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1.0 INTRODUCTION

During this quarter we performed a series of experiments on
single crystals and other materials of a controlled nature. These
experiments have provided strong constraints on the interpretation
of critical angle measurements made with an apparatus which employs
a focused acoustic source rather than a plane wave source. Certain
"anomalous" measurements reported earlier on uncontrolled materials
have been seen again in these controlled materials. Because of the
known angular periodicity of the material properties (angle of
rotation about certain symmetry axes of a crystal, for example), we
have been able to show that these effects are dependent on the
sample and much less dependent on the nature and details of the
experimental apparatus.

Nevertheless, a focused acoustic source could produce a
number of effects that would not be expected if plane wave excita-
tion of surface waves were employed. Accordingly, we have begun

theoretical and experimental studies designed to determine what

Cergre—

these effects may be.
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2.0 QUALITATIVE ANALYSIS OF THE EFFECT OF CONVERGING BEAMS

A cursory description of our apparatus has been given in
previous reports. However, the influence our unique geometry has
upon the experimental results has not been fully assessed. In
this section we provide an initial analysis of our experiment based
upon well known optics and acoustics theory. Subsequent reports

will elaborate further.

2.1 Plane of Incidence

In order to obtain high resolution critical angle images as
described in our initial proposal, we chose the geometry shown in
Fig. 1. The transmitter crystal is followed by a lens which focuses
the sound to a point at the center of rotation of the goniometer.

The sample is placed with its surface also at the center of rotation,
and its surface normal in the plane of the goniometer. The receiving
transducer consists of a very small element placed on the other arm
of the goniometer. The central ray of the transmitter, and the
receiver fulfill the specular reflecting geometry.

The experiment is performed by energizing the transmitter with
a continuous sine wave at the appropriate frequency and monitoring
the receiver with a vector volt meter. The sémple is placed in the
x-y plane aid the goniometer carrying the transducers is moved from
a small angle to a large one or vice versa. In this process, the
transducers pass through all three critical angles, 61, 65, 6R
(longitudinal, transverse, and Rayleigh, respectively). The complex
reflectivity as a function of angle is the recorded variable.

In the past, this type of experiment has been performed with
large transducers and plane waves. Therefore, each of the critical
angles mentioned above was interrogated separately, except perhaps for

O0g and OR which lie quite close together for some materials. 1In our

geometry, the focused cone can sometimes contain all three critical angles.

e,
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Fig. 1. Isometric sketch of the experimental system.




A

e ————

Therefore, in addition to the Rayleigh surface wave, there may be
lateral waves which then reradiate to form head waves that will be
seen by the receiver. For our usual geometry, a 25 mm transmitter
is focused at 100 mm resulting in a converging cone of 14.25°
included angle. In aluminum, for example, 61 = 13° 26', 6T = 29° 20!
and Og = 31° 36'. Hence, By and &g could not be encompassed
simultaneously although a slightly larger transducer could. 0s and
8g are, however, always energized together. Thus, a Rayleigh and
transverse lateral wave will be present simultaneously. Both of
these waves will generate head waves in the water which will be seen
by the receiver.

The theory, for the reflectivity of a surface and the various
waves generated, is admirably summarized by Uberall.l we will
repeat it here as a foundation for further exposition. The general
situation of a point source in a liquid half space in contact with

an isotropic solid is shown in Fig. 2. The resulting waves are:

LIQUID

SOLID 5

Fig. 2. Side view of wave fronts generated by a point source in the
liquid. The solid is isotropic.
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1. Wave front propagated from the source, S.
2. Wave front reflected by the surface (virtual source, S').

3. Rayleigh (generalized) surface wave with amplitude falling
off in the solid, traveling at velocity, Cg.

. Lateral surface wave traveling at shear velocity, Cg.
Lateral surface wave traveling at compressional velocity, Cr.

4

5

6. Head wave generated by the Rayleigh wave.

7. Head wave generated by the shear lateral wave.
8

Head wave generated by the compressional lateral wave.

The amplitudes and phases of all of these waves can be calculated
theoretically. Since the source is a point, the head waves will be

conical.
This geometry is closely related to the one that we have chosen.

If we consider our source to be at the focus of our lens and restrict

the cone of rays, we have the situation shown in Fig. 3.

\ P
y’e i
N :
£ \ ‘
< 7 l
N |
~ VAR \ ; /
~/ ~N O\ ' . -
~a / ) R
~ -~ . ~..
—————— \
S‘A& . .
, 3 / 4 SOLID 5
] /
Fig. 3. Side view of wave fronts generated by a spherical source focused at the surface

of the solid.
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We now have one less wave in the liquid, namely the propagated

wave. If the incident cone, ¥, includes all three critical angles,

6L, Bg, B8R, the remaining waves will be present in the liquid.

Qur

experimental procedure utilizes a point receiver in the center of

the reflected cone.

Therefore, if we scan the source and receiver

beginning at a small angle of incidence, the waves intercepted by the
Table 1

receiver will be a function of the angles as follows.

represents the cases where ¥ > 65 -~ 6 and 8R - 85 < ¥ < 65 - 9.

TABLE 1

Y > g - 6 Br - O0g < ¥ < Bg - 61,

0 Wave 6 Wave
>0 » < 8 - ¥/2 2 >0 » <0 - ¥/2 )2
>0y - ¥/2, < B6g - ¥/2 2,8 >0 ~ ¥/2, < B + ¥/2 | 2,8
2bg - ¥/2, < BR - ¥/2 2,7,8 >01, + ¥/2, < 6g - ¥/2 |2
>8R - ¥/2, < By + V¥/2 2,6,7,8 (>8g - ¥/2, < 6g - ¥/2 | 2,7
-8 + ¥/2, < 85 + ¥/2 2,6,7 20 - ¥/2, < Bg + ¥/2 |2,6,7
-8g + ¥/2, < B + ¥/2 2,6 >0g + ¥/2, < Ogp + ¥/2 2,6
>0R + ¥/2 2 »0Rp + ¥/2 2

This is to be compared with the case of plane wave illumination (¥ = 0)

shown in Table 2.

in sequence.

Note, that in this case each wave is interrogated

It appears, then, that in attempting to simplify the system for

imaging reasons we may have complicated the signal interpretation

process. On the other hand, as evidenced by the experiments described

elsewhere in this report, these complications may not be significant.

An oy
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TABLE 2
¥Y=0
e Waye

>0, <6 2
= 8y, 2,8
> 0Ly < 65 z
= Og 2,7
> 8g < 6r 2
= 0y 2,6
> BR 2

2.2 Plane of Solid

In the preceding discussion, we have examined the system
in the y-z plane. The transmitted cone has extent in the other
directions as well. Returning to Fig. 1, we see that surface
waves are generated over a wedge of angles emanating from the focal
point on the surface. This wedge of surface waves reradiates a
head wave back into the water, and therefore, must make a contribution
to the detected signal.

