
L R6-RU2] 2e6 TIME-SERIES SEGMENTATION: A MODEL AND A METHOD(U) /
ILLINOIS UNIV RT CHICAGO CIRCLE DEPT OF QUANTITATIVE

I METHODS S L SCIOVE 22 DEC 82 TR-N82-7 RRO-i9885. 2-MR

mhmmhmmhhmhhhl



&.0

1.21L11111.

MICROCOPY RESOLUTION TEST CHARTF

NATIONAL BUREAU OF STANDARDS-1963-A



TIME-SERIES SEGMENTATION: A MODEL AND A METHOD

by

STANLEY L. SCLOVE

A Presentation to the
Workshop on Applied Time Series Analysis,

sponsored by the Adaptive and Learning Systems Technical Committee of the
IEEE Systems, Man and Cybernetics Society,

held at the Technical University of Munich, Germany, October 22-23, 1982,
in conjunction with the 6th International Conference on Pattern Recognition

To appear in INFORMATION SCIENCES

TECHNICAL REPORT NO. 82-7

December 22, 1982

PREPARED FOR THE
OFFICE.OF NAVAL RESEARCH

UNDER
CONTRACT N00014-80-C-0408, TASK NRO42-443

Development of Procedures and Algorithms for
Pattern Recognition and Image Processing
based on Two-Dimensional Markov Models

Principal Investigator: Stanley L. Sclove r

Also issued as Technical Report No. A82-3 under Army Research Office
Contract DAAG29-82-K-0155, Quantitative Methods Department,

University of Illinois at Chicago

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Approved for public release; distribution unlimited

QUANTITATIVE METHODS DEPARTMENT
* COLLEGE OF BUSINESS ADMINISTRATION

UNIVERSITY OF ILLINOIS AT CHICAGO
BOX'4348, CHICAGO, IL 60680

44L

12/31/82

01 10 00783 01 po



TIME-SERIES SEGMENTATION: A MODEL AND A METHOD

STANLEY L. SCLOVE

Department of Quantitative Methods, College of Business Administration
University of Illinois at Chicago

CONTENTS

Abstract

1. Introduction

2. The Model

3. An Algorithm

3.1. Develoment of the algorithm

3.2. The first iteration

3.3. Estimation at the boundary

3.4. Restrictions on the transitions
I

4. An Example

4.1. Fitting the model

4.2. Choice of number of classes

5. Extensions

Acknowledgements

References

Tables

Table 1. Quarterly GNP, 1946-1 through 1982-2

Table 2. Estimated labels

Table 3. Fitting.models

" . "



TIME-SERIES SEGMENTATION: A MODEL AND A METHOD

STANLEY L. SCLOVE

Department of Quantitative Methods, College of Business Administration
University of Illinois at Chicago

Box 4348, Chicago, IL 60680

ABSTRACT

" The problem of partitioning time-series into segments is treated.

The segments are considered as failing into classes. A different

probability distribution is associated with each class of segment.

* Parametric families of distributions are considered, a set of parameter

values being associated with each class. With each observation is

associated an unobservable label, indicating from which class the

observation arose. The label process is modeled as a Markov chain.

Segmentation algorithms are obtained by applying a relaxation method to

maximize the resulting'likelihood function. In this paper special

attention is given to the situation in which the observations are

conditionally independent, given the labels. A numerical example,

segmentation of U.S. Gross National Product, is given. Choice of the

number of classes, using statistical model-selection criteria, is

illustrated.

Key Words and Phrases: Markov chains; maximum likelihood; maximum
a posteriori estimation; Viterbi algorithm; relaxation methods; isodata
procedure; model-selection criteria; Akaike's information criterion (AIC).
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TIME-SERIES SEGMENTATION: A MODEL AND A METHOD

STANLEY L. SCLOVE
University of Illinois at Chicago

1. Introduction

The problem of segmentation considered here is: Given a time series

{x t , t = It ... . n),

partition the set of values of t into segments (sub-series, regimes)

within which the behavior of xt is homogeneous. The segments are

considered as falling into several classes.

The observation X may be a scalar, vector, or matrix -- any element

of a linear space, for which the operations of addition and scalar multipli-

cation are defined. (If X is a scalar, operations such as Xt - ext. 1 ,

where c is a scalar, are required. If X is a vector or matrix, the

operation xt - Cxt. ], where C is a matrix, is required.)

2. The Model

One can imagine a series which is usually relatively smooth but occa-

sionally rather jumpy as being composed of sub-series which are first-

order autoregressive, the autocorrelation coefficient being positive for

the smooth segments and negative for the jumpy ones. One might try

fitting such data with a segmentation of two classes, one corresponding

to a positive autocorrelation, the other, to a negative autocorrelation.

