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Abstract

Multiple processor systems are becomifig Increasingly common. However, their use remains dif-
ficult due to a lack of knowledge concerning the development of parallel application programs. In
addition, contrary to popular predictions of "cheap and plenty" resources, efficient management of
distributed processor and memory resources remains of critical importance to the successful use of
these systems.

The contributions of this thesis are twofold. First, we design and implement a programming en-

vironment for multiple processor applications, called the TASK system. Second, we discuss the in-
tegration of policies and mechanisms for ,*urce management into the TASK system.

In TASK, application programs are written in terms of the abstractions offered by the operating
system used for program execution. As a result, once an application program is written, its execution
requires few additional efforts by the application's programmer. Programs are written in two Ian.
guages. The TASK language, designed and implemented as part of this thesis, is used to describe the
logical structure of an application program, and an existing, algorithmic language is employed to
implement the application's algorithmp The construction of an executable version of an application
from the TASK and algorithmic language programs is automated. Such construction includes
automatic linking and loading ad well as the automatic allocation of resources to the individual com-
ponents of the application program.

Programmers guide the allocation of hardware resources to program components by stating high.
level directives in TASK programs. To identify suitable directives and to develop procedures that

*automatically perform resource allocation based on these directives, we develop a model of multiple
processor software and hardware, called the proximity model. The model, the directives, and the
resource allocation procedures are tested by experimentation with application-programs on the Cm*
multiprocessor. <-
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1. Introduction

1.1. Problem Statement and Thesis Goals

While multiple processor hardware is becoming increasingly common, the current level of software

- support is insufficient.. Few programming tools exist and existing tools are-. difficult to Use

* [29,84,166). Furthermore, although theoretical research has been performed in the areas of parallel

* scheduling arnd distributed data management [18, 150, 27], such research has had little practical im-

* pact. While programmers are provided with elementary mechanisms for resource management, they

are given few practical aids in making appropriate resource management decisions.

Despite the lack of programming support, the use of multiple processor systems has grown sub-

-stantially. Software has been developed to capitalize on the enhanced reliability or cost-effective

performance of multiple processor systems [17, 91, 29, 106, 31. 35], and software that executes on

*physically distributed systems has been written (98, 16, 51, 152, 59, 148, 120]. Therefore, program-

* Ming support in addition to what is available today is long overdue.

Based on our- experiences with multiple processor systems (28, 29,168], we have designed and

implemented a programming environment (62, 113,127] for multiple processor application programs

called the TASK system. To focus on multiple processor systems, the design and implementation of

TASK is restricted. Specifically, TASK is constructed as a tool system [156] into which several

program construction tools are integrated, namely compilers, linkers, and loaders. Furthermore, the

TASK tool system has deliberately been built to support single programmers in the construction of

large application programs. Therefore, the complexities caused by programmer teams cooperatively

constructing large software systems are not addressed [70].

Since our experiences with multiprocessors indicate that resource management in multiple proces-

sor systems Is difficult while the benefits attained from it are substantial [29, 28, 166, 84, 111] the
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TASK system assists programmers in making resource management decisions. Specifically, program-

1 mers need not allocate specific hardware resources to individual program components. Instead, such

allocation decisions are automatically made based on high-level resource directives stated by ap-

plication programmers, where each directive expresses allocation preferences or constraints con-

cerning a set of program components. Therefore, resource allocation is partially automated in TASK,

and programmers need not explicitly deal with the large number of different components in software

and in distributed hardware of substantial size.

Resource directives are designed and processed based on a general model of software and

hardware (see Chapter 3). As a result, our methods of partially automating resource allocation can be

applied to a variety of multiple processor software and hardware. However, resource allocation in

TASK is implemented for the special cases of the Cm* multiprocessor [57] and the STAROS operating

* system [80].

1.2. Software for Multiple Processor Systems

Muftiple processor systems range from loosely coupled, local or distributed

networks [64, 126, 115], to tightly coupled multiprocessors [57,167], to multi-ALU systems consisting

of- synchronously executing processor and memory units [155,54,104, 87,3]. Multi.ALU systems are

not considered in this'thesis. Instead, processor and memory units are assumed to execute indepen-

dently ofand asynchronously to other processors in the system (57,167]. However, whether a mul.

-" tiple processor system is designed to perform a specialized task [136, 94, 17,110,.65] or whether it

serves as a basis for a variety of application programs [148, 120, 167, 57, 124, 6] is not of concern to

. our investigations.

Multiple processor application programs differ from uniprocessor software in two ways. First, paral-

lefism is exploited explicitly in multiple processor applications, often with the intent of realizing the

potentials of increased cost-performance or reliability exhibited by multiple processor

systems [51, 65, 96, 17, 841. However, realizing these potentials depends upon resource management
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in which the performance-related effects of using large numbers of distributed resources are ac-

curately predicted. Since such predictions are not possible given our current knowledge of multiple

processor systems [29, 84, 81, 27], the second difference between multiple processor and uniproces.

sor software is that resource management in multiple processor systems cannot be transparent to

programmers.

Research efforts during the last decade acknowledge the differences between uniprocessor and

multiple processor software mentioned above. To exploit parallelism, new programming

languages [50,68, 14,15, 71,33, 137] have been designed, and existing languages have been ex.

tended to provide mechanisms for concurrent programming [116, 67, 13, 102]. Furthermore, new

operating systems provide mechanisms for resource management and mechanisms that facilitate

cooperation and communication .between independently executing processes of concurrent

programs [80, 116,102, 128,147, 24,67, 134]. However, due to the difficulty of resource manage.

ment, resource allocation is done at the "assembly level" in these languages and operating systems-.

programmers must allocate specific resources to individual software components. Therefore,

programmers do not receive any support in dealing with common characteristics of multiple proces.

sor systems [98, 51, 136, 3, 57, 64, 136, 591 such as inhomogeneous or asymmetric

resources [84,1081, inhomogeneous access to available resources, and a high probability of dynamic

configuration change [141].

In TASK, application programs are described as task forces--multiple processes that cooperate and

communicate to achieve a common goal [79]. A task force is specified with te TASK language [81],

whose design and implementation are discussed in -this thesis. TASK programs describe the com-

ponents of a task force, including its processes and the components that contain the processes' code

and data. However, the code executed by each process is written in a standard, algorithmic program.

ming language, the Bliss- I1 language [161]. TASK programs contain sufficient information so that the

Bliss programs in each task force can be automatically linked and the task force can be automatically

loaded. The relationships between the" TASK and Bliss compilers, the linker, and the loader are

.. . ,... ... . .•,
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U kerExecutale Task Forc

Figu re 1 - 1: Compiling a Set of BLISS Programs and a TASK program

depicted in figurel-1. Note that the output of the TASK compiler is used to drive the linker and loader

(see the dashed lines). The result of linking and loading is an executable form of the task force.

The TASK system recognizes the difficulty of resource management by automatically allocating

specific resources to individual task force components given programmer-defined resource direc.

tives. Such directives are stated in TASK programs. Given a directive expressing preferences or

constraints concerning the allocation of resources to a set of task force components, TASK makesL-i
allocation decisions based on its knowledge of the hardware and on its current allocation policy. In

figure(l -2), we display the different items of information used for resource allocation.

U IProgrammers stating resource directives are not required to know the current hardware configura-

tion used for task force execution. The resulting hardware transparency enables programmers to

- write task forces that can execute on any hardware configuration containing sufficient resources.

" Furthermore, since programmers need not know the policies used by TASK for resource allocation,

K intimate knowledge of the performance characteristics of the distributed hardware is not required in

I ., , • . .
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Resource Directives

Figure 1-2: The Sources of the Information used by TASK

order to ruh a task force implemented within the TASK system.

The TASK tool system is a programming environment for the development of task forces. However,

to focus on resource management, we do not deal with the following issues addressed in program-

ming environments related to TASK: module interface control, system version control [156, 62], and

interactions with editing or debugging tools [621. Instead, TASK supports the specification and

automatic construction of task forces, and task forces are executed under the control of the STAROS

- operating system [80]. A single-process debugger is available [62,109], and a task force

monitor [144] has been partially integrated into the TASK tool system. The TASK system is used as

part of an ongoing research effort [29].

1.3. Software Tailoring

Experiments with Cmmp and Cm' [29, 84,166] have shown that the performance of an executing

task force strongly depends on the allocation of resources to its components- -we say that a task force

must be tailored to its execution environment. The objective of tailoring is to execute a task force

"efficiently" on different configurations of execution environments, where the metrics used to

measure "efficiency" vary. Configurations differ in the numbers of available hardware components,
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the amounts of available memory, and the available specialized hardware such as components with

attached disks or network links. In addition, configurations can differ with respect to the topology of

* the interconnection network providing access to non-local processor and memory units.

* We investigate the manner in which tailoring can be performed during task force construction,

* where tailoring is assumed to leave task force structure and algorithmic code unchanged [811. An

alternative to tailoring during task force construction (static tailoring) is tailoring during task force

execution (dynamic tailoring). While static tailoring is concerned with constructing executable task

forces that are well-suited to their execution environments, dynamic tailoring is primarily concerned

*with adapting executing software to changes in workload (38] or in usage patterns of distributed

hardware (146]). In this thesis, emphasis is on static tailoring, but we will show that the methods used

to automate static tailoring can also be applied to dynamiic tailoring.

In the remainder of this section, the importance of task force tailoring is demonstrated in examples

of tailoring for uniprocessor and multiprocessor systems. Furthermore, the 'difficulty of tailoring is

-, discussed. The section concludes with an outline of task force tailoring in the TASK System.

1.3.1. Traditional Tailoring Examples
Von Neumann machines have the following limitations: small numbers of registers, small primary

memory, and a hierarchy in access times to primary, secondary, and tertiary memory. Significant

efforts have been made to overcome these limitations. For example, compilers must optimize the

allocation of fast registers to subexpressions within the algorithmic code, or compilers must rem-

ganize code to increase register usage [99,92]. A comparative study of several compilers

demonstrates the drastic effects of such optimization on the speed of program execution (49]. Fur-

* thermore, based on analytical research and practical experimentation concerning the memory refer-

* ence patters of application programs [76, 52, 38), automatic paging procedures have been imple-

mented that "tailor" programs during execution. In addition, programs are reorganized during linking

and loading such that their accesses to code and data exhibit a high locality of reference [52). Sig-
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nit icant improvements have been derived from such static or dynamic "tailoring" (76].

1.3.2. Tailoring in Multiple Processor Systems
The use of uniprocessors as timesharing or multiprogramming systems is possible partly due to

static and dynamic "tailoring" as described in the previous subsection. As is demonstrated below,

tailoring is also of critical importance for many applications of tightly or loosely coupled multiple

*processor machines [29, 28, 166, 84, 111] We consider the importance of tailoring in both smallI

*grain [67, 89, 39, 41] and large grain parallelism [50, 68, 14, 15, 71, 102, 33].

Small grain parallelism exists at the level of individual instructions in a program. At this level,

% tailoring is accomplished by automatically decomposing programs into small groups of machine in-

structions or partial instructions (54] that can be executed in parallel. The intent of decomposition is

* to maximize parallelism and therefore, to minimize a program's execution time. With respect to vector

* and array processors (104, 155,54], automatic program decomposition has capitalized on the ease

with which data arrays or vectors can be partitioned into separately processable parts [91, 88]. Ex-

perimental systems performing automatic parallel decomposition have been built and tested on tightly

*coupled multiple processors (67] and on simulators (89]. In both cases, automatic tailoring has suc-

cessfully generated small amounts of parallelism. However, parallelism is limited by array dimensions.

* In addition, control and data must be distributed to available computing cells [3,88) in order to min-

*imize the time spent making data accessible to cells [3, 88, 91 ]--information must be routed to the

right place at the right time.

Tailoring at the level of small grain parallelism has achieved recent importance in VLSI research,

weedecomposable, highly parallel, synchronous algorithms are being developed [901. Similarly,

tailoring is of importance at this level in the design and implementation of languages for data flow

- machines [391. In the latter case, programs are represented so that parallelism in program data andL control flow is easily recognized, and compilers, interpreters, and runtime systems are designed to

[ capitalize on such parallelism [39).
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While small grain parallelism can often be generated automatically, parallelism in the form of ex-

plicitly specified processes cannot. We call such parallelism large grain parallelism. As an example

of tailoring at the level of large grain parallelism, consider processes that generate update or read

requests to records of a distributed data base. A static tailoring problem can be phrased as follows:

at which network sites should multiple copies of data base records be located to maximize the speed

of both read and update requests for those records? A number of known solutions to this tailoring

problem rely on allocating memory in network sites such that the total cost of communication is

minimized, thereby minimizing the use of the "network" resource [18]. A corresponding dynamic

tailoring problem can be phrased as the following decision problem: to which copy of a record should

a request be sent in order to minimize request duration or to optimize a global good, such as total

system throughput [139]? As with task force tailoring in Cm*, tailoring in distributed data bases can

dramatically affect performance.

Static and dynamic tailoring at the level of large grain parallelism were also performed during the

implementation of the ArpaNet's message servers [86]. In this case, static tailoring determined the

appropriate message sizes for various types of traffic patterns with the objective of avoiding

contention in the network. Dynamic tailoring consisted of message routing within the network, such

that both fast and reliable message transfer could be guaranteed. As with tailoring in distributed data

bases, solutions to the tailoring problems in the ArpaNet tend to minimize the use of the "network"

resource.

Further tailoring examples exist in real-time processing, where tailoring not only *concerns deliver-

ing data "to the right place at the right time", but also concerns balancing processor workloads to

adhere to predetermined execution schedules [61,34]. In Chapter 3, such tailoring is discussed with

respect to the Cm multiprocessor.

*I To conclude, for vector and array computers [155, 104, 54] which support small grain parallelism,

sophisticated algorithms are required to fetch-information required by primitive operations prior to its
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use. Otherwise, memory reference time costs may severely degrade parallelism. Typically, specil-

* ized hardware and programming languages are used to implement such algorithms [39]. For mul-

* tiprocessors and networks which support large grain parallelism, the objects referenced by an ex-

ecuting processor (e.g. data or code components) must be located "near" the processor when it

references them [84]. In both small and large grain parallelism, information is "near" when it is

* rapidly accessible.

*1 .3.3. The Difficulty of Tailoring

* While tailoring is of critical importance in a wide range of multiple processor applications, tailoring

* decisions are not easily made. As with other well known problems, mathematical formulations of

tailoring can be shown to be NP-complete (see Chapter 5). Three additional factors contribute to the

difficulty of tailoring. From an application programmer's point of view, one factor contributing to the

* difficulty of tailoring is the large number and the diversity of software and hardware resources in-

volved in the tailoring process. For example, when tailoring a small application program for a typical

- configuration of the Cm* system, 50 data components accessed by several processes [42] must be

* allocated to the memory and processor resources of 20 different machines.

A second factor contributing to the'difficulty of tailoring is the lack of information and knowledge

held by application programmers. For example, programmers may not understand the relationships

* among the following: the software parameters changed for tailoring purposes, the objective of tailor-

* ing, and the effects of tailoring at execution time. An example of a task force executing on Cm4

illustrates this point. Consider an increase of the task force parameter "number of processes" which

* is initiated to reduce the execution time of the task force. If this increase in parallelism causes an

inordinate increase in processor communication, then the stated objective is not achieved. Instead of

* reducing execution time, contention within Cm* causes the execution time of the larger task force to

* exceed the execution time of the smaller task force [29). Slmilar complexities have been observed for

other tailoring objectives on architectures other than Cm* [18, 27, 56].
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A third factor contributing to the difficulty of tailoring is the variety of tailoring objectives pursued

by programmers. As a result, although common tailoring objectives can be anticipated by designers

of automatic tailoring procedures (see Chapter 5), these procedures cannot be of sufficient generality

to support the various tailoring objectives for a spectrum of multiple processor architectures.

1.3.4. Tailoring in the TASK System

* Multiple processor architectures, namely networks and multiprocessors, cannot be successfully

employed until task force tailoring has become routine and well understood. Recent

* experiences [29, 166, 148, 84] suggest that the partial automation of tailoring based on programmer

- assistance can be implemented successfully.

In the TASK system, programmer assistance consists of specifying resource directives, and partial

* automation consists- of using these directives in resource allocation. Each of the three factors con.

* tributing to the difficulty of tailoring is addressed. First, since TASK's resource directives are stated for

sets of task force and hardware components, large and small numbers of components can be

handled with comparable ease. Second, TASK's knowledge supplements a programmer's information

concerning distributed hardware and appropriate tailtoring strategies. Third, programmers can

choose among several, different, built-in tailoring objectives and policies, and new objectives and

policies are easily added to TASK.

The investigation of tailoring in TASK is a case study of the manner in which tailoring can be

embedded into any multiple processor programming environment. Specifically, the information re-

quired for tailoring is identified, and its representation in TASK is discussed. The feasibility of

o automatic tailoring is demonstrated by implementing and evaluating several tailoring procedures,

which are shown useful, albeit not equally suitable, for several, different multiple processor architec.

tures, application programs, and tailoring objectives.
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Stn1.4 Main Contributions and Related Work I1

This thesis touches upon three areas of Computer Science: programming languages, software

engineering, and operating systems. To the- area of programming languages, we contribute the

design and implementation of a software specification language for multiple processor

- applications [81 ] called the TASK language. A TASK program specifies a task force and contains

- sufficient information to control the use of linkers and loaders. Furthermore, TASK caters to the

* unique requirements of the Cm* architecture [57] and the STAROS operating system (80]. Resource

directives in TASK programs are related to specific allocation decisions as path expressions are

related to LOCK or P and V operations. As with path expressions, the implementation of resource

directives requires that considerable intelligence be embedded into the TASK compiler. Specifically,

while uniprocessor compilers must optimize register allocation, TASK must optimize the allocation of

* processor and memory units to task force components.

To the area of software engineering, we contribute the design and implementation of the TASK tool

* system, which can be used to develop software for multiple processor execution environments. Since

the TASK system contains explicit representations 9f the task forces being developed, it can be used

as a testbed for experimentation concerning task force tailoring. Examples of straightforward ex-

* perimentation are the modification or exchange of tailoring procedures and the modification of infor-

* mation used for tailoring.

* In the area of bperating systems, we demonstrate the practicality and feasibility of a specific aspect

* of resource management, namely task force tailoring. In. addition, we investigate the integration of the

TASK system with an operating system in order to perform tailoring both statically and dynamically.

* Automatic tailoring is performed by making practical use of the models and optimization procedures

* of theoretical investigations (18]. However, the straightforward adaptations of the optimal tailoring

* algorithms discussed in the theoretical literature are too cumbersome and time-consuming [47] to be

used within the TASK system. Instead, TASK's heuristic tailoring procedures [107] derive non-optimal
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resource allocation decisions, which are shown to be in accordance with our expectations given the

current knowledge of Cm.

There are few other projects with goals similar to those of this thesis. Most related projects are

either cenitered around particular languages [102, 15,116, 50], or are concerned with specific mul-

tiple processor architectures or operating systems [88,39, 80, 24, 147, 134]. Notable exceptions are

the Spice and Cedar projects at Carnegie-Mellon University and at Xerox Parc respectively [148, 120],

the Sara project at UCLA[45], the Roscoe and StarMod efforts at the University of

Wisconsin [147, 33], and tl.e effort at Amherst [97]. Each of these projects concerns the construction

of integrated programming environments for large multiple processor systems.

The Spice project at CMU is aimed at constructing a programming and working environment for

scientific research on a network of small computers. The Cedar project at Xerox Parc focuses on the

construction of a programming environment that is primarily applied in the office of the future. The

goals of the Roscoe and StarMod efforts at the University of Wisconsin are to investigate distributed

processing in more generality (147, 33]. At this early project stage, however, we cannot precisely

characterize project contents. The distributed processing group at the University of Amherst ad.

dressed research issues similar to those of TASK and STAROS [97]. However, since the original

proposal, no further research results have been reported. The Sara project at UCLA is, perhaps, most

akin in some of its research content to the TASK effort [45). The design system for hardware in the

Sara project was extended to investigate issues of distributed software design and implementation. A

software specification language based upon a graph representation wat proposed and

implemented [8]. One marked difference between the Sara and the TASK systems is that TASK is only

concerned with programming in-the-large [40], whereas the Sara system contains facilities to perform

both programming in-the-large and in-the-small.

. . . ..I.

..1 :..: :
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1.5. Thesis Overview

In Chapter 2, the TASK programming environment is described. A sample task force is used to

present the specification of a task force in the TASK language. In addition, the interactions among

compilers, linkers, and loaders in the construction of an executable version of a task force are ex-

plained. In Chapter 3, a model of distributed hardware and parallel software is developed. Based on

this model, the objectives and metrics of task force tailoring are stated. In Chapter 4, ,he implemen.

tation of tailoring within the TASK programming environment is discussed. The heuristic, automatic

tailoring procedures for Cm" are presented in Chapter 5. A summary of results and several possible

extensions of this research are described in Chapter 6. Details of the TASK language and loader are

described in four appendices.
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2. Task Force Development

2.1. Overview

Task force development consists of the specification of a task force with programming languages

and the automatic construction of an executable task force from these-specifications. In TASK, each

task force is programmed in two languages to separate the specification of the logical task force

structure in-the.large [40] from the specification of the algorithms in-the-small. The logical structure

of a task force is programmed in the TASK language. A TASK program describes a task force as a

collection of modules. Each module.is a unit of abstraction in the sense of Parnas[130]. The

programs constituting the body of a module are written in the algorithmic language Bliss-li [161].

These programs will be referred to ai algorithmic code. They describe the algorithms executed by

task force processes, the detailed implementation of data structures, and the control flow among

processes.

The task force specified in a TASK program Is constructed using the standard compile, link, and

load sequence. Compilation of TASK and Bliss programs is performed by their respective compilers.

The TASK compiler outputs instructions concerning linking and loading. Given these instructions, the

linker performs two kinds of actions. First, the separately compiled Bliss programs in an individual

module are linked to each other. Second, the linked modules and the loading instructions of the entire

task force are formatted to load the task force one module at a time. The TASK loader transfers the

modules from the compilers' and linker's host computer (a PDP. 10) to the site of task force execution

(Cm*) across a local Ethernet network. Each module in the task force is individually transferred and

loaded onto the distributed hardware. The task force executes under control of the STAROS operating

system [801.

In the TASK tool system, the tedious, error-prone job of task force construction is automated such

that the details of the linker, loader, and operating system remain transparent to programmers. As a
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result, small or large task farces can be constructed with comparable ease. However, TASK is not as

comfortable a programming environment as one might desire. First, because version control

- mechanisms are not available [156. 62], TASK cannot guarantee that a constructed task force reflects

* the recent updates to its TASK or Bliss programs. Second, because module interfaces are not con-

trolled after task force construction [122, 62), the algorithmic code must explicitly perform parameter

* checking. Third, since an executing task force can be changed [142, 111 ] by explicit invocation of

* operating system functions, TASK does not impose restrictions on the manner in which processes

behave once execution commences. Specifically, the control flow among processes is neither con-

trolled by TASK nor is it expressed in TASK programs.

In the next section, the style and flavor of the TASK language are communicated by presenting the
V-U

essential language elements (see Appendix 1 for details). To motivate the choice of language ele-

* ments, two design goals of the TASK language that differ from design goals elsewhere [62,116] are

*discussed. The first goal is to vary the executable task forces constructed from a TASK program

without the requirement of extensive changes in the program. The purpose is to faciite experimen-

tation. For example, in order to measure task force performance at different degrees of parallelism,

task forces with different numbers of processes should be constructed. Such experimentation should

not require revision of substantial parts of the associated TASK programs. The second goal of the

design of TASK is not to burden programmers with the specification of construction detail. For ex-

* ample, programmers should not specify details such as the size of a task force component's runtime
0

* representation. Instead, construction information should either be derived automatically or *set by

default. The choice of language elements is also motivated by a design goal which is similar to those

found elsewhere (62,122, 116]: the incremental development of a task force. Specifically, the parts of

each module not related to other modules in the task force should be independently specified, con-

* structed, and tested.

The three design goals listed above are attained as follows. Changes in task force construction do

not precipitate extensive changes in TASK programs because construction information is textually
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separated from other information. For example, the specification of a process is textually separated

from the instantiation of the process. As a result, the number of instantiated processes is easily

changed. Similarly, construction detail that can be derived automatically or set by default is clearly

separated from information that must be specified by programmers. Incremental task force develop-

ment is possible because modules that are specified in the TASK language are individually linked,

transferred to Cm*, and loaded.

2.2. A Task Force Example

Prior to describing the TASK language, an existing, experimental task force [29, 28] is presented.

The associated TASK programs will be developed in the next sections. The experimental task force

solves Laplace's partial differential equation with given boundary conditions. The POE is solved by

the method of finite differences. Spedifically, the equation

A2z /&X 2 + A2 Z/,&y2 O

is solved for all points of an m by n rectangular grid. The solution is found iteratively, where in each

* iteration the new value of any grid point is set equal to the arithmelic average lof the values of its four

* adjacent neighboi s.

A parallel solution is attained by dividing the grid into a number of partitions. For each partition, a

* server process is created. Each server process has access to a set of objects that contain its code,

storage for intermediate results, its partition of the grid, and those grid partitions that share boun-

daries with its partition. A server's code object contains replicated code. Since the PDE algorithm

does not require synchronized grid accesses . each server can run at its own speed. A coordinator

process governs the task force. The coordinator communicates with server processes and with the

user terminal. In addition, the coordinator initializes the grid array so that the POE can be solved

repeatedly. Communication with servers is performed by means of a communication object called

F 1In his thesis, Gerard Saudet shows that an appropriate PODE solution algorithm will converge to a solution even if the grid
accesses of the server processes are not synchronized (71.
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Code GridPartitions

Server[ll

Coordinator evr2

~Server[3]

Code Coe

Figure 2-1: The PDE Task Force With Three Server Processes

"Commune" to which all processes share access.

Henceforfh, the experimental task force presented.above is called the PDE task force. To &Im-

marize, in the executable PDE task force, multiple, replicated server processes cooperate closely by

iterating over the grid until a solution to the PDE is found. Data and code are distributed across

processes by replication and partitioning. A sample executable PDE task force is shown in figure 2.1,

in which one coordinator and three replicated server processes are displayed. The lines in the figure

. are drawn to indicate the accessibility of objects to processes.

2.3. The TASK Language

Ui .-::., :
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2.3.1. Basic Language Constructs

Recall that a task force is defined as a set of Communicating processes and associated code and

data objects, where processes cooperate to achieve a common objective (81, 80]. In TASK programs,

processes and code or data are described as typed objects [163, 162, 78, 121, 431. The type and

* name of each object and the attributes required for object construction, such as object size, are

* specified in a Template.

The presentation of templates and of other language constructs will involve syntax specifications in

which three superscript symbols are used to denote different types of repetition:

*means "zero or more repetitions of"

+ means "'one or more repetitions of'', and

4 # means "either zero or one instance of"

When lists of items separated by so'me particular punctuation mark are to be denoted, the punctua-

tion mark is indicated directly before the repetition character. The symbols ( and ) are meta-brackets

and are used to group constructs in the BNF notation. However, meta-brackets are elided it paren-

theses or brackets required by the syntax already group the program constructs to which the repeti-

tion symbol applies. In the syntax descriptions, keywords are boldfaced, and ellipses Indicate missing

text. In the boldfaced program examples, keywords are underlined.

Templ1ates. Templates are analogous to type declarations in languages like Pascal and Ada.

Specifically, there are two kinds of templates in TASK: simple and complex templates. A Simple

Template resembles a scalar type since it describes an object that does not have other objects as

components. For each type of object, a different set of object attributes is specified. A Complex

Template is similar to a record type because it specifies an object with components, such as a task

force, a module, or a process. The syntax fcr templates is as follows:

<Temnplate> [< (Complex Template) I (Simple Template>)

(Simple Template> :
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(Simple Object Type) (Template Name) ((Actual Attributes2) )
The type of a template determines the attributes that appear in it.

<Complex Template> = (Task-Force Description>

I (Module Description>
I (Function Description>

Function descriptions are prototype process descriptions (explained later in
this section).

(Simple Object Type> ::= Basic I Mailbox I...

The types of simple objects that are supported in TASK are just those object types that are supported

*by the STAROS operating system [149]. For example, the Basic objects (vectors of bytes) which

contain code or data are the most frequently used.STAROS objects. Mai lbox objects are used in

* STAROS for sending and receiving messages. STARos also directly supp6ts the complex object types

in TASK (for details, see Appendix 1 and [149]). Examples of simple and complex templates are

presented in turn.

Simple Templates. As an example of a simple template, consider the specification of one grid

partition in the PDE task farce:

Basic GridPartition (Aizi-4K, Source-("Grd.Obj"))

This template has the name GridPartition. It describes an object of type Basic that contains up to

4K bytes of grid data. Presumably, the grid data with which object contents are initialized is found in

the file Grtd. Obj.

The instantiation of a template in a TASK program will result in the construction of the instantiated

object by the loader. Instantiation of a template is analogous to the declaration of a variable of a

certain abstract type in abstraction languages [164]. As with declarations of variables, template

instantiations are separated from template specifications so that templates can be instantiated

repeatedly. Consequently, the repeated construction of objects of the same kind is straightforward.

Instantiations are performed by means of the New construct. In the case of simple templates, a New

2Keyword parameters are uaed in a list of actual attributes.see S6ction 2.3.2 for more detail.
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construct is either directly followed by a template, or the New construct refers by name to a previously

defined template:

n HMibox (31an 40)

Now GrtdParttlon

The use of the New construct will result in construction of a mailbox that is able to buffer up to 40

messages. Note that the size attribute is type specific. Mal 1 box size is measured in number of

messages, and Bas ic object size is measured in number of bytes. The second use of New refers to

the simple template defined earlier. The compiler will treat it as a textual substitution of the body of

the template GrldPartltlon. At load-time, a basic object of 4096 bytes will be created, and it will be

initialized to contain up to 4096 bytes of data from the source file GP I d. Obj.

Complex Templates. A Complex Template describes both the data contents and the com-

ponents of an object, such as a task force, a module, or a process. Data contents are described in

Attributes specified as part of the template's Formal Parameters, and components are described in a

Construction Description. Each component can in turn be described by a Complex Template, so that

arbitrary tree structures can be specified in this fashion. A template comlponent is described by a

Comp(onent) Name and an Operation. To exemplify the syntax of Complex Templates, the syntax of a

Module Description is presented. The description of a sample module on page 23 is an example of a

Complex Template.

(Module Description> :: -

Module (Template Name> ((Formal Parameters> ) Is

(Construction Description)

(Construction Description> :: = Construct ((Component> ;)

(Component> :: = (Comp Name> (Operation>
(Operation) ::= New {{(Object Type) ((Actual Parameters>)) }

I Template Name> ((Actual Parameters>)))
I Ref (Object Name>
I Use (Object Name> ...

Comp(onent) Names are known only within the template in which they are defined, whereas Template
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Names are known globally within each TASK program. Note that the ellipses indicate that additional

* 'operations and syntax detail have been elided; they are not needed for this presentation. Formal and

* Actual Parameters are explained later.

* Operations provide alternatives in component instantiation. For example, the Now construct states

that a component object with a certain name be instantiated, where object instantiation consists of

creating the object as well as initializing its contents. If the object is a complex object, then initializa-

tion includes the instantiation of its component objects. As an alternative to the instantiation of a New

* object, a named pointer to an already existing object is created by Referencing the name of an

existing object. Another alternative is provided by the Use construct with which an identical copy of

an existing object is created. If this construct is used, the costly initialization steps that are part of New

need not be performed. For example, the data or code contained in each New object need not be

transferred to Cm* via the EtherNet. Instead, the existing contents of the Used object within Cms

primary memory can be accessed.

* Modules. Modules contain functionally related task force components [130, 36, 164, 60, 78]. In

* addition, each module has a number of functions which are templates used for the instantiation of

processes [60,164,130,80]. The runtime representations- of modules (supported by STARos) restrict

the objects that can be accessed by processes instantiated from their functions. Specifically, each

process can access the components of its function and the components of its function's module.
4

Therefore, modules act as firewalls during task force execution.

* In the TASK language, a module is specified by a Complex Template describing the module object

* itself, the objects instantiated as module components, and Function Descriptions. Unlike functions in

conventional programming languages, a Function Description is a template that describes a prospec-

tive process including any component objects. The syntax of a Module Description in conjunction

with its Function Descriptions is as follows:

- -
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<Module Description> :
Module <Template Name> ((Formal Parameters>) is

<Construction Description>
(Function Description)

(Function Description>:: =

Function (Template Name> ((Formal Parameters>) is
(Construction Description>

Consider the Construction Description of a Complex Template describing the server module: In the

example below, mailbox and basic templates defined outside the module template are referred to by

name within the module's Construction Description:

Mailbox Communicate (Size- 40)
Basic GrdPartitlon (izn 4K. Source (".Grld.Obj"))

Nodule Server IL

MyPartitton: Noi GridPartition;
Commune: Now Communicate;
Code: Ne Basi (Jtze- 4K. Source • ("Server.ObJ"));I. l )

When the server module is instantiated from this template, each component is instantiated in turn.

Therefore, the module constructed by the loader will contain three objects: the code executed by

server processes, one grid partition, and the object called Commune.

Processes. Processes are instantiated from function templates. Such instantiations are per.

formed with a special Operation in which the function template is referred to by name:

(Operation> :: - .

I Process <Function Name> ((Actual Parameters))

Consider the sample instantiation of a single process for the function DoServe of the server module.

In this example, the process is instantiated as a component of the server module. The function is

defined a few lines below:

* -* 

7

•~~ 

,1 

p
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Module Server .j1.
Construct

OneServer: Process Server.DoServe;

Function DoServe Jt
Construct(

Stack: Ine Basic (itZe 4K);

A function is referred to by a pathname that consists of the module name followed by the Function

Name. This permits functions in different modules to have the same name. Function Names (like

other template names) are global so that a process can be instantiated anywhere within a task force

using any function declared within the same TASK program3 . Since process initialization consists of

the instantiation of the components described by the Function Description, each server process will

contain a New Stack object.

Since each process instantiated from a module's function can access the module's components, all

processes instantiated from one module share access to the components of the module. As a result,

a module object can be employed as a repository for the information common to its functions. For

example, consider the refined function DoServe in which a component called MyCode is instantiated.

Given this description of the function, each server process will contain a New Stack object and an

-exact copy of the server module's component Code:

3The current implementation of TAaw further restricts proces instkntlation (see Appendix 1).
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P1 serves
Functioni Module

PN serves
Functioni Function3

P2 serves P Function2 P4
Functions 1 and 2 Function

• .P3 serves P

Function2

Figure 2-2: Processes Serving One, Multiple, or Overlapping Functions

"I

Ni;lL Server j.1
.' Construct(

OneServer: Process Server.DoServe;
Code: te Basic (jLJ a 4K, Source • ("Server.Obj"));

Function DoServe J1Construct (i

Stack: In Basij (Ize- 4K);
MyCode: Use Code;

Similar ways of sharing within modular structures are also used in other languages. For example, In

the MESA language [116], global information is specified in one configuration file shared by all

processes in a configuration.

A function template is a flexible mechanism for process construction because multiple processes

can be instantiated from one function. As a result, programmers need not substantially alter their

TASK programs if the number of instantiated processesis changed. However, this mechanism can be

too restrictive when performance concerns exist. Specifically, it is often desirable to instantiate a

single process that fields the invocations of multiple functions in a module. For example, in a module
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that implements the data abstraction Stack, it might be appropriate to instantiate a single process to

serve the functions Push and Pop. To achieve such flexibility, we permit a function to be aliased to

another function in the same module [149]. An invocation of an aliased function will automatically be

converted to an invocation of the function's alias. In the example of the stack implementation, a

function called Both could be the alias of the functions Push and Pop. Note that further augmen-

tation of the function mechanism might be desirable. For example, aliasing is not sufficiently general

to permit the instantiation of four processes from three functions, where three processes (P1, P2, and

P4) each serve a single function, whereas a fourth process (P2) serves as a backup for two of the

three processes. We graphically describe this situation in figure 2-2.

Formal Parameters. The access of processes instantiated from a module's functions to the

components of the module is not the only means by which processes share objects. The other means

is to declare Formal Parameters to module or function templates. A Complex Template with Formal

Parameters is analogous to a parameterized type definition in an abstraction- language. To provide an

example of a parameterized template, the mailbox called Commune is declared a parameter to the

, module template Server. The server process instantiated from the function DoServe is presumably

* programmed to cycle, while processing work requests sentto it via the mailbox Commune. Each-work

request instructs the server process to continue processing the data in MyPartitlon until either a

given time limit is exceeded or the solution to the PDE has been found (see example 2.1).

