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There is considerable interest in high speed displacement

ships. These are characterized by high length-beam ratios,

sharp bows, and flat sterns terminating in a transom. Such ships
have been constructed for naval purposes, for example the

German WWII Jaguar boats and their derivative the current

Israeli missile boats, originally French built. All of these

ships are reported to combine high surface speed with excellent

seakeeping characteristics.

Systematic tests of conventional high speed forms were

* ,carried out at the David Taylor Model Basin and reported by

H.YH. Yeh in 1964, Reference 1. These tests, comprising a

series of 27 models, involved systematic variation in beam-

draft (B/H = 2,3,4) and block coefficient (CB = 0.35,0.45,0.55);

the resulting length-beam ratios varied from about 8.5 to 18.0;

the transoms were in general very full, their width being not

too much smaller than the maximum beam,

The test results show a very significant residuary coef"

ficient at the highest speed'-length ratios, often excee'dit

50 percent of the residuary pertaining at a speed length

ratio (V/N) of 1.5, where wave resistance may be expected

to be a maximum, see Figures 1A and lB.

These results, taken together with the very fact of the

wide transom stern evolution in design, raises some extraordi-

narily interesting questions concerning the hydrodynamics of

these ships;

1) Since wave resistance is'generally believed to decrease

rapidly at high VA(L toward a value of zero, what exactly is

the nature of the very large measured residuaries at high'

V/VI? Spray? Other??
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2) Why are open sterns (transoms) desirable at hiah speeds?

After all, for submerged slender bodies, there is generally a

positive form drag associated with open sterns.

Planing vessels have been rather extensively treated and
rather good methods based on theory exist for the prediction of

their performance, References 2 and 3; and the nature of their

resistance (spray and "induced") is fairly well understood for

slender surfaces, Reference 4. Strangely enough, however, there

does not seem to exist any theory pertaining to the flow about

high speed displacement ships, aside from preliminary theoretical

considerations, such as those of Ogilvie, Reference 5. Nor is

there a theory of transoms, except for the numerical calculations

of Van Eseltine and Haussling, Reference 6. We certainly have

*not found answers to the two most interesting and important

questions 1) and 2) above. Pertinent theory might not only

*answer these questions but provide methods for optimizing design,

- especially of the transom.

In view of this situation, the senior author initiated a

theoretical study of slender high speed displacement ships

*under ONR Contract N00014-80-C-0669, with the results described

below.

The theory is asymptotic to V/V = (no gravity), and

assumes B/H = 0(2) and B/L << 1.0. All of these conditions seem

realized in the high speed tests of Reference 1.

Most important, it is pointed out at the outset that the

solution to the problem is not unique and that the physically

*- realizeable solution involves in general, a "wake" flow behind

the ship which carries energy and therefore results in resistance.

This resistance is in general reduced by widening a suitable

transom, and may in fact be anulled by a suitable transom with
a width at the waterline equal to the ship's maximum beam.
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The theory is given analytical form and reduced finally to a

- boundary value problem in the cross flow plane, which must be

* solved for each cross section of the ship. A computer program

* is utilized to solve this problem and rather extensive cal-

culations of resistance made for ships comprising Series 64,

Reference 1. The results are excellent at the highest values

of B/H and not bad for other values.

The results seem important; they suggest: a) that the

* greatest part of resistance of high speed displacement ships

* is due to the stern (we call it "stern-induced" resistance)

and not to spray] b) that the "stern-induced" resistance may

* be eliminated through proper after-body design, and that the

* very existence of transoms lies in their ability to reduce such

* resistance; c) that the usual wave resistance problem is not

completely posed, that the solution is not unique, and that

* the solution normally taken in existing theory, at least at

high speeds, may result in physically unrealizable solutions.

Finally we point out that the theory may be applied to

ships with yaw, and suggest that a sideforce linear in yaw

results at high speed and can be calculated.

Directions for extension of the theory are pointed out,
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THEOAY

We are concerned here with slender ships (B/H = 0(2);

B/L << 1) operating at "high" speeds (Uo2/gL >> ). We assume

that the effects of viscosity are secondary. Consequently:

1) On the free surface, where p = constant, the speed q is

everywhere the same and equal to the approach velocity, Uo far

ahead of the ship. (q =VN/UF2 +-27 2 where U = U0 + u, v and

w are the (x,y,z) components of velocity, and where u,v,w = xy,z.

