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Summary of Technical Effort

Speech compression techiques for very low data rate

compression are studied. The techniques are based on a

standard LPC analysis/synthesis (vocoder) system.

*- Significant advances are made in the quantization algorithms

to achieve bit rates of 200 to 400 bps.

Frame predictive vector quantization is developed to

compress the bit rate for the LPC model filter to under 250

bps. The vector quantization technique developed applies to

continuous speech and is independent of both speaker and

vocabulary.

An innovative LPC compression technique, matrix

quantization, is also developed to compress the LPC model

filter to a rate under 150 bps. The design is applicable to

continuous speech and unlimited vocabulary. At this stage

of development it is adapted to a single speaker, but

theoretically it can be generalized to a selection of

speakers or even the general population.

In comparison, the LPC filter in a standard 2400 bps

LPC-10 system is encoded at a rate of 1820 bps.

Fake process trellis coding algorithms are developed

for compressing the vocoder excitation parameters. The

results show that if these parameters are 'compressed

independent of the LPC model, an overall bit rate for under
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125 bps can be obtained while preserving the prosodic

information and natural quality of the speech. in

comparison, the bit rate of encoding these parameters in a

2400 bps LPC-10 system is 533 bps.

By combining frame predictive LPC vector quantization

with trellis coding of the excitation parameters, the

overall vocoder bit rate is reduced to under 400 bps. The

bit rate is reduced to about 200 bps by combining LPC matrix

* quantization with trellis coding of the pitch and gain

parameters.

Subjective evaluation of both the vector and matrix LPC

quantization approaches using the diagnostic rhyme test

(DRT) has been performed and the test scores are analyzed in

detail. The results indicate that the proposed techniques

are feasible for intelligible speech tranmission at bit

rates of 400 bps and 200 bps. Recommendations for

improvements to the algorithm for better quality and lower

complexity are also presented.
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1.0 INTRODUCTION

1.1 Background

For about a decade since the introduction of LPC

techniques [1-3] the bit rate of 2400 bps has become a

recognized lower bound for practical good quality speech

coding. A number of LPC vocoders have already been built

and some commercial models are already in use with reported

success.

A number of speech coders at bit rates of 1200 bps to

600 bps have also been developed [4-6] and are implementable

in real time. These systems are inferior to the 2400 bps in

quality but appear to be acceptable for communication

purposes. Their acceptability has yet to be demonstrated

through more tests and actual usage.

In the last few years, Oshika (7] and Schwartz et al.

(8] have reported the development of systems that operate at

200 bps or lower. These approaches are similar in that they

both exploit existing techniques in automatic speech

recognition. The belief is that there is no graceful

degradation from 2400 bps LPC to a 100-200 bps system.

Therefore, in these systems, the speech signal is compressed

to the phonemic level along with some prosodic information

such as pitch, gain and duration.
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The research on very low rate speech compression

discussed in this report is based on the recent development

of an optimal rate distortion vector quantization technique

(9,101. With the vector quantization approach, an 800 bps

LPC system has recently been implemented [6]. Trained to a

specific speaker, this design is equal in quality to

existing 2400 bps LPC systems. For a general population,

the -quality of the present version 800 bps system is found

* to be slightly inferior, but the degradation is graceful.

Conceptually, the basic theory involved in the

4 development of an 800 bps vector quantization coder points

to the existence of various speech coder designs below 800

bps. Of particular interest are the predictive vector

coding and the matrix coding techniques. A qualitative

review of vector quantization is presented below to motivate

the frame predictive vector quantization and matrix

quantization coding techniques.

Human speech perception can be thought of as an

information processing structure involving (i) acoustic

analysis, (ii) phonological analysis, and (iii) higher level

* . linguistic analysis such as syntactic and semantic analysis

(Fig. 1.1) [111. The phonemic and diphone approaches

essentially try to substitute the first two levels of the

processing structure with machine recognition, reducing

speech to the phonemic level. With the vector/matrix

approach, human phonological analysis is not replaced by
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Figure 1.1 Information Processing Structure of Human
Speech Perception.
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machine processing. Instead, a more fundamental approach of

efficient parametric coding based on minimizing a spectral

distortion measure is taken.

Vector quantization, or block quantization, has been

studied for several decades by information theorists and

communication engineers [12,13]. When applied to LPC speech

compression, vector quantization is the more appropriate

terminology because a vector here refers to a set of LPC

filter coefficients representing a particular spectral

model. Later in this discussion, the term matrix is used to

refer to a sequence of several time consecutive vectors.

To motivate the technique of vector quantization, we

first model the speech production process as a switched

source as shown in Fig. 1.2. It consists of a composite

source and a switch. In the composite source resides a

finite (but large) number of different short term speech

models. Each unit in the source corresponds to T sec (e.g.

10 msec) of speech. A speech signal is produced by

switching from one of the sources to another at T sec

intervals. This model is based on the common knowledge that

a speaker generally produces only a finite number of

perceptually distinct speech sounds, each lasting a short

duration of time, typically under 100 msec.

In the traditional technique of LPC speech compression,

each T sec of speech, f, is replaced by an LPC model f, a

gain, and a pitch value. The LPC coefficients are then

Uq
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quantized and transmitted. For a 2400 bps system, a set of

10 LPC coefficients typically requires 40-50 bits for

transmission. There are a number of serious inefficiencies

to such an approach for quantization. They are as follows.

(1) The LPC model f is extracted to minimize some

error criterion such as the likelihood ratio or the

Itakura-Saito distortion measure (14,17], but the LPC

coefficients are quantized according to an error criterion

on the coefficients. There is an inconsistency in the

criterion, since minimizing the coefficient error does not

lead to minimization of the spectral error criterion, and it

certainly does not minimize the overall distortion between

the speech spectrum f and the quantizer output f.

* (2) Adopting the switched source model, 40-50 bits can

'.0 S0
theoretically encode from 2 to 2 different spectral

models! In reality, we can safely assume nobody produces

more than several hundred perceptually distinct speech

sounds. There is obviously great inefficiency in the scalar

quantization of LPC coefficients. The causes are found to

be the following:

(i) A vast majority of the different LPC coefficient

vectors allowed by the scalar quantization tables never

occur in encoding actual LPC models. From the

viewpoint of vocal tract modelling, most of the vocal

tract configurations allowed by the scalar quantization

tables are not realized by human speakers.

6-
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(ii) LPC filter with different coefficient values are coded

as different with scalar quantization. However, quite

often two LPC filters with different coefficients

correspond to very similar spectra. Such LPC filters

should be consolidated into one LPC model in the

quantizer.

The logical approach to eliminating these

inefficiencies is to quantize the LPC coefficients one

vector at a time and to quantize them according to the same

error criterion used in LPC analysis. Thus an optimal
vector quantization LPC coding system has been developed

[9]. Such a system consists of a codebook of LPC vectors

and a search algorithm (Fig. 1.3). Each incoming vector is

compared to each codeword (prestored LPC vector) in the

codebook until the best match according to a distortion

measure criterion is found.