HQocule Server (Commune: Mailbox) J.!
Construct

OneServer: Process Server.DoServe;
MyPartitlon: New GridPartition;
Code: New Basic (Size - 4K, Source * ("Server.ObJl));)
Functio DoServe J.1
Construct(

Stack: hfn Basic (IzI 4K);
NyCode: Use Code;
1 yCommune: Ref Commune;
)

Example 2-1: The Parameterized Server Module
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In the example 2.1, each server process will contain a New Stack object and an exact copy of the

server module's component Code. However, the mailbox called Communo is only Referred to within

the function template so that all server processes will share access to it. Since Commune is a

parameter of the module', it is presumably instantiated elsewhere. In later specifications of the PDE

task force, the mailbox Commune will be used for communication between the server processes and

the coordinator process. Toward that end, it will also be declared a parameter to the coordinator

module.

Task Forces. Recall that a TASK program describes a task force as a collection of modules.

Module templates are instantiated as components of a task force template that represents the entire

task force. The form of a task force template is similar to that of any Complex Template, except that it

cannot have any parameters:

TaskForce <Complex Template Name> is
(Construction Description>

In order to exemplify a task force template, we use the server module template defined in example

2-1 and we assume that a similar template has been defined for the coordinator module. The latter

template exports the function DoCoordinate, and the coordinator process is presumably instan-

tiated as a component of the coordinator module. Both modules are instantiated within the task force

object. The communication object CommObJ is specified as an Actual Parameter to both modules so

that it is accessible to both the coordinator process and the server processes. Presumably, the

process executing DoCoordi nate will hand work requests to server processes via the CommObject.

The template for this task force, called the PDE template, can be found in example 2-2.

TaskForce POE ls

CommObject: Ne" Mailbox (Stzj - 40);
CoordinatorModule: New Coordinator (Commune-CommObject);
ServerModule: jig-Server (Commune a CommObject);
)

4Formal parameters to the module template can be referenced from Inside each of its function templates.
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Module Server (Commune: Hailb.x) ts

OneServer: Process Server.DoServe;
Code: RN 8astc (Basourc ... , Size-...);
MyPartitlon: Ne flast (...);

) .Functton OoServe J.1

yiomune: W Comune;

Module Coordinator (Commune: Mailbox) i8

OneCoordinator: Process Coordlnator.DoCoordtnate;
Code: ...)
Function DoCoordinate t8E
Construi

N*y'omumune: Md Comune;

Example 2-2: The PDE Task Force

When a task force is instantiated from the template POE, a task force object is created and all of its

components are instantiated, including the two modules. The instantiation of each module causes

the instantiation of its components, thereby causing the instantiation of a process. Only slight altera-

dons of the templates in example 2-2 are required to instantiate the grid partition as a component of

the task force object. In that case, the grid partition can be passed as a parameter to both the server

and the coordinator module so that both modules share access to the partition.

To conclude, we note the differences between the TASK specification in example 2-2 and the

executable task force constructed from it (see figure 2.1). In the TASK program, the task force is

described in terms of the instantiated modules, whereas the executable task force is described in

terms of the instantiated processes which merely make use of module objects. Fundamentally, these

differences arise because TASK programs focus on task force structure and construction, whereas
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PD'E

Task Force

OneCoordinator Code Communication Code OneServer
Obiect

Figure 2-3: The POE Task Force's Coordinator and Server Modules

the descriptions of executable task forces are dominated by the activities of their processes. Task

-force structure in terms of component of relationships between objects must be shown since the

construction of any object will precipitate the construction of its components. Component of rela-

tions also determine the scope of Comp(onent) Names. in addition, construction detail, such as

object sizes, must be contained in TASK programs. In executing task forces, object names, their

scopes, and therefore, component of relationships need not be known. Furthermore, construction

detail need not be retained. Instead, the accessibility of objects to processes must be known (as

shown in figure 2-1). In TASK, each process can access its components and the components and

parameters of its function's module.

The differences between an executable task force and a TASK program are emphasized by a

comparison of figure 2-1 with a figure in which the TASK.text is displayed graphically (see figure 2-3).

In the latter figure, the two module objects and the task force object are displayed. Each module has

three components: a process object, a code object, and the communication object. The server
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-module contains an additional object the grid partition. Note that the communication object is a

I component of both modules as well as of the task force.

2.3.2. Attributes and Iteration

One of the design goals of TASK is not to burden programmers with the specification of construc-

tion detail. To attain this goal, construction detail is either set by default or derived automatically

whenever possible. To distinguish information that must be specified by programmers from construc-

tion detail, both kinds of information are textually separated within TASK programs.

* Attr-ibutes. Construction detail is specified in'object Attributes. Consider the template called

Communuicats. The type and~hame of the template must be specified by the programmer, whereas the

attribute values such as object size can be set by default. Consequently, the minimal specification of

Communicate is one in which no attributes are contained:

Mailbox Communicate

* As a result, the mailbox with the following default attribute values is constructed:

Mailbox Communicate (31ia *32, Msglys AU

The Size of the mailbox specifies the number of messages that can be stored (32). WisgType

* distinguishes mailboxes that contain data messages from mailboxes that contain structured

messages [149, 1341. The default value Data is chosen since mailboxes of this type are most fre-

quently used in task forces executing under the STAROS operating system.

In TASK, most attributes of objects are set by default (see Appendix 3 for a complete list of at.

tributes and defaults). However, the object attributes that are dependent on the logic of the algorith-

* mic code must either be specified by programmers or derived by the linker. To clarify, we provide

* examples.

Consider the attribute Size. of a Basic object that contains a specific data structure. If the data

* structure is allocated at compile-time, the TASK linker can determine the number of bytes it contains,

whereby the loader can be furnished with the size of the basic object to be constructed [1 231. In this

... ...
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case, a programmer need not specify the value of the basic object's attribute Size. However, if the

data structure is constructed at runtime, then the compiler, linker, or loader cannot determine the

basic object's size. Therefore, the object's attribute S i ze must either be specified by the programmer

or the default supplied by TASK must be used. Note that the size of objects containing code can

always be determined by the linker.

Next, consider the attribute Source naming files that describe the contents of objects. The values

of this attribute cannot be derived automatically or set by default because TASK programs do not

contain information concerning the logic of the algorithmic code. For example, TASK programs do

not contain information concerning the values of compile-time constants used by the algorithmic

code. If such constants are contained in a basic object, the programmer must specify the basic

object's attribute Source in which a file containing the constants' values is named.

We note that illegal attribute values, such as negative sizes, are detected by the TASK compiler and

corrected by insertion of default values. Furthermore, if parameters remain unspecified, the compiler

issues warnings and inserts null parameters so that construction can proceed..

Another design goal of TASK is the variation of task force construction without requiring extensive

changes in TASK programs. Small construction changes are possible by variation of object attributes.

However, changes such as the variE ion of the number of instantiated processes involve the addition

or deletion of component instantiations in the TASK program. We call such changes structural task

force changes. A straightforward structural change in a TASK program is the variation of a replicated

or partitioned component. In a Replicated Component, a variable or fixed number of identical objects

are instantiated from one template. Each object has a unique name. For example, it can be stated

that several processes are to be instantiated from a function template. Their number need not be

determined until the task force is loaded [84]. In a Parlitioned Component, a variable or fixed number

.l ,of objects are instantiated from one template. Each object has a unique name and contains an equal

fraction of the data or code stored in the template's source file. For example, partitioning the grid

.. I-. v ' . =_ i=l=h..ta,
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data separates the grid into several grid partitions of fixed size (one of which is shown in the PDE

program on page 28). The number of partitions depends upon the amount of grid data in Grid. ObJ.

This number need not be determined until load-time.

Iteration. In TASK programs, Partitioned or Replicated Components are stated with an iteration

construct. In the following example, the grid is divided into n partitions of size "4096" bytes each. The

variable n is a formal parameter of the template in which the grid partitions are instantiated. Since the

value of this parameter must be determined when the template is instantiated, the following partition

ing statement resembles a variable macro expansion:

(t-O..n) Grtd[t]: Now Basic ($tze-4096)

This statement is expanded to:

* Grld(O]: ...
Grld[]: ...

We refer to appendix 1 for a detailed definition of TASK'S iteration construct.

In the current implementation of TASK, only object replication and partitioning variables can remain

unbound until load-time. All other attributes, variables; and parameters are resolved during program

compilation.

2.3.3. The Interface Between TASK and BLISS

Bliss programs are not visible in a TASK program with the exception of the ,ames of files in which

they are contained. However, s-iice Bliss programs manipulate the objects nanied within a TASK

program, the two kinds of programs must share names for the same objects. Since integers are more

space-efficient than strings, the names shared are integer names which are assigned to the

Comp(onert) Names in the TASK program.

The implementation of name sharing is constrained by the requirement that TASK-generated task

forces must be compatible with task forces written in Bliss.-l prior to the implementation of TASK.

!

D °
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Definition Files
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Coordinator
Module

Coordinator

Code Files

Figure 2-4: Generating and Using the Definition Files of the Coordinator Module

Consequently, the interface we have implemented does not require changes in Bliss. Specifically, the

TASK compiler generates definition files that are compiled with Bliss programs. These definition files

contain Bliss macro definitions in which integer names are bound to Comp Names. As a result, TASK

and Bliss programs must be recompiled whenever the contents of definition files change. However,

small changes in either programs are not likely to affect the mapping of Comp Names to integers so

that typically TASK and Bliss program alterations can proceed independently of each other.

Recall that another goal of the design of TASK is the construction of a task force module by

module. Accordingly, it must be possible to compile a task force incrementally., Toward this end,

TASK generates multiple definition files from one TASK program: one for the task force object, one

per module and one per module function. For example, two definition files are generated for the

coordinator module: one listing the module components and the other listing the components of the

module's function (see figure 2-4). These files act as input to separately compiled Bliss programs

which are later linked to become the code executed by the coordinator process.

*
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2.4. Task Force Blueprints

When programmers write TASK programs, they typically first design the logical task force structure

and write the associated code. Then, construction-specific information is varied to perform a variety

of experiments, while the fundamental structure and the code of the task force remain fixed. For

example, programmers may run a task force with different numbers of processes in order to measure

performance at different degrees of parallelism. To characterize the variety of executable task forces

that can be constructed by straightforward changes of a single TASK program, we introduce program

blueprints (83]. As with engineering blueprints, a blueprint of a TASK program describes some of the

instantiated objects and specific relationships between those objects [114, 169]. Just as in engineer.

ing, different blueprints of the same TASK program are used for different purposes. Specifically, three

* blueprints of a single TASK program are defined. The logical blueprint is a specification of task force

* structure that contains a description of each object instantiated within the TASK program. This

blueprint contains the information that typically remains unchanged across experiments with the

executable task force. Specifically, parameter and attribute values are not contained in the logical

blueprint. The information that varies across experiments is captured in the execution blueprint,

which is defined as a logical blueprint in which all parameters and attributes are bound.. A third task

force blueprint, the proximity blueprint, will be defined in Chapter .

2.4.1. Logical and Execution Blueprints

Logical and execution blueprints are described in turn. As previously stated, the logical blueprint

contains a description of each object in the executable task force. An object des~ription consists of

the object type and string name. Object type will determine the permissible object attributes. The

TASK language is used to state the information specified in a logical task force blueprint. Consider the

following TASK text that corresponds to the description of the grid partition in the logical blueprint of

the PDE program (see example 2-2):

GridPartltlon: Inu Baic

This sample entry in the logical blueprint consists of the grid object's string name, the operation
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stating that a new object will be instantiated, and the object type. Note that the string or integer

attribute values are not specified.

A logical blueprint reflects task force structure by recording the component of relationships be-

tween instantiated objects. Object "b" is the component of object "a" if "b" is instantiated as a

component of the complex template describing "a". For example, if the grid partition above is

instantiated as a component of the server module, then the logical blueprint records a component of

relation between the server module instantiation and the grid partition instantiation. Iterated com-

ponents are described by a single entity in the logical blueprint. For example, the partitioned grid is

considered a single component of the server module. Processes are described like any other object.

They are the components of the objects in which they are instantiated, and their own components are

described by the function templates employed for process instantiation.

If a template has Formal Parameters, the component of relations hold for any object bound to these

parameters. However, Actual Parameters are not specified in the logical blueprint Consequently,

while the object bound to the formal parameter Commune will be considered a component of the

server module, this object is not known in the logical blueprint. Note that Commune is an indirect

parameter of the function DoServe (see MyCommune in example 2-2). Therefore, the object bound to

Commune will also be considered a component of each server process.

While component of relations do not hold for the non-object Formal Parameters of a template, the

names of these parameters (but not their values) are contained in the template's description in the

logical blueprint. Non-object parameters must be known in the logical blueprint because such

parameters can affect the structure of an object instantiated from a template. Recall that a structural

change of a TASK program is one in which the number of instantiated components is varied. Con-

sequently, a sample parameter affecting structure is .one that varies the bound of a vector of instan-

tiations. Conversely, a parameter that does not affect structure is one that varies an attribute value.

Consider the following TASK text:

tI
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.- PE TaskForce POE is

Tas Foe CommOblect

CoordinatorModule

ServerModule

Coordinator ModueServer .is

Modu . Comm MOneServer

ObiectCode
MyPartition

MyPartition Module Coordinator (...) is

OneCoordinator

Code
Code Code OneServer

OneCoordinator

Flgu re 2-5: A Logical Blueprint of the PDE Task Force--Process Components are Elided

ServerModule: In hodule Server (n:Inteoer, ObJSlze:inteqgr) ii

i1-O:.n) Grld(1]: eI Basic (Sizi-ObJSlze, Source- ... )

In this program fragment, the template parameter n is the upper bound of the vector of instantiations

Grld[1 J, which is a single entity in the logical blueprint. The parameter ObjSlze is employed to

. vary the size of each entry in the vector of instantiations. It does not affect the structure 3f the server

* module.

We summarize the discussion of the logical blueprint by referring to the excerpts of the TASK

program 2-2 displayed in figure 2.5. Since the attribute and parameter values found in 2-2 are

excluded and since the parameter CommObject to the server and coordinator modules is not

resolved, this TASK text represents a logical blueprint of the PDE task force. However, for simplicity,

the function specifications and therefore, the components of the processes in the PDE task force

have been elided. A graphical representation of the TASK text is shown next to it. The lines in this

figure (i.e. figure 2.5) represent the compon'nt of relations between object specifications.
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Figure 2-6: The PDE Task Force With Three Server Processes

Next, we discuss the execution blueprint, which is defined as a logical -blueprint in which all at-

tributes and parameters are bound to values. Therefore, the execution blueprint contains all infor-

mation required for task force construction. Specifically, each execution blueprint includes the

descriptions of the modules, the processes, the replicated and partitioned objects, and the object

parameters in the TASK program. Replicated and partitioned objects are represented in an expanded

form. For example, the vector of instantiations Grld[tl] is represented as "n" separate entities,

where the value of "n" is known. Again, component of relations are specified between object instan-

tiations.

As an example of an execution blueprint, consider the executable PDE task force that consists of

four processes: one coordinator and three replicated .erver processes. The coordinator process is a

component of the coordinator module, and the replicated server processes are components of the

server module. The communication object is a component of each process because it is both an
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actual parameter of the respective module instantiations and is Ref erred to from within the respective

- function descriptions. In figure 2-6 the processes in the execution blueprint are displayed, whereas

* the specifications of the task force and module objects as well as the detailed construction infor-

* mation are omitted. The lines represent component of relations.

Having defined logical and execution blueprints, the degree to which TASK programs are affected

* due to experiments with the executable task force can be stated. For example, several experiments

with the POE task force will entail the instantiation of different numbers of server processes and grid

partitions, while other experiments will change the association of grid partitions with servers (29] (see

Chapter 3). The logical blueprint and the fundamental task force structure remain unchanged in

* either experiment. First, if the server processes are instantiated as a Replicated Comnponent and if the

grid is a Partitioned Component, then the number of server processes and grid partitions is varied by

adjusting the values of replication and partitioning parameters. Since parameter values are not

contained in the logical blueprint, this blueprint remains unchanged. Second, if each server process

can access the entire grid, then logical blueprint changes are unnecessary when altering the associa-

tion of grid partitions with server processes. Instead, server code can determine the proper associa-

- tion.

* Although the sample experiments leave task force structure unchanged, construction of the ex-

ecutable task force is affected. Specifically, each experiment's execution blueprint contains different

*4 values of replication and partitioning parameters. However, the association of grid partitions with

server processes is determined by server code, and therefore, is not visible in execution blueprints.

The logical and execution blueprints can even remain unchanged when the reference of a process

- to a specific Function Description is changed. For example, whether the process called OneServer

- is instantiated from the functions DoCoordinate or DoServe is not visible in the case in which both

* function templates contain the same components. However, the use of a function to instantiate a

process (131] affects the manner in which tbe task force is constructed. For example, consider the
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original design of TASK in which any process could be instantiated from any function defined in the

same TASK program. This design exhibited complications concerning incremental task force con-

struction. Specifically, if two modules used each other' s functions to instantiate processes, .then

neither module could be constructed before the other or each module had to be re-initialized once

the other had been constructed. Furthermore, if a function invoked itself, then initialization would

* cycle.

Two approaches can be taken to avoid the re-initialization of modules and cyclic dependencies

between processes. In one approach, the logical and execution blueprints are augmented to contain

Uses relationships so that cyclic dependencies can be detected [631. In addition, the loader is ex-

tended to perform repeated initializations. In the other approach, the scope of function names is

reduced such that a Function Name is known only within the module in -which it is defined. As a result,

a process is always instantiated within the module that defines its function. Note that users must build

"self-sufficient" modules containing all information needed by their processes. In addition, processes

in different modules share access only to their module's parameter objects.. For simplicity, the

second approach is chosen in TASK.

We note that TASK enforces comparable, but less rigid, restrictions concerning the Uses relation-

ships between any object and any template in a TASK program.

* 2.4.2. Representing Blueprints within the TASK Compiler

The current implementation of the TASK compiler requires the recompilation of TASK programs

whenever they are changed. However, we can show that the TASK compiler could be readily extended

to permit certain changes in task force construction without TASK program recompilation. The

* simplicity of this extension is due to the manner in which TASK program blueprints are represented

* within the TASK compiler. The representations of logical and execution blueprints are discussed in

turn.
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Coordinator DoCoordinate
Attributes Attributes

<of the Coordinator <of the DoCoordinate
Module) Function>

Components Components

<of the Coordinator <of the DoCoordinate

Module> Function>

Code Stack

OneCoordinatc MyCommur

MyCode

Parameters Parameters

Commune

Functions

DoCoordinate

Figure 2-7: The Templates of the Coordinator Module and its Function

The logical blueprint is represented as a shallow forest of templates. Function templates exist

within module templates, whereas all other templates are at the top level. Each template is specified

once, regardless of the number of objects instantiated from it. Within a template, a single entry is

made for each individually instantiated object and for each vector of instantiations. The coordinator

module and its function template are graphically displayed in figure 2.7. The components and the

formal parameters of the coordinator module are displayed, while attribute values are elided. For

simplicity, the template for the DoCoordinate function is shown separately from the module
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template. Note the parameter Communo in the coordinator module.

The representation of the logical blueprint chosen is efficient in space because the.total number of

templates in any given TASK program is typically small. In contrast. the number of object instances

within a single task force can be large. If templates were physically duplicated when used for object

instantiations, the compiler's available storage would soon be exhausted. To avoid template duplica.

tion, a link [154] is specified from each instantiated component to its template. For parameterized

templates, actual parameters are maintained with each instantiation. Actual parameters are matched

with formal parameters when the linked object is instantiated.

The information in the execution, blueprint is complete when the TASK compiler's semantic

processing phases have bound all attributes and parameters in the template forest. Task. force

construction could proceed based on the completed template forest. However, to explicate the task

force constructed from the given template forest, the TASK compiler maintains another representation

of the execution blueprint; it is called a creation tree. The top node of this tree represents the task

force object itself. Descendant nodes represent task force components. Each complex component is

a node in the tree that gives rise to another subtree. Simple components are leaves of the creation

tree. Each vector of instantiations is expanded resulting in the number of nodes or leaves indicated

by the upper bound. A pointer within each node or leaf refers to the detailed object description in the

template forest. In figure 2-8, the part of the tree constructed for the coordinator module is displayed.

The lines in the figure illustrate tree arcs encoding component of relations.

Several benefits are derived from the creation tree5 . Most importantly, the creation tree is an

explicit representation of the task force to be constructed. In this representation, a unique object in

the executable task force corresponds to each node or leaf in the creation tree. This is not the case

in the template forest, in which a single template entry can represent a vector of instantiations, and in

which a single template can be used for several object instantiations. Due to the one to one cor-

5Creation trees in TASK can be compared to syntax trees in syntax-oriented language editors [113).
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Figure 2-8: The Partial Creation Tree of the Coordinator Module in the PDE Task Force

respondence between creation tree entries and task force objects, a comparison of the task force to

* be built with the task force actually constructed is straightforward. Such comparisons are useful for

task force tailoring, monitoring, and debugging (see Chapters 4 and 5). The creation tree is also

useful concerning the generation of target code. For example, the generation of linking and loading

instructions each involve a straightforward tree traversal.

The creation tree and the template forest are data structures in which certain changes in task force

construction are straightforward to represent. Therefore, the associated TASK program need not be

recompiled. Specifically, structural changes consisting of variations in component replication and

partitioning are represented by updates to the replication or partitioning values in the template forest,
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whereupon the creation tree is rebuilt. Changes in construction detail, such as object sizes or source

attribute values, involve updates to individual entities in the template forest, while the creation tree

remains unchanged.

2.5. Task Force Construction

Recall that task force construction consists of compiling Bliss and TASK programs, and of linking

and loading (see figure 1.1). To automate construction, the TASK compiler generates instructions

that are stored in linker or loader command files and are carried out by the linker or the loader. In

support of incremental construction, individual command files are generated for each module in the

* TASK program, and for the task force itself. To clarify, we illustrate the cooperation among the TASK

compiler, Bliss compiler, linker, and loader in figure 2-9. Specifically, we display linker and loader

command files as well as the definition files generated for Bliss programs. Dashed lines indicate the

* control of linker and loader by means of command files, whereas solid lines indicate the flow of

information through the linker and loader.

In the remainder of this section, the instructions generated by the TASK compiler and the process-

ing of these instructions by the linker and loader are discussed. In addition, the integration of

debuggers and monitors into TASK is noted.

2.5.1. The Linker

The algorithmic code of each module in a TASK program consists of multiple, separately compiled

Bliss programs stored in multiple files. However, these programs contain procedures that refer to

each other and to common variables. Therefore, they must be linked before they can be loaded.

The TASK linker is an adaptation of the linker used in the Cmmp system (30]. In addition to linking

Bliss programs, the linker collects the source files and the loader command files of each module into

a single file, called a page Mie. A page file is formatted such that code, data, and commands are

contained in a sequence of numbered pages of varying size. As a result, rather than accessing
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Figure 2-9:. The Relationships among TASK'S Compilers, the Linker, and the Loader

multiple files during the construction of a module, the loader need only refer to particular pages in

single page file. Since the linker is described elsewhere [30, 149], further detail concerning its opera-

tion will not be provided.

2.5.2. The Loader

In TASK, loading is automated and transparent to programmers. Consequently, programmers are

relieved of this tedious, error-prone job, and task forces of any size can be c6nstructed with com-

parable ease. However, loading cannot be automated unless resource allocation is performed

automatically. Specifically, two resource allocation decisions have to be made prior to loading:

. assignment--on which processor to execute a process;K placement--where in distributed memory to represent object contents.
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Whereas other loaders make and execute the allocation decisions above6, the TASK loader merely

executes allocation decisions which are made prior to loading. The automation of resource allocation

is discussed in Chapters 3, 4, and 5. In the remainder of this section, we describe the manner'in which

the loader executes allocation decisions while a task force is constructed.

Although "resource allocation is decided prior to loading, the TASK loader remains a complex

subsystem for the following reasons. First, the entire tree of components of a task force (see the

creation tree in Section 2.4.2) must be constructed. Within this tree. components may Refer to or Use

other components by name, and the branches of this tree that represent modules must be con-

structed separately from each other. Furthermore, recall that objects which are bound to parameters

can be shared within modules or across module boundaries. Since formal parameters, References

to, and Uses of other objects cannot be recclved before the corresponding objects.have beeR con-

structed, either construction has to proceed in the appropriate order or objects must be initialized

more than once. The latter solution is chosen to simplify the code generation phase of the TASK

compiler.

Two additional sources of complexity in the loader are its interactions with the distributed operating

system and with the executing task force [122]. Specifically, the loader must make use of the com-

plex command formats and request protocols of the operating system which governs the substantial

number of resources of Cm* [123, 138]. In addition, although the intended use of the loader is strictly

static (i.e. permitting a task force to be constructed once and then executed), the loader also plays a

dynamic role in task force construction. Specifically, the TASK loader will construct each process in

the task force either statir-Ily or dynamically (see the next section).

In the remainder of this section, we will explain the contents of loader command files and the

manner in which they are processed. In addition, the" data structures maintained by the loader are

6 At ISl, a "downloader" was developed to assist programmers in making detaild resource alloction decisions concerning

a small number of graphics processors.
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Figure 2-10: Using Command Files For Loading

presented. As examples, excerpts of the loader command files for the PDE task force will be shown.

Command Flies and Command Templates. The loader cpmmand files of the PDE task force

and the flow of control between the TASK compiler and the loader are illustrated in figure 2.10 (for

simplicity, the linker is elided). Note that three command files are generated: one per module and one

for the task force itself. The contents of these command files are analogous to the contents of TASK

programs, in which templates are used to specify the information concerning each object in the task

force.Specifically, a loader command file is formatted as a sequence of templates called command

r € templates, where each template contains the information required for the construction of a single

object:

e a specific command to differentiate among the instantiation of New objects and the
Reference or Use of previously instantiated objects;

* a specification of the object stating the attribute values expected by the operating
system's resource managers (e.g. object sizes) and the attribute values required for
object initialization (e.g. the source of object contents);

- We note that the attribute values within a command template can be declared parameters of the

command template. Such parameters are resolved by the loader prior to their use.

[6.
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Consider the creation and initialization of an object instantiated from a simple template of type

Basic. A command template containing the information displayed below is generated (PDP.11 as-

sembly language is used to encode a command template. Comments are preceded by "-.". Precise

definitions of each entry in loader command templates can be found in Appendil 4.):

-- A sample command template that instructs the loader to
-- CREATE an object called DATA of type BASIC as a component of.
-- some template, in the template's component slot 1:

-- The first word contains the specific command and
-- a pointer to the object attributes

.WORD 0,C$$$2 -- 0: a creation command, C$$$2: a pointer

.tIORD 1,0 -- the component slot (1) into which the
-- pointer to the object is placed

.BYTE 0,0,0,133 -- an "end of command" marker denoting the
-- absence of actual parameters

-- The attributes of DATA:
C$$$Z:

.WORD 4096;0-- an object of size "4096" bytes

.WORD 0,0 -- the object has no component pointers

.WORD 0,0 -- an entry expected by the memory allocator

.BYTE 0,0,255,128 -- the object can be placed anywhere in
--the distributed memory of Cm*

.WORD 0,0, -- the object Is of type "0", the memory
-- allocatcr's encoding for BASIC

,WORD 1,0 -- object contents must be initialized
.WORD 0 -- an "end marker"

When the loader interprets this command template7 , it detects the Create command (0). Prior to

submitting a request for space to the operating system's memory allocator, the loader accesses the

attributes (C$$$2) and the actual parameters (if any) in order to determine the particular memory unit

in which to allocate space and the amount of space to be allocated. Subsequent to memory alloca.

tion, the loader initializes the object to contain the data within the object's source file. If such a file

exists, its contents are found in a page of the page file currently used. In the command template

shown, this is the next page, whereby a specific page number is not given. The object is considered

fully constructed upon the completion of initialization.

7We note that these loader actions are not significantly different from the actions takon by user programs that explicitly
instantiate objects.
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Except for catastrophical failures, users are not involved in the process of object creation and

initialization. To minimize the necessity of user interaction, the loader attempts to reduce the fre-

quency of failures by detecting the loss of object creation requests made to the operating system. It

uses a time-out scheme and automatically resubmits lost requests.

To illustrate the manner in which the loader constructs objects instantiated from complex

templates, consider the construction of a module. As previously stated, a module is represented at

runtime as an object that contains a vector of function descriptions and a list of pointers to module

components [78]. The runtime representation of a module is constructed in two steps: first, the

module object is created and then its data part and component pointers are initialized. Component

pointers are initialized by instantiation of the module's component objects. Accordingly, the module's

command template contains component instantiation commands in addition to the creation command

for the module object itself. Excerpts of the command template for the server module in the PDE task

force are presented in the following text:

-- A command template that instructs the loader to
-- CREATE the object called SERVER of type MODULE
-- in component slot 1 of the task force object:

.WORD 0,SERVER -- 0: create the object at SERVER

.WORD 1,0 -- the component slot in the task force (1)

.BYTE 0.0,0,133 -- an "end of command" marker denoting the
-- absence of actual parameters

-- The attributes of SERVER:
SERVER: .WORD 266,0 -- the module's data part size is 268 bytes

.WORD 32,0 -- it can contain up to 32 component pointers

.WORD 0,0 -- an entry expectod by the memory allocator

.BYTE 0,0,255,128 -- the module can be placed anywhere

.WORD 6,0 -- an object of type MODULE, "5"
.ORD 1,0 -- the module's data part must be Initialized

.WORD SERVERS -- the commands for constructing
-- the module's components

I

I .
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-- The beginning of the command list:
SERVERS:

-- A sample command:
-- Create DATA of type BASIC In module component slot 1

-- The end of the command list, an "end marker":
.WORD 3

Given this command template, the module object will be created as a component of the task force.

Initialization of module components is described by a sequence of initialization commands, such ab

the previously explained construction command for the object called Data.

The Command Language. The loader command language resembles job control languages in

operating systems [166,145]. Typically, object construction involves the invocation of operating sys-

tem resource managers and is performed in the order in which construction commands appear in

command files. However, if several-objects of the same kind are to be constructed, a sequence of

creation commands can be executed repeatedly. Furthermore, if an object is to be initialized once

and re-initialized later, the initialization commands of the object's command template can be ex-

ecuted once and re-executed later, whereupon only those initialization commands not yet success-

fully completed are executed. In addition, object copies or pointers to other objects can be fabri-

cated. (For additional detail concerning the loader's command language, consult Appendix 4).

The resemblance of the loader command language to job control languages suggests that it is

straightforward to extend the TASK loader so that task force components can be loaded before and

during execution. This extension is pursued further in the next section.

Repeated Initialization. Since actual parameters are not necessarily constructed at object

initialization, the loader must permit the repeated initialization of an object. A possible use of the

repeated initialization of an object occurs during task force construction. Specifically, a task force

could be constructed and then repeatedly initialized and executed, either to debug or to repeat

performance measurements. Since the command templates used by the TASK loader are not retained

until task force execution, the TASK system cannot assist users in the dynamic initialization of objects.



50 I Task Force Development Section 2.5

However, the data structures required to implement this dynamic initialization are similar to a data

structure already maintained by the TASK loader, called the creation stack.

The Creation Stack. The creation stack is used to initialize an object at times other than im-

mediately after object creation. It contains pointers to command templates and to the associated,

partially initialized objects. Object construction by use of the creation stack proceeds as follows. A

simple object is constructed by first pushing its command template onto the creation stack, then

creating the object, and last initializing its contents. When initialization is completed, the creation

stack is popped and the command template is discarded. A complex object is constructed by push-

S. ing its command template onto the creation stack, creating the complex object, and then constructing

- its components by interpretation of the template's initialization commands. Component construction

consists of first pushing the component's command template onto the creation stack and then creat-

- ing and initializing the component. Since the complex object's command template is not popped off

the creation stack until the object has been fully initialized, command template processing is nested.

Infinite nesting depths cannot occur because the TASK compiler prevents circularities in object in-

stantiation.

The creation stack is an appropriate data structure for the creation of trees of objects. Furthermore,

- it is straightforward to resolve the formal parameters associated with actual parameters at lower

nesting depths in the creation stack; .the loader simply accesses the command template and the

*; associated object in the creation stack. However, a different data structure is required to resolve

cross references between objects not initialized in the appropriate order and between separately

constructed modules (see the description of the loader's-library mechanism in Appendix 4 and in the

internal documentation (103, 154]).

L
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2.5.3. The Dual Role of the Loader

In the current implementation of the TASK loader, objects are constructed statically. The dynamic

* construction of objects requires the execution of direct calls to the operating system by the aigorith-

mic code. Both kinds of object construction are not equally straightforward. In the case of statically

constructed objects, programmers need only state the small amounts of information required by

TASK, and the loader's interactions with the operating syntem's memory manager are transparent. In

the case of dynamically constructed objects, programmers must code the protocol of interaction with

the memory manager, and they must explicitly supply the parameters required for object construction.

However, there are benefits to both static and dynamic object construction, and the exploitation of

such benefits would be facilitated if both static and dynamic construction were equally straightf or-

4 ward. For example, programmers may trade the efficiency in time of once constructing an object

statically against the efficiency in space of constructing an~ object dynamically whenever it is needed.

The TASK loader has been extended such that dynamic and static object construction are equally

straightforward in the specific case of constructing processes. Processes were chosen since their

substantial resource requirements during execution suggest that they should be destroyed after per-

forming the services for which they were constructed. Specifically, as with the static instantiation of a

process from a function template, dynamic process creation (but not initialization) is performed by the

invocation [149, 80] of a function in an accessible module. In either case, construction detail concern-

inig the process need not be specified because due to the availability of function templates. In the

dynamic case, function templates are stored in the data parts of the functions' modules. When a

function is invoked, the loader accesses the appropriate function template to construct a partially

initialized process that contains a private stack object and an "initial code" object. This process is

* initialized by executing the instructions contained in the "initial code" object8.

The loader's roles in static and dynamic process creation are illustrated in figure 2-11. The chosen

8 Currently, "initial code" is written by programmers. To generate the "Initial code" automatically is a straightforward
* extension of TAsK.
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Figure 2-11: <Small Change required>The Dual Role of the Task Loader

example is a POE task force in which additional server processes are created at runtime. We display

the server and coordinator module command templates because they each- contain process creation

commands. In addition, the process creation commands issued by the POE task force during its

execution are displayed.

As with process construction, the construction of any object could be performed dynamically if its

* command template were retained after loading. For example, the command templates of each

module's components could be contained in a special module component, called a template object.

Any dynamic component construction command could reference its specific command template by

the integer name ascribed to the component by TASK.

We note that the loader uses its ability to invoke functions in modules for static process construc-

tion. Specifically, to construct a process statically the loader invokes the requisite function of a

module specified in the TASK program. A partially initialized process is created as a result of this

invocation. Process initialization is completed by interpretation of the process' function template. In

this cas, the "Initial code" in the dfault process is not executed.
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2.5.4. Discussion of the Loader

In this section, we consider the performance of the loader and we illustrate the loader's usefulness

* by discussing the shortcomings of an earlier loader version. First, consider the storage space re-

quired for loading a task force. Although task forces are loaded one module at a time, the command

file of each module is potentially large. However, the address space limitation of the loader9 dictate

that command files be kept as small as possible. Consequently, the TASK compiler compacts each

command file by ensuring that only a single copy of identical object attributes or of identical templates

is generated.

Next, consider the time required for loading a task force. We are not concerned with the optimiza.

tion of this time because most task forces execute for considerable lengths of time. Therefore, no

attempts are made to optimize the order in which objects are constructed. Typically, .objects are

created and initialized in the same order in which they are instantiated in TASK programs. An excep-

tion to this rule is the case in which actual parameters remain undefined at load-time. In this case,

objects are created, partially initialized, and re-initialized later.

The shortcomings of an early version of the TASK loader are an appropriate means of demonstrat-

ing the usefulness of the current loader. In the early loader [78, 117], the code, the data, and the

command templates of a module were coalesced into a single file in which each command template

was immediately followed by the code or data of the associated object. Two shortcomings resulted

from this scheme. First, objects had to be created and initialized in the order in which commands

appeared because non-sequential command interpretation would have required random access to

large amounts of information. Second, a created object had to be initialized with the data following its

command template. Since initialization had to be completed before the next object could be con-

structed, repeated and partial initialization were impossible.

