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APPLICATION OF NON-ORTHOGONAL CURVILINEAR
COORDINATES TO CALCULATE THE FLOW
IN TURBOMACHINES*

Chen Nal-xing**
(Marine System Engineering Research Institute)

In the first part of the paper, the formulas of calculating gradients of a scalar.
divergents and vorticitics of a veetor in non-orthogonal curvilinear coordinates are pre-
sented by vector analysis, With aid of these relations we then obtained basic aero-
thermodynamic equations governing rclative stcady flow of a nonviscous fluid in a tur-
bomachine. General non-orthogonal coordinates are suggested for solving ®P-equation
of three-dimensional turbomachine flow. The potential equation for three-dimensional
flow caleulation is obtained. '

W.equations (Wu’s equations), expressed in term of general non-orthogonal coordi-
nates, of two kinds of stream surfaces are discussed in the third part.

In the last part of this paper, three forms of velocity gradient formulas are pre-
sented.

1. NON-ORTHOGONAL CURVILINEAR COORDINATE SYSTEM

The Publication of Comrade Wu Zhonghua's vaper [2] has attracted
attention from everywhere. By using the tensor method, he derived for
the first time the fundamental equations for 3-dimensional flow in
turbomachines in non-orthogonal curvilinear coordinates, which stimu-
lated the development of a design method for turbomachine aerodynamics.

. We started our work in 1973. The publication of reference [2] has also
stimulated and inspired our work.

]
This paper has been presented at the Second National Engineering
Thermophysics Conference in Hangzhon in November, 1978.

s
Currently at the Mechanlics Institute, Academic Sinica.




Figure 1. Non-orthogonal Figure 2. Non-orthogonal
curvilinear coordinates. curvilinear micro-element.

Key: l-=constant.

In 2 non-orthogonal curvilinear coordinate system, the position

of a point M may be represented by the 3 coordinate values xl, x2, x3.

The 3 unit vectors ul, Uy u3 are taken 1n the tangintigl dgrections
along the increment directions of the 3 variables x~, x~, x~ at the

point M. ul,.uz, u3 represent respectively the 3 unit normal vectors
perpendicular to the 3 surfaces of the non-orthogonal curvilinear

hexahedron with volume 49 .

The partial derivatives of the radial vector ro(xl, x2,4x3)
may be written as

9r,/9x' = Hau,, (i=1,2,3) (1.1)

where H, 1s the length of dr/8x' | called the Lame coefficient.
They may be obtained from the following equation:

H} = (87,/0x')* = (0x/08x')* + (8y/0x')* + (8s/0x' )%, (1.2) /11

Any vector C decomposed along the 2 sets of 3 non-coplanar vectors

Uy, Ug, Ug and ul, uz, u3 may be written as

C— C'lll + czﬂ; + C’ll;,
C=C+ C* + C.2, (1.3)
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The relationship between C1 and C” 1is

Ci = [C'cos(ui, @) + Clcos(a;, wy) + Cicos(a;, wy)}/ cos(a', u)) (1.4)

As 1is well known, a vector pointing in the direction of the
fasvest change in a scalar ¢ with a magnitude equal to the derivative
in this direction is called the gradient of ¢ . The derivative along
an arbitrary direction m is the projection of the gradient (veé ) of
¢ in this direction. According te this definition, it is not
difficult to derive the formula for the gradient as:

1 0 .4 1 o0 . 1 o0 _ .
co‘("l’ ul) Hlaxl “ CO'(UZ, ﬂx) Hzaxl cos (ul, u’) H‘ax; . (1 . 5 )

VO =

The flux of a vector C per unit volume through the surface of an
infinitisimal volume around a point is called the divergence of the
vector, 1.e.

V:C=lim $.C-dA
v do

Dividing the sum of the fluxes through the six surfaces

dAy, dd4y, d A4y, 443, dd3, dA; with the volume 4% of the hexahedron
we get ’
v - C= [8(HH,C')/8x" + O(HH\C'I)/0x* + O(H\H,C'T)/8:3)/H\H,H,IT, (1.6)
Il = sin (&, @) cos (&', @) = sin (w;, @;) cos (@, u;) = sin (&@;, w) cos (o, @;) (1.7)

The projection in an arbitrary direction m of the curl v X C
of a vector C may be given in the following definition:

(VX C)pwm fim $C e dry
440 d4
where dA 1s the area enclosed by the closed boundary of the
integral §c. . Hence 1t can be seen that (v X C)m is independent
of the coordinate system. For example, the projection of the curl
of vector C along the normal direction u1 of the surface dAl is
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(¥ X C)yt = {8[H,C,cos(u,u,)]/8x* — B[ H,C1rcos (&, m;) ]/
8x°}/HH,sin (u;, &)

Firally, we get the expressions of the 3 components of the
curl as

! = {B[H,C1cos (&, ;) /0~ [H,C cos (¢, 1y) )/
8%} /H,H,sin (u;, u,) cos (u*, o)
52 = {9[H,Cycos (o, u;)]/0x' — 8[H,Cicos(a', my)]/

8e°}/HiHysin (at, ) cos (a2, ws); (1.8)
& = {8[H,Cycos(u!, uy)1/8x* — O{H,C;cos(&, w3)1/
6;‘}/1-1‘1-1; sin (l!‘, llz)COS (Il“, u,‘).
VX C=Llay + g + Pu,, (1.9)

It 1is not difficult to find the aero-thermodynamic equations
of the relatively stable flow in a turbomachine expressed in non-
orthogonal curvilinear coordinates by using vector analysis.

From equation (1.6) and v-(pW)=0 , we can obtain the continuity
equation as ’

1 2 3
a(n,%!‘? m a(H,Fg:fV 1)  O(HHeW’I) _ (1.10)

o

Substituting equations (1.8), (1.9) in 2 forms of the equation

of motion, 1i.e.

V(|WI/2) = WX (VX W)+20x W— uwyr=—Vp/p;
W X (VX V)= Jg(VI - TVs),

it is easy to derive the 3 components of the equations of motion
ul, u2, u3 expressed in terms of the pressure gradient and the
gradlent of stagnation enthalpy I and entropy s through vector

analysis:

1wy, w {a[H;W;cos(uLLu )] _ BlHWcos(w, "’)]}
2 Hos | R, o5 o+
__wf_{a[HZWgcos(u‘;“z)] - a[lelws("_'JlZ]}
H.H, ax! Ox?
+ 20 W sin (m, w;)cos (&', €,) — W*sin (u, m) cos (o, @,)]
1 9
— wircos(u, e, =T oH o (1.11a)
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a(w ) + wt {a[HszC“("z) w,)] __ 8[H\W;cos(u', 'll)]}
Ox! Ox*

_ { [ H W scos (o, ws)] _ O[HyW ycos (o, ﬂz)]}
HH, as? o

+ 20[W3sin (a3, @y)cos(a*, €,) — W'sin (m, u)cos (e, e,)]

— wircos(ay, @) = — 1 —Q-E-

. oH, 91’

X

' 1 (W) {3[H,Wucos(“’ , )] a[szzCOS(Uz, uz)]}

. 2 Haw | HiH, o4 o<’

‘ _ { A HW cos (d', w)] _ B HW scos (2, lﬁﬂ}

:: Hﬂl o ax

. + 20{W'sin (u;, ) cos (o, @,) — Wsin (u,, uy)cos(d', €,)]
E : — wircos(uy, &) = — ;I:I‘,gf’.'