The wedge of surface waves predicted by geometric theory, as
shown in Fig. 4, will subtend an angle Y' which depends on the angle
of incidence of the lens axis 6, and the angle subtended by the

lens aperture from the lens focus Y.

tan(¥/2)
sind ] n

y' ~ 2tan~! [

Thus, the wedge of surface waves always has an opening angle Y'

which is somewhat larger than the opening angle of the lens Y.

-7-
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From the foregoing, it is clear that we cannot avoid
contributions at the detector from waves reradiated by the
wedge of surface waves. However, it is not evident that this
will lead to results differing significantly from those expected
for incident plane waves.

From a geometrical standpoint, we note that a wedge of

surface waves will produce a conically shaped diverging wave front,

as shown in Fig. 4, of reradiated waves which impinge on the
point detector. These conical surfaces will be characterized
by a cone with opening angle ¥ and an axis parallel to the axis
of the lens in the plane of incidence.

The specularly reflected incident rays will produce a
diverging spherical wavefront which also impinges on the same
detector. The phase difference between the conical (nonspecular
reflected) and spherical (specularly reflected) wavefronts in the
plane of incidence should be the same as the phase difference
between an incident specularly reflected plane wave and its
nonspecularly reflected counterpart which is also plane. Away
from the plane of incidence, of course, this statement no longer
holds. Thus, if a very small point detector is used, the effect
of off-axis rays should be greatly reduced if not eliminated
entirely.

For example, in experiments on quartz and copper, we
obtain results that are very similar to those of other workers
who assumed incident plane wave fronts. Thus, we conclude that
even for anisotropic materials (which will distort the reradiated
conical wavefronts) off-axis excitation will probably not have a
major effect on measurements. Theoretical calculations and
further experiments in progress will clarify these points at a

later date.

a A




Bty oy ‘emnng _—— Gl hiam —— ——

——

[}
It

e

2.3 Focused Beams

The preceding sections dealt with the various waves generated
on a surface by a point source. In fact, a focused transducer does
not focus to a point since this would necessarily imply infinite
intensity. A good review of the behavior of sound in the vicinity
of a focus is given by Rozenberg.3 We will select the pertinent
results without showing the analysis since this is readily available
in Rozenberg and other references.

For a spherical radiator of half angle, o, radius, F, and
uniform pressure amplitude at the surface, py, the pressure at the

point p, z is
Om
p(p,z) = kaoj.exp(ikz cos a)Jo(kp sin o) sin ada (2)
o

where p,z are cylindrical coordinates with origin at the
center of curvature,

k = 2n/X,
A = wavelength,
0 = angular coordinate,
Jo = Bessel function of zero order.
In the center of the focal spot, p = z = 0, the pressure attains the
maximum
Pr = kFpg(1l - cos op)- 3)

The pressure gain is, therefore,
Gp = pr/py = kF(1 - cos ap). (%)

The transducer used in our experiment has the parameters F = 10 cm,
om = 7°, f =~ 4 MHz yielding a pressure gain Gp = 12.5,

The pressure distribution in the focal plane is

p(P) = pp %—%ﬁgﬂl ’ (5

where J; = Bessel function of first order.

-10-
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The radius of the Airy circle (where J, attains its first zero) is

0y = 0.61 ﬁ = 0.60 2 (6)

where R = radius of the transducer.

The pressure distribution along the z-axis is more complicated,
showing the result that the pressure maximum does not always lie in
the focal plane. Also, unlike optics, the distribution is not
symmetric about the focal point. Tartakovskii derived the expression

shown below.%

p(z) _ sin[kz/2(1 - cos op)] D)
PF kz/2(1 - cos ap) (1 + z/F)

The relative displacement of the pressure maximum from the focus is

approximated by

zg _ 1 -~ 12
F 1-63/12 (&40 ®
For our case, zy/F = - 0.0768. That is, the pressure maximum is

0.768 cm closer to the transducer than is the focal plane.

The velocity gain at the focus becomes
2
Gy, = kF §ig_9m =G, cos? (agn/2) 9
For small angles, ap, such as in our case, Gy = Gp.
The intensity gain Gy, defined as

= }I = P \4 =
61 =1 —E—Epovo GpGy- (10)

In our case, with G, = Gp = 12, the resulting gain is Gy = 144.
Thus, even modest intensities at the transducer face can result in
large values at the focus.

The shape of the wave front as a function of z, when considered
by geometrical acoustics, is a converging sphere which collapses to a
point at focus followed by a diverging sphere. When diffraction is

considered, the converging spherical wave front changes to a plane

-11-
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near the focus and then diverges again. Born and Wolf present a
particularly detailed analysis of light waves in the vicinity of the
focus.”® Their results show that in the immediate neighborhood of the
focus the wave front is substantially plane with cophasal surfaces
spaced by A(1 - R?/4F?) rather than A. At the first zero of the Airy
pattern, the phase fronts shift by 7 radians leading on the converging
side and lagging on the diverging side of the focus. In our case,

the cophasal surfaces will be separated by 0.9961} which could be
interpreted as a frequency shift of 0.39%. The following figures

from Born and Wolf are reproduced to show the kind of detailed behavior
experienced by the wave front near the focus. Note that a phase
anomaly of 7/2 occurs at the focus. This is illustrated more clearly

by the following figure, also from Born and Wolf.

5»‘.7;;,;.,/,. focar’
RET A cor plane |

;,:f_.(/,/,/./////,/,/,././f/f/,_/,/“/w/_ // /”/ iy
“‘r(h(’ i 'JJ’,UU,/ / / f lJ/I /“ 1'”‘,; 1‘ e

e Y2 8 X ’V J) W o o€ 2v ZZ 1' ""'I ’-"47!"67‘ 4
Giloncs it wavos‘eagts I

K2
BB
.l

J,"'
Fig. 8.45. Profiles of the co-phasal surfaces ¢(w, v) == constant ncar the ‘ometrical
focus, calenlated with 4 = 5. 10 %em,a = 25¢em, f = 10cm.

(After G. W. FarxgLL, Canad. J. Phys., 35 (1957), 780.)

Fig. 5. Profiles of the wave fronts in the vicinity of focus.
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Fig. 6. Detail of wave fronts in the vicinity of
the focus.
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Fig. 6. Detail of wave fronts in the vicinity of
the focus.
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Fig. 7. Details of the phase of the light wave along rays passing
through the focus.