The mechanism generating the process changes from time to time, and

these changes manifest themselves at some unknown time points (epochs,

change-points). The number, say m, of segments and the epochs are W

unknown. Generally there will be fewer than m generating mechanisms.

4
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Sclove: Time-Series Segmentation: a Model and a Method 2

The number of mechanisms (classes) will be denoted by k; it wJi be

assumed that k is at most m. In some situations, k is specified;

in others, it is not. Estimation of k will be considered. Although

the process changes from time to time, it should be stationary in the

mean if it is to be segmented. Otherwise, one would merely be fitting

the drifting level of the process, and the larger the series length,

the larger the value of k that would be required. Thus, series must

be differenced to achieve stationarity before applying segmentation

techniques.

With the c-th class is associated a stochastic process, Pc, say.

E.g., above we spoke of a situation with k - 2 classes, where, for

c - 1,2. the process PC is first-order autoregressive with coefficient 0c,

where 01 is positive and 02 is negative.

Now with the t-th observation (t m I,..., n) associate the label

yt, which is equal to c if and only if xt arose from class c,

c - 1.... k. Each time-point t gives rise to a pair

(Xt,-tt) ,

where xt is observable and -t is not. The process {xt) is the

observed time series; the process (Vt } will be called the "label

process."

Define a segmentation, then, as a partition of the time index set

{t: t - 1,.... n} into subsets

S I S I " ,t } 2 = {t 1+ l,' "-,t2) , Sm {tm- I+ I t .... , n) ,

where the t's are subscripted in ascending order. Each subset S.,

V."



Sclove: Time-Series Segmentation: a Model and a Method 3

g - 1,..., m, is a seament. The integer m is not specified. In the

context of this model, to segment the series is merely to estimate the ''s.

The focus in the present paper is not on the change-points ti ,

S- 1,...,m. Rather, the idea underlying the development here is that

of transitions between classes. The labels yt will be treated

as random variables rt with transition probabilities

Prtr-dirt.-Ic) - Pcd,

taken as stationary, i.-e, independent of t. The k-by-k matrix of

transition probabilities will be denoted by , ± .. ,

[Pcd] .

Restrictions on the process can be imposed by setting the appropriate

transition probabilities equal to zero. E..., some processes are strictly

cyclic, such as the operation of an internal-combustion engine, with its

cycle of intake to compression to combustion to exhaust to intake, etc.
I

Similarly, one might wish to describe the economy in terms of transitions

from recession to recovery to expansion, not allowing transition directly

from recession to expansion.

Segmentation will involve the simultaneous estimation of several sets

of parameters, the distributional parameters of the within-class stochastic

processes, the transition probabilities, and the labels. In order to

develop a procedure for maximum likelihood estimation, obviously the

likelihood must first be obtained.

To do this, note that a joint probability density function (p.d.f.)

for the whole process {(Xt,rt), t - 1, .... n) can be obtained by

4 P



Sclove: Time-Series Segmentation: a Model and a Method

successively conditioning each variable on all the preceding ones. The

label 'y is considered as preceding the corresponding observation X.

The variable

X1  is conditioned on rl;

r2, on XI and r,;

X2 on r2 , XI, and rl;

r 3, on X2, r2 , XI, and r1 ;

X3 , on 
1 's X2 , r2, X,, and r1 ;

etc. Using f as a generic symbol for any p.d.f., this leads to the

joint p.d.f.
n

(2.1) fI(v)f(xI f (ft I t -ItI..., l) f (xtl~tqXt~l, t~ l .... 97)
t-2

The working assumptions of this paper are the following.

(A.1) The label process [-t) is a first-order Rarkov chain,
homogeneous in Ahe sense of having stationary transition
probabi!ities, and conditionally independent of the observations;

(2.2) f(VtIxt,'vtl,...,Xl,^) - f(t1ft-l).

When -it-, c and t - d, then

f ( 1t't-1) a Pcd,

and these transition probabilities do not depend upon t.
(The first-order assumption is not critical.)

(A.2) The distribution of the random variable Xt depends only
upon its own label and previous X's, not previous labels:

(2.3) f(xtlvt,xt-.lt~l,....Xl,yl) - f(xtl'Yt,xt-. .... x1 ).

-



Sclove: Time-Series Segmentation: a Model and a Method 5

With these assumptions (2.1) becomes

n(2.;) ~f (_Y1) f ix1 I 1l)t2Ptlt(t tx-I"'x)

Note that this is

k k 
n

(2. 5) (11 Pcd nc d) f(il)f(x Il) H f(xtlft,Xt-l,....Xl),
c-l d-1 t-2

where the (unobservable) quantity ncd is the number of transitions

from class c to class d.

This model, with transition probabilities, has certain advantages over

a model based on the change-points. The change-points are discrete

parameters, and, even if the corresponding generalized likelihood ratio were

asymptotically chi-square, the number of degrees of freedom would not be

clear. On the other hand, the transition probabilities vary in an interval

and it is clear that they constitute a set of k(k-1) free parameters.