{ G[H,V, cos (ll‘ lll)]
ox}

3[H;V,cos(u’ )] }/H

+ W’{ B[HiVjcos(ud, u)] 3[H1V;cos(u L)) }/H

oz ax? t
- - 8l _ Tos)\,
S Ie (ax‘ Or! )’

{ a(H2VzCOS(“! u;)]
ax

;,.W,{allﬂ;cos(u’, )] am,v,cos(uz )]
Oxt o1 }/ '

- 1835 T 5a)

a[H|V|Cos (u‘Lu;)] /H

{8[H;V,cos(u’ , o)l 6[H,V,cos(u’ U)] /H

ek BLLEE

i Saditia it it At

as?
[O[HVicos(aty @) a[H;V;cos!u’,n )]
v { or as ’ }//”l
(0L _ Tos
L (ax ox* ).

(1.11b)

(1.11¢)

(1.122)

(1.12b)

3

(1.12¢)
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2. POTENTIAL FUNCTION EQUATION OF TURBOMACHINE 3 DIMENSIONAL
POTENTIAL FLOW

Let the flow in the interior of the turbomachine be isentropic
with both the total enthalpy and entropy uniform at the inlet.
Hence, (except for V/ivxVv ) 9XVm=g, ¢, there exists a
potential function , in the absolute flow field. Its gradient
is related to the non-orthogonal velocity component by

L’;—(If'%)/cos(u", w) (i=1,2,3); (2.1)

, [cos(u‘, u') oP + cos(a’, u*) OQ
cos(a’', w;) Lecos(u', wy) HBx'  cos(u’, u,) H,r?
cos(a’, u?) OO G

cos (o, @;) Hoe i=1,2,3). (2.2)

Substituting the above equation into equation (1.10), we get,
after simplification, the potential function equation

Bu(8°0/0x) + Bp(30/0x2) + By(50/05%) + 2B,(3®/85'0x)
+ 2B,(8°0/05205°) + 2B, (3°0/8x'0x") + (30/0x')(9By/0x"
+ 0By/0x* + 0By/8x%) + (00/0x)(0By/0x" + 0By/0x* + B ,/0x%)
+ (80/023)(8By/0x* + OBys/0x + BBy/0x*) = w(D.1,/0x"
4 8.4,/ 05 + 8A:/8°) — HHHII(W'S1n o/ Hydx' (2.3)
+ W \np/H,0x* + W?3Inp/H,0x),

The coefficients Ayy Azy Ays By Byper e+ are functions of
the geometrical parameters. Its expression is

- THELHIT cos!ll‘zcg B, = B, = HiH:H, Hcos(u’', o) y
H  cos(a a) "TTHH, (e, m)cos(ar, gy (2 W)

The equation for the potential function belongs to the solu-
tion of the boundary problems of the second kind. Hence, 1its
boundary conditions may be obtained from the condition that the
product of the normal unit vector to the wall and the velocity
vector vanishes, i.e., ne W . For regions up or down
stream far away from the blade, the direction of air flow velocity

- TR
- “ e o . . . .
----- L I PR U P .- . . . - .
A L~.L MW Al‘h VAR ORI AP . . . .
T ST -




is usually parallel to the inner and outer shells, e.g. for an
axial flow turbomachine outlet, we have

W,=00/0r =0 (z= +c0),

For some speclal cases, the potential function equation may
be simplified somewhat. For example: by choosing the angular ¢
coordinate as x2 coordinate, and any non-orthogonal curvilinear

coordinates e, and @, a 1n the meridional plane as x*

H;h 610 + HgH] a’d’ + H|H1 a’Q -2 HzCOS 813 azd?
Hysin 6y 0x®  H;sin6; 0x®  Hysin 6y, 9x¥ sin8;; Ox'9x}

[l for—a( iz ol
o) o) 2+ o) o

a(” Hjcos6y, )/a ]a¢ — o B(rH;H, sin 61,

sin Oy H, 0z
— HyH,H, sin 6, (_' Olbp | W, Olnp | W’ alnp).

H, o+ H, ox* H, dr (2.5)
The boundary conditions near the wall is
n - W = 2'(8®/H3x') + n,(8@/H 0z — wr) + n*(80/H,0x*) = 0 (2.6)

where " 5,7 are, respectively, the components along the
3 directions Uy, U, u3 of the normal unit vector to the wall.

3. NON-ORTHOGONAL CURVILINEAR COORDINATE STREAM FUNCTION EQUATION
OF BINARY RELATIVE FLOW SURFACE

As early as 1952, Professor Wm. Zhonghua proposed a general
computational model to obtain the solution to 3 dimensional flow
by taking advantage of binary relative flow surfaces (Sl, 82) to
simplify 3 dimensional flow into two 2 dimensional problems, so
that the binary relative flow surfaces may be iterated. The flow
matrix method or velocity gradient method (streamline curvature

and X2, we have
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method) may be used to solve for this binary relative flow
surface. In the former method, the stream function ¥ is used
as the unknown to find the various parameters in the flow field.
In the calculation of the S, stream surface, it is common to
apply the equation of motion in the second form. Here, x2 and
x3 are the curvilinear coordinates in the stream surface S

1’
and x1

is normal to the stream surface; the velocity component
along the Uy direction and the curl of V are zero.

{a[Hszcos(nz, w,)] __ O[HW;cos (&, u,)]
ox? . a.\tz
+ 2wcos (u', €,)/ cos (a*, wy) = 0.

} /Hsz sin (uz,us) cos ("l, w)
! (3.1)

In the case of uniformly distributed stagnant rotation enthalpy
and entropy, for the stream surface S1 in the form of the surface
of revolution, the stream function ¥ that satisfies the continuity
equation

O(HyroW?sin 6;) + O(H;rpW *sin 6,) =0

dxt . ax’ (3.2)
has the following relations
O o HirogWsin8y, 2% = —HrogWisin6y. (3.3)
Ox? o«

Substituting fthe above equations into eg (3.1), we may obtain the
same stream function equation (Wu's equation) as in Reference [2]:

2 " l
F 5 * 3008 ¥ HaG * Ean e = O (3.1)
D = —2cosbyn, . . N
E= Hgsx* (l" Hoanty) ?11,;22 + cosbn %igf? M sT:_e{, H;:l;
F= H?ax,(ln )~ -aH—':é—";-, + coseu%—l:;—:i + 'si_nl_t;—nﬁj;_"
G = 2wtpg sinosin’y +T_Ia—1::;% (%%% — cosOyn %l’—%—’;
)

Ea,a%’ @’gﬁ - °°’6” ) + e (H reid H,;x=)

-eginon /(3155) (3.5)

S e g e ot




The coordinate system for the S2 stream surface stream function

1

equation may be chosen as follows: g=¢ , X = and X3 are the non-

orthogonal curcllinear coordinates on the meridional plane. Also
let n be the unit normal vector perpendicular to the S2 stream sur-
face. The partial derivatives along the stream surface with respect

to X1 and X2 are

a_(_z_ a( ) + mcos(u', w) 8( ). 8() - a( ) +n,cos(u’,uq) a( )
Hlaxl Hlax‘ n; raq) ’ 1‘136-23 H;ax’ n; ra‘P ) (3'6)

Taking into consideration the force exerted on the stream surface
due to circumferential pressure gradient

F:—— lli = 1
(”¢ S ’-am)n Flu +qu3+l"3¢l3.

and the perpendicular relationship between the force F and the
stream velocity W as well as the relationship between the unit
normal vector n and the stream velocity W, after simplification

we get the three component equations of the equation of motion for
the S, stream surface as

ow! , 8w? , Ow? s 8W’> 6
1 - Wl —— + W cos Oy
W HB< tw Hox + (\ H®Bx' H8x }

W
- (ZwW, 4+ olr + . )cosel

1 8H,
(it 3eps O ) L
+ W(W! + W3cosCy) H, Ho
w3 (W? + W'cosf )’l‘ o4, ,__._1_._8L+F'l'; (3.72)
- V' H, H8x P HEx '
Wt We o+ w? We (Zl + Zw)(W‘cosB‘ + W3sin6,) = F? (3.7b)
H,0x' H8x’ r

Zl O(V,r) + _1413 O(Vor) -

F‘.
or r HO8zs ° r HO 1
ow? ow? ow! ow! (3.7p°
w! +w? +Qw s ) 3.
Hox' H0z moe TV mom) o0
2
- (ZwW, + wir + &) sin 6, + W'(W'cosfy + w?) L 8
r H) Hla-"l (3 7c)
—w'(w' + W‘cose,,)—l- OH, _ (W' ) sin 6y 96 )
H, H,Gx’ H,ax‘
1 8 .
-—= TP _ 4 F?,
P H;axl i
9

/11
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By using the same method, we may obtain the equation of motion
expressed in terms of the gradients of the stagnant rotation en-

thalpy and entropy.

