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INTERPRETING MULTIPLE LOGISTIC REGRESSION

COEFFICIENTS IN PROSPECTIVE OBSERVATIONAL STUDIES

Summary

Multiple logistic models are frequently used in observational studies to

assess the contribution of risk factors to disease. In the presence of correla-

tion among risk factors, the estimated magnitude of a multiple logistic coeffi-

cient can become uncertain or meaningless. This paper highlights the problem

of interpreting a multiple logistic coefficient and suggests a procedure for

examining the total contribution of a risk factor to disease that includes a

direct association and associations that exist through relationships with other

antecedent characteristics. Examples are given, along with results that are not

immediately obvious when considering the multiple logistic coefficient alone.

Conclusions that are presented are important in biological studies if isolating

the effect of an antecedent characteristic is unreasonable in the presence of

confounding influences.

Running head: Interpreting Multiple Logistic Regression Coefficients

Keywords: multiple logistic regression, prospective observational studies, cot.-
relation, projected slope.
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Introduction

The multiple logistic model is a comon statistical tool used to analyze

data from prospective observational studies when the endpoint is a dichotomous

variable (1,2). For example, in the Framingham Heart Study (3), the endpoint

of interest is often whether or not an individual develops coronary heart

disease (CHD). If one is interested in the effect of triglyceride (TG) on the

probability of developing CHD, the first step might be to model this effect by

a univariate logistic analysis:

logit[p=probability of CHD] = log[p/(l-p)] = 0 +81(TG)

As reported in more detail later in this presentation, for Framingham males, an

estimate of 81 is 0.437 with p<0.05, indicating that TG is a significant univari-

ate predictor of CHD. One can now easily estimate the probability of developing

CHD given an individuals TG value. Furthermore, given two different values of

TG, TGI and TG2, one can also compute the odds ratio of developing CHD based on

the value of TG1 relative to the value of TG2. That is,

odds ratio = exp[B1 (TGi-TG2)]

Note that when 81 is significant, the odds ratio will be significarly different

from one.

At this point, most investigators would then consider a more complete analy-

sis, attempting to uncover the relationship between CHD and TG controlling for

covariables such a high density lipoprotein cholesterol (HDL-C), total choles-

terol (T-C), and Metropolitan relative weight (MRW). The investigator would

then fit the logistic model

logit [p-probability of CHD] - 0+1 (TG) 482(HDL-C) $(T.-c) 484 (MRW)

For the Framingham males, the estimataikr t#j ;i4 f %&jefficient for TG,
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B. is -0.183 which is not statistically significant (p>.lO). On the other

hand, the coefficient for HDL-C, B, is -0.048 which is statistically signifi-

cant (p<.05). The coefficient for T-C, 03, is 0.005 which is significant at the

0.10 level and the coefficient for R W, 04, is 0.002 which is not significant.

Having performed the above analysis, it is quite natural for the investiga-

tor to conclude that for Framingham males, while TG is a significant univariate

predictor of CHD, most of its predictive ability can be explained through HDL-C,

T-C and MRW. This is often phrased as something like, "TG is not a significant

independent predictor of CHD." The usual implied set of conclusions then fol-

lows:

a. Most of the effects of TG on CHD are explainable by HDL-C and to a lesser

degree the other covariates.

b. TG is an unimportant variable in the study of atherogenesis.

c. Altering TG to reduce CHD risk may be ineffective.

One purpose of this article is to show that in prospective observational

studies, the three conclusions outlined above can result in a misleading under-

standing of the relationship of TG to CHD. This dilemma is often encountered

and discussed in terms of confounding or multicollinearity (4-7). Our attempts

in this presentation will be to introduce a different perspective which will be

of use to epidemiologists in explaining the consequence of these misleading con-

clusions and what important information can be salvaged. The problem of course

is that in prospective observational studies, the predictor variables such as

TG and HDL-C are likely to be h.ghly correlated. For Framingham males the cor-

relation is -0.451 (p<O.OS). This means that for a given level of HDL-C, the

variation of TG may be small, so that it may be unlikely to expect that for a

fixed value of HDL-C that TG should have much of a relationship with CHD be-

cause information on TG is insufficient. As a result, the evidence is not

_ r .. . . ''r , " " ' i ' ! = " . ' .. .. ' " : -4
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available to support the three conclusions given above. In this instance and

in other examples that will be presented, it will be shown that from prospec-

tive observational studies it is often difficult to investigate the three con-

clusions if the studies are not specifically designed to do so. If, for example,

all levels of TG could be cross classified with all levels of HDL-C then such

conclusions are possible to consider. Cross classification of this type, how-

ever, is usually a goal of controlled clincial trials and is not commonly ex-

perienced in observational type studies.

