distributional
parameters -- the B's,-- are easy to obtain because the observations
have been sorted into k groups. This suggests the following algorithm.
Step 0. Set the fB's at initial values, perhaps suégested by previous
knowledge of the phenomenon under study. Set the p's at initial
values, e.g., 1/k. Set f(yy) at initial values,
e.g., flv)) = 1/k, for vy = 1,..., k.
Step 1. Estimate v, by maximizing f(vy)f(xy|vy).

Step 2. For t = 2..:.. n, estimate vy, by maximizing the
current estimate of

Pye-17e f(xe|YerXpapsoeesXy)s

as the likelihood can be expressed as a product of such factors.
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Step 3. Now, having labeled the observations, estimate the distributional
parameters, and estimate the transition probabilities according
to (3.2).

Step 4. |If no observation has changed labels from the previous iteration,
stop. Otherwise, repeat the procedure from Step 1.

This method of maximizing with respect to one set of variables, while
the others remain fixed, then maximizing with respect to the second set
while the first remain fixed, etc., is a relaxation method.

Step 2 is Bayesian classification of x,. Suppose the (t=-1)~-st
observation had been teqtatively classified into class c. TYhen the
prior ﬁrobability that the t-th observation belongs to cl: d is pegs
d=1,...,k. Hence all the techniques for classification particular
models are available (e.g., use of linear discriminant fur. + .s when
the observations are multivariate normal with common covariance
matrix) . .

Since ihe labels are treated as random and information equivalent
to a prior distribution is put in, one might more properly term this a
procedure of maximum a posteriori estimation, rather than maximum
likelihood estimation.

Within each iteration Step 2 is the Viterbi algorithm (see [6]),

a recursive optimal solution to the problem of estimating the state
sequence of a discrete-time finite state Markov process. In the present
context it obtains the most probable sequence of labels, conditionally

upon the results of Steps 0 and 1.
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.2. The first iteration

When the k <class-conditional processes consist of independent,
identically distributed normally distributed random variables with
common variance, one can start by choosing initial means and labelling

the observations by a minimum-distance clustering procedure. (This is

- one iteration of ISODATA [2]; one could iterate further at this

stage.) From this clustering initial estimates of transition
probabilities and the variance are obtained. This starting procedure
could also be used for fitting AR models by taking the initial values

of the autoregression coefficients as zero.

3.3. Estimation at the boundary

In Step ! the label <v; is estimated from x;, without using
even the neighboring Xy Effecis of possible error in estimating v,
will be mitigated as p;ocessing continues on toward t = n. In view of
this, a way to mitigate further these effects is to "backcast,' running
every other iteration backwards. (This is possible since Markov chains
are reversible.) Another approach would be to run the algorithm k
times, once with each possible value of v, and choose the best

result., The results reported below, however, were obtained simply

using Step 1, as is.

3.k. Restrictions on the transitions

As mentioned above, one might wish to place restrictions on the

. . N N PR N I S Dnding IS
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transitions, e.g., to allow transitions only to adjacent states.

(E.g.. "recovery" is adjacent to ‘'recession', “expansion" is adjacent
to "recovery," but "expansion" is not adjacent to "recession.") The
model does permit restrictions on the transitions. The maximization is
conducted, subject to the condition that the corresponding transition
probabilities are 2ero. This is easily implemented in the algorithm.
If initially one sets a given transition probability at zero, the
algorithm will fit no such transitions, and consequently the
corresponding transition probability will remain zero at every

iteration.

L., An Example

Here, in the context of a specific numerical example, the problems
of (1) fitting the mode!l for a fixed k and (2) choosing k will
be discussed. .

The data. Quartérly gross national product (GNP) in current (ji.e.,
non~constant) dollars for the years 1946 to 1982 was considered. The data
are given in Table 1. They are quarterly, but scaled up to an annual
basis. The notation 1946-1 denotes the first quarter of 1946; 1946-2,
the second quarter of 1946; etc. The time series will be denoted by

