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1.0 INTRODUCTIONI
During this quarter we performed a series of experiments on

single crystals and other materials of a controlled nature. These

experiments have provided strong constraints on the interpretation

of critical angle measurements made with an apparatus which employs

a focused acoustic source rather than a plane wave source. Certain

"anomalous" measurements reported earlier on uncontrolled materials

j have been seen again in these controlled materials. Because of the

known angular periodicity of the material properties (angle of

rotation about certain symmetry axes of a crystal, for example), we

have been able to show that these effects are dependent on the

I sample and much less dependent on the nature and details of the

experimental apparatus.

Nevertheless, a focused acoustic source could produce a

number of effects that would not be expected if plane wave excita-

tion of surface waves were employed. Accordingly, we have begun

theoretical and experimental studies designed to determine what

these effects may be.

KI

I
I
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I
2.0 QUALITATIVE ANALYSIS OF THE EFFECT OF CONVERGING BEAMSI

A cursory description of our apparatus has been given in

previous reports. However, the influence our unique geometry has

upon the experimental results has not been fully assessed. In

this section we provide an initial analysis of our experiment based

upon well known optics and acoustics theory. Subsequent reports

will elaborate further.

2.1 Plane of Incidence

I In order to obtain high resolution critical angle images as

described in our initial proposal, we chose the geometry shown in

I Fig. 1. The transmitter crystal is followed by a lens which focuses

the sound to a point at the center of rotation of the goniometer.

The sample is placed with its surface also at the center of rotation,

and its surface normal in the plane of the goniometer. The receiving

transducer consists of a very small element placed on the other arm

of the goniometer. The central ray of the transmitter, and the

receiver fulfill the specular reflecting geometry.

The experiment is performed by energizing the transmitter with

a continuous sine wave at the appropriate frequency and monitoring

the receiver with a vector volt meter. The sample is placed in the

x-y plane a;id the goniometer carrying the transducers is moved from

a small angle to a large one or vice versa. In this process, the

transducers pass through all three critical angles, OL, OS, OR

(longitudinal, transverse, and Rayleigh, respectively). The complex

reflectivity as a function of angle is the recorded variable.

In the past, this type of experiment has been performed with

large transducers and plane waves. Therefore, each of the critical

angles mentioned above was interrogated separately, except perhaps for

IeS and OR which lie quite close together for some materials. In our

geometry, the focused cone can sometimes contain all three critical angles.

-2-,I
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Therefore, in addition to the Rayleigh surface wave, there may be

j lateral waves which then reradiate to form head waves that will be

seen by the receiver. For our usual geometry, a 25 mm transmitter

I is focused at 100 mm resulting in a converging cone of 14.250

included angle. In aluminum, for example, OL = 130 26', OT = 290 20'

and OR = 31* 36'. Hence, 0L and OS could not be encompassed

simultaneously although a slightly larger transducer could. es and

OR are, however, always energized together. Thus, a Rayleigh and

transverse lateral wave will be present simultaneously. Both of

these waves will generate head waves in the water which will be seen

by the receiver.

The theory, for the reflectivity of a surface and the various

I waves generated, is admirably summarized by Uberall.
I We will

repeat it here as a foundation for further exposition. The general

situation of a point source in a liquid half space in contact with

an isotropic solid is shown in Fig. 2. The resulting waves are:

IZ

I 8II

3/ 4 i SOLID 5

s:tI

Fig. 2. Side view of wave fronts generated by a point source in the

liquid. The solid is isotropic. :-- - -7I

I
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1. Wave front propagated from the source, S.

2. Wave front reflected by the surface (virtual source, S').

3. Rayleigh (generalized) surface wave with amplitude falling
off in the solid, traveling at velocity, CR.

4. Lateral surface wave traveling at shear velocity, CS .
5. Lateral surface wave traveling at compressional velocity, CL
6. Head wave generated by the Rayleigh wave.

7. Head wave generated by the shear lateral wave.
8. Head wave generated by the compressional lateral wave.

The amplitudes and phases of all of these waves can be calculated

theoretically. Since the source is a point, the head waves will be

conical.

p This geometry is closely related to the one that we have chosen.

If we consider our source to be at the focus of our lens and restrict
0 the cone of rays, we have the situation shown in Fig. 3.

z

/ LIQUID

6 7

I.

3 SOLID 5

// i

Fig. 3. Side view of wave fronts generated by a spherical source focused at the surface

of the solid. 
i

j _-5-



I
I

We now have one less wave in the liquid, namely the propagated

wave. If the incident cone, T, includes all three critical angles,

OL, OS, OR, the remaining waves will be present in the liquid. Our

experimental procedure utilizes a point receiver in the center of

the reflected cone. Therefore, if we scan the source and receiver

beginning at a small angle of incidence, the waves intercepted by the

receiver will be a function of the angles as follows. Table 1

represents the cases where ' > OS - OL and OR - OS < T < 6S - OL •

TABLE 1

I > eS - OL OR -S < T < 6S -OL

0 Wave a Wave

>0 ,< eL - /2  2 >0 ,< L - Y/2  2

I 0L - '/2, < OS - Y/2 2,8 >OL - '/2, < OL + Y/2 2,8

>/s - P2, < OR - T/2 2,7,8 >_0L + '/2, < OS - T/2 2

>OR - T/2, < OL + Y/2 2,6,7,8 >0S - Y/2, < OR - T/2 2,7

2OL + Y/2, < Os + T/2 2,6,7 ?0R - T/2, < OS + Y/2 2,6,7

I 0S + T/2, < OR + Y/2 2,6 >OS + Y/2, < OR + T/2 2,6

>OR + T/2 2 -OR + Y/
2  2

This is to be compared with the case of plane wave illumination (' 0)

|shown in Table 2. Note, that in this case each wave is interrogated

in sequence.

It appears, then, that in attempting to simplify the system for

imaging reasons we may have complicated the signal interpretation

process. On the other hand, as evidenced by the experiments described

Ielsewhere in this report, these complications may not be significant.

I-6
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TABLE 2

I 0'=0 Wv

e Wave

>0, < OL 2

I = 0 L 2,8

> OL , < OS 2"

= OS  2,7

> 6S < OR 2

= OR 2,6

i > OR 2

2.2 Plane of Solid

In the preceding discussion, we have examined the system

in the y-z plane. The transmitted cone has extent in the other

l directions as well. Returning to Fig. 1, we see that surface

waves are generated over a wedge of angles emanating from the focal

I point on the surface. This wedge of surface waves reradiates a

head wave back into the water, and therefore, must make a contribution

i to the detected signal.