2) V2 o = 0 everywhere and V2
0 0 y + = 0; therefore

yy z
=R[P (x; z + iy)]. q Uo +

3) The free surface may be taken in the (x-z) plane (i.e.

at y H 0).

" 4) On the free surface, y =0: ox = 0, or _(x,o,z) = OW.

5) The free surface consists of four separate regions, see

Figure 2, a plan view. The entire free surface is S and the

intersection of S and the hull is N, which defines the waterline

*; shape. In So, the region outside the maximum beam: 0 = 0,

since 0(-w,o,z) H 0. In S1, the forward shadow of the ship:

0 = 0, except in a narrow boundary near N which is the spray

region Ss . In the narrow boundary layer Ss the flow on S1

(where w = 0) adjusts itself very rapidly to the condition on

N where

w U db
2 dx

i U / ?ii:: - , .
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(b(x) is the local beam of the waterplane). Physically, this

adjustment is experienced as a thin spray sheet. In S2, the
rear shadow of the ship there are two distinct possibilities:

L-. i) * =o

ii) z(x,Z) = (xz(N;z) where 0z(XN;Z) U° -2- A x [1]

The former possibility (i) would again require a narrow

boundary layer along N wherein the lateral flow would adjust

itself from its value on the hull to the value w = 0 in the

shadow. But the resulting solution requires (in this approxi-

mation) that flow detach from the hull with infinite vertical

velocity and move downward to reach the water level downstream.

In Figure 3 the free surface shape is shown schematically for

a section of the bow and of the stern, according to both i) and

ii) above. The "inverted spray" solution indicated by i) would

lead to a narrow but high sheet of water between the hull and

the wake surface everywhere along the stern and is not observed
in practice, while the "smooth" flow indicated by ii) seems

typical of observation, We therefore choose ii). This choice
is equivalent to imposing the Kutta condition at the trailing

edge of a slender wing or planing surface of waterline shape N.

6) As a result of ii), there exists in the entire rear
shadow of the hull, prescribed values of w on the free water

surface in S2 , see Figure 4.

7) On the hull surface:

v (UoX +o) • = 0 [2]

where n is the outer normal (vector) at any point on the hull,
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and is given by:

= (n ; ny; nz) (sino; -cosO cosa; cos8 sin)

where 0 is the angle between the vector nz + i n and n, and is
given by (the subscript M refers to points on the hull):

aYM

tanO = cost
ax

or,

x n n M [3],. , x  ny z

Finally, assuming x/Uo << 1, Equation [2] yields:

*y~U YM U 37M[4UzI Uo -- [4]

or, assuming in addition that cosO , 1:

aym azM
:-. On = Uo [cosa YM sina ][5

"n "o x x[5

* 8) Finally, in view of 1-7 above, the problem is reduced to

a set of two dimensional potential problems in the cross flow

plane as shown in Figure 5. Notice that the problem may be re-
placed by another which is equivalent, in which the hull beneath

* the water surface is augmented by its reciprocal above the
surface, such that the equivalent body is source free in the

far field, and may be represented by a dipole distribution;

- the flow is thus essentially wing-like. In this representation

w the surface S2 comprises a trailing vortex wake, and condition
ii) of paragraph 5 is mathematically equivalent to the imposition
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of the trailing edge Kutta condition in the case of a slender

wing, as noted earlier, The representation of the hull and its

reciprocal involves additional vorticity. At the transom, the

hull (plus reciprocal vorticity) plus free surface wake is shed

into the ships wake (plus its reciprocal) and manifests both the

lift acting on the hull (vertical momentum in the wake) and the

stern-induced resistance of the hull (kinetic energy in the cross

flow).

9) The narrow spray region S2 corresponds to the leading

edge region on a slender flat wing. In the latter case, the

inability of the flow to follow the wing (go around the leading

edge) leads to loss of leading edge suction and therefore to a

resistance which is non-zero in the case of separation at the

leading edge. The non-zero value of leading edge suction

follows from the nature of the singularity at the leading ellge

of the flat wing

(T w -iv ,where =z + iy)

In the case of a displacement ship with a vertical side at N,

then it can be shown that VP Z.n r~and that the waterline

d suction and therefore the spray resistance is zero in the present

approximation. This surprising conclusion would seem to be

borne out by our later comparison of predicted stern-induced

resistance with experiments.