___uﬁ!___O(V,r) + W’( ow' _ 6w’ >+ W’cosﬂ;x( ow? - ow! )

r H1ax‘ H;all'} Hlaxl H;a:’ Hlal"
3 1 _8H _ ot +wy) L BH
+ W(W' + W3cosby) T w3 (W'cos by )H, s
06; 96, ) ( (-] s >
3 . 1 31 —_— 3 = -— -+ T
+ Wisin 6"("’ H.9x W H0x Je HOx' H9x'
+ F}¥;
__PL' a(chr) +_P_V_’ a(Vzr) - F?;
r Hlax' r Hiax!
_We8(Ver) W,( ow:  aw: >+W,coso ( 8w' 8w’
r  HOB: H®x  HIx "WHds  HO:
(W 5L OH (w4 wicosty) L 2HL
+ W' W'cosOy + W )H, Hox ( cosBy) . Hor

+ W'sin@;; (W’ 66.‘ — W 60“ ) - .’g(— 01 + T 65 \

H;833 Hlaxl H,ax’ H,az’

+ FJ.

_!. _a-L ﬂsine“;\.

F“ - —nginﬂn -

f rlp m
1 8p Fo:
% o — F, o = = F._:
Fi Fa e rop *

. 1 8p n P
F;-—-F,”nen—— P) '6¢zﬂn 3
Fr=F?™Mn6y; F$=FF2sinby.

n; n

FIW' + FPW, + FHiv: =0,

1f the partlal derivatives of the stream function of the

continulty equation which satisfies the 82 stream surface

O(H,pr‘sinm -+ 6(H|1'9W:un an) - ()
X

O

10

’

)

.............

(3.8a)

(3.8b)

(3.8¢)

(3.9)

(3.10)

(3.11)

(3.12)
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v Y -4 1
—_— Wsin 653 = —H,rpgW'sin0y,
HyrpgW -’ sin 31» ) T8 3 . (3.13)

ax!

Substitution of the above equation into the first component
equation (3.7a) of the equation of motion gives the stream function
equation of the S2 stream surface [2]

1 oW D oW 1 & o v
L + + L + E +F
H: 8(x')} HH,8x'8x* H}9(z*)? HOx . H,0x®

=G. (3.14)

where the coefficients are respectively

D = —2cos6y, . 3
o ( H, ) Olnr Olar 1 88,
E= ! - + cosf 4 L _ 90
H9x a H, sin 0y HOx! cosTa H,0«* sin 0, H8x*’
o ( H &int Olnt 1- 86y
F=_2 (1 - + cosf + 6
H,0x* " H,sin 63,) H,0x* s H0x, sin0, H8z’ (3.15)
G = or (alnp _ Olnp cosol)+ O / Blnp _ Blnp cose) :
H9«* \ HOx H,0x* } H,0x* \H,ax’ HO8=x .
+ :’sin@,g ng, ‘
W' O(V.') al af
H= [-T—m +JE(H, F TW)“FT]/W’

See Reference [2] for solutions to this problem and the reverse
problem.

4, THE FUNDAMENTAL SET OF EQUATIONS OF THE S3 AND S, STREAM
SURFACES IS SUTIBALE FOR THE VELOCITY GRADIENT MLETHOD

Professor Wu Zhonghua proposed as early as 1950 the velocity
gradient method (or also known as the stream line curvature method)
[7] with station by station calculation to simplify the 2 dimension-
al problem of the whole field into the 1 dimensional method of
each calculation station. The equation for stream surface S1
derived in this paper may be applied to the case of a surface of
revolution.

11
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The velocity gradient equation of the S1 stream surface is

usually written in 3 forms. In order to save space, we shall
write the velocity gradient enruation in the following form:
OW’/rdp + PW* + Q=0 . (4.1)

Table 1. Computational formulae for the coefficients P, Q
of the velocity gradient equation of S] and S» stream surfaces.

AN E
b1 JER P 0
2N
1 aan y o4, _ o4,
1 + .1,c088,, [ H\9. r (4, + cosfy) + (“ sO,, rop ,6:’)
dlnr alnH 60 alnH S
I - 2 2 _ginid, __2wrsingsin @
-4, g €008, ——X + sird,, ) e ::
: al 60.
= b g + O )]
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an 8ln N
(Fps+a "—',;4)}/(4 + 24cos6y, + 1)

ney: l==coetficlent; 2-~-form of equation; 3-=-S] stream surface;
l--S2 stream surface; 5--3; stream surface.
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where the computational formulae for P and Q may be found in
Table 1. In the table A =w?¥w*® represents the ratio of the
two veloclty components; M = W3a represents the Mach number
of the velocity component w3.

The integral form of the continuity equation. The flow
quantity of the“stream slab of thickness t from P to @
is

G = S:.png’ainourdtp. ' (4.2)
The velocity gradient equation of the stream surface 82 is
OwW’/HOs' + PW' + Q=0 (4.3)
where P and Q may be found in Table 1l; A=w'/w’.
The integral form of the continuity equation. The total flow

quantity of the stream slab of thick ness t (from h to t) through
¢ direction 1s

G= ﬁ PV s sin Ouiyds®, )
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The fundamental set of equations of vicous. gas flowing in turbo-
machines expressed in non-orthogonal curvilinear coordinates will
be published in another paper.

REFERENCES

[1] Wu Zhonghua: A General Theory of Three-Dimensional Flow in
Subsonic or Supersonic Turbomachines of Axial, Radial and
Mixed Flow Types, ASME Paper no. 50-A-79, Trans ASME, Nov.
1952, or NACA TN 2604, 1952.

[2] Wu Zhonghua: Three-Dimensional Turbomachine Flow Egquations
Expressed with Respect to Non-Orthogonal Curvilinear
Coordinates and Methodes of Solution, Paper presented at the
3rd International Symposium on Air Breething Engines held in
March 1976 at Munich.

(3] Wu Wenguan, Liu Cui: Matrix Solution of the Flow Field Problem

of S; Stream Surface Using Non-Orthogonal Curvilinear Coordinates
and Velocity Components. Journal of Engineering Thermal Physics,

Vol. 1, #1, February, 1980.

[4] Zhu Rongguo: Relaxation Solution of the Inverse Problem Flow
Field for the S, Stream Surface Using Non-Orthogonal Curvilinear
Coordinates and Velocity Components. Journal of Engineering
Thermal Physics, Vol. 1, #1, February, .1980.

[5] Chen Jingyil, Liu Diankui: The General Form of the Equation
of Motion of a Turbomachine along a Curve and its Application
February, 1976, Institute of Mechanics, Academia Sinica.

[6] Liu Gaolian: Aerodynamics of Turbomachine, Lecture Note at th
Chinese University of Science and Technology, 1964.

[7] Wu Zhonghua, et. al.: Application of Radial-Equilibrium

Condition to Axial-Flow Compressor and Turbine Design,
NACA Rep. 955, 1950.

14

R R e R a e e o ae e - e 11




AR P O M R

ad

ARANRTY S a0 Ml

Py Al =L A

.....