Address space is extremely limited in Cm* since the LSI. II processors are 16 bit machines.
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2.5.5. Debugging and Monitoring

Although the automatic linkage of a debugger into executing software is standard practice in

programming environments [62, 113], the current TASK system does not support the automatic

linkage of the STAROS system's debugger (143] into a task force [48,109]. In addition, TASK does not

generate the debugger's symbol table. Instead, programmers must explicitly generate symbol table

information and store it in task force components created for that purpose.

The interface of TASK to software monitoring facilities is equally rudimentary. Again, programmers

must explicitly create and manipulate objects that contain monitoring information. An improved

interface to a software monitor (144] is currently being designed.

2.6. Loading in a Distributed System

Loading cannot be performed without knowledge of the resources in the execution environment.

Furthermore, the allocation of specific resources to task force components cannot be performed

without knowledge of resource names. The subjects of this section are the resource descriptions

used. by the TASK loader and the binding of names to specific hardware resources. Toward this end,

we first describe the Cm hardware.

2.6.1. Distributed Hardware

Distributed hardware is a collection of processors, memories, I/0 devices, and connecting

busses [44, 74], where components and busses may be inhomogeneous, asymmetric, physically dis-

tributed, or inhomogeneously accessible [84]. Some examples serve to explain inhomogeneities and

asymmetries. Two processors with different wordlengths are inhomogeneous, whereas two proces-

sors with identical wordlengths and different cycle speeds are homogeneous, but asymmetric. Two

computers are inhomogeneously accessible if one is accessible via a fast fiber optic network link,

whereas the other is accessible via a slow, telephonic link.

The scope of our investigation is narrowed by several simplifying assumptions. First, we do not

• • . '
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Figure 2-12: The Cm* Multiprocessor

investigate issues that pertain to component inhomogeneities, such as program portability [24]. As a

result, it is assumed that all processors, memories, and busses within TASK'S distributed execution

environment are functionally identical, although their performance characteristics may differ. Con.

sequently, any process can execute on any processor in the distributed execution environment, and

any object can be represented within any memory unit. In addition, we are not concerned with

components that are inhomogeneously accessible due to differences in communication

protocols [661. Therefore, another assumption of our research is that uniform protocols are employed

for communication within the entire system.

The following hardware characteristics are considered in our investigation: memory sizes, bus
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bandwidths, memory and processor reliability, and the topology of component interconnections [56].

- Components are assumed logically fully interconnected at all times. Specifically, it is assumed that

some physical interconnections always remain unbroken so that a change in interconnections due to

temporary or permanent failures [56, 141] only effects differences in access costs. Clearly, this is a

realistic assumption for multiprocessors (57]. However, the assumption is also realistic for certain

network architectures. For example, although the failure of one imp (interface message processor) in

the Arpanet changes the interconnection topology of the network, message routing techniques

preserve the logically full interconnection of the network, albeit at the expense of message delivery

times.

The specific hardware of concern is the Cm* architecture [80], as illustrated by figure

1 2-12 (additional detail can be found in papers by Fuller and Swan, et al. [57,153]). The Cm* mul-

tiprocessor is composed of computer modules, each consisting of a DEC LSI- 11, a standard LSI- 11

bus, memory, and devices. In addition, each computer module includes a local switch, the Slocal,

which routes processor memory references either to the local memory of the computer module or

else onto the map bus. An Slocal also accepts references to its computer module's local memory that

emanate from distant processors.

A map bus connects up to fourteen computer modules. Each map bus is supervised by a single

Kmap processor responsible for routing data and memory requests between Slocals. Computer

modules, a Kmap, and a map bus comprise a cluster. Cm* can include any number of clusters, which

are connected via intercluster busses. Currently, Cm consists of five clusters, 50 computer modules,

and up to 128K words of primary memory per computer module.

The Kmaps collectively mediate each memory reference placed on a map bus, thereby sustaining

the appearance of a single large memory. However, due to the cluster structure of CmO, memory is

organized in a performance hierarchy; approximate inter- reference times for local, intracluster, and

intercluster references are 3, 9, and 26 mioro-seconds, respectively, as measured in benchmark
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tests [28].

The organization of busses qualities Cm* as a hybrid architecture. On the one hand, it is a

multiprocessor because all memoW~ is directly accessible from any computer module in the system.

* On the other hand, the switching architecture is physically implemented as a network of busses.

2.6.2. Configu ration Descriptions

The resource descriptions in the TASK compiler and loader are called configuration descriptions

because they describe the Cm' hardw~are as configured by the STAROS operating system. Certain

resources are not contained in this configuration. Specifically, we exclude the physically available

resources that are not acquired by the operating system during its initialization, the resources that fail

during system execution, and the resources dedicated to the operating system. For example, when

the operating system is initialized, it may only use two of the five clusters of Cm'. Furthermore, if

memory units are unavailable due to temporary or permanent failures (141 ], they are either not in-

cluded into the operating system's pool of available memory, or they are excluded from the pool while

the operating system is running [14e9, 80]. Devices like terminal lines, disks, and network interfaces

can be added to or removed from the computer modules to which they are attached.

Within the TASK compiler and loader, configuration descriptions are described as collections of

templates analogous to those used for software. For example, a single Cm* cluster is described by a

complex template recording the computer modules attached to the cluster's map bus and a few

cluster attributes, the latter including the cluster's mean time to failure, the devices attached to the

map bus, and some summary statistics concerning the cluster's modules. Computer modules are

described by simple templates listing attributes such as the absolute memory size, the amount of

memory that remains unused, the computer module's mean time to failure, and the list of devices

attached to the computer module. In figure 2-13, we graphically display a template describing a Cm*

cluster with three computer modules, called Cmli, Cml 2, and Cml 3. The lines represent the

cornponent of relations between the cluster and its computer modules.
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Figure 2-13: The Components of a SmallCm* Cluster

Since Cm* and STAROS change infrequently [29, 28], it could be assumed that accurate configura-

tiori descriptions are maintained by both the TASK compiler and the loader. Furthermore, the con-

figuration descriptions that are used to make resource allocation decisions could be assumed iden.

tical to the configuration descriptions that are used when these decisions are carried out. Instead,

task force construction is implemented such that construction failures will not occur when the con-

figuration descriptions used at compile.time are inaccurate. This failsafe behavior is achieved by the

compile-time allocation of virtual ratherthan physical hardware components. To determine the bind-

ings of virtual to physical components, the TASK loader ascertains the accuracy of its own configura-

tion descriptions by negotiation with the memory manager and process scheduler. It is assumed that

these resource managers supply accurate configuration information. Note that this assumption is not

made in other distributed system research [75, 93, 59].

Since configuration descriptions are subject to change, they are not "wired-into" the TASK coM-

piler. Instead, they are stored in files read prior to each compiler run. Although we designed a dialect

of the TASK language in which hardware configurations could be formulated 1821, the TASK compiler
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was not extended to read such configuration descriptions. For expediency in implemnentation,

~ description formats requiring little parsing and semantic processing are used [154]. We note that an

interesting extension of the TASK system is one in which the particular configuration a task force

requires for execution is determined by TASK and set up prior to loading. In such an extension, a task

force requiring sole use of a configuration of Cm* could be furnished a configuration of minimal size.

As a result, the maximal number of remaining hardware components could simultaneously be used

for other purposes.

2.7. TASK-Summary, Discussion, and Extensions

In this section, each of the three design goals of TASK is stated followed by a discussion of the

manner in which it is attained. Next, we discuss the benefits of separating the design and implemen-.

tation of the TASK language from the lalgorithmic code. Last, the current use of the TASK system and

several extensions are presented.

The first desig n goal of TASK is to facilitate the variation of the executable task forces constructed

from a TASK program. This goal is attained for several reasons. First, the specification of a template is

separated from its instantiation so that a template can be instantiated repeatedly. As a result, task

forces with different numbers of instantiated objects are easily constructed. Since processes are

instantiated in the same manner as other types of objects, TASK compares favorably to concurrent

programming languages [50, 68, 14, 15] in which the specification of a process is synonymous with its

F. instantiation. Second, an explicit language construct is provided to permit the instantiation of mul-

tiple objects from the same template, where the values of the variables that control replication or

partitioning can vary. To facilitate variation of replication or partitioning variables and to vary the

values of object attributes, TASK program variables can be declared template parameters. The useful-

ness of template parameters in the variation of task force construction is discussed next.

With respect to the variation of construction, it would be ideal if parameters would remain unbound

until task force execution. In that case, the change of a parameter value would not require re-
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compilation, re-linking, or re-loading. In TASK, for expediency of implementation most template

parameters are bound during task force compilation. However, to demonstrate the feasibility of

delaying parameter binding times, replication and partitioning variables are not bound until load-time.

Typically, these load-time variables are used to replicate objects depending on the number of

resources that are available when the task force is loaded, and to partition data depending on its size.

In the TASK tool system, parameter binding times are determined by the tools involved in task force

construction. For example, parameters concerning data partitioning cannot be bound by the TASK

compiler since only the linker can ascertain total data size. Furthermore, virtual resource names

cannot be bound to the names of physical resources before load-time since the loader negotiates

virtual to physical resource mappings. Note that assumptions of bound parameters will exist in any

tool system that integrates existing tools. However, such assumptions can be avoided if the com-

ponents of the tool system are written to suit the functionality that is required [62, 165].

The notion of TASK program blueprints is developed to implement the straightforward variation of

* construction within the TASK compiler. In the logical blueprint, structural information is described

that typically remains unchanged across experiments With the executable task force. The blueprint

U that varies from one experiment to another is the execution blueprint. Additional uses of blueprints

have been identified. For example, blueprints can be used. to change task force construction

parameters without requiring the recompilation of the associated TASK program. Furthermore, as

* suggested at the end of this section, blueprints can aid programmers in visualizing the structures of

their task forces.

The second design goal of TASK is to relieve programmers of the specification of construction

detail. This goal is attained by the automatic derivation of construction detail from information

specified by the programmer and by use of construction defaults. For example, the size of an object

* can automatically be determined by the linker if this object contains algorithmic code. Alternatively,

the compiler can determine that some standard size be used for an object instantiated in a TASK
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program.

The third design goal of TASK is the incremental specification and construction of a task force.

This goal is attained because TASK programs contain separately specified modules that are in-

dividually linked, transferred to Cm*, and loaded. More generally, the attainment of this goal is pos-

sible since both TASK and STAROS support units of packaging that are easily manipulated. Specifi.

cally, a TASK template is a package for the specification of a task force component, and a STARos

object is a package for the runtime representation of a component. Both kinds of packages are

q accessed by name, where name translations are transparent to programmers. Due to this trans-

parency, the incremental, static or dynamic construction of any object specified by a template is

easily implemented, provided that the number of cross-references between the separately con-

structed objects remains small.

There are benefits to developing the TASK language separately from Bliss-il. Specifically, the

TASK language exhibits little complexity, and the efficiency of code generation in Bliss-il is retained.

Furthermore, Bliss-i11 code written prior to TASK remains compatible with 'TASK-generated software.

The advantages of compatible languages and of languages that exhibit little complexity suggest that

the extension of one language by another is preferable to the implementation of a joint language,

such as Concurrent Pascal or Ada. However, one must consider whether the manner in which two

languages can interact will limit their joint functionality. For example, since only the file names of

alcorithmic code are known in TASK programs, the TASK compiler cannot determine the specific

code and data that constitute object contents. As a result, the compiler cannot automatically replace

a TTY driver by a screen-oriented code module when a screen device becomes available in Cm*.

Similarly, the compiler cannot automatically replace code that implements process communication

via shared objects by code that implements communication by messages. Such automatic selection

of code would either require a joint implementation of both languages or it would require an interface

of TASK to Bliss-i 1 in which the semantics of code procedures are known. We hypothesize that such

an interface would be sufficiently complex to warrant the joint implementation of both languages.
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However, a less detailed interface in which TASK programs contain Bliss procedure names and

parameters appears straightforward to implement. In this case, interface and version control [62]

could be implemented in TASK.

Currently, TASK is being used to construct experimental software for the Cm* multiprocessor. Such

software tends to be static; it does not experience frequent changes in resource usage during execu-

tion. Therefore, this experimental software can almost entirely be constructed by TASK so that

* programmers need not be concerned with the use of operating system facilities. In addition, Cm*

software is typically constructed once and run repeatedly. As a result, task force construction need

not be efficient in time. One might suspect that most multiple processor applications in the "real

world" differ from Cm's experimental software, thereby limiting the usefulness of a system like TASK.

* This is not the case. For example, most real time software [17] does not require runtime resource

allocation mechanisms. Similarly, image processing programs [21 ] are usually initialized once and

* subsequently run repeatedly fc~r multiple images. Other applications similar to Cm* software are: (1)

signal processing [136, 12] and speech recognition [106, 31] programs, (2) traffic control [16]

programs, and (3) multiple process file servers or network message servers that are instantiated once

* to serve recurring service requests.

Two possible criticisms of the TASK system are that TASK is inherently Static, whereby its useful-

* ness is limited, and that graphical design tools are required to aid programmers in the development of

the complex structures of task forces. To disspell the notion that TASK is inherently static, we have

extended the TASK language so that task forces that exhibit frequent, dynamic change can be con-

structed. Specifically, each object described in a TASK program can either be constructed by use of

direct operating system calls [80] or statically constructed by use of the loader. This extension has

proven useful. Typically, programmers will initially use TASK to construct all objects in the task force.

- However, as they become more familiar with the system and once their task forces are debugged, the

programmers' concerns with task force performance can prompt the dynamic construction of

slected task force objects under program control.
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A dynamically constructed object is a component of a task force which is described in a TASK

program. To allow such an object to be named and manipulated like other task force components, the

object is declared in the TASK program to the degree necessary. Dynamically constructed objects can

be declared in two ways. as Resorved or as Named objects. In the case of Reserved objects, the

TASK system attempts to ensure that the resources required for object construction will be available

at the time of construction. Specifically, the resources required by Reservod objects are considered

part of the total resource requirements of a task force, and task force construction will not complete

without warnings if total resource requirements are not met by the Cm* configuration used for load-

ing. The other way of declaring a dynamically constructed object consists of providing an object

Name, where neither the type of the object nor any of its attributes need be stated.

Dynamic object construction performed by the algorithmic code of a task force would be facilitated

if the loader's command templates were available at runtime. Although this is not the case in the

current implementation of TASK, we have demonstrated feasibility by implementing the dynamic con-

struction of processes. Process construction templates are stored in module objects.

For complex task forces,*development aids in addition to the TASK language may be required. For

example, if many cross-references exist between components at different levels of the tree represent-

ing the task force, then graphical displays are required to visualize the task force structure described

by the linear prose in a TASK program [45, 46]. Note that the structural characteristics mentioned

here are described in the logical and execution blueprints of a task force. Therefore, graphical

representation of these blueprints are the additional aids that are required by programmers. Further-

more, graphical displays displays of blueprints could present menus of task force components that

can be selected for inclusion into the blueprint displayed. For example, given a logical blueprint,

programmers could manipulate its display to derive an execution blueprint that contains an object

with code that implements a specific process communication scheme. In this fashion, the construc-

tion. of different executable task forces could be partially automated. Alternatively, component selec-

tions could be transparent to programmers, the feasibility of which has been shown
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elsewhere [140, 159, 11, 105, 122].
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3. Task Force Tailoring

3.1. Overview

In the previous chapter, we discussed the specification and construction of a task force. The

subject of this chapter is the allocation of physical resources to the components of a task force.

* Tailoring is defined as the set of resource allocation decisions concerning task force components.

Since tailoring is tedious and is difficult to perform for task forces containing more than a few corn-

* ponents, it is our objective to automate tailoring to the greatest extent possible. Therefore, we will

identify the information required to perform task force tailoring, and we will express this information

with sufficient precision to permit automation.

Attainment of automation is dependent on several factors. First, it is difficult to obtain precise

*information at any particular instant of time concerning the distributed hardware on which a task

* force execute Therefore, tailoring decisions may be based on incomplete or imprecise knowledge.

Second, multiple objectives that are pursued during tailoring may result in conflicts, whereby a good

decision with respect to one objective is a poor decision with respect t6 another. For example,

consider two tailoring objectives: improving reliability in execution and speedup of executidn. To

improve reliability in execution, the use of duplicate or backup components is suggested. However,

the maintenance of such additional components is likely to reduce a task force's speed of execution.

In the following, our definition of tailoring is formalized and refined so that-tailoring objectives can

easily be varied. The target hardware information that must be available for tailoring is identified and

is assumed to be known. We present examples of task force tailoring on Cm 0to show that the chosen

formalization is meaningful in practice. In addition, it is demonstrated that the formalization also

applies on architectures other than Cm*. Furthermore, the two previously mentioned tailoring objec-

tives are considered: increasing task force speedup and increasing reliability. While speedup tailor-

ing is discussed in detail, reliability tailoring is only touched upon to show the manner in which
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different tailoring objectives are formulated. In all examples, task forces are tailored individually so

* that interactions between multiple, executing task forces are not considered.

3.2. The Proximity Model

Since tailoring depends on the task force and the target hardware, we define a model in which both

* can be expressed. In the proximity model, information is formulated as objects related by proximity

relations. Proximity is interpreted broadly. In one case, objects represent hardware components and

proximity corresponds to the physical distance between components. In another case, objects

represent task force components and proximity corresponds to the frequency with which one object

accesses another. In an instance of the proximity model, we state the interpretation of proximity by

defining a set of binary relations, where each relation can specify the proximity of two objects. In

addition, an instance defines a set of objects and properties characterizing each object. The follow-

ing specification is a sample abstract instance of the proximity model in which properties do not

appear:

Objects: {1,2)
*Relations: {Dif(1,2)), where Diff expresses the difference between 1 and 2

The software and hardware instances that will later be used for speedup tailoring on Cm* are

further examples of model instances. The hardware instance represents the Cm* architecture. The

computer modules are the objects of this instance, and the proximity of computer modules cor-

responds to physical bus lengths. Three relation values are of interest in Cm*: (1) if Same-Cm holds,

two components are connected by the LSI.11 bus, (2) if Same-Cluster holds, two components are

connected by the intracluster bus, and (3) if Different-Cluster holds, two components are connected

4 by one or more intercluster busses. Consider an instance describing a two-cluster Cm* configura-

tion, where Cmi denotes the j-th computer module in cluster i.

Objects: {Ci 1, Cml2, Cml3, . ., Cm19, Cm2l, Cm22, Cm23,. . ., Cm29)
Relations: (Same-Cm(CmI 1 ,Cm 11), Same-Cluster(Cm 11,Cm 12),

Same-Cluster(Cm 11 ,Cm 15), Different -Clustor(Cm 1 ,Cm22))

The relation Same-Cm(Cml1,Cml) is used to state the physical distance of a computer module to

.4
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itself, where this distance corresponds to the length of the module's LSI. 11 bus.

The definition of a model instance does not require that the relations be complete. For example, the

Cm" description above is incomplete since a complete description requires listings of the physical

bus connections between each pair of computer modules. We also permit inconsistent sets of rela-

tions. For example, the addition of the relation Same-Cluster(Cml 1,Cm22) to the hardware instance

above makes the relations inconsistent because the added relation conflicts with the relation

Different-Cluster(Cml 1 ,Cm22).

The sample software instance of the proximity model describes a task force. The objects of that

instance are the processes P,..... Pn and the code, stack, and mailbox'() objects o1 .... 0m of the execut-

ing task force. We attach a type property to each object to distinguish between ac've objects of type

process and passive objects which have other type property values. Given this distinction, we define

relations between Pk and oi, oi and oi, and Pk and p,. A relation between a process Pk and a passive

object oi is defined as the frequency of access of the process to the passive object. Two examples of

frequency of access relations are: (1) a process frequently accessing its code and stack objects, and

(2) a process rarely accessing the object it uses to store final computation results.

A potential access relation1' between two passive objects o and o. is defined to express the

implication of a frequency of access relation between a arbitrary process k and oi with respect to

Pk'S frequency of access to o| for vice versa). For example, if the value of a potential access relation

between two code and stack objects is "frequent", then any process that frequently accesses the

code object will also frequently access the stack (and vice versa). However, since the access of a

process Pk to its own stack does not have any implications concerning the access of Pk to the stack of

a different process, a "null" potential access relation should be stated between the two stacks.

10 Mailboxes are used for process communication 1149).

1 1Potential access relations are useful when specifying proximities within TASK programs (see Chapter 4).

"~1
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Constraint relations between passive objects oi and o. or active objects Pk and p, are defined to

restrict resource allocation. For example, a constraint relation between two processes could either

state that they must execute in parallel or state that they may share the. use of one processor.

Constraint relations will be discussed in detail in Chapter 4.

* To summarize, the following inforbhation is specified in a sample software instance of the proximity

model:

Objects: (the objects of the executing task force)
Relations: ((frequency of access: active objects-passive objects,

passive objects-active objects),
{potential access: passive objects-passive objects),
(constraints: passive objects-passive objects,

active objects-actiVe objects))

* We have defined the proximity model in order to provide a basis for the automation of tailoring.

Toward that end, an operational definition of tailoring is provided. Given a software instance and a

* hardware instance, tailoring a task force consists of specifying a surjective mapping of the objects in

the software instance to the objects in the hardware instance. Tailoring is performed to achieve some

desired objective, such as balancing bus usage in a system with multiple busses. In order to measure

how well an objective is achieved by a mapping, we define a metric function that ascribes a value to

the mapping. A metric function is chosen based on the proximity model instances involved and upon

the tailoring objective being evaluated. For example, to evaluate tailoring with respect to balancing

bus usage, a possible metric function computes the total load on the busses due to the access

frequencies between task force objects. In this case, a good tailoring decision corresponds to a

mapping with a small metric function value. Small values are achieved when (1) task force objects

related as "less- frequent" are placed into modules residing in different clusters (modules related by

the relation Different-Cluster), and (2) task force objects related as "frequent" are placed into

modules residing in the same cluster (the relation Same-Cluster).

* The presented metric function is inappropriate in practice because it does not express that certain

mappings are infeasible due to physical constraints. A sample infeasible mapping is one that places
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passive objects into a computer module in excess of the module's limited amount of memory space.

Metric functions that eliminate infeasible mappings take properties of objects into account. Typical

examples of useful properties are the size of a task force object's representation and the size of the

available memory in a computer module. An example of a feasible mapping is one that assigns all

processes in a task force to execute on a single processor to limit the total load on busses. However,

this mapping is inappropriate with respect to the objective of realizing a task force's potential paral-

lelism. To avoid choosing this inappropriate mapping, a metric function can be designed to em-

phasize the constraint relations that state the desired parallelism within a task force. The use of such

metric functions during tailoring will prevent the assignment of several processes to a single com-

puter module (see Chapter 5).

ITo summarize, the presented tailoring definition enables us to quantify tailoring with respect to a

stated objective. While better or worse tailoring decisions correspond to low or high metric function

values of the mappings of the software to hardware instances, the resulting quality of such tailoring

decisions is dependent both on the precision of the available proximity relations and the appropriate-

ness of the metric function used for tailoring. This topic is discussed further in Chapter 5.

3.3. Tailoring Objectives, Metric Functions, and Proximity

Relations

In this section, we first discuss the manner in which metric functions are associated with tailoring

* objectives. We then present the speedup tailoring objective and the associated metric function,

* proximity relations, and object properties.

The association of metric functions with tailoring objectives is not always straightforward. Specifi-

* cally, multiple metric functions can be associated with one objective, and one metric function can be

* associated with several objectives. As a sample tailoring objective, consider the elimination of bot-

tlenecks in an existing system. Two different metric functions can be used to evaluate tailoring with

respect to this objective: system throughput and system utilization. System throughput, as formulated
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in Kleinrock [86], is a suitable metric function because throughput is improved if and only if bot*

tienecks are eliminated. System utilization is a suitable metric function because bottlenecks are

typically caused by system components that are over-utilized. However, the metric function system

utilization can also be used with another objective: minimizing the cost of hardware while it is being

* designed.

In this thesis, the tailoring objective is to improve the performance of a single task force that uses

multiple processor and memory resources. We equate the performance of a task force with the.

speedup of task force execution gained by parallelism. Speedup is defined as the ratio between a task

force's elapsed time to completion with one process and the same task force's elapsed time to

completion with "n" processes. For examp le, speedup equals ten it a task force's computation is

* completed ten times faster with ten processes than with one process.

Speedup depends upon (1) the ability of task force processes to execute in parallel and (2) the

*elapsed times to completion of each process. We are not concerned with (1) because the ability to

execute in parallel is usually determined by the control flow within the executing task force. Regard-

ing (2), consider a sample task force in which all processes execute in parallel. In this case, task

force completion time directly depends upon process completion times; task force completion time is

*equal to the maximum of the completion times of task force processes. The completion time of each

* process depends upon what we call communication time, the amount of time the process spends in

accessing code and data. In the example above, the manner in which task force completion time

depends upon process completion times and therefore, upon process communication times Is

straightforward. Although this dependency is not always 'A simple, we employ total communication

* time as a metric of speedup tailoring. A task force's total communication time is computed by adding

the communication times of its processes.

We next demonstrate that total communication time is an appropriate metric with respect to the

proximity relations in the previously defined software and hardware model instances. An analogy to
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the well-known working set model [38] in paging systems supports our reasoning. In the working set

model, the dynamic working set of a process is defined as the set of recently referenced pages.

Paging algorithms minimize the number of page faults during execution by keeping the dynamic

working set of each process in primary memory. As a result, process completion times are reduced.

In our analogy, the static working set of a process is the set of objects frequently accessed. This set

is determined by the frequency of access relations in the software instance. Speedup tailoring al-

gorithms attempt to minimize communication time of each process by locating each process' static

working set near the site of process execution so that the objects are rapidly accessible. As a result,

total communication time and task force speedup are improved.

We conclude by noting that the communication time metric is a commonly used evaluation criterion

in the experimental and analytical literature. Specifically, measures of communication time have been

used (1) in experimentation with the Cm and Cmmp multiprocessors [29, 166, 1111, (2) in analyses of

alternative network designs [56], (3) in analyses of distributed data bases [18], and (4) in analyses of

parallel algorithms [101). Theretore, we are able to compare our work with related research (see

Section 3.10 and Chapter 5).

3.4. The Execution Environment

In this section, we discuss the environment for which a task force is tailored. Recall that this

environment consists of hardware components that are configured by the operating system (see

Chapter 2, Section 2.5.2). Clearly, a hardware instance of the proximity mpodel must record the

configuration of hardware so that configuration can be taken into account for tailoring. For example,

* a process cannot be assigned to a processor dedicated to an operating system server process, and

an object cannot be placed into a memory totally occupied by operating system data. We refine the

previously defined hardware instance by recording two different kinds of objects: processors and

memory units. For each memory unit, we record its physical size (MpSizo in table 3-1) and the2

amount of memory augment the previo~isly defined hardware instance by recording two differentj
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Figure 3-1: The Proximity Relations of two Cm* Clusters

kinds of objects: processors and memory units. For each memory unit, we record its physical size

(MpSlze in table 3-1) and the amount of memory augment the previously defined hardware instance

by recording two different kinds of objects: processors and memory units. For each memory unit, we

record its physical size (MpSlze in table 3-1) and the amount of memory that remains unused by the

operating system kIIpAva 1 ab Ie). Similarly, for each processor, the physically and actually available

processor cycles are recorded. In addition, specializations of hardware components are expressed.
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For example, the boolean HasDl sk is attached to processors and memory units to express whether

they are directly accessible to a disk device. The boolean HasEther indicates whether an EtherNet

link is attached to a processor or memory unit. By use of these boolean values, a disk access buffer

can be placed into a memory unit directly accessible to a disk, and a network server process can

execute on a processor to which an EtherNet link is attached.

The processors and memory units in Cm* are connected by three different physical links: the

LSI-1 1 busses, the map busses, and the intercluster busses. Accordingly, the values of the hardware

instance's proximity relations express the durations of accesses across these links. The rapid access

of a processor to local memory (3 fL seconds) is expressed by a small value of the proximity relation

Same-Cm. The slower accesses to memory units within a cluster (9 /1 sec) and across clusters (27 A

sec) are expressed by larger values of the relations Same-Cluster and Different-Cluster. Since Cm* is

logically fully interconnected, each memory unit is related to each processor. In sumr-iary, Cm ° is

described by the sets that follow:

Objects: {the processors and memory units of Cm*'s current configuration)

Relations: {the relations Same-Cm, Same-Cluster, or Different-Cluster

between processor and memory units)

A sample hardware instance of two clusters of Cm* is graphically depicted in figure 3-1. Each

cluster contains three computer modules. A computer module is represented by a

memory/processor pair related by the relation Same-Cm. A circle is drawn to indicate the binary

relations Same-Cluster between each two modules in a cluster. The relations DiffereN-Cluster be-

tween the modules in different clusters are represented by one line connecting the cluster circles.

Properties are elided in this figure because they are separately listed in table 3-1. We make several

assumptions concerning the information in the hardware instance and the method of use of this

information during tailoring. First, hardware characteristics are assumed constant between the time

at which tailoring decisions are made and the time at which they are carried out. As a result, tailoring

decisions need only be made once. For example, since the amount of unused memory is assumed

LI



74 1 Task Force Tailoring Section 3.4

Table 3-1: The Properties of Hardware Components

HasEther: Boolean indicating whether an ethernet link is connected

to the computer module
HasDALink: Boolean indicating whether a direct access link is connected

to the computer module from CMU's DEC KL-1O processor

HasDisk: Boolean indicating whether a disk is connected to the module
HasLine: Boolean indicating whether a terminal line is attached

MPSize: Integer encoding the amounts of physical memory attached to the
computer module

MPAvailable.lnteger encoding the amount of physical memory that
remains unused

PCAvailable: Integer encoding the number of prncessor cycles that
remain unused

constant, object placement decisions made prior to loading need not be revised by the loader.

Similarly, bus bandwidths and latencies are assumed to remain constant under varying loads so that

tailoring decisions made based on the proximity relations of the hardware instance are accurate.

Second, each processor is assumed to be fully utilized if any one process executes on it. As a result,

process assignment is simplified because processors need not be assigned in parts. Third, all

processors are assumed to be of equal speed to avoid taking varying processor speeds into account.

Fourth, we assume that tailoring decisions minimize the total amounts of communication within the

distributed hardware to the extent necessary to avoid contention. As a result, the assumption of

constant bus latencies is realistic in practice despite the observations in [29, 28].

The presented hardware instance contains the information required for speedup tailoring on Cm*.

A different hardware instance will be defined when we consider reliability tailoring in Section 3.6.

Similarly, alternative hardware instances would have to be developed if we were concerned with

tailoring on network architectures. Consider the example of the Arpanet architecture [64, 126]. In the

Arpanet, the transmission time of a packet depends upon the number of nodes the packet traverses

nn its path from source to destination host. Therefore, we define that proximity values between hosts
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express the average path lengths of transmitted packets [18]. As another network example, consider

the local Ether network [115]. Here, we define that proximity relations express average message

transfer, times that include the durations of message assembly and disassembly. In this case,

proximity relation values reflect variations in (1) the implementation of netw~ork servers, (2) the net-

work access protocols, and (3) the physical bus lengths.

3.5. Speedup Tailoring

In this section, we provide speedup tailoring examples in an existing experimental environment, the

q Cm* multiprocessor and the TASK tool system. In addition, we define the information required for

tailoring in TASK.

* Recall that the compilation of a TASK program results in the construction of an execution blueprint

* of the specified task force. Based on this blueprint, the executable task force can be constructed. It

would be expedient if the task force could also be tailored based on this blueprint. That is not the

.-se. Instead, we will show that the information in the execution blueprint is necessary but not

sufficient for tailoring. As a result, we define a third task force blueprint, the proximity blueprint,

* 3.5.1. The Proximity Blueprint.

A task force's proximity blueprint consists of some information in the execution blueprint and some

* information not in the execution blueprint. The proximity blueprint of a task force is an instance of the

the proximity model. It contains the same objects as the task force's execution blueprint. However, it

does not contain the component of relations or all of the object attributes of the execution blueprint.

Instead. the relations in the proximity blueprint are the frequency of access and constraint relations of

the software instance explained in Section 3.2. The recorded object attributes are size and type.

Consider a sample proximity blueprint of the PIDE task force (see figure 3-2). This blueprint con-

tains the coordinator process and its stack and code objects, three replicated server processes and

their replicated stack and code objecls, and the grid partitions. Proximity relations express the
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Figure 3-2: Some Proximity Relations Between Three Server Processes

access frequencies of processes to code, stack, and grid partitions, as well as the potential access

frequencies between code and stack objects and between grid partitions. For simplicity, both kinds of

relations are expressed in the same units. Furthermore, we only distinguish between the access

relation values "frequent" and "less frequent".

3.5.2. Tailoring Examples

Deminet's experiments with the PDE task force [29] are used to illustrate that programmers typi.

cally perform tailoring experiments in which both the execution and the proximity blueprint of a task

force are necessary. In each experiment, the execution blueprint is shown to be a necessary, but not

*6'
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Figure 3-3: PDE-StarOS, Actual vs. Linear Speedup

sufficient basis for tailoring. The execution blueprint is necessary because the number of objects in

the executable task force is determined by the values of replication and partitioning parameters.

Furthermore, the values of size attributes are used to determine the amount of resources that must be

allocated during tailoring. However, since the execution blueprint does not contain frequency of

access relations, reasonable tailoring decisions cannot be made based on its contents. Instead,

tailoring is performed based on the frequency of access, potential access frequency, and constraint

relations contained in the proximity blueprint.

Three examples of Deminet's experiments with the PDE task force are presented. In the first

example, we replicate the - rver processes of the PDE task force in order to increase useful paral-
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Figure 3.4: Specifying the Relations Different-Processor Among Eight Servers

lelism. The expectation is that server replication will improve speedup. Experiments demonstrate

that this expectation can be realized if tailoring results in the assignment of each server process to a

different processor. Specifically, if eight replicated server processes are each assigned to a different

processor in one Cm* cluster, then speedup can be improved almost linearly, namely sevenfold (see

figure 3-3).

A straightforward optimization of the speedup metric (total communication time) suggests that all

processes be assigned to a single processor. In this case, speedup is not improved by server replica-

tion. Constraint relations stating that all server processes must execute on different processors are

required to prevent such inappropriate assignments. We display these relations in figure 3-4. A binary

relation Different.Processor appears between each pair of eight server processes. We note that the

component of relations in the execution blueprint are not sufficiently rich to express these con-

LiJ
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Figure 3-5: The Resources Allocated to three Server Processes and to their Objects

straints.

In practice, in addition to constraint relations, other proximity relations are required to improve

speedup by process replication. For example, the access rates of processes to passive objects must

be known. Specifically, since each server process frequently accesses both its stack 12 and code

objects, these objects must be replicated whenever a server is replicated. Furthermore, each server

process must execute on the computer module containing the server's code and stack. Otherwise,

total communication within the task force is prohibitively high and causes task force speedup to

12Stack objects are used to store intermediate, computational results that cannot be maintained in processor registers [91.
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Figure 3-6: Estimated Access Rates to the Code, thehe Grid Partition

decrease rather than to increase when additional server processes are instantiated. If the code and

stack are not replicated, or if code and stack placement do not concur with process assignment, then

dramatic speedup decreases are observed on Cm' (29, 28] due to memory and bus contention. We

illustrate the assignment and placement of three server processes on a small cluster of Cm* in figure

3-5. The software objects are drawn beside those hardware components to which they are assigned.

In addition, we show the observed access rates of a server process to its code, stack, and grid

partition in figure 3-6. Note that the heavier lines correspond to higher access rates, whereas thinner

lines indicate less frequent access.

The example presented shows that process replication precipitates the replication of the objects in

the static working set of the process. In Cm0, typically 90% c.' all memory references emanating from

an executing process are to code and stack objects. Therefore, process replication causes the

replication of code and stack. We note that objects containing data cannot be replicated if the logic

of algorithmic code requires that they be shared.