What we have, then, is an elliptical spot on the surface that
is generating surface waves when one or more critical angles are
present in the incident cone. The smallest diameter of the ellipse
as given by Eq. (6) will be D = 4.88 )y, where Ay = wavelength in

water. The surface wavelengths are, generally speaking, longer than

-14-
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Fig. 7. Details of the phase of the light wave along rays passing
through the focus.

What we have, then, is an elliptical spot on the surface that

is generating surface waves when one or more critical angles are
present in the incident cone. The smallest diameter of the ellipse
as given by Eq. (6) will be D = 4.88 )y, where Ay = wavelength in

water. The surface wavelengths are, generally speaking, longer than
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Ay- Taking copper as a specific example; Ap = 3.1 Ay, Ag = 1.4 Ay,
and Ag = 1.3 Ay. Hence, the source aperture size in terms of
wavelengths becomes D = 1.6 A, = 3.5 s = 3.7 AR. These are very
small apertures which will have wide radiation patterns. For the
uniformly weighted aperture, the corresponding angular extent of
the wedge of surface waves will be ¥ = 77°, ¥Yg = 33°, ¥p = 31°.
These values are, of course, not precisely correct because of the
assumption of a uniform driving function. In fact, it will more
nearly approximate a Gaussian distribution.

It is obvious that the propagation velocities in the material
will have an important effect on the spread of the surface waves.
Copper happens to propagate sound fairly slowly. Aluminum, having
higher propagation velocity, will show a corresponding greater spread
of surface waves from the focal point. Beryllium, on“the other hand,

would produce a narrower spread.

2.4 Nonlinearity

Since it is reasonable to suppose that the intensity level
near focus is high enough to couple energy into nonlinear terms, we
discuss this aspect of focused beams further. We again rely on
extremely well written accounts by Rozenberg and by Naugol'nykl, and
quote only pertinent results.® It is well known that the propagation
of compressional waves must be a nonlinear process.7 This is so
because the velocity of propagation is a function of density, and
compressional waves result in density fluctuatioms. Thus, in the
compression half cycle, the velocity increases while it decreases in
the rarefaction half cycle. Thus, a sinusoidal wave grows into a
sawtooth after propagating sufficiently far.

In our experimental system, we would expect nonlinearity in
the water path, as was shown in the last quarterly report.8 The
question is what happens at the boundary. Does the material also

respond nonlinearly or not? Breazeale has reported nonlinear behavior
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in solids when driven with finite amplitude compressional waves. 9
Preliminary data reported in our last quarterly showed only that
the harmonic content of the wave seemed to change upon reflection
from the surface. This could be due to differential phase shifting
of the harmonics, or by the nonlinear response of the reflector.
Consider a spherical wave of half angle ap and radius F

propagating to the surface of a sphere of radius rf as shown in
Fig. 8.

Fig. 8. Waves propagating from a point source.

We assume that in the region r; < r < F, the wave propagates with
little attenuation, but does distort due to nonlinear behavior. At
r = r1, the previously sinusoidal wave transforms to a sawtooth.

We assume that from this point on the wave is attenuated by a

large attenuation.
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Up to this point in the argument, we have used geometric
theory. We know, however, that diffraction must play a role. We
define the distance r = rg¢ as that distance where the wave reaches
the particle velocity at the focus, r = 0, predicted by diffraction
theory. Analyses carried out by Rozenberg, Naugol'nykh, and SutinlO
have shown that, for small nonlinearities, the gain is increased and
the focal region is narrowed.

Returning to the analysis, we assume that the particle velocity

v = vgF/r for rg <r <F
= vg = vy

. 2
KkF2 §gl2_9m for r & rq. (11)

In reference 6, it is shown that the actual particle velocity

amplitude at the center of the focal spot can be approximated by

“;f = VnGV
m + £ yFg, az
e
where m = 1 - 1/m,
=1 3¢ pa
and € 2 aoz p + 1.

It is evident from this equation that vy reaches a limit with respect
to vy. Thus, it becomes inefficient to increase the particle velocity
at the transducer since the particle velocity at focus saturates. 1If
energy concentration is the goal, the system may be optimized with
respect to F, A, and am.

Sutin analyzes the problem in greater detail to obtain an
approximation to wave profiles at and near focus, as well as spectral
content. Figure 9, taken from Sutin's paper, shows the wave profiles
at three pcints near focus for a very modest nonlinearity parameter, G,

given by

-17-

e ————————— = e~
REVERRIE

© Pm -

LIDARL e

5 PR T N7 Ll e e g -



— N

~
A

Fig. 9. Wave profile at various points
for 0 = 0.7 (0 = 1 leads to
formation of a shock, 0o > 3
leads to a sawtooth): (a) on ;
axis at r = rg, (b) off-axis
in the focal plane, and (c)
at the focus.

e s -

0 = 0g|ln F/r| (13)
oy + 1) F !
where 05 = ——J;Eﬁa;rjﬂl~—

As can be surmised from these profiles, the spectrum of the waveform
will change considerably when passing through the focal region.

Van Buren has considered the effect of the reflection of
finite amplitude waves by a solid.ll The conclusion is that the
behavior of the reflection coefficient has a profound influence on
the reflected wave. For example, he shows that a plane wave of
sinusoidal profile, launched into a nonlinear medium, will gradually
become distorted through the generation of harmonics. Upon reflection,
each harmonic component undergoes the same phase shift changing the

relationship between them. This results in a reversed sawtooth profile.

Upon further propagation, newly generated harmonics eventually
overcome the propagated, phase shifted initial harmonics, to once
more make the profile sinusoidal (this is true only for 180° phase

shift). If the wave continues past this point, it will again distort.

P e @ 2.
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The waveform reverts to sinusoidal form approximately the same
distance from the reflector that it was initially launched from.
Breazeale suggested that since a 180° phase shift occurs at
the focus of a converging wave, a similar reaction should occur.l2
That is, if the transducer launches a converging sinusoidal wave
into a nonlinear medium (water) and measurements of its harmonics
or profile are made along the principle axis, we should expect
the second and third harmonics to grow as the focus is approached
(profile approaching a sawtooth). After passing through focus and
propagating one focal distance, the profile will again be sinusoidal.
This is under the assumption that frequency dependent attenuation
does not occur. If it does, an analysis such as described by Sutin
must be followed. Therefore, in our experiment we can conclude
that any appearance of harmonics in our output, beyond those
present in the input, must be due to the reflection coefficient of
the solid. This does not necessarily imply nonlinear response of
the solid since other material parameters may produce phase shifts

different than 180°. It remains to be seen just what these might be.
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3.0 DYNAMICS OF ELASTIC SOLIDS

3.1 Isotropic Elastic Solids (Linear Approximation)

The simplest case of an elastic solid is that of a homogenous,
isotropic, lossless, linear material. By linear, we mean that the

full and correct strain tensor (z,k,%2 = 1,2,3)

o _1fdui, dug, dug 2uy
Ulk-z(axk+8xi+axi 3%y (14)

is approximated by dropping the higher order terms %%% %%f .