The wedge of surface waves predicted by geometric theory, as

shown in Fig. 4, will subtend an angle Y' which depends on the angle

of incidence of the lens axis 6, and the angle subtended by the

lens aperture from the lens focus '.

1 [tan(i/2)]V 2tan- I  L(1)

Thus, the wedge of surface waves always has an opening angle T'

which is somewhat larger than the opening angle of the lens T.

-7-L(
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From the foregoing, it is clear that we cannot avoid

contributions at the detector from waves reradiated by the

wedge of surface waves. However, it is not evident that this

will lead to results differing significantly from those expected

for incident plane waves.

From a geometrical standpoint, we note that a wedge of

surface waves will produce a conically shaped diverging wave front,

as shown in Fig. 4, of reradiated waves which impinge on the

point detector. These conical surfaces will be characterized

by a cone with opening angle T and an axis parallel to the axis

of the lens in the plane of incidence.

The specularly reflected incident rays will produce a

diverging spherical wavefront which also impinges on the same

detector. The phase difference between the conical (nonspecular

reflected) and spherical (specularly reflected) wavefronts in the

plane of incidence should be the same as the phase difference

between an incident specularly reflected plane wave and its

nonspecularly reflected counterpart which is also plane. Away

from the plane of incidence, of course, this statement no longer

holds. Thus, if a very small point detector is used, the effect

of off-axis rays should be greatly reduced if not eliminated

entirely.

For example, in experiments on quartz and copper, we

I obtain results that are very similar to those of other workers

who assumed incident plane wave fronts. Thus, we conclude that

I geven for anisotropic materials (which will distort the reradiated

conical wavefronts) off-axis excitation will probably not have a

major effect on measurements. Theoretical calculations and

further experiments in progress will clarify these points at a

later date.

-9-
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i
2.3 Focused Beams

i The preceding sections dealt with the various waves generated

on a surface by a point source. In fact, a focused transducer does

not focus to a point since this would necessarily imply infinite

intensity. A good review of the behavior of sound in the vicinity

f of a focus is given by Rozenberg.3 We will select the pertinent

results without showing the analysis since this is readily available

in Rozenberg and other references.

For a spherical radiator of half angle, am, radius, F, and

uniform pressure amplitude at the surface, Po, the pressure at the

point p, z is

p(pz) = kFPofexp(ikz cos ct)Jo(kp sin a) sin cdc (2)

f where p,z are cylindrical coordinates with origin at the
center of curvature,

k 27X

"" X wavelength,

O= angular coordinate,

Jo = Bessel function of zero order.

In the center of the focal spot, p = z = 0, the pressure attains the

[maximum
PF = kFpo(l - cos am). (3)

FThe pressure gain is, therefore,

Gp - PF/Po - kF(l - cos am). (4)

The transducer used in our experiment has the parameters F =10 cm,

m = 70, f = 4 MHz yielding a pressure gain Gp M 12.5.

The pressure distribution in the focal plane Is
P(P) ff PF 2J1 (kPon) (5)

kpa%

where Ji = Bessel function of first order.

-10-
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The radius of the Airy circle (where J1 attains its first zero) is

P = 0.61 0.61 XF (6)

0 am R

where R - radius of the transducer.

The pressure distribution along the z-axis is more complicated,

showing the result that the pressure maximum does not always lie in

the focal plane. Also, unlike optics, the distribution is not

symmetric about the focal point. Tartakovskii derived the expression

shown below.
4

I p(z) = sin[kz/2(1 - cos a.)] (7)

PF kz/2(l - cos am)(l + z/F)

The relative displacement of the pressure maximum from the focus is

approximated by

:F 1 1 2 (8)

I For our case, ZF/F -0.0768. That is, the pressure maximum is

0.768 cm closer to the transducer than is the focal plane.

The velocity gain at the focus becomes

I Gv = kF s 2  = Gp cos 2 (am/2) (9)

For small angles, am, such as in our case, Gv Gp.

The intensity gain G1 , defined as

GI =IF POVF= CpG v . (10)Io PoVo,~

In our case, with Gv = G = 12, the resulting gain is G, 144.

Thus, even modest intensities at the transducer face can result in
large values at the focus.

The shape of the wave front as a function of z, when considered

by geometrical acoustics, is a converging sphere which collapses to a

l point at focus followed by a diverging sphere. When diffraction is

considered, the converging spherical wave front changes to a plane

i 11-



I
near the focus and then diverges again. Born and Wolf present a

particularly detailed analysis of light waves in the vicinity of the

focus. 5 Their results show that in the immediate neighborhood of the

focus the wave front is substantially plane with cophasal surfaces

spaced by X(l - R2/4F2 ) rather than X. At the first zero of the Airy

pattern, the phase fronts shift by V radians leading on the converging

side and lagging on the diverging side of the focus. In our case,

the cophasal surfaces will be separated by 0.9961X which could be

interpreted as a frequency shift of 0.39%. The following figures

from Born and Wolf are reproduced to show the kind of detailed behavior

I experienced by the wave front near the focus. Note that a phase

anomaly of 7/2 occurs at the focus. This is illustrated more clearly

by the following figure, also from Born and Wolf.

i
I

.1/ /1/1,1 /I/!U///0'9A * .l 992Ja/

1  ;t/I
V !0 :a iY lli i4l i l 1! 76il 34i. i.llil 91 r~;ii

.. 2. 
**

.. Fig. 8.45. Pre . of the to.pfa.wa1 surfaes . v. ) w .t.-nt r-ar the -ornitrica

focui, calculatded with 5 .10 1cm, a =2-5 er. f - 1 en.

I (After G. NV. FANFLL. CInId. J. ,;hy .. 35 (1957), 780.)t

Fig. 5. Profiles of the wave fronts in the vicinity of focus.
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Fig. 7. Details of the phase of the light wave along rays passing

I through the focus.