KJ
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Figure 3-7: PDE-Workload Imbalances Affecting Speedup

In the second example of Deminet's experiments with the PDE task force, we illustrate that speedup

is often influenced by the manner in which frequently accessed data is partitioned and distributed

among processes. Consider an execution blueprint of the PDE task force in which the grid data is

partitioned into a number of objects. Each server process iterates over a particular grid partition. The

proximity blueprint shows that each server directs 12% of its memory accesses to a particular grid

partition and 3 % to all other partitions (see figure 3-6). Given this information, the workload of each

server process can be expressed as a function of (1) the size of the server's grid partition, (2) the

proximity of the server to its partition in terms of access frequency, and (3) the access cost of a server

to its partition. Workload differences among servers have a significant effect on speedup because
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PDE task force execution is not completed until the slowest process is completed. Significant

speedup improvements are achieved if a grid partition distant from its server is smaller than a grid

partition close to its server13. Alternatively, speedup is degraded if the partitions of an equally divided

grid are not placed equally close to their servers. For example, if server processes execute on two

clusters, then placement of the entire grid into one of the two clusters degrades rather than improves

speedup. This is due to the fact that some server processes experience increased communication

across cluster boundaries, thereby increasing the workloads of those servers.

13 Note that tailoring can benefit from operating system support for small objects In segmentation systems (1251, only the
relatively large segments and processes can be separately manipulated. In object-oriented systems, many small objects may
be separately constructed, addressed, and moved. Therefore, object boundaries can be drawn to correspond to the
subdivisions of code and data determined by the locality of reference patterns.
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The effects of workload imbalances are demonstrated in figure 3-7 [29]. In this experiment, server

processes are replicated and assigned to different processors. Servers are assigned to the minimal

number of clusters possible, where clusters contain 9, 10, 9, and 9 computer modules, respectively.

* For example, 19 of the 20 instantiated servers execute in two clusters, and one server execute in the

* third cluster. Since grid data is distributed equally among clusters, a third of the grid data is placed

into each cluster. As a result, a third of the grid data is close to the single server in cluster three and

is distant from servers in other clusters. Since each server processes an equal fraction of the grid,

workloads are imbalanced. As a result, speedup decreases whenever server replication causes the

use of a new cluster. (Note the speedup values associated with 10, 20, and 30 processes.) However,

as additional server processes are instantiated, workload imbalances are reduced and speedup is

increased. Similar results regarding workload assignment are put forward by Gylys (611 in a theoreti-

cal study of real-time system performance.

In the third example of Deminet's experiments with the PDE task force, we illustrate that the

component ot relations in the execution blueprint are necessary but not sufficient for tailoring. Con-

sider a server process that contains an object called Data which is used to store final computation

results. ,Zomponent at relations in the execution blueprint state that this object is accessible to a

server process. Since object accessibility is a prerequisite for dynamic access, it is possible to

* conclude that Data is part of the server's static working set. As a result, we replicate the object, and

* we place it into the memory of the computer module to which the server is assigned. These actions

represent poor tailoring because the Data object is rarely accessed by the server. Although the logic

of the server's code may require the Data object be replicated, it may be placed wherever memory is

* available. While comnponent of relations define the boundaries of static process working sets, these

* relations do not contain sufficient information to pe.; mit the determination of the access rate relations

in the proximity blueprint (see figure 3-6).

A graphical representation of the entire POE proximity blueprint is presented in figure 3-8. We

display the access frequencies and the potentialaccess frequencies discussed above. For simplicity,
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one box is drawn to represent the code and the stack of each server. Potential acce3s relations are

expressed in the same units as access relations. Although the two module objects are elided, it is

clear that this simple figure contains a substantial amount of information. Specifically, the relation

values vary by several orders of magnitude: the code and stack objects are very frequently accessed,

the grid partitions are accessed with some frequency, and the communication object is only rarely

accessed.

To summarize this section, we note that speedup tailoring involves both the execution and the

proximity blueprints of a task force. As demonstrated by the first example of Deminet's experiments, a

simple means of achieving different speedup is to vary the values of the process replication

parameters and to assign replicated processes to different processors. These assignments involve

the use of constraint relations. However, in practice on Cm*, speedup improvements are gained only

if the static working set of a process is replicated when process replication occurs. Furthermore, in

the second example of Deminet's experiments, we show that it is necessary to balance workloads in

order to attain speedup when processes are replicated. As demonstrated in the third example,

although the component of relations in execution blueprints delimit the static working set of each

process, object replication and assignment must be based on a more precise representation of the

working set. The object access rates in proximity blueprints provide such precision.

3.6. A Note on Reliability

In this section, we touch upon reliability tailoring in order to demonstrate the manner in which a

significantly different tailoring objective is phrased within the proximity model. Exrerimental results

are not available14. To simplify, we do not identify causes for unreliability of task force components.

Consequently, the following topics are outside the scope of this discussion: (1) the influence of

programming techniques on reliability, such as programming for robustness in execution, (2) the

14Additional analysis and experimentation are required to argue that the presented reliability tailoring methodology is
appropriate in practice.
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relationships between reliability and object size or complexity, and (3) the relationships between

reliability and the logic of the algorithmic code, such as identifying code singularities or logical

distributions of code and data [84].

Given these simplifying assumptions, it is straightforward to define software and hardware model

* instances. In the instance that describes the task force, the reliability of each object is characterized

* by a probability distribution that represents mean time to failure (MTTF). Failures include errors and

permanent or transient faults [20]. Similarly, we record MTTF distributions for each object in the

hardware instance [141]. Due to the connections between objects, failures can propagate so that

dependencies between object failure distributions can be identified [141, 20]. We define hardware

and software proximity relations that express the correlations and the dependencies between object

failure distributions. These relations exhibit large values .. 'wo failure distributions are highly corre-

lated or if they are interdependent. Otherwise, their proximity values are small.

* To measure reliability tailoring decisions, we define a metric function that evaluates the match

between a software and a hardware instance. For example, a poor match is a mapping in which two

highly correlated task force objects are placed jnto two memory modules with small correlations of

failure. In this case, failures within on6 task force object that are likely to cause failures in the other

are needlessly protected from coinciding hardware failures.

Reliability tailoring is performed by searching for best matches of the presented software with the

hardware instance. However, as in the case of speedup tailoring, reliability tailoring experiments [20]

again involve the execution blueprint of a task force. For example, a standard way to improve

reliability is to replicate selected task force objects and to place them into memory modules with

uncorrelated failure distributions. The resulting redundant object copies protect task forces from -

irreversible information losses. Similarly, the amount of information that is lost in a failure is reduced

if data is partitioned and placed into uncor-slated memory modules. Another way to improve

reliability is to replicate processes that implement important services (e.g. network servers) and to
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assign them to uncorrelated processors. As a result, the availability of the important services is

improved [84].

We note that reliability tailoring may not be possible without altering the algorithmic code of a task

force [29]. For example, algorithms that require access to shared data may have to be altered if such

data is to be replicated. Similarly, algorithms that randomly access large amounts of data may have to

be altered if such data is to be partitioned.

Ignoring such issues, the implementation of ;aliability tailoring is straightforward in TASK because

most of the required information is already available. For example, the failure distributions of Cm"s

hardware components are constantly being collected by diagnostic software [29]. Furthermore, es-

timates of the failure rates of task force objects can be based on object size or complexity, or es-

timates can be provided by experienced 'application programmers. Alternatively, an existing software

monitor [144] could be enhanced to gather reliability information.

3.7. Tailoring an Operating System

While we have used the PDE task force to demonstrate our tailoring methodology, it is important to

note that programs of any size and complexity can be tailored. As an example, consider the most

complex task force executing on Cm*: the STAROS operating system [80]. STAROS was described as

a connected graph of functionally separable code modules. Each code module either corresponded

to a process in the executing operating system or it corresponded to a collection of routines and

associated data structures [78, 77]. The arcs in the graph were labelled by the access frequencies

between code modules 15. Therefore, the description of STARos resembled a proximity blueprint as

illustrated below:

1 5 Access frequencies were derived from several benchmark application programs [28].

. .. I ..
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I

Objects: [the code modules of the operating system)

Relations: {proximity relations expressing the frequency of interaction
between code modules)

STAROS was tailored to minimize the time required to service user requests. Multiple tailoring

experiments were performed, resulting in multiple operating system versions which were identical in

functionality and different in performance [77]. Two tailoring strategies were pursued. The first

strategy was to trade space for time. Specifically, by rplicating selected code modules, their execu-

tion times were reduced, thereby improving their service times.

The manner in which replication reduced execution and service times in outlined below. Consider

an invocation of a code module that is made by a program executing on .a processor not containing

the module. In STAROS, this invocation resulted in the remote execution of the module, which

generated large amounts of non-local memory references. Since non.local are slower than local

memory references, replicating the code module improved its execution time, thereby reducing its

service time. In addition, code replication reduced the likelihood of exceeding the Kmap's processing

capacity since fewer non-local memory references were made.

The second tailoring strategy pursued was to alter the cost of accessing system services, thereby

again improving service times. Initially, each system service was requested by execution of an expen-

sive (slow) call operation (similar to UUOs in Tops-10 or kernel calls in Hydra [162]). Later, frequently

used system services were requested via cheap (fast) message facilities, and several processors were

dedicated to execute the processes servicing those requests. Although- the performance of this

version was not measured, a queueing model similar to R-skin's validated model [135, 77] indicated

that system throughput would not degrade in large Cm* configurations.
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3.8. The Proximity Model-Discussion and Extensions

In this section, the advantages, disadvantages, and alternatives to our use of the proximity model

are discussed. We conclude the section by presenting an extension of this research.

One advantage of the proximity model is that it provides a framework in which a rich variety of

multiple processor application programs, distributed hardware, and tailoring objectives can be ex.

pressed. In this chapter hardware instances were formulated for the Cm* architecture and for com.

puter networks. Software instances were formulated for the PDE task force and the STAROS operat-

ing system. Because the PDE task force is executed as an application under the STAROS operating

system, the types of objects in the PDE model instance are those that are supported by STAROS. The

objects used in the model instance for STAROS were different; they corresponded to the logical units

of the functional decompositions of the'STAROs system. The tailoring objectives discussed were the

improvement of speedup and the improvement of reliability. Reliability tailoring involved the definition

of two additional model instances.

" •Another advantage of the proximity model is that it provides a flexible basis for the automation of

tailoring. The TASK system demonstrates this. Moreover, TASK serves as a testbed for experimen.

tation with varying tailoring objectives and metric functions. In addition, the TASK implementation of

the proximity model permits different degrees of programmer involvement. Specifically, programmers

can rely on TASK'S built-in tailoring knowledge, or they can overrule TASK'S automatic tailoring deci.

sions, or they can formulate their own tailoring objectives or metric functions.

Furthermore, the proximity model is a basis for comparisons to related research. For example, the

complexity of tailoring will be estimated by comparison to mapping problems investigated elsewhere.

In addition, references to related research act to guide the development of the automatic tailoring

procedures presented in Chapter S.

There are several disadvantages to the manner in which the proximity model is used In TASK.
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These disadvantages are caused by the omission of certain information from model instances, and

they are due to the fact that TASK uses only a single hardware or software model instance per run. An

* example of the omission of information is the insufficient detail in the model instances concerning the

algorithmic code. Specifically, model instances do not record sufficient detail about algorithmic code

* to indicate whether objects can safely be replicated or partitioned. As a result, programmers must

perform replication and partitioning explicitly. Furthermore, precedence relations [58, 23] expressing

* the control flow in a task force are omitted from model instances, since such relations cannot be

modeled by non-directional arcs. As a result, programmers must explicitly specify the parallelism in a

task force. Since TASK only uses a single software and hardware instance per run, each of which is

assumed constant, these instances do.not accurately reflect the dynamically varying computation of a

task force or the dynamic variation of the hardware configuration. For example, hardware contention

is ignored, although such contention can alter the effective bandwidth of a bus.

Alternatives to the manner in which the proximity model can be used for tailoring can be classified

into three categories: tailoring at different grains of description, tailoring at different times, and

tailoring using different scopes. Consider the grains of description. In TASK, a task force is described

in terms of its data and code objects and its -processes. At this grain of description, automatic

tailoring cannot result in requirements for changes to the algorithmic code. For example, if the logic

*of the code requires that an object be shared, then tailoring cannot cause that object to be replicated.

Alternative grains of description range from very fine to very coarse grains. If we used the very fine

grain of description at which the individual instructions and variables of the algorithmic code are

specified, then tailoring could be extended to Include the automatic replication of objects as well as

the automatic generation of parallelism (89]. Since such powerful tailoring requires algorithmic code

alterations, it is not possible at the next coarser grain of description, namely the grain at which

procedure and parameter specifications appear in TASK programs. However, at this grain parameter

and procedure types can be chocked [158]. In addition, one among several alternative procedures

could automatically be chosen for inclusion into the code (140,11, 159). For example, the automatic
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choice among procedures implementing alternative process communication protocols could be

implemented [122]. Furthermore, it procedures are described in conjunction with their associated

data structures, then we can automatically combine those descriptions into processes that can ex-

* ecute in parallel (69]. A grain of description coarser than that of TASK was used to tailor the STAROS

operating system (see Section 3.7).

* The second category is the time at which tailoring is performed. In TASK, tailoring is performed

after task force compilation and prior to loading. 1 .simplifies the implementation of the TASK

system. However, tailoring could well be performed at other times. For example, as part of related

* research efforts, the automatic selection among alternative procedures has been performed at

* compile-time [105,140,11, 1591 and at load-time (122], object placement decisions have been made

both at runtime and at link-time (38, 52, 761, and process scheduling has been performed both at

load-time and at runtime [150, 10, 34, 128]. In addition, load-time procedures have been designed [18]

and runtime procedures have been implemented [139] to distribute data files and the accesses to

such files within distributed data bases.

The third category is the scope of tailoring. Consider that automatic tailoring decisions in TASK are

made for one task force at a time. As a result, the scope of tailoring is limited. Although we could

tailor several task forces at a time, the required computation time would be prohibitive. Currently, a

large task force can be tailored in a few minutes of computation time. An enlarged scope of tailoring

would increase this computation time because more information would have to be processed. Com-

putation time can be reduced in two ways: by reducing scope or by using less detailed information.

As an example of a reduction in scope, consider tailoring a single process in a task force by selec-

4 tively localizing [149] the code and data objects of the process. As an example of the use of less

detailed information while the scope is increased, we consider the scheduler designed for the Medusa

system [128]. This scheduler attempted to "tailor" the entire system by assigning the processes of all

currently executing task forces to processors on the basis of process execution priorities. The

objective of tailoring was to maximize useful parallelism (1291.
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We conclude by discussing one means of extending the hardware model instance presented in

Section 3.2. In this model instance, the physical parameters of distributed hardware are recorded. As

additional parameters, information specific to the operating system could be included into the in-

stance. For example, the instance could be extended to record the manner in which STAROS process

schedulers [138] are set up. As a result, then tailoring could be improved by assigning small

processes to timeshared processors and large processes to dedicated processors. Alternatively, or in

addition, TASK could generate multiplexer setup commands prior the execution of each task force.

3.9. Survey of Related Work

The proximity model's instances capture several essential characteristics of multiple processor

applications and architectures. Consequently, descriptions that are similar to these instances have

been used in a variety of related research. Related research topics include file allocation in dis-

tributed data bases (18, 151,32], task scheduling in multiple processor systems (150, 27], and the

design of computer networks [112]. We will consider each of these topics in turn.

File allocation in distributed data bases concerns the replication of files and their placement into

the nodes of a computer network [18,25]. Files are accessed by processes whose assignments to

network nodes are fixed. In a formulation in terms of the proximity model, the following objects are

identified:

Software Objects: {files,processes), where each file has a size and a replication factor

Hardware Objects: (network nodes), where each node has a fixed amount of memory

Two kinds of proximity relations are defined between'a process and a file. In one kind, the frequency

of update accesses is expressed. Update accesses touch all copies of the file. In the other kind, the

frequency of read accesses is expressed. Read accesses touch only the nearest file copy. The

proximity relations among network nodes are straightforward. They are typically phrased in terms of

the average number of network links traversed by file access requests between nodes. Tailoring

consists of replicating files to the least extent necessary and placing the replicated files into network
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i*1

- nodes. The tailoring objective is to guarantee that neither update nor read requests will be too

slow [32]. The commonly used metric is a linear'combination of the total amounts of memory space

and interprocessor communication.

Research results can be summarized as follows. Eswaran [47] established that the optimal alloca-

tion of a known number of file copies [25] is an NP-hard problem. Despite this result, most solutions

to the file allocation problem used computationally expensive integer programming methods [118].

. The same methods were used to solve generalized file allocation problems in which software and

hardware design parameters were determined during file allocation. Generalizations included the

* determination of (1) the assignment of processes to processors [119], (2) network properties such as

" link bandwidths, link reliabilities, and node reliabilities [107], and (3) software properties such as

reliability requirements or maximally allowable file access times [107]. Typically, these generalized

file allocation problems were simplified by restricting network topologies to

tree-connected [19, 53, 73] or to star networks (55]. As a result, computational tractability was im-

proved, and more realistic solutions could be attained [55]. Some authors used heuristic procedures

rather than optimal algorithms to further improve computational tractability [107]. Additional

references concerning file allocation are provided in overview papers by Chu [27] and Morgan [118].

Resource allocation problems similar to file allocation problems were considered by

Ramamoorthy (133] who investigated the placement of relations in distributed, relational data bases,

by Chu [26] who analyzed the performance of directory systems in star and distributed networks, and

by Kung [91] who investigated the manner in Which parallel algorithms could be mapped to array

computers. Furthermore, early investigations regarding file allocation dealt with the linear topologies

of memory hierarchies. Researchers investigated designing [1] and optimally

using [132, 22, 76, 38, 37] memory hierarchies as well as improving the locality of programs [52, 4].

Solutions were attained with queueing models [86, 5] and with linear programming methods.

The second related research topic is task scheduling in multiple processor systems. Task schedul-
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ing as well as workload balancing concerns the assignment of processes to processors during system

operation. Gylys [61] formulated a quadratic zero-one programming problem to determine process

assignnents that equably partitioned total workload across available processors. Specifically, total

interprocessor traffic (total communication cost) was minimized, whili the number of processes that

• :could be assigned to each processor was constrained. Since it is difficult to solve quadratic zero-one

programming problems. optimally, heuristic solution procedures were used. Stone et.

"- al. [150, 151, 10] used efficient transportation algorithms to assign multiple, communicating code

". modules to 2 processors. Again, total communication cost was minimized. Extended solution

procedures dealt less efficiently with the "n" processor case and with dynamic process

rescheduling [10]. Cullman [35] extended Stone's work by considering a processor's current load

factor prior to assigning a process to the processor. Brantley developed simpler solutions for a

specific class of multiple processor applications: signal processing applications [12]. Theoretical

treatments of task scheduling are concerned with additional topics: (1) the direct minimization of the

total completion time of a set of tasks [85], (2) the derivation of complexity results for task allocation

algorithms [58], and (3) the inflitence of resource requirements or precedence relations among tasks

on task scheduling [23, 100, 168J.

Non-mathematical formulations of the task scheduling problem were first suggested by Jenny [69]

r and Jones and Schwans [81]. Both used relational expressions (proximity relations) to express Inter-

process communication. The purpose of Jenny's formulation was to partition a large number of

program modules into a smaller number of independently schedulable processes, whereas Jones and

Schwans [81] employ proximity relations to allocate resources to given processes and objects.

The third related research topic Is the design of computer networks [160]. Here, the requirements

of potential network users are employed to derive suitable node and link numbers, locations,

. bandwidths, and reliability values for the future network [56, 112, 95, 158]. We elide the formulation of

proximity model instances that capture network design requirements. Instead, we note that the large

number of components involved requires the use of heuristic solution procedures [18, 251.

. ... . . . . .... .
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4. Using the Proximnity Mqodel

In multiple processor systems of substantial size, resource allocation cannot be performed by

explicitly allocating particular hardware resources to individual software components. First, the num-

ber of individual allocation decisions is typically too large. For example, even a small task force

constructod for a small configuration of Cm* consists of 20 different software components to which

resources of any one of 10 different computer modules must be allocated. Second, since the con-

figuration of distributed hardware of substantial size can change frequently [141], software cannot be

constructed unless programmers check whether allocated hardware components are available.

* Therefore, if resources are explicitly allocated, programmers must know the precise configuration of

the hardware used for software execution. Programmers should not be forced to acquire such

knowledge. Third, if hardware can change, it is inappropriate to restrict software by means of explicit

* allocations to execute on specific hardware configurations.

In TASK, explicit resource allocation is not necessary. Instead, programmers state high-level direc-

fives in TASK programs that concern the usage of resources by sets of task force components. These

* directives are processed by TASK and are used to -determine appropriate resource allocations

* automatically.

This chapter is structured as follows. First, the notion of resource usage directives is discussed and

examples of directives and of their use are presented. Next, the syntax of directivds is described.

Last, we discuss the manner in which directives are processed by the TASK compiler.

4.1. Proximity Directives

In Chapter 3, it was shown that resource allocation can be performed on the basis of proximity

relations. Accordingly, TASK'S resource usage directives (also called proximity directives) express

proximity relations [2] between the components of the executing task force. Specifically, proximity7
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directives express the frequencies of access of processes to passive objects, the potential access

relations between passive objects, and the constraint relations between active or between passive

objects. For example, a proximity directive might indicate th e frequency of access of a* process to a

set of task force components, and an additional directive might express that this process can execute

in parallel with several other processes.

* In addition to expressing proximity relations betwegn task force objects, directives can also express

-the proximity of task force objects to certain hardware components. Such directives are typically

used to ensure the allocation of special-purpose hardware components to appropriate task force

* objects. For example, a task force process acting as a network server can be called "close" to a

processor to which a network link is attached.

* Proximity directives can encode different values of proximity relations. For example, a programmer

can use two proximity directives with different values to express that a process accesses two different

sets of task force objects with different frequency. However, in TASK such proximity values are not

stated in terms of access frequency values because programmers typically do not know the precise

* trequencies'6 . Instead, proximity values are stated in terms more familiar to programmers (see Sec-

tVon 4.2.1).

The semantics attached to different values of proximity directives are explained in the next section.

Here, we use an example to illustrate that directives have two different, useful interpretations. Namely,

* they can be interpreted as tailoring preferences or as tailoring constraints. For example, if a program.

mer states the close proximity of two task force objects, then the programmer may either prefer or

* assume that these objects be allocated memory in the same computer module. By default, the TASK

compiler interprets such a directive as a preference, so that it is possible that the two objects will not

be placed into the same computer module. The intent of this interpretation is to allow the compiler to

* use the stated directive, knowledge of the TASK program's execution blueprint, and knowledge of the

1An extension of our research is the automatic verification of proximity directives by an intelligent task force monitor.
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current Cmn hardware configuration to make appropriate allocation decisions. However, if program-

* . mers require explicit control of resource allocation, the TASK compiler can be instructed to interpret

proximity directives as constraints. In that case, the directive above implies that allocation decisions

that do not place the two objects into the same computer module are illegal. We note that directives

relating task force to hardware components are6 always interpreted as constraints because such

directives are typically used to ensure the allocation of specific hardware to task force components.

Whether proximity directives are interpreted as preferences or as constraints, typical directives in :
TASK programs do not touch upon each one of the components of the specified task force. As a

result, the tailoring decisions made by the TASK Compiler will substantially influence the performance

.........................' .i*.*** . . . -
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of the executing task force. For example, consider the PDE task force for which the following direc-

tives expressing constraints are specified, as illustrated by figure 4-1:

* the co.)rdinator process and each server process should be assigned to the computer.
modules into which the coordinator's or the servers' code and stack have been placed
(these directives are represented by the thick lines in the figure);

* all server processes should be assigned to different computer modules (these directives
are represented by the thin lines).

Several mappings of the PDE task force to the Cm* hardware satisfy the constraints above, and

each mapping can result in different performance of the executing task force. Consider the following

sample mapping: a single server process is assigned to each of the cluster's computer modules, each

server's code and stack are placed into the memory of the computer module to which the associated

process has been assigned, and all grid partitions are placed into the memory of a single computer

module of the cluster. Furthermore, the coordinator process shares the use of one processor with

one of the server processes. In Chapter 3, it was shown that the PDE task force mapped in this

fashion exhibits linear speedup. Therefore, this mapping constitutes a good set of allocation deci-

sions. However, given the directives above, another sample mapping is one in which the server

processes and their code and stack objects are spread across two clusters while all grid data remains

In a single cluster. The PDE task force mapped in this fashion does not exhibit linear speedup

because the workload of server processes are imbalanced.

4.2. Proximity Directives in TASK Programs

Proximity directives in TASK programs are strictly local, namely, each directive relates components

within a single TASK template. Therefore, directives cannot directly state global relations in which the

components of multiple templates in a TASK program are related to each other. Instead, several

global relations are automatically derived from the the local directives stated in a TASK program (see

Section 4.3). We have two reasons for using local directives. First, global directives would breach the

rules of scope that are enforced within TASK programs. Second, as shown later, the syntax required

*. - *I
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to state local directives is simpler than the syntax required for global directives.

Sinoe proximity directives are local, a separate set of directiv-s is associated with each TASK

program template. Directives appear in postludes to templates so that a template's jirectives can be

changed separately from the template's Construction Description. For example, in each module

description, the Resource-Usage Directives appear after the module's Construction Description and

after the Function Descriptions. Furthermore, each Function Description contains its own

Resource-Usage Directives:

(Module Description> = Module (Complex Template Name> ((Formal Parameters))* is
<Construction Description>
(Function Description> +

(Resource-Usdge Directives>

(Function Description>:: = Function (Complex Template Name> ((Formal Parameters>) Is
(Construction Description>
<Resource-Usage Directives>

Resource-Usage Directives consist of the keyword Directives followed by a list of proximity

directives relating the objects instantiated within the preceding Construction Description. For ex-

ample, the sample proximity directives in the DoCoordi nate function below state a proximity relation

between two prospective process components: Stack and Code. As shown, the directives refer to

the template components by their Comp Names (Ellipses indicate missing text, and "--" precedes

comments. Keywords are underlined):

Function DoCoordinate (...) J.1
Construct(

Stack:
Code: .
Data: .

Directives (.

SameCm (Stack, Code) -- a sample directive
. )

Each instantiation of a process from this function contains the three components listed in the

Construction Description, where two components are related by the SameCm directive. As will be
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discussed in the next subsection, SameCm means that Stack and Code should be placed as close to

each other as possible, preferably into the same computer module.

4.2.1. Degrees of Proximity

*' As mentioned in Section 4.1, the values of TASK'S proximity directives are not stated in terms of

" frequency of access values because programmers do not know those frequencies. Instead, a few

different degrees of proximity are formulated in terms of hardware characteristics known to program.

mers, such that each degree expresses a different proximity value. As a result, proximity degrees

differ depending on the distributed hardware used for task force execution. In Cm, each one of six

different degrees of proximity denotes one choice concerning the mapping of task force objects to

the three-level hierarchy of component interconnections. The terms "should" and "must" are used in

*the itemized list that follows because each proximity directive can be interpreted either as a tailoring

preference or as a tailoring constraint (as explained in the previous section):

-; . SameCm expresses- that the related objects should/must be in the same computer
module;

* SameCluster expresses that the related objects can be in the same computer module
and should/must be in the same cluster;

Diff'Cm expresses that the related objects should/must not be in the same computer
module and should/must be in the same cluster,

* NearCm expresses that the related objects should/must notbe in the same computer
module and can be in the same cluster;

D fDfClus ter expresses that the related objects should/must not be in the same cluster;

9 NoCare expresses that the related objects can be anywhere.

The i f... and Same.., proximity degrees are straightforward expressions of whether objects

should be in the same or in different computer modules or clusters. The NearCm degree expresses a

"different" relationship with respect to computer modules and a NoCars relationship with respect to

clusters. Note that the converse degree expressing a "different" relationship with respect to clusters

and a NoCare relationship with respect to computer modules is superfluous in Cm* because the
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assignment of objects to different clusters implies their assignment to different computer modules.

Proximity degrees are readily formulated for architecture- other than Cm'. For example, in the

EtherNet access to any remote host is equally costly due to the high cost of packetizing and de-

packetizing messages [115]. In this case, two proximity degrees must be distinguished:

SameComputer and DiffCorputer. These proximity degrees must be refined for other computer

networks. Specifically, different costs of packetizing and de-packetizing on different network nodes

must be taken into account if a network consists of inhomogeneous computers. Furthermore, if

communication protocols differ within a single network, the resulting transfer costs also differ. In

both cases, proximity degrees can be stated as vectors of distances between network hosts [18.

Note that the proximity degrees within the ArpaNet would be stated in this fashion (see Chapter 3).

4.2.2. Expressing Proximity Relations with Proximity Directives

Several sample directives serve to clarify the exact relationships between the proximity directives in

TASK programs and the corresponding proximity relations in the task force being specified. Consider

a server module in the PDE task force that contains three server processes: Serveri, Server2, and

Server3. The following directive in the Resourc.e-Usage Directives of the server module expresses

that each server process should/must execute on its own computer module in one Cm* cluster.

D itffCm (Serverl', Server2, Server3)

This proximity directive conveniently states the proximity relations between the three server

processes. Specifically, the directive expresses three different binary constraint relations (see Section

3.2) between the three active objects (server processes). If each of these relations were expressed

separately, the following, equivalent, binary directives would have to be stated:

Diff~m (Serveri, ServerZ)
Difm (ServerZ, Server3)
DifUCM (Serverl, Server3)

In the directive above, three active objects (processes) are related. If a directive relates three

passive objects, then the directive expresses a potential access frequency relation (see Section 3.2).
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For example, the three server process components called Code, Stack, and Data are related as

- SameCm by the following directive in the Resource-Usage Directives of the DoServe function:

SameCm (Code, Stack, Data)

This directive is intended to express that each server process will access its code, stack, and data

with the such frequency that the objects should have the proximity indicated by SamoCm to the

process. In TASK, a specific range of potential access frequencies corresponds to the proximity

degree SamoCm, and these ranges are not visible to programmers. Each proximity degree denotes a

different range of potential access frequencies. These ranges have been determined in tailoring

experiments with the TASK system. Their precise delineation is elided here.

The sample directives above are straightforward expressions of either potential access frequencies

* lbetween passive objects or constraint relations between active objects. The expression of the

frequency of access of a process to its c'omponents is not as straightforward in TASK because it is not

possible to state a global directive that relates a component of one template, the template containing

the process, to components of another template, the function template of the process.

In Chapter 3, it was shown that frequency of access relations are important for task force tailoring.

Consequently, their expression by means of directives must be possible. The approach taken in TASK

is simple: the TASK compiler derives global proximity relations from the local directives specified. For

example, the local directive above expressing the potential access frequencies between prospective

server process components is used to derive a global relation expressing the frequencies of access of

Serveri to its components. As a result, the following (illegal) global proximity directive is derived

from the specified local directive:

SamoCm (Serverl, Serverl.Code,
Serverl.Stack, Serverl.Data)

The illegal directive states that the Code, Stack, and Data objects of the process Server I should be

placed where the process is assigned. Note that pathnames are required to distinguish the com-

ponents of Serveri instantiated from the DoServe template from the components of Server2 in-

stantiated from the same template. Since frequency of access relations are derived and not stated,

IJ
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the use of pathnames is avoided in TASK, thereby simplifying the syntax. Additional information

concerning the derivation of global relations from local directives is provided in Section 4.3.

4.2.3. Explicit Allocations

The sample proximity directives in the previous section do not require that programmers know the

configuration of the distributed hardware used for task force execution. However, some task forces

require that specialized hardware resources be allocated to particular task force components. To

accommodate such needs, the explicit allocation of hardware components to task force objects is

supported in TASK. Specifically, programmers can first select a particular hardware component and

then relate the selected component to a particular task force object. However, programmers need not

know the physical names of hardware components. Instead, they can select hardware components

by attribute, by functional, or by their virtual TASK-defined names.

Virtual hardware component names can be used in selections if the selected, virtual component is

not assumed'to exhibit explicitly desired attributes, such as memory of sufficient size or an attached

disk. Hardware component names in TASK resemble array names in algorithmic languages. For

example, the name of the second computer module in the first cluster of Cm* is Cluster1[2]. The

same cluster is named by Cm([1] or by Clustert 17 . As with all virtual hardware component

names, the TASK loader binds the names C1 usterl and CmStar[1] to aspecific physical cluster.

Once a programmer has selected a specific hardware component, this component can be related

to a task force object by means of a proximity directive. The proximity degree Same is used in such

directives. For example, the following directive Same expresses that the process ServerZ must

execute on the second computer module in Cl usteri:

I= (Serverz, Clustjl[2J)

17 The Cm* architecture can be described by a few named arrays (see Appendix 1 for a complete list of predefined Cm*
component names). However, architectures that are less regular in topology, such as the ArpaNet, require different naming
schemes. In such cases, we expect that pathnames will be used.
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A hardware component is typically selected once and then used in multiple directives of degree

* :Same. To facilitate multiple uses of a selected component, variables can be defined and assigned as

values the names of selected components. For example, the directive above can also be stated as:

MyCM: Clusterl[2]
Same (Server2, NyCm)

Since selections by name restrict the choices of the TASK system in resource allocation, we instead

encourage programmers to select hardware components by functional, if possible. Specifically, the

functional AnyOf can be used to express that a particular object can be assigned to any of a set of

hardware components. For example, any one of the computer modules in the first cluster of CmStar

is selected by:

This selection may but need not result in choosing the previously selected computer module

Clusterl[2.

The functional HumberOt (not implemented) returns an integer count of the number of hardware

components in the set to which it refers. For example, the following statement* returns an integer

count of the number of computer modules in Cl usterl:

NumberOf (Cluster1)

Given this functional, object instantiation can be made dependent on the availability of hardware

resources (see Section 4.3.4).

* Neither selections by name nor selections by functional are adequate if task forces require

hardware exhibiting certain attritutes. For example, a task force process acting as a terminal handler

must be tested on a computer module to which a terminal is attached. If such a computer module is

selected by name, programmers must know the mapping of virtual to physical computer module

names as well as the physical computer module's attributes in order to guarantee that a terminal is

attached to the selected module. Since the configurations of Cm* can change, a programmer cannot

- be expected to have this knowledge. Therefore, selections like the above require that hardware be
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selected by attribute. The following selection in a TASK program will result in the selection of a

computer module to which a terminal is attached:

TerminalModule: U CmStar['l] where (HasTerminal -'True)

- This computer module is in the first cluster of Cm*.

More than one attribute may be specified in a selection, and selections can be nested. For ex-

ample, the first of the following selections expresses that a cluster containing (1) a large amount of

available memory and (2) at least one computer module with an attached terminal should be chosen.

The second selection chooses a computer module (in the selected cluster) to which a terminal is

attached and which has more than 64K bytes of memory:

LargeCluster: Aax f Cmgta weli(MoStze >= 600K end Numl~erminals >a 1)

LargeTermlnalModule: AnXU LargeCluster where
(MSiz >- 64K Ad Hla.Trminal , Tru)

The TASK compiler reports selection failures if the devices or hardware components selected in a

TASK program are not available in the current configuration of Cm'. Selection defaults are generated

In such cases.

4.2.4. Language Summary

Three principles guide the design of TASK proximity directives. First, proximity directives are

specified and changed separately from task force component declarations. Hence, directives are

stated in postludes to templates. Second, directives are formulated in terms familiar to programmers.

Consequently, proximity degrees do not directly express the frequency of dccess relation values in

proximity blueprints. Instead, proximity degrees are formulated in terms of the hierarchy of memory

access exhibited by the distributed hardware. Third, proximity directives are designed so that

programmers state as little hardware detail as possible. As a result, component selections by func.

tional or by attribute are preferable to selections by name. Additional detail concerning proximity

directives is presented in Appendix 1.
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4.3. Processing Proximity Directives

In this section, we discuss the derivation of proximity relations in an executing task force from the

proximity directives in the TASK program describing the task force. Three kinds of relations are

derived: constraint relations, potential access frequency relations, and frequency of access relations.

As shown in the previous section, the constraint relations between active objects are readily derived

from proximity directives. An n-ary directive relating the active objects merely has to be translated to

equivalent binary relations. The translation of directives between passive objects to potential access

relations between those objects is equally straightforward. Namely, each degree of proximity

represents a specific range of potential access frequencies when passive objects are related to each

other. However, it is not as straightforward to determine the global proximity relations between a

process and its components from TASK's local directives. The required derivation of global from local

* directives is discussed next.