The second purpose of this article is to provide a simple method for better

explaining the association of TG with CHD. We will define a statistic called

the projected slope which measures the effect of changing TG levels on the pro-

bability of developing OlD, while at the same time considering the effect of the

other covariates on CHD and the relationship between TG and these covariates.

The projected slope is not new and has appeared elsewhere (8). It has been shown

to be a useful statistic based on the same ideas used in path analysis (9) for

linear regression, and can be easily used in many analyses. We also provide

some additional examples from the Framingham data on the use of the projected

slope involving sets of risk factors for predicting OlD other than those already

introduced.

Along with the purposes of the paper described above, we acknowledge that

the limitations of multiple logistic regression mirror those that are exhibited

in the usual least squares regression situation. The multiple logistic model

receives special emphasis in this paper, not because it is characterized by any

unique statistical feature used in estimating parameters, but because it has

appeared in so many investigations linking risk factors to disease (10-15).

Furthermore, its recent introduction into widely used statistical packages (16,

17) has encouraged its use and the attendant need for the cautions and caveats
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that are given here.

Interpreting the Meaning of a Multiple Logistic Coefficient

V
Suppose there is interest in estimating a logistic expression for the pro-

bability of developing disease conditional on knowing two characteristics. For

every individual examined, a bivariate observation of antecedent characteristics

can be plotted as in Figure I along the x1 x2 plane. As an exuaple, x, night be

TG, while x2 might be HDL-C. The point (xli,x21) represents the observations

for the ith person: i.e., (TGiHDL-Ci).

These data points are observed at the beginning of a study, and when the

study has terminated a tally of healthy and diseased individuals is made. All

of the data are used to provide estimates of coefficients for a logistic equa-

tion. The resulting equation describes a response surface represented in Figure

I as a plane. The height of the response surface reflects the estimated risk of

disease for individuals who possess characteristics directly below the plane.

For the ith person with characteristics (xli,X2i), the probability of developing

disease can be estimated from the logistic equation and is represented by the

height of the arrow (the height falling somewhere between zero and one).

Suppose that the multivariate logistic regression coefficient associated with

x (TG) is zero, while that associated with x2 (HDL-C) is negative. Thus, x2 is

said to be inversely associated with disease while there is no association between

disease and x1 . This interpretation can be easily described geometrically by

considering Figure 1. Note that changes made parallel to the x1 axis, when x2 is

held fixed, do not affect the chance of developing disease, corresponding to a

coefficient of zero that is associated with xI. In contrast, changes made para-

llel to the x2 axis do affect the chance of developing disease. In fact, for a



given value of xi, increases in x2 will reduce the height of the response sur-

face and reduce the estimated chance of developing disease, consistent with the

inverse association between x2 and disease that is implied by the corresponding

negative coefficient associated with x2.*

The scatter of points in Figure 1 in which xI and x2 are unrelated might

well be observed in a controlled clinical trial. In this instance, it makes

sense to discuss the impact of holding one characteristic fixed and interpreting

the importance of another characteristic through the multiple logistic coeffi-

cient, because all combinations of characteristics have been observed and are

reasonable to consider. In this instance, unlikely combinations of characteris-

tics are not being created by holding one characteristic fixed and then adjusting

the other.

The data typical of prospective observational studies rarely result in pre-

dictors x1 and x2 which are unrelated. Correlations between risk factors are

the rule rather than the exception. Such an instance is described in Figure 2.

One can see that the data points represented in the x1 x2 plane tend to fall

along a line. For example, small values of x1 are related to large values of

x2. In contrast, there are no data points in which both x1 and x2 are near zero.