The codebook is obtained by a clustering procedure

which minimizes the average distortion for a large training

data base of LPC vectors obtained from real speech. For the

given training data base, the codebook achieves a local

minimum in average distortion. The minimum is local because

the clustering process depends on the initial conditions of

the clustering process.

If the training data base is adequately large, the

codebook generated from it will perform equally well for any

input speech. Based on the vector quantization technique,
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an 800 bps LPC vocoder has been implemented and fully

demonstrated to be feasible for very low rate speech coding

[6]. At the frame rate of 44.4 frames/sec, 10 bits/frame

are used to quantize the LPC model, thus allowing 210 (1024)

different spectral models to be transmitted. The average

distortion performance of a 10-bit vector quantizer is found

to be comparable to a 27 bits/frame optimized scalar

quantizer. The perceived quality is considerably better as

discussed in [10].

The code words in the vector quantization code book

4 have been found to be very similar in function to the

allophones (variations of phonemes) used in phonemic

synthesis. Fig. 1.4 is a plot of the first two formants

(Fj,F 2) of a 5-bit (32 code words) vector code book. The

dots are the F1 and F2 values of the 32 code words, and the

ellipse-like cells correspond to Peterson-Barney phonemic

spaces for the standard American English vowels [15]. An

. important point to note here is that while vector

quantization leads to an allophonic-like classification of

speech spectra, the coding is performed entirely at the

acoustic level based on a spectral distortion criterion.

The system, therefore, does not attempt to replace the
phonological process of the human listener. This is why

under a number of channel and ambient noise conditions, the

800 bps system has been found to be just as robust as the

2400 bps LPC approach [6].
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While vector quantization has reduced the LPC vocoder

bit rate by 2/3, it has not removed all of the obvious

redundancies in the code. Techniques can therefore be

developed to achieve even lower rate speech compression

using vector quantization.

Further reduction in the bit rate for coding the LPC

coefficient vector exploits the following remaining areas of

redundancy or inefficiency in the vector quantization

approach to the 800 bps system.

* (1) It has been shown that the quantization codebook

for unvoiced frames need not be as large as that for voiced

speech (6]. Therefore, if variable rate transmission is

applied, the present bit rate can be further reduced.

(2) Natural pauses exist even within a very short

duration (less than 1 second) of speech. Such pauses can be

identified and encoded with the gain and voicing codes, and

no LPC vector code needs to be transmitted. With variable

rate coding, significant bit reduction can be obtained.

(3) In the present vector quantization approach, frame

to frame redundancy in the LPC model has not been exploited.

Two techniques which can reduce the bit rate by a factor of

2 to 4 are:

(i) frame predictive coding and

(ii) matrix quantization.

A matrix here refers to a sequence of time consecutive LPC

coefficient vectors.
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It is relatively straightforward to reduce the first

two types of redundancy, in the vector code. However the

achievable bit rate reduction is minor compared to that from

reducing the frame-to-frame redundancy of the LPC vector

code. it is also interesting to note that all of these

techniques lead to either variable rate transmission or

synchronous transmission with increased delay. Such a

consequence is inevitable because speech is a variable rate-

information source, so any efficient coding technique must

* also be variable rate.

1.2 Report Outline

Two techniques for reducing the time redundancy of the

LPC code have been studied. The frame predictive vector

quantization approach is discussed in section 2.0. The

matrix quantization approach is discussed in 3.0. With

these compression techniques, the bit rate for encoding the

LPC spectral model is reduced by 501 or more.

* To preserve the prosodics and natural quality of the

speech, excitation parameters for the synthesizer, namely

pitch, gain, and voicing must also be transmitted. The fake

* process trellis coding technique has been studied for very

low rate compression of these parameters. The theory and

results are discussed in 4.0.

* Formal subjective evaluation of the frame predictive



vector quantization and matrix quantization techniques have

been conducted to verify the intelligibility of the speech

output of these systems. The results are discussed in 5.0.

Conclusions and recommendations for efficient speech coding

based on the techniques developed in this study are

discussed in 6.0.

4
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2.0 FRAME PREDICTIVE LPC VECTOR QUANTIZATION

It has been shown that vector quantization is near

optimal in its distortion performance for encoding LPC

coefficients. The vector code is also nearly optimal in its

discrete memoryless source code entropy [101. Higher code

efficiency is thus attainable only by exploiting frame to

frame redundancy in the LPC coefficient vectors.

It is well known that speech is a variable rate

information source and that some phonetically stationary

sounds may be sustained for over a hundred msec. Several

techniques, such as frame repeat or frame fill coding, have

been proposed (4,16] to take advantage of this fact. It has

been reported that significant bit rate reduction from the

standard memoryless design, sometimes as much as 50% for

scalar quantization, can be achieved. A frame repeat coding

system for vector quantization is developed to study its

effectiveness for bit rate reduction.

For efficient coding, significant bit reduction can

also be made on the coding of pitch and gain information.

This topic will be discussed in Section 4.0.
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r 2.1 Frame Repeat Coding Design

A vector quantizer maps each input LPC model vector x

onto an index J. The index designates the codeword yj in a

codebook C=jy.} which best matches the input vector. In

short, x=yj. The frame repeat operation for such a vector

quantizer can be described as follows. Let x(n), x(n-1),

x(n), and x(n-l) denote the current input vector, the

previous input vector, the current quantizer output vector

(to be chosen), and the previous quantizer output vector,

respectively. The quantizer output vector is always one of

the prestored codebook entries. Let the quantizer output

for x(n-l) be denoted by.x(n-l)-yj. With a given distortion

threshold t, frame repetition occurs (i.e. x(n) is mapped
A A

into j, so that x(n) - x(n-1) - yj) when either one (or

both) of the following conditions is met:

2i) d [x(n) , x (n-1)I] < t;

ii) d[x(n), yj] - min d[x(n), yi]

where d(.,.) denotes the distortion measure for the vector

* quantizer. When frame repetition is performed, no codeword

index has to be sent for the new frame, thereby reducing the

overall bit rate. However, a 1-bit/frame repetition flag

(repeat/no-repeat) must be transmitted.
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2.2 Experimental Results

A test speech sample of 400 frames was processed to

investigate the performance of the above frame repeat vector

quantizer. The likelihood ratio measure [14,17] with full

search vector quantization (9] was employed. To investigate

the relationship between performance and codebook size,

three sets of codebooks, 6-bit, 8-bit, and 10-bit in size,

were tested. Each set consists of two codebooks, one for

voiced speech and one for unvoiced speech. For each

* codebook size, threshold (t) values ranging from 0.0 to 0.8

in 0.1 increments were tested. It is important to note that

these codebooks were obtained using a full ,scale

multi-speaker training speech sequence (consisting of over

thirty thousand LPC vectors). The average distortion would

be lower than those reported here if the codebook is

specifically trained for a single speaker.