I
What we have, then, is an elliptical spot on the surface that

is generating surface waves when one or more critical angles are

present in the incident cone. The smallest diameter of the ellipse

as given by Eq. (6) will he D - 4.88 Xw, where Xw - wavelength in

water. The surface wavelengths are, generally speaking, longer than

I
1 ~-14-4
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Xw- Taking copper as a specific example; XL = 3.1 Xw, Xs = 1.4 Aw,

and AR = 1.3 Xw. Hence, the source aperture size in terms of

wavelengths becomes D - 1.6 AL = 3.5 AS = 3.7 AR. These are very

small apertures which will have wide radiation patterns. For the

uniformly weighted aperture, the corresponding angular extent of

the wedge of surface waves will be YL = 770, YS = 33, TR = 310.

These values are, of course, not precisely correct because of the

assumption of a uniform driving function. In fact, it will more

nearly approximate a Gaussian distribution.

It is obvious that the propagation velocities in the material

Jwill have an important effect on the spread of the surface waves.

Copper happens to propagate sound fairly slowly. Aluminum, having

higher propagation velocity, will show a corresponding greater spread

of surface waves from the focal point. Beryllium, on'the other hand,

[would produce a narrower spread.
2.4 Nonlinearity

Since it is reasonable to suppose that the intensity level

near focus is high enough to couple energy into nonlinear terms, we

discuss this aspect of focused beams further. We again rely on

extremely well written accounts by Rozenberg and by Naugol'nykl, and

quote only pertinent results. 6 It is well known that the propagation

Iof compressional waves must be a nonlinear process.7 This is so

because the velocity of propagation is a function of density, and

compressional waves result in density fluctuations. Thus, in the

compression half cycle, the velocity increases while it decreases in

the rarefaction half cycle. Thus, a sinusoidal wave grows into a

sawtooth after propagating sufficiently far.

In our experimental system, we would expect nonlinearity in

the water path, as was shown in the last quarterly report.8 The

question is what happens at the boundary. Does the material also

respond nonlinearly or not? Breazeale has reported nonlinear behavior

-15-
4
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in solids when driven with finite amplitude compressional 'Vaves.
9

Preliminary data reported in our last quarterly showed only that

the harmonic content of the wave seemed to change upon reflection

from the surface. This could be due to differential phase shifting

of the harmonics, or by the nonlinear response of the reflector.

Consider a spherical wave of half angle am and radius F

propagating to the surface of a sphere of radius rf as shown in

Fig. 8.

F

am r

#rff

r -

Y

Fig. 8. Waves propagating from a point source.

We assume that in the region ri < r < F, the wave propagates with

little attenuation, but does distort due to nonlinear behavior. At

r - ri, the previously sinusoidal wave transforms to a sawtooth.

We assume that from this point on the wave is attenuated by a

large attenuation.

-16-
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Up to this point in the argument, we have used geometric

theory. We know, however, that diffraction must play a role. We

define the distance r = rf as that distance where the wave reaches

the particle velocity at the focus, r = 0, predicted by diffraction

theory. Analyses carried out by Rozenberg, Naugol'nykh, and SutinI0

have shown that, for small nonlinearities, the gain is increased and

the focal region is narrowed.

Returning to the analysis, we assume that the particle velocity

v = voF/r for rf < r < F

= vf = vokF 2  for r rf.2

In reference 6, it is shown that the actual particle velocity

amplitude at the center of the focal spot can be approximated by

vf = --+Cv k°G (12)m +v-kFG v

Trc

where m = I - i/R,

and E = 1 3 + 1.

It is evident from this equation that vf reaches a limit with respect

to vo . Thus, it becomes inefficient to increase the particle velocity

jat the transducer since the particle velocity at focus saturates. If

energy concentration is the goal, the system may be optimized with

respect to F, A, and am.

Sutin analyzes the problem in greater detail to obtain an

approximation to wave profiles at and near focus, as well as spectral

content. Figure 9, taken from Sutin's paper, shows the wave profiles

at three points near focus for a very modest nonlinearity parameter, a,

given by

-17-
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I
Fig. 9. Wave profile at various points

for a = 0.7 (a = I leads to

formation of a shock, a > 3
leads to a sawtooth): (a) on
axis at r = rf, (b) off-axis

I in the focal plane, and (c)
at the focus.

a =oln F/ri (13)

11 Qi + 1) PO, FI where Go (  c

As can be surmised from these profiles, the spectrum of the waveform

will change considerably when passing through the focal region.

Van Buren has considered the effect of the reflection of

Ifinite amplitude waves by a solid. 11  The conclusion is that the

behavior of thQ reflection coefficient has a profound influence on

Ithe reflected wave. For example, he shows that a plane wave of

sinusoidal profile, launched into a nonlinear medium, will gradually

I become distorted through the generation of harmonics. Upon reflection,

each harmonic component undergoes the same phase shift changing the

Irelationship between them. This results in a reversed sawtooth profile.

Upon further propagation, newly generated harmonics eventually

J overcome the propagated, phase shifted initial harmonics, to once
more make the profile sinusoidal (this is true only for 1800 phase

shift). If the wave continues past this point, it will again distort.

I -18-
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The waveform reverts to sinusoidal form approximately the same

distance from the reflector that it was initially launched from.

Breazeale suggested that since a 1800 phase shift occurs at

the focus of a converging wave, a similar reaction should occur.
12

That is, if the transducer launches a converging sinusoidal wave

into a nonlinear medium (water) and measurements of its harmonics

or profile are made along the principle axis, we should expect

the second and third harmonics to grow as the focus is approached

(profile approaching a sawtooth). After passing through focus and

propagating one focal distance, the profile will again be sinusoidal.

This is under the assumption that frequency dependent attenuation

does not occur. If it does, an analysis such as described by Sutin

must be followed. Therefore, in our experiment we can conclude

that any appearance of harmonics in our output, beyond those

present in the input, must be due to the reflection coefficient of

the solid. This does not necessarily imply nonlinear response of

the solid since other material parameters may produce phase shifts

different than 1800. It remains to be seen just what these might be.

1
I

I
!
I
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3.0 DYNAMICS OF ELASTIC SOLIDS

3.1 Isotropic Elastic Solids (Linear Approximation)

The simplest case of an elastic solid is that of a homogenous,

isotropic, lossless, linear material. By linear, we mean that the

full and correct strain tensor (z,k,Z = 1,2,3)

1[ / U Ui 
Uik = -1 + ,X + X-z auk (14)

2 aXk 9X aXi aXk /

is approximated by dropping the higher order terms UL _k
9xi aXk

It should be noted that this is equivalent to dropping all

j interactions (and amplitude dependent dispersion, etc.) and,

strictly speaking, would mean that neither energy or momentum could

be propagated across the material in the form of elastic waves.