It should be noted that this is equivalent to dropping all
interactions (and amplitude dependent dispersion, etc.) and,
strictly speaking, would mean that neither energy or momentum could
be propagated across the material in the form of elastic waves.
Propagation ultimately requires interactions (nonlinear response)
between the various parts of the solid.

Note, for example, that the energy density € (adiabatic
conditions) is a scalar function of the full strain tensorl3 given
by Eq. (14). If the higher order terms are dropped in Eq. (14),
we still obtain a more or less accurate estimate of the observed
energy (and momentum) densities in the wave (the linear estimate),
but strictly speaking, no actual wave would propagate if these
nonlinear terms were missing. Hence, the notion that purely linear
elastic waves exist is incorrect although this assumption is an
excellent approximation when amplitudes are small.

Let us assume, then, that the strain tensor may be approximated

by the expression

L 134 3_04‘)
Uik = z(axk *axi) (15

The equation of motion of any solid!3 in Classical Mechanics

(Newton's second law) relates the forces 504y/3Xyx due to the internal
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stresses Ojk to the acceleration Ui and the mass density p via
pUy = d01k/dXk. (16)

After some manipulation13 (also see 28 September 1981 Quarterly
Report), this may be rewritten in vector notation for a linear

isotropic solid as
cU = w0 + (A+p)V(V-U) (17)

where J and A are the two Lamé coefficients. These coefficients
may also be expressed in terms of the Young's modulus E, and

Poisson's ratio 0 of the isotropic solid via

- _E
A+ U= 00y (1520) (18)
- B
YT 2040y - (19)

It is clear that a linear, isotropic elastic solid requires
only two elastic constants (E, gor A, y etc.) for its description.
Moreover, the particle displacement may always be decomposed into
the sum of a dilational part V¢ having nonzero divergence (i.e.
nonzero volume change) and a rotational part (VX¥) having no divergence

(zero volume change)
U = Vo + VXY .
By substituting U into the approximate expression (Fg. (17)), it may

be shown that the scalar potential ¢ corresponds to a pure mode

¢ bulk longitudinal wave and obeys the linear wave equation

2 1 3%
V¢:—E§¥$ 0 (20)
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with propagation velocity Cp in all directions

2 (M2u) _ E(1-0)
=" T a-20) (21)

Similarly, the vector potential ¥ corresponds to the pure mode

bulk shear or transverse wave, and obeys the linear wave equation

g 1 9%V _
vy E% 3¢ 0 (22)

with propagation velocity Ct in any direction.

2=E=____E'__
Cr o~ Zo(l40) (23)

Again, we remind the reader that these are linear approximatiomns

which result because we have neglected higher order straims in

in Eq. (14). '

3.2 Energy Flux and Snell's Law

The energy flux directions of both the longitudinal and the
shear wave in an isotropic medium lie along the wave normals. 1%
That is, the slowness surfaces (inverse velocity surfaces) are
always circles.l® Because the slowness surfaces are simple in such
materials, Snell's law provides an adequate description of the
refraction at a liquid-solid boundary. Such a refraction (liquid to
solid) can produce just two bulk waves (longitudinal and transverse).
Provided attenuation is small (lossless approximation), the two

critical angles 8L and 8T will be given by Snell's law as

sin 0L _ sin /2 1
= = (24)
Vu CL CL
and sin 6p _ sin /2 _ 1 (25) i
Vw CT CT L S
R
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where V,, is the longitudinal wave velocity in water.

Real isotropic materials include glasses, ceramics, powder
composites, and any alloy or other polycrystalline material
(crystals are assumed to be small compared with typical wavelengths
in the solid) that has been prepared without grain alignments,
residual stress fields, and the like.

In all such materials, we would expect to see two critical
angles; one for the shear (0T) and one for the longitudinal wave (6p).
These angles would be in addition to the "Rayleigh-type" critical
angle B which occurs slightly beyond the shear critical angle 8.

Given information from the observed critical angles, one
could always infer A and u. If a density measurement p is made, we
would then have a complete linear description of the isotropic elastic
material. That is, the second order elastic constants of the isotropic

solid (Cjj) could be calculated!3»14 from

Ci1 = C22 = C22 = (A+2p)
Ciz = C21 = C13 =C31 =Cp3 = C3yp = A (26)
Cuy = Css = Ceg = U

3.3 Anisotropic Materials (Linear Approximation)

In isotropic solids the frequency w is always proportional

to the wave number k = |k|. That is,
w = Cprk
and = CrK (27)

In anisotropic materials this is no longer a valid statement.

The general equation of motion as before is

pﬁi = 304k/9Xk , (28)
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but the stress temsor Ok is now a more complex general tensor of

the form

Oik = Mkem Upm 29)

where the symmetric temsor \Ajpynp describes the adiabatic moduli
of elasticity and Uyp is the strain tensor (linear approximation
of Eq. (15)). Substituting this into the equation of motion and
noting the symmetry of Ajkem, one has
pﬁ ~ >"k2 _aﬂjm_ . (30)
17 flkm 5y, 93X,
Consider a monochromatic elastic wave (the linear approxi-

mation makes this possible) in such a solid. Then
Uj; = Upy el(ker-wt) (31)

where kK is a function of w which satisifes Eq. (30) and is clearly
no longer as simple as Eq. (27) for isotropic materials. Substitution

of Uy (or Up, etc.) into Eq. (30) givesl3

(pw?8im = Aikgm kg kg) Um = O. (32)
This equation is actually three homogeneous equations in the
unknown particle displacements U; = Uy, U2 =1, and U3y = Uz.

nontrivial solution requires that the determinant of the coefficients

vanish, namely
Mikem kk kg - ow?8iq| = 0. (33)
This is a cubic equation in w?. Each of the three roots of

this equation provides a different functional relation between the

frequency and wave number k (unless the material is isotropic).
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Now the direction of the energy flux is given by the group velocity
dw/dk. In isotropic materials w is proportional to the magnitude
of k, and therefore, does not depend on its direction. Hence, the
energy flux in isotropic materials must lie along the direction of
the wave vectors (or wave normals) for both longitudinal and shear
waves.