Examples. (i) If each class-conditional process Pc is a
first-order Markov process, then

(2.6) f(xtlt'xt'l'''"9xl) = f(xtlYt Xt.i)"

(ii) If in addition the c-th class-conditional process is Gaussian
first-order autoregressive with autoregression coefficient Oc
and constant a., with common a2, then (2.6) holds with

f (xt ItcXt.l) . (2ra2)-11 2 exp[_utc2/(2a 2)],

where utc - Xt - (Ocxt-l + 6d

E.a., the value of the likelihood for

1 12 .. '" r and 'Yr+l in2 7nr+2 ' n

is, for given xO ,

iF

I ° - . . -
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pl m-1p 12 P2 2 n-m-2 (2,,2) - (n-i) / 2 exp[-q/ (2a2) 3,

where

r n
q - j[x t - (Olxt~l + 51)] 2 + X[xt - (02xt-1 + 62) ] 2

tl t-r+l

In regard to (A.2), in the simplest case the X's are (conditionally)

* independent, given the labels. That is, the distribution of X

depends only upon its label, and not previous X's. Then

f (xtl'ttxt-l'.... x1') f (xt 'yt)•

We shall pay special attention to this case in the present paper. In this

case the p.d.f.'s f(xl-t-c), c - 1,..., k, are called class-conditional

densities. In the parametric case the class-conditional density takes

the form

(2.7) f(xtl'ytc) g(xt;oc),

where 0 is a parameter indexing a family of p.d.f.'s of form given

by the function g and Oc is its value for the c-th class. For

example, in the case of Gaussian class-conditional distributions Oc

consists of the mean and variance for the c-th class.

3. An Algorithm

3.1. Development of the algorithm

The likelihood L is (2.5), considered as a function of the

parameters, for fixed {xt}. From (2.5) and (2.7), the likelihood L

I ip



Sciove: Time-Series Segmentation: a Model and a Method 7

can be written in the form

(3.1) L - A({Pcdl , {Yt)B({Yt } , { Oc}).

Hence, for fixed values of the y's and f's, L is maximized with

respect to the p's by maximizing the factor A. But

k k
A - I 1 1 Pcd

c-i d-1

The ncd are determined by the y's. So from the usual multinomial

model, it follows that maximum likelihood estimation of the p's, for fixed

values of the other parameters, is given by taking the estimate of Pcd to be

(3.2) ncd/nc

where

nc - ncl + nc2 + ... nck

Further, given the p's and 'v's, the estimates of the distributional

parameters -- the 8's-- are easy to obtain because the observations

have been sorted into k groups. This suggests the following algorithm.

Step 0. Set the O's at initial values, perhaps suggested by previous V
knowledge of the phenomenon under study. Set the p's at initial
values, e.j., 1/k. Set f(l) at initial values,
. ., f(Y1) - 1/k, for yI 1..., k.

Step 1. Estimate -y1 by maximizing f('v)f(x j 1-).

Step 2. For t - 2,..., n. estimate 'yt by maximizing the
current estimate of

s th l Of t (Xb 
st, xt-a X 

a)

as the likelihood can be expressed as a product of such factors.

4P(



Sclove: Time-Series Segmentation: a Model and a Method 8

Step 3. Now, having labeled the observations, estimate the distributional

parameters, and estimate the transition probabilities according
to (3.2)•

Step 4. If no observation has changed labels from the previous iteration,
stop. Otherwise, repeat the procedure from Step 1.

This method of maximizing with respect to one set of variables, while

the others remain fixed, then maximizing with respect to the second set

while the first remain fixed, etc., is a relaxation method.

Step 2 is Bayesian classification of xt. Suppose the (t-l)-st

observation had been tentatively classified into class c. Then the

prior probability that the t-th observation belongs to cli d is Pcd,

d - l,...,k. Hence all the techniques for classification particular

models are available (e.a., use of linear discriminant fur. .s when

the observations are multivariate normal with common covariance

matrix).

Since the labels are treated as random and information equivalent

to a prior distribution is put in, one might more properly term this a

procedure of maximum a posteriori estimation, rather than maximum

likelihood estimation.

Within each iteration Step 2 is the Viterbi algorithm (see (6)),

a recursive optimal solution to the problem of estimating the state

sequence of a discrete-time finite state Markov process. In the present

context it obtains the most probable sequence of labels, conditionally

upon the results of Steps 0 and 1.
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3.2. The first iteration

When the k class-conditional processes consist of independent,

identically distributed normally distributed random variables with

common variance, one can start by choosing initial means and labelling

the observations by a minimum-distance clustering procedure. (This is

one iteration of ISODATA [2]; one could iterate further at this

stage.) From this clustering initial estimates of transition

probabilities and the variance are obtained. This starting procedure

could also be used for fitting AR models by taking the initial values

of the autoregression coefficients as zero.