The percentage of frames repeated plotted against the

repetition threshold for three codebook sizes is shown in

Fig. 2.1. As expected, all three plots are monotonically

increasing functions of the threshold t. It is observed

that in terms of incremental effect on the repetition

percentage, threshold values of tZ0.4 is desirable for all

codebook sizes. For smaller threshold values (t<0.4), the

percentage of repetition is higher for smaller codebooks,

V which is primarily due to repetition condition (ii). That

...
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is, even though the spectral change for the input vector

from, for example, frame n-i to frame n has exceeded the

threshold, no better matched codeword can be found in the

codebook, so the same codeword is assigned to frame n. In

other words, the codebook resolution is not fine enough to

capture the change.

In Fig. 2.2, the average distortion for all three

3odebook sizes is plotted against the average number of bits

(inclusive of the repetition flag.) The average distortion

as expected, is a monotonically decreasing function of the

average number of bits per frame for a fixed codebook size.

The trade-off between codebook size and the threshold

for repetition is analogous to that between frequency and

time resolution. To achieve a given bit rate, a large

codebook will require a higher percentage of frame

repetition and thus a higher repeat threshold. The output

of such a quantizer will have accurate spectral features

when a new vector code is sent, but due to more frequent

repetitions time resolution will be compromised. The

reverse is true for a smaller codebook, where fewer frames

are repeated, but the quantizer output spectrum is not as

well matched to the input even when a vector code is sent.

From the three curves in Fig. 2.2, it is seen that for

a fixed codebook size, the incremental performance gain

(i.e. drop in average distortion) decreases with the bit

rate. To achieve an average distortion of about 0.3 or

S•



21

w U. 0

0I

w0

0 4J
co U)

w I-
0 CD..*r
Q 0 - t- L. t

o

0 0 )

04

0 0 I-1

Ir w

o~c 0 0

0

NOI.bOiSIa3 39V3AV $

.1-



22

less, a 6-bit codebook is simply not adequate; an 8-bit or

10-bit codebook would have to be used. Intersection of the

curves for the 8-bit and 10-bit codebooks occur at the

average rate of 7 bits/vector; for a lower bit rate an 8-bit

codebook yields better performance (i.e. a lower average

distortion), but for a higher bit rate, the 10-bit codebook

performs better.

In achieving an average rate of about 250 bps for the

LPC vector code (i.e. 5.6 bits/frame at 44.4 frames/sec),

several configurations appear to be possible. These

configurations are listed in Table 2.1, together with their

expected distortion performance and average bit rate for the

test speech sample. The average bit rate is computed based

upon a standard frame rate of 44.44 frames/sec.

A demonstration of frame repeat coding is included in

the audio tape accompanying this report. The speech sample

is not the same as that used to obtain the results of Table

2.1. For the demonstration speech sample, a likelihood

ratio threshold value of 0.6 is used, yielding an average

bit rate of 228 bps for encoding the LPC coefficients. The

output speech quality is informally judged to be very close

to the 800 bps vector quantized LPC synthesis [6]. See

Appendix A for the tape list.

Based on the results presented above, it is concluded

that vector quantization with frame predictive coding can

achieve bit rates below 250 bps. A formal subjective

evaluation of the system will be presented in Section 5.0.

U0. .
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Codebook Threshold Average Distortion Average Bit
Size Performance Rate (bps)

6 0.3 0.374 238

6 0.4 0.38 230

8 0.6 0.32 253

8 0.7 0.348 234

8 0.8 0.363 220

Table 2.1 Several Configurations for Quantizing Spectral
Coefficients with Frame Repeat Vector Quanti-
zation.

ff!.m w
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3.0 LPC MATRIX Q3ANTIZATION

In the switched source model for speech production

presented in Section 1.0 (Fig. 1.2), the switch changes

state randomly every T sec.. In a more realistic model of

speech production, the switch must not change from any state

to the next arbitrarily. Given that only a small set of-

target phonemes are intended by the speaker and that the

articulatory transition from one phoneme to the next must

e follow a certain path, it is postulated that a finite number

of transition vector sequences are adequate to construct all

of the speech sounds produced.

A natural extension to the vector quantization

technique is, therefore, to assemble the LPC vectors into

NxM matrices X(n), where

M(n) - (x(n-N+l), x(n-N+2)..., x(n)),

x(i) - An Mxl vector of LPC coefficients for frame i,

(Mmorder of the LPC filter),

and N - number of vectors in the matrix,

so that the time duration of the matrix a NT sec. Each

matrix is treated as the basic unit for quantization.

A block diagram of the matrix quantization system is

shown in Fig. 3.1. There are three key components in the

design. An analysis and segmentation algorithm -transforms

the speech signal into LPC matrices. A data base of actual
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the speech signal into LPC matrices. A data base of actual

speech data is segmented and transformed into a large set of

matrices obtained from real speech, which is labeled as

training data in Fig. 3.1. The codebook consists of

codeword matrices which represent all possible naturally

occurring transition segments in speech. In actual

operation, the input speech is analyzed and segmented into

matrices with the same algorithm used during codebook

generation. Codebook search is then carried out to find the

codeword matrix which best matches the input matrix. The

matching is performed according to a well defined spectral

distortion measure between two matrices. It is the index of

the best match codeword that is transmitted. At the

receiver, this index is used to retrieve the same codeword

matrix for synthesis. The matrix is then used to synthesize

a segment of speech with a standard LPC synthesizer.

In addition to the matrix code, timing information on

the matrix must be transmitted. The synthesizer excitation

parameters, pitch, gain, and voicing information, must also

be extracted and transmitted. This section will concentrate

on matrix quantization of the LPC filter information.

Encoding of the pitch and gain information will be discussed

in 4.0.

In developing a matrix quantizer, a segmentation

algorithm must be developed to assemble the LPC vectors into

matrices. Then a distortion measure must be defined for
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comparing two matrices. Finally, a codebook generation

procedure must be developed.

A fundamental issue that is critical to the feasibility

of the matrix quantization approach is whether a codebook of

reasonable size can in fact produce good quality synthesis.

We postulate that for a large but limited vocabulary

(500-1000 words and phrases), a codebook of 1000-5000

codewords should be adequate for producing intelligible

speech.

Given that a 10-bit vector quantization codebook (1024

vector codewords) can produce very intelligible vocoder

speech, the number of vector codewords representing only

steady state sounds must be significantly smaller than 1024.

The lower bound for this number is the total number of

sustained vowels and consonants (or sustained sounds within

a consonant, such as the aspiration for a plosive) in

English which is below 40. If we assume M such codewords

are adequate (M>40), then the total number of transitional

sounds which connect one steady state sound to the next must

be reasonably close to M 2 for a general vocabulary. In

fact, since not all such transitions occur naturally, the

lower bound is below M 2 .  Based on these estimates, the

lower bound on the matrix quantization cod~book for a

general vocabulary is estimated at about 1600. For a

limited vocabulary, the lower bound is estimated to be close

to 1000.
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Having argued that the matrix quantization approach is

feasible for speech coding, such a system for coding LPC

models is designed and implemented. The details are

presented below.