In the case of anisotropic materials, the situation is quite
different. 1In that case, the direction of propagation of the energy
flux is along the direction of the group velocity dw/3k and not along k.
Now, since there are three functional relations between w and k,
there are, in general, three different velocities of propagation in

any anisotropic material. 13-15

3.4 Modifications of Smell's Law

Owing to the fact that the energy flux directions and the

(
!
wave vectors are not generally colinear in anisotropic materials, ’
HenneckeZ has shown that the critical angles 8. for quasilongitudinal |

the interpretation of critical angles becomes more difficult. ‘

and quasishear waves should be given by the expression (I = incident,

R = refracted)

= Vic cos ¥¢ i
sin B¢ VRe cos B¢ (34) i

where VgRe is the velocity of a wave which has its energy flux
vector parallel to the liquid-solid interface. It is not the velocity
of a body wave propagating in a direction parallel to the interface.
Following HenneckeZ, we may derive this expression by
writing the scalar product of the group velocity E of the refracted
wave (this is in the same direction as the energy flux) and a vector ,
b. The vector b is the vector sum of all the slowness vectors
satisfying the reflection-refraction problem at the interface. Now, 4 [L

b can be written in terms of the refracted wave as ﬁR-ZRU where Mg

=25~
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is the slowness vector of the refracted wave (Mz = NR/VR; Ny is
the wave normal of the refracted wave, VR is the magnitude of the
refracted wave velocity), v is the normal to the liquid-solid

interface and Zg is a numbgr characterizing the refracted wave.

Therefore,

e - et - e - 3 - g 39
Since

g*Ng = Vg,

bg = 1~ Zgueg . (36)

When the critical angle occurs, the energy flux vector and
g lie parallel to the liquid-solid interface. Therefore, g is

perpendicular to v and

Since the magnitude of the slowness vector b may be determined by

the incident angle 6. from
I5c| = sin 8./Vye

where Vy. is the longitudinal velocity in the liquid (water in this

case), we have

Bege = [Bel[gclcos Be = 128 [gcfcos g = 1 (38)

where B. is the angle between b. and e

But, we also know that

—= _ ., _gcosy
goMR_l_.g.T
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where ¥ is the angle between the normal to the refracted wave and
its associated energy flux. At criticality,

=J.Ec_l£25_wc= 1. (39)

gc .MRC VRC

Combining Eqs. (38) and (39), we finally have Eq. (34) which is
clearly very different from Snell's law. Thus, we see that Snell's
law is generally not valid at a liquid-solid interace when the solid
is anisotropic.

As Hennecke points out, ¥ is not the angle between the
slowness vector of the refracted wave ﬁR and the interface, so that
a measurement of the critical angle 8¢ will not in general be
sufficient to determine the refracted velocity VRee Hence, the
elastic constants cannot be found from such measurements in general.
Note also that the angles 6. and B, depend in a complex fashion on
these same unknown elastic constants via the slowness surfaces of
the solid.

The situation is perhaps not as hopeless as Hennecke indicates
since one can certainly hope to fit observed critical angle data
(as a function of rotation about various symmetry axes) to a model
where elastic constants are chosen and varied to fit the data.
Moreover, along the pure mode directions of an anisotropic material,
Snell's law remains valid (for many of the refracted rays) so that
critical angle data along these directions can be related directly to
elastic constants.

An interesting conclusion of Hennecke is that there are in
fact five critical angles in a material like quartz. We will give
experimental evidence of at least two of the five angles he predicts.
Such multiple angles are qualitatively similar to the "multiple dips"
we reported earlier on several uncontrolled materials. We will see
that such multiple dips are almost certainly the response of anisotropic
solids.

%
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4.0 EXPERIMENTS
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In this report we discuss experiments performed on three

representative controlled materials.

The three materials are

optical glass, a copper single crystal, and a z-cut slab of crystal-

line quartz. 1In addition, we are in the process of examining other

crystals; the characteristics of which are listed in Table III
(see also Fig. 10(a) and 10(b)).

TABLE III Experimental Materials (Crystals)

Name

1
Crystal System

Description

Orientation

Silicon (Si)
Quartz (Si03)
Lithium Niobate
(LiNbO3)

Spinel (MgA220y)
Sapphire (A2203)
Copper (Cu)
Aluminum (A%)
Lead (Pb)

Silver (Ag)

Iron (Fe)

Cubic

Hexagonal

Hexagonal

Cubic

Hexagonal

Cubic

Cubic

Cubic

Cubic

Cubic

Disk: 3.2 em dia,
.9 cm thick

Disk: 2.5 cm dia,
1.3 cm thick

Disk: 3 cm dia,
.75 cm thick

Rod: 2.8 cm dia,
2.5 cm long

Disk: 5 cm dia,
.35 cem thick

Rod: 2.5 cm dia,
1.9 cm long

Rod: 2.54 cm dia
2.54 cm long

Rod: 2.54 cm dia,

2.8 cm long
Disk: 1.5 cm dia,
.6 cm thick
Rod: 1.0 cm dia,
2.5 cm long

(x,¥,z cuts)

(100)

(100)

(100)

(110)
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(a) Metal Single Crystals

(b) Nonconducting or Semiconducting Crvstals

Fig.

10.

Single Crvstals. (a) We illustrate

five metal single crystals identified
from left to right as AL, Cu, Pb, Ag,

and Fe. All, except the Ag, have a

known orientation. (b) From left to
right are z-cut quartz, spinel, silicon,
lithium niobate, and sapphire. Of these,
only the z~cut quartz has a known
orientation,
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4.1 Optical Glass

One polished surface of a cube of optical glass (L = 2.54 cm)
was rotated about an axis (the azimuthal axis of the goniometer) normal
to this surface (see Fig. 11), and critical angle measurements made.
Figure 12 illustrates an azimuthal plot of the critical angle p = Bc vs
the angle of rotation ¢ about the surface normal. From this figure
it is clear that a single Rayleigh-type critical angle 6 =~ 28.4°
exists for such an isotropic material.

Since we cannot measure angles less than 15°, the expected
amplitude "bump" at the longitudinal critical angle 61 = 11°
(sin 81, * 1/2 sin Bg) on the amplitude curve R(8) vs 6 has not
been observed. However, we know that the shear critical angle 64
should also produce a small amplitude "bump" before (85 < Bg) R(8)
approaches a minimum at 6g. From the curve of Fig. 13(a), we
estimate Og = 22.5 which is roughly 6° less than 6jp.

In Fig. 13(a) and (b) we illustrate two sets of measurements
of amplitude R(B) and phase ¢(8) vs the angle of incidence 6 taken
at two different azimuthal angles ¢. Note that one of the phase
curves (Fig. 13(a)) shows a 360° phase shift (a so-called normal
phase curve), whereas the othe: (Fig. 13(b)) shows "anomalous"
character. In fact, four of the phase measurements ¢(6) vs 0 made
at eleven different azimuthal angles ¢ show these same anomalies.