In TASK, the following general rule Is applied to derive global from local directives. If one object Is

the component of another, then the types of the component and of its "parent' as well as the local

directives that involve the component determine the proximity relation between parent and com-

ponent. For example, consider a process instantiated from the DoServe function, where the directive

SamCm (Code, Stack) is stated in the postlude of the function template. In this case, the bask

objects containing the code and the stack are components of an object of type process. Further-

more, a directive with degree SameCm refers to the code and stack objects. Given these object types

and this directive, the TASK compiler derives that the code and the stack objects are each related as

SameCm to the process. Therefore, the proximity relation expressed by the (illegal) global directive

SajC (Serverl, Serverl.Code, Serverl.Stack) is derived from the local directive SameC

(Code, Stack).

o Frequency of access relations that involve other than basic components of processes are deter-

mined in an analogous fashion. We do not discuss these and other automatic derivations in detail. In

L"-1
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addition, we elide discussion of the defaults generated by the compiler concerning objects not related

by directives. However, we note that appropriate automatic derivations and defaults have been deter-

mined by extensive experimentation s .

4.3.1. Transitive and Conflicting Directives

Proximity directives are transitive with respect to "same" relationships. An example of a transitive

directive concerning the "same" computer modules is:

SameCm (Code. Stack)
SaMeC (Stack, Data)

These directives imply that the following additional directive is redundant:

SameCm (Code, Data)

An example of a transitive directive concerning the "same" clusters is:

amJl ui.st (Code, Stack)
SameCluster (Stack, Data)

These directives imply that the following additional directive is redundant:

SameCi s.teL (Code, Data)

Directives are not transitive with respect to "different" relationships. For example, the following

directives imply nothing about the relation between Serveri and Server3:

Dtfft1uster (Server1, Server2)
Diffuster (Server2, Server3)

Since programmers may state directives that exhibit transitivities or that conflict with each other,

the TASK compiler must detect and resolve transitivities and conflicts. For example, consider the

binary directives below:

SameCm (Code, Stack)

SameC (Stack, Data)

These directives are combined into one ternary directive:

SameCm (Code, Stack. Data)

18Several sample task forces and prior exipermentation with Cm* [29, 281 were used to determine appropriate defaults &d
automatic derivations (154).
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However, the following directives are not simplified in this fashion:

SamnC (Code, Stack)

SameClustor (Stack, Data)

Instead, the only transitivity effect recorded is that Code, Stack, and Data should/must be placed

* into the same cluster.

Conflicts are caused both by the explicit statement of conflicting directives and by the effects of

transitivity. For example, the following direct conflicts between directives will be discovered:

SameCm (Code. Stack)
DiffCm (Code, Stack)

In addition, the compiler will also discover the conflicts due to transitivity in the directives that follow:

SameCm (Code, Stack)
SamaCm (Stack, Data)
D1iffCm (Code, Data)

Since transitivities and conflicts among directives are determined on a template by template basis,
their number is typically small. As a result, transitivity and conflict detection procedures employ

straightforward algorithms and data structures. As data structures, we employ proximity sets, where

*i the proximity set of a directive is defined as the set of task force components listed in the directive.

Each proximity set is recorded by two bitvectors. One vector records "same" or dJferent" relation.

ships with respect to computer modules, the other vector records "same" or "different" relationships

- with respect to clusters. Each bitvector records the objects that are set members by their positions

* within the template. Since a conflict or a transitivity between two directives cannot occur unless the

*associated proximity sets intersect, the detection of conflicts and transitivities includes the calcula.

tion of proximity set intersections. These intersections are determined by And-ing the involved bitvec.

tors.

*: In the example of two transitive directives (see page 107), the compiler detects that the component

at position Stack is a member of two proximity sets, each of which records "same" relationships with

* respect to computer modules and clusters. Both proximity sets are merged, thereby combining the

directives. Merging consists of Or-ing the bitvectors that represent the proximity sets. However, in
U
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" the example that follows, the Stack component is only required to be in the same cluster as the other

two components. Therefore, the involved proximity sets cannot be merged. However, the bitvectors

expressing "same-ness" with respect to clusters are Or-ed. As demonstrated by these examples, in

general, transitivity detection and correction consists of forming the transitive closures of those

proximity sets in a TASK program whose intersections are non-empty and whose proximity degrees

are identical with respect to "same" relationships concerning clusters or computer modules.

Conflicts are determined much like transitivities. For example, a conflict concerning computer

modules (see page 108) is detected by And-ing the directives' computer module bitvectors. If one

*: bitvector specifies a "same" relationship while the other specifies a "different" relationship, then an

And operation resulting in a non-empty bitvector signifies a conflict. Conflicts are resolved by use of a

ranking among proximity degrees. Higher ranked degrees take precedence over lower ranked

degrees. While we do not explain the rankings in detail, we note that programmers are always notified

of detected and corrected conflicts.

Because the TASK compiler resolves transitivities and conflicts, they need not be considered by the

- tailoring procedures in Chapter 5. However, such procedures must take into account that conflicts

can occur during resource allocation. As an example of a conflict during allocation, consider the

directives:

SatC(~) erm(b,c); Ditf'Custer (8,c)

When tailoring procedures choose resources for a, b, and c, a conflict arises if the three objects are

allocated to the same cluster. This conflict cannot be determined before resource allocation because

Tailoring procedures check and correct allocation conflicts in an optional second phase after

resource allocation has been decided (see Chapter 5). Note that this phase need not be run when

directives are interpreted as preferences.

[-
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4.3.2. Directives and Selections

While most proximity directives express proximity relations between task force. compooents, direc.

tives with the degree Same determine the hardware components that can be used as resources for

particular task force components. The set of hardware components that can be allocated to an object

is called the eligibility set of the object. Given the assumption that each object can initially be

assigned to any hardware component, statement of a directive with the degree Same is equivalent to a

restriction of the eligibility set of the object named. Therefore, when processing directives with the

degree Same, the TASK compiler restricts the eligibility sets of task force components. Given the

proximity directives presented, the following situations have to be dealt with during such restrictions.

*. Multiple selections. If a single object is involved multiple directives with the degree Same,
*this object is directly dependent upon multiple selections. In this case, the TASK compiler

must compute multiple restrictions of the object's eligibility set. The selections and direc-
tives below provide an example of multiple selections applied to one object:

DiskCm: Anv~f Clustert where (HasDisk -rue)
EtherCm: Anx Clusterl where (is c True)
IM (EtherCm, Coordinator)
SaM (DtskCm, Coordinator)

o.

. .*Successive selections. If a selection is itself derived from a restricted set of hardware
components, then the TASK compiler must successively restrict the eligibility sets of the
associated task force objects. The selection of Di skCm is an example of a selection from
the restricted set D1skC1uster:

" DiskCluster: Any Of CmStar whore Nuamiski >- I
DtskCm: AnvXU DiskCluster where HasDisk Tu

e Empty selections. Multiple and single selections can result in empty eligibility sets of the
associated task force objects. The example of selecting a network link in Cme
demonstrates this point. There exists no computer module to which both an EtherNet link
and a direct access link (DALInk) are connected. Therefore, the selection below results
in a empty set:

EtherDaLinks: Anyf Clusteri1 where
(HasEther a I= AA .lTi..nk I )

.: As a result, the following directive relates the coordinator process to an empty selection:

-: • Sane (EtherDALinks, Coordinator)

" To avoid empty selections, the TASK compiler ignores the last selection statement or the
.- last attribute stated within a selection that caused the set of hardware components to

become empty.

o-*

--------------------------------------------------------------------
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* Inherited selections. When computing the transitive closure of proximity sets, the
eligibility set of any object within the closure is defined as the intersection of all eligibility
sets attached to members of the closure. The following directive provides an example in
which object b inherits the restriction attached to object a. Both objects must be placed
into a computer module with a disk:

Samn (DlskCm,a)
SameCm (ab)

To process inherited selections, the TASK compiler must first compute the transitive
closures of proximity sets and then form the closures of all eligibility sets of the elements
of the closures.

*'Conflicting selections. Multiple directives with the degree Same in conjunction with other
directives may lead to conflicts. For example, the directives that follow must lead to a
conflict if there is only one computer module to which a disk is attached or if there is only
one disk per cluster in Cm* (recollect that Di f fCm also expresses that computer mod'iles
must be in the same cluster):

ame (DlskCm,a)
Same (DlskCmb)Difm(a,b)

This conflict can be determined prior to resource allocation. However, if multiple com-
puter modules with attached disks exist in a single cluster, then tailoring procedures must
act to avoid conflicts during resource allocation. These conflicts can be avoided only if
all proximity sets and all associated eligibility sets of which each task force component is
a member are taken into account by tailoring procedures.

There are more examples of difficulties caused by the interplay between explicit allocations and

other directives. Instead of dealing with the full generality of this interplay, in TASK the semantics of

directives are simplified by imposing the following restrictions. First, for each object, exactly one

directive with the degree Same can be stated. Consequently, multiple selections cannot occur.

Second, objects can either be related to a hardware component or to other task force objects, but not

to both. As as result, conflicting and inherited selections are avoided. Given these restrictions, the

transitivities and actual conflicts between directives can be determined prior to tailoring. However, it

is an inconvenience that users cannot state both a directive with the degree Same and with directives

other degrees concerning a single task force object. Specifically, it is not possible to state directives

that single out one member of a proximity set for "special treatment". For example, the following

statements are illegal:
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..J- OtffCm (Processi, ProcessZ, Process3)
-.. Same (DlskCm. Process3)

Since these directives are illegal, there is no convenieht way to assign Process3 to a specific com-

puter module and to restrict the process to execute on computer modules different from those al-

located to the processes Processi and Process2. The alternative directives below do not have the

desired effect because either of Procossl or Process2 could also be assigned to the selected

DtskCm:

DjffCm (Processi Process2)
=am (DtskCm, Process3)

In cases like these, TASK users must explicitly assign each process to a specific computer modules.

We return to discuss a design choice taken at the beginning of this subsection, namely, to perform

eligibility set restrictions while a TASK program is being parsed. The major benefit of restriction

processing at parse-time is that directives can be pre-processed by the TASK compiler prior to their

use by tailoring procedures. This was not the case in the original design of the TASK language in

which the semantics of the AnyOf functional required that selections be performed during tailoring.

Since Any f selections can be nested, chains of such selections had to be recorded. These chains

had to be preserved until tailoring procedures chose resources compatible with the selections in the

chains. Each time a choice was made, an entire chain had to be followed to ascertain that the chosen

resource was a member of each listed eligibility set. Since this imposed considerable complexity on

tailoring procedures, we discounted this interpretation of the AnyOt construct.

We note that eligibility sets are implemented like proximity sets; space-efficient bitvectors encode

these sets and are used to compute set restrictions and to check for empty selections.

4.3.3. Using Selections to Parameterize Task Force

Construction

6Recollect that the server processes In the POE task force must be assigned to dedicated proces-

sors In order to achieve desired speedups (see Section 3.5). Consequently, if the POE task force is to
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execute efficiently within a single cluster of Cm*, programmers should not instantiate more processes

than there are available processors. Therefore, server replication should depend on the number of

procebsors available.

Server replication dependent on the number of available processors is a typical example of the use

of configuration knowledge by programmers. TASK'S hardware component selections can reduce the

amount of configuration knowledge required of programmers. Specifically, the functional NumberOf

can be used to declare variables that express the number of resources available. For example, the

following statements first select one large cluster of Cm* and then define the variable CmCount that

encodes the number of processors in this cluster:
MyCluster: Any~f CmpStar where (NumCms >- 8 and NumDisks >- 1)

CmCount: Number.l MyCluster

TASK syntax permits the use of the variable CmCount to instantiate a variable number of server

processes (not implemented):

(1-1..CmCount) Serverrl]: fin process ...

The example above is only one instance of the use of configuration knowledge during task force

construction. Other instances are the partitioning of data in accordance with the number of available

memory modules and the replication of objects in accordance with hardware component attributes.

For example, server processes could be replicated according to the number of processors with local

memory sufficient to place the servers' code and data. Furthermore, conditional construction is pos-

sible. For instance, certain objects may be instantiated only if certain devices are available19.

19Languages designed for real-time systems have long recognized the importance of including hardware attributes into
software specifications [17, 1571.
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4.4. Using the Proximity Model-Discussion and Extensions

By use of proximity directives, programmers interact with TASK to guide resource allocation.

Specifically, programmers provide information to TASK that cannot be deduced from TASK or Bliss

programs. For example, proximity directives stating the processes that can execute in parallel cannot

be automatically deduced by compile-time analysis of control flow in algorithmic code (89].

There are additional ways in which programmers can interact with the TASK system. For example,

programmers can experiment with different tailoring objectives, metric functions, and tailoring

* procedures. However, to facilitate such experimentation, the current implementation of TASK has to

be augmented by a monitor of task force execution. Such a monitor could be used to verify that

proximity directives accurately reflect access frequencies observed during task force execution. Fur-

* thermore, the observed access frequenties could be displayed to programmers and could be used to

update the proximity directives stated in the TASK program. In addition, this monitor could collect

information that cannot be determined statically. An example of such information is the actual

availability of hardware resources, such as the load on selected processors.

We have completed a preliminary dessign of an augmentation of TASK by monitoring facilities. This

* design is based on ascribing unique names to task force and hardware components. These names

are jointly used by TASK and by a task force monitor. Two unexpected conclusions could be drawn

from the preliminary design. First, the relations and attributes described in. execution and proximity

blueprints can be used to filter [1441 the potentially overwhelming amounts of information collected at

* task force execution time. Second, we expect that tailoring procedures using information about both

the specification of a task force and its execution characteristics will perform better than procedures

* based on either one.

We have shown that the proximity model presented in Chapter 3 and the proximity directives

presented in this chapter can be used to perform task force tailoring for computer networks. In this

context, an interesting characteristic of proximity directives is that we distinguish between the inter-
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pretations of proximity directives as tailoring constraints or as tailoring preferences. This distinction is

important because constraints cannot be fulfilled without correct information, which is hard to obtain

in distributed systems, whereas improvements in resource usage merely may not be realized if infor-

mation is incorrect.

o

LI
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* .5. Tailoring-RiModeling, Heuristics, and
Experiments

The subject of this chapter is the automation of tailoring. Automation is based on the proximity

model. Specifically, both the hardware and software model instances presented in Chapter 3 and the

speedup tailoring metric function are formulated mathematically. These formulations are the basis for

the development of automatic tailoring procedures. Specifically, we show that tailoring can be per-

formed by state of the ar t optimization procedures. However, since mapping problems related to the

* problem of mapping a task force to Cm* have been shown NP-complete, heuristic rather than optimal

automatic tailoring procedures are developed for the TASK system. These heuristics make use of

1 standard techniques to arrive at tailoring decisions. Consequently, the quality of the heuristics'

tailoring decisions is not evaluated. Instead, several typical tailoring examples are presented to 1I.

* luminate the behavior of the heuristics. In addition, the amounts of space and time required to

execute the heuristics are discussed.

* 5.1. A Mathematical Formulation of Speedup Tailoring

In this Section, mathematical formulations of the software and hardware instances of the proximity

model precede the presentation of a sample instance of the PDE task force. Given this sample in.

stance, we show that the information contained in the. mathematical formulation of the software

instance can be derived from from a TASK program. Next, the mathematical expressions for the

metric functions of the speedup tailoring objective are formulated.

- 5.1.1. Software and Hardware Instances

In the software instance of the proximity model, passive objects are distinguished from active

objects. Passive objects contain code or data, and they are used for process communication. Passive

objects are placed into memory. Active objects are processes, and they are assigned to processors

for execution. Formulated mathematically, the active and passive objects are represented by two
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sets. The set K contains the processes instantiated in a TASK program:

K, {0,...,k...m,...K) k,m E [0,K]

The set I* contains the passive objects:

I - {O,...,i ... j .... I) i,jE [0,1]

-" The intersection of I" and K* is the empty set. The size of the ith passive object (8,) is defined as the

* number of words of memory space required to store the object. For simplicity, it is assumed that the

runtime representation of each process is placed wherever the process is assigned.

Recall that there are three kinds of proximity relations between active and passive objects. These

relations are represented by the following sets of variables:

. ci the potential access frequency relation value between passive objects i and I
c i,j E I' c a -some default value Vi E I*

. d the frequency of access relation value between passive object i and process k
iCI kEK dikOVi,k

Wkm - the tailoring constraint relation value between processes k, m E K"
Wkk= some default value Vk E K wk.,,O u k,m E K"

" The hardware instance of the proximity model contains information concerning the distributed

architecture. In the mathematical formulation of this instance, two sets are defined. The set P° con-

tains the available computer modules:

P {0,...,p...q,...P) p,qE0,P]

For each computer module p, the variable a records the amount of available'memory (in number of

words). The clusters in Cm' are contained in the set R*:

R {0,...,r...s,...R) r,sE[O,R]

Given the sets of computer modules and clusters, the variables vpq are defined to represent the

proximity values between the processors of computer modules p and the memory units of computer

modules q. In Cm, three different proximity values exist.
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v the proximity of a processor to the memory unit in the same computer module

* v~ the proximity of a processor to a memory unit in the same cluster
p,q Er, poq

v~ the proximity of a processor to a memory unit in a different cluster
p~r, q~s, ros

The general assumption stated in Chapter 3 is that any object can be assigned or placed anywhere

* in Cm*. However, in Chapter 4, eligibility sets are introduced so that programmers can restrict the

* hardware components to which software objects can be assigned. To express eligibility sets math-

ematically, two additional sets of variables are defined:

N. the set of indices of computer modules Into
which passive object i can be placed

0 k the set of indices of computer modules to
which process k can be assigned

Tailoring is defined as performing a mapping of a task force's software instance to a hardware

instance of Cm*. Since the software instance and the hardware instance each contain two kinds of

* objects, passive and active objects in the software Instance and processors and memory units in the

* hardware instance, two sets of decision variables are introduced:

1 if passive object i is associated with (defined below) process k
* X.

0 otherwise

1 if process k is assigned to processor p

0 otherwise7

Proximity relation values are derived from proximity directives in TAsic programs. These derivations*

have already been explained in Chapter 4. However, to clarify the manner in which the derived-

* relation values are represented in the sets defined above, we provide an example. Consider an

* excerpt of the PDE task force's proximity blueprint. This excerpt contains two server processes each

of which has one code and one stack component. Proximity directives state that servers should

execute on ditferent-cms (the 01ff Cm directive), and that the servers' code and stack should be
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same-cm. In the mathematical formulation, this situation is represented as follows (for simplicity,

passive and active objects are numbered consecutively.). First, the sets I* and K" are defined. I*

-contains four objects, two objects per server process. These objects are numbered from 0 to 3:

I* {Code (0), Stack (1), Code (2), Stack (3))

. K contains the two server processes, numbered 0 and 1:.

K {Server(O), Server (1))

The proximity relation values between the passive objects are directly derived from the stated

directives. They are shown in the following table ("def" stands for "default value", which is a value

automatically inserted by the TASK compiler):

Code (0) Stack (1) Code (2) Stack (3)
* Code (0) dl SameCm del de

Stack (1) SameCm dl . l dl
Code (2) dl del del SameCm
Stack (3) del dl SameCm de

* Similarly, the proximity relation values between processes are the following:

Server (0) Server (1)
Server (0) def DiffCm
Server (1) DiffCm def

Recall that the proximity relation values between processes and their components are derived by

the TASK compiler. In this derivation, the compiler employs the component of relations to determine

the components of each process. In addition, the compiler employs the types of process components

and the proximity directives that state potential access frequency relations between process com-

ponents. In this example, the following relation values are derived:

Server (0) Server (1)
Code (0) SameCm def
Stack (1) SameCm def
Code (2) del SameCm
Stack (3) del SameCm.

wi i , i i

S-,-m~n m mmn~,am 
. .--L -
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5.1.2. The Metric Function
Having expressed the available tailoring information, we now formulate the metric function for the

speedup tailoring objective. Recall that this function expresses the total amount of communication in

* the executing task force. To formulate the function mathematically, two assumptions are made. The

first assumption concerns the values of the relations d ik, cW, and w km* It is assumed that these values

are expressed in the same unit, where the particular unit chosen is irrelevant to this discussion (e.g.

words/sec or bits/month). To achieve this uniformity, an unusual interpretation of the constraint

relations wkm is used. Specifically, the values of wmare interpreted as mea sures; of the amount of

communication between the related processes. High amounts of communication suggest the assign-

* ment of the processes to the same processor, whereas smaller amounts suggest that the processes

can be assigned to different processors within the same or within different clusters.

The second assumption concerning the formulation of the metric function relates to the manner in

*which tailoring is performed. Specifically, since passive object placement decisions and process

assignment decisions cannot be made independently of each other (see Chapter 3), it is assumed that

passive objects are first associated with certain processes and are then placed into memory in con-

junction with process assignment. The passive o6jects associated with a process are placed Into the

memory of the computer module to which the process is assigned. As a result of this assumption, the]

metric function will be formulated in two parts. In one part, values are ascribed to the associations of

* passive objects with processes. In the other part, values are ascribed to the assignments of processes

to processors.

Passive Object Association. The part of the metric function that ascribes a value to the

association of passive object i with process k is a linear combination of several terms, called PartA,

PartB, and PartC. The innermost term of the linear combination, PartC, represents the total value of

the -ith passive object's relation to the passive objects j that have already been associated with

processes m. In other words, the strength of the ith passive object's relation to the passive objects of

processes m is computed. PartC is computed as th~e sum of the appropriate relation valuesc
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(1)
Part C: Lcii Xm m E K" i E I*

jEIl

In the next term, PartB, the sum of the relation values between process k and processes m is

computed, where each relation value Wkm is multiplied by the value computed in PartC. (The symbol

"" is used both as a superscript and as a multiplication symbol.):
: (2)

Part B: *wk" Part C kE K(
*mEK

- The complete metric function for passive object association is represented by PartA. In this term,

the value of the access frequency of process k to passive object i is multiplied by the value computed

in PartB:

(3)
Part A: Xik dik Part B

This term expresses the total value of the existing proximity relation values concerning passive object

i and process k. We note that the values that are ascribed to proximity relations are such that minimal

communication in the executing task force corresponds to maximal values of the metric function.

Combined, this metric function appears as follows:

(4)
Xikdik Wkm . c' Xjm

mEK jEl

The weights and the scaling functions that are attached to the values of dik, wkm, and c.. are not

shown here2° . However, we note that appropriate weights and scaling functions are chosen in

conjunction with the particular units used for proximity relation values [154].

2The weights and scaling functions used in this research were derived as part of experiments with several task force
examples.

lei
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Several characteristic of this formulation should be noted. First, the form of this metric function

shows that the passive object association problem is an instance of a zero-ole quadratic integer

prograrhming problem [61]. Object association is a zero-one integer programming problem because

the decision variables can only have the values zero or one. The object association problem is called

quadratic because the decision variable X appears twice in the metric function. This means that the

decisions concerning the association of passive object i to process k is dependent on the decisions

concerning the associations of objects j to the processes m. We note that this association problem

has been shown NP-complete [47, 61].

To reiterate, the metric function in equation 4 does not express the cost of placing passive objects

into memory. Instead, it computes a value that corresponds to the total amount of communication

resulting from the association of passive objects with processes. The assignment of processes to

processors is evaluated by a different metric function. As a result, two steps are required to map a

task force to Cm*. First, passive objects are associated with processes, and then processes are

assigned to processors.

The use of two separate mapping steps reduces the complexity of mapping a task force because

the number of different mappings is reduced. Specifically, instead of testing all possible associations

of each passive object with processes while each time also testing all possible assignments of

processes to processors, the possible passive object associations and process assignments are

tested individually. For example, consider a small PDE task force consisting of 5 processes, 4 com-

ponent objects per process, and 10 grid partitions. Assume that the configuration of Cm* used for

tailoring contains 20 computer modules. If placement and assignment are performed in one step, then

the following number of possible passive object placements and process assignments must be tested:

((5 ° 4 + 10) *20) *(5 * 20)

However, if placement and assignment are performed in two steps, a smaller number of choices must

be tested in total:

((5 * 4 + 10) ° 20) + (5 * 20)
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L The technique that has been used to reduce the size of the task force mapping problem is an

instance of a standard technique, called component clustering [112]. In this case, passive objects are

clustered around processes before they are placed into memory. Note that clustering techniques

similar to the one used here are commonly used to reduce the size of other large problems, one of

which is the design of computer networks [112].

Since process assignment and passive object placement must be performed within the constraints

of available memory, we define the size of a process ( as the sum of the sizes of the passive objects

that are associated with the process. Note that passive objects are always associated with exactly

one process, regardless of whether other processes can access them. As a result, each. passive

object's size is accounted for exactly once.

Process Assignment. So far, only the metric function for passive object association has been

developed. In the following, we present the metric function used for the assignment of process k to

processor p. Three terms are distinguished within this metric function. The first term computes the

fraction of total communication due to the communication of process k assigned to processor p with

processes m assigned.to the same processor p. The value of this fraction is determined by the amount

of communication between process k and processes m (Wkm) as well as the cost of communication
via local memory (v,) 2 (YTm stands for the 'transpose' of the decision variable Y reversing the

indices m and p. This is required to permit the multiplication of Ykp by Y M.):
'- (5)

vpl -. Yk_ yTmp Wkl pEP" kEK"
* mE.K

-ee
mo*k

The second term computes the fraction of total communication due to the communication of

process k assigned to processor p with processes m assigned to processors q in the same cluster:

21Note that we are assuming that the object used for communication between processos is a local buffer object. This

assumption is not entirely true in Cm*.
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E vq (Yk.(EYT'rl wl r) rER" kEK' (6)

qEr mEKk

The third term computes the fraction of total communication due to the communication of process

k assigned to processor p with processes m assigned to other clusters:

2. (yV (1kp(2.y.YTmqwk.)) kEK° r,sER ()

pEr mEK
qEs msk
ros

The scaling factors and weights that are part of these equations are not shown. As with passive object

association, the values ascribed to proximity relations are such that the maximal values of these

equations are ascribed to the best assignments.

Two properties of the equations 5, 6, and 7 should be noted. First, these metric functions are

quadratic In Y, which is a zero-one decision variable. As a result, the process assignment problem is

-also NP-complete. Second, three terms exist in the composite function because the Cm" architecture

exhibits a three-level hierarchy in memory access. A straightforward extension of this metric function

for a network architecture would use "n" terms, each term representing one level in the hierarchy of

memory access.

5.1.3. Discussion of the Metric Functions

In this section, we discuss the changes that were made in the metric functions when they were

used within TASK. In addition, the limitations of these metric functions are reviewed.

The metric functions presented here will be used by the heuristics discussed in the next section.

However, during our experimentation with those heuristics, the metric functions were changed in

several ways. The first change consisted of the addition of weights and scaling functions. For ex-

ample, the values of the relations wk., in equation 4 were increased while the values of dik in the same
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equation were decreased. As a result, the values of d ik could not dominate the values of the metric

function. The second change consisted of the introduction of rankings of .computer modules with

respect to their relative location or size. These rankings were employed to prefer certain computer

modules with respect to placement and assignment. For example, we used weights within equations

5, 6. and 7 that led to preferences with respect to process assignment. Specifically, processes were

assigned to different computer modules within a single cluster before they were assigned to computer

modules in different clusters. As a result, processes executing in parallel will communicate by means

of efficient intracluster memory accesses as long as processors are available in a single cluster. We

note that ranking techniques are quite common in heuristics used in related mapping problems [112].

The third change consisted of the inclusions of the variables N1 and Ok into the metric functions so

that eligibility sets are taken into account by the tailoring heuristics. Last, we experimented with a

metric function that expressed the total tompletion time of a task force in terms of individual process

* completion times. In the case of this metric function, the objective was to minimize comp~etion time

* regardless of interprocess communication. The resulting tailoring decisions tended to maximize the

degree of parallelism in all cases observed.

The minimization of the metric functions should result in tailoring decisions that act in accordance

with the directives specified in the TASK program. However, recall that proximity directives can also

express constraints concerning assignment and placement. It is not always possible to formulate

metric functions whose optimization results in the fulfillment of tailoring constraints. Furthermore, if

the satisfaction of constraints is synonymous with optimal metric function values, then constraints are

not necessarily fulfilled by heuristics which are not guaranteed to find optimal metric function values.

If constraints must be satisfied, a separate phase must be added to the heuristics presented in the

next section. In this phase, called the constraint satisfaction phase, the constraints that are not

fulfilled by the tailoring heuristics are acted upon. In addition to the implementation of this phase, we

attempt to reduce the number of constraints violated by tailoring heuristics by introducing biases into

metric functions. A sample bias of a metric function is one in which the Dill-Cm values of the relations
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c ior w km are increased so that these relation values are chosen when attempting to gain high metric

function values.

While formal validations of the mathematical formulation in this section are not feasible within the

limits of current experimental results, three specific benefits of the formulation can be identified.

First, the model instances and the metric functions in this section are easily changed to describe

other software and other distributed architectures (see Chapter 3 for a discussion of this topic).

However, as previously stated, our formulations are static in nature because they rely on "snapshot"

information concerning the task force and the distributed architecture. Second, since the task force

mapping problem is formulated as a standard integer programming problem, it is straightforward to

understand the mapping problem's complexity. In addition, the heuristics developed for TASK are

easily compared with heuristics developed for related problems. Third, since the development of.

solution heuristics is separated from the formulation of metric functions, both can be changed in-

dependently of each other. As a result, experimentation with different combinations of metric func-

tions and heuristics is straightforward.

5.2. Tailoring Heuristics

Several properties of the task force mapping problem prompt us to choose heuristic rather than

optimal tailoring procedures. Our reasons for this choice are the same as those of Gylys [61] who

extensively. studied optimal algorithms and heuristic procedures for a related problem. Specifically,

since the formulated zero-one integer programming problems are NP-complete, optim al solutions are

hard to obtain. Furthermore, by necessity, the software and hardware instances used by TASK con-

tain only partial, sometimes inaccurate, information concerning the task force and its execution en-

vironment. As a result, it is unreasonable to seek optimal solutions. Note that even the collection of

information by a system monitor only offers improvements and not guarantees of accuracy. Another

* reason to choose heuristics is that optimal solutions of the mathematical formulation need not cor-

* respond to optimal solutions of the stated tailoring objective because the optimization of the
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presented metric functions does not necessarily result in optimal speedup tailoring decisions. Last,

* fast heuristics are preferable to slow optimal procedures because such heuristics can even be used

during the execution of a task force, where the cost of tailoring must not outweigh the gains derived

from tailoring.

The heuristics presented in the remainder of this section are similar to heuristics used

* elsewhere (112, 611. Since such heuristics typically attain solutions that are fairly close to optimal, we

do not investigate the quality of the solutions attained. Instead, we demonstrate the practicality of

using heuristics in a system like TASK, namely it is shown that the heuristics are sufficiently fast and

that the space and time required for their execution are not unreasonable.

5. 2. 1. The He uri sti cs U sed I n TASKJ

To develop the heuristics that follow, three commonly used design techniques are employed. First,

* the heuristics are greedy heuristics, namely they do not backtrack to test alternatives once a decision

has been made. Second, the software and hardware objects are ranked by importance and ordered

by size, ensuring that certain objects are associated before others. For example, large processes are

assigned before small processes, and large processes are assigned to computer modules containing

large amounts of memory. As a result, large computer modules are effectively used. In addition, if a

* metric function ascribes equal 'values to several associations of a specific passive object with

processes, then the passive object is associated with the smallest process. The purpose is to balance

* the process sizes. The third technique, clustering, has already been discussed.

- The heuristic procedures for passive object association and active object assignment are outlined

* as programs written in an abstract high-level language. The language constructs in these programs

are italicized. Within these programs, the metric functions are referred to by their equation numbers.



Section 5.2 Tailoring Heuristics 1 129

* Passive Object Association:

Sort all passive objects by size, largest first

Fo each passive object i E C:

Compute max {Equation 4)
* mEK

resulting in a set of process indices. where each index represents
one of the "best" processes with which i should be associateded

If the resulting index set contains one process, k,
then set Xi 1

Else first compute the total size of the passive objects that
have already been associated with each of the processes in the index set;
select the smallest of those processes, m, and then
set X a1

Continue with the next passive object

Process Assignment:

Sort the processes by their size, largest first

For each process k E

Compute max (Equation 5 + Equation 6.+ Equation 7)
pep

resulting in a set of processor indices, where each index represents
one of the "best" processors to which k should be assigned

Given the current assignment of processes to processors, compute
which processor in the index set has the largest amounts of unused
space

If there is such a processor, then pick that processor, say p

Else since no space is left in any of the processors in the index set,
choose the processor in the index set with the least size
memory constraint violation, say p

Set Y.= I and continue with the next process

It is clear that these heuristic procedures associate passive objects with "best" processes and

assign processes to "best" processors, where "best" associations and assignments are determined
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by the maximum values of the metric functions. Some extensions are required when these

procedures are used within TASK. One extension concerns the eligibility sets of processes (see

Chapter 4). Eligibility set restrictions can be formulated as restrictions on the set of processors tested

by the association or assignment heuristic. Specifically, rather than computing a maximum over all

processors p E P, we compute:

max {Equation 5 + Equation 6 + Equation 7)
PEok

Another extension concerns memory constraints, which may be exceeded when large processes

are assigned to small computer modules. This extension is implemented in two ways. First, since the

size of each process is known, this size can be matched against the sizes of the computer modules

contained in the index sets used in the procedures above. However, if processes are too large to fit

into any computer module in those index Gets, then different actions must be taken. In such-cases, a

passive object shift procedure is run after passive object association and active object assignment

have been performed. In this procedure, passive objects are first shifted among processes in an

attempt to achieve better process fits, and are then directly placed into memory if the processes

cannot be fitted. Component of relations and type information are used to select the specific objects

that should be shifted. For example, since the effects of shifting objects of type Mai l box are typically

not significant with respect to task force performance, such objects are shifted first.

Two additional tasks are performed by the passive object shift heuristic. First, the procedure tests

14 whether any associations of passive objects with processes violate the eligibility sets of the passive

objects. Such violations are removed by shifting the passive objects, first to other processes and then

directly to computer modules. The second task concerns the manner in which shifting is performed.

Namely, passive object shifting provides a chance to review the decisions made by the greedy heuris-

tics. Decisions are reviewed by recomputing the values of metric functions each time an object is

shifted.

Although object shifting is an integral part of tailoring in TASK, its detailed description is elided to
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curtail the length of this discussion. Instead, we summarize the actions of the passive object shift

procedure:

e iriemory constraint violations are detected and eliminated by shifting passive objects

between processes or into computer modules to which no processes are assigned;

*the placement constraints imposed by the passive objects' eligibility sets are fulfilled;

*the decisions of the greedy assignment heuristics are reviewed by recomputing and ac-
ting upon metric function values during shifting.

5.2.2. TASK, a Testbed for Tailoring Heuristics
The TASK system is well-suited for further experimentation with tailoring. For example, newly

* acquired knowledge regarding good tailoring practice can be integrated into TASK in the forms of

updated metric functions or tailoring procedures. Such integration can be performed without exten-

* sive changes. because tailoring procedures are written to maximize the values of metric functions,

regardless of the specific metric functions used. Since it is straightforward to use different metric

* functions, it is equally straightforward to pursue different tailoring objectives. In addition, the par-

ticular tailoring objective that is being pursued is irrelevant to the design and implementation of

* tailoring heuristics; experimentation with metric functions and tailoring procedures can be performed

independently of each other.

The TASK system also facilitates experimentation with different ways of determining proximity rela-

bion values. Specifically, since relations are stored in an explicit form within the TASK compiler, they

can be assigned values more than once. As a result, relation values can be statically derived from

proximity directives, and relation values can be dynamically by a task force monitor. In this manner,

tailoring decisions that are made based on proximity directives can be revised after task force execu-

tion. We note that the TASK system has not yet been interfaced to a task force monitor. However, the

system already provides useful information to task force programmers. On demand, TASK outputs the

placement and assignment decisions that were made, the proximity information based upon which

those decisions were made, and statistics concerning the current task force.
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5.2.3. Experiments with Tailoring Heuristics

Programmers expect compilers of higher level languages to generate code comparable in quality to

code written by hand. Similarly, programmers of Cm* expect tailoring heuristics to make reasonable

assignment and placement decisions based on the specified directives. We cannot determine how

. close to optimal the automatic tailoring decisions are. However, in the following we investigate the

behavior of the heuristics with respect to their faithfulness regarding the proximity directives stated in

TASK programs. The metric used to measure such faithfulness ascribes values to the match of

tailoring decisions with the relations dik, Wkm' and c W

To investigate the faithfulness of tailoring heuristics, several typical situations encountered by

tailoring heuristics are discussed=:

*y
* task forces mapped to a system with ample resources;

: * task forces mapped to a system with insufficient resources;

* task forces that are constrained by explicit selections;

* task forces that are constructed without proximity information; this case arises if naive
users do not specify directives, whereupon the TASK system uses built-in tailoring
knowledge.