Clearly, it is not meaningful to discuss the effect of changing x1 while holding

x2 fixed, but it is just this assumption which is at the heart of the reasoning

used to support the three conclusions given in the Introduction; i.e., for given

levels of x2 we force unobserved differences in x1 that enable us to imply that

x is not independently related to disease. We are basing this decision on in-

sufficient data that is observed for fixed values of x2 .,

In Figure 2, unlike the example in Figure 1, the response surface no longer

rests above a sample of all combinations of values of x1 and x2, but behaves

like a teeter-totter resting on a locus of points projected up from the observed

r L-~sr'
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data. Note that the only area of the response surface that has any meaning is

that area directly above the observed data. This is true because the data are

insufficient to suggest that other areas of the surface adequately represent the

chance of developing disease. As in the usual linear regression problem, the

variances of the estimated multiple logistic coefficients are potentially in-

flated by the correlation between x1 and x2, and the instability of the response

surface, which may result in an uncertain indication of the importance of x and

x2 in predicting disease.

From Figure 2, two components that relate x1 with disease can be envisaged.

The first is a direct or independent effect or association. The second relates

x1 with disease indirectly via an association with x2 and the association x2

has with disease. Figure 2 illustrates that it is not clear how to interpret

the magnitude of the multiple logistic coefficient associated with the slope of

the lines in the response surface appearing in the same planes as the x1 and x

axes, because levels of x are related to levels of x2. In such an instance,

assessing the effect on disease by changing x1 is not realistic unless values of

x are also changed in a way that is observed in nature. To change x1 while

holding x2 fixed may exceed the limits of the data and may be contrary to what

is possible. This is where interpretation of the multiple logistic coefficient

of x1 becomes misleading because the independent component associated with

changing xI alone cannot be realistically separated from the co",onent represen-

ted by the indirect association that exists between xI and x2 and the relation-

ship x2 has with disease.

Thus, in the many practical situations in which the predicting characteris-

tics are highly correlated, interpreting the multiple logistic coefficient by

considering one characteristic held fixed while changing the other may be unrea-

sonable. One may be artificially producing unlikely combinations of character-

V7-7
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istics and formulating extrapolations that exceed the limitations of the ob-

served data. We feel that a more useful analysis of the predictive importance

of a variable should not hold constant the level of another variable to which

it is physiologically related, but rather, allow the characteristics to vary

simultaneously as they would be expected to biologically. As illustrated in

Figure 2, it would be important to consider not only the multiple logistic co-

efficients of x1 and x2, but also the slope of the line connecting the points

P and Q that lies above most of the data that are observed and the regression

line between x1 and x Consideration of the slope of the line designated by

P and Q is appealling because it is a function of the relationship between x

and x2 as well as their relationships with the disease. If, for example, the

characteristic x1 is altered, on the average, x2 will also be altered, and the

chance of developing disease will move along the line marked by P and Q. For

lack of a better term, the slope of the line connecting P and Q when written in

the logit scale will be called the projected slope.

The Projected Slope

The preceeding discussion has focused on the effects on logistic regression

due to correlation between predictor variables. This is, of course, a special

circumstance of what has been called multicollinearity or confounding, which is

a general issue affecting all nonrandomized studies. It is not our purpose

here to become involved in the controversies surrounding the problem of confoun-

ding. Rather than trying to discuss the independent effect of a predictor such

as TG, we will use the idea of the projected slope to try to see if a particular

variable has any predictive effect on the probability of disease. As mentioned

before, the development is based on the ideas of path analysis, which is often

3-3 =. .-.
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used in linear regression but not multiple logistic regression.

First, we suspect that there may be a linear relationship as in Figure 2

between x1 and x2. Specifically, we may think that x1 can be used to predict

x2; e.g., TG predicting HDL-C. This is written symbolically as

[1] x2 WlYI Xl1+

Conditionally, once we have observed xI and x2, we hypothesize a multiple lo-

gistic regression model:

[2] logit[probability of CHD] = 0O S1Xl+82x2

Informally, we could substitute the expected value of [1] into [2] obtaining as

an approximation

logit[probability of CHD] = (B0*Y02) + (Bl+Y102)Xl

It turns out, that 0I+Y1 2 is the projected slope associated with x .

The projected slope can be derived more formally as follows. If we take

two people exhibiting predictors (xli,x 2i) and (xlj,x2j) that appear along the

regression line between xI and x2 in Figure 2, the log odds ratio of developing

disease for these two people has expectation

(81 +Y102) (xIi-xlj)

It is clear that if BI Yy02=O, then the slope of the line connecting P and Q

shown in Figure 2 (that is projected up from the regression between x and x1 2
will be zero.