It is clear from these observations that such phase anomalies
are not to be attributed to the anisotropic character of a specimen
since this glass specimen is clearly isotropic (ree Fig. 12). It
will happen, however, that anisotropies can influence this phase

anomaly as we shall see when we examine crystalline quartz.
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Rotation of Samples. Samples
are arbitrarily marked with a
spot as shown. The spot is
located along the positive x-
axis which initially lies in
the incident plane (S-0-R) of
the source and receiver. The
normal to .’ : specimen surface
lies along the z-axis for all
azimuthal angles ¢. We arbi-
trarily label the x direction
¢ = 0°.nd turn the specimen
counterclockwise.
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CRITICAL ANGLE

Fig. 12. Critical angle for glass. The figure shows
the critical angle as a function of the
azimuthal angle ¢ (angle of rotation of the
specimen).
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4.2 Observations On Z-Cut Quartz

As mentioned previously, we have obtained x,y, and z-cut
specimens of quartz (see Fig. 14). The experiment reported here
was performed on a z-cut plate 1 cm thick by 2.54 cm diameter.
Since the z-axis is the symmetry axis, and since quartz is hexagonal,
any measured elastic properties (such as, velocity or critical
angles, etc.) will necessarily exhibit a 60° angular periodicity
for azimuthal angles ¢ about this z-axis.

In Fig. 15 we illustrate a graph of the observed "Rayleigh-
type" critical angles O¢ vs the aximuthal angle ¢ defining the
plane of incidence of a focused longitudinal wave in water. The
term "Rayleigh-type" critical angle used here refers to the fact
that we are speaking of angles of incidence for which sharp amplitude
dips can occur. Figure 15 clearly illustrates that in z-cut quartz
we see the following:

(a) Two well defined amplitude dips in R(8) vs 6 for
nearly all azimuthal angles ¢.

(b) The magnitude of these angles 8¢ as a function of ¢
exhibits a 60° periodicity which is an expected
characteristic of a hexagonal z-cut quartz slab.

In Fig. 16 we reproduce a sequence of photos illustrating the

actual curves of reflected amplitude R(8) and phase $(8) vs §

for a number of azimuthal angles ¢ = 35, 45, 50, and 85°. Note

that two distinct amplitude dips are present at all ¢ except ¢ = 50°
(also 0° and 110° where only a single well defined dip occurs. It
is also clear that the phase curves ¢(8) vs 6 show anomalies at all
azimuthal angles ¢ except ¢ = 50° where a 360° phase shift occurs.
Thus, it appears that the anisotropic character of the sample can
influence ("trigger") these phase anomalies, but it camnot be
entirely responsible for them since these anomalies were also seen
in a glass specimen with known isotropic (by our measurements)

properties.
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Fig. 14.

The x, y and z axes of a quartz crystal.
An x-cut slab (perpendicular to x-axis)
is illustrated. A z-cut slab would be
perpendicular to the z-axis which is
also the symmetry axis of the crystal.
Note that the x-axis penetrates the
line of intersection of two vertical
faces of the crystal while the y-axis
is perpendicular to these faces. The
x and y axes are at 90° to one another
and to the z-axis.
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As Hennecke points out, quartz should be "multiply refractive"
so that five refracted rays should be produced at a water-quartz
interface even though there are only three possible bulk waves in
quartz. Moreover, he points out that Snell's law cannot be used in
calculating velocities from observed critical angles.

We have not as yet reproduced all of the derivation involved
to make these conclusions but merely reproduce a figure from
Hennecke's paper (see Fig. 17). It is evident that he predicts two
very similar critical angle curves (0. vs ¢) to those we observed
on z~cut quartz in the same orientation. We have darkened two of
Hennecke's five curves. These should be compared with the two
curves illustrated in Fig. 15.

Notice that Hennecke's critical angle curves have essentially
the same form (6q vs ¢) as our curves but lie roughly 6° below
(critical angles are 6° less) the Rayleigh-type critical angle curves
we measured (see Fig. 15). This is reasonable in view of the fact
that Hennecke is speaking here of the bulk wave quasilongitudinal
and quasishear critical angles, and not Rayleigh-type critical
angles which are associated with surface waves. Moreover, in optical
glass we also saw a similar difference of roughly 6° between the
shear mode critical angle and the Rayleigh-type critical angle.

The reasonable agreement between Hennecke's predictions and
our observations (especially in view of the fact that Snell's law
was invalid in wmaking these predictions) shows that our apparatus
is not introducing such effects as multiple dips. In this regard,
we cite a final experiment performed on quartz involving a 4 mm
diameter "pinhole" placed over the face of our source transducer.
Operating at 4 MHz, such an aperture is roughly 10X across and so
does not produce significant diffraction. Such an aperture does
eliminate most of the off-axis rays. With this pinhole present, we
continue to see the two amplitude dips characteristic of quartz

(see Fig. 18). This provides additional conclusive experimental

evidence that off-axis rays have little or no effect on our observation.
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FIG. 1. Critical angle of incident, quas longitudinal, and
quasitransverse modes, VCrsus incident angle for the classical
Snell's law (dotted lines) and for the n lified law given in the
text (solid lincs).

Figure 1 is reproduced from a paper by
Hennecke showing theoretically ,1culated
critical angle data for z-cut quartz. We
have darkened two of the five curves for
comparison with our Fig. 15 experimental
data taken omn z-cut quartz.

Z-cut quartz wamined using a 4 ©
stop. The lens stop had little effect
on the two critical angles observed in
z-cut quartz. This illustrates that

of f~axis rays are of little importance
in locating critical angles accurately.
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4.3 Cubic Single Crystals

Following Greenla and others,23 we note that cubic single
crystals are characterized (in linear approximation) by three second
order elastic constants C;1, Cy2, and Cyy. This situation should be
contrasted with the case of }sotrOpic materials where only two
second order constants are required.

In Fig. 19 we illustrate the Miller indices for any such

crystal with a unit cell of dimension (a).

(111)

. (001) (110)  (001)

. ' R : _ - (110)

V4
a

o (010)
‘ (a) (111) axis (b) (100) axis (c) (110) axis
(111) plane edge on ‘

Fig. 19. Miller indices for cubic crystals. The axes are perpen-
dicular to the shaded planes of the same designation.
That is, the 100 axis is perpendicular to the 100 plane.
Many directions are quivalent in a cubic crystal. For
example, the 100 direction is equivalent to the 001
direction or the 010 direction in so far as bulk elastic
properties are concerned.

It was shown previously that, in general, there are three
bulk waves in any anisotropic material, namely a quasilongitudinal
wave and two quasitransverse waves. Along certain axes of the
crystal pure mode, longitudinal or transverse waves may propagate.