- - - - - - - - - -
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SOLUTION

The flow about the ship, according to 2) above, can be

described by a complex potential,

S= ' (x; y, z) = c + ip

where T is an analytical function of c = z + iy. The complex

velocity is;

dV
V-'1=' (x; y, z) = w - iv

and the velocity field is given by,

V (Uox + N)+ =x; y; z = [u o + x; -I(Y')' R(Q')]

The complex velocity at each value of x may be represented

in terms of a distribution of a suitable Green's function:

V (;C fQ(x;cl) G

M(x) + M*(x) [6]

where Q(x; ,) represents the strength of the singularity distri-

bution due to the presence of the ship equivalent boundary,

M + M*. A suitable Green's function in the present problem is

the source;

G=

so that Q is the complex source strength.
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The contour M includes the submerged hull M and its re-

ciprocal Mu , and M* includes the vortex sheet on the free surface

S2 , Figure 5, where u= the overbar indicating the complex

conjugate.

If QZ is the source strength on M., and Qu on Mu, then Qu u u
QX satisfies the boundary condition on So (wO). Equation [6]

may thus be written:

S(x+- [7]

M, 2k M* 1

Since the integral on M contributes not at all to w on W*, then

on S2

Y(zi) = -2w(z,) , the latter being prescribed by [1],

Now, it is possible to show that,

-iei  ' = nis [8]

where s is the counterclockwise direction along the hull M£.

Combining [7] and [8]:

ja Qd 1  Qdr1  eic w(x;z )dz
R ie f 1 1 Q

2T Jkr(-c 1 ) 7- ) * (-z 1 )

[9]

for all on M2,  Since n (C) is known in terms of the hull shape,

see Equation [5], this represents an integral equation for Q(x;).K



. HYDRONAUTICS, Incorporated

-10-

The effects of the body 'shape and stern wake on S may be

decoupled by seeking;

Q=M + jY

where

R 2e a-md md[10

' Mt

for all C on M

R y d, 1  2 f/w(x;z)dz =0

M£ M*

so that the body boundary conditions in the absence of shed

vorticity are satisfied entirely by the hull source distribution,

m; and the effect of the shed vorticity is represented by an

additional induced vorticity distribution, y. These integral

equations, of the Neumann type, can be solved numerically for
Q( ) on Mt ,

To the slender body approximation, Bernoulli's equation

becomes:

p = - p(u2 + v 2 + w2 ) - pU x -po [1
(u0ax 0ax

The incremental lift (dLf) and resistance (dD) may be determined

from knowledge of the pressure acting on a transverse slice:

df =f p dz -pUo f dz [12]

j 0.,ax
M

6
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dD f dz PUo dz 113]
dx PnxTj x an

The total lift and resistance may then be approximated by:

Lf= fLd dx --pU °  dz [14]
f 0 ot

M

L

D D dx pU 1 - d z
MTi oo -0 0, a

1Mt

[15]

~ff
-pU dz dx

"•J-:.o M

• a
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I

RESULTS

Extensive numerical studies have made for ships of the form:

Ym(X z) = -h(x) - (z/) [16]

with

b ( (I n6  [17)

0 ( 7

The parameter nj characterizes the fullness of the ships

*cross-section. Parameters n2 , n, and n6 govern the waterline

profiles. Parameters n4 , n5 and n 7 determine the draft vari-

ations. Calculations of both the lift and resistance have been

made. However, in the following only the resistance results,

which are of particular interest, will be discussed in some

detail. The parameters n,, n2... etc are varied from a parent

. ship of the form:

n,= 0.4, n 2 = 1.0, n, = 0.5, n4 = 0.25

n= 0.5, n6 ; 0.87, n7 = 0.9

L B
10, B 4.0

where B and H are the maximum beam and draft of the ship. In

these Figures, the resistance has been nondimensionalized by

-pUo 2B2 and given by
0
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CD= pU2B2 D +CD [19]

in which CD1 and CD2 represent the contributions by the source

(hull alone) and the vorticity (trailing wake caused) distributions

respectively. The resistances due to source distributions (CD)

are generally small, so that the resistance calculated is largely
1"stern induced", accompanying the trailing wake from the aft

waterline.

The dependence of CD on ship cross section fullness is shown

in Figure 6. The values of CD are small for ships of very full

cross section and increase with increase in n, until it reaches

a maximum and then decrease with further increase in n,. The

effects of the parameters n2 and n3 (which determine the fullness

of the waterline profile) on CD are given in Figures 7 and 8.