3.3. Estimation at the boundary

In Step I the label yl is estimated from x1 , without using

even the neighboring x2 . Effects of possible error in estimating -y1

will be mitigated as processing continues on toward t - n. In view of

this, a way to mitigate further these effects is to "backcast," running

every other iteration backwards. (This is possible since Markov chains

are reversible.) Another approach would be to run the algorithm k

times, once with each possible value of Y1, and choose the best

result. The results reported below, however, were obtained simply

using Step 1, as is.

3.4. Restrictions on the transitions

As mentioned above, one might wish to place restrictions on the
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transitions, e.a., to allow transitions only to adjacent states.

(Eg., "recovery" is adjacent to "recession", "expansion" is adjacent

to "recovery," but "expansion" is not adjacent to "recession.") The

model does permit restrictions on the transitions. The maximization is

conducted, subject to the condition that the corresponding transition

probabilities are zero. This is easily implemented in the algorithm.

If initially one sets a given transition probability at zero, the

algorithm will fit no such transitions, and consequently the

corresponding transition probability will remain zero at every

iteration.

4. An Example

Here, in the context of a specific numerical example, the problems

of (1) fitting the model for a fixed k and (2) choosing k will

be discussed.

The data. Quarterly gross national product (GNP) in current (i.e.,

non-constant) dollars for the years 1946 to 1982 was considered. The data

are given in Table 1. They are quarterly, but scaled up to an annual

basis. The notation 1946-1 denotes the first quarter of 1946; 1946-2,

the second quarter of 1946; etc. The time series will be denoted by

Y t 1,2,....146.

Thus, Yl is GNP for 1946-1, Y2 is GNP for 1946-2, etc. The

datum for 1970-3 is 1003.6, or just over 1000. This means that in the

third quarter of 1970 the economy was producing goods and services at a
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rate of just over one trillion (1000 billion) dollars per year. (Since

the readership of this journal is international, it is worth mentioning

that in this paper one million means a thousand thousands; a billion is

a thousand millions; a trillion is a thousand billions.)

Choice of a transformation. In the context of the linear

statistical model

Yt - a + flxlt + ... + 0pxpt + ut,

where y is a dependent variable, the x's are explanatory variables,

and u is noise, Box and Cox (3] developed a method for choosing a

transformation from anong the power transformations

y(X) = (y" - 1)/(Xyg.m* X-l) x 0 0.

Yg.m.ln(y). X - 0.

Here Yg.m. denotes the geometric mean of Yt, t-1,2,....,n. The

value X - 2 corresponds to the square, I to no transformation. 0.5 to

the square root, 0 to the log, and -1 to the reciprocal. One proceeds

by fitting linear models

Yt(X) a (X) + 1i (\)xlt + ". +  p(w) xpt + ut(X)

for various values of X, say, for example, X - -I to 2 in steps of

0.5. For any fixed value of X, this is just an ordinary least squares

analysis for the data yt (X), t - ],....n. An assumption is that,

for the true value of X, the linear model holds with the ut(X)

at least approximately normally distributed with constant standard

i-4
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deviation au(X). Maximum likelihood estimation of X reduces to
r

comparison of the residual sums of squares RSS() for various X:

nRSS(X) - C tyt(W) - pred.val. of yt(X)3 2 ,

t- I
where

pred.val. of y (x) - a(M + bl(x)xIt + ... + bp()xpt,

a( ) and bj (X), j - 1,...,p, being the maximum likelihood

(least squares) estimates of a (\) and bj(X). j - 1...,p. A 95%

confidence interval for X [4, pp. 239-240] is

[X: RSS(X) < minxRSS(X)E1 + t2 (Y;'025)/]-D

where t(v;.025) denotes the upper 97.-5 percentage point of Student's

t-distribution with v degrees of freedom, and Y - n - (p+l), the

number of degrees of freedom for error. When P is large, as is the V

case with applications to time series, t(p;.025) is close to its

asymptotic value of 1.96. The choice of 95% is conventional but

somewhat arbitrary. For a 90% interval when P is large one would use

t(1;.05), which for large P is approximately 1.645.