Propagation ultimately requires interactions (nonlinear response)

between the various parts of the solid.

Note, for example, that the energy density c (adiabatic

conditions) is a scalar function of the full strain tensor1 3 given

by Eq. (14). If the higher order terms are dropped in Eq. (14),

we still obtain a more or less accurate estimate of the observed

j" energy (and momentum) densities in the wave (the linear estimate),

but strictly speaking, no actual wave would propagate if these

nonlinear terms were missing. Hence, the notion that purely linear

elastic waves exist is incorrect although this assumption is an

excellent approximation when amplitudes are small.

Let us assume, then, that the strain tensor may be approximated

by the expression

Uik = I Uk).Xl (15)

The equation of motion of any solid 1 3 in Classical Mechanics

(Newton's second law) relates the forces 90ik/3Xk due to the internal
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stresses Oik to the acceleration Ui and the mass density p via

PUi = aOik/3Xk. (16)

After some manipulation 1 3 (also see 28 September 1981 Quarterly

Report), this may be rewritten in vector notation for a linear

isotropic solid as

=U = 1 1 2- + (X+,J)V(V.U) (17)

I where p and X are the two Lamg coefficients. These coefficients

may also be expressed in terms of the Young's modulus E, and

Poisson's ratio a of the isotropic solid via

+ E
=2(+a)(-2a (18)

E
=2(l -- ) (19)

I It is clear that a linear, isotropic elastic solid requires

only two elastic constants (E, Oor X, p etc.) for its description.

7 Moreover, the particle displacement may always be decomposed into

the sum of a dilational part V4 having nonzero divergence (i.e.

nonzero volume change) and a rotational part (VXi) having no divergence

I j(zero volume change)

= V + VxT

By substituting U into the approximate expression (Fq. (17)), it may

be shown that the scalar potential 0 corresponds to a pure mode

I bulk longitudinal wave and obeys the linear wave equation

2 1 D2¢I v2 -7 = (20)
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with propagation velocity CT in all directions

I 2 (X+2) = E(-)
CL p p(l+o) (1-2)"1I

Similarly, the vector potential T corresponds to the pure mode

bulk shear or transverse wave, and obeys the linear wave equation

T - =0 (22)

with propagation velocity CT in any direction.

p 2p(l+o) (23)

Again, we remind the reader that these are linear approximations

which result because we have neglected higher order strains in

in Eq. (14). f
3.2 Energy Flux and Snell's Law

The energy flux directions of both the longitudinal and the

shear wave in an isotropic medium lie along the wave normals.
1 4

That is, the slowness surfaces (inverse velocity surfaces) are

always circles.15 Because the slowness surfaces are simple in such

materials, Snell's law provides an adequate description of the

refraction at a liquid-solid boundary. Such a refraction (liquid to

solid) can produce just two bulk waves (longitudinal and transverse).

Provided attenuation is small (lossless approximation), the two

critical angles eL and 0T will be given by Snell's law as

sin O L sin /2 1 (24)
Vw CL CL

and sin OT sin n/2 1 1 (25)
Vw CT CT j.
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I
where Vw is the longitudinal wave velocity in water.

Real isotropic materials include glasses, ceramics, powder

composites, and any alloy or other polycrystalline material

(crystals are assumed to be small compared with typical wavelengths

in the solid) that has been prepared without grain alignments,

residual stress fields, and the like.

In all such materials, we would expect to see two critical

angles; one for the shear (OT) and one for the longitudinal wave ( 0L).

These angles would be in addition to the "Rayleigh-type" critical

angle 6R which occurs slightly beyond the shear critical angle 0

T .

j Given information from the observed critical angles, one

could always infer X and W. If a density measurement p is made, we

would then have a complete linear description of the isotropic elastic

material. That is, the second order elastic constants of the isotropic

solid (Cij) could be calculated1 3 ,14 fromiI
C11 = C 2 2 = C 2 2 = (X+2p)

IC2 = C 2 1 = C13 = C31 = C2 3 = C3 2 = X (26)

C44 = C 55 = C 6 6 = P

3.3 Anisotropic Materials (Linear Approximation)

In isotropic solids the frequency w is always proportional

* to the wave number k = Jki. That is,

W = CLk

and W = CTK (27)

In anisotropic materials this is no longer a valid statement.

The general equation of motion as before is

I PUi aOik/aXk , (28) i

I
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I
but the stress tensor Oik is now a more complex general tensor of

I the form

I 0 ik f Xiktm Utm (29)

where the symmetric tensor Xik2m describes the adiabatic moduli

of elasticity and Utm is the strain tensor (linear approximation

of Eq. (15)). Substituting this into the equation of motion and

noting the symmetry of Xikim, one has

I PUi Xikm Xk  X(30)

I Consider a monochromatic elastic wave (the linear approxi-

mation makes this possible) in such a solid. Then

I Ui = Uoi ei(-k'--wt) (31)

where k is a function of w which satisifes Eq. (30) and is clearly

no longer as simple as Eq. (27) for isotropic materials. Substitution

of Ui (or Um, etc.) into Eq. (30) gives
1 3

(pW26iM _ Xikim kk kk) Urn = 0. (32)

This equation is actually three homogeneous equations in the

unknown particle displacements Ul = UX , I) = U2 , and U3 = Uz.

nontrivial solution requires that the determinant of the coefficients

5 vanish, namely

jAikkm kk ke-PW
2 imj = 0. (33)

This is a cubic equation in w2. Each of the three roots of

this equation provides a different functional relation between the

I frequency and wave number k (unless the material is isotropic).
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Now the direction of the energy flux is given by the group velocity

I aw/ _. In isotropic materials w is proportional to the magnitude

of k, and therefore, does not depend on its direction. Hence, the

energy flux in isotropic materials must lie along the direction of

the wave vectors (or wave normals) for both longitudinal and shear

waves. In the case of anisotropic materials, the situation is quite

different. In that case, the direction of propagation of the energy

I flux is along the direction of the group velocity aw/ k and not along k.

Now, since there are three functional relations between w and k,

there are, in general, three different velocities of propagation in

any anisotropic material. 13-15

1 3.4 Modifications of Snell's Law

Owing to the fact that the energy flux directions and the

wave vectors are not generally colinear in anisotropic materials,

i the interpretation of critical angles becomes more difficult.