Tailoring with Ample Resources

. In programming practice on Cm*, the construction of experimental task forces that require only a

few resources of Cm* is commonly performed. Consider the construction of a POE task force with

one coordinator process, three servers, and a grid with 11 partitions of size 2K words each. In this

* example, assume that a single cluster of Cm* containing 4 processors and large amounts of memory

w is available.

In addition, the following directives are specified in the TASK program:

SameCm (Stack, Code) -- appearing in both function templates
DiffCm ((1-0..10) PDEGrtd [t])

RiffCm ((i-O..2) Server [1], Coordinator)

2Several different task forces, including the POE task force, were employed in this analysis.

0o
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With these directives, a programmer is directing server processes to execute in parallel and to spread

the grid partitions across multiple computer modules.

When TASK'S tailoring heuristics are run, the passive object shift procedure is not executed, since

* sufficient amounts of memory are available and since the eligibility sets of task force objects are not

restricted. The following decisions are made:

*the grid partitions, all of which have equal proximity values with respect to each of the
processes (equal values of di) are associated with the first process listed, which is the
coordinator process;

* the code and stack objects, all of which have high proximities to particular processes, are
associated with the appropriate processes;

* since there is a sufficient number of computer modules, all processes are assigned to
different processors;

* since large amounts of available memory exist in the selected cluster of CmO, even the
large coordinator process fits into a single computer module.

A comparison of these decisitins with the stated directives shows that the proximity relations be-

* tween processes and passive objects (dik) and the proximity relations between processes (wkd, are

* followed faithfully, whereas the proximity relations between the grid partitions (c,) are not followed.

* This lack of faithfulness with respect to c, is explained by the form of the metric function Equation 4.

In this equation, the proximity relation values c1 are summed over all passive objects j associated with

- each process m. Consequently, once any process m has been given a passive object, given that the

* values of dik and wk. are equal, this process will "draw" further passive objects by dominating within

the metric function.

The resulting lack of faithfulness concerning the relation c. is tolerable in this example, because

the total number of accesses to the grid partitions is not exceedingly high. Therefore, the total numn-

* ber of accesses to the single memory unit containing the partitions is not excessive. However, this

lack of faithfulness would not be tolerable if grid partitions were accessed more frequently, because

memory contention would significantly increase the time required for each access (29). To increase
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the faithfulness with respect to c,,, functionality is added to the passive object shift procedure. An

optional bias is introduced into the metric function Equation 4. Specifically, instead of computing

Equation 1, we compute the conditional sum:

Eviolations (c. X.) i e I, mK (8)jEI"

In this equation, particular values of ci1 are included into the sum only if the inclusion of these

values does not violate the constraints expressed by the relation. For example, given a D ffCa

directive between objects i and j, the value of cii is included into the sum only if i and j are being

placed into different computer modules.

The exercise of this option in the passive object shift procedure improves faithfulness. To

demonstrate this improvement, we display both faithless and faithful decisions in figure 5-1. In one set

of decisions, the conditional metric function is used, whereupon the DilffCm directive is followed

faithfully. The other set of decisions demonstrates faithless behavior with respect to the relations c,

between grid partitions. However, violations with respect to cq still occur in this example, because the

grid partitions cannot be spread across more computer modules than are available. Note that both

sets of decisions are faithful with respect to the values of dik: code and stack objects are always

placed with the appropriate processes.

At this point, one characteristic of the tailoring procedures can be noted. Specifically, the associa-

tion heuristic for passive objects results in faithlessness with respect to the c relation values Dt fCm,

unless the equation 8 is used in the metric function.

6

6,
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A Small Cm* Cluster
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Figu re 5- : Increasing Faithfulness by means of a Passive Object Shift Procedure

Tailoring with Insufficient Resources

Situations in which there are insufficient or barely enough resources to complete the task force

construction are commonly encountered in small configurations of Wm. To use tile available

resources to the best degree possible, the passive object shift procedure reduces the violations of

memory constraints by shifting passive objects among processes or by placing passive objects into

processors to which no processes have been assigned.
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Two Different Cm* Clusters
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Figure 5-2: Increases in Faithfulness Due to a Lack of Resources

Comparative experiments with a standard size versus a very small Cm* cluster demonstrate the

usefulness of the passive object shift procedure. In figure 5-2, two sets of decisions made by the

tailoring heuristics are displayed. In one set of decisions, the larger cluster is used so that the passive

* object shift procedure is not executed. In this case, the entire grid is placed into one memory module.

Clearly, this demonstrates lack of faithfulness with respect to the relations cir In the other set of

decisions, a lack of available memory improves faithfulness with respect to c . Note that the passive

object shift phase attempts to balance the sizes of processes by exhibiting a bias in object association
for the processes that are smallest. This "switching" effect can be observed with respect to Cm2,

a
" Cm4, and Cm6 (see figure 5.2). Cml is not involved in this switching effect because this Cm has
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already been filled to capacity with the (elided) coordinator process.

Another characteristic of the tailoring heuristics can be noted. Specifically, scarce resources can

improve faithfulness with respect to c..i so that the suggested alteration to the metric function's equa-

* tion 1 (see equation 8) may not be necessary. However, the suggested alteration is clearly shown to

* reduce the number of memory violations.

Task Force Tailoring and Selections

Eligibility sets are easily accommodated within the framework of the presented metric functions and

heuristics. Regarding the assignment of processes to processors, the equations 5, 6, and 7 are

simply altered to select the best process from the processors in each process' eligibility set. However,

the eligibility sets of passive objects must be accounted for in the passive object shift procedure.

The existence of eligibility sets typically increases the speed with which tailoring decisions are

* made. This is due to a resulting reduction in the number of choices that must be tested. The speed of

tailoring is increased further if the processes and passive objects whose eligibility sets contain exactly

one resource are preprocessed and are not considered by the tailoring heuristics. However, while

* eligibility sets are beneficial with respect to the speed of tailoring, their existence can severely

degrade the heuristics' faithfulness with respect to the relations wkm and c..., Consider the case in

which each cluster of Cm* contains one computer module with an attached disk. If each of two

processes is explicitly assigned to a processor with an attached disk, and if both processes are

related as DlIf fCm, then the explicit assignment stated causes faithless behavior with respect to the

relation value Di f fCm.

Task Force Tailoring without Proximity Directives

Naive users of Cm* typically wish to construct task forces while acquiring the least amount of

information possible about Cm* and TASK. At the same time, they expect their task forces to exhibit

reasonable runtime performance.

TASK's tailoring heuristics accommodate such users by using built-in knowledge concerning the

performance.-related properties of Cm*. In addition, the TASK compiler uses the type and the
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component of information in the execution blueprint of the TASK program to derive appropriate

default proximity relations. Instead of listing the relations that are derived by the TASK compiler and

then used by the tailoring heuristics, we elaborate upon the defaults used for the sample PDE task

force. If no directives are specified, proximity relations equivalent to the following directives are

derived by the TASK compiler:

.gmoCm (Code, Stack) -- appearing in each function template
DlffCm ((1-0.2) Server [1], Coordinator)
SameCluster ((1=0..10) Grid [1])

Note that tailoring heuristics that faithfully carry out these directives will make decisions with which

linear speedup is attained in the executing task force (see Chapter 3).

In the example above, appropriate tailoring decisions are made even if programmers do not state

proximity directives. This is not true in general. For example, the directives above do not result in

good performance for a two cluster version of the same PDE task force, since the Oilf fCm directive

suggests that all processes remain in the same cluster. In cases like these, one can improve TASK'S

tailoring heuristics by introducing biases into the metric functions rather than using the default direc-

tives. For example, the equations 5, 6, and 7 could be biased to assign processes to computer

modules in the following order: first, to different computer modules within a single clus.ter, next to

computer modules in different clusters, and last to the same computer module. However, biases like

these cannot replace proximity directives, since each set of biases typically represents one particular

directive.

The Cost of Tailoring Heuristics

The heuristics implemented as part of the TASK system are not optimized for their use of time and

space. In the current implementation of the TASK system, space-inefficient matrices are used to

encode the relations dik, Wkm, and cii. In addition, time-inefficient linear list structures that contain

pointers to task force objects are manipulated by the heuristic procedures. Nonetheless, all tailoring

problems described in this sectio0i were solved in less than 1/2 second of CPU-time on a KL-10.

Larger problems containing 20 or 30 processes and up to 60 data components consumed ap-

-Ip
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proximately 1/2 to 2 minutes of CPU-time.

Conclusions of the Experimentation

We have demonstrated the feasibility of integrating tailoring heuristics into the TASK system. Fur-

thermore, the actions of tailoring heuristics in typical situations encountered during tailoring have

been shown to be reasonable. Reasonable tailoring actions are attained because heuristics are

* faithful to proximity directives, while also maximizing the metric functions stated. Tailoring heuristics

* without the passive object shift procedure are faithful with respect to proximity relations between

processes and between processes and passive objects. The passive object shift procedure that uses

equation 8 achieves faithfulness with respect to proximity relations between passive objects.

The selections that are stated in TASK programs are accommodated both during the assignment of

* processes to processors and in the passive object shift procedure. If neither selections nor proximity

directives are stated in TASK programs, some measure of reasonable performance is guaranteed by

* the inclusion of biases into metric functions and by the automatic derivation of proximity relations.

The use of tailoring heuristics is generally not too time-consuming. This is partially due to the fact that

*passive objects are clustered around processes rather than placed individually.

5.3. Extensions of this Research

At this point in time, considerable information exists concerning the appropriate use of multiple

processor systems. Therefore, it is no longer sufficient to use such information in an adhoc fashion.

* Specifically, one cannot rely on the availability of expert programmers who dan make judicious as-

*signment or placement decisions. Expert programmers are not needed in TASK because tailoring

knowledge is easily integrated into the TASK system. Given the functionality of TASK and of Cme,-

* unique opportunities exist for future research:

.0 tailoring can be performed with different objectives, which are expressed by different

metric functions;

e alternative tailoring heuristics or metric functions can be developed to reduce the time
and space required for tailoring;
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* good tailoring practice can be integrated into the system in a stepwise fashion: by biasing
cost functions, by adding functionality to passive object and process assignment, and by
adding functionality to the passive object shift procedure;

* information that is fed back from a task force monitor to tailoring heuristics can be used
to improve the quality of tailoring decisions;

* metric functions and heuristics can be developed for architectures other than Cm'.

I

I

;I
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6. Conclusions and Future Research

Writing multiple processor applications of substantial size requires considerable programming

expertise [79]. Within the TASK system, we explore two approaches to reducing this expertise. First,

software is constructed such that programmers need not know any detail concerning the program-

ming tools involved in construction, such as linkers and loaders. Second, programmers are assisted

* in tailoring to the multiple processor machine used for execution of their application programs. Tailor-

* ing is performed such that programmers need not know unnecessary hardware detail.

In the remainder of this chapter, multiple processor software development and tailoring are dis-

* cussed in turn. The main results of our research are reviewed and future research is suggested.

6.1. Software Development

* Several conclusions concerning the development of multiple processor software can be drawn

from the design and implementation of the TASK system and language. One conclusion is that the

abstractions typically offered by uniprocessor programming environments can also be used to con-

struct executable software for multiple processor systems. Specifically, as demonstrated within TASK,

programmers can design and implement multiple processor programs as collections of separable

* program modules, where each module is a unit of abstraction [164] or a unit of functiona:

decomposition [130]. From these modular decompositions, which are familiar to most application

programmers, the less familiar software descriptions required for multiple processor systemns-.sets of

concurrent, communicating processes called task forces--can be derived by use of simple, manual

and automated procedures.

Although the modular decomposition of an application program is seemingly different from the

derived executable task force, a single model of software can describe both. Namely, each descrip.

tion of an application program can be represented as a set of related objects, where relations differ
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depending upon their intended use. We call such program descriptions the blueprints of a program.

Two different blueprints of TASK programs are used in the TASK system. The logical blueprint en-

codes the structure of the modular decomposition of an application program. Therefore, a logical

blueprint of a TASK program is analogous to the abstract specification of an object in an abstraction

language [164]; this blueprint typically remains unchanged across experiments with the executable

task forces constructed from it. However, analogous to the different implementations of an abstract

object, the blueprints that can differ from one experiment to another are the detailed descriptions of

the executable task force; these blueprints are called the execution blueprints of a TASK program.

* The TASK system assists programmers in deriving execution blueprints from logical blueprints.

* Specifically, substantial parts of execution blueprint contents are specified by defaults generated by

*TASK, thereby suppressing information not important to programmers. Furthermore, specific, usefulI

variations in deriving execution blueprints from logical blueprints are supported. Useful variations in

the construction of an executable task force are those that facilitate typical experiments performed

with multiple processor software. For example, to perform experiments measuring the dependence of

task force performance on the number of task force processes executing in parallel [84], task force

construction can be varied by varying the replication of processes in the executable task force.

In TASK, variations in task force construction are easily implemented only if the algorithmic code

executed by a task force is not affected by those variations. However, future research in multiple

processor programming environments should also consider construction variations that require al.

terations to algorithmic code. For example, if the communication protocols used by the algorithmic

code were known to the programming environment and could be automatically changed, then the

* specific means of communication employed by task force processes could be determined automati.

cally. In this fashion, an executable task force could be customized to use different communication

mechanisms in different execution environments. For examole, in a multiprocessor shared memory

* could be used for interprocL .communication, whereas ports or mailboxes would boa. used in a

computer network.
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The customization of software to different execution environments would be facilitated if task force

* blueprints were displayed graphically, and if the task force components available for inclusion into a

bluepritit were displayed in menus describing relevant component characteristics. In addition, intel-

* ligent display aids could assist programmers in comprehending and analyzing the complex structures

of task forces that consist of a large number of different components and component relations.

Menus of components to be included into blueprints require that self-contained units of description

* of taSk force components are available. In TASK, sucn units are called templates, and task forces are

developed as compositions of programmer-defined templates. Therefore, an extension of TASK SUP-

porting component menus could simply use predefined or standardized templates. We note that a

"skeleton" process [149] plays a similar role in the development of software for the STAROS system.

Templates can be employed for both static and dynamic component construction. Statically,

templates defined in TASK programs can be repeatedly instantiated, thereby causing the construction

of multiple task force components. Dynamically, the instantiation of a template of type process causes

the creation of a process in the executable task force. As with process templates, TASK can be

extended to accommodate templates of any type during task force execution. Therefore, the in-

cremental, static or dynamic construction of a task force can be implemented with ease.

In the TASK system, programs are written in two languages: the TASK language and an algorithmic

programming language. Several benefits result from this separation of languages. First, since task

force structure is described with the TASK language, the algorithmic language is only used to write

the code executed by task force processes. Therefore, the algorithmic language need not be over-

loaded with multiprocessing features (72]. Similarly, the TASK language exhibits little complexity and

is therefore, easily mastered. Second, since logical structure and algorithmic code are specified

separately from each other, programmers are forced to consider each in turn. It has been argued that

such separation of programmer concerns is beneficial. Third, the extension of one language by

another can preserve compatibility, whereas the addition of multiprocessing features to a language
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cannot. However, if two languages rather that one augmented language are used, language inter-

faces must be constructed to avoid inconsistencies between the versions of the application program

expressed in each language. Such an interface does not exist in TASK, where only the names of task

force components are shared between the two different language descriptions of a task force. As a

result, TASK Og 21 1, ruttt s cannot be controlled by Bliss code, and Bliss code cannot be affected

by attributes of TASK programs. However, certain extensions of the language interface are

straightforward. For example, TASK could be easily extended to check the types of parameters

passed between the different modules and module functions declared in TASK programs.

Details of the TASK language and its specific syntax are peripheral to this thesis. Instead, the

important attributes of the TASK language are the distinction of structural task force descriptions from

* Ithe algorithmic code (see the discussion in the previous paragraph) and the usefulness of the lan-

guage for a variety of hardware and software. Specifically, reformulations of the TASK language can

describe distributed hardware (82] or can describe software written to execute on computer net-

works. Furthermore, program blueprints and therefore, reformulations of the TASK language can be

used to represent multiple processor applications at any level of detail required by programmers. For

example, in Chapter 3 of this thesis, an entire operating system is described by a blueprint charac-

terizing the system's functional decomposition. Each unit of description of this blueprint consists of

multiple components of the oask force blueprints discussed above. We note that program blueprints

can also be used to describe multiple processor applications at execution time (see Chapter 3 and

[144]).

6.2. Task Force Tailoring

The ease of variation of task force construction exhibited by the TASK system facilitates the ex-

perimentation with executable task forces. However, such experimentation remains difficult unless

programmers are assisted in tailoring an executable task force to its execution environment, where

tailoring is defined as the allocation of hardware resources to task force components. In this thesis,

41

*.
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assistance in task force tailoring consists of the partial automation of tailoring. The automatic tailor-

* ing procedures designed and implemented are not the optimal algorithms published in the theoretical

literatuie because such algorithms are too slow. Instead, fast heuristics act in accordance with our

* current, best knowledge concerning tailoring for the Cm* hardware. Since this knowledge is subject

to change, tailoring procedures permit the inclusion of new knowledge. Specifically, tailoring policies

can be altered or exchanged and multiple objectives are accommodated by tailoring procedures, so

that programmers can perform tailoring with different policies and objectives (see Chapter 3).

Since our current knowledge concerning good tailoring practice is insufficient and since tailoring

decisions often depend jn the specific hardware used for task force execution, tailoring has not been

automated completely. Instead, programmers provide tailoring assistance by stating resource direc-

tives that express the proximity of task force components as frequency of access relations between

those components. Resource directives need not be stated for individual task force components.

Instead, directives relate sets of task force components.

Two interpretations of resource directives have proven useful: their interpretation as expressions

of preferences concerning resource allocation or their interpretation as expressions of constraints.

Preferences are suggestions that need not be honored by tailoring procedures, whereas tailoring

constraints must always be honored. Therefore, preferences can be used as hints based on which

tailoring choices can be made freely, whereas constraints can be used to exert explicit control on

resource allocation, if desired. Programmers can manually check and improve TASK's resource

allocation decisions.

The formulation of tailoring in terms of resource directives, tailoring objectives, and tailoring

procedures is based on an abstract model of multiple processor software and hardware, called the2

proximity model. We use this model to show that TASK is easily extended to tailor software for a

variety of multiple processor architectures. Similarly, the components of the TASK system that are

* implemented according to this model can be used in extensions of our research:
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*to tailor software for architectures other than Cm*;

*to investigate the effects of alternative tailoring objectives and tailoring procedures;

* to vary the degrees of programmer interaction in tailoring:

o by specifying few or many resource directives;

o by accepting or overruling TASK's automatic tailoring decisions;

by including alternative tailoring procedures into the system (the current TS
system permits programmers to choose among a variety of tailoring procedures).

The notion of tailoring could be generalized in several ways (see Chapter 3). One generalization

* - inavolves the use of knowledge concerning task force behavior during execution. For example, the

- quality of tailoring decisions could be improved if the actual control flow in the executing task force

were known. Specifically, if two processes cannot execute in parallel, they need not be assigned to

* two different processors. Another use of knowledge concerning the behavior of an executing task

* force is a comparison of the actual access rate of a process to an object with the access rate

estimated by a user-defined resource directive. If such comparisons were performed, TASK'S tailoring

decisions could be based on information superior in accuracy to the estimates stated by program-

mers. The implementation of a task force monitor and of an interface between TASK and the monitor

play a critical role in such an extension of the TASK system.

* An extension of our investigation of tailoring is the consideration of the tradeoffs between static

I and dynamic tailoring. Since a task force is subject to change during execution, dynamic tailoring is

-required to supplement or improve the decisions made statically. The feasibility of dynamic tailoring

* depends on the speed with which tailoring decisions are made anid on the speed with which the

* information required for dynamic tailoring is collected. Since the tailoring procedures used in TASK

* can be sped up further by limiting the amount of information that is processed, dynamic tailoring

appears feasible.
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Appendix A
The TASK Language

Multiprocessor computers offer the potential advantages over uniprocessors of enhanced reliability

and cost-effective performance.23 To this end we construct software in the form of task forces-

collections of cooperating, communicating processes, which use system synchronization and com-

munication mechanisms to solve a single problem. Such software is difficult to construct without

special tools, due to the complex execution environment of the multiprocessor. In particular, those

users who wish to capitalize on multiprocessors to attain their reliability or performance objectives

cannot ignore system attributes that affect those objectives. Multiprocessors do not introduce

qualitatively new difficulties in scheduling or process and data management. They do, however,

complicate those aspects by increasing the number of options beyond that for a uniprocessor, hence

increasing the number of decisions that must be considered.

A.1. The Goals of TASK

The BLISS language itself offers no facilities for managing task forces, nor do any existing mul-

tiprocessing languages incorporate features concerning resource allocation for task force com-

ponents. The TASK language includes these facilities. TASK can be thought of as an extension to

BLISS. Individual STAROS modules are written in BLISS, and the relationships among them, as well as

their placement for resource-usage optimization, are specified using TASK. All programmed actions

performed by modules after they have been loaded are written in BLISS. BLISS and TASK have been

integrated to the extent that both are naming and manipulating the same objects.

TASK is a high-level specification language in which an author may specify the different initial

2"The bulk of this appendix consists of text that has been adapted from a draft of a technical report, The TASK Language
Speclfication [82J. Further information about the TASK language can be found in two technical papers I81, 831 and in this
thesi.
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Linker command (.LMD) files

compiler Ile

Template (TEM) files

Figure 8-1: Compiling a Set of BLISS Programs and a TASK program

components that comprise his task force. TASK does not constrain how the task force behaves once

execution commences; all facilities of STAROS are available to modify at run time a task force created

according to a TASK specification. Using TASK, the programmer can specify objects to be created

and how they are to be initialized, as well as certain relations between objects. As described in [149],

S7AxOS programs are constructed in the form of modules which export one or more functions which

may be invoked by code in other modules. Part of the purpose of TASK is to define the intercon-

nection between modules by providing one module with capabilities for objects In another. We say

that TASK furnishes a programming environment for constructing task forces.

TASK provides several ways to adapt a task force from run to run. Changes can be made in order

to obtain better performance, or to accommodate variation in the physical configuration of Cm* or the

Input data. For instance, data might either be stored as a unit in a single computer module or

partitioned among several objects in different Cm's. Data or processes might or might not be repli.

cated.

6
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(----Data link---f

StarOSt

Figure 6-2: Linking and Loading a Task Force

TASK also provides facilities for controlling resource allocation. Task-force authors may express

relationships between programs and data, or constraints on resource utilization. To do this, they

* assignment-which process should execute on a particular processor, and

* placement-which Cm should hold a particular unit of code or data.

A.2. The TASK Compiler

The TASK compiler runs on CMU-10A, not on Cm'. The services provided by the compiler are

summarized below. /

* TASK describes a task force in terms of the abstractions provided by STAROS. It
describes the modules that make up the task force, specifying for what objects the
modules will have capabilities and what functions are exported by each module. It
specifies an initial process structure for the tas force by listing the processes that are to
be created as soon as the task force is created, or "instantiated." (To instantiate means

to create one instance, or example, of.)

. -, -
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* TASK generates directives for linking together the components of the task force. It writes

a separate linker command file (. L, D file) for each module, as well as one which relates
to the overall task force. Reading directives from an .L4D file, the C.mmp linker com-
bines several relocatable object files produced by.the BLISS compiler into a single file
which may be shipped to Cm and read by the STAROS loader.

TAsK generates definition files which contain the names of all modules, their functions,
and other components. These files contain names declared in the TASK program that
may be used in BLISS code. One BLISS requi re file is created for each module, one for
each function exported by each module, and one for the task force as a whole, which is
used for preparing a task.force object. The task-force object contains a description of
the task force; it is used by STAROS but is not referenced by the user's programs.

TASK also generates command files for the STAROS loader. Again, one file is created for
each module, and one additional file for the task force. These are the template, or .TEM
files which are interpreted by the Loader in order to construct task force components and
to allocate resources for the task force.

a TASK controls resource allocation for the task force, as specified by the user. It allows the
user to relate components of a task force by expressing their performance characteris-
tics. It also allows the user to specify the characteristics of Cm's where objects and

processes should be placed.

The process of constructing a task force, from writing source code to running it on Cm*, is il-

lustrated in Figures 6-1 and 6-2.24

A.3. Introduction to the Language

A TASK program consists of statements describing objects which contain data and code, relations

among those objects, and their assignment to physical resources. The bulk of a TASK program is

declarations; the one "executable" action is creating an object. Each such instantiation is realized by

one or more invocations of the Object Manager. The types of objects that may be created are

modules, processes, basic objects, stacks, deques, and mailboxes. A task-force author declares a

template for each object that is to be created as part of the task force. A template specifies the type

of an object and indicates its size, how it is to be initialized, and where it is to be placed. In many

ways, templates are analogous to type declarations in languages such as Pascal and Ada.

2
24 Figure 8.2 is slightly oversimplified; see the discussion on page 167.
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Table 6-1: Expressions, Names, and Types in TASK

(Simple Name) -(Unquoted String)

(Simple Template Name), (Complex Template Name) = (Simple Name>
Template names must be unique in their first five characters.

(Formal Parameter Name), (Var Name) = (Simple Name)

(Comp Name) = (Simple Name)

(Function Name) :: = (Complex Template Name) . (Complex Template Name)
(Object Name) (Simple Name) I (Access Expr)

(Path Name) (Simple Name). (Path Name) I (Simple Name)
(Object Path Name) :: (Object Name> . (Object Path Name) (Object Name)

(Keyword Name) :: -(Obj Common Att) I (Obj Add Att I (Ob Special Att) (Hard At)

(Var Type) String I Integer I Boolean

<Expr) : (Arith Expr) I (Quoted String) I True I False

The rest of this chapter describes the syntax and semantics of the TASK language and includes a

series of illustrative examples. The complete TASK grammar appears in Appendix B, but portions are

repeated at appropriate places throughout this chapter. Most examples in the chapter are excerpts

from a TASK specification for a task force that processes image data by performing filtering opera-

tions. An image is partitioned into slices, each of which may be processed almost independently of

the others. Server processes that filter a slice need only cooperate with those server processes that

filter an adjacent slice, A manager process is responsible for coordinating server actions by sending

processing requests and additional data to servers via shared mailboxes. The manager process also

handles the I/O associated with the image-processing task. The complete text of this example (albeit

in slightly obsolete TASK), may be found in an early paper on TASK (81).
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A4. Templates and Instances

A template is analogous to a programming language type declaration while an instance is

analogous to a variable of that type. A TASK program contains template definitions and instructions

for instantiating object from those templates. Templates are comprised of a set of attributes which

may be specified explicitly, or, if omitted, may be supplied by TASK from a set of default attribute

values for the template. For example, the size of the object may be omitted from some template, while

for another template resource-usage attributes may be omitted.

A template specifies several types of information:

. the type of an object,

* attributes of an object, such as its size, and where capabilities for it should be placed,

* instructions for building complex objects that have other objects as components, and

e resource-binding preferences.

A simple template gives directions for instantiating an object which does not have other objects as

components. Complex templates, on the other hand, tell how to create modules and task forces,

which have other objects (such as processes and modules) as components.

The syntax for templates is given in Table 6.2. In the syntax, three superscript symbols are used to

denote different types of repetition:

* means "zero or more repetitions of",

+ means "one or more repetitions of", and

# means either zero or one Instance of".

When items on a list are to be separated by some particular punctuation mark, the punctuation mark

is indicated directly before the repetition character.

We will consider simple templates first. Examples of simple templates are-

SAA&ln InputImage (3lzU4K, So-gjeu("Imagel.obJ", "Imago2.obJ"))

Mailbox (MsgTa - "Capability", Sjzn - 40)
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Table 6-2: Syntax for TASK Templates

(Templates) = (Template) EOF

(Template> : (Complex Template> I(Simple Template>)

(Simple Template)
(Simple Object Type> <Simple Template Name> ((Actual Attributes)

Some actual attributes may occur only within functions or modules.
Hence there are semantic restrictions concerning which attributes
may appear in simple templates that are not bound to a particular
complex template.

<Complex Template) : (Task-Force Description)
I (Module Description>
I (Complex-Basic Description>

(Simple Object Type) Basic I Stack I Mailbox I Deque I Device

The first template can be referred to as InputImage; it describes a basic object with a 4K-byte data

part and no capabilities. The object is initialized from the two files Imagel.obj and Image2.obj.

Only the first 4096 bytes of these files will be recorded in the object when it is instantiated. The

second template is for a capability mailbox that can buffer up to 40 messages.2 Appjndix C lists the

creation parameters for all TASK object types. In particular,.the interpretation of the Size parameter

depends on which type of object is being created.

-.0 The (Simple Template Name>, if present, is associated with the template for future reference. A

(Template Name> is not needed if the template is merely used once and never referred to again.

S-Later examples will illustrate this.

The New construct is used to instantiate an object, either by specifying the template directly or by

naming a previously defined template:

2tf the number of "entries" for registered receivers is different from the number of messages, this may be specified by the
syntaxl W , (number ol registered receivers, number of messages).
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Table 6-3: Syntax for Complex Templates

(Module Description):: a
Module (Complex Template Name> ((Formal Parameters>)) is

(Construction Description>
(Function Description>
(Resource-Usage Directives>

All module attributes must be specified at declaration time. Modules
can only be components of task-force templates. Only one instance of
a module can be constructed from a particular template.

(Function Description>:: -

Function (Complex Template Name> ((Formal Parameters>) is
(Construction Description>
(Resource-Usage Directives>

A <Function Description> can only be a component of a (Module
Description).

(Task-Force Description> :: = T.askForce (Complex Template Name> Is
(Construction Description>
(Resource-Usage Directives)

A task force template can have no parameters. A (Task-Force
Description> cannot be a component of another template. No more
than one task force template may appear in one TASK program.

(Complex-Basic Description> :.
ComplexBasic(Complex Template Name> ((Formal Parameters>) Is

(Construction Description>
(Resource-Usage Directives>

Components may have any type except those specifically excluded
above.

fie Mailbox (/.tsTy ,, "Capability", Sjze- 40)

JeU InputImage

The first example of the New construct will result in creation of a mailbox able to buffer 40 capability

messages. The second example of New refers back to the simple template defined earlier. The body

of the template named InputImage is textually substitutedfor the name InputImage (defined in the

* previous example). A basic object of 4096 bytes will be created, and initialized to hold up to 4096

bytes of the source files named Image 1. obj and ImageZ. obj.
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Table 6-4: Syntax for Construction Descriptions

<Construction Description> = Construct ((Component> ;)

(Component> :: = (Comp Name> (Operation>
(Iteration> : (Operation>

I (Expanded Iteration> : (Operation> [not yet implemented]

(Operation> :: =
New {[(Object Type> ((Actual Parameters>))

I (Template Name> (<Actual Parameters>)))
I Reserve ((Object Type> (<Actual Parameters>)) }

I (Simple Template Name> ((Actual Parameters>)
I Ret (Object Name> ((Actual Attributes>) #

Only special attributes should be used here.
I Use (Object Name> ((Actual Attributes>)*
I Process (Function Name> ((Actual Parameters>)

Note: returns a mailbox. Semantics: Processes may
be created only within the body of the module defining
their function

i Name ((Actual Attributes>)*
Only the Window attribute should appear here.

A.5. Complex Templates

Only task-force, module, function, and (complex) basic objects are specified by complex templates

(see Table 6-2). The (Construction Description> specifies names and templates for each component

object. The (Construction Description> also defines names for component objects that will be

created by the task force as it is executing. The syntax of a (Constructian Description> is given in

Table 6-4.

When an object is instantiated, its component objects are also instantiated, either by manufacturing

new objects or by acquiring the appropriate capabilities. The New construct indicates that an object

is to be created. Similarly, the Process construct indicates that a new process is to be created to

execute a specific function. (The proqess does not begin execution until it is scheduled, however.) A
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component object may also be a parameter-in particular it may be a shared object-in which case it

is named in the parameter list. The Ref, Use, Name, and Roserve constructs are explained later. •

As an example of a complex object, let us consider a module template that makes use of associated

mailbox and basic templates:

Mailbox Communicate (MsgoType - "Capability". Size• 10)
Basic InputImage (Size - 4K, Source - ("SeaScape.obj"))

i Module Server is
Construct(

Mylmage: New InputImage;
Commune: New Communicate;
Code: fNew Basic (Size - 4K, Source ("Server.Cod"));

' )

When the template for the server module is instantiated, each component of the server module object

is instantiated in turn. The mailbox template named Communicate and the basic template

InputImage are defined outside of the module template for maintenance convenience. When the

server template is instantiated, the names Commun icate and Input Image are textually replaced by

the mailbox and basic templates.

A particular object instantiation may refine a previously defined template, adding more detail about

the object which is created from the template. For example,

Mailbox Communicate (MsaTvey - "Capability")

Module Server .1

MyImage: Now InputImage;

4d  Commune: fNe Communicate (itze• 10);

is also possible. Here, the template Communicate is defined outside the module template. Then the

template is used within the module template, but with an additional parameter, the size. Note that, in

TASK, it is not possible to define a template within a template; hence the Communicate template had

* to be defined outside the Server template.

I
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Table 6-5: Syntax for TASK Parameters and Attributes

(Formal Parameters) = (Formal Parameter> I (Actual Attribute)
(Formal Parameter) ::

{(Formal Parameter Name), + <Iteration)) : <Simple Template>,
<Var Name), + : <Var Type>,

<Actual Attributes) = (Actual Attribute)
(Actual Attribute) = {(Keyword Name> = {<Expr> I (Var Expr> I (Index) },)

I Source ([<Integer), (Link Switches)]) #

= (Source Parameter Value),
I Rights = (<Quoted String>, (Quoted String>),

Currently, all rights specifications remain unused.
Size = ((Integer), (integer>),

I (Special Attr>,

(Actual Parameters) = {(Actual Parameter> "I (Actual Attribute> )
(Actual Parameter) :: = (Key Expr) = (Actual Expr),

(Actual Expr) = (Object Name> I (Iteration> I (Expr>
I(Var Expr> I (Access Expr> I (Index>

(Key Expr) = Formal Parameter Name) I (Access Expr) I (Iteration)

(Source Parameter Value> = ({(Quoted String)),+)
(Link Switches) = (Quoted String)

One or more switches (/D, IN, etc.) to be passed
to the C.mmp linker.

(Obj Common Att> :: = Source I Rights I Size

(Obj Add Att> ::= StackSize I Class I Preempt I Quantum
I ServiceLimit I Processld I MsgType

For a description of these attributes, see Appen-.
dix C.

<Obj Special Att> ::= Window I Stack InitialCode
I PrivateMailbox I StackOwns I Alias I Present

II& em i i I I I- | O I I II "i I I I I I - i i i -
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We now adapt the previously defined server module to use a shared mailbox that is passed as an

argument at the time of instantiation.

Basic InputImage (Stze- 4K, Source - ("SeaScape.obj".))

Module Server (Commune: 1.ailbox (NsgTvye * "Capability")) j-1
Construct(

Mylmage: New InputImage;
Code: Ie Basic (Size-- 4K, Source - ("Sorver.Cod"));

A name defined as a formal parameter to a complex template may be referred to in the body of the

template, just as a name which is defined within the body of the template. Thus, Commune is a

component of the server module; it can be named or manipulated just like any other component. The

* iTASK compiler performs parameter type-checking. For example, in the most recent definition of the

* server module, Commune is a formal parameter restricted by a template. The actual parameter is thus

4 required to be a capability mailbox-not a data mailbox. The template for Commune could have

specified size attributes, although in this example it did not. Table 6-5 gives the syntax for TASK

parameters.

Resource directives may be included in a complex template. We postpone discossion of them until

later.