A GENERAL THEORY OF THREE~DIMENSIONAL FLOW IN
TRANSONIC TURBOMACHINES WITH SHOCKS*

Xu Jian-zhong
(Academia Sinica)

Abstract

In order to consider the spatial property of u shock in a turbomachine correetly
and in aecordance with a three.limensional steady transonic flow, the basic equations
on the # and i stream surfaces in u four-dimensional ‘‘space’” are derived through
expanding the concept of the stream surface to the unsteady case. These equations will .
be valid for a three-dimensional unsteady flow, too. Applying the charseteristies °
theory to the equations, the characteristic compatibility relations are obtained, and
the boundary conditions are established. These equations and boundary eonditions
with the proper initial conditions entirely define the problem of the transonic flows
with shocks on the two kinds of the stream surfaces. Based on the steps of a complete
method of solution for the three-dimensional flow suggested in this paper and using a
suitable differen:e scheme the flow may be solved numerieally.

1. INTRODUCTION

For solving the subsonic and transonic steady 3-dimensional
flow in turbomachines, reference [1] proposed the S1 and 82 binary
relative stream surface theory, with the basic equations and
boundary conditions of the binary stream surface established and
the method of solution put forth. In the next two decades, this
method was widely appllied and verified. In recent years following
the development of transonic turbomachines, there 1s an urgent
need for calculating the 3 dimensional flow with spatial shock
discontinuity. Based on the integral form of the blnary stream
surface fundamental equations, it was pointed out in Reference
[2], after having derived the relationship among the air stream
parameters in front of and behind a spatial shock, that to properly
solve this type of 3 dimensional flow, it is necessary to calculate

*This paper has been presented during the Second National Engineering
Thermal Physics Conference in Hangzhon, November, 1978.
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separately on the binary stream surface the consistent 2 dimensional
flow and iterate the binary stream surface calculation.

To establish this type of binary stream surface steady
solution problem on the stream surface, one cannot proceed on a
specified stream surface due to the 3-dimensionality of the
spatial shock. It 1s necessary to extend the model of the steady
stream surface as proposed in Reference [1] to non-steady flow
and to merge the 3 dimensional flow¥* to the binary stream surface
in the 4-dimensional "space" including time t. In this paper, we
first briefly introduce the non-steady stream surface in this 4-
dimensional "space" (or non-constant stream surface) and point out
its relationship with each of the corresponding instantaneous 3-
dimensional stream surfaces.

Then, in the 2nd and 3rd parts of this paper, the basic equations
on the blnary stream surface consistent with the 3-dimensional
flow are established. They are sultable for both non-steady flow
and steady flow with spatial shock. In the 4th part of this
paper, we derive the characteristic consistency relationship on
the binary stream surface based on characteristic curve theory and
propose the set of boundary conditions on the up and down stream
boundaries and on the object surface sultable for solving steady
state motion. The initial conditions may be given according to the
usual method. Thus, the steady solution problem has been completely
established.

Lastly, we briefly describe the procedures to solve 3-dimensional
flow by iterating the binary non-steady stream surface calculations.
We would like to express our gratitude to Professor Wu Zhonghua for
his guidance in developing this paper.

] :
It has been pointed out by Huang Ruixin that the steady stream
surface may be extended to non-steady stream surface.
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2. THE NON-STEADY STREAM SURFACE AND ITS GEOMETRICAL /121
RELATIONS

A spatial stream surface may consist of the collection of all
stream lines through the points on a curve that is not a stream
line in a flow field.

In non-steady flows, the stream surface changes with time.
In thls paper, we shall describe this non-steady stream surface

in the 4 dimensional "space" including time t: W(r,p,3,8)=0,
93 -1 o .,
' Thence, F ki a,“""'E'd M PR
and its unit normal vector N(N,,N.,N,.N,) satisfies
0: _1_3‘_ 5 108 ( ) 1 a:) ( ) 19_3_)‘
% rdp 01 U U 0

Thus, on the stream surface in the U4-dimensional "space",
Ndr + Nyrdp + Nds + NUde = 0,

Be
3 )

18 N _
N.

L
u

where the dash line in a derivative indicates the partial
derivative along the stream surface.

On the other hand, there is a stream surface (r,p,8) =0,
at every instant in 3-dimensional space with its unit normal vector
a(n, 2., =,). as a function of time t. At the same time, according
to the definition of the stream surface, we have a- W=, at
every instant.

It should be pointed out that the following relations hold
between the unit normal vector of the 3-dimensional spatial stream

17




surface and the 4-dimensional "spatial" stream surface n and N:
N,/N,=n,/n,, N,/N,=n,/n,, N,/N,=n,a, (2)

With the above relations for a non-steady stream surface, we
can then merge the basic set of equations of absolute thermal
motion for a non-viscous gas expressed in a relative coordinate
system rotating with constant angular velocity w given by '
Reference [1]

(3)
.ai -+ ..L a(pW,r) + _l_ a(ewu) + a(PWl) -0

Os r ar r Op Os
%T'+W.aa‘r'+%£%+w.%-—':i-"—%g'& (4
%+W,%—+WT'-%+W,8::' + WL:V. +2AW.

“ﬁ% (5)

al (1] w, ol al 19
w2 2 L/ 2P
8:+ ar+r6¢p+w s P &

(7)

onto the non-steady stream surface in binary 4-dimensional "space".
It should be explained that as a closed system by equations, besides
the above equations, the equation of state for a gas

p=eRT (8)
and the relations
dh = C,dT, |wh+ wi/2—UY2 (9)
should be included.
Since these algebraic equations retain their forms on the

stream surfaces, we will not specifically describe them 1in the
following sections.
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3. BASIC EQUATIONS ON THE NON-STEADY STREAM SURFACE S1
5 |

q!' By extending the definition of the stream surface S, in [1]
- to the U-dimensional "space", it may be expressed as

g a(r,@,5,8)=0
. Any function q on this surface may be expressed as

q-q(': P, s, ‘)-‘l['(?a z,8), P, 2,¢],

We notice that in relation (2), the partial derivative of q on
the stream surface Sl may be written as

189 _108¢ 9 39 _8 _ndy 3q_0g UMDYy
—'ai r Op ..,ar’ s Os a0’ B3 O N, 9r (10)

Introducing

dind 1[_;6(”'—24-_

= +n, 3”’-].,.%.8_‘2.&...4&
ds

Or N, Or », (11)

the continuity equation (3) may be written as

B(bp) . 1 Boow,) 1 B(rboW,) _, (12)
a‘ r a¢ r 58

Similarly, equations (U4)-(7) may be expressed respectively as

. (13)
aw,_'___gaw,_‘_u,aw, Yoy
3 r aql 3s r (14)
aw 3w, In 2 4 1 3 1
——— 4 - [ - -____L
.7 + PR + W, 5. + . + 2wW, P'B,-o-f,
aw w, 9w 3w, 1 3 .
— e 28 L w, -l .
3 - op 8 o3 T (15)
r Op 3z o (16)
where
Fa- L, UNOW ,__uN ol -19)
np Or N, o’ N, \8 7 Or (17)
If we consider steady flow, 3/8:t=0,N,=0,, then the
above equations become respectively the basic equations
(34b), (40), (41), (392), (39b) and (39¢). on the stream surface
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S1 in Reference [1]. 1In other words, compared to the equations
o

on a steady stream surface Sl’ besides the extra 3  term

in the non-steady stream surface equations, time related terms

UN, oW
%"‘%’%& and 7‘"‘ ar ° are 1lncluded in the expression
of J1nd/is and f and terms like J appear in the energy equation.

We see that, different from solving the basic equations of
transonic flow with shock discontinuity on S1 stream surface,
in the equations (12)=-(16), b includes non-steady terms which
change with time in the form of g-‘ ;y at the same time in f and
J there are effects of non-steady factors. These are results due
to the adoption of the model of a non-steady stream surface in Ui-
dimensional "space" when we derive these equations by treating
the 3-dimensionality of shock discontinuity in this paper.