Hennecke2 has shown that the critical angles Oc for quasilongitudinal

and quasishear waves should be given by the expression (I incident,

R = refracted)

* VIC CosIsin ec (34)
si c-VRc cos 6c

I where VRc is the velocity of a wave which has its energy flux

vector parallel to the liquid-solid interface. It is not the velocity

of a body wave propagating in a direction parallel to the interface.

Following Hennecke2 , we may derive this expression by

writing the scalar product of the group velocity g of the refracted

wave (this is in the same direction as the energy flux) and a vector

b. The vector b is the vector sum of all the slowness vectors

satisfying the reflection-refraction problem at the interface. Now,

I
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is the slowness vector of the refracted wave (MR = R/VR; RR is

the wave normal of the refracted wave, VR is the magnitude of the

refracted wave velocity), v is the normal to the liquid-solid

interface and ZR is a numbpr characterizing the refracted wave.

Therefore,I-g = MR- - ZR V- N - - R • (

I Since

I g* R =VR,

I = RV-ZRvg• (36)

When the critical angle occurs, the energy flux vector and I
g lie parallel to the liquid-solid interface. Therefore, g is

perpendicular to v and

bc'gc = 1.

Since the magnitude of the slowness vector b may be determined by

the incident angle Oc from

I Ibcl = sin OC/Vic

where VIc is the longitudinal velocity in the liquid (water in this

case), we have

g -- Ib gcIgcos Oc = sin c gccos ac - 1 (38)

where 8c is the angle between bc and gc"

But, we also know that

g*MR I g -CvRs

VR
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where i is the angle between the normal to the refracted wave and

its associated energy flux. At criticality,

gcjMRc i lIcos c = 1. (39)~VR
c

Combining Eqs. (38) and (39), we finally have Eq. (34) which is

clearly very different from Snell's law. Thus, we see that Snell's

law is generally not valid at a liquid-solid interace when the solid

is anisotropic.

As Hennecke points out, is not the angle between the

slowness vector of the refracted wave MR and the interface, so that

a measurement of the critical angle 0c will not in general be

sufficient to determine the refracted velocity VRc. Hence, the

elastic constants cannot be found from such measurements in general.

Note also that the angles 0c and ac depend in a complex fashion on

these same unknown elastic constants via the slowness surfaces of

the solid.

The situation is perhaps not as hopeless as Hennecke indicates

since one can certainly hope to fit observed critical angle data

(as a function of rotation about various symmetry axes) to a model

where elastic constants are chosen and varied to fit the data.

SMoreover, along the pure mode directions of an anisotropic material,

Snell's law remains valid (for many of the refracted rays) so that

critical angle data along these directions can be related directly to

elastic constants.

An interesting conclusion of Hennecke is that there are in

fact five critical angles in a material like quartz. We will give

experimental evidence of at least two of the five angles he predicts.

Such multiple angles are qualitatively similar to the "multiple dips"

we reported earlier on several uncontrolled materials. We will see

that such multiple dips are almost certainly the response of anisotropic

solids.

-27-
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I
4.0 EXPERIMENTSI

In this report we discuss experiments performed on three

g representative controlled materials. The three materials are

optical glass, a copper single crystal, and a z-cut slab of crystal-

line quartz. In addition, we are in the process of examining other

crystals; the characteristics of which are listed in Table III

(see also Fig. 10(a) and 10(b)).I
TABLE III Experimental Materials (Crystals)

Name Crystal System Description Orientation

Silicon (Si) Cubic Disk: 3.2 cm dia,
.9 cm thick

7 Quartz (Si0 2 ) Hexagonal Disk: 2.5 cm dia, (x,y,z cuts)

1.3 cm thick

Lithium Niobate Hexagonal Disk: 3 cm dia,
(LiNbO3) .75 cm thick

Spinel (MgA£20) Cubic Rod: 2.8 cm dia,
2.5 cm long

Sapphire (AZ 2O 3 ) Hexagonal Disk: 5 cm dia,
.35 cm thick

Copper (Cu) Cubic Rod: 2.5 cm dia, (100)

1.9 cm long

Aluminum (At) Cubic Rod: 2.54 cm dia (100)

2.54 cm long

Lead (Pb) Cubic Rod: 2.54 cm dia, (100)
2.8 cm long

Silver (Ag) Cubic Disk: 1.5 cm dia,

.6 cm thick

Iron (Fe) Cubic Rod: 1.0 cm dia, (110)[2.5 cm long

I
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(a) Metal Single Crystals

I

(b) Nonconducting or Semiconducting Crystals

Fig. 10. Single Crystals. (a) We illustrate

five metal single crystals identified
from left to right as Ai, Cu, Pb, Ag,II and Fe. All, except the Ag, have a
known oricntation. (b) From left to
right are z-cut quartz, spinel, silicon,
lithium niobate, and sapphire. Of these,
only the z-cut quartz has a known
orientat ion.
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4.1 Optical Glass

One polished surface of a cube of optical glass (L = 2.54 cm)

was rotated about an axis (the azimuthal axis of the goniometer) normal

j to this surface (see Fig. 11), and critical angle measurements made.

Figure 12 illustrates an azimuthal plot of the critical angle p = Oc vs

jthe angle of rotation 4 about the surface normal. From this figure

it is clear that a single Rayleigh-type critical angle OR t 28.40

exists for such an isotropic material.

Since we cannot measure angles less than 150, the expected

amplitude "bump" at the longitudinal critical angle OL ll0

(sin OL = 1/2 sin Os) on the amplitude curve R(O) vs 0 has not

been observed. However, we know that the shear critical angle as

jshould also produce a small amplitude "bump" before (es < OR) R(O)

approaches a minimum at OR . From the curve of Fig. 13(a), weIestimate Os = 22.5 which is roughly 60 less than 6R .

In Fig. 13(a) and (b) we illustrate two sets of measurements

of amplitude R(O) and phase q(O) vs the angle of incidence e taken

at two different azimuthal angles . Note that one of the phase

curves (Fig. 13(a)) shows a 360' phase shift (a so-called normal

phase curve), whereas the othei (Fig. 13(b)) shows "anomalous"

character. In fact, four of the phase measurements (O) vs 0 made

at eleven different azimuthal angles show these same anomalies.