Yeo t = 1,2,...,146.
Thus, y; is GNP for i946-1, 1y, is GNP for 1946-2, etc. The
datum for 1970-3 is 1003.6, or just over 1000. This means that in the

third quarter of 1970 the economy was producing goods and services at a

7
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rate of just over one trillion (1000 billion) dollars per year. (Since

the readership of this journal is international, it is worth mentioning 1

that in this paper one million means a thousand thousands; a billion is

a thousand millions; a trillion is a thousand billions.) j
Choice of a transformation. In the context of the linear A
statistical model T
Ye = atBixig+ ...+ Bpxpt + ug, j

where y is a dependent variable, the x's are explanatory variables,
and u is noise, Box and Cox [3] developed a method for choosing a

transformation from among the power transformations

yW e A - ) /0yg WMD), Amo,

- Yg_m_ln(Y)' A=Q,

s SPRIPT IR TR

Here Yg.m. denotes the geometric mean of y,;, t=1,2,...,n. The
s
value A = 2 corresponds to the square, 1 to no transformation, 0.5 to

P
(I

the square root, 0 to the log, and -1 to the reciprocal. One proceeds

by fitting linear models A
E
for various values of A, say, for example, A = -} to 2 in steps of i1

0.5. For any fixed value of A\, this is just an ordinary least squares
analysis for the data yt(x). t=1,...,n. An assumption is that,
for the true value of A\, the linear model holds with the ut(x)

at least approximately normally distributed with constant standard

L‘__Ad#lfl_;_‘;__AJJ e ieaiasaiaad =




T P ry gy o g e LTINS T TR T e R e
L e s e s e e e e O e Stk I A A A R M : '

Sclove: Time-Series Segmentation: a Mode! and a Method 12
RARRRARARARRRRRARRRRARKERARRKRRRRAREXXRARIARRRRAXRARKRRRRRRRKRRRARERLKEARREAR

deviation au(k). Maximum likelihood estimation of A reduces to
comparison of the residual sums of squares RSS(\) for various A:
n
RSS(A\) = 2 [yt(x) - pred.val. of yt(x)]z.
t=]

where

pred.val. of yt(x) = 2N & b](x)xlt + ...+ bp(k)xpt.

a® and b; N, j =1,....p, being the maximum likelihood
(least squares) estimates of a® and bj(x), j=l,00.,p. A 95%

confidence interval for A [4, pp. 239-240] is
{A: RSS(A) < mimRSS(N[1 + t2(v»;.025)/v]}

where t(v;.025) denotes the upper 97.5 percentage point of Student's
t-distribution with » degrees of freedom, and » = n - (p+l), the
number of degrees of f(eedom for error. When v is large, as is the
Case with application;/to time series, t(v;.025) is close to its
asymptotic value of 1.96. The choice of 95% is conventional but
somewhat arbitrary. For a 90% interval when v is large one would use
t{v:.05), which for large v is approximately 1.645,

This method was applied to time series by means of autoregression,
taking the x's in the linear model! to be lagged versions of y. Eight
lags of y were used. The value 8 was chosen to incorporate the direct
effects of lagged variables involved in anticipated reguiar or seasonal

differencing of order one or two and regular or seasonal autoregression

of order one or two. For example, a second-order autoregression of
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the first differences
Zt T Yt T Veed
takes the form
2 = e+ By12p.y * B2p.p *tup

which is

Yt = Ye-1 = @+ Bylye-y - ve-2) + Balyea = ve-3) +
or

ye = @+ By + Nyey + By - Bylye-2 - Baye-3 + ueo
which is a special case of

Y = @ F dyye-y * dye-p * 93¥e-3 * up

with

& = By +1, ¢ =8, -8y, and ¢ = -85.

Utp

Due to the use of 8 lags, the value of n for this regression analysis

was 146 - 8 = 138, and v = 138 - (B+1) = 129. The RSS for y itself

was 29,273. This is equal to RSS(1). The RSS for log(y)

was 0.00316,

so, letting log denote common logs and In denote natural logs, one

has
RSS(0) = RSS for yg g In(y)
= RSS for yg n 1n(10)10g(y)
= (yg.m.!n(10)) 2RSS for log(y).
= [(711.450) {2.3026)120.00316
= §,u480.