This method was applied to time series by means of autoregression,

taking the x's in the linear model to be lagged versions of y. Eight 0

lags of y were used. The value 8 was chosen to incorporate the direct

effects of lagged variables involved in anticipated regular or seasonal

differencing of order one or two and regular or seasonal autoregression

of order one or two. For example, a second-order autoregression of

W
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the first differences

Zt - - Yt-l 7

takes the form

- a + O12t.1 + 02zt-2 + Ut,

which is

-t yt-I a + Bi (yt-I -Yt-2) + 02(yt-2 -yt-3) + Ut,

or

Yt -a + (1+ 1 ~yt-I + 02~ -
8 )yt-2 - 2yt-3 + Ut,

which is a special case of

yt + O lyt-1 + '02yt-2 +4. *3yt-3 +I Ut,

with

-1 01 + ,0 0 1 and 03 -0

Due to the use of 8 lags, the value of n for this regression analysis

was 146 - 8 - 138, ail 138 - (8+1) - 129. The RSS for y itself

was 29,273. This is equal to RSS(l). The RSS for log(y) was 0.00316,

so, letting log denote common logs and In denote natural logs, one

has

RSS(0) - RSS for yg..n(y)

= RSS for yg.m.In(I0)Iog(y)

a (Yg.,.ln(10))2RSS for log(y).

= 1(711.450) (2.3026)320.36

- 8,480.

A limit for the 95% confidence interval is given by
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minXRSS(X)[1 + 1.962/129] - 1.0298minxRSS(X).

Computations have been done only for X - 0 and 1, so the X yielding

min\RSS(X) has not been located. However, since the focus here is

merely on choosing between X - 0 and X - 1, one can proceed as follows.

One notes that the confidence interval is given by a maximum acceptable

value of RSS(X). This maximum acceptable value is less than

1.0298RSS(0), which equals (1.0298)(8,480), or 8,732. The

confidence interval

(X: RSS(X) < 8,732.)

based on this limit is conservative, in the sense that it includes more

X-values than may be necessary. Values that are excluded by this

interval would also be excluded by the one based on min\RSS(X). Note

in particular that X - 0, corresponding to no transformation, is

excluded. The log-transformed data will be used in what follows.

Box-Jenkins analysis. The main focus of this paper is on the

segmentation of the time series, but as a preliminary a Box-Jenkins

analysis will be presented. Such an analysis aids with the choice of

variable (difference, second difference, etc.) for segmentation.

"Box-Jenkins analysis" refers to the fitting of data with one or another

model chosen from the Box-Jenkins. ARI1A models. "ARIMA" means "integrated

autoregressive moving average". A fuller notation is ARIMA(p,d,q),

where p is the order of the autoregression, d is the order of

differencing, and q is the order of the moving average part of the

9*



Sciove: Time-Series Segmentation: a Model and a Method 15

model. Systematic treatments of Box-Jenkins analysis include (in order

of decreasing mathematical level) [53, [113, [10), and [83.

Nelson [11] analyzed quarterly GNP for the twenty years 1947 to

1966. He used an ARI(O) model, that is, he fit a first-order

autoregression to the first differences. (The notation AR means

"autoregressive."| The notation ARI means "integrated autoregressive;"

i.e., ARI(p,d) means that the d-th differences are AR(p).)

Here the mixed second differences of the logarithms were analyzed.

A plot of the first seasonal differences yt - yt-4, corresponding

to the annual velocity of the economy, still seemed to trend upward. So

did a plot of the regular differences Yt - yt-1, which correspond

to the quarterly velocity of the economy. Hence second differences were

considered. The regular-seasonal mixed second differences

(Yt IYt-1) - (yt-4 " Yt-5 )

appeared stationary. Second differences, corresponding to acceleration,

provide a not unnatural way of looking at the data.

The Minitab computing system (see [13) was used for the

analysis. In fact, the transformation, differencing and plotting

already referred to were done using Minitab. The arithmetic average

of the common logarithms of the data is 2.8522. Their geometric

mean is 711.450. A model allowing for first-order regular

autogression and first-order seasonal autoregression was fit. In the

Box-Jenkins notation for seasonal models,

ARIMA(p,d,q,) (PD,Q)S,
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this is

ARIMA(l,l,0) (1,1,0)4.

In general, S denotes the seasonality, P, 0, and Q the orders of

seasonal autoregression, differencing, and moving average.

The value of the estimate of the regular autoregression coefficient

was 0.4276; that of the seasonal autoregression coefficient was -0.5332.

The value of the estimate of the constant in the model was -0.0001405.

The residual sum of squares was 0.00602478.

Check on the constant term. The model was also fit without a

constant term in the model. The value of the estimate of the regular

autoregression coefficient was 0.4275; that of the seasonal P

autoregression coefficient was -0.5535. The residual sum of squares

was 0.00602508.

Model selection criteria will be used in several ways in this paper.
I

At this point their use will be illustrated with the decision of whether

to retain the constant in the model. First some general remarks on

model-selection criteria will be made.

Model selection criteria are figures of merit for alternative

models. That model which optimizes the criterion is chosen. One such

criterion is Akaike's information criterion (AIC). (See, e.%., [13.)

Suppose there are K alternative models Mk, k - 1,...,K.

