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INTRODUCTION

There is considerable interest in high speed displacement
ships. These are characterized by high length-beam ratios,
sharp bows, and flat sterns terminating in a transom. Such ships
have been constructed for naval purposes, for example the
German WWII Jaguar boats and their derivative the current
Israeli missile boats, originally French built, All of these
ships are reported to combine high surface speed with excellent
seakeeping characteristics,

Systematic tests of conventional high speed forms were
carried out at the David Taylor Model Basin and reported by
H.Y H. Yeh in 1964, Reference 1. These tests, comprising a
series of 27 models, involved systematic variation in beam-
draft (B/H = 2,3,4) and block coefficient (Cg = 0.35,0.45,0.55);
the resulting length-beam ratios varied from about 8.5 to 18.0;
the transoms were in general very full, their width being not
too much smaller than the maximum beam,

The test results show a very significant residuary coef~
ficient at the highest speed-length ratios, often exceeding
50 percent of the residuary pertaining at a speed length
ratio (V/Vi) of 1.5, where wave resistance may be expected
to be a maximum, see Figures 1A and 1B,

These results, taken together with the very fact of the
wide transom stern evolution in design, raises some extraordi-~
narily interesting questions concerning the hydrodynamics of
these ships: '

1) Since wave resistance is’ generally believed to decrease
rapidly at high VAL toward a value of zero, what exactly is
the nature of the very large measured residuaries at high"
v/VL? Spray? Other??
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2) Why are open sterns‘(trhnsoms) desirable at high speeds?
After all, for submerged slender bodies, there is generally a
positive form drag associated with open sterns.

Planing vessels have been rather extensively treated and
rather good methods based on theory exist for the prediction of
their performance, References 2 and 3; and the nature of their
resistance (spray and "induced") is fairly well understood for
slender surfaces, Reference 4. Strangely enough, however, there
does not seem to exist any theory pertaining to the flow about
high speed displacement ships, aside from preliminary theoretical
considerations, such as those of Ogilvie, Reference 5. Nor is
there a theory of transoms, except for the numerical calculations
of Van Eseltine and Haussling, Reference 6. We certainly have
not found answers to the two most interesting and important
questions 1) and 2) above, Pertinent theory might not only
answer these questions but provide methods for optimizing design,
especially of the transom.

In view of this situation, the senior author initiated a
theoretical study of slender high speed displacement ships
under ONR Contract N00014-80-C-0669, with the results described
below.

The theory is asymptotic to V/VL = « (no gravity), and
assumes B/H = 0(2) and B/L << 1.0. All of these conditions seem
realized in the high speed tests of Reference 1.

Most important, it is pointed out at the outset that the
solution to the problem is not unique and that the physically
realizeable solution involves in general, a 'wake" flow behind
the ship which carries energy and therefore results in resistance.
This resistance is in general reduced by widening a suitable
transom, and may in fact be anulled by a suitable transom with
a width at the waterline equal to the ship's maximum beam.
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The theory is given analytical form and reduced finally to a
boundary value problem in the cross flow plane, which must be
solved for each cross section of the ship. A computer program
is utilized to solve this problem and rather extensive cal-
culations of resistance made for ships comprising Series 64,
Reference 1. The results are excellent at the highest values
of B/H and not bad for other values.

The results seem important; they suggest: a) that the

is due to the stern (we call it "stern-induced" resistance)

and not to spray! b) that the "stern-induced" resistance may
be eliminated through proper after-body design, and that the
very existence of transoms lies in their ability to reduce such
resistance; c) that the usual wave resistance problem is not
completely posed, that the solution is not unique, and that

the solution normally taken in existing theory, at least at
high speeds, may result in physically unrealizable solutions,

Finally we point out that the theory may be applied to
ships with yaw, and suggest that a sideforce linear in yaw
results at high speed and can be calculated.

Directions for extension of the theory are pointed out,
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: THEORY

bﬁ We are concerned here with slender ships (B/H = 0(2);

N B/L << 1) operating at "high" speeds (U,%/gL >> 1). We assume

that the effects of viscosity are secondary. Consequently:

1) On the free surface, where p = constant, the speed q is

7
a . B

everywhere the same and equal to the approach velocity, U, far
ahead of the ship. (q =VU? + v? + w?' where U = U, + u, v and

w are the (x,y,z) components of velocity, and where u,v,w = ¢

H X,¥,2.
% 2) V2?¢ = 0 everywhere and V%¢ =~ ¢yy + $,, = 0; therefore
? ¢ = R[Y (x; z +1iy)]. q = Uy + ¢4.