It is clear from these observations that such phase anomalies

j are not to be attributed to the anisotropic character of a specimen

since this glass specimen is clearly isotropic (see Fig. 12). It

will happen, however, that anisotropies can influence this phase

anomaly as we shall see when we examine crystalline quartz.

3
I
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z

I SZ

/

00-- ()=0

I SPECIMEN

I
Fig. 11. Rotation of Samples. Samples

are arbitrarily marked with a

spot as shown. The spot is

located along the positive x-

axis which initially lies in

the incident plane (S-O-R) of

the source and receiver. The

normal to '- specimen surface

lies along the z-axis for all

azimuthal angles 4. We arbi-

trarily label the x direction

= id turn the specimen
counterclockwise.

I
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Fig. 12. Critical angle for glass. The figure shows

the critical angle as a function of the

azimuthal angle ¢ (angle of rotation of the

specimen).
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4.2 Observations On Z-Cut Quartz

As mentioned previously, we have obtained x,y, and z-cut

specimens of quartz (see Fig. 14). The experiment reported here

was performed on a z-cut plate 1 cm thick by 2.54 cm diameter.

Since the z-axis is the symmetry axis, and since quartz is hexagonal,

any measured elastic properties (such as, velocity or critical

angles, etc.) will necessarily exhibit a 600 angular periodicity

for azimuthal angles 4 about this z-axis.

In Fig. 15 we illustrate a graph of the observed "Rayleigh-

type" critical angles Oc vs the aximuthal angle defining the

plane of incidence of a focused longitudinal wave in water. The

term "Rayleigh-type" critical angle used here refers to the fact

that we are speaking of angles of incidence for which sharp amplitude

dips can occur. Figure 15 clearly illustrates that in z-cut quartz

we see the following:

(a) Two well defined amplitude dips in R(O) vs 8 for
nearly all azimuthal angles 4.

(b) The magnitude of these angles 0 c as a function of 0
exhibits a 600 periodicity which is an expected
characteristic of a hexagonal z-cut quartz slab.

In Fig. 16 we reproduce a sequence of photos illustrating the

actual curves of reflected amplitude R(O) and phase 4(e) vs 8

for a number of azimuthal angles 4 = 35, 45, 50, and 850. Note

j that two distinct amplitude dips are present at all 4 except 4 = 500

(also 00 and 1100 where only a single well defined dip occurs. It

is also clear that the phase curves 4(O) vs 8 show anomalies at all

azimuthal angles 4 except 4 = 50* where a 3600 phase shift occurs.
Thus, it appears that the anisotropic character of the sample can

influence ("trigger") these phase anomalies, but it cannot be

entirely responsible for them since these anomalies were also seen

in a glass specimen with known isotropic (by our measurements)

properties.

-
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Fig. 14. The x, y and z axes of a quartz crystal.
An x-cut slab (perpendicular to x-axis)
is illustrated. A z-cut slab would be
perpendicular to the z-axis which is

also the symmetry axis of the crystal.
Note that the x-axis penetrates the
line of intersection of two vertical
faces of the crystal while the y-axis
is perpendicular to these faces. The
x and y axes are at 900 to one another
and to the z-axis.

I
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Fig. 15. Critical angles 6e observed on z-cut quartz versus the
azimuthal angle *
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As Hennecke points out, quartz should be "multiply refractive"

so that five refracted rays should be produced at a water-quartz

interface even though there are only three possible bulk waves in

quartz. Moreover, he points out that Snell's law cannot be used in

calculating velocities from observed critical angles.

We have not as yet reproduced all of the derivation involved

to make these conclusions but merely reproduce a figure from

Hennecke's paper (see Fig. 17). It is evident that he predicts two

very similar critical angle curves (ec vs 0) to those we observed

on z-cut quartz in the same orientation. We have darkened two of

Hennecke's five curves. These should be compared with the two

curves illustrated in Fig. 15.

Notice that Hennecke's critical angle curves have essentially

the same form (Oc vs ) as our curves but lie roughly 6' below

(critical angles are 60 less) the Rayleigh-type critical angle curves

we measured (see Fig. 15). This is reasonable in view of the fact

that Hennecke is speaking here of the bulk wave quasilongitudinal

and quasishear critical angles, and not Rayleigh-type critical

angles which are associated with surface waves. Moreover, in optical

j glass we also saw a similar difference of roughly 60 between the

shear mode critical angle and the Rayleigh-type critical angle.

The reasonable agreement between Hennecke's predictions and

our observations (especially in view of the fact that Snell's law

was invalid in waking these predictions) shows that our apparatus

ij is not introducing such effects as multiple dips. In this regard,

we cite a final experiment performed on quartz involving a 4 mm

j diameter "pinhole" placed over the face of our source transducer.

Operating at 4 MHz, such an aperture is roughly 10A across and so

j does not produce significant diffraction. Such an aperture does

eliminate most of the off-axis rays. With this pinhole present, we

continue to see the two amplitude dips characteristic of quartz

(see Fig. 18). This provides additional conclusive experimental

i evidence that off-axis rays have little or no effect on our observation.
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4.3 Cubic Single Crystals

Following Green 14 and others,2 3 we note that cubic single

crystals are characterized (in linear approximation) by three second

Iorder elastic constants C11, C1 2 , and C44. This situation should be

contrasted with the case of )sotropic materials where only two

second order constants are required.

In Fig. 19 we illustrate the Miller indices for any such

crystal with a unit cell of dimension (a).

I (111)

(001) (i10) (001)

. (110)II

I - ---- (100

(a) a(010)
(a) (111) axis (b) (100) axis (c) (110) axis

(111) plane edge on f
Fig. 19. Miller indices for cubic crystals. The axes are perpen-

dicular to the shaded planes of the same designation.
That is, the 100 axis is perpendicular to the 100 plane.
Many directions are quivalent in a cubic crystal. ForIexample, the 100 direction is equivalent to the 001
direction or the 010 direction in so far as bulk elastic

i properties are concerned.

It was shown previously that, in general, there are three

I bulk waves in any anisotropic material, namely a quasilongitudinal

wave and two quasitransverse waves. Along certain axes of the

crystal pure mode, longitudinal or transverse waves may propagate.