Taking the fact into consideration that in the process of
numerical solutions, it 1s more accurate to use the difference
scheme in conservative forms through the shock discontinuity, we
transform equations (12)-(16) into the following weak divergence
form (corresponding equations may be obtained by using I and S)

8 N,

(18)
IO PR A
a [b(p+—)]+ (re =) - 3:+b(""'+n.m
+‘ﬁvn—rpl')-0
ﬁs-“l+ 2 (b"‘)-o- rb(p+-:;')]-rb-g-"l+b(':t'p+i’h’—""u-rpr.)‘-o (20)
$ =) g 20 @
+'pg‘ +bp[y—l!‘- I—-;-)—']J"o (22)
me=pW,, n==pif,, | =pW,,
(23)=(25)
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4. BASIC EQUATIONS ON THE NON-STEADPY STREAM SURFACE 52
By extending the steady.S2 stream surface in 3-dimensional
space to. the U-dimensional "space", it may be written as
5(r, @, 8,8) =0 . On this surface any function q may be
expressed as g=q(r, @, 3, 8) =gqlr, ¢(r, 2,1), 2, 4], and
the partical derivative on the stream surface may be transformed
into

%9 .90 _ 7 8 B8q_by_ dg By_0q_ wN 9
8r 3 ardp’ 32 Oz nrdp’ Bt e N, 9p (26)
Introducing
Jlnb’ 1 ’ aW, ' f')“',, . OW WN' alng w (2
—— -, 'y -+ - ] L pLA 7)
a u,r(" e "o ™ a,)*'y, 3 | r
we may write the continuity equation (3) as
8(&p) | H(oow,) | Hsew,) _ 0 (28)

a‘ a r a'

Similarly, equations (4)-(7) are respectively

I, aw, dw,
i D oW, _V:i_ 13 (29)
ds 5, "W 3+ - 7351-1".
aw, . A, 3w v.w
G tw e, a"+"r'+zmw,-.1=, (30)
114 . Aw, 1T 5
L+, =+ w, O L _10p
ds ar 52 P 3‘.+F' (31)
81 _ 1 3p 8t 81
3¢ o a‘ +W,T+W‘T-
(32)
where
F-—LLQ&‘_EELQ}_V_ T o NG (O 1 3,
mrrk vtk AR AR N (33)
Just as the case of the §1streamsurface in steady flow /

the above equations are transformed into equations (100), (98),
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(992), (96a), (96b) and (96¢) in Reference [1]; and the difference
between the steady S, stream surface and the non-steady §2 stream
surface 1s also similar "o the case of the §1 stream surface.

The continuity equation (28) is already at the strong divergence
type. The other equations may be transformed into the following
weak divergence form (also expressible in terms of I and S):

Amd + B ls(prm) v E (v o) - (34)

, 1 /n \2
— b [—— —+wr)+1", =0
o155

r

i(g'—”2+3§—(b'%'-)+-,§-<b'%‘>+b'("'_"+3wm-pf‘,.)=(3 (35)
: r z Nrp

Bs0) . B (ml\ ., B [l PN _ .06 . o _

Gl (o 2 g [0 (p+ 5)] — o gr - Hor =0 (36)
gt- [b'p (I - -';—)] + %(b’fnj) + % (') + p%—f,— —bp] =0 (37)

We should point out that the basic equations on a binary non-
steady stream surface above are suitable for both solving the non-
steady flow and the steady flow with shock. The difference
in the solutions of these 2 problems is in different boundary
conditions.

5. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

In the previous 2 sections, we have established the hyper-
bolic partial differential equations on the binary non-steady
stream surface. In the following, the corresponding boundary and
initial conditions for solving steady motion are given. 1In
initial value — boundary value computations, the parameters,
on the object surface and the up and down stream boundariles
are related to those in the flow field at a previous instant.
Thus, one should derive the characteristic consistency relations
according to the characteristic curve theory [3] of hyperbolic
equations and then determine the appropriate boundary conditions

C4-71.
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(1) Boundary conditions on the §1 stream surface.

The following consistency relations may be obtained on the
stream surface:
_é& + u g& + I 5/’ 61) W ap
Ot r g *dz (5; r (’)(p 6:)
Uy, ( 100 _ Q&_)
N, ar or
siny(-——aw’ + W OW oW, , 1 EL)

1

(38)

=+ W 4 =5
5t r B¢ ' Bz P Bz

_ ws#(aw,. +WadW, 8w, 1 Qg_)

r B¢ " Oz ro ¢

] ’ w.w,
=f:sln#—</.—+

- ZwW,)cosy

(39)

_L+ W, i 1 6p % ap. . oW,
(W, +asing) b + (W, *ucosu) 3. :i:pa(smy 5,

5 5W,)

F4 /

+ cos u

1 aa[{;u +(W cos‘u-i-a)-é_v_z_-_.i.w sln[l E;V

4
551;” ] = pa*c + pa(f.cosp + f,sin u)

+oa [(W sinupta) —

+ W cospu
r

?pu”',(%’ii-Zw)sinp'l'.%\f—('sf- %E— (40)-(h1)
where u represents the angle between the z axis and the exterior
normal at a point on the boundary. Equations (38) and (39) are

the flow characteristic consistency relations, while (40) and

(41) are respectively the wave characteristic consistency relations
of propagation with velocity -a and "a" relative to the gas.

For the upstream boundary: When the meridional plane
velocity W.e<a , only (40) may be used. Thus 3 parameters need
be specified and the other parameter should be derived from (40).
Notice that now #==* | and the 3 specified parameters (e.g.,

. Te and alr stream angle) do not vary with time while the
parameters are all uniform along the ® direction. Equation (40)
will be greatly simplified.

For the down stream boundary: Here, if the outlet air stream

1s subsonic, then eg. (38), (39) and (41) are usable consistency
relations. We need to specify another parameter (i.e. the reverse
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pressure p). Notice that =0 and the 3 equations above may
be greatly simplified. If the outlet air stream is transonic,
the U4 consistency relation can all be used and no parameters can
be specified.

For the blade surface: The relations (38), (39) and (41)
can all be used. The specified condition is that the stream
velocity should be tangential to the surface.

Besides, there is still the periodic condition for the

§1 stream surface calculation which may proceed in a way similar

to an interior point. Of course, when the shock extends beyond
the passage way, we need to analyse more concretely whether to
choose periodic conditions for pressure surface or for suction
surface.

(2) Boundary conditions on the §2 stream surface.

Similarly the consistency relations now are

% w3 O _ (8 4w B /3
+ +w. 3t a( +W,a'+W.n‘)

3 Or O¢
N, (,30 _ 8 (42)
N, (‘ d¢ 6¢) ‘
(3w aw, aw, 13\ _ 3w, 3w,
nnp( 53L+W “3r * W 3: 52) °°"‘(a + W ar (43)
a aw, . 13 . v .
+1 a' + - - dr) F,sinp (F,+ ~ )coop
aa' + (w, :tannp)—L+(W :tdcocp)—aipc(unp%&-l- pa—;f-l-)
+pe [(W sing’ ta) é_’!_: + (W, cosp’ ta)-——é—'--i- W,cospu’ a;’
r
+ W, sinpy’ %‘ = pa (c'— -’?)ipaF.CMp'ipa(F"!' E':-)sin.p'
.._ﬁ(.a_g _L) (U4b)=-(4s5)
o .

where -4’ represents the angle between the z axis and the exterior
normal at a point on the boundary. Equations (42) and (U43) are the
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flow characteristic consistency relations while (Ul) and (45)
are, respectively, the wave characteristic consistency relations
with propagation velocity -a and "a" relative to the gas.

For up stream boundary: When Win<a , only (44) applies.

Thus, 3 parameters need be specified with the other parameter
derived from (44). Notice that now 'w'=x and the 3 specified
parameters (e.g. P Te and M number) do not vary with time, while
the parameters along the 4 direction are all uniform. E.g. (4l)
will be greatly simplified.