3.1 Matrix Quantization Design

Analysis and Segmentation

While it is helpful to tbink of speech information in

terms of phonemes, they are very difficult to segment and

identify acoustically because they are not articulated

independently, but are articulated in groups to form

syllables, words, or phrases. 'It is thus easier to define

speech segments according to acoustically observable events

such as speech onset, speech offset, steady states, and

transitions. By defining onsets, offsets, and the centers

of steady states as segment boundaries, both isolated or

connected speech can be segmented into transition matrices.

Each matrix is made up of a sequence of vectors beginning at

a speech onset point or steady state center and ending at

the next steady state center or speech offset point. The

duration of such matrices may vary from 50 msec to over 300
mset,

The above definition of segment boundaries may also be

argued from the viewpoint that speech is a variable rate

information source, and the information resides mostly

0e
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within transitions in the speech signal. Therefore, the

basic units for coding should correspond to speech

transitions.

To transform the speech signal into transition

matrices, tenth order LPC analysis at a frame rate of 100

frames/sec is first performed. The analysis window length

is 16 msec; pre-emphasis with a factor of 0.9 and Hamming

windowing are applied to the signal before autocorrelation

computation. The autocorrelation terms are transformed into

a set of reflection coefficients with the Levinson recursion

4 algorithm [3]. A set of excitation parameters, namely

pitch, voicing, and residual energy values, is also

extracted for each frame of speech. The speech signal is

thus transformed into a sequence of LPC vectors and

excitation parameter vectors. The next step in the process

is to assemble the LPC vectors into transition matrices with

a segmentation algorithm.

Segmentation is based on the discrimination between

speech and non-speech signals (pauses) and between

steady-state and transition speech sounds. The

discrimination algorithm is based on a subset of the

parameters extracted by standard LPC, namely the filter

reflection coefficients, the voicing decision, and the

speech rms (gain) value.

Speech/pause discrimination is primarily based on the

gain and voicing features. A voiced frame is automatically
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defined as speech. A maximum likelihood pattern classifier

based on gain is used to discriminate pauses from speech.

For such a single parameter case, the classifier reduces to

a simple threshold test. If the gain value exceeds a

threshold, the signal is classified as speech. The gain

threshold should be adaptively adjusted so that the

algorithm can operate under different noise environments.

It may also be desirable to include acoustic features such

as zero-crossing count, and the first one-to-two LPC

coefficients into the pattern classifier. However, in our

initial design, a fixed gain threshold is used. The

decision made by the threshold test is then processed by a

smoothing algorithm which eliminates speech or pause

segments that are under 50 msec. in length. This smoothing

procedure eliminates fluctuations in the speech/pause

decision during transitions or due to background noise and

voicing decision errors. Based on the above speech/pause

* classification results, decisions on speech onset and offset

points are made.

e Steady-state/transition classification is primarily

based on a spectral variance measure defined as follows.

Denote the LPC vectors extracted from the signal at every T

sec by x(n), then the spectral variance at index n is

given by

* n+L
ad (n) " L [ d[x(j),x(n)j (3.1)

j, ,n-L

S'
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where L-3, and d[,] is the COSH distortion measure [17].

The COSH measure is defined as

d[A1,A2I = Jl cosh[v(e)]-l d (3.2)

where
v(M) = In (1/1 A (eje) 1]

ejv 8 M e-Jv (e)
cosh [v(8)] =e + e

2

and A1 (z), A2 (z) are the linear prediction all-zero fiters

in z-transform notation. Note that the arguments x(j) and

x(n) in (3.1) may denote any one-to-one transformations of

the LPC filter coefficients (such as reflection coefficients

or the predictive filter A(z) coefficients), but the COSH

measure will always be defined in terms of the all-zero

predictive filter A(Z) as shown in (3.2).

Heuristics for detecting dips and valleys in the ad

contour are applied to locate steady state sounds. The

algorithm is as follows:

(1) A fixed COSS threshold value of 0.45 is set to

detect strong steady state sounds. In general, two LPC

* filters with a COSH measure under 0.3 are perceptually

indistinguishable. Over seven frames, a spectral distortion

variance of ad(n)<0.45 indicates a highly stationary speech

4J segment of 70 msec (for L-3) and n is situated at the center

of such a segment. Frame n is thus labeled steady state.

All other frames for which ad(n)>0.45 are tentatively

labeled as transition until detected otherwise by a number

I
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of other criteria.

(2) If ad (n) consistently stays below 0.45 for over

seven frames (corresponding to a steady state segment of

about 130 msec), then a search for a local minimum is

performed. Such a minimum very likely corresponds to a

transition. The reasoning is that long (>100 msec) segments

of slow spectral change often correspond to slow phonemic

transitions such as those found in diphthongs and final

vowels. If a (n) is detected to be a local minimum, frames
d

n-l, n, n+l are all labeled transition. Such a transition

segment will not be eliminated by post-processing.

(3) While a steady state sound usually corresponds to

a dip in the ad contour, there may not exist a true minimum.

A *soft minimum* criterion is thus established to detect

such dips. The criterion is as follows: Frame n is defined

as a Usoft minimum" if

ad(i) ! 2 ad(n) for i - n±2, n±3

adCi) 0.9 ad(n) for i - n±l

Such a soft minimum is labeled as steady state.

(4) An abrupt drop in the spectral variance contour is

detected at location n when

n-i

I- a d(n)Iii-n-4 >C,

n 2

Sad (n)
im-n

• .. -
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where C is set to 4.0. Frames n, n+l, and n+2 are labeled

steady state. Similarly an abrupt rise in the spectral

variance contour is detected when

n
ad a(n)

in-2 < l/C

n+4 aden)
i--n+l

Frames n-2, n-l, and n are labeled as steady state.

(5) After the decision process of (1) through (4),

long transition segments that are over KT sec long are

further processed to locate possible steady state segments

within. In this study, T - .01 sec and K is set to 18.

A running average ma(n)

n-I

m (n) ----~1 d(i)
i-n-K

is computed, and frame n is labeled steady state if

ad(n) < 0.5 M (n)d a

After the detection of speech onset/offset and steady

state center points, a segment is defined as any speech

interval beginning at an onset point or a steady state

center, and ending at an offset point or a steady state

center. Final smoothing algorithms are then appliee to

alter segments that are too short (<50 msec), too long (>300
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msec), or contain too many (>3) voicing transitions.

An example of the segmentation results is shown in

Fig. 3.2. The onset and offset points are labeled in the

bottom plot of the figure. The unlabeled vertical bars in

the plot mark the end and beginning of segments at steady

state centers.

Codebook Generation

A database of speech is first collected. Such a data

base must contain at least several occurrences of each word

in the vocabulary being considered. For continuous speech

C processing, each word should occur under different

syntactical and contextual environments.

Standard LPC analysis is peformed at a rate of 100

frames/sec. so that each vector represents the short term

spectral model for 10 msec. of speech. The segmentation

algorithm described above is applied to collect the vectors

into transition matrices. Codebook generation is performed

using a minimax criterion.

Denote each transition matrix by b(i), and the

collection forming the training database by {b(l),...,b(N)}.