A limit for the 953 confidence interval is given by
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minyRSS (\) [1 + 1.962/129] = 1.0298min\RSS(A) .
Computations have been done only for A = 0 and 1, so the A\ yielding
min\RSS (\) has not been located. However, since the focus here is
merely on choosing between A = 0 and A = 1, one can proceed as follows.
One notes that the confidence interval is given by a maximum acceptable
value of RSS(A\). This maximum acceptable value is less than
1.0298RSS (0), which equals (1.0298) (8,480), or 8,732. The
confidence interval

{x: RSS(\) < 8,732.}

based on this limit is conservative, in the sense that it includes more
A-values than may be necessary. Values that are excluded by this
interval would alsc be excluded by the one based on minyRSS(\). Note
in particular that A = 0, corresponding to no transfo;mation. is

excluded. The log-transformed data will be used in what follows.
r's

Box-Jenkins analysis. The main focus of this paper is on the
segmentation of the time series, but as a preliminary a Box-Jenkins
analysis will be presented. Such an analysis aids with the choice of
variable (difference, second difference, etc.) for segmentation.
"Box-Jenkins analysis'' refers to the fitting of data with one or another
model chosen from the Box-Jenkins AR!MA models. '"ARIMA' means "integrated
autoregressive moving average". A fuller notation is ARIMA(p,d,q),
where p is the order of the autoregression, d is the order of

differencing, and q is the order of the moving average part of the
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;Z% model. Systematic treatments of Box-Jenkins analysis include (in order
- of decreasing mathematical level) [5], [11], [10], and [8].

Nelson [11] analyzed quarterly GNP for the twenty years 1947 to
1966. He used an ARI(1,1) model, that is, he fit a first-order
autoregression to the first differences. (The notation AR means
"autéregressive." The notation ARl means "integrated autoregressive;"
i.e., AR!(p,d) means that the d-th differences are AR(p).)

Here the mixed second differences of the logarithms were analyzed.
A plot of the first seasonal differences y, - y,.4, corresponding
to the annual velocity of the economy, still seemed to trend upward. So

did a plot of the regular differences y, - y..j, which correspond

to the quarterly velocity of the economy. Hence second differences were

considered. The regular-seasonal mixed second differences

N R

analysis. |In fact, the transformation, differencing and plotting

(Yt ',qu) - (Yt-l. - Yt-S)
appeared stationary. ;econd differences, corresponding to acceleration, A
provide a not unnatural way of looking at the data. :
The Minitab computing system (see [13]) was used for the ﬁ

already referred to were done using Minitab. The arithmetic average

of the common logarithms of the data is 2.8522. Their geometric
mean is 711.450. A model allowing for first-order regular

autogression and first-order seasonal autoregression was fit. In the

. : . - e
-‘AA_AJ_AI Joatalal

Box-Jenkins notation for seasonal models, 5}
ARIMA (p,d,q,) (P.D,Q) s, -

'
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this is

ARIMA(1,1,0) (1,1,0) .
in general, S denotes the seasonality, P, D, and Q the orders of
seasonal autoregression, differencing, and moving average.

The value of the estimate of the regular autoregression coefficient
was 0.4276; that of the seasonal autoregression coefficient was -0.5332.
The value of the estimate of the constant in the model was -0.0001405.
The residual sum of squares was 0.00602478.

Check on the constant term. The model was also fit without a
constant term in the model. The value of the estimate of the regular
autoregression coefficient was C.4275; that of the seasonal
autoregression coefficient was -0.5535. The residual sum of squares
was 0.00602508.

Mode! selection ctiteria will be used in several ways in this paper.
At this point their UQ; will be illustrated with the decision of whether
to retain the constant in the model. First some general remarks on
model-selection criteria will be made.

Model selection criteria are figures of merit for alternative
models. That mode! which optimizes the criterion is chosen. One such
criterion is Akaike's information criterion (AIC). (See, e.g., [1].)
Suppose there are K alternative models M., k = 1,...,K.

The modei chosen is the one which minimizes AIC(k), where
AlC(k) = -2 inmax L(k)] + 2c(k).

Here L(k) is the likelihood when My is the model, max denotes

e e,
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its maximum over the parameters, and c(k) is the number of independent
parameters when M, is the model.

The statistic AIC(k) is a natural estimate of the 'cross-entropy"
(see [12]) between f and g(k), where f is the (unknown)
true density and g(k) is the density corresponding to the model
M. According to AIC, inclusion of an additional parameter is
appropriate if In[{max L] increases by one unit or more, i.e., if
max L increases by a factor of e or more. Schwar2z' model-selection
criterion ([14], [7]),

-2 In(max L(k)] + In(n)c(k),
being derived from a first-order approximation to the posterior probability
of M., enjoys certain advantages. Note that both AIC and Schwarz' |
criterion are of the form
=2 In[max L(K)] + a(n)c(k),

where a(n) = 1n(n) ;or Schwarz' criterion and a(n) = 2 for AlC.
According to Schwarz' criterion, an additional! parameter will be included
if it increases In(max L) by an amount greater than In{(n)/2, that is,
if max L increases hy a factor of square root of n or more.
In particular, for n at least 8, Schwarz' criterion favors models with
fewer parameters, relative to AilC.