One way to better understand the meaning of the projected slope is through

consideration of Figures I and 2. In Figure I there is no effect of xI on the

probability of disease, as we have seen geometrically. Since xI and x2 are un-

related in this figure, yTIO. Further, the multiple logistic coefficient for

x is Bi0 . This means the projected slope is 0 YIB2 =0, indicating no effect

. . .2 .
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on the risk of disease due to differences in xI. In Figure 2, changing x1

should change x2 which in turn will change the risk of disease. Here, yl10,

0200, aIuO and the projected slope is yl82 as expected.

Details of estimating the projected slope from data as well as its defi-

nition when there are more than two predictors are provided in the Appendix.

A test of significance of the projected slope is equivalent to testing

Ho: B01+Y1 2=O. This tests whether or not x1 has any predictive effect on the

risk of disease. A discussion of the mechanics of making this hypothesis test

is also provided in the Appendix.

It can also be shown that in certain situations the estimated projected

slope for a risk factor is asymptotically equal to the univariate logistic re-

gression coefficient that relates the risk factor to disease (7). The asymp-

totic convergence of the estimated projected slope to the univariate coefficient,

however, is not guaranteed. Nevertheless, the consequence is that it can empha-

size the importance of the univariate coefficient. The advantage of considering

the projected slope is that in most situations the variance is smaller than the

variance of the univariate coefficient derived from a simple regression of

disease on the risk factor. Also, we are assuming a multivariate model and it

makes more sense to refer to estimates from such a model. An additional advan-

* tage is that the projected slope provides a descriptive partitioning of the

* univariate coefficient into explanatory segments that describe how a risk fac-

tor is related to disease both directly and through relationships with other

covariables. Notice in one of the examples above that the projected slope for

, xI was Y18200. This suggests that the magnitude of the univariate coefficient

* is solely attributed to the association of xI with x2 and the relationship x2

has with disease.

* . I .
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Example 1

In Table 1, the first example using Framingham data is given because it is

instructive and indicates a very desirable property of the projected slope for

potentially protecting against the overemphasis of a statistically significant

multiple logistic coefficient. Individuals in this example are followed for

26 years beginning around 1950 for the development of OlD. The predicting

variables of interest are height and weight. The significance of the multi-

variate coefficient for height suggests that for a given weight, tall people

have a reduced chance of developing disease. If nothing were known about the

relationship between height and weight, one might conclude that height is an

independent contributor to CHD. If height and weight were unrelated this would

be true. Height and weight, however, have a correlation of 0.276 (p<0.05) so

that for a given weight taller people are leaner, and it is not height that

effects CHD but the whole concept of leaness; i.e., height and weight considered

together. In this instance, one should be interested in the total contribution

of height to CHD; i.e., a direct association, as well as well as the association

of height to weight. Here, the multiple logistic coefficient for height is

01= -0.098, for weight the coefficient is 02 = 0.012, and the slope of the

regression between height and weight is yI = 2.892. Thus, the projected slope

is 0I+YI8 2= -0.063 and it is not significant. It is clear from the form of the

projected slope that the benefit of being tall (indicated by 01 a -0.098) is

reduced by the liability of increased weight that is associated with being tall

(indicated by 1 2 = 0.035), and that height is not a meaningful contributor of

CHD by itself.



Example 2

Example 2 is siLmllar to example I in terms of conclusions but is based on a

more realistic application of multiple logistic analysis. Here, T-C, TG, HDL-C,

MMW, systolic blood pressure (SEP), smoking, and age are examined in our Framing-

ham sample as risk factors for CHD with follow-up of subjects beginning around

1972 and lasting about 6 years. There is some belief that in older age groups,

such as that depicted by our sample, the relationship between T-C and CHD is

weaker than it is among younger individuals (18). In our example, the univari-

ate coefficient for T-C is consistent with this hypothesis since it is not

significant. In contrast, the multiple logistic regression coefficient for T-C

is significant. The latter implies that for given levels of the covariables,

high levels of T-C significantly increase the chance of developing CHD. This

interpretation, however, is misleading among our older sample because differ-

ences in T-C are commonly accompanied by differences in the other covariables.