The first training sample b(1) forms the first initial code

word w(l). A new training sample b(2) is then compared to

w(l), if the spectral distance d [w(l), b(2)] is less than

some threshold t, no new codeword is created. Otherwise

b(2) becomes a new word, i.e. w(2) - b(2). This process is

continued for i=3,..., N. At each stage, the new matrix
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b(i) is matched to all codewords stored prior to processing

it. The maximum distortion for encoding any matrix b(i) in

the data base is thus less than t. By varying t, the

codebook size can be controlled accordingly. Initially a

large value is selected for t to prevent overflowing memory.

Then t is reduced until the desired codebook size is

obtained.

Time Wargin

Note that b(i) and w(j) may be of different lengths.

To compute the distortion d[w(j), b(i)]# dynamic

* (non-linear) time warping is applied so that d (,] is

accumulated over the optimal warping path for some

prespecified continuity and range constraints. The topic of

dynamic time warping is very well covered in the literature

[18,19,20] and will not be discussed here. The optimal

dynamic programming approach is adopted in this study. The

continuity condition (slope constraint) selected is the

simplified path with slope intensity P-1 as defined in (181.

No global range constraint [201 other than that implied by

*e the continuity condition is applied. The distance measure

used is the COSH measure defined in equation (3.2).

The non-linear time warping algorithm (with optimal

dynamic programming) is very computationally intensive.

Therefore, each input matrix is pre-compressed to a minimum

length by eliminating any vector which does- not vary

significantly from the vector preceding it. Subjective
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listening experiments have shown that a COSH threshold value

of 0.4 will eliminate most redundant frames and still

preserve all perceptually significant information. With

this threshold, about 50% of the speech frames (at 100

frames/sec.) are eliminated, i.e. a segment is in general

reduced by half, and the computation approximately by 3/4.

To satisfy the time warping continuity and range constraint

conditions, codewords that are too long (> twice the length

of the input matrix) or too short (<1/2 of the input matrix)

are not compared to %he input. This further reduces the

computation considerably. Other techniques such as aborting

unlikely warping paths or discarding unlikely candidates

before completing the optimal path search [19], may also be

applied to reduce computation time.

Quantizer Simulation

In a matrix quantization speech coding system, a copy

of the codebook is stored at both the transmitter and the

receiver. At the transmitter, for each input matrix b(i) of

LPC vectors, the code word w(j), which minimizes the time

warped spectral distortion d [w(j), b(i)], is found. The

code word w(j) is then assigned to b(i) and the index j is

transmitted for b(i).

In addition to the matrix code index, timing

information must be transmitted so that the codeword w(j)

can be warped to the right length at the receiver. At a

minimum, the duration of the input matrix (50 msec to 300
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msec) must be transmitted. This would require 4 bits

(rounding to the nearest 20 msec) or 5 bits (rounding to the

nearest 10 msec) for each matrix. At an average rate of

about 8 matrices/sec (with no pauses) the bit rate for

duration information is 32 to 40 bits/sec.

If the timing information is to be exactly encoded, the

dynamic time warping path and the pre-compression timing

information must be combined to yield one of three options

for each input frame: repeat the last codeword frame,

advance one codeword frame, or advance two codeword frames

0 (i.e. skip one codeword frame). Since for the continuity

condition selected the skip option cannot occur successively

for two frames, eight possible timing patterns are possible

for every two frames (corresponding to 20 msec), requiring 3

bits for encoding. If no pauses occur, then a rate of 150

bits/sec is needed to exactly encode the time warping path.

Such a high bit rate for transmitting timing information is

clearly unnecessary. It is estimated that simple coding

techniques can be applied to reduce timing information to a

rate of 50-75 bps. The combination of matrix and timing

code will then be under 150 bps.

At the receiver, the matrix code j is used to retrieve

w(j). An output b(i) is obtained by time warping w(j)

according to the timing information. The quantized LPC

matrix b(i) is fed to the synthesizer to produce the output

speech.

S
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3.2 Experimental Results

An LPC matrix quantization system as described in 3.1

has been fully simulated in Fortran. All computation is

done in floating point and no attempt is made at this phase

of the study to compromise performance for speed or

simplicity. The intention of this study is to verify the

validity of the matrix quantization concept.

A data base of about 16 minutes of speech from a single

male talker recording is used as the training data for

4 generating the codebook. The data base includes single

words (of one to many syllables), short phrases, and

complete sentences that are typical of cockpit

communication. The vocabulary consists of approximately 450

words. The speech is digitized at 8 KHZ, and after analysis

and segmentation processing, 3478 transition matrices are

obtained with an average length of 130 msec/segment (or 13

LPC vectors). For this recording, there are only about 3.6

segments per second because the recording contains long

pauses between utterances.

The transition matrices are used to generate a codebook

with the minimax criterion. The COSH distance measure, and

an optimal dynamic time warping algorithm (with symmetric

distortion, and a simplified path for P-1 (18]) are selected

in computing the distance between two matrices. The minimax

procedure described in 3.1 is used to generate the codebook.

a
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The training data is collected into groups of

monosyllabic words, disyllabic words, trisyllabic words,

multi-syllabic words, short phrases, and sentences, so that

they may be processed by the codebook generation program in

that order. In Fig. 3.3 the ratio (in percentage)

number of codewords generated
total number of training matrices processed

is plotted against the total number of matrices processed.

It is seen that as more and more training data is processed,

the percentage decreases, i.e. fewer new codewords are

created. It is not clear how much training data is needed

before the percentage will fall below an acceptable

convergence threshold (say <10%). Extrapolation of the

curve in Fig. 3.3 suggests that such a threshold may never

be reached. However, extrapolation on the last few points

of this curve may not be justified because the acoustic

characteristic of the training material changed very

drastically from single words to rapidly spoken sentences.

If only single words are processed (corresponding to the

first five data points) the plot is almost linear.

Extrapolation on this linear part of the plot suggests that

no more than 5000 training matrices will be needed for the

percentage to drop below 10%.

The codebook size is also inversely related to the

distortion threshold value chosen. A codebook of 1185

codewords is generated from the database with a COSH

0
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threshold value of 1.0. The average length of a codeword is

7.64 LPC vectors. Given that about 10 bits is required for

coding one matrix, and an average matrix is 130 msec long,

the average bit rate for the matrix code is 77 bits/sec when

no pauses are present.

The quantizer has also been simulated and a number of

speech samples have been used to test the codebook in a

preliminary experiment. The speech samples include single

words, phrases, and sentences from the training data, words

outside the training data (and vocabulary) by the same

speaker, and speech by different speakers. The results are

very encouraging in every case. The speech is very

intelligible in most cases and the quality is surprisingly

well preserved. One of these results is demonstrated in the

audio tape accompanying this proposal. The tape content is

listed in Appendix A. Using the codebook obtained in this

experiment, a full DRT word list has been used to test the

intelligibility of the matrix quantizer. The DRT results

are presented in 5.0.