Note that for Gaussian models

-2 In(max L(k)) = nIn(2m) + n In(v(k)) + n,

where v(k) is the maximum likelihood eatimate of the error variance

in the model My: v(k) = RSS(k)/n, where RSS(k) is the
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residual sum of squares in fitting the model M,. In terms of
RSS(k), this is
-2 In(max L(k)) = n In(2r) + n In(RSS(k)) - n In(n) + n.
This gives
-2 In{max L{k)) + a(n)c(k)
= niIn(2x) + n In(RSS(k)) - nIn(n) + n + a(n)c(k).
To compare models, it suffices to compute only the portion depending
upon k, namely, the statistic
n In(RSS(k)) + a(n)e(k).
To apply model-~seiection criteria to decide whether to include
a constant term in the model, one takes K=2, corresponding to two models,
one with the constant (say k = 1) and the other without the constant
(k = 2)‘, One has n = 146 - 5 = 141, due to the regular and seasonal
differencing. This gives
n In(RSS (k)) -ln» a(n)e(k) = 141 In(RSS(k)) + a(1h1)e(k).
Here AIC will be used; it is favorable to inclusion of more parameters
so if AIC rejects the constant, then Schwarz' criterion would also.
For AIC, a(n) = 2, so the statistic becomes 141 In(RSS(k)) + 2¢c(k).
fFor k = 1 (model with constant term) this is 141 In(0.00602478) + 2(4),
counting the number of parameters as four (regular and seasonal
autoregression coefficients, constant, and error variance). This is
equal to 141(~5.1118876) + 8 = ~712.776. For k = 2 (model without
constant term) this is 141 1n(0.00602508) + 2(3), the number of

parameters being 3 instead of 4 due to the omission of the constant.
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This is 141(~5.1118378) + 6 = -714.769, which is less than the value
of -712.776 obtained for the model with the constant. (Note that the
difference 71Lk.769 - 712.776 = 1.993 is essentially all due to the
difference of 2 associated with the difference in number of parameters.
The very slight improvement in residual sum of squares associated with
the fitting of the additional! parameter is more than offset by the use
of an additional parameter.) Hence one concludes that the constant may
be excluded. Note that this decision is made without any choice of
arbitrary level of significance, such as 5%. (Rational choice of level
of significance involves simultaneous consideration of the power of the
test, and power computations can be rather involved. In any case, most

practitioners seem either unwilling or unable to do them.)

Segmentation analysis. The values of the differences and
second differences for - 1950 are strikinglf higher than those for
earlier and later years. On plots these observations appear to be
“outliers." They locate very well the mobilization of the economy
at the onset of the Korean conflict. The need for segmentation of
the time series is apparent. The segmentation analysis will be
performed on the mixed regular-seasonal second differences, as these

appear to be stationary.

L.1. Fitting the model

in this section the fitting of a model with k = 3 classes is
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treated, discussion of the choice of k being deferred to the next
section. The three classes may be considered as corresponding to
Recession, Recovery, and Expansion, although some may prefer to think
of the segments labeled as Recovery as level perjods corresponding to
peaks and troughs. The approximate maximum likelihood solution found
by the iterative procedure was (units are billions of current
(non-constant) dollars) -0.01125, 0.00184, and 0.01780 for the means,

4.202 x 103 for the standard deviation, and

4167 .5556 .0278
.2151 7312 .0538
.0000 .5455 .L5k45

for the transition probability matrix.
Remember that the input to the segmentation procedure was the
mixed regular-seasonal second difference of the common logs. |f the

4

value of this variable equals x, then

yy = 10X (Yt-‘o/yt°5) Ye-1.
For example, if Yt-h/Yt-S = 1, this gives Y = l.0h7yt-| if x = 0,02,
yy = 1.004bye_y if x = 0.002, and y, = 0.977y,.y if x = -0.01.

The estimated labels are given in Table 2; labels (1, 2, 3, &4, 5)
resulting from fitting k = 5 classes (discussed below) are also given.
The process was in state 1 for 26% of the time, state 2 for 66% of the
time, and state 3 for 8% of the time.