The projected slope helps describe a more comprehensive relationship be-

tween T-C and CHD. From the Appendix, a general expression for the projected

slope of a variable x1 when there are p covariables is B1 y2 1 62+Y3B3+...ypl
8p.

Here, 0k is the multiple logistic regression coefficient for the kth variable.

The coefficient Ykl is the slope coefficient for xk regressed on xl. For this

example, we take xI=T-C, x2=TG,x3=HDL-C, x4=MRW, x5 = SBP, x6 = smoking status, and

xT=age. The respective estimates for Ykl' k=2,3,..., 7, are 0.003, 0.030, 0.023,

2 -0.005, 0.000, and -0.014. The respective estimates for 8k, k=1,2,..., 7 are

0.006, -0.261, -0.047, 0.006, 0.008, 0.216, and 0.029. Thus, the projected

slope is 0.003 and more in line with what is implied by the univariate coeffi-

cient and what is expected.

'I
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Among the covariables, it turns out that HDL-C is the most consistent pre-

dictor of CHD (p<O.05) and acts on CHD in a protective fashion. HDL-C is also

* correlated with T-C. The correlation is 0.092 (p<0.05). It would seem that

since high levels of T-C are accompanied by elevated and protective levels of

HDL-C that the effect of T-C on CHD should be diminished. If we look at the

contribution to the projected slope by the relationship between T-C and HDL-C

and the association HDL-C has with CHD, we see that the misleading magnitude

of the multiple logistic regression coefficient associated with T-C (repre-

sented by 01=0.006) is partially reduced by an amount equal to y3 103. This

reduction suggests that the liability of possessing higher levels of T-C are

mitigated by the likely presence and beneficial effects of also possessing

elevated levels of HDL-C. Here, it is the joint contribution between HDL-C

and T-C that is important and clearly taken into account by the projected

slope. Of course, relationships among the other covariables and CHD also in-

fluence interpretation of the projected slope. These relationships, however,.

exist to a much lesser degree and describing them would be superfluous.

Example 3

* We have to this point given examples indicating a useful property of the

projected slope in interpreting the predictive ability of a risk factor when

its multiple logistic coefficient is statistically significant. The pro-

jected slope, however, also has the property of potentially protecting against

the unwarranted undereaphasis of a statistically insignificant multiple logis-

tic coefficient as will be shown in example 3 using the Framinghm data with a

similar length of follow-up as example 2.

The third example was motivated by a paper (14) that questioned the

. * ... . .
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relationship of TG with OiD. The paper highlighted studies based on multiple

logistic regression models that indicated that TG is an insignificant indepen-

dent predictor of CHD. The paper concluded that the treatment of hypertri-

glyceridemia to alter the chance of developing HD may be ineffective. The

result was deemed important by the lay press and prompted close examination of

the issue at a workshop on hypertriglyceridemia where some of the cautions and

perspectives given in this paper were presented (19).

In the third example, the univariate coefficient for TG is significant, but

when HDL-C, T-C, and MRW are included as covariates, the significance is re-

duced. In fact, the magnitude of the multivariate coefficient has become so

distorted as to be negative. This finding, although enigmatic at first, is

largely attributed to the strong correlation between TG and each of the covaria-

bles (p<0.05). The correlation of TG with HDL-C was given earlier and is -0.451.

The correlations of TG with T-C and MRW are 0.276 and 0.227, respectively. The

direct interpretation of the multiple logistic regression coefficient implies

that for fixed levels of the covariables, changes in TG do not affect CHD.

But, on the average, differences in TG are often accompanied by differences in

all the covariables. At least one of these covariables, HDL-C, exhibits a

strong relationship with CHD (p<O.OS).

To improve our understanding of the relationship of TG with CHD we again

compute the projected slope using the notation in the Appendix. We first need

the slope coefficients of HDL-C, T-C, and MRW regressed on TG. These values

are, respectively, Y210-ll.855, Y 1 22.062, and y41=7.267. We also need the

corresponding multiple logistic regression coefficients for TG, HDL-C, T-C, and

MRW. These were given earlier in the Introduction. The estimate of the pro-

jected slope is then 01 y2 102 y3 103+Y4 1B4-0.Sll, more in line with a positive

association between TG and OHD that is commonly expected. The implication is

• .. .. .* ...... ° -. . .. ... !' I I
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that the physiologic relationships between TG and the covariables have changed

the magnitude of the importance of TG in a multivariate setting. Nevertheless

the total contribution of TG to CHD that includes a direct association and an

indirect relationship with CHD through the covariables, and especially HDL-C,

may still be important. This is clearly represented by the projected slope.