C:

S0
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4.0 EXCITATION PARAMETER COMPRESSION

Two different approaches for encoding the LPC spectral

model information, namely frame predictive vector

quantization and matrix quantization, have been presented in

sections 2.0 and 3.0. While most (but not all) of the

phonetically important information is contained in the LPC

* spectral model, the vocoder excitation parameters, namely

gain, pitch, and voicing, are also crucial for preserving

prosodic information and natural quality as well as phonetic

information. Gain and voicing contours are in fact vital

for indentifying stop consonants and separating voiced and

unvoiced consonants.

The excitation parameters may be treated as separate

waveforms so that any coding techniques can be applied as

long as the decoded parameter contours are time synchronized

with the LPC vectors before synthesis. In 4.1 the theory of

fake process trellis coding is discussed. Application of

this coding technique for compressing the excitation

parameters are presented in 4.2. It should be noted that

the excitation parameter coding algorithm may be used with

either frame predictive vector quantization or matrix

quantization of the LPC coefficients.



-. 44

4.1 Fake Process Trellis Coder

A fake process trellis coding [21] is a special case of

a trellis coder. The basic structure of a trellis encoder

is shown in Fig. 4.1. It consists of a search algorithm and

a copy of the decoder. The decoder is a time invariant

filter (denoted f in the figure) which transforms the

contents of the shift register into the decoded output Xn.

The search algorithm determines what values for the M-ary

code [un} would minimize the expected distance, Ed( xnfXn)p

between the input sequence xn and the decoded output xn.

" The search algorithm may be any one of many proposed

algorithms such as the Viterbi algorithm (22, 231 or the Z4-L

algorithm (24-261. The output of the encoder is the M-ary

code lunl. In this discussion we will consider only the

binary case, je. Un=0 or 1. While a good search algorithm

can lead to lower expected error Ed(xn,"n), more important

perhaps is the decoder design. In fact, the uniqueness of

the fake process trellis coder is in the decoder design.

Detailed theoretical discussion of the system can be found

in (211. A brief discussion is provided below.

Decoder Desiqn

In order that x n is closely matched to xn o it is

necessary that for an independent identically distributed
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(i.i.d.) input sequence to the filter f, (u}, the

characteristics of the output x closely match those of xn

Specifically their density function and spectral density,

must match. The reasoning is that

1(U) _ F~l(U)12 dU I (X,)

and 1f w12 4.1)z16f .,,[- ,"TU]2 df S (x,x)

where ; (x,x) is the generalized Orstein distance which can

be made arbitrarily close to the rate distortion function

(i.e. the lowest achievable average distortion for a given

rate) if a good coder is designed [21). Although the

conditions of (4.1) are only necessary and not sufficient

• for approaching the rate distortion bound, in practice they

have been found to yield near optimal performance.

To achieve these conditions, two different operations

* are required. First, the content of the registtr (length

K), n=(Un,...,Unk+1 ) must be transformed into zn such that

S zn  has the same cumulative distribution as x . Thisn

." requires that u n (in theory) be first transformed into a

scalar v., where

K 2 -K-I
vn Uni+l2 +2

The term 27K 1 is added to avoid zero values for v * In
n

general, for an i.i.d. input process [u },{v } is
Sn n

correlated. However, a scrambling function g(.) can be

applied to decorrelate vn (even though {Vn} will always be

S--

• -. *~--.-----*-- -.- - - .- -- - -
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statistically dependent). A class of functions which

decorrelates vn is given by

g(t) + g(t+h) = 1 olt (4.2)

For any g(.) which satisfies (4.2), the zn=g(vn) is

decorrelated, i.e. the autocorrelation terms satisfy the

condition
R z(i) = 0 for all i 0

It can also be shown that if fUnI is a symmetric Bernoulli

process, then un approaches uniform distribution as K+w. If*

g(.) is properly selected, the uniform distribution of vn

can be preserved. Thus with proper scrambling, the output

process {Zn} is uniformly distributed and uncorrelated. To

fake the distribution of IXn}, zn i transformed by the

inverse function -1  where F is the cumulative
x x

distribution of Ixn).

So far only white signals for {xn] are considered. If

f{Xn} is not white and has a known power spectral density

S (f), then {Xn} can be modeled as the output of a linear

time invariant filter B(z) with a white input process (enl.

* In this case, the scrambler output is transformed by F
1 (.)

where F (.) is the cumulative distribution of the innovation
e

process {e.l. The output is then filtered by B(z) to

produce a fake process {Xn} which fakes both the probability

density function and power spectral density of {xn}. The

block diagram of a fake process trellis decoder for a

correlated process is illustrated in Fig. 4.2.
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Encoder Design

The encoder consists of a copy of the fake process

decoder and a search algorithm which selects a sequence {un}

which produces a good estimate {Ix} of the input sequence

{xnj. The search algorithm considered in this study is that

of Look-Ahead-Delta-Modulation (LADM) [25, 26]. Given a

decoder, the LADM search algorithm is determined only by a

parameter M, the search depth. In LADM, the state of the

shift register will be advanced one step to the next optimal

*i state after each search of 2M possibilities. The algorithm

is illustrated in Fig. 4.3 for a 3-stage shift register (K=3

in Fig. 4.1) and a search depth of M-=4. Suppose the shift

register is at sta".e (01) at the moment n; that is, U = [un

0 1] and we are to choose 0 or 1 for un. Suppose that after

LADM search, the path A-B-C-D is chosen because along this

path the corresponding decoder outputs, x n+l' ' ''
' n+4'

have the minimum distortion from Xn+1 ,...,Xn+ 4  among all

16 paths. Then, the encoder symbol for time n is 0 and the

shift register advances to the state (10). The LADM search

is equivalent to the M-L algorithm [24] in the case M-L, and

there is only one encoder symbol output after every search

* of 2M possibilities.

4;

I -
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4.2 Experimental Results

A trellis coder is implemented to encode the gain

parameter at 1 bit/sample. The squared error (x n-Xn)2 is

defined as the distortion d(Xn , Xn). No linear filtering

operations are incorporated in the decoder in this

experiment. Its cumulative probability density is quite

similar to the output of the linear product operation {Vn}.
Assuming fun} is i.i.d., the autocorrelation of {Vn} is

given by (21]

Rv (i) - V K IiS
0 Kii>

where a1 2 is the variance of IVn}. The autocorrelation

terms of the gain parameter are also found to be somewhat

similar to R

A shift register of'K-5, and a LADM search depth of 5

(i.e. 32 searches per sample), are selected for the trellis

coder. A speech sample of 30.4 seconds of speech is

analyzed at 44.4 frames/sec. to generate 1350 frames of

gain parameters. The results are illustrated in Fig. 4.4.

The discrete lines correspond to the encoder input and the

connected lines correspond to the decoded gain contour. The

signal-to-noise ratio obtained is 10.53 dB, which is

significantly better than the single sample optimal

quantizer [27].
Informal listening comparison which compared LPC
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synthesis using gain parameters before and after trellis

coding was done. The difference between the two was found

to be minimal. It is thus concluded that except for very

rapid changes in the gain contour, such as during stop

consonants, 44.4 bit/sec trellis coding will preserve the

gain contour for natural quality speech synthesis.