The conventional wisdom regarding recessions during the period of

time covered by these data is as follows. (See, e.g.., [9], pp.

o
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209-211.) In 1948-1949 there was a reduction of inventory investment.
in 1953-1954 there was a reduction in government expenditures when the
Korean conflict came to a close. In mid-1957 to late 1958 an ongoing
recession was aggravated by a drop in defense expenditures in late
1957. In 1960 monetary and fiscal authorities had put on the brakes;
interest rates had risen substantially during 1958 and 1959. Readers
can probably remember some more recent recessions.

An interesting feature of the model and the ailgorithm is that, as
the iterations proceed, some isolated labels change to conform to their
neighbors. This should be the case when p.. is large relative to

Ped: d # c.

4.2. Choice of number of classes

Various values of k were tried, the results being scored by
means of Akaike's and Schwarz' model-selection criteria.

The results are given in Table 3. The best segmentation model, as
indicated by minimum value of Schwarz' criterion, is that with five
classes. (It may be possible to associate these in some way with
Recession, Trough., Recovery, Expansion, and Peak.) AIC would choose 7

classes.

5. Extensions

The segmentation procedure has been illustrated here for the

univariate case, and with an assumption of common variance.

Class-specific variances can be allowed. 0One can use model-selection
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criteria to decide whether or not to use separate class variances.
Multiple time series can be treated. Again, one can use model
selection criteria to decide whether or not to use separate class
covariance matrices. Computer programs to perform these analyses have
already been written by the author.

Here we fit only the independent, identically distributed model
within segments. An extension will be the fitting of Box-Jenkins
models within segments.

Though the segmentation method presented is general, the focus
here has been on Gaussian data. There are other important particular
cases. In epidemiology, one might wish to segment series for
which the observed variable X is a discrete count. In sampling by
attribute in industrial quality control X s binary. One might
wish to segment the output stream according to classes, "in
control," "close to co;trol,” "out of control," and estimate the

proportion of defectives in these classes.
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TABLE 1. Quarterly GNP, 1946-1 through 1982-2.

Units: billions of current (non-constant) dollars

(Time Series #534, National Bureau of Economic Research, from

BCD: Business Cycle Developments, U.S. Department of Commerce)
1946~1 197.7 1946-2 205.3 1946-3 215.6 1946-4 220.7
1947-1 225.1 1947-2 229.3 1947-3 233.6 1947-4 244.0
1948-1 250.0 1948-2 257.5 1948-3 264.5 1948-4 265.9
1949-1 260.5 1949-2 257.0 1949-3 258.9 1940-4 266.8
1950-1 267.6 1950-2 277 .1 1950-3 294 .8 1950~4 306.3
1951-1 320.4 1951-2 328.3 1951-3 335.0 1951~4 339.2
1952-1 3k1.9 1952-2 3h2.1 1952-3 347.8 1952-4 360.0
1953-1 366.1 1953-2 369.4 1953-3 368.4 1953-4 363.1
1954~1 362.5 1954~2 362.3 1954=-3 366.7 1954-4 375.6
1955-1 388.2 1955-2 396.2 1955-3 L04.8 1955-4 Ln.o
1956~1 £12.8 1956-2 4L18.4 1956-3 423.5 1956-4 432.1
1956-1 440.2 1956-2 Lis2.3 1956-3 449.4 1956-4 Lih.0
19581 L36.8 1958-2 440.7 1958-3 L4L53.9 1958-4 L467.0
1959-1 477.0 1959-2 490.6 1959-3 489.0 1959-4 495.0
1960-1 506.9 1960-2 506.3 1960-3 508.¢ 1960-4 504.8
1961-1 508.2 1961-2 519.2 1961-3 528.2 1961-4 542.6
1962-1 554.2 1962-2 562.7 1962-3 568.9 1962-4 574.3
1963-1 582.0 1963-2 590.7 1963-3 601.8 1963-4 612.4
1964-1 625.3 1964-2 634.0 1964-3 642.8 1964-4 648.8
1965-1 668.8 1965-2 681.7 1965-3 696.4 1965-4 717.2
1966-1 738.5 1966-2 750.0 1966-3 760.6 1966-4. 774.9
1967-1 780.7 1967~2 788.6 1967-3 805.7 1967-4 823.3
1968-1 841.2 1968-2 867.2 1968-3 884.9 1968-4 900.3
1969-1 g921.2 1969-2 937.4 1969-3 955.3 1969-4 962.0
1970-1 972.0 1970-2 986.3 1970-3 1003.6 1970-4 1009.0
1971-1 1049.3 1971-2 1068.9 1971-3 1086.6 1971-4 1105.8
1972-1 1142.4 1972-2 1171.7 1972-3 1196.1 1972-~4 1233.5
1973-1 1283.5 1973-2 1307.6 1973-3 1337.7 1973-4 1376.7
1974-1 1387.7 1974=-2 1423.8 1974-3 1451.6 1974-4 1473.8
1975-1 1479.8 1976-2 1516.7 1975-3 1578.5 1975-4 1621.8
1976-1 1672.0 1976-2 1698.6 1976-3 1729.0 1976-4 1772.5
1977-1  1834.8 1977-2  1895.1 1977-3 19544 1977-4 1988.9
1978-1 2031.7 1978-2 2139.5 1978-3 2202.5 1978-4 2281.6
1979-1  2335.5 1979-2 2337.9 1979-3  2454.8 1979-4  2502.9
1980-1 2575.9 1980-2 2573.4 1980-3  2643.7 1980-4 2739.4
1981-1  2864.9 1981-2  2901.8 1981-3  2980.9 1981-4  3003.2
1982-1 2995.5 1982-2 3041.2
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TABLE 2.