The resistances are smaller for finer bows (larger n2) and fuller

sterns (smaller n3). The values of CD with various parameter

n4 and n. which largely determine the draft variations near the

bow and stern respectively are shown in Figure 9 and 10 and are

smaller for higher rake bows (smaller n. ) and sharper keel-rise

* sterns (larger n.). Although the effect is small over most of

* the range, In Figure 11, the strong variations of CD with

parameter n6 which dictates the location of maximum beam is

given. The resistance is smaller for the location of maximal

beam nearer to the stern. The effect of n7 , which determine

the draft near stern, on CD is shown in Figure 12. The resistance

is smaller for shallower sterns (larger n ). The dependence of

CD on length-beam and beam-draft ratios is shown in Figures 13

and 14, The resistances are seen to decrease with increasing

in length-beam and beam-draft ratio,
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The variations in resistances, except for parameters n 3 and

n6 are moderate for various parameter changes. The resistances

are very sensitive to the variations in n 3 and n6 as can be seen

in Figure 8 and Figure ii. The resistance can be reduced sub-

stantially if the maximum beam can be moved more toward the

stern (by decreasing n6 ). If the changes in beam near the stern

can be made more gradual (by decreasing n3), the resistance can

also be drastically reduced. These results seem to indicate

that superior ship resistance characteristics at high speed may

be achieved by proper shaping the waterline profiles around the

stern.

There results are consistent with the fact that a waterline

with maximum beam at the transom and with zero slope there

(db/dx = 0) will not create a trailing wake and will therefore

be free of resistance CD2. In fact n 0 0 at every point on

the transom then CD = 0 too.

Numerical calculations for ship forms very similar to those

of Series 64 high-speed displacement forms, Reference I are also

made. The values of various parameters for these computations

are given below:

n2 = 0.975, n 3 = 0.525, n = 0.25, n6 = 0.865

n,- 0.275, n. - 0.485, n7 - 0.91 0.55
for CB(block coefficient)

n, 0.65 , n. 0.525. n7 0.954 0.45

These series of displacement hulls have the same waterline pro-

files but have different draft variations for different block

coefficients. Comparisons between the calculations and the ex-

perimental residual resistance data (non-dimensionalized by

%pU 2 B2 ) measured at the speed length of five by Yeh (Reference

0
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1) are shown in Figures 15a and 15b. The results are generally

in good agreement, and especially for B/H = 3.0 and 4.0.

Certainly the results would lend general confidence to both the

theoretical developments and method of calculation.

....... ,....
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EXTENSIONS

The theory presented here applies in the limit of very high

speeds. A decrease in Froude number will involve both hydro-

- static and wave sources of resistance. The hydrostatic effect

on the transom is easily estimated. The waves must be the sub-

ject of additional theory, and an asymptotic theory (wavenumber

small) suggests itself and could prove effective in the regime

of high but finite speeds.

As noted in the introduction,' a sideforce linear in yaw or

sideslip develops due to the trailing wake and can be calculated.

The case of unsteady motions of the ship can be treated by

the same kind of theory, possibly including motions in waves

with forward speed (high speed limit).

And, finally, some of the startling results of the present

paper deserve experimental verification. In that case, trim

should also be calculated using the present results.

K.
F;.
i.
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SUMMARY AND CONCLUSIONS

1) A theory has been developed and reduced to computation

which applies to displacement ships in the limit of very high

speeds.

2) Transom sterns may be treated.

3) The theoretical treatment is based on treating the hull

as finite in beam and draft, but slender. It seems especially

appropriate in the case of high speed ships which typically have

large length/beam ratios.

4) In considering the consequences of the constant pressure

condition on the free surface at high speeds it is revealed

that two essentially different conditions can be imposed in the

region aft of the maximum beam of the ship (in its shadow).

One of these involves a thin shec.t of water flowing rapidly

down all along the aft waterline (inverted spray), and is dis-

carded as physically unreal. The other involves a smooth flow

at the aft waterline and a trailing wake (horizontal velocities

on the free surface in the shadow). It seems physically

realizable and corresponds to flows satisfying the Kutta con-

dition at the trailing edge of slender wings.

* 5) Calculations are made for ships of a highly variable

parametric form (seven constants) and the results given.

6) The trailing wake results in substantial residuary

resistance at high speeds for normal waterline shapes. This

is a completely new finding,

7) This residuary is typically reduced by widening the

transom and is minimized by taking the maximum beam at the

U transom with sides there parallel to the flow direction,

* A shallow dfraft at the transom is also indicated.
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8) A comparison of calculated results with the experi-

mental results of NSRDC Series 64 shows good agreement,

especially at the larger values of B/H (3 and 4) and lends

credence to the theory.

9) Extensions are indicated,

Li

6

6
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