Here, the projected slope, which is significant (p<0.05), suggests that if ob-

servational data are useful for making clinical decisions that altering TG may

be an effective means of changing the risk to CHD.

Conclusion

In the investigation of an association between a characteristic and disease,

it is important to consider not just significance of a multiple logistic regres-

sion coefficient, but the total contribution that a characteristic has on the

development of disease. These contributions include those that are direct and

those that are shared among relationships with other characteristics. If this

is not the interest, then to isolate and-understand the effect of a characteris-

tic on CHD when it could be one of several interacting components participating

in a biological mechanism may be difficult.

The projected slope is used as a means to help show that the magnitude of

the multiple logistic coefficient is often difficult to interpret. The pro-

jected slope is meant to offer explanation and insight into the importance of

a significant univariate' coefficient and why a multivariate coefficient has or

has not achieved significance by way of relationships through the covariates

included in a logistic expression.

In example 1, the projected slope provided a comprehensive perspective that

--------------------------------------------
1



helped explain an important relationship between height and CHD. In the second

example, we discovered how the multiple logistic coefficient for T-C can be re-

duced, when among older individuals, elevated T-C may increase the capacity to

carry cholesterol in the high density lipoprotein class resulting iii a dimin-

ished association between T-C and CHD. In both of these examples, the pro-

jected slope has not only improved our perspective of disease causality, but

it has also protected us against the overemphasis of a statistically signifi-

cant multiple logistic regression coefficient. Furthermore, in example 3, the

projected slope has also shown how it can protect against the unwarranted un-

deremphasis of a statistically insignificant multiple logistic regression coef-

ficient. Here, TG has the potential for being thought of as an innocuous lipid

marginally related to disease. TG, however, is related to HDL-C, the latter

of which strongly influences the chance of developing CHD. Unless this rela-

tionship is taken into account as it is by the projected slope, the effect of TG

on CHD will not be understood and the benefits of reducing elevated levels of

TG will not be appreciated.

This presentation has shown that the magnitude of the multiple logistic

regression coefficient is uncertain when ither variables with a close physio-

*logic relationship are included in the multiple logistic expression and that

awareness of this possibility is important. Furthermore, attempting to iso-

late independent contributions to disease by examining the magnitude of the

multiple logistic coefficient may be misleading because of the confounding

influences shared among covariates. It may also be the case that these latter

influences and their relationships with a risk factor may define a metabolic

system that should not be broken down into components, but instead, considered

in its entirety.I. It is apparent that even if it were realistic to isolate risk factors, that
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to properly assess their independent contribution to disease would require that

enough observations on the risk factor be observed across all levels of the

other risk factors. This is often the goal of controlled clinical trials but

rarely ever occurs in nonrandomized or observational studies. It is clear that

if we have insufficient data on a variable for all levels of the other varia-

bles that we will lack the evidence to investigate the first two conclusions

of the Introduction. Indeed, the relationship of TG to CHD may be partially

explainable by HDL-C, but we lack the data to say that TG has an unimportant

direct relationship with CHD. Furthermore, if we do mistakenly assume that

the first two conclusions are true, we certainly cannot assume that the last

conclusion is also true. This is most evident in our example on TG where

changes in TG affect the chance of developing CHD.

The examples we have presented show clearly that the projected slope is a

useful device when used as a supplement for multiple logistic regression in

prospective observational studies. With standard computer packages, it is easy

to calculate and test. We believe the projected slope, similar as it is to the

well known area of path analysis, is intuitively easy to understand. While it

is certainly not the only way to deal with confounding and multicollinearity,

the projected slope is a useful tool for understanding important causal rela-

tionships between risk factors and disease.