In particular, along the (111) axis of a cubic crystal we findlA

Vi = ((C1y + 2Cy;5 + 4Cy)/30)'/% = v (40)

Vy = ((C1) - Cyia + Cuu)/30)'/2 = vp, (41)

and Vs = Vz = Vg . (42)
-40~
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Thus, one pure mode longitudinal wave with group velocity V;
and one pure mode shear (transverse) wave with velocity V2 = V3
propagate along (111).

Along the (100) axis, we have

Vi = (Cn/ )2 =y (43)
Va = (Cuu/p)M? = v (44)
and V3 =V, = sz' (45)

Again, there is one pure mode shear wave with velocity
V2 = V3 = Vg, = V7, and one pure mode longitudinal wave with
velocity Vi = V;,. Note that the velocity of the transverse mode
is independent of its polarization along this axis. Finally, along
the (110) axis, we have

Vi = ((Ci1 + Crz + 2C4)/20)' /2 = v (46)
V, = ((C1y - C12)/20)*/2 = vr, (47)
and V3 = (Cuu/p)l/z = VT2' (48)

That is, we now have two pure mode shear waves with distinct
group velocities V2 = Vp, and V3 = Vr, and one pure mode longitudinal
wave with group velocity V; = Vj. Note that the shear wave with
velocity Vp, is "laterally” polarized along the (110) direction
(see Fig. 19) while the shear wave with velocity Vp, is "vertically"
polarized along the (001) direction. 1In this case, we are imagining
that the (001) plane is the surface under study. '"Lateral" then
refers to polarization parallel to the surface while "vertical" refers
to polarization perpendicular to the surface.

Along the pure mode axes, the energy flux vectors are parallel
to the wave vectors. Along all other directions, this condition is
no longer true. Thus, it is only along these pure mode directions
that Snell's law could provide a reasonable description of the refracted

waves.

~41-
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Our copper single crystal was examined by rotating it about
the (100) axis (equivalent to the 001 axis) while holding the
vertical source-receiver plane of incidence fixed. Thus, during
the rotation of the crystal, we encountered the following pure mode
axes: (010), (001), and (110) (see Fig. 19(b) and (c¢)). Equations
(43-45) provide the pure mode group velocities for the (010)
(equivalently (100),(001)), and Eqs. (46-48) provide the pure mode
group velocities for the (110) axis.

Let us compute these pure mode bulk wave velocities for copper,
and then calculate their corresponding critical angles using Snell's
law. From Truell16 or Landolt-Bornsteinl/ we have the three second

order elastic constnat Cij of a copper crystal of density p, namely

Ci1 = 16.84 lolldynes/cmz
Ci2 = 12.14 10''dynes/cm? (49)
Cuy = 7.54 10''dynes/cm?

and p = 8.94 gm/cm?3.

In Fig. 20 we summarize the results of these velocity calculations.

Vi, = 4.34-10°
Vp = 2.90.10°

Vi =V = 4.96+10°
Vo = Vg, = 1.62410°

010y ! 45° (110) vy, = Vp, = 2.90-10°
\45°
. V] = VL = 4.3{"105
(001) Vo = V3 = V= 2.90-10°

Fig. 20. Calculated group velocities along various pure
mode directions in a copper single crystal. vy, =
longitudinal velocity and VT = transverse velocity.
All velocities are in units of cm/sec.

-42-
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Using Snell's law in the real (lossless) form, the bulk
‘ wave critical angles O¢ can be estimated from
sin 6, _ 1 (50)

Vy VR

where VR is the refracted bulk wave velocity in question (Vy, or V).

We have
64,(001 or 010) = 21.07°
61 (001 or 010) = 32.54°
€1(110) = 18.33° (51)
6r,(110) = 74.36°
and O, (110) = 32.54°

4.4 Experimental Results on Copper

In Fig. 21 we reproduce our Rayleigh-type surface wave
critical angle measurements for a copper single crystal rotated
about the (100) axis. The azimuthal angle ¢ was varied in 5°
increments and data was taken over a full 360° rotation. 1In Fig. 22
we illustrate a similar measurement on the same crystal where the
azimuthal angle was varied in steps of 2.5° over a 110° range in 6.

Two features of these curves are immediately evident: (1) a
90° azimuthal periodicity characteristic of a cubic crystal is
present, and (2) there are two critical angles characterized by more
or less well defined amplitude dips and phase shifts (see Fig. 24).
The fact that there are two critical angles is made more evident
in Fig. 22 where greater care was taken in recording indications
of a second angle.

The agreement between our measured surface wave critical
angles and those calculated theoretically by Diachokl8 is excellent

as can be seen from Fig. 23. 1In this figure we have superimposed
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Fig. 21.

Rayleigh~type (surface wave) critical angles for a
copper single crystal rotated about the (100) axis.
The frequency was 3.8 MHz and the two critical angles
occur at 8¢ ~ 41° and O ~ 47°. The azimuthal angle
¢ (angle of rotation about the 100 axis) varied from
0 to 360° and data was taken in steps of Ad = 5°.
Pure mode directions (001, 110, and 010) are marked
on the figure,
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Fig. 22.

Same subject as Fig. 21 except A = 2.5° and the
range of the data is ¢ = 25° to 110°,
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some of our experimental data (taken from Fig. 22) on Diachok's
theoretically computed and experimentally verified curves. Note
that Diachok employed an entirely different kind of experimental
system (a Schlieren optical system) to obtain his results.

In this same figure, we have also included for comparison
the pure mode (bulk wave) critical angles for copper given in
Eqs. (43-48). Diachok's outer curve (what he calls the "Rayleigh
branch'") generally lies above the would be curve connecting the points
we have labeled T;. Note, however, that near 45° on Diachok's curve
(near the 110 axis) T, lies above his calculated curve. We would
expect just the reverse, namely T; should lie below this Rayleigh-
type critical angle. 1In view of the fact that Diachok has presented
no experimental data in this region, we suspect that his theoretically
computed curve (solid line) is in error in this region. Diachok's
inner curve (what he calls the pseudosurface wave branch) lies above
the would be curve connecting the points we have labeled T,.

The terms ""Rayleigh' wave and '"pseudosurface" wave, as used
here by Diachok, are somewhat misleading. A true Rayleigh wave exists
only at a vacuum-solid interface. Moreover, the '"shear component” of
Rayleigh waves (Vx¥) is always vertical to the free surface.13,19
Thus, there is some justification for calling the surface wave which
propagates along (110) (liquid-solid interface) with vertical polari-
zation a Rayleigh-type surface wave. Note that along (110), the
surface wave can be thought of as being closely associated with the T,
curve since T; is also "vertically" polarized (polarization along
001 or 100 perpendicular to the surface). We also note 20 that the
effect of liquid loading on the calculated surface wave velocities
(along 110) is small. That is, the true Rayleigh wave velocity21
along this direction is very close to the surface wave velocity along
the same direction of a liquid~solid interface.