The model chosen is the one which minimizes AIC(k), where

A I(k) - -2 Intmax L(k)] + 2c(k).

Here L(k) is the likelihood when Mk is the model, max denotes
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its maximum over the parameters, and c(k) is the number of independent

parameters when Mk is the model.

The statistic AIC(k) is a natural estimate of the "cross-entropy"

(see [12]) between f and g(k), where f is the (unknown)

true density and g(k) is the density corresponding to the model

Mk. According to AIC, inclusion of an additional parameter is

appropriate if In[max L) increases by one unit or more, i.e., if

max L increases by a factor of e or more. Schwarz' model-selection

criterion ([11.), [7)),

-2 In[max L(k)] + In(n)c(k),

being derived from a first-order approximation to the posterior probability

of Mk , enjoys certain advantages. Note that both AIC and Schwarz'

criterion are of the form

-2 in[max L(k)] + a(n)c(k),

where a(n) - In(n) for Schwarz' criterion and a(n) - 2 for AIC.

According to Schwarz' criterion, an additional parameter will be included

if it increases in(max L) by an amount greater than ln(n)/2, that is,

if max L increases hy a factor of square root of n or more.

In particular, for n at least 8, Schwarz' criterion favors models with

fewer parameters, relative to AIC.

Note that for Gaussian models

-2 ln(max L(k)) - n ln(2r) + n ln(v(k)) + n,

where v(k) is the maximum likelihood estimate of the error variance

in the model Mk: v(k) - RSS(k)/n, where RSS(k) is the
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residual sum of squares in fitting the model Mk - in terms of
r

RSS(k), this is

-2 In(max L(k)) - n ln(2r) + n ln(RSS(k)) - n In(n) + n.

This gives

-2 In(max L(k)) + a(n)c(k)

- n In(2r) + n ln(RSS(k)) - n ln(n) + n + a(n) c(k).

To compare models, it suffices to compute only the portion depending

upon k, namely, the statistic

n In(RSS(k)) + a(n) c(k).

To apply model-selection criteria to decide whether to include

a constant term in the model, one takes K-2, corresponding to two models,

one with the constant (say k - 1) and the other without the constant

(k -2). One has n - 146 -5 1 1, due to the regular and seasonal

differencing. This gives

n I n(RSS(k)) + a(n) c(k) - 141 ln(RSS(k)) + a(14 1)c(k).

Here AIC will be used; it is favorable to inclusion of more parameters

so if AIC rejects the constant, then Schwarz' criterion would also.

For AIC, a(n) - 2, so the statistic becomes 141 ln(RSS(k)) + 2c(k).

For k - I (model with constant term) this is 141 1n(O.00602478) + 2(4),

counting the number of parameters as four (regular and seasonal 1

autoregression coefficients, constant, and error variance). This is

equal to 141 (-5.1118876) + 8 -712.776. For k -2 (model without

constant term) this is 141 ln(O.00602508) + 2(3), the number of

parameters being 3 instead of 4 due to the omission of the constant.

I p

w
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This is 141(-5.1118378) + 6 - -714-.769, which is less than the value

of -712.776 obtained for the model with the constant. (Note that the

difference 714.769 - 712.776 - 1.993 is essentially all due to the

difference of 2 associated with the difference in number of parameters.

The very slight improvement in residual sum of squares associated with

the fitting of the additional parameter is more than offset by the use

of an additional parameter.) Hence one concludes that the constant may

be excluded. Note that this decision is made without any choice of

arbitrary level of significance, such as 53. (Rational choice of level

of significance involves simultaneous consideration of the power of the

test, and power computations can be rather involved. In any case, most

practitioners seem either unwilling or unable to do them.)

Segmentation analysis. The values of the differences and

second differences for'1950 are strikingly higher than those for

earlier and later years. On plots these observations appear to be

"outliers." They locate very well the mobilization of the economy

at the onset of the Korean conflict. The need for segmentation of

the time series is apparent. The segmentation analysis will be

performed on the mixed regular-seasonal second differences, as these

appear to be stationary.

4.1. Fitting the model

In this section the fitting of a model with k - 3 classes is
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treated, discussion of the choice of k being deferred to the next

section. The three classes may be considered as corresponding to

Recession, Recovery, and Expansion, although some may prefer to think

of the segments labeled as Recovery as level periods corresponding to

peaks and troughs. The approximate maximum likelihood solution found

by the iterative procedure was (units are billions of current

(non-constant) dollars) -0.01125, 0.00184, and 0.01780 for the means,

4.202 x lO3 for the standard deviation, arid

.4167 .5556 .0278

.2151 .7312 .0538

.0000 .5455 .455 

for the transition probability matrix.

Remember that the input to the segmentation procedure was the

mixed regular-seasonal second difference of the common logs. If the

value of this variable equals x, then

Yt " 0X(yt-4/Yt-5)Yt-,.