For down stream boundary: Now 1f the outlet ailr stream is sub-

sonic, then (42), (43) and (45) are usable consistency relations.
One parameter needs by specified (e.g. inverse pressure p or V.r) ).
Notice that now w=-0 and the above 3 equations will also be
greatly simplified. If the outlet air stream is transonic, the

L consistency relations can all be used and no parameters can be
specified.

For wall surface: (42), (43) and (45) all apply. The
specified boundary condition 1s that the alr stream velocity
should be tangential to the wall surface.

(3) Initial conditions

It has been proved in theory [8] that the choice of initial
conditions does not affect the final steady state solution. But,
if the choice 1is not proper at all, then an excessive oscillation
may be 1nduced and the stability of the numerical solution will be
destroyed. Also, the choice of initial conditions will affect
the speed of reaching stable solutions. Taking these factors into
consideration, one may choose the subsonic solution or the para-
meter distribution that satisfies the continuity equation on the
geometrical center line while smoothly varying elsewhere as the
initial condition.

25
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‘. PROCEDURES FOR A COMPLETE SOLUTION OF 3-DIMENSIONAL FLOW

: In the above we have transformed the problem of solving steady
3 state 3-dimensional flow with shocks in turbomachines into the initial
boundary value problem for 2 famllles of 3 varlable hyperbolic
) equations, and suggested the way to specify 1nitial and boundary
E conditions. From these we have completely established the problem

of finding solutions on the binary non-steady stream surface in

;- l-dimensional "space". To obtain the solution to the 3-dimensional
: problem, besides obtalning respectively the stable solutions of the
‘ initial value-boundary value problem on the 2 families of stream
1 surfaces, it 1s also necessary to iterate them until convergent.

3 To save time, the solution process may adopt the method of
Ei both time step and stream surface lteration: After each time step
A4 or several steps Zay , an iteration of the 2 stream
surface families is carried out, i.e., taking the result of each
stream surface calculation and the shape of the U-dimensional stream
surface [e.g. (1)] and using them in the calculation of the next
time step length for the other stream surfaces. This is re-cycled
whether the solution in each calculation has reached stability
or not. When a stable solution is approached at each time step
length one must iterate the stream surfaces. Finally, when a
stable solution 1s obtained on each stream surface, the final
solution for the whole 3-dimensional flow is found. This solution
procedure clearly shows that transonic flow with shock cannot
be solved on a speclfied stream surface as pointed out in Reference
[2]. In other words, it 1s precisely through the continuous
adjustment of the stream surface position and shape during the
solution process that one can obtain the 2-dimensional shock in
agreement with the spatial shock on the binary stream surface.

The above solution procedure closely correlates the calculated
shock on a single stream surface and the spatial approximation
of the shock which shortens the time required to reach a stable
solution.
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7. CONCLUSIONS

Based on the extension of the stable stream surface model
in 3-dimensional space to the unstable stream surface in 4-
dimensional "space", in this paper we transformed the partial
differential equations of non-viscous gas absolute thermal motion
in turboqachines into the binary non-steady stream surfaces Sl,and
82, and established the corresponding basic equations. Compared
to the equatlions on stable stream surfaces, in these equations,
there 1s a contribution to b (or b:) and "stream slab force" due
to the shape of non-steady stream surface, besides the partial
derivatives which include the thickness of the streamAslab in
l-dimensional "space".. In the energy equation related terms J
(or J°) also appear. These equations are suitable for both 3-
dimensional non-steady flow and steady flow with shocks.

It should be pointed out that the equations for solving
transonic flow on stream surfaces (mainly surface of revolution)
in both domestic and foreign references are all established on
steady stream surfaces that do not vary with time. The thick-
ness of the stream slab is also independent of time. Hence, the
shock thus calculated 1s not part of the real spatial shock.
In fact, the basic equations in these references are not obtained
from the basic equations for solving spatial shocks. Their results
fail to consider the close relationship between stream surfaces
of the same family and between the stream surfaces of the 2 families
induced by the 3 dimensionality of the shock.

According to characteristic theory, we have derived the
characteristic consistency relation on binary stream surfaces and

.the boundary conditions for steady flow. After suitably choosing

the initial conditions, the problem of finding solutions for trans-
sonic flow with shocks on binary stream surfaces 1s completely
established.
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Taking into consideration the tight correlation between
stream surfaces with shocks, for obtaining the solution of 3-
dimensional flow, we may use the method of simultaneous time step
and stream surface iteration. It can save computation time.

Thus, one may find the numerical solution after suitably selecting
the difference scheme.
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AN EXPERIMENT TO IMPROVE THE SURGE MARGIN BY
USE OF CASCADE WITH SPLITTER BLADES

Tsui Chih-ya, Zhou Sheng, Lu Ren-fu, Zhang Lian-chi
(Beijing Institute of Aeronautics and Astronautics)

i

Abstract
s
Through experimental comparison cn a bas!s of equal profil sectional area per

unit frontal length, which implies a basis of equal weight, a cascade with splitter
blades is found to give a maximum deflection 3.5 degrees greater than an ordinary
cascade tested. The corresponding incidence angle is 6.5 degrees greater, thus mar-
kedly improvicg the surge margin. The nominal deflection and thus work addition
ability also increase,

Prediction is also made on a basis of equal solidity that the use of splitter blades
would give about the same nominal work addition ability as an ordinary cascade, but
weight is substantially reduced to 70% approx:mately.

1. FORWORD

It is well known that the maximum deflection may be increased
by increasing the solidity of the pressure-resisting cascade,
hence improving the surge margin; however, the welght also
increases and the efficlency decreases due to greater flow
resistance. The baslc mechanism is mainly due to the fact that
with a high solidity and closer blade separation, the pressure
difference decreases when the same air stream turns and the
minimum pressure at the rear side of the blades together with
the reverse pressure gradient is more gradual, so that separation
will only occur at higher attack angle and rotation angle, hence
the increase in maximum angle of rotation and surge margin.

It often happens that the minimum pressure point of a low
speed cascade blade back shifts forward. This offers a clue.
But, then why should the solidity be increased along the entire

.This paper has been presented in November, 1978 at the Second
National Engineering Thermal Physics Conference in Hangzhon.
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blade chord?

In this investigation, we want to study: for a cascade
with splitter blades which has the same profile sectional area
per unit frontal length as an ordinary cascade (Figure 1) 1i.e.
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Figure 1. Ordinary cascade Figure 2. The attack angle
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whether the maximum angle of rotation and the corresponding angle
of attack will increase for the same weight of the blades.
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2. [EXPERIMENTAL SET-UP

The experimental horizontal type cascade test outlet 120 X
490, and front blade My= 0.3, Re = bW /v = (2.5—4) X 10°,
The middle section 4O0mm blade front and rear total static pressure
non-uniformity is less than 1.5% and the non-uniformity of the
blade front and rear air stream angle is less than 1°. The
periodicity of the 3 central channels along the cascade distance

is good, which provides reliability for the comparison study.

The ordinary cascade consists of 10 blades with blade type
10C+4/30C50 , chord length 60mm, cascade distance U46.2mm (solidity
1.30), angle of incidence 60° and is made of glass epoxy with an
epoxy coating.

Two blades are removed from the ordinary cascade and replaced
by 7 small 131 blades with chord 36mm, inserted uniformly. The
distances from the end to the large blades on the 2 sides are both
31.4mm. The angle between the blade chord and the large blade
chord 1is 5° which makes the angle of attack isma11= ilarge - 1°,
The 1 dimensional divergence angles on the 2-side channels are
approximately equal. The small blade is made of aluminum or
brass.