In particular, along the (111) axis of a cubic crystal we find
14

I, = ((C11 + 2C12 + 4C44 )/3p) 1/2 = VL (40)

I V 2 = ((C11 - C12 + C4)/3p)1/2 = VTi  (41)

and V3 - V2  Vl., . (42)

-40-
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Thus, one pure mode longitudinal wave with group velocity VI

and one pure mode shear (transverse) wave with velocity V2 = V3

propagate along (111).

Along the (100) axis, we have

V, = (CII1 )112 = VL  (43)

V2 = = VTi (44)

and V 3 = V2 = VT2. (45)

Again, there is one pure mode shear wave with velocity

V2 = V 3 = VTi = VT2 and one pure mode longitudinal wave with

velocity VI = VL. Note that the velocity of the transverse mode

is independent of its polarization along this axis. Finally, along

the (110) axis, we have

V1 = (( 11 + C12 + 2C44)/2p)1/2 
= VL (46)

V2 = ((C1 1 - C 12)/2p)1/2 = VTi (47)

and V 3 = (C44/P)
1
/
2 = VT2 . (48)

That is, we now have two pure mode shear waves with distinct

group velocities V2 = VTI and V3 = VT2 and one pure mode longitudinal

wave with group velocity Vj = VL. Note that the shear wave with

velocity VTl is "laterally" polarized along the (110) direction

I (see Fig. 19) while the shear wave with velocity VT2 is "vertically"

polarized along the (001) direction. In this case, we are imagining

that the (001) plane is the surface under study. "Lateral" then

refers to polarization parallel to the surface while "vertical" refers

to polarization perpendicular to the surface.

Along the pure mode axes, the energy flux vectors are parallel

to the wave vectors. Along all other directions, this condition is

no longer true. Thus, it is only along these pure mode directions

that Snell's law could provide a reasonable description of the refracted

i waves.
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Our copper single crystal was examined by rotating it about

the (100) axis (equivalent to the 001 axis) while holding the

vertical source-receiver plane of incidence fixed. Thus, during

the rotation of the crystal, we encountered the following pure mode

axes: (010), (001), and (110) (see Fig. 19(b) and (c)). Equations

(43-45) provide the pure mode group velocities for the (010)

(equivalently (100),(001)), and Eqs. (46-48) provide the pure mode

group velocities for the (110) axis.

Let us compute these pure mode bulk wave velocities for copper,

and then calculate their corresponding critical angles using Snell's

law. From Truel1 16 or Landolt-Bornstein 1 7 we have the three second

order elastic constnat Cij of a copper crystal of density P, namely

C11 = 16.84 1011 dynes/cm
2

C1 2 = 12.14 10 dynes/cm2  (49)

C4 = 7.54 10'%ynes/cm
2

and P = 8.94 gm/cm3 .

In Fig. 20 we summarize the results of these velocity calculations.

VL = 4.34.105
Vf = 2.90. 101

V1 = V = 4.96.105

45( V 2 = VTi= 1.62.10

(010) 4 110) V3 
= VT2 = 2.90.105

450

-4" = VL = 4.34-105
(001) V2 = V 3 = VT = 2.90.105

Fig. 20. Calculated group velocities along various pure
mode directions in a copper single crystal. VL
longitudinal velocity and VT = transverse velocity.
All velocities are in units of cm/sec.

-2
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Using Snell's law in the real (lossless) form, the bulk

wave critical angles 8c can be estimated from

sin O _ 1 (50)
Vw VR

where VR is the refracted bulk wave velocity in question (VL or VT).

I We have

i61,001 or 010) = 21.070

eT(001 or 010) = 32.540

I CL(IIO) = 18.330 (51)

eTi(110 ) = 74.36-

and 8T2( 1 1 0 ) = 32.540

1 4.4 Experimental Results on Copper

In Fig. 21 we reproduce our Rayleigh-type surface wave

critical angle measurements for a copper single crystal rotated

about the (100) axis. The azimuthal angle 4 was varied in 50

increments and data was taken over a full 3600 rotation. In Fig. 22

we illustrate a similar measurement on the same crystal where the

azimuthal angle was varied in steps of 2.50 over a 1100 range in 0.

Two features of these curves are immediately evident: (1) a

900 azimuthal periodicity characteristic of a cubic crystal is

present, and (2) there are two critical angles characterized by more

or less well defined amplitude dips and phase shifts (see Fig. 24).

The fact that there are two critical angles is made more evident

in Fig. 22 where greater care was taken in recording indications

'I of a second angle.

The agreement between our measured surface wave critical

angles and those calculated theoretically by Diachok1 8 is excellent

as can be seen from Fig. 23. In this figure we have superimposed

4'
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-- . 200
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00

"/

Fig. 21. Rayleigh-type (surface wave) critical angles for a
copper single crystal rotated about the (100) axis.
The frequency was 3.8 MHz and the two critical angles
occur at ec  41 and ec - 470* The azimuthal angle
0 (angle of rotation about the 100 axis) varied from
0 to 3600 and data was taken in steps of A= 50.

Pure mode directions (001, 110, and 010) are marked

on the figure.
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1 (110)

Fig. 22. Same subject as Fig. 21 except AO 2.5* and the
range of the data is 4=250 to 1100.
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I
some of our experimental data (taken from Fig. 22) on Diachok's

theoretically computed and experimentally verified curves. Note

that Diachok employed an entirely different kind of experimental

system (a Schlieren optical system) to obtain his results.

In this same figure, we have also included for comparison

the pure mode (bulk wave) critical angles for copper given in

Eqs. (43-48). Diachok's outer curve (what he calls the "Rayleigh

branch") generally lies above the would be curve connecting the points

we have labeled Ti. Note, however, that near 450 on Diachok's curve

(near the 110 axis) T, lies above his calculated curve. We would

expect just the reverse, namely T, should lie below this Rayleigh-

type critical angle. In view of the fact that Diachok has presented

no experimental data in this region, we suspect that his theoretically

computed curve (solid line) is in error in this region. Diachok's

inner curve (what he calls the pseudosurface wave branch) lies above

the would be curve connecting the points we have labeled T2.

The terms "Rayleigh" wave and "pseudosurface" wave, as used

here by Diachok, are somewhat misleading. A true Rayleigh wave exists

only at a vacuum-solid interface. Moreover, the "shear component" of

Rayleigh waves (VxY) is always vertical to the free surface.13,19

Thus, there is some justification for calling the surface wave which

propagates along (110) (liquid-solid interface) with vertical polari-

zation a Rayleigh-type surface wave. Note that along (110), the

surface wave can be thought of as being closely associated with the T,

I curve since T, is also "vertically" polarized (polarization along

001 or 100 perpendicular to the surface). We also note 20 that the

effect of liquid loading on the calculated surface wave velocities

(along 110) is small. That is, the true Rayleigh wave velocity2
1

along this direction is very close to the surface wave velocity along

the same direction of a liquid-solid interface.