Estimated labels

(47-2 denotes the second quarter of 1947; 47-3, the third
quarter of 1947, etc.)

Quarter:
label , k=3; 1
labei,k=5: 2

50-2 50-3 50-4 51-1
3 3 3 2
5 5 5 3

54-2 54-3 5b-4 55-1
! 2 3 3
2 3 5 5

58-2 58-3 58-4 59-1
2 2 3 3
3 3 5 5

62-2 62-3 62-4 63-1
2 2 1 2
2 2 2 2

66-2 66-3 664 671
2 2 2 1
2 2 2 2

70-2 70-3 70-4 71-1
2 2 2 3
2 3 3 ]

Th-2 74-3 TJh-b 75-1
2 2 1 2
3 2 2 2

78-2 78-3 78-4 79-1
2 2 2 2
4 3 4 3

82-2

w o

2 2 2
L 3 3

1
2 1 1 1

55-2 55-3 55-4 56~1
2 2 2
b3 2 )

59-2 59-3 59-4 60-1
2 1 1 2
b ! 2 3

63-2 63-3 63-4 64~
2 2 2 2
3 3 3 3

67-2 67-3 67-4 68-1
2 2 2 2
2 3 3 3

71-2 71-3 71-k 72-1
2 2 2 2
3 3 3 2

75-2 75-3 75-4 76-1
2 2 2 3
3 4 3 &

79-2 79-3 79-4 80-1
12 12
1 3 2 3

1
1

56-2

~N

47-2 k7-3 L7-h LB-1 4B-2 48-3 LB-b L9-1 49-2 49-3 k9-k 50-1
2
3

51-2 51-3 51-k 52~1 52-2 52-3 52-4 53-1 53-2 53-3 53-4 5k-1
2 1 1

1 1 1 3
1 ] 2 2 5
2 2 2 2 ] 1
2 A 3 3 2 1
56-3 56-4 57-1 57-2 57-3 57-k
2 2 2 2 2 ]
2 3 3 2 3 ]
60-3 60-4 61-1 61-2 61-3 61-4
2 ] ] 2 2 3
3 2 2 A 3 L
64-3 6L-k 65-1 65-2 65-3 65-4
2 2 2 2 - 2 2
2 2 3 3 3 b
68-3 68-4 69-1 69-2 69-3 69-4
2 2 2 1 2 2
3 2 3 2 3 2
72-3 72-4 73-1 73-2 73-3 73-4
2 2 2 2 2 2
3 3 3 2 3 3
76-3 76-4 77-1 77-2 77-3 77-4
1 2 2 2 2 2
2 3 3 L 3 2
80-3 80-4 81-1 81-2 81-2 81-4
2 2 2 2 2 1
2 b 3 3 3 ]

1
2
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TABLE 3. Fitting models

Number of classes, k Akaike's criterion Schwar2z' criterion

2 912.3 927.1

3 825.0 854.5

4 749.8 800.0

5 715.8 : 792.5*
6 696.4 805.5 ',
7 66k .8% 812.3 :
]
8 670.9 862.5 ]
671.0 12.8 -
9 7 9 'L

* denotes minimum.
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