When the lU-hole sensing head is adjusted in the 32 m/s wind
tunnel, the error in the total pressure 1.5%, the error in static
pressure 4.3% and the error in the direction 0.25°. The positions
of measurement are respectively at 2 chord lengths in front of
the cascade and one chord length behind the cascade. Measurements
at many points along the cascade are averaged. Pressure distri-
bution is measured at the central cross-section of the central blade.

3. RESULTS AND DISCUSSIONS

The characteristics of the attack angles of the 2 cascades
are shown in Figure 2. The typical blade surface pressure distri-
bution -;_L‘;ﬂ_ is shown in Figure 3 a,b,c,d.
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Compared to that of the ordinary cascade, the maximum angle of
rotation of the cascade with splitting blades 1is 35.30, 1.e. 3.5°
more, and the angle of attack 1s 19.80, i.e., 6.5° more. Although
the loss coefficlent g of 0.435 is ,103 larger than that of the
ordinary cascade due to the increase of frictional surface and
of wake mixing, yet the separation is apparently delayed and
surge margin improved. The tendency of the pressure distribution
curve is also concrete evidence. As pointed out by the experiment
in Reference [1], the larger the axial flow is than Wuri/Wwr: , the
greater will be the reverse pressure gradient on the back siie of

w ,
the blade and the easier will the air stream separate. Mow o780
2

at maximum angle of rotation for the cascade with splitting blades
is slightly greater than %ﬁ"03*5 at maximum angle of rotation
for the ordinary cascade which demonstrates that when compared
according to the same flow ratio, the advantages of the cascade
with splitting blades will be slightly enhanced.

The nominal angle of rotation for the ordinary cascade
A8°% = 0.8 X 31.8 = 25.5° . Here i®=25° g’ =425°, o= 68°;
From the curve for synthetic nominal angle of rotation according
to this 85 and solidity 1.3 (as in Reference [2]), A8* is also
25.50, Just as in our experiment.

The nominal angle of rotation for the cascade with splitting
blades Ag® = 0.8 X 35.3 = 28.3° , which is 2.8° greater than that of the
ordinary cascade. The loss coefficients, however, are basically
the same as can be seen from Figure 2. Hence, the work addition
capabllity of the nominal angle of rotation is also improved.

Another very meaningful comparison may be predicted. If we

replace the small blades with large ones, then the solidity i?%-—l9
The alrstream off-path angle may be found by using the empirilcal

formula

1.3 o
3% = (75° — 68° ‘/— =-3538
¢ Wis
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Figure 3. Comparison of pressure distributions on blade
surface.
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l.e. pp=75°—58°=69.2° . From Reference [2], we find

Af* = 29.5° » Close to that for the cascade with splitting blades,
while the cross-section (or weight) of the cascade with splitting
blades reduction ratio is (10 + 62):(10% + 10*) = 0.68, .
This has ralsed some new questions: Is it possible that by changing
every other blade in an ordinary cascade which has been in use for
years to a small one, the work addition will remain the same, while
the welght and cost will be much reduced?

The only experiment independently carried outin the sixties is in
Reference [3]. They tried to use small blades at different positions
in the middle, or rear, of the passage, but the chord length
is only 25% of that of the big blade. The practicality of technology
and strength 1s far inferior to that in our paper. The characteristics
of the attack angle are not given, and the pressure distribution of
the small blade is not measured.

In the seventies, Reference [4,5] experimented with supersonic
extended pressure cascades with small blades added frbm axial chord
length 50% to rear edge. At air intake Mach number about 1l.46, the
air outlet angle is made to be 8-9% closer to the axis, but the
loss is increased to 25%. In Reference [6], a supersonic compressor
is designed with small blades added in the rear half of the passage
to reduce the air outlet, off-path angle of the rotor, and to strive
toward a single stage, total pressure ratio of 3.0. There is a pre-
liminary report (Reference [7]), but the intention there,is apparently
different from our paper. )

All in all, our study is only a comparison experiment at low
speed for cascade distance, angle of bending, angle of attack, relative
size and position of the small blade. The result is encouragling.
If is necessary to further develop experiments to compare things
in more detail so as to provide a practical reference in the design
for compressors.
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THE PERFORMANCE CALCULATION OF AN AXIAL
FLOW COMPRESSOR STAGE

Zhang Yu-jing

Abstract

Based on the simplified two-dimensional flow equations, the computer prosram
for the direct problem is developed. By means of this program several subsonic axial
flow compressor stages are calculated. The calculated results are compared with ex- .
perimental data. This caleulution method is evaluated and problems to be solved in
the performance caleulation are presented.

1. FORWORD

The calculation of the axial flow compressor problem means the
calculation of compressor characteristics when all the geometrical
parameters of the compressor are known. This kind of calculation
is important and meaningful whether to determine the combined
operation line of the compressor and the turbine, or to understand
the properties of the rotatable airfoil. If the characteristics
can be computed with good enough accuracy, then less effort can be
spent on testing and adjusting or tuning the compressor. Because
of our research on the attached surface layer, the surge and the
properties of the cascade, etc. are not enough. Therefore, the
compressor characteristics are still estimated approximately, or
obtained from experiment. There are miny prbblems requiring further
studies in the method of calculating the characteristics of the whole
machine based on the binary relative flow surface theory [1,2].
There is still a considerable distance before actual engineering
applications of that method. However, this 1s a general method

'This paper was presented at the 2nd National Engineering Thermo-
physics Conference at Hangzhow in November, 1978.
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to understand the gas flow inside the compressor, and is the
direction in which the computation of compressor characteristics
moves.

To study problems in this area, we developed a computer
program in 1975 for the compressor problem, carried out some cal-
culations for some subsonic compressor stages, and compared the
computational results to the current experimental results. This
was a preliminary attempt to calculate the characteristics with
the simplified 2 dimensional flow method. Thus, we did not place
as much wéight on the equations themselves, and instead we con-
centrated on such problems as the convergence rate in the calculation,
the effect of the wrong choice of some empirical laws (e.g. determina-
tion of the reference attack angle) in the design and in the computa-
tion, ete. This made us realize that, in order to obtain reliably
computed characteristics, one must have complete information on the
accurate cascade reference attack angle and the corresponding angle
of lag, as well as the computational method for the cascade
characteristics under reasonable work conditions. These two aspects
are more important than an accurate loss model.

According to the results of calculations in this paper, it 1is
feasible to use the computatiohal method for subsonic compressor
stage charécteristics. Further computations and experimental
verification are needed for making calculations on the whole compressor.

2. BASIC ASSUMPTIONS AND EQUATIONS

In this calculation, we assume the flow to be stable, axial
symmetric and adiabatic. The fluid 1s perfect; viscosity is neglected
but the change in the entropy due to it is taken into consideration.
The rotating angular speed of the rotor is constant. This greatly .
simplifies the protlem.
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In the kr,w,z) coordinate system, the continuity equation

and equation of motion are respectively

1 W) | oWy _ (1)
r Or 0z
W, a("u’) +W. a(é‘“)’) - () (za)
r az
;oW oW, o g 9p
W . —_— e — 27
W. Or tW. Oz r P Or (2b
Wﬁm+MQWZ=_ﬂQ
Or 0z P Oz (2¢)
The energy equation is:
Flowing through a moving airfoil: DI/Di=9 (3)
Flowing through a stationary airfoil: PH/Dr=20 (3")

The equation of state 1is
P = oRT (4)

According to the continulty equation, equation of motion, and the
equation of state, we can derive the radial equation of motion:

&é&_(l—kll)(i_*_scc,‘? 5’_>+ citang &(rtang)
P Or 1—M3/\r T'm 1— MY  »Or

c, _1-_12‘_ (5)
1—Mye, Dt

This is e.g. (31) of Reference [3] which has taken into account
the entropy change.

To make the computation easier, we introduce the stream line
parameter A, .} = | + tan’p + tan’f, .