7 77 7
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APPENDIX

When independent variables are correlated in linear regression, estimating

parameters and reducing the error associated with the estimates is often accom-

plished by using Stein estimates or ridge regression (20). Such methods to date

are not readily available for logistic regression and our interest is in esti-

mating not one parameter but a function of parameters. In this paper, the test

statistic for the significance of the projected slope is approximated by hy-

pothesizing a joint model for the ith class of individuals that share the same

values of xli and x2i;

[3] x2 i = +Y Xli C , and conditionally on x

(4] logit[Pi(disease)] u 
8

0 .8lXli+. 2 x2 i

Model [3] represents the linear relationship between xI and x2 illustrated in

Figure 2. The unconditional expectation of the log odds ratio for any two in-

dividuals in classes i and j falling on the regression line between x1 and x2

is:

logit[pi(disease)] - logit [pj(disease)] = (BI+1 yB 2) (x li-x j)

In this expression, x21 is replaced by its expectation, y0+Ylxli.

A test of significance of the projected slope is equivalent to testing

H0: 0 1+Y18 2=0. While the obvious estimates of BI,8 2 , and y1 can be used to

estimate 1 +.YI2, the following informal analysis is useful for computing a

test statistic for H . In order to test Ho, model [4] is rewritten with x
0 2

replaced with y OYiXli+El to give the following model.

[S] logit[pi(disease) ]  1

Here, 6 0 ,B0 +YO0 2

.7j A: *.'*
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61 = al , and

6
2 = 02

Thus, an equivalent hypothesis is H 6 = 0.
0 1

To test Ho , the coefficients of model I5] are estimated by regressing the

estimated class logits, y..logit[Pi(disease)], on x1i and ei , where

e W " and y and y are the ordinary least squares estimates

of Y and yI" Here, iterative weighted least squares (2) is used to estimate

61, 62' and 63.

Exact computations based on the usual linear model suggest that the esti-

mate, 61, of 61 is approximately unbiased (i.e., consistent and asymptotically

normal) for 81 Y102, but the estimated variance of 61 underestimates the true

22 2
variance by a factor of S2ac . Here, 02 is from model [4] and a is the vari-

ance of ci from model [3].

The magnitude of $2a 2 is negligible, however, in the examples considered
2 C

in this paper, primarily because the value of 82 is frequently much less than

one making the contribution of 02 small. Comparisons were made with bootstrap

methods of estimation (21), however, which give improved estimates of the vari-

ance of 61 and indicate that ignoring B2 a 2 does not appreciably alter statisti-

cal results provided by the simpler estimation procedure given above.

The technique used here is also easily extended to the case when several

independent variables are modeled in a multiple logistic equation. In this

instance, if xlx 2,..., x are antecedent characteristics, the test of the

projected slope (which becomes projected in a hyperplane), can be written as

H0 : 0IeY2 1 02 *Y3 1 83+..., ypl0p=O. Here, Ykl is the slope coefficient appearing

in the following model for the ith class of individuals.

Xki YkO*klXliCki
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The test of H is then extended by regressing the estimated class logits,

Yi zlogit[pi(disease)], on x ii, e 2i, e3ip .... I e pi, where e ki'X ki-YkO-Yklxli , and

ykO and ykl are the least squares estimates of ykO and ykl" As when only two

antecedent characteristics are included in the logistic model, the test for

H is equivalent to testing the logistic coefficient associated with xI in the

reparameterized analog to model [5].

a~ 7~

,I
IJ

I : ..,. :. ;, , , .r... .. .I . ..L '.. ,. . . .
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FIGURE LEGEND

Figure 1: The Probability of Disease, P(disease), Predicted from Uncorrelated

Risk Factors, x 1 and x 2.

Figure 2: The Probability of Disease, P(disease), Predicted from Correlated

Risk Factors, x1 and x.

I .*2*



Table 1. Logistic Regression Coefficients and Projected Slopes for Selected
Variables Used to Predict Coronary Heart Disease

Coefficient Projected Characteristics 2
Example Univariate Multivariate Slope Variable Covariance Group

1 -0.006 -0.098* -0.063 Height Weight Females
35-44

2 0.003 0.006 0.003 T-C TG Males
HDL-C 50-80

MRW4
SBP

Smoking
Age

3 0.437* -0.183 0.511* TG HDL-C Males
T-C 50-80
MRW

p<0.05 p<0.10

1HDL-C = high density lipoprotein cholesterol

MRW = Metropolitan relative weight

SBP = Systolic blood pressure
TG = Tryglyceride
T-C = Total cholesterol
Smoking status = yes or no

2Intervals denote observed range of ages

*1~
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