However, as the azimuthal angle ¢ is changed from the (110)
to the (010) axis, the polarization of the bulk shear waves is

changing from a "vertically" polarized wave to one of arbitrary

46~
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Critical angle of incidence for water-(100) cop-
per surface. Calcolated valnes for RAYLEIGH
waves (vuter cuve) and psendosurface waves
(inner brandi) with experimental points.

Fig. 23. Surface wave critical angles
for a copper single crystal.
Curve reproduced from a paper
by Diachok.'® Diachok's cal-
culations and measurements
~————: pure mode data & @ @

(L, T, T2); our experimental
data #¥¥—% ,

polarization. Hence, the close association of Diachok's outer curve
with the curve T; would no longer be consistent. Similarly, Diachok
refers to the inner curve as being the '"pseudosurface" wave critical
angle presumably because this is closely associated (lies above) with
a laterally polarized (polarized along 110 for propagation along 110)
bulk shear wave.

It would seem more reasonable to think of these surface waves
(with liquid loading) as effects completely separate from the
"associated" bulk shear waves T and T;. Thus, the "Rayleigh-type
surface wave' is just as much a surface wave as the "pseudosurface"”
wave. As Plona22 has pointed out, both types of surface waves show

significant vertical polarization.

-47~

!
'i
|
:




T A T e———. - e T

We have not yet examined these questions thoroughly from a
theoretical standpoint (however, Farnell23 has done so), but
experimental evidence on copper seems to support the basic physical
similarity of these two surface wave branches. In this regard,
consider the data reproduced in Fig. 24. 1In this figure a series
of phase and amplitude curves is reproduced for azimuthal angles
¢ = 57.5° to ¢ = 70° in steps of AP = 2.5°. At ¢ = 57.5° we are
close to the (110) axis (see Fig. 21). There is no evident indication
of a second amplitude dip (the Rayleigh-type surface wave branch),
but there is a strong amplitude dip at 8 = 40.4°. This would fall
on Diachok's inner curve (his "pseudosurface'" wave branch).

Varying ¢ from ¢ = 57.5°, we see beginning at about ¢ = 65°,

a stronger indication of a second angle (0 ~ 49.5°) on the 'Rayleigh-
branch" while the amplitude dip on the "pseudobranch" is growing

weaker. Finally, when we reach ¢ = 70°, the "pseudobranch" amplitude {

—— ] [ [ ] o—

dip is very weak and the "Rayleigh branch" critical angle (6 = 46.6°)
is now very well defined by a sharp amplitude dip and a 360° phase

: shift. Since the amplitude dips are both very deep at ¢ = 57.5°
and 70° and since the phase shift is 360° at both of these angles,

the surface waves would seem to be very similar physically. TIt,

[ PRSN

therefore, seems somewhat artifical to refer to one branch as
- "Rayleigh" and the other as '"pseudo'" as Diachok has done. Further
- theoretical and experimental studies should clarify both the semantics
and the physics involved.

Several important conclusions can be drawn from these
experimental results regarding our particular experimental arrangement
using a focused lens. Both Diachokl8 and Plona22 have employed
broad beam methods to obtain their data. 1In view of the excellent

; agreement between our results and Diachok's (on copper single crystals),

T e—— ro—n— [ . ————j

it is clear that the acoustic lens is not appreciably altering

experimental results. Moreover, our technique seems to be more

- >.

{ 3

! sensitive to a second critical angle. For example, Plona indicates ﬁ

r that there are regions (certain ¢) where he saw no indication of a f
~48-
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second angle. We see such regions also (see Fig. 24), but they
are for less wide in ¢ than Plona indicates. Our technique is
apparently able to detect a much weaker indication of the presence

of a second angle than the Schlieren techniques.
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second angle. We see such regions also (see Fig. 24), but they
are for less wide in ¢ than Plona indicates. Our technique is
apparently able to detect a much weaker indication of the presence

of a second angle than the Schlieren techniques.
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(1)

(2)

3)

(4)

(5)

(6)

5.0 CONCLUSIONS

The foregoing work leads to several conclusions:

Various "anomalies" reported earlier in uncontrolled
samples have been seen in controlled single crystals.
These effects show periodic angular behavior character-
istic of the angular position of the crystals; thereby
showing that these anomalies are not spurious results,
or results that depend principally upon the particular
apparatus used.

Multiple amplitude dips do not occur in isotropic materials,
such as glass and many glass-like alloys, but dc occur

in anisotropic materials. Such anisotropic materials
include crystals or polycrystalline alloys with a

preferred direction due to rolling alignment, residual
stress, or some other anisotropic character. Multiple

dips result from the fact that in anisotropic materials

the slowness surfaces are very complex. Multiple dips

are not a result of finite lens aperture.

Only in certain special cases can critical angle data
lead to a complete determination of the elastic constant
owing to the fact that Snell's law is generally invalid
in anisotropic materials, for example.

Anomslous phase shifts occur in both isotropic and
anisotropic materials. The effect is, therefore, not
produced by anisotropy though anisotropy appears to
influence the effect as demonstrated by data on quartz.

The periodicity in ¢ of these critical angle measurements
definitely allows one to orient crystals although the
measurement of elastic properties is much more difficult
owing to the complexity of the slowness surfaces for
anisotropic materials and the resultant additional
complexities of a water-solid interface (anisotropic
solid).

Our experimental system principally excites waves along
the line of intersection of the plane of incidence and

the water-solid interface. Off-axis rays appear to have
little or no effect on our measurements as evidenced by the
agreement between our results on quartz and copper crystals
and the work of others.

-5]-
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A number of other interesting observations of a preliminary
) nature were also made. We have observed, for example, that an 1
‘ angular dependence (¢) of the depths of the enplitude curves is
present in data on quartz and copper but not on glass (see Figs.
24 and 25). Such amplitude dependence has made it difficult to
measure spectral reflectivity for different source intensities as
a function of the azimuthal angle owing to the fact that at some
azimuthal angles amplitudes saturate our band pass filter. Accordingly,
we are in the process of designing an active filter that will allow
us to obtain spectral reflectivity curves as a function of ¢.
This information will allow us to assess the extent to which
nonlinearities influence our phase measurements. We are also

continuing experiments on the other crystals in our possession and

will report these results at a later date.

|
i
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ey

Observed depths of amplitude minimum at © = 0
critical vs azimuthal angles ¢ for a copper
single crystal. The angle of rotation ¢ is
about the (100) axis of the crystal. The solid
circles give the amplitude at the larger of the
two critical angles 6 = 46° while the open
circle gives the amplitude at the smaller of the
two critical angles 6 = 40°.
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