A.6. Modules, Functions and Processes

A STAROS module exports a set of functions. Thus, part of a module template consists of a

* specification of the functions defined by the module. A complete module template has the following

form, as was shown in Table 6-3:

(Module Description> :: = Module (Module Name> ((Formal Parameters>) is
(Construction Description>
<Function Description> +
(Resource-Usage Directives>

where

.(Function Description> = Function (Function Name> ((Formal Parameters>) Is
(Construction Description>
(Resource.Usage Directives>
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Consider an expanded version of the server module template. This example defines a function

called VlorkCycle. The example supposes that a single process for the function WorkCycle will be

created. This process is programmed to cycle, processing work requests sent to it via its private

mailbox.

liodule Server (InputImage: Basic. Commune: Matlbox)l n.
Const~ruct (

TheCommune: Process Server.WorkCycle();
Code: Now Bastc(Size - 4K. Source - ("Server.Cod"));
)
Function WorkCycle J.
C onstruct(

MyMailbox: Ref Commune(PrivateMatlbox);
MyStack: New Basic(Sjiz a 4K. Stack);
MyCodo: Ref Code(1nJttl1Code[Cyc1@J]);
Scratch; Ine Basic (Um a 4K);
)

Di iecie

Example 6-1: TASK: An Absent Function

This example illustrates the use of pathnames (for example, Server .WorkCyc ie) to name func-

tions within a module. Arbitrary paths of objects are created by concatenating component names

ordered by their lexical nesting, with each pair of names separated by a dot (","). For the present,

the only legal pathname is one of the form (Module Name) . (Function Name).

The Process construct results in the creation of a process to execute the function WorkCycle,

which is defined a few lines below. This process will be created by invoking the Process Creator and

not as the result of an Invoke instruction. Any Process construct causes a capability to be returned

for the private mailbox of the new process; however, as in this case, the user can specify what

mailbox object is to be used for th 3 private mailbox. Also, a capability for the private mailbox will be

placed in the slot of the module called TheCommune.

The last object which is created from the function template is a basic object called Scratch. The

process object which is created by the Process construct from the function description contains

capabilities for each of the four objects named in the function template. In general, the object



160 I The TASK Language Section A.6

resulting from the instantiation of a complex template contains one capability for each component

object. New causes the creation of an object by the object manager. Rsf results in a Copy

Capability operation which generates a new capability for the shared parameter object. In the BLISS

code, the names given to object instances resolve to name slots in the capability portion of the

complex object.

The Prlvatela ibox attribute specifies that Commune will become the private mailbox of the new

process. Note that Commune is a parameter to the module in this example. When the

PrivateMailbox attribute occurs in the construction description of a particular function, it marks

the object which it applies to as being the private mailbox of the function. Since each new process

receivee a unique private mailbox, and since the Process construct returns whatever object is the

private mailbox of the process, the user needs to specify only when the default mailbox is to be

replaced by another object (a module parameter in the example).

The fact that the mailbox is specified as a Ref to the object called Commune means that it is a

reference to-that is, a capability for-Comune, which Is the formal parameter to the module." In

other words, the capability which is passed to the module Server is to serve as the private mailbox

for any process created from the VorkCycle function. The capabilities Commune, Nyla.ilbox, and

TheConmmano are all copies of the same capability.

Supp;oe a Ref for the Pr eateNialbox had not been used. In other words, suppose that instead of
"Wf Cmva*". we had written " NeCem: n M JIbox (...)". In this case, a new private mailbox

-* would have been created Indeed. if there were two Process constructs in the construction description for
the module, two processes with two separate private mailboxes would have been produced.

There a one more thing to note. By writing "NleCoat: &aw MaiIbox (...)", we gain the ability to
specify any desired attributes for the new private mailbox that is to be created.

Sy contrast consider another modification of the example (below). In this example, the construction
description does not specify an private mailbox. Consequently, when the process is created, a private
mailbox with default size is returned in the capability slot PilI I box.

Module Server (Inputleage: Jat) JA
Construct (

PMailbox: Process Server.VorkCyile(;
Code: M Lw uJMs(Jjj w 4K, Source - ("Server.Codu)):

26 Formal parameters to one complex template (the module template) can also be referenced from inside a sub-template (the

function template).

Ui



Section A.6 Modules, Functions and Processes I 161

)
unctotna WorkCycle J1

Construct (
MySteck: 19w IL2"1(LW • 4K. SI=k);
MyCode: Rof Code(InitlalCode('CycleJ);
Scratch: Nw BLaic (itzU a 4K);)

Directives()
Directives()

Special Attributes. The PrivateMailbox attribute is the first of the special attributes defined in

TASK. These are attributes which are intimately related to characteristics of the STAROS system.

Special attributes may appear in the same places as other attributes, such as Size and Source

(which are defined in Table 6-5). Stack is another special attribute; it refcrs to the process stack of a

STAROS process. The construction description for the WorkCycl e function therefore says that a new

4K-byte basic object called MyStack should be created to serve as the process stack, each time a

process is created from this function description. (The stack should always be a 4K-byte basic object,

so that references to it do not need to be mapped through the Kmap).

Table 6-6: The Syntax of Special Attributes

(Special Attr> : Window [(Integer>]#
PrivateMailbox

I InitlalCode [(Quoted String)]*
I Stack

StackOwns [(Object Name)]
Present [(Object Name>]
Alias ["(Function Name> "]

The InltialCode attribute is also used in the 'example. It indicates that when the process is

started, the entry point will be in the object MyCode, at the routine named Cyc le. Note that MyCode,

just like MyMal 1 box, is a Ref to an object defined in the enclosing module template. The effect is that

each time a process is created from the function description, it is given a capability for the same code

object; in other words, all processes created from the function description will share code. (If no

InitialCode is specified for a function, TASK will generate a reference to the undefined symbol
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$Def Call so that the linker will also generate a warning message.)

Certain objects should be in one of the fifteen window capability slots when a process begins

execution. Objects with the attributes InitialCode and Stack must always be in a window; the

TASK compiler takes care of this automatically. To cause other objects to be initially loaded into a

window, they may be given the special attribute II ndow. In the following example, the basic object

Scratch would be initially loaded into window 7:

Scratch: Now Basic (1jzj= 40. Window[7])

The Stack and InitialCode objects will always be loaded into windows 0 and 1, respectively,

regardless of whether they are given a Window attribute. In general, if no bracketed number follows

the "Window", TASK will automatically select a window.

In STAROS programs, it is common practice to keep own variables above the stack,27 but on the

same page. If an object is given the attribute StackOwns, the stack object will be initialized from the

named object. In this case, the function attribute block will indicate that the stack pointer should have

the initial value StackTop, which should be a global name declared by the user. I StackOwns is not

specified for a function, the initial stack pointer will be two less than the size of the Stack. (The

Stack is always in window zero.)

. Present/Absent Functions. When processes are created using the Process construct the

question of whether the function is absent or present may not be important. However, if some

function is intended to be the target of an Invoke instruction, the distinction is crucial (the difference

between the to kinds of functions is discussed in [149]. When a function is present, Invokes directed

to it are sent to the invocation mailbox which is named in the function attribute block. In TASK, a

present function is defined by making the invocation mailbox, preceded by the word Present, a

parameter to the function description:

7Since the stack grows downward, this means that owns are kept "at the base of the stack."



Section A.6 Modules, Functions and Processes 1 163

Module Server (InputImage: J L.uj, Commune: Mailbox) .1
Construct(

TheCommune: Process Server.WorkCycle();
Code: Now Basic(Slzi - 4K, Source a ("Server.Cod"));. )
Function WorkCycle (Present[Commune]) Ii
Construct(

MyStack: NLw Balic(Iu a 4K, Stack);
NyCode: Ref Code(InDlJaICodo["Cyc1e"]);
Scratch: _ti Blic (te 4K);)

Dire tiUXU()
Directives( v

Example 6-2: TASK: A Present Function

In this example the object Commune is to be made the invocation mailbox for the present function

WorkCycl e. In this case, the invocation mailbox Commune happens to be a parameter to the module,

although that is not necessary. If no Present attribute appears, the function is defined to be absent.

Alternatively, if we had omitted the parameter Comune from the Server module, and written instead

"present [TheCommune]", the private mailbox of the process created when the task force was

loaded would have become the invocation mailbox for the function.

If a function is absent, or if the task template does not specify a Process construct for a present

function, a new process will be created if the function is invoked. Since this new process is created

after the task force has been loaded, only the information specified in the function attribute block is

available to initialize the process.

* The process stack will be as specified (Stack), but it will not be initialized (StackOwns).

* The object identified as In I ti al Code will be in the proper window.

* The private mailbox will be a unique object with the default size.

* Except for the Stack and In ti al Code, no other objects will be placed in windows.

* No New objects will be created regardless of the function template, except for the stack.

* No Ref capabilities will be created regardless of the function template, except for one
code page.
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The Alias Attribute. The Al ias attribute sets the alias function field of the function attribute

block [149]. The effect of this is to cause the same process to perform two functions of some module.

As a result, certain attributes of the alias function will be inherited from the function "ai -d to'.

Hence, if the Allas attribute is specified, the Stack and InitialCode attributes should not be

specified. For example:

Module Servor (Inputlmage: Basic, Commune: Mailbox) it

Function Funcl (Present[TheMBox]) i
Construct (

MyStack: Nety Basic(Size u 4K, Stack);
MyCode: Reft Codo(InitialCode("Cycle"]);
Scratch: New Basic (JSt - 4K);
)

Function Func2 (Present[TheMBox]Alias"MyMod.Funcl"]) i.
ill Construct (

Scratch: -fin Basic (51ne- 4K);)

Example 6-3: TASK: Alias Function

The Use and Name Constructs. In all of the the WorkCycle examples thus faf, the Ret construct

has been used to denote the Code object in the server module. This is not sufficient if the program.

mer wishes to instantiate WorkCycle processes with their own copies of the code. In TASK, a

process obtains a private copy of code or data objects through the Use construct:

Function WorkCycle Jt
Construct(

MyCode: U Code;

In this case, the object specified by Code in the server module is used. This means that a copy will be

made, if in the resource-usage directives the user has separately localized the object (see Section
I

A.IO). Otherwise, the Code object in the module will be used; it is Referenced.

The Name construct is provided to define elements with complex objects so that the elements may

be named conveniently in BLISS code. TASK does nothing but allocate empty slots in the template.

The BLISS program may use these slots to hold capabilities for dynamically created objects. A simple

*1
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example of the use of Name would be to reserve a slot in the process name space.

Function WorkCycle J.1~~~~~Construct ( c'''oe
WorkSlot: ffNe;

If this name is to refer to a window slot, the programmer should write instead-

WorkSlot: ftm=(Window)

The Reserve Construct. For the purposes of assignment and placement, the Reserve statement

may be part of a template's (Construction Description). As noted before, all objects specified in

templates are constructed before a task force can run. However, during execution new objects may

be allocated, old ones deleted; processes may be spawned; and previously spawned processes may

4 terminate. For such dynamically created and manipulated objects the Reserve construct is used.

For example,

MyDynamicObject : Reserve Btas.ic (Stze• 4K);

reserves the name MyynamicObjoct and associates it with a particular capability slot. All modules

which make up the task force can use the name. The type and the actual parameters (e.g. Size) are

effectively treated as comments; they indicate the programmer's intention to create a 4K-byte basic

object in the slot, but there is no enforcement. At run time, the object which is actually created to

occupy the slot maybe quite different, and no warning or diagnostic will be issued.2B

A.7. Task Forces

The root of any distributed application is a task-force description. At a minimum, a task-force

description contains one module description. The form of a task-force description is similar to that of

any complex object, except that it may have no parameters:

28The only difference between the Name and Reserve constructs is that Reserve causes the allocation of memory which

can later be used to hold the object. However, since tle Memory Manager does not have the ability to reserve space for later
object allocation, the two constructs are at present equivalent.
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TaskForce <Complex Template Name> is
<Construction Description)
<Resource-U]sage Directives)

To illustrate a task force, let us assume that the module template named Server is defined as

above and that there exists another module called Coordinator that requires two parameters, the

image to be processed and a mailbox; and exports one function called Control. A process execut-

ing Control creates and passes work requests to the processes that result from invocations of the

WorkCycle function defined in the. server module. All server processes use the same

PrivateMailbox, which is created in the task-force object, and then passed to the module template,

* and then to the function template. Example 6-4 is the definition of this task force.

TaskForce ImageProcessor J1"! Constru/ct(

TheImage: N&a Inik (iite 4K, Source * (Image));
PMailbox: New Mailbox (MsTyoe " HCapability". 2 56);
CoordMod: New Coordinator (InputImage a Thelmage,

Commune Ptailbox);
ServerMod: In Server (InputImage • Thelmage,

Commune a PMallbox);
'. )

Directives()

Module Server (InputImage: AALq, Commune: Mai]box) ii.

S;rverPMl: Procos Server.WorkCycle (;
ServerPPM2: Progess Server.WorkCycle );
)
Function WorkCycle J..

"1 Construct (
ComBox: RUt Commune (PrivateMailbox);

DiLrctves()
Directies()

E Coordinator (InputImage: Blnaig. Commune: Mail-box) t_&
Construct(

M;nagerPM: Process Coordinator.Control (CommBox Commune);
)
function Control J.1
Construct (

CommBox: Ri! Commune (PrivateMailbox);

Io



Section A.7 Task Forces A 167

)
• Directives()

Directives()

Example 6-4: A Simple Task Force

When a task force is instantiated using the ImageProcossor template, a STAROS task-force ob-

ject is created. All of its components, including the two module objects, are created and initialized.

Instantiation of the module templates will result in the creation of all objects specified in the modules'

construction descriptions, thereby creating the three processes. This "chain- reaction" instantiation

of objects makes the construction of a task force easier for the programmer by taking away the need

to re-code all of the individual actions involved in the construction of the task force.

* It is the loader which creates the task- force object. The task- force object is known to the loader as

the loader library. It places in this object a capability for each object instantiated within the task-force

template. After the loader finishes creating the task-force object, and anything else which it causes

via the chain-reaction, it gives the module capabilities in the task-force object to the user interface.

-This enables the user to Invoke functions of these modules from command level.

TAw creates one template tile for each module and one template file for the task-fore .s object Thes
files consist of initialization informatlon for the module and function attribute blocks, as weft as directives to

the loader to create certain objects. Each module's template file is assembled, then linked into the
corresponding module (. O0) file by the C.mmp linker before being sent to Cm'. For each task force. a
separate file is output by the C.mmp linker (. TF file). Figure 6-2 oversimplified the process somewhat
since it showed the . TEM files being passed directly to the loader. In reality, though they consist solely of
loader information, they are combined with the corresponding .1MOO or . TF files before being passed to the
loader.

Scope Rules. In a TASK program, all template names are global, and within one TASK program they

must be unique in their first five characters. Function names are nested, as in Algol: if a particular

name occurs twice, an instance of the name refers to the one in the smallest enclosing complex

template: complex-basic, module or task-force description. Object names are known only within the

complex template in which they are defined.

I
It is now evident why the private mailbox was passed to the module as a parameter in the last
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example. The scope of the name P.!1ailbox is limited to the task-force template, so it cannot be

referred to from inside the module templates. (By contrast, objects defined in a module templar3 can

be referred to from within any associated function template, since the module description logically

includes the function description; see Table 6-3.) Instead of using the Rof construct, we could have

declared ComnmBox as a parameter to the function template. Then we might have written

Function Control (CommBox: Mailbox (PrivateMailbox)) is

The two constructions are semantically equivalent, but parameterized function templates cause the

compiler to generate less space-efficient loader instructions (.TEM files), which for large task forces may
cause the loader's instruction buffer to overflow.

A.8. Iteration

In the complex templates of the previous section, each component is explicitly named. However, to

specify distributed software where the number of components varies with the size of the input data

involved or the number of processors available, specification of each explicit component is incon-

venient.

In this section we introduce iteration for the specification of multiple components that differ only in

minor ways. Iteration can be used to express the partitioning of data objects into multiple objects,

and for specifying parameterized replication of objects.

To illustrate replication, we adapt the ImageProcessor example to use a variable number of

server processes. It is necessary to modify only the Server module description:

Module Server(Inputlmage: Basic,
Commune: Mailbox. number: Integer) Is

Construct (

S(1.1.".number Mu 12) ServerPM[1]:
Proces ServerMod.WorkCycle (CommBox - Commune);)

The iterative syntax above will cause the creation of nuinber processes, each to executing the

WorkCycle function. Number potentially varies each time the task force is instantiated, but may not

exceed the value 12.

-I S --'bl~lBkl llll~lll -mmla ll B I~ bm ~ ll Tm11f/ . .
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To illustrate the use of iteration for the purposes of partitioning data, we present another example:

STAROS restricts object data parts to 4K bytes. To alleviate this restriction, the TASK iteration

facilities may be used to partition files larger than 4 Kbytes into multiple basic objects. For example,

inside a Construct clause, one may write:

(1-0..2) NyCode[l]: flew Basic (jize - 4K,
Source - ("Codfil.obj"));

Three code objects will be built from the file named Codf ii . obj. MyCode[O contains the first 4K

bytes of code; MyCode[l] contains the second 4K bytes, and so forth.

Table 6-7: Syntax for Iterations

(Iteration) :: = ((IterName) = (Low Limit) .. (High Limit)) (Access Expr)

(Access Expr) :: = (Iterated Name) [(Index) 

(Index) :: = (IterName) {Mod (Var Expr) #

(Low Limit) :: = (Integer)
(High Limit) :: = (Integer>

* Max (Integer)
I (Integer) Max (Integer)
I (Variable)

(IterName) :: = (Simple Name)
(Iterated Name) :: = (Comp Name>

(Formal Parameter Name)
(Actual Parameter Name)

(Expanded Iteration) :: (Comp Name), +

Expanded iteration and arithmetic expressions are not im-
plemented.

If the task-force author does not know how many objects will result from partitioning a source file,

the symbol "' is used to indicate "as many as necessary to exhaust the file". Rewriting the above

example using the "°" notation, we have:

(1-0.. Max 5) MyCode[1]: Now Qasi (Size * 4K,
•q ("Codfll.obj"));
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The maximum range of the iteration index must be known at compile time. Thus, no more than 6

MyCode objects will be created, regardless of the size of the file Codf 11 . ob J. Furthermore, the last

MyCode object will be 4K bytes in length, regardless of whether it is completely filled.

Once a name (such as MyCode) is associated with an iteration, subscript notation may be used to

select an object in the range f <Low Limit> .. (High Limit) ]. In the previous example, we can refer to

MyCodeElJ, which is the basic object containing the second 4K bytes of Codf iI .obj. <High

Limit) can be an identifier name or an integer. Table 6.7 defines how iteration may be used in

construction clauses.

A.9. Parameters

0 There are two classes of parameters to templates:

e Predefined parameters in object templates, such as the size of the object, and the mes-
sage type (for a mailbox). Such parameters are called attributes and a complete list of
them aopears in Appendix C.

e User-defined parameters, such as the parameter Commune in the module Server
(Example 6-4).

A specific set of predefined parameters (attributes) is associated with each type of object. When a

template is used for object construction, those predefined parameters that are not specified are given

default values by the compiler. Predefined parameters include Size, Source, and MsgType:

Bastc InputImage (Sit - 4K, Source - ("Imagel.obj", "Image2.obj"))

Mailbox Communicate (MogType - "Capability", tze - 40)

When integers are to be specified as actual parameters, integer constants, simple names and ar-

bitrary expressions2 are allowed.

Predefined parameters may also require objects as parameters. In the WorkCycle function, for

instance, the PrivateMailbox isa predefined object parameter.

29Not implemented.

Vf
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When a formal parameter is declared, a type must be associated with it, and it may additionally be

constrained by a template. When the template is used for constructing an object and actual ar-

guments are associated with these parameters, the compiler prints a warning. In any case, the

compiler and the loader will make all attempts to proceed with object construction. Non-constant

arguments may be expressions, which evaluate to <string> or (integer> values. Var;able arguments

are not available at run time.

In the following example, the module Server has two formal parameters-InputImage and

Commune:

Module Server (InputImage: Basjc,
Commune: Mailbox (M1s;Tyoe = "Capabi-lity", Size - 10)) J1

Construct (

Code: New Basic (Size * 4K, Source - ("Server.Cod"));
4 )

Here, the Commune parameter is constrained to be a capability mailbox with room for at most 10

capabilities. Both parameters are objects.

An example cf a variable parameter is-

Module Image (Image: String) .J1
Construct (

InputImage: New Basic (Size• 4K, Source * (Image));

It is possible to use iteration when expressing formal and actual parameters, 3° as illustrated here:

TaskForce ImageProcessor J1
Construct

(i=1..* m 20) Thelmage[i]:.New Basic (Size a 4K,
Source = ("Image.obj"));

CoordMod: New Coordinator (InputImage a
(=1..* max Zs) TheImage[i]);)

Module Coordinator ((t1I..n max 20) InputImage(i]: Basic(Size=4K)) iJ
Construct

Here an instance of a Coord i nator module may have up to 20 parameters, called Input Image[ I j
30Not implemented.



172 1 TheTASK Language Section A.9

passed to it. A maximum value must be supplied with the parameter, thereby constraining the itera-

tion and limiting the number of Inputlmage[i] objects within the (Construction Description>. In

this example, each Inputlmage[ 1] parameter must be of size 4K bytes.

When referred to in the construction description, the vector name can be referenced to denote the

entire vector. Alternatively, its elements may be referenced individually using an indexed vector

name. Here is another example of parameter iteration:

Module Coordinator (( l- •. .n IIax 20) Inputlmage[i]: Basic) 11
Construct (

TestElement: Ref lnputlmage(O];
)

Several formal parameters which have the same type or template may appear in a list, separated by

commas. 31 The type need only be specified once, following the last parameter of this type. This is

illustrated by the following:

Module Server (InputImagel, InputImageZ: Basic) it

6.0.1. The Source Attribute

The Sou rce attribute serves two functions. It indicates what files are to provide the data necessary

to initialize the data part of an object; and, if it is necessary to link-edit the the data files, the relocation

address to be used by the C.mmp linker (the link editor used by STAROS). In general, all compiler

output (relocat able object file, .0BJ) must be link-edited for two reasons: first it is necessary to

calculate addresses of items such as routines and global variables that may be part of the data;

second, code and linked data structures may include pointers that depend on where these structures

are located in the address space.

The full syntax of the Source parameter (from Table 6-5) is:

31 Not implemented.

! U . .. .. . m ll i i illla~litl i IRii 1lll
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(Source Attribute> = Source ([(Integer>, <Link Switches>]) #

= <Source Parameter Value>,

,<Source Parameter Value> ::= (((Quoted String> ),")
(Link Switches> ::= (Quoted String>

A <Source Parameter Value> is used to specify the files that contain the data to be used to initialize

the object. In previous examples, the specification "Source - ("Imagel.obj")" has been seen.

This specification indicates that the data in the file Image1. obj, after processing by the linker, is to

be used to initialize some newly created object. Since all files used in this manner will be processed

by the linker, these files must be in the so-called obi format. Such files are most conveniently

generated using some language translator.

In general,. OBJ files generated by BLISS are partitioned into named csects, each csect represent.

ing a different kind of information. Accordingly, file names in a Source clause may be qualified to

select particular csects. A (Source Parameter Value> of "Source - ("CodFtl .obj(CG)0)", for

example, means that (only) the code and globals from the file CodFl 1 .obj should be placed in the

object. The characters in parentheses select a particular type of csect: C selects code, G selects

globals, 0 selects owns, and P selects plits-literals generated from the BLISS program. A <Source

Parameter Value> of "Source * ("CodFil .obj (/P MyPl Its>")" means that the csect of type

plits called "MyP1lits" should be extracted from the file CodFill.obj. Lastly, "Source

("CodFI 1 .obj </C Front>")" instructs the linker to extract the code csect called "Front".

An object containing code or data that must be relocated often has the WI ndow attribute specified.

In such cases the programmer need not specify the relocation address for the object since this is

implied by the window assignment, and TASK will automatically generate the proper instructions for

the linker. Circumstances can arise where the programmer wants to relocate several objects to the

same address or does not want the loader automatically to place some object in a window. Then

there must be a way to provide the relocation value in an independent fashion, and this is the purpose

of the (Integer> value. For example, Mbbect(Source[4 ... J ... " indicates that the contents
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of yObject should be relocated to page 4 (address # 040000)."

By way of illustration, suppose that executable code is to be overlaid because the address space of

the process is too small to contain all of the code. In this case, two or more objects will be initialized

from different code fragments which have to be relocated to the same address. The programmer

cannot use the Ili ndow attribute in the body of a function template, for that would cause capabilities

for both fragments to be loaded into the same window at initialization time, with one overwriting the

other.

The Source attribute is designed for this situation. Like the Window attribute, it causes code within

an object to be relocated relative to some window, but unlike Window it does not cause a capability

for the object to be loaded into a window. In our illustration, one of the two code objects would

probably be loaded into the window at initialization time through use of the Window attribute; the

other code object would be given a Source attribute with the same window number as the first

object. Then, when the program was ready to use the second object, it would use a Load Window

instruction to load a capability for it into the window, making it addressable in place of the first code

object. A somewhat more elaborate example, which uses four overlaid code pages instead of two,

follows.

Mod Overlay ..t.Construct (:

CodeO: Now Basic (SourceC7, " "3 - ("CodeO.obj"));
Codel: New Basic (SourceC7, " "3 • ("Codel.obj"));
Code2: Now Basic (_.c[7. " " ("Code2.obj"));
Code3: New Basic (Sourcej{7, " "3 * ("Code3.obj"));

)
Function Dolt .J
Construct(

OverlaldPage: f CodeO(Windovr7_))

When the process is created, the object with CodeO will be in window 7. To address
the other objects one must code:

LoadWindow(OverlaidPage, Codel); I or CodeZ, Code3, etc.

In this example, the second argument of the Source attribute is the <Link Switches) character
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string, consisting of exactly one blank. The current release of the TASK compiler does not allow the

string to be omitted. Nor may the string be null; at least one blank is required. Note that if the code

objects were to be relocated to window 0, the brackets and the text inside could have been omitted

completely; relocation relative to window 0 is the same as no relocation at all:

CodeO: New Basic (Source - ("Code.obj"));

The <Link Switches) allow the programmer to specify switches for the C.mmp linker. This

parameter is copied without change to the . LMD file generated by TASK. The switches of primary

interest to the user are:

/D Indicates that this is a "dummy" page. The indicated csects will be link-edited so that
global symbols will be bound, but no page will be output. Typically /D is specified for
the stack page since each new process will receive a new, uninitialized page regard-
less.

/0 Forces the linker to link the specified csects in the exact order given. Otherwise, the
linker may change the order of the csects to reduce disk usage.

/N and /S These switches label pages containing name and symbol-table csects used by the
debugger [149].

6.0.2. BLISS Names Generated by TASK

TASK generates . DFS files which can be required by a BLISS program, making the object names

declared in the TASK program available to the BLISS code. In the example

Module TwoLevel j.j
Construct(

ComolexBasiq Compound J1
Cgonstruct(

First: New Basic(Size • 4K);

Scratch: Noi Basic(Size = 4K. Window(7]);

)
Directlves())

Directves()

the name Scratch refers to the same object (more precisely, to the same capability slot) in the BLISS

program as it does in the TASK progiam. However, a capability slot is named by a (primary index.
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secondary index) pair [149]. The .DFS file includes two bindings for each slot named in the TASK

* program; if name appears in the TASK program, then in the .DFS file, name will be bound to the

capability index, while $name will be bound to the secondary index. For example, if Scratch is found

*in slot (5, 14), then in the BLISS file, Scratch *(6. 14), while $Scratch *14.

There is another instance in which TASK generates an extra name. If the Window attribute is

specified as in the above example, then TASK generates an extra name to refer to the base address of

the page through which Scratch will be referenced, i.e.,

ScratchPage - 70000;

A.10. Resource-Usage Directives

A Resource-usage directives allow the programmer to control where task-force componenit are

* placed. The objective is to allocate memory and processor resources to the task force. We call the

complete set of allocations the map of the task force to the architecture. This map has two parts.

First, there is placement: every object must be represented somewhere in physical memory. Second,

there is assignment: each process must be assigned to execute on some processor in the system. 3

Sometimes, users need to make explicit resource- allocation decisions. TASK allows users to specify

none, parts of, or all of the task-force mapping. In addition, or as a preferable alternative, users may

express constraints or preferences on how resources may be allocated to instantiated objects. A

constraint effectively eliminates some maps, but does not necessarily determine a specific map, or

even a partial map. A preference eliminates these same maps only if the compiler chooses to honor

* the preference. Constraints and preferences are used by the TASK compiler and the loader to create

a map specification for the task force, given the available physical resources.

03

4 32In STAROS. processes are assigned to run queues instead of processors. A run queue can be serviced by mote than one
processor. TASK assumes the default run-queue mapping, that is, the compilier assumes that each run queue is serviced by
exactly one processor. Then, run~queue names and processor names are identical. Ithe user has set up a version Of STAROS
with a different run-queuie mapping, rAsI( placement and assignment cannot be relied upon.
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6.0.3. Proximity Relations

Constraints are expressed in two forms: as proximity relations between pairs of software com-

ponents, and as relations between software components and physical resources.

For example, to enhance reliability, a task force might require that each of three replicated

processes execute in a different Cm* cluster. In this example, precisely which processors are to be

used is unimportant. However, each pair of processes should/must not execute closer than

tDifferentCluster. As a second example, to maximize performance perhaps some process should

always execute with local code. In this case, the proximity relation between the processes and their

code should be SameCm. In both examples, a proximity relation is expressed between two software

components without concern about the physical computer modules involved.

TASK provides six degrees of proximity that mirror the range of performance characteristics ex-

hibited by the Cm* hardware. 33 The TASK proximity relations are:

* SameCi--Should/must be in the same computer module.

* SameCluster-Should/must be in the same cluster and can be in the same computer
module.

* NearCm-Should/must be in different computer modules and should/must be in the
same cluster.

* DifferentCm--Should/must be in different computer modules and can be in different
clusters.

* DfferentCluster-Should be in different clusters.

e NoCare-Can be anywhere. This is the proximity degree that is given by default to all
software components that are not related with explicit directives.

A resource-usage directive specifies a proximity relation between pairs of objects. The syntax,

given in Table 6-8 permits users to list sets of objects for which the relation of interest is to hold. For

33Were we de.ling with a different architecture, such as a network including a store-and -orward switch, we would alter the
proximity relations slightly. They would express the "distance" between two resources, measured in the expected number of
message stores required to transmit a message.
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Table 6-8: Syntax for Resource-Usage Directives

(Resource-Usage Directives)>: Directives (<Selection>; *<Directive>; )

(Selection)> {<Hardware Set Name> I (Var Name>)): (Selection Expr)
(Directive)> <Iteration># (tProximity Degree)

((Iteration (Object Path Name>)),)
(Iteration) 4 Same ((Hardware Set Name) [<Index]

((Iteration) (V Object Path Name),*)
In the first implementation no paths will be used.

(Proximity Degree) :: (nteger) I SameCm I SameCluster I NearCm
1DifterentCm I DifferentCluster I NoCare

(Selection Expr) < Set Expr) {where (Attr Expr) 1
IAny~f (Set Expr)
INumberOf (Set Expr)

(Set Expr) < Set Name) I (<Set Name) (Opr) (Set Name>)
(Set Name) < Prede fined Set Name) I (Hardware Set Name)

0 <A ttr Expr) < Hard Att (RqeJOpr)
I((Hard Att) <RelOpr) (Hard Att Value> (Opr) (Hard Att)

(RelOpr) (Hard Att Vle)

(Opr) : and I or
(ReIOpr) <: I > <= >=

(Hard Att Value) ::a - nteger) True IFalse
<Hard Att) :: MaxSlze I ActualSize I Reliability

ISpeed I NumEther I NumLines I NumDisks
INumDALlnks I NumCms I NumCiusters
IHasOALink IHasDisk I HasEther I HasLine
IMaxMPSize jActuaiMPSize MPReliability
IPCReliabitity IPCSpeed

<Predefined Set Name)>: Cm I CmStar
* I ClusterO I Clusteri l . Cluster4

ICm[O,O] ICm[O,1] I Cm [0,14]
I Cm[1,OJ I Cm[1,11 I .. I Cm[1, 14]
I Cm[2,O] I Cm(2,1] I .. I Cm[2,14]
I CmC3,OJ I Cm(3,I] I .. ICm[3,14]
ICm[4,O] I Cm[4,I] I ICm[4,14]

(Hardware Set Name) <:= Simple Name)
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instance, in the WorkCycle directives on page 159, the author could state that WorkCycle

processes are to have SamoCm proximity to both their process stack, called MyStack, and the

Scratch object used for writing intermediate results:

SamCm (MyStack, Scratch);

In addition, the author of the Server module template may prefer that the individual server processes

all execute on different processors so that they do not compete for processor cycles. This is ex-

pressed using the iteration construct:

NearCm ((1-I..n) ServerPM[1]);

which is equivalent to stating that ServerPM[1], . . . , ServerPM[n] should be NearCm. 3 If two

objects are to be SameCm, the TASK compiler understands that it is a preference concerning object

placement.that both objects must be placed into the Same computer module. However, the compiler

will decide which particular Cm the objects are to be placed into.

The SameCm proximity relation implies a new "same-processor" relation that is transitive. For ex-

ample:

SamC (MyStack, Scratch);
SameC (Scratch, MyCode);

requires that yStack and Scratch, Scratch and MyCode, and consequently MyStack and

MyCode are to be place in the same computer module's memory. Such implied relations can induce

conflicts among proximity relations. A conflict occurs, for instance, if we add the directive

NearCm (MyStack, MyCode);

to the directives in the example above. The conflict is resolved by giving same preference over

difffearent. Thus, in the example MyStack and MyCode would remain SameCm, and in the same

processor. To avoid conflicts of the form

SameC (Code, Cml);
SameC (Code, Cm2);

each component of a template (e.g. Code) can be named in exactly one SameCm or SameCluster

34Note that for resource directives the privatb mailbox returned as result of process creation is used as a unique name to
denote the created process. The directive does not state anything about placement of the private mailbox.1
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directive.

The tjearCm directive implies a "same cluster" relation which is also transitive. For instance, the

two directives

NearC ((1-1..9) ServorPM[i]);
NearCm (Scratch, ServerPM[l1]);

require that each server process must be NearCm to all other server processes, and also that the

object called Scratch be NearCm to the first server process. All servers and the object Scratch will

beplaced in the same cluster.

The directive

DiffsrentCm ((1.. .0) ServerPP[i]);

requires that 50 server processes be assigned so that each process executes on a distinct computer

module, regardless of the clusters in which the modules are located. Note that the proximity degree

NearCm would have been too constraining in this case, since there are no clusters in Cm* with more

than 14 computer modules.

Restrictions on Directives. We have already noted that each object can be named in at most one

Same directive. There are a few more restrictions which apply to directives:

* Directives cannot name parameters (to the complex template in which they appear), and
itc-ation bounds used in directives must be integers. Thus, to express directives for
ittrated components with variable upper bounds, the maximum iteration value should be
used.

e Variables from the configuration table (see Chapter 4) cannot appear within templates;
e.g. "(1 0. .NumCms) " is invalid.

6.0.4. The Use of Directives for Optimization

So far, we have used directives to express preferences on resource allocation. The TASK compiler,

however, uses these preferences and other information from the TASK specification to derive "good"

placement and assignment decisions. To help the compiler improve its decisions, users can specify

additional information about their task forces' expected run-time behavior. These are called proximity
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estimates. Estimates are expressed as integer-valued proximity degrees (in the range of 1 - 100).

High proximity between components is implied by large integers, whereas low proximity is encoded

by small integer values. In fact we associate encodings with the keywords introduced above:

* SameCm-corresponds to 90,
SSamCluster-corresponds to the range 31 - 89,

* Nea rCm-corresponds to 30,
e Di f f e rentCm-corresponds to the range 11 - 29,
* DifferentCl uster-corresponds to 10, and
e NoCare--corresponds to the range 1 - 9.

This encoding corresponds to the performance hierarchy in memory accesses within Cm*. The

integer-valued proximity degree is interpreted as a finer-grained estimate of the need for two objects

to be "close" to each other. No keyword covers the range 90 to 100; values in this range are used to

express a stronger preference than even the SameCm keyword for placing objects in the same Cm. As

an example, 88 is interpreted as NearCm and also informs the compiler's optimization phase that it is

extremely important for the objects to be located in the same cluster. Thus,

SameCm (MyStack, Scratch);

and
100 (MyStack, Scratch);

would be identical with respect to the mapping constraints that have to be fulfilled by the compiler.

For optimization, however, the values 90 or 100 would be used.

The integer encoding has another use in TASK. It is used to resolve conflicts between directives.