L
E. 3) The free surface may be taken in the (x-2z) plane (i.e.
2 at 'y = 0)
2
ii 4) On the free surface, y =0: ¢y = 0, or ¢(x,0,2) = ¢(2).
éé 5) The free surface consists of four separate regions, see
;? Figure 2, a plan view. The entire free surface is S and the
% intersection of S and the hull is N, which defines the waterline

- shape. In S,, the region outside the maximum beam: ¢ = 0,
i5 since ¢(-»,0,z) £ 0. In S,, the forward shadow of the ship:
¢ = 0, except in a narrow boundary near N which is the spray
region S;. In the narrow boundary layer Sg the flow on S,

L P A

£ (where w = 0) adjusts itself very rapidly to the condition on
3 N where

3

- U

% o db

we & — —

: 2 dx

Y
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(b(x) is the local beam of the waterplane). Physically, this
adjustment is experienced as a thin spray sheet. In S,, the
rear shadow of the ship there are two distinct possibilities:

i) ¢=0

. : .dzN _ db

ii) ¢,(x,2) = ¢,(xy;2), where ¢ _(xy;2z) = U = = 3% U o~ [1]

The former possibility (i) would again require a narrow

boundary layer along N wherein the lateral flow would adjust
itself from its value on the hull to the value w = 0 in the
shadow. But the resulting solution requires (in this approxi-
mation) that flow detach from the hull with infinite vertical
velocity and move downward to reach the water level downstream.
In Figure 3 the free surface shape is shown schematically for
a section of the bow and of the stern, according to both i) and
ii) above. The "inverted spray' solution indicated by i) wculd
lead to a narrow but high sheet of water between the hull and
the wake surface everywhere along the stern and is not observed
in practice, while the "smooth'" flow indicated by ii) seems
typical of observation, We therefore choose ii). This choice
is equivalent to imposing the Kutta condition at the trailing
edge of a slender wing or planing surface of waterline shape N.

6) As a result of ii), there exists in the entire rear
shadow of the hull, prescribed values of w on the free water
surface in S,, see Figure 4.

7) On the hull surface:

V(Ux+¢) B=0 [2]

where n is the outer normal (vector) at any point on the hull,

LT e LI YR N A T W S U ST A U YL WY WA WA Y LI S
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and is given by:

-> - .
n-= (nx; n_; nz) = (sinB; ~cosB cosa; cosB sina)

y

where B is the angle between the vector n, +1 n, and n, and is

given by (the subscript M refers to points on the hull):

]
_ M
tanB = cosa + ——
oxX
or,
2 o
M ZM
n,=-[n —~-n, — 3
X [ Yy ax Z 3x [3]

Finally, assuming ¢x/U0 << 1, Equation [2] yields:

3y 3z
; ¢ZIM UO.SE— [4]

byl Yo x

or, assuming in addition that cosg = 1:

3¥M ] 9
¢, = U, [cosa 5% - Sina —— [5]
8) Finally, in view of 1-7 above, the problem is reduced to
a set of two dimensional potential problems in the cross flow
plane as shown in Figure 5. Notice that the problem may be re-
placed by another which is equivalent, in which the hull beneath

the water surface is augmented by its reciprocal above the
surface, such that the equivalent body is source free in the

far field, and may be represented by a dipole distribution;

the flow is thus essentially wing-like. In this representation
the surface S, comprises a trailing vortex wake, and condition
ii) of paragraph 5 is mathematically equivalent to the imposition
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of the trailing edge Kutta condition in the case of a slender
wing, as noted earlier, The representation of the hull and its
reciprocal involves additional vorticity. At the transom, the
hull (plus reciprocal vorticity) plus free surface wake is shed
into the ships wake (plus its reciprocal) and manifests both the
lift acting on the hull (vertical momentum in the wake) and the
stern~-induced resistance of the hull (kinetic energy in the cross
flow).

9) The narrow spray region S, corresponds to the leading
edge region on a slender flat wing. In the latter case, the
inability of the flow to follow the wing f{go around the leading
edge) leads to loss of leading edge suction and therefore to a
resistance which is non-zero in the case of separation at the
leading edge. The non-zero value of leading edge suction
follows from the nature of the singularity at the leading edgze

of the flat wing

W' =w - iv ~ ;%f , where ¢z = z + iy) .

In the case of a displacement ship with a vertical side at N,
then it can be shown that ¥' ~ &n ¢ and that the waterline
suction and therefore the spray resistance is zero in the present
approximation. This surprising conclusion would seem to be

borne out by our later comparison of predicted stern-induced

resistance with experiments.
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SOLUTION

The flow about the ship, according to 2) above, can be
described by a complex potential,

Y=Y (x; v, 2) = ¢ + iy

where ¥ is an analytical function of ¢ = z + iy, The complex
velocity is;:

%\g—:=\l" (x; vy, 2) =w - iv

and the velocity field is given by,
V (Uox + ¢) = [Ug + ¢yi0y30,1 = [U, + 0ys -I¢¢")" R(YD]

The complex velocity at each value of x may be represented
in terms of a distribution of a suitable Green's function:

Q(x;¢,)
¥' (x;2) = YRR G(z, t,) dg,

M(x) + M¥(x) [6]
where Q(x;gl) represents the strength of the singularity distri-
bution due to the presence of the ship equivalent boundary,

M + M*, A suitable Green's function in the present problem is
the source:

1
G (z,z,) = T

so that Q is the complex source strength,

e
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The contour M includes the submerged hull Mz and its re-
ciprqcal M,, and M* includes the vortex sheet on the free surface
S,, Figure 5, where Cy = 22' the overbar indicating the complex
conjugate.