For example, if yt-4/yt-5 - 1, this gives yt - "1.4 7yt- if x = 0.02,

Yt - l.046yt-1 if x - 0.002, and Yt - 0-977Yt-1 if x - -0.01.

The estimated labels are given in Table 2; labels (1, 2, 3, 4, 5)

resulting from fitting k - 5 classes (discussed below) are also given.

The process was in state 1 for 26% of the time, state 2 for 66% of the

time, and state 3 for 8 of the time.

The conventional wisdom regarding recessions during the period of

time covered by these data is as follows. (See, e.g., [9), pp.

U
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209-211.) In 1948-1949 there was a reduction of inventory investment.
F

In 1953-1954 there was a reduction in government expenditures when the

Korean conflict came to a close. In mid-1957 to late 1958 an ongoing

recession was aggravated by a drop in defense expenditures in late

1957. In 1960 monetary and fiscal authorities had put on the brakes;

interest rates had risen substantially during 1958 and 1959. Readers

can probably remember some more recent recessions.

An interesting feature of the model and the algorithm is that, as

the iterations proceed, some isolated labels change to conform to their

neighbors. This should be the case when Pcc is large relative to

Pcd' d 0 c.

4.2. Choice of number of classes

Various values of k were tried, the results being scored by

means of Akaike's and 6chwarz' model-selection criteria.

The results are given in Table 3. The best segmentation model, as

indicated by minimum value of Schwarz' criterion, is that with five

classes. (It may be possible to associate these in some way with

Recession, Trough. Recovery, Expansion, and Peak.) AIC would choose 7

classes.
It

S. Extensions

The segmentation procedure has been illustrated here for the

univariate case, and with an assumption of common variance.

Class-specific variances can be allowed. One can use model-selection

l-S

. . . .. ... . . . . .. . i I i
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criteria to decide whether or not to use separate class variances.

Multiple time series can be treated. Again, one can use model

selection criteria to decide whether or not to use separate class

covariance matrices. Computer programs to perform these analyses have

already been written by the author.

Here we fit only the independent, identically distributed model

within segments. An extension will be the fitting of Box-Jenkins

models within segments,

Though the segmentation method presented is general, the focus

here has been on Gaussian data. There are other important particular

cases. In epidemiology, one might wish to segment series for

which the observed variable X is a discrete count. In sampling by

attribute in industrial quality control X is binary. One might

wish to segment the output stream according to classes, "in

control," "close to control," "out of control," and estimate the

proportion of defectives in these classes.

4P
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TABLE 1. Quarterly GNP, 1946-1 through 1982-2.
Units: billions of current (non-constant) dollars
(Time Series #534, National Bureau of Economic Research, from
BCD: Business Cycle Developments, U.S. Department of Commerce)

1946-1 197.7 1946-2 205.3 1946-3 215.6 1946-4 220.7
1947-1 225.1 1947-2 229.3 1947-3 233.6 1947-4 244.0
1948-1 250.0 1948-2 257.5 1948-3 264.5 1948-4 265.9
1949-1 260.5 1949-2 257.0 1949-3 258.9 1949-4 256.8
1950-1 267.6 1950-2 277.1 1950-3 294.8 1950-4 306.3
1951-1 320.4 1951-2 328.3 1951-3 335.0 1951-4 339.2
1952-1 341.9 1952-2 342.1 1952-3 347.8 1952-4 360.0
1953-1 366.1 1953-2 369.4 1953-3 368.4 1953-4 363.1
1954-1 362.5 1954-2 362.3 1954-3 366.7 1954-4 375.6
1955-1 388.2 1955-2 396.2 1955-3 4O4.8 1955-4 411.0
1956-1 412.8 1956-2 418.4 1956-3 423.5 1956-4 432.1
1956-1 440.2 1956-2 442.3 1956-3 449.4 1956-4 444.0
1958-1 436.8 1958-2 440.7 1958-3 453.9 1958-4 467.0
1959-1 477.0 1959-2 490.6 1959-3 489.0 1959-4 495.0
1960-1 506.9 1960-2 506.3 1960-3 508.C 1960-4 504.8
1961-1 508.2 1961-2 519.2 1961-3 528.2 1961-4 542.6
1962-1 554.2 1962-2 562.7 1962-3 568.9 1962-4 574.3
1963-1 582.0 1963-2 590.7 1963-3 601.8 1963-4 612.4
1964-1 625.3 1964-2 634.o 1964-3 642.8 1964-4 648.8
1965-1 668.8 1965-2 681.7 1965-3 696.4 1965-4 717.2
1966-1 738.5 1966-2 750.0 1966-3 760.6 1966-4. 774.9
1967-1 780.7 1967-2 788.6 1967-3 805.7 1967-4 823.3
1968-1 841.2 1968-2 867.2 1968-3 884.9 1968-4 900.3
1969-1 921.2 1969-2 937.4 1969-3 955.3 1969-4 962.0
1970-1 972.0 1970-2 986.3 1970-3 1003.6 1970-4 1009.0
1971-1 1049.3 1971-2 1O68.9 1971-3 io86.6 1971-4 1105.8
1972-1 1142.4 1972-2 1171.7 1972-3 1196.1 1972-4 1233.5 10
1973-1 1283.5 1973-2 1307.6 1973-3 1337.7 1973-4 1376.7
1974-1 1387.7 1974-2 1423.8 1974-3 1451.6 1974-4 1473.8
1975-1 1479.8 1975-2 1516.7 1975-3 1578.5 1975-4 1621.8
1976-1 1672.0 1976-2 1698.6 1976-3 1729.0 1976-4 1772.5
1977-1 1834.8 1977-2 1895.1 1977-3 1954.4 1977-4 1988.9
1978-1 2031.7 1978-2 2139.5 1978-3 2202.5 1978-4 2281.6
1979-1 2335.5 1979-2 2337.9 1979-3 2454.8 1979-4 2502.9
1980-1 2575.9 1980-2 2573.4 1980-3 2643.7 1980-4 2739.4
1981-1 2864.9 1981-2 2901.8 1981-3 2980.9 1981-4 3003.2
1982-1 2995.5 1982-2 3041.2