A trellis coder that attempts to compress both pitch

and voicing to 1 bit/sample has also been studied. Instead

of encoding the pitch period value, its inverse (fundamental

frequency) is defined as the input. The distortion function

adopted is

d(xn ' cn} = [Xn/ n) (n /Xn)]
n nn n n

which can be expressed as

d(xn+ Xn) = n(Xn+ Xn)/x nx
n 2  (xn- n)2

The distortion is thus the product of a squared error term
and a scaling factor. For high pitch values (xr and xn

large), the squared error is scaled down so that the

distortion is approximately normalized by the square of the

pitch frequency.

To combine pitch and voicing into the same parameter

contour, the unvoiced decision is imbedded in the pitch code

as a zero pitch value. Such a pitch contour will typically

change very slowly except at voicing transitions. To

compress such a signal, more than one state of the K-length
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shift register is assigned to the zero pitch value

(unvoiced). Thus the inner product operation of the decoder

is preceded by a voicing check. In addition, the shift

register values corresponding to the unvoiced state are

arranged so that the decoded output can change into a high

pitch value in a single register shift. This is equivalent

* to a form of scrambling. The inverse probability scrambling

algorithm (i.e. the g(.) and F . operations) are not

* adopted in the decoder. However, the decoded output is post*

- processed to smooth over any output errors due to voicing

transitions. ThresholdIing is applied to convert pitch

frequencies which are much lower than the majority of values

in a voiced segment. Linear low pass filtering is also

applied over a voiced segment to smooth out any abrupt pitch

changes.

The same speech data used for the gain compression

experiment was used to test the pitch and voicing coder.

The results are illustrated in Fig. 4.5. It can be seen

that the voicing contour is accurately reproduced and in a

*majority of the cases the pitch contour is reproduced. The

SIR obtained is 16.44 dB. This result is remarkable from

-. the viewpoint that the voicing decision is in itself a 1

bit/sample code. By trellis coding, both pitch and voicing

information have been compressed into a 1 bit/frame combined

code. While quantitatively the trellis coding results are

remarkable, the perceptual tolerance for incorrect pitch
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contour is extremely low. Just the few errors in the pitch

contour as seen in the figure produce a sing-song quality to

the speech synthesis. It is thus concluded that pitch and

voicing will have to be encoded separately for natural

quality speech output. The pitch frequency can be

compressed with a tree or trellis coder at a rate of 1

*bit/frame or lower.

4
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5.0 SUBJECTIVE EVALUATION

A single speaker diagnostic rhyme test (DRT) procedure

(28] is used to evaluate the intelligibility of both the

frame repeat vector quantization and matrix quantization

coding techniques as discussed in 2.0 and 3.0. In these

tests, the excitation parameters, pitch, voicing, and gain,

are not quantized or coded. Only the LPC filter

coefficients are quantized. The total score for the DRT

results therefore reflects only the effects of quantization

on the LPC filters. This allows the testing to be focused

on LPC quantization, which is a much more important problem

than excitation parameter quantization.

5.1 Frame Predictive LPC Vector Quantization

The basic frame rate for LPC analysis is 44.4

frames/sec. The analysis window length is 16 msec, the

filter order is 10, and the pre-emphasis factor is 0.94.

These analysis conditions are identical to those of the

ANDVT LPC-10 system [29]. However, autocorrelation analysis

preceded by Hamming windowing [3], instead of LPC-10

covariance analysis, is used. The pitch algorithm is based

on a modified cepstral detection scheme [30] and the voicing

algorithm is based on the cepstral peak value, gain, the
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first two reflection coefficients, and zero-crossing count.

Two vector quantization codebooks are used, one for

voiced and one for unvoiced speech. Even though different

codebooks are used, frame repetition across a boundary is

allowed, although this feature does not have significant

impact on either the speech quality or bit rate. The vector

quantization codebooks are generated from 30 minutes of

conversational speech collected from ten talkers (3 females, ,

7 males, at 3 minutes/talker). The details of the codebook'

generation procedure are described in (101.

The DRT word list is spoken by a talker outside the

training data. Purthermore, most of the DRT words do not

occur in the training speech data. The test is truly an

open test.

The scores for this single speaker (8 listeners) DRT

are tabulated in Table 5.1. The individual feature scores

are also plotted in Fig. 5.1. The total score of 78.9

compares favorably with that of a fixed frame rate (44.4

framet/sec) vector quantization (without pitch and gain0
coding) based on the ANDVT LPC-10. The latter system

attained a score of 82.5. The score difference due to frame

predictive coding is -3.6 points.

Of the six DRT features tested, four of them are

primarily dependent on the spectral features, and are most

directly affected by LPC filter coefficient quantization

(31]. They are nasality, graveness, compactness, and
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sibilation. The total score for this subset of features

(called the spectral scores) is 77.8. In comparison, the

spectral score for the unquantized ANDVT LPC-10 system is

90.2, and that for LPC-10 with fixed rate vector

quantization is 83.4 [6]. Therefore, frame predictive

vector quantization leads to a drop of 5.6 in the spectral

score compared to fixed frame rate vector quantization. It

may be concluded that the degradation from fixed rate vector

quantization to frame predictive vector quantization is

limited to the spectral features as expected. While these

score comparisons lead to useful interpretations, it must be

cautioned that the LPC analysis and synthesis algorithms for

the frame predictive experiment is not identical to LPC-10,

so that some of the score differences may be due to

analysis/synthesis algorithm differences.

5.2 LPC Matrix Quantization

The same analysis/synthesis system as the frame

predictive system is used. The frame rate for LPC analysis

is changed to 100 frames/sec. All other analysis conditions

remain the same. Only the LPC filter coefficients are

quantized using the matrix quantization codebook obtained in

the experiment discussed in Section 3.2. The training data

used for generating the matrix codebook does not contain the

DRT word list. In fact, at best only a few of the DRT words
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may be present in the training data vocabulary. The speaker

for the DRT word list is the same. Based on the informal

test discussed in 3.2, the same codebook seems to also work

well for other male voices. The DRT results here are thus

for a semi-open (same-speaker), unlimited vocabulary test

situation.

The DRT scores are tabulated in Table 5.2. The

q individual feature scores are also plotted in Fig. 5.2. The

DRT score of 67.7 is a great improvement over the score of

42.8 reported by Oshika (7]. It must be stressed that

matrix quantization is completely automatic and very likely

speaker independent. Its performance must be compared only

with other fully automatic systems. The system reported by

Oshika (71 achieved a DRE score of 83.5 with hand edited

phonemic analysis, which is essentially a dyadic phoneme to

speech synthesizer. With automatic analysis the DRT score

drops to 42.8. Based on informal listening, the matrix

quantization output speech is judged more natural than a

dyad speech synthesis with hand edited phonemic input.