If Q, is the source strength on M, and Qu»on Mﬁ, then Qu =
62 satisfies the boundary condition on S  (w=0). Equation [6]
may thus be written:

gy = L /;Q dc, Qi 2 L i [ vdz, -
’ 2 M (z~2;) (z~Z,) 27 (z-z,)
L

M‘k

Since the integral on M, contributes not at all to w on M*, then
on S,

vY(z;) = -2w(z,) , the latter being prescribed by [1],

Now, it is possible to show that,

ioa _ .
-ie™™ ¥ = ¢ ~ig, | [8]

where s is the counterclockwise direction along the hull Mz.

Combining [7] and [&]:

R Qde, — i ..__._f M.d_z.l =¢n(z;)
T (z-T,) e (&mzy) y
M
[9]

for all ¢ on Mz. Since ¢n(;) is known in terms of the hull shape,
see Equation [5], this represents an integral equation for Q(x;Z).
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The effects of the body ‘shape and stern wake on S may be

decoupled by seeking;

Q=m+ iy

where

] jel® /- ; md?;1
2w (z-zg,)
My

Jf£YdC vdg,

R =

ey " (¢-Z,)
M,

mdZ, -
i i = 6_(z) [10]
(z-t,)
for all z on Mz
- -/‘w(x;zl).dzl -0
(z-z))
M*

so that the body boundary conditions in the absence of shed

vor+icity are satisfied entirely by the hull source distribution,

m; and the effect of the shed vorticity is represented by an

additional induced vorticity distribution, Y.
equations, of the Neumann type,

These integral
can be solved numerically for

To the slender body approximation, Bernoulli's equation
becomes:
- - 2 2 2y _ 9 . _ 3¢
P ¥o(u? + v + w?) on T on 5 [11]

The incremental lift (de) and
from knowledge of the pressure

de
™ =) Pz

M,

resistance (dD) may be determined
acting on a transverse slice:

~ HpU '/‘—Q' dz [12]
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-g—}l-:- =~-/‘pnx dz = pU_ —g% g—g dz T13]

The total lift and resistance may then be approximated by:

L

de L
Lf = [ F dx = "on f¢ dz [14]
S o
My
* L
- dD - 3¢
D fa;(dx—onfcbﬁdz
o Mz o
[15]
L
9 3¢
-on [f¢ % ('5{1-) dz dx
o Mz
gl
3
-
A
E
4
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RESULTS

Extensive numerical studies have made for ships of the form:

n
Yp(*:2) = -h(x) [1 - (z/-%)z] ' | [16]
with
n
b= b, (%) ’ (1 - n, ?f)n’ [17]
n
h =h_ (E) : <1 - n, %)ns [18]

The parameter n, characterizes the fullness of the ships
cross-section. Parameters n,, n, and n; govern the waterline
profiles. Parameters n,, n; and n, determine the draft vari-
ations. Calculations of both the lift and resistance have been
made. However, in the following only the resistance results,
which are of particular interest, will be discussed in some
detail. The parameters n,, n,... etc are varied from a parent
ship of the form:

n, = 0.4, n, =10, n;, = 0.5, n, =0.25

n, = 0.5, n, = 0,87, n, = 0.9

=

L _ _
g =10, §=4.0

where B and H are the maximum beam and draft of the ship. 1In

these Figures, the resistance has been nondimensionalized by
konzB2 and given by

P i PR S a2 A e e . e e D e e
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D= —— =Cp +Cp [19]
%DUOZBz 1 2

in which Cp and Cp, represent the contributions by the source

X (hull alone) and the vorticity (trailing wake caused) distributions
respectively., The resistances due to source distributions (an)
are generally small, so that the resistance calculated is largely
“stern induced'", accompanying the trailing wake from the aft
waterline,

KU /- (e bataa;

The dependence of Cp on ship cross section fullness is shown
in Figure 6. The values of Cj are small for ships of very full
cross section and increase with increase in n, until it reaches

———

a maximum and then decrease with further increase in n,. The
effects of the parameters n, and n; (which determine the fullness
of the waterline profile) on Cp are given in Figures 7 and 8.