However, as the azimuthal angle f is changed from the (110)

to the (010) axis, the polarization of the bulk shear waves is

changing from a "vertically" polarized wave to one of arbitrary
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Fig. 23. Surface wave critical angles

for a copper single crystal.

Curve reproduced from a paper

by Diachok.1 8  Diachok's cal-

culations and measurements
------.-- ; pure mode data 0 0 a

(L, Ti, T2 ); our experimental

data 9 X .A-X

polarization. Hence, the close association of Diachok's outer curve

with the curve T1 would no longer be consistent. Similarly, Diachok

refers to the inner curve as being the "pseudosurface" wave critical

angle presumably because this is closely associated (lies above) with

a laterally polarized (polarized along 110 for propagation along 110)

bulk shear wave.

It would seem more reasonable to think of these surface waves

(with liquid loading) as effects completely separate from the

"associated" bulk shear waves T1 and T2. Thus, the "Rayleigh-type

surface wave" is just as much a surface wave as the "pseudosurface"

wave. As Plona 2 2 has pointed out, both types of surface waves show

significant vertical polarization.
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We have not yet examined these questions thoroughly from a

theoretical standpoint (however, Farnell 23 has done so), but

experimental evidence on copper seems to support the basic physical

similarity of these two surface wave branches. In this regard,

consider the data reproduced in Fig. 24. In this figure a series

of phase and amplitude curves is reproduced for azimuthal angles

= 57.5* to 0 = 700 in steps of AO = 2.50. At 0 = 57.50 we are

close to the (110) axis (see Fig. 21). There is no evident indication

of a second amplitude dip (the Rayleigh-type surface wave branch),

but there is a strong amplitude dip at 6 = 40.40. This would fall

on Diachok's inner curve (his "pseudosurface" wave branch).

Varying 0 from 0 = 57.5, we see beginning at about * = 65,

a stronger indication of a second angle (0 = 49.50) on the "Rayleigh-

branch" while the amplitude dip on the "pseudobranch" is growing

weaker. Finally, when we reach 0 = 700, the "pseudobranch" amplitude

dip is very weak and the "Rayleigh branch" critical angle (0 = 46.6*)

is now very well defined by a sharp amplitude dip and a 3600 phase

shift. Since the amplitude dips are both very deep at 4 57.5*

and 700 and since the phase shift is 3600 at both of these angles,

the surface waves would seem to be very similar physically. It,

therefore, seems somewhat artifical to refer to one branch as

"Rayleigh" and the other as "pseudo" as Diachok has done. Further

theoretical and experimental studies should clarify both the semantics

and the physics involved.

Several important conclusions can be drawn from these

experimental results regarding our particular experimental arrangement

using a focused lens. Both Diachok18 and Plona 2 2 have employed

broad beam methods to obtain their data. In view of the excellent

lagreement between our results and Diachok's (on copper single crystals),

it is clear that the acoustic lens is not appreciably altering

experimental results. Moreover, our technique seems to be more

sensitive to a second critical angle. For example, Plona indicates
44

that there are regions (certain 4) where he saw no indication of a
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second angle. We see such regions also (see Fig. 24), but they

are for less wide in than Plona indicates. Our technique is

apparently able to detect a much weaker indication of the presence

of a second angle than the Schlieren techniques.
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5.0 CONCLUSIONS

IThe foregoing work leads to several conclusions:

I (1) Various "anomalies" reported earlier in uncontrolled
samples have been seen in controlled single crystals.
These effects show periodic angular behavior character-
istic of the angular position of the crystals; thereby
showing that these anomalies are not spurious results,
or results that depend principally upon the particular
apparatus used.

(2) Multiple amplitude dips do not occur in isotropic materials,
such as glass and many glass-like alloys, but do occur
in anisotropic materials. Such anisotropic materials
include crystals or polycrystalline alloys with a
preferred direction due to rolling alignment, residual
stress, or some other anisotropic character. Multiple
dips result from the fact that in anisotropic materials
the slowness surfaces are very complex. Multiple dips

Iare not a result of finite lens aperture.

(3) Only in certain special cases can critical angle data
lead to a complete determination of the elastic constant
owing to the fact that Snell's law is generally invalid
in anisotropic materials, for example.

I (4) Anomalous phase shifts occur in both isotropic and
anisotropic materials. The effect is, therefore, not
produced by anisotropy though anisotropy appears to

I influence the effect as demonstrated by data on quartz.

(5) The periodicity in 0 of these critical angle measurements
definitely allows one to orient crystals although the
measurement of elastic properties is much more difficult
owing to the complexity of the slowness surfaces for
anisotropic materials and the resultant additional

complexities of a water-solid interface (anisotropic
solid).

(6) Our experimental system principally excites waves along
the line of intersection of the plane of incidence and
the water-solid interface. Off-axis rays appear to have
little or no effect on our measurements as evidenced by the
agreement between our results on quartz and copper crystals

and the work of others.

1' -51-t
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A number of other interesting observations of a preliminary

nature were also made. We have observed, for example, that an

angular dependence ( ) of the depths of the "plitude curves is

present in data on quartz and copper but not on glass (see Figs.

I24 and 25). Such amplitude dependence has made it difficult to

measure spectral reflectivity for different source intensities as

a function of the azimuthal angle owing to the fact that at some

azimuthal angles amplitudes saturate our band pass filter. Accordingly,

we are in the process of designing an active filter that will allow

us to obtain spectral reflectivity curves as a function of *.

This information will allow us to assess the extent to which

nonlinearities influence our phase measurements. We are also

continuing experiments on the other crystals in our possession and

will report these results at a later date.
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Fig. 25. Observed depths of amplitude minimum at 0 0
critical vs azimuthal angles 0 for a copper
single crystal. The angle of rotation 0 is
about the (100) axis of the crystal. The solid
circles give the amplitude at the larger of the
two critical angles 0 = 46* while the open
circle gives the amplitude at the smaller of the
two critical angles e 40.
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