The compiler simply uses the integer encodings of proximity degrees as precedence values. Again, a

choice is given to the user whether or not constraint or preference semantics should be attached to

proximity estimates.

6.0.5. Using TASK With Distributed Hardware

All of the resource-usage directives we have encountered thus far have involved only software

objects. A surprising number of mapping constraints can be directly expressed without mentioning

explicit architectural resources. In fact, it is rarely appropriate for the task-force author to single out
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one particular computer module for use in a proximity relation. Occasionally, one might be identified

by name in special cases, perhaps when an engineer wishes to execute diagnostics on a particular

computer module. In general, the task-force author will specify architectural resources by attribute,

not by unique name. The attributes serve to select a subset of all resources. For the purposes of the

constraints, the resources in the selected set are interchangeable. For example, a process with large

memory demands might be constrained to execute on a processor with more than 64K bytes of local

memory. If a Cm* cluster includes several computer modules with at least 64K bytes of memory, then

this constraint would establish that one of those computer modules should be chosen.

For the purposes of referring to architectural resources within proximity expressions, we can define

the hardware architecture to be an "architectural" task force, using TASK syntax which is much like

4 the syntax for TASK's software templates. The TASK language can also define and ascribe user-

specified names to sets of physical components selected by their attributes (a full description of how

this is done will be given in the next section). These names could then be used in proximity expres-

sions. In such a description, DiscCm, for example, might bes the name of a computer module with a

disk directly attached. Consider a software task force designed to execute on a single cluster of

computer modules. Assume that the task force includes a disk-management process named by its

* private mailbox (Di s kMan age rPM). The directive

Smen (DlskCm, DiskManagorPM);

specifies part of the mapping between software and architectural task forces so that the disk-

* management process must execute on a computer module with a disk. (in a Same directive, the

hardware resource is specified first.)

The implementation of TASK does not allow the language-driven construction of arbitrary architec-

* tural task forces. Instead, we use a pre-constructed architectural task force that describes the Cm*

* architecture, using predefined hardware component names, predefined hardware set names, and

* predefin~d hardware attributes. Users can then refer to these names in directives, in the same

* manner that software components are named. The TASK compiler uses an internal table, called a
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configuration descriptions, that describes the current Cm* hardware configuration. This table can be

updated just before a compiler run, by using configuration information maintained by STAnOS.3 5 The

standrd configuration description is in file ARCHIT. STD(x335cm0 J.

In configuration descriptions, we encode the following information (hardware attributes). For each

computer module is recorded-

MaxMpStze ActualMpSlze MpRellabili ty PcSpeed PcRellabllity
HasEther HasLine HasDALink HasDisk cluster number

MaxMpSize is size of a Cm's memory; ActualMpSize is the total memory size, minus the space
occupied by the operating system. MpRoliabil ty and PcRe1labillty will be used to encode the
observed reliability of the Cm's memory and processor, respectively, in an integer value similar to the
proximity degrees. Similarly, PcSpeed will encode of the speed of a processor; speed variations of 20% or
so between processors are not uncommon. HasEther, etc. are boolean values indicating whether the Cm
possesses the various pieces of hardware. The speed and reliability attributes are not yet implemented.

For each cluster, a list of the Cm's in the cluster and a list of cumulative attributes is given. The

cumulative attributes are-

MaxSize ActualSize Reliability Speed NumCms
NumEther NumLines NumDALinks NumDlsks

All of these values except NumCms are merely the sum of the corresponding values for all the Cm's in the
cluster. For example, ActualSize is the sum of the ActualMpSizes.

For Cm*, a list of clusters (CmStar) and a list of Cm's (Cm) are recorded. In addition, NumCl usters

is available as an attribute, so that it can be used, say, as a limit in an iteration statement.

We distinguish three different predefined hardware set names:

* CStar-to name the set of clusters in Cm*,

* Cm-to name all computer modules in the Cm system, and

* Cl usterO, .... Cl uster4-to name each of the five clusters.

The predefined hardware component names are CmrO,O), ..... Cm[4,14], which name each

computer module in each of the clusters of Cm*. The first index denotes the cluster, and the second

3STAROS maintains the status information orf CmI. There is not yet any way to ship this file back to CMU-1OA. where the
TASK compiler runs.
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index the computer module within the cluster.

6.0.6. The Selection of Resource Sets

On page 182, the name DiskCm was introduced to refer to any Cm with a disk attached in one

particular cluster, say, cluster 1. DiskCm is not a predefined hardware name; rather it is defined by a

TASK selection statement.

A selection statement selects a member of a hardware set. Beginning with the predefined
hardware sets, additional hardware sets can be specified using the Where construct. As an example,

consider the set named Cm64D. Let Cm64D cenote the set of all Cm's in Clusterl with more than

64K bytes of memory and an attached disk. To achieve this selection, we use 36 -

Cm64D: Cluster1 where (HasDisk a True and Mo.. >- 84K);

To select an element of this set, we write-

DtskCm: &AnQf Cm64D;

In the latter selection, the where construct was not used. That implies that any one of the elements of

the set Cm64D may be selected.

Thus the statement

iD._Same (DiskCm, DiskManagerPM);

, means that the disk-management process can be assigned to any one of the computer modules in

' cluster 1 with more than 64K bytes of memory and an attached disk.

There are three ways new sets of components can be derived from the predefined sets of hardware

components:

S* Selection by name. A single element (a singleton set) or a set may be named F or
example, the name Clusteri names one cluster in Cm* (but not itS components' 310
Cin 1 1] names Cm 1 in cluster 1.

* Selection by arbitrary choice AnyOf <Sets names a s ,ngfe eter,,i -' i

16Tho% notation has been onsv,,ed ty twh ,a,uges fo , , ' r "
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ample, AnyOI Cl usteri names some one component of Cl usteri, in this case a com-
puter module. The user cannot rely upon a particular component being selected; an
arbitrary one is chosen. Anjf CmStar names one arbitrary cluster in the system, and
Anyf Cm names one arbitrary Cm in the system.

* Selection by attribute. A set may be formed using attributes. For example,

Cl~tisar Where Haize I 64K;

selects the modules in C1 usterl with 64K bytes of memory.

A aL Cm wre iasDisk I=;

selects any one computer module in any cluster that has a disk attached. Any of the
predefined attributes listed* in the configuration tables can be used in a selection based
on attributes. When attribute values are associated with attribute keywords, a number of
different relational operators can be employed. For example, the directive:

.Clusterl where p )iz>- 64K;

is a legal directive selecting all computer modules in C1 usterl with at least 64K bytes of
memory. The available relational operators are "C", ">", "<-", ">", and "I".

The NumberOf construct (not Implemented),

NumberOf (Set)

denotes the number of elements in (Set). For example,

NumberOf CoO4D

returns the number of Cm's which have 64K bytes of memory and a disk attached..

All sets have an attribute that encodes the number of Cm's in the set. For example, if we desired to

select "large" clusters, we might write:

cmstar whreNuCm >a 8;

This selects the set of clusters which have eight or more components. Note that whenever the value

of an attribute is an integer, any relational operator may be used. Also note that the attribute

keywords use with sets (the cumulative attributes) are distinct from those used with hardware com-

ponents (the hardware attributes).

More than one attribute can appear after a where construct; if so, the list of attributes must be

enclosed in parentheses. If multiple attributes are separated by the and operator, the selected set will
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Include the components that possess both, attributes. This was illustrated by the set Cm64D defined

above. An or construct is available, too. To express that a selected Cm should have either a disk or

an Ethernet link, write

Any.Q. C where (Iluflik • Ir C r HB-ber I=;!

(The keyword False could also have been used.) Where clauses may no: be nested. If the effect of

nested clauses is desired, more than one selection statement must be employed. For example,

DskCluster: AnyDL CmStar where NuglRtsks >- 1;

selects a certain cluster, called DskCluster. Then,

AnXO DskCluster where (HasDisk a I=ru A"d MRSize >- 128K);

selects a particular Cm from DskCl uster with a disk and more than 128K bytes of memory.

The AnyOf construct is always directly followed by a set expression. This can either be the name

of a single set, for example, CuStar, or It can be'an expression involving intersections, unions, or

negations of multiple sets. For example,

Anyf (Clustert g Clstor2);

expresses that any one of the components of Cl usteri or CI uster2 should beselected, and

AnX~f (Clusearl M1 CaStar);

expresses that any one of the components of Clusteri that is also a component of CmStar may be

-: selected. Set or attribute expressions cannot contain multiple parentheses. There are no

precedence rules between operators that combine sets or attributes; set or attribute expressions are

evaluated left to right.

The syntax of TASK language constructs has been simplified, without any loss of generality, by

forcing all selections to be made explicitly in the selection part of the Directives section. Thus, the

directive:

sees (&Any!. Cl.sterl. Stack);

Is not a legal directive. Instead,

StackCm: Any.x? C1ustor.;

must appear as a selection, and

F ,..... . .. >. .
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Same (StackCm. Stack);

must appear as a directive.

A final point needs to be made about set selection in TASK. If software components are related with

Same to components of two different but partially intersecting hardware sets, then conflicts may

occur. For example:

Im (A.b);

where a and b denote software components, and A and B are the selected hardware components, the

statement

Nearc, (a~b) ;

may lead to a conflict. The TASK compiler recognizes such conflicts and ties to select hardware

components to avoid them. However, If A and B are.singleton sets that intersect, an error is reported..

In that case, TASK picks an arbitrary hardware component for either a or b. In this case, TASK issues.-:

a warning message.

6.0.7. An Extended Example with Directives

Consider a task.force author who wishes td use one cluster. The task force involves a variable

number of processes:

" Dl skanageIPN--which manages a disk dedicated to this task force,

* Bos sPN-a coordinating process that sends work requests to the server processes, and

* ServerPNC 111--" server processes.

Although there may be a maximum of six server processes, the actual number varies with the number

of processors available.

!7

To Improve performance, the disk-manager process should execute on the computer module

directly attached to the dedicated disk; the servers should execute on separate processors. We

assume the "boss' does little processing In comparison to the servers, and hence does not need a

private processor. In the selection part of the directives of the task force definition, we first select a
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cluster that has at least 2 processors and one disk. Then we select the Cm with the disk. Because the

selected resource set and the Cm with the disk have to be referred to again, we assign the names

MyC1uster and DlskCm to them.

NyCluster : AnX Cjtar wer.e (Nzum.€ >= 2 ad Numftsks >a 1);
WWskC: Anv~f MyCluster where Has!DtAk • IrM;

Next we determine the number of processors available.

CoCount : NumberOf MyClusteP;

The module's construction specification includes code to create the server processes. The C.Count

value is used to control the number of server processes instantiated. This is the only use of hardware

attributes that is legal within template construction sections.

(1...CmCount a 6) ServerPM[t] : Process . . .

The subsequent resource directives in the directives section of the template areI
Am (DtskCm. DtskNanagerPM);
Nearc (0t-1-11) ServerPME1t]);

NearCn (D1sk~anagerPM, (1-1..6) ServerPM[1]);

These directives specify assignment of processes to processors. Nothing is stated about where the

module and process components should be placed Into memory. If desired, such directives can be

added; otherwise, the components are placed into memory randomly.

The example can be summarized as-

Module BossMod ii
nstruct ( (t-..CmCount a" 6) ServerPM[t] : Process.. .

D1skManagerPM : Process . . .

BossPH : Process. . .
. 4 4 )

MyCluster: Anag CmStar where (NumCms >- 2 And NumDtsks >- 1);
DtskCm: AnvOf MyCluster where Hasjsk I=;
CmCount: Number~f MyCluster;

SAm (DlskCm, DskNanagerPM);
NoarCm ((-..)ServerP)M[t]);.

NearCm (DiskManagerPN. (1-1..8) ServerPM[1]);

4Example 6-5: TASK: Use of Directives
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Note that so far only single hardware components have appeared within directives. There Is ex-

actly one case in which we allow hardware sets to be named directly within a resource directive.
4.I

Names'of resource sets appear in directives only when an iteration construct precedes the directive.

Thus, instead of the directive

, Na.arC ((1-1..e) ServorPM[1]);

we could have written

(to-G.) "aM (MyCluster[t], Server[t]);

No variable upper bounds are allowed when iterated directives are used. Instead, the maximum

values must be specified within the construction parts of templates. Consider the creation of a

variable number of processes.

(1t-..n mau 6) ServerPM[1] : Prcess. .

Then the following statement is required in the directives section:

NearCm ((1-t..8) ServerPlt);

When such maximum values are used, it Is understood by the compiler that the actual rather than the

maximal number of processes should be employed for resource allocation. Note that the compiler

*dnes not consider CuCount a variable upper bound, since its value can be determined at compile-

time.

A. 11. Invoking the TASK Compiler

The TASK compiler is invoked by the command

.ru task[x335cm01]

on CMU.1OA. This section lists and describes the commands which may be issued to the TASK

compiler. It is an edited version of the file task. hlpx335cm0lJ, and can be viewed by typing

"help" to the compiler.

I ' * " .*, "t . i...*. . . . . . . . .l.. . . ... . . . . . . . . . ...... , m .. i .. . ... -



190 1 The TASK Language Section A. 11

Architecture (Architecture Description File)

The Architecture command sets the architecture description file. The standard description Is In

ARCHIT. STD[x336c.01 ]. User-written descriptions files must have the same format.

* Compile (Task Program File)

* The Compt 1e command runs the TASK compiler for the named program. After compilation, CCL

linkage is used to assemble the .tem files produced by TASK (loader command files). The .tem files will

become .obj files that are included in the linker command files produced by TASK. For each task

force, the following files are generated:

Error File:
<TaskProgramName). ERR

* Definitions Files (to be compiled along with the BLISS code):
(TaskForceName)., DFS
(ModuleName). DFS-one per module
<ModuleNameXFctlndex). DFS-one per function per module.

Unker Command Filem:
(TaskForceName). LMD-the linker command file for the entire task force.
<TaskForceName). MIC-a command file to run the linker.
(ModuleName). LND--one per module

'. Loader Command File
<(TaskForceName. TEN (the non-asembled version)
(TaskForceName). 0B (the assembled version)
<ModuleName). TEN/. 03-one per module

Dt rectory (Not yet implemented)

The Dl rectory command shows a directory of files produced during the current run of the TASK

skeleton. Each Comp lIe command appends a new directory record. Currently, for each task force

only the loader command files are shown.

Tr
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OiscardFiles

The DlscardFiles command prompts TASK to delete all intermediate files produced during a

TASK run.

Exit

The Ex it command is used for leaving the program.

Gripe <Subject>

The Gripe command provides direct contact between the users and maintainer of the program.

The gripe message is mailed to the current maintainer of the program who should respond within a

reasonable period of time.

Help <Command Name>

The MI p command types a one page description of the given command. If <Command Name> is

empty, this text is given. For a list of commands use the ? command. For examples of running TASK

programs, look at one of the following flles:

Skelet.Tsk[x335cm01]PDE.Tsk[x336cmOl

Test. Tsk[x335cmOl J
NTest. Tsk[x335cm01 ] (has proximity directives)
LTest.Tsk~x335cm0l]
Monito.Tskjx335cm01]

Note: Input may come from command files. A command file is introduced by "1<Ft1le name>"

instead of a command. Command files may be nested to a depth of 10. Lines beginning'with ";" are

treated as comments.

KepFtles

The KeepFiles command prompts TASK to refrain from deleting the intermediate files produced

during a TASK run.

-, ,- .. ., . . . . - - - '. -. ' - . -..-. . -.- . - . • .- . .. .a . , ,, _. . .... ..
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Mode

-. The Mode command displays the current switch values.

News[*

The News command will give a description of recent changes to TASK. "News o, will give all the

changes listed in the log file.

NoOptimization the default

The NoOptimization command turns of all optimization of resource usage for a given TASK

program. The loader will place objects and assign processes wherever space or processors are

avilable.

NoResult the default

The NoResu Its command optimizes fhe task force without displaying the results of optimization.

OnceCompt 11 (Task Program Name>

The OnceCompile command compiles a TASK program and exits after compilation is complete.

The Coup le command, by contrast, returns to TASK after compilation of a program to allow multiple

program compilations In one TASK run.

OptAlternate turned off by default

The OptAl ternate command turns on the "alternate" optimization policy provided by TASK. This

policy uses the same information for optimization that is employed by regular optimization. However,

in this case, process assignment is done before data assignment to processes.

Optimization turned off by default

The Optimization command instructs TASK to optimize the use of resources of the given TASK

program. The loader is Instructed to use specific computer modules for each object being placed and

*each process being assigned. The user will be asked whether he wishes resource directives to be

treated'as constraints or as preferences. Temporarily, "0" or "(Return)" mean "Preferences" and 1"

.l .
• ," " " '' ' ' ', " - . ."' . .,.' " .' " ' " - " ' 

" i '
i " " • '. " . - .o " . . - "



Section A. 11 Invoking the TASK Compiler 1 193

means "Constraints". The latter make sure that such directives as "DitfCM" really assign or place

things in different Cms; the former just result in the compiler "giving it a try" but doing something else

if deemid appropriate.

Proximities the default for optimization

The Proximit les command instructs TASK optimization to optimize resource usage based on the

* component proximities specified with TASK resource directives. Default proximities are used if no

directives are specified.

Quit

Same as Exit.

Results

*The Resul ts command induces the compiler to display tailoring results. The user is prompted for

- whether results should be displayed at the terminal or written into a file.

* RunTimes

The RunTimes command instructs TASK to optimize resource usage based on process run times

for process assignment and proximities for data placement. By default, process run times are not

used.

*! Selections

The Selections command instructs TASK to "optimize" by simply satisfying the selections

specified in TASK resource directives. If no selections are specified, arbitrary'resources are used by

the loader.

1:

* . . . . . . . . . . . . .
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SetErrorOpt on <Option)

By using the SetErrorOption command before a Compi le command the user may direct com-

pilation errors to the terminal, to a file, or both.

A?

The ? command produces a list of the available commands.

The; command is a comment facility. Anything can be written, on a TASK command line following

U.

A.12. A Full TASK Program

The following example is the complete task-force.description for the Skeleton program.

.
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-- - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - -

I Task force: SkForce

I The skeleton process task force consists consists of one
* -I module with one function:

I Module: Sklod(ule)

I Function 0: SkeletonProcess

I This file: SkltTkx3c0JCopyRight (c) 1981, Karsten Schwans

--------------------------------------------------------------

TaskForce SkForce Is
Construct (Skflodule: New SkMod;)
Directives (

Module SkMod Is
Construct(

I The debugger expects that code objects
I are found in slots In the module that correspond to the
I window slots into which code is loaded. We therefore put
I something random into the module slot 0.
SlotO: NAME;
I The first object contains owns used by the skeleton
ModCodel: New Basic (Source *("Stack~x335id20J".

I If using debugger:
"612u~x336cinO3J<(g) u612>*.
"Skeletonx335cm01J (GO)".
I Your program's owns here:
I "YourProgram(GO),
"UserIOfx336cm~rJ(GO)*,
"SavReg[l130bl98](G0)*,
0SigEnb[x336idZ0](GO)1));

I The skeleton process code
ModCode2: New Basic (Source -(I Task version of skeleton

"Skeleton~x335cmOl)(CP)",
I If using the debugger
"InitialD[336cmOsJ".
"Gl2u[x335cmOsJ<(CP) 0812>0.
"612k['x33BcmOs]"

"linktb[x33ScmOs]((C) link>"));
I Code that everyone needs to use
ModCode3: New Basic (Source -("savreg(l130bl98](CP)6,

"sigenb[x335id20](CP)",
"userio~x336cm~rJ(CP)"));

I The Invocation mailbox for 'present' skeleton function
Invoket4B: New Mailbox (MagType w "Capa");

I The next files needed only if the debugger is used
I The 'name' Ci9cts
Names: New Basic (Source [0, "IN"]
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("Skeleton[x335cm01j(N)".
I "YourProgram(tJ)",
"1Star~x335cm~sJ(N)*.
"prsdef[l130bl98]((N) KSBL>.
"'612u[x33Gcm~sJ<(N) u612>"));

I The 'symbol' csects
Symbols: Now Basic (Source [1, "/S"]

("Skeleton~x33cm01 J(S)",
I "YourProgram(S)",
"Star~x33cm~sJ(S)",
"prodof[1130198]<(S) KSBL>".
"612u[x335cm~s)((S) u612>"));

I The skeleton process
SkProcess: Process SkMod .Skeleton ~

Function Skeleton (Present [Invoket4B]) Is
Construct(

ProcessStack: New Basic (Stack, StackOwns EModCodelJ);
I The debugger forces us to explicitly Rllocate windows
I for the code. InitialCode is always in Wndow1.
CodeZ: Ref ModCodeZ (InitlalCode["SkeletonProcess"J);-
Code3: Ref tModCod93 (Window~la);
InvokeWindow: Namo(Wlndow);
ProcessCarrier: Name(Window);
Messagellock: Name;
I YourName: Name;
I YourObject: New Basic;

Directives (
Directives (

Example 6.6: TASK Description for the Skeleton
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Appendix B
TASK Grammar

Expressions, Names, and Types

<Simple Name) = (Unquoted String>

<Simple Template Name>, <Complex Template Name> = <Simple Name>
Template names must be unique in their first five characters.

<Formal Parameter Name>, <Var Name> = <Simple Name>

<Comp Name> = <Simple Name>

(Function Name> = (Complex Template Name>.. (Complex Template Name>
<Object Name> < (Simple Name> I <Access Expr>

<Path Name> : (Simple Name> .<Path Name> I (Simple Name>
<Object Path Name> = <Object Name>. <Object Path Name> I (Object Name>

<Keyword Name> :

<Obj Common Att I (Obi Add Att I (Obi Special At (Hard Att>

(Var Type> ::: String I Integer I Boolean

.Expr) ::. <Arith Expr> (Quoted String> I True J False
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Templates

<'Templates) < Template EOF

<Template)> (<Complex Template) I(Simnpie Template))I

<Simple Template)>:
<Simple Object Type) <Simple Template Name> ((ActualAtrbes)

Some actual altributai may occur only within functions or modules.
Hence the r e semanftc reetrictions, concerning which attributes
may appear in simple Ilmplates, tha are not bound to a particular
Coplx -e~lf.

* <Complex Template) ::<Task -Force, Description)
(Mo11dule Description)

I (Cornplex-Basac Description)

<Simple Object Type)>: Basic I Stack I Mailbox IDeque I Device
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Complex Templates

(Module Description> .
Module (Complex Template Name) ((Formal Parameters)* is

(Construction Description>
(Function Description) +

(Resource-Usage Directives>
All module attributes must be specified at declaration time. Modules
can only be components of task.force templates. Only one instance of
a module can be constructed from a particular template.

(Function Description):: ,
Function (Complex Template Name> ((Formal Parameters>)* Is

(Construction Description>
<Resource-Usage Directives>

A (Function Description) can only be a component of a (Module
Description)..

<Task-Force Description> : TaskForce (Complex Template Name> Is
<Construction Description)
<Resource-Usage Directives>

A task force template can have no parameters. A <Task-Force

Description> cannot be a component of another template. No more
than one task force template may appear in one TASK program.

(Complex-Basic Description) :-
ComplexBasic (Complex Template Name> (<Formal Parameters>) Is

<Construction Description>
<Resource-Usage Directives>

Components may have any type except those specifically excluded
above.

I In 4 nI
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Construction Descriptions

(Construction Description) :: Construct (<Component);)

<Component> :: - <Comp Name) :<Operation)

I (iteration) :<Operation>
I <Expanded Iteration) : <Operation> [not yet implemented]

<Operation) :: New {{<Object Type) (<Actual Parameters>)) #
< (Template Name) (<Actual Parameters)) t)}

IRese rve {{<Object Type) (<Actual Parameters)) t )
I <Simple Template Nan' s) ((Actual Parameters)) I)

I Ref <Object Name) (<Actual Attributes>)*
Only special attributes should be used here.

I Use <Object Name> (<Actual Attributes)) #

I Process (Function Name) (<Actual Parameters>)
Note: returns a mailbox. Semantics: Processes may
be creat only within the body of the module defining
their function

I Name (<Actual Attributes>)t
Only the Window attribute should appear here.

Iterations

(Iteration) :: , ((IterName> < (Low Limit) . . <High Limit)) <Access Expr>

<Access Expr) ::= Iterated Name> [Index>]

<Index> :: - <IterName) {Mod <Var Expr>))
(Low Limit> :: - (Integer>
<High Limit) :: O (Integer>

* Max (Integer>
I <Integer> Max <Integer>
I <Variable>

<IterName) :: < (Simple Name>

(Iterated Name) :: - <Comp Name>
I <Formal Parameter Name>
I <Actual Parameter Name>

(Expanded Iteration) :: - <Comp Name>, +

Expanded Iteration and arithmetic expressions are not im.
plemented.
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Parameters and Attributes

<Formal Parameters) :: 0(ormal Parameter> I (ctual Attribute>
(Formal Parameter)::.

((Formal Parameter Name), I (teration)) < Simple Template) ,
Na NVame, : Var Type),

(Actual Attributes> :a (Actual Attribute)
(Actual Attribute) ::a ((Keyword Name) (Expr) I OVar Expr> I <'ndex>),

I Sou r@* (((nteger), <Link Switches>)*
< Source Parameter Value),

IRights = ((Quoted String), (Quoted Siring)),
Currently, all rights specifications remain unused.

Isize a ((nteger) I lnteger)),
I (Special Aft,),

(Actual Parameters)> (<Actual Parameter) < Actual Attribute)>
(Actual Parameter) <. Key Expr) a (Actual Expr),

(Actual Expr) <:a Object Name) I (Iteration) < Expr)
< Var Expr) I <Access Expr) I (ndex)

<Key Expr) <:a Formal Parameter Name) I (Access Expr) (Iteration)

(Source Parameter Value60 : ((<Quoted String>),)
(Link Switches) ::*(uoted String>

One or more switches. (/D, IN, etc.) to be pawsed
to the Cmmp inker.-

(Obj Common Att): Sou roe I Rights I Size
(ObI Add A0t : StackSize I Class I Preempt I Quantum

IServiceLimit I Processid I MsgType
For a description of these attributes, see Appen-
dix C.

(Obj Special Att) :: Window I Stack InitialCode
IPrivateMailbox jStackOwns IAlias IPresent

(Special Attr) : Window [(Integer)]*
IPrivateMailbox
I nitialCode [<Quoted- String>]*
Stack
IStackOwns [<Object Name)>]
IPresent. [<Object Name)]I
Alias ["F nction Name)>1
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Resource-Usage Directives

(Resource-Usage Directives) :: Directives ((Selection); ;Drec five):

<Selection> {<Hardware Set Name) I (Var Name>) ( Selection Expr)
(Drective) <Iteration>* <Proximity Degree>

(((Ieration t ( Object Path Name)),*)
OtIferation) Same ((Hardware Set Name) [(Index]*,

{(terat iont (vObject Path Name>), +)
In the first implementation no paths will be used.

(Proximity Degree) = (nteger) I SameCmn I SameCluster I NearCm
DltterentCmn I DifferentCluster INoCar.

(Selection Erpr) < Set Expr) (where (Attr'Expr))
I Any~f (Set Expr)
Numb. rOf <Set Expr)

(Set Expr) < Set Name) I '((Set Name) (Opr) <Set Name>)
(Set Name) < Predefined Set Name) I (Hardware Set Name)

* (Attr Expr) ::a -(ard Aft (Ral0pr)
I((Hard A0t (RelOpr) <Hard Aft Value) <Opr) (Hard A0t

(Rel0pr) (Hard Aft aue)

<Opr) : and I or

< Hard Aft Value) :: (Integer) I True I False
<Hard Aft) : MaxSize I ActualSize I Reliability

ISpeed- I NumEther I Numlnes I NumnDIsks
INumOALInks I NumCms I NumClusters

* IHnsOALink IHasDisk I HasEther I HasLine
IMaxMPSIze ActualMPSize MPReliabillty
IPCRellablilty I PCSpeed

<Prede fined Set Name)> Cm I CmStar
IClusterO IClusteri l . Cluster4l

I Cm[0,01 I CmCO,1] I *.I Cm[O,14]
I Cm[1,0J I Cm[i,1] I *.I Cm[1,141
I Cm[2,0J I Cm(2,1] I ... I Cm[2,14J
I Cm[3,01 I Cm[3,11 I ... ICm[3,14]
I Cm[4,OJ I Cm[4,11I .1 I Cm[4,14]

(Hardware Set Name) < Simple Name)

7
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Appendix C
Parameters for TASK Templates

Templates in the TASK language may have a variety of parameters. Different parameters are

* defined for different object types. This appendix lists each object type, and then the parameters that

are defined for it. The Size parameter for some object types takes an ordered pair, enclosed in

parentheses. For some parameters, default values are used if the parameter does not appear.

Defaults are given in italics after the description of the parameter.

* Basic Objects

Size (Number of bytes in data part, Number of slots in capability part) (4096, 0)

Source The file(s) from which the data part is to be initialized. (No initialization
performed)

*: Window[<window number>] If this parameter is present, the object will be loaded into window
<window number> when the process is created. This parameter may be specified
only within a function body.

InitlalCode, Stack, StackOwns Defined below, on page 204.

Mailboxes

Size (Maximum number of registered receivers, number of messages that may be
stored in mailbox) (32, 128)

MsgType Type of mailbox, "Capability" or "Data". (Data)

PrivateMailbox Defined below

Stack and Deque Objects

Size (Number of slots in capability part, maximum number of (data) entries which may
be stored in stack or deque) (128, 128)

ri

...... .....

. . . .
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Functions

Value Parameters. specified as attribute parameters:

Process ID It is possible to specify a value for the process ID. rather than letting the Procesp
Creator use its running counter. If this parameter is specified, its value is used as
the Process ID. I it is not specified, the Process Creator uses its counter. (This
is the only process parameter that can be a TASK variable; and, if not specified, it
is the only process parameter for which a default value will be used).

Size Number of capabilities in the process name space. (32)

* StackSize Size of the process stack, in bytes. (4096)

Present[<Object Name>] Indicates that this is a present function. The object name must refer to a
mailbox in the body of the module template which can be used as the process's
invocation mailbox.

Quantum Size of the time quantum to be used, if this process executes in a time-sliced
environment. (0 line-frequency clock ticks)

ServiceLimit Maximum execution time the process will receive. (0 line-time clock ticks)

Class The class value used by the scheduler.

Preempt A boolean indicating whether or not this process should cause preemption of the
preferred processor when it is sent to its run queue. (False)

Object Attributes, specified within the body of the function, in conjunction with selected component
objects:

InitlalCodo[<RoutineName>] The code object that is to be loaded and executed when the process
is first run, followed by the name of the BLISS routine that contains the entry point,
quoted, within brackets.

Stack
The specification of the process's stack object. If this is omitted, a default stack
with the size indicated above (see StackSize parameter) will be created.

StackOwns [<Object Name)] The specification of the object that contains the own values that are
to be put onto the stack.

PrivateMailbox A mailbox private to a new process. If omitted, a default private mailbox is
provided by the Process Creator.

When a function is defined, its attributes can be set so that every process instantiated for that func-
tion inherits them. Alternatively or in addition, the process creation statement can list attributes.

, I " " " " " • .
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Module

, Size Number of capabilities in the module name space. (32)

Task Force

Size. Number of capabilities in the task-force object. (32)

i
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Appendix D
Process Creator-and Loader

D.1. Process Creator

The Process Creator .module provides functions to create new processes and, despite its name, to

terminate existing processes. New processes are created under two sets of circumstances. In the

first case, if an Invoke instruction requires the creation of a new process, then the Nucleus of the

STAROS system will send the carrier to the invocation mailbox [1491 for function 0 of the process

creator module. A new process will be created, and the carrier forwarded to either the Invocation

mailbox of a present function or, if the function is absent, to the private mailbox of the new process.

In the second case, the user may invoke function 1 of the module as an explicit request to create a

new process. In this case, a new process will be created, and capabilities for the private mailbox and

the process object will be returned to the user in the carrier. The user can transmit a carrier to the

process by sending a capability for the carrier to the private mailbox of the new process.

Function 2 of the process creator module terminates an existing process by setting the proper state

within the process object and removing the process from the process set of its module. The nucleus

invokes this function as the result of a Terminate instruction or in the case of a severe error con-

dition that precludes allowing the process to continue to execute.

D.2. Loader

The single function of the Loader module creates a general tree-structured collection of objects.

Specification of the objects Is contained in a file which includes command templates describing the

objects to be created and command lists with instructions for the initialization of the new objects. In

general, a command template may point to a command list, and a command list may include pointers

to command templates for additional objects to be constructed. Commands may also specify that a
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capability for a new object is to be placed in the loader library. Capabilities from the loader library

* may be specified for the initialization of objects.

The parameters for invoking the loader are a pair of ASCIZ strings: a host name and a tile n~ame.

The host name identifies some file system, and the file name is an appropriate identifier for some file

in the file system. If the file is successfully loaded, a capability for the root of the tree of objects is

returned.

6.0.1. Command Templates
A command template specifies the creation of an object. In the file to be loaded, each field, except

the last, in every template record is a loader parameter value, described below. The last field is a

pointer within the file to an optional command list for the initialization of the object.

6.0.1.1. Command Templates for objects other than processes:
Data Size The number of bytes in the data part of the new object.

Capa Size The number of capas in the cap& part of the new object.

Entry Size The number of entries in the new object.

Locality Where the nbw object Is to be created (what computer module).

Type The type of the new object.

DataP Whether Is data part of the object is to be initialized from a file
produced by the link editor.

Command List A pointer within the file to an optional command list.

* 6.0.1.2. Command Template parameters for processes:
Function Number The function number within module of the process.

Locality The run queue to which the-process will be assigned.

Module reference The module for the process.

Processid Value for the Processld field of the process.



- Section D.2 Loader 1 209

, Command List A pointer to an optional command list.

6.0.2. Command Lists

A command list is the concatenation of single-word commands, each of which may be followed by

" a list of parameters.

Call This object is to receive a capdbility for yet another object.
Parameters:

Template A pointer to a template (not a process template).

Slot The slot within this object where the capability is to
be placed, a loader parameter value.

Parameter list A list of loader parameter values to be substituted
for parameter type loader parameter values within
the template.

CopyCapability Copy a capability. Parameters:

Source Either an integer index into the object being initial-
ized, or else a loader parameter value of either
type capability index or type stack capability.

Destination Either an integer index into the object being initial-
ized, or else a loader parameter value of either
'type capability index or type stack capability.

CopyObject Make a copy of an indicated object. Parameters:

Source Either an integer index into the object being initial-
ized, or else a loader parameter value of either
type capability index or type stack capability.

Destination Either an integer index into.the object being initial-
ized, or else a loader parameter value of either
tygoe capability index or type stack capability.

Locality Where the copy is to be created

CreateProcess Invoke the Process Creator module to request the creation of a new
process.

Template A pointer to a process template.

Parameter list A list of loader parameter values to be substituted

J-
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for parameter type loader parameter values within
the template.

Done The end of a command list. No parameters.

EnterLibrary A capability for the object is to be stored in the loader library.
Parameter

Slot The slot-within the loader library.

For Initialize a list of slots within the object. Parameters:

Template A pointer to a template.

Slot The first slot within this object where a capability is
to be placed, a loader parameter value.

HowMany The number of slots to be initialize, a loader
parameter value.

Parameter list A list of loader parameter values to be substituted
for parameter type loader parameter values within
the template.

6.0.3. Loader Parameter Values

Loader parameter values are 32-bit quantities where the high-order byte of the first word indicates

what type of thing is being specified. The types of loader parameter values are:

Capability index A two-part index: an index into the stack of objects being initialized,
and an index into the capability part of the selected object.

End Marker The end of a list of parameters.

Integers A 32-bit integers using the type codes #000 and #377.

Library Index An index into the loader library.

-4 Parameter When a template is interpreted, a value from parameter list of the
command will be substituted for each parameter type loader
parameter value. The low-order byte of the first word indicates which
item from the parameter list is to be substituted. The 16-bit signed
interger taken from the second word is added to the value to be sub.
stituted.

Stack Capability an index into the stack of objects being initialized.

Sm
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Cm type The specification of a particular type of Cm. A Cm and its cluster are
characterized by four pairs of bits. For each of four devices (Ethernet,
disk, try and DAlink) two bits indicate whether the Cm and cluster to be
selected must have such a device, must not have such a device, or
need not have such a device.

I
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