The resistances are smaller for finer bows (larger n,) ana fuller
sterns (smaller n,). The values of Cp with various parameter

n, and n, which largely determine the draft variations near the
bow and stern respectively are shown in Figure 9 and 10 and are
smaller for higher rake bows (smaller n, ) and sharper keel-rise
sterns (larger n,). Although the effect is small over most of
the range, In Figure 11, the strong variations of Cj with
parameter n, which dictates the location of maximum beam is
given. The resistance is smaller for the location of maximal
beam nearer to the stern. The effect of n,, which determine

the draft near stern, on Cp is shown in Figure 12, The resistance
is smaller for shallower sterns (larger n,). The dependence of
Cp on length-beam and beam-draft ratios is shown in Figures 13
and 14, The resistances are seen to decrease with increasing

in length~beam and beam~draft ratio,

I P P P S T U, . Y -~ e e e ime B A A e P ™ B ok ol k.
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The variations in resiséances, except for parameters n; and
ng are moderate for various parameter changes. The resistances
are very sensitive to the variations in n,; and n; as can be seen
in Figure 8 and Figure 11. The resistance can be reduced sub-
stantially if the maximum beam can be moved more toward the
stern (by decreasing ng). If the changes in beam near the stern
can be made more gradual (by decreasing n;), the resistance can
also be drastically reduced. These results seem to indicate
that superior ship resistance characteristics at high speed may
be achieved by proper shaping the waterline profiles around the
stern.

There results are consistent with the fact that a waterline
with maximum beam at the transom and with zero slope there
(db/dx = 0) will not create a trailing wake and will therefore
‘0 at every point on

be free of resistance CDz' In fact $n
the transom then CD = ( too.
1

Numerical calculations for ship forms very similar to those
of Series 64 high-speed displacement forms, Reference 1 are also
made. The values of various parameters for these computations
are given below:

n, = 0.975, n, = 0.525, n, = 0.25, n, = 0.865

n, = 0.275, n, = 0.485, n, = 0.91 0.55
for CB(block coefficient) =

n, = 0.65, ng; = 0.525, n, = 0,954 0.45

These series of displacement hulls have the same waterline pro-
files but have different draft variations for different block
coefficients. Comparisons between the calculations and the ex-
perimental residual resistance data (non-dimensionalized by
%onsz) measured at the speed length of five by Yeh (Reference

P U S S NP T S T L
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1) are shown in Figures 15a and 15b. The results are génerally
in good agreement, and especially for B/H = 3.0 and 4.0.
Certainly the results would lend general confidence to both the
theoretical developments and method of calculation.
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EXTENS IONS

The theory presented here applies in the limit of very high
speeds. A decrease in Froude number will involve both hydro-
static and wave sources of resistance. The hydrostatic effect
on the transom is easily estimated. The waves must be the sub-
ject of additional theory, and an asymptotic theory (wavenumber
small) suggests itself and could prove effective in the regime
of high but finite speeds.

As noted in the introduction, a sideforce linear in yaw or

sideslip develops due to the trailing wake and can be calculated.

The case of unsteady motions of the ship can be treated by
the same kind of theory, possibly including motions in waves
with forward speed (high speed limit).

And, finally, some of the startling results of the present
paper deserve experimental verification. In that case, trim
should also be calculated using the present results.
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SUMMARY AND CONCLUSIONS

1) A theory has been developed and reduced to computation
which applies to displacement ships in the limit of very high
speeds.

2) Transom sterns may be treated.

3) The theoretical treatment is based on treating the hull
as finite in beam and draft, but slender. It seems especially
appropriate in the case of high speed ships which typically have
large length/beam ratios.

4) 1In considering the consequences of the constant pressure
condition on the free surface at high speeds it is revealed
that two essentially different conditions can be imposed in the
region aft of the maximum beam of the ship (in its shadow).

One of these involves a thin shect of water flowing rapidly
down all along the aft waterline (inverted spray), and is dis-
carded as physically unreal. The other involves a smooth flow
at the aft waterline and a trailing wake (horizontal velocities
on the free surface in the shadow), It seems physically
realizable and corresponds to flows satisfying the Kutta con-
dition at the trailing edge of slender wings.

5) Calculations are made for ships of a highly variable
parametric form (seven constants) and the results given,

6) The trailing wake results in substantial residuary
resistance at high speeds for normal waterline shapes. This
is a completely new finding,

7) This residuary is typically reduced by widening the
transom and is minimized by taking the maximum beam at the
transom with sides there parallel to the flow direction,

A shallow draft at the transom is also indicated,
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8) A comparison of calculated results with the experi-
mental results of NSRDC Series 64 shows good agreement,
especially at the larger values of B/H (3 and 4) and lends
credence to the theory.

9) Extensions are indicated,
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