ei
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TABLE 2. Estimated labels
(47-2 denotes the second quarter of 1947; 47-3, the third
quarter of 1947, etc.)

Quarter: 47-2 47-3 47-4 48-1 48-2 48-3 48-4 49-1 49-2 49-3 49-4 50-1
label,k-3: 1 1 2 2 2 2 1 1 1 1 1 3
label,kik5: 2 1 4 3 3 3 1 1 1 2 2 5

50-2 50-3 50-4 51-1 51-2 51-3 51-4 52-1 52-2 52-3 52-4 53-1 53-2 53-3 53-4 54-1
3 3 3 2 2 1 1 1 1 2 2 2 2 1 1 1
5 5 5 3 2 1 1 1 1 2 4 3 3 2 1 2

54-2 54-3 54-4 55-1 55-2 55-3 55-4 56-1 56-2 56-3 56-4 57-1 57-2 57-3 57-4 58-1
1 2 3 3 2 2 2 1 2 2 2 2 2 2 1 1
2 3 5 5 4 3 2 1 2 2 3 3 2 3 1 1

58-2 58-3 58-4 59-1 59-2 59-3 59-4 60-1 60-2 60-3 60-4 61-1 61-2 61-3 61-4 62-1
2 2 3 3 2 1 1 2 1 2 1 1 2 2 3 2
3 3 5 5 4 1 2 3 1 3 2 2 4 3 4 3

62-2 62-3 62-4 63-1 63-2 63-3 63-4 64-1 64-2 64-3 64-4 65-1 65-2 65-3 65-4 66-1
2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 3 3 3 3 3 2 2 3 3 3 4 3

66-2 66-3 66-4 67-1 67-2 67-3 67-4 68-1 68-.2 68-3 68-4 69-1 69-2 69-3 69-4 70-1
2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 1
2 2 2 2 2 3 3 3 4 3 2 3 2 3 2 2

70-2 70-3 70-4 71-1 71-2 71-3 71-4 72-1 72-2 72-3 72-4 73-1 73-2 73-3 73-4 74-1
2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 1
2 3 3 4 3 3 3 2 3 3 3 3 2 3 3 1

74-2 74-3 74-4 75-1 75-2 75-3 75-4 76-1 76-2 76-3 76-4 77-1 77-2 77-3 77-4 78-1
2 2 1 2 2 2 2 3 2 1 2 2 2 2 2 1
3 2 2 2 3 4 3 4 2 2 3 3 4 3 2 2

78-2 78-3 78-4 79-1 79-2 79-3 79-4 80-1 80-2 80-3 80-4 81-1 81-2 81-2 81-4 82-1
4 2 2 2 2 1 2 1 2 1. 2 2 2 2 2 1 1

4 3 4 3 1 3 2 3 2 2 4 3 3 3 1 1

82-2
2
3

p
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* TABLE 3. Fitting models

Number of classes, k Akaike's criterion Schwarz' criterion

2 912.3 927.1

3 825.0 854.5

4 749.8 S00.0

5 715.8 792.5*

6 696.4 805.5

7 664.8* 812.3

8 670.9 862.5

9 671.0 912.8

*denotes minimum.
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attention is given to the situation in which the observations are

conditionally Independent, given the labels. A numerical example,

segmentation of U.S. Gross National Product, is given. Choice of the

number of classes, using statistical model-selection criteria,

is illustrated.
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