The spectral features for matrix quantization is 66,

which is 11.8 points lower than the frame predictive vector

quantization system. There is also a significant drop of

18.4 in the sustention score. This is due to the fact that

while the gain parameter (residual energy) has not been

quantized, it is affected by LPC filter quantization. If we

denote the excitation signal energy by aM , the synthesis

wi
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signal energy by ao , and the reflection coefficients of the

M order LPC synthesis filter by {ki}, then aM and are

related by the equation

% a/n (1-0)

It is clear from the equation that if the LPC filter (the

k.'s) are changed, the same excitation gain (a ) contour
1 M

will produce a very different synthesis gain (a ) contour.

Another aspect of the DRT score we find useful in

understanding the matrix quantization system is the scores

of the ten word-pairs which produced the lowest scores. The

scores for these ten word-pairs are tabulated in Table 5.3.

The average score for these ten words is -10. Excluding

these ten words from the total DRT score would result in an

overall score of 76.7, a nine point improvement. A check

through the vocabulary of the training data finds that of

the 20 initial consonant-vowel (CV) combinations in these

DRT word-pairs, only nine may be phonemically matched to

some word in the training data, and only in the word pairs

*shad/chad" and "weed/reed" do both CV combinations exist

(phonemically) in the training data. For the other eight

word-pairs, either the same matrix codeword is used to

quantize the minimally distinct CV pairs or some other

poorly matched matrix codeword is introduced.

It is clear from the results above that the

intelligibility of the matrix quantization system would
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Ki. improve if a larger training data base is used, so that all

commonly occuring transition sounds are included in the

codebook. More specifically, if the DRT word list is

included in the training data vocabulary, better scores will

be obtained.

Overall, the matrix quantization technique has been

found to be highly promising for very low rate (efficient)

coding of speech for large to unlimited vocabulary, isolated

word or continuous speech input.

.

Ib

i
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6.0 CONCLUS IONS AND IECOMMENIATIONS

6.1 Conclusions

Two different techniques for very low rate compression

* of the LPC spectral model have been developed and tested.

With frame predictive vector quantization, the average bit

rate for the LPC model can be reduced to about 230 bps. The

DRT score with such a vector quantization approach is 78.9.

* Such an approach is fully implementable in real time with

existing VLSI signal processors and is speaker and

vocabulary independent. Speech quality may be better for a

limited vocabulary or a single speaker. Also by using a

better tuned analysis/synthesis system, the DIT score is

expected to improve by 5 points (61. The newly advanced

matrix quantization technique is capable of reducing the bit

rate for the LPC model to under 150 bps. The DRT score for

the matrix quantized LPC models is 67.7. This DRT score is

a considerable improvement over past results for automatic

and unlimited vocabulary systems at a similar bit rate.

Significantly better scores, estimated to be about 76.7,

would be obtained for a limited vocabulary, which is

estimated to be about 76.7.

, *A very efficient fake process trellis coding approach

to compressing the vocoder excitation parameters (i.e.

U



69

gain, pitch, and voicing) has also been implemented. The

results indicate that the gain parameter can be compressed

to under 50 bps for a quantization SNR of 10.53 dB. While

pitch and voicing combined can be compressed to under 50 bps

with a quantization SNR of 16.44 dB, the perceived quality

is unnatural. By compressing voicing and pitch parameters

separately, it is expected that a bit rate of about 75 bps

can be attained. The fake process trellis coding approach

treats the excitation parameters as totally independent

waveforms. It can thus be combined with any compression

scheme for coding the LPC model filter. Combined with frame

predictive vector quantization, an overall bit rate of under

400 bps is achieved.

While the excitation parameters may be coded completely

independent of the LPC model, there is strong correlation

between them-Ear the matrix quantization approach. Recent

results in a study of a similar system (32] suggest that the

voicing parameter is highly correlated to the LPC matrix.

Thus by combining the LPC matrix code (<150 bps) with a

trellis coder for the gain (<50 bps) and pitch (<25 bps), an

overall bit rate close to 200 bps can be achieved.

6.2 Recommendations

* While the results of this study have validated the

capability of the vector quantization and matrix
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quantization to reduce the bit rate of an LPC vocoder to 400

bps and 200 bps respectively, further research in the

following areas are recommuended.

(1) Frame Predictive LPC Vector Quantization

One drawback to the frame predictive approach is that

the bit rate is variable. For fixed rate transmission,

buffering is needed, leading to significant time delay. A

trade-off study between bit rate and delay is needed.

The vector quantization system developed in this study

is for a general population and unlimited vocabulary.

Quality improvement and/or bit rate reduction by tuning the

system to a limited vocabulary and/or a specific speaker (or

a small group of speakers) should be studied. It is clear

from the design of the vector quantization system that

adaptive training (i.e. the vector quantization codebook is

automatically trained to the speaker's voice while in use)

can also be implemented.

(2) Matrix Quantization

Overall, the goal of the present study on matrix

quantization is to demonstrate the validity of its

underlying concepts. The emphasis was not to simplify the

algorithms for real time implementation nor to fine tune it

for actual use. Considerable research thus remains to be

done before the algorithms can be ready for real-time
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The quality of the matrix quantization can be improved

with a larger training data base and proper smoothing

between matrices. The effects of limiting the vocabulary c

manner of speech input must also be studied. Improvements

to the segmentation algorithm should also be studied.

The computation of the system can be reduced

dramatically through judicious simplification of the time

warping or codebook search algorithms. This will allow cost

effective real -time implementation of the system in the near

future (before 1985).

The possibility of imbedding the voicing code in the

matrix should be studied. This could lead to a bit rate

reduction of 50 bps. The matrix quantization approach also

results in a variable rate code. The time delay and

buffering requirements must also be studied.

(3) Pitch and Gain Coding

A trellis coder for just the pitch parameter needs to

be developed. Other approaches to pitch and gain coding,

such as block coding with syllabic update may be more

effective and should be studied.

(4) Integration and Evaluation:

The LPC vector and matrix quantization coders will have

to be fully integrated with the excitation parameter coders.

A study on the trade-offs in bit rate, quality, and
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complexity should then be performed.

(5) Acoustic and Channe. Noise Effects

The vector code has been found to perform relatively

well with channel error rates of 1 to 2% [61, and is also

robust in environments with mild to medium levels of noise

[61. However, the frame predictive vector and matrix coding

systems will be slightly more vulnerable to acoustic noise.

and transmission errors due to the lower redundancy of the

code. A study on their performance under different acoustic

and channel noise environments is recommended.

.-

S'
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Appendix A

Demonstration Tape List

Set 1: Frame Repeat LPC Vector Coding Male Speaker,

"Rainbow Passage"

Codebook is for general population, not trained to the

speaker.

Only LPC vectors are quantized, pitch and gain are not

quantized.

Quantized Synthesis twice

Unquantized LPC (- 2400 bps) twice

Original 8 KHZ PCM (96 Kbps) twice

Set 2: Matrix Coding

Male Speaker, Cockpit Communication

Codebook is trained to the speaker

Only LPC vectors are quantized

Quantized Synthesis twice

Unquantized Synthesis ( ~ 2400 bps) twice

Original 8 KHZ PCM (96 Kbps) twice
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