Here anf =W,/ W,

Equation (5) may be written as follows:
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For the computational cross-section behind a stationary
airfoil, it 1is only necessary to take {=H, o=0, =2

Eq. (6) is the radial equation of motion which is to be solved
in the characteristic calculation.

3. SOLVING THE EQUATIONS

We use the iteration method to solve the equations. Some
explanations of the problem in the solution are as follows:

1. Initially when the stream line 1s assumed, the radial
point 1is determined according to the equal ring surface.

2. When ‘P and #. are calculated, the shape of the
stream line 1s taken to be a cubic function. 1In each stage of
the calculation, there are 3 known positions for the cross-sectional
area computational points. The boundary 1s taken to be at the
compressor outlet and in front of the inlet airfoil. The boundary
conditions are: 1in front of the inlet airfoil, (dr/dz)

= 0, at the outlet of the compressor, (dr/dz) 0.

along stream 1line”

3. Computation of the reference attack angle is based on the
principle in Reference [4], but the original airfoil type of the
sample compressor is A40, Due to the lack of experimental data,
we assume temporarily the reference attack angle to be 2° smaller
than that of the NACA-65 series of airfoils.

4. The angle of lag the reference attack angle is also
computed according to the principle 1n Reference [47. When the
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attack angle deviates from the reference attack angle, the change
in the angle of lag may be corrected according to the principles
of Reference [5]. The corrected curve is as shown in Figure 1.

5. Below the reference attack angle, the loss calculation is
based on the principles of Reference {4] — namely, calculating the
loss with the pressure expansion factor and relative blade height
as parameters. When the attack angle deviates from the reference
attack angle, the loss 1s also calculated according to the princirles
of Reference [5]. The increase in entropy may be calculated according
to the following equation from the total pressure loss coefficient

R e

ws
i=le s

cafi-(1+ L > M)‘L']}"

Where w is the angular velocity of the rotor, L is
the relative stagnant temperature of the preceding cross-sectional
area. For a stationary airfoil: w = 0, we get

—:’-——ln{l—a[l— 1+ A=t rﬁ]}"
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6. The effect of the inner and outer wall boundary layers on
the flow is taken into account by coefficient KB. And in this
calculation, the first stage KB is taken to be 0.99, the second
stage 0.98, for the 3rd stage and beyond 0.96, and kept constant.

7. When calculating the characteristics properiies of a level,
the mean value of the level is calculated according to the
flow rate mean value for parameters at various streamlines.

. éOMPUTATIONAL PROCESS

For our sample calculation, since (k= Dsing - ML/(1 = ML) 45
far less than 1, by assuming 2¢/8r and 8s/ 9m as guantities of -n=

same order, then the 8¢8m term may be neglected. After Eq. (o)
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1s dispersed we get:

Wiiny = WW — Qe )T (si00 — 4)

where

2,
WW =W ;+ ‘g("" [(IM-I - 1)+ %(’iu - 'i)]
"

-~ 3’:—:4 (& Gl = 40 + - L (=M ((ﬁ'-'— wngy) /o1

+ ’“"Pi/"-.i) (rim—r) + L:iﬂ-( i lanNPiyy = 'ilin?i)]}. :

When calculating along the radial direction, we first assume
the axial velocity for the root cross-section area, and gradually
calculate toward the head section to find Wz and p of each point.
When the whole cross-section is calculated, the flow rate is
obtained by integration. If the flow rate does not satisfy the
requirement, then the root velocity 1is corrected. The correction
formula is

Wi = Wil {1 — k[(G¥ — G,)/G]}
where k. is the iteration factor of the flow rate lteration. When
the flow rates of each cross-sectional area are all satisfactory,
then stream line iteration 1s carried out. During stream line

iteration, the correction formula for the stream line radial position
is

A0 me ) 4+ RS0 — A

Where %: is the radial position of the stream line at
the t iteration, 77 the current value of the stream line radial
position, .-#?”: the radial position of the stream line at the v + 1

iteration, and kr i1s the stream line iteration factor.
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In this calculation, we take the relative error satisfied
by the flow rate and stream line t~ be 1073,

5. DISCUSSIONS

We carried out computations for subsonic compressor stages with
the computer program. Two of the sample calculations have the
flow through part shown in Figure 2 and Figure 8. The low speed
experli mental results for the stage as shown in Figure 2 are given
in Reference [6]. We discuss below several problems based on the
computed results.

1. Loss model: To obtain results in conformity with practical
results, one must have a reasonable loss model. Here we choose the
loss model given in Reference [5]. The loss given in Reference [T7]
and [4] is larger than that in Reference [5], especially in the head
section. For single stage test compressor (channel shown in Figure
2), the stage characteristics calculated according to the loss model
in Reference [5] and [7] are shown in Figure 3. Generally speaking,
under an ordinary attack angle, although the effect of these two
loss models on efficiency and pressure ratio is not large; it 1is
still apparent. From the comparison before, we know that the

effect of the loss model on the characteristics is weaker than that
of other factors.

=% =6 -1 -2 0 2 + ¢
Lok
Figure 1. Calculation of the angle of lag under varying
working conditions. The solid line is from Reference [5].
The dashed line is the correction to Reference (5]
M=0.5~1.1 , the subseript r is the reference work
condition parameter.
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Figure 2. Diagram of single stage 2.
test compressor flow channel and 4
measured cross-section.
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2. The reference angle of attack and the angle of lag under

the reference angle of attack: The effect of these 2 factors on

the computed results of the stage characteristics 1s shown in Figure

3. From the diagram, it can be seen that the unsuitable choice

of reference angle of attack has a greater effect on efficiency,

and the angle of lag affects both pressure ratio and efficiency,
significantly, and its effect on the stage characteristics is far
greater than that on efficiency. Hence, only by determining accurately
the reference attack angle of the cascade and its corresponding angle
of lag will realistic characteristics be found.

3. Convergence of stream line iteration: For different

stream line iteration factors, the number of iterations satisfying
the same accuracy vary widely. For simple stage test compressor,

when &k =01 , 54 iterations are needed to satisfy an accuracy of

10'“ while for kr = 0.4, only 13 iterations are needed. For sub-

sonic stages with a flow channel which is not too steep, within

a wide range, all iteration factors are convergent, but when the
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flow channel shape varies more greatly, the iteration factor

needs to be chosen small to guarantee stability. Thus, selection

of the stream line iteration factor should be determined by the change
in stream line and the combination of various parameters (such as
slope, curvature, etc.). Hence, varying the iteration factor to
affect iteration seems to be more effective.
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Figure 3. Effect of reference attack angle, reference lag
angle, and selection of loss model on stage characteristics.
Single stage test compressor, n=19000 revolution/min.

4, Effect of different computational methods of the curvature
and slope of stream lines on the characteristics: Besides represent-
ing the stream line with a cubilc representation, it can also be
represented as a multi-nomial. If we still use the 2 cross-sectional
areas at the inlet of the compressor and in front of the inlet air-
foil as the reference cross-sectional areas, then in the case of our
sample calculation, the characteristics obtained by calculating
the slope and curvature of the stream line with a multi-nomial yield
the same result as with a cubic representation. The difference is
negligible.
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5. Effect of the radial distribution of curvature, slope and
entropy on the radial equation of motion: Figure 4 is the calculated
results of the radial distribution of curvature, slope, and entropy
on the axial velocity distribution. From this one can see that
generally for the first few stages of the subsonic compressor,
not only is there not much effect on the axial velocity distribution
due to the non-uniformity of entropy, but for ordinary channels,
there 1iIs not much effect due to stream line curvature or slope
either, (generally less than 5%).

_.....K ——— ,b

g—
(i Ed
> x

IR

"~
T

-0.1
-0.149 0.1 ~0.2 0 0.1 ~010 o1
(A:)scs (At':)'-/“. (Afx)v/c,

Figure 4. In a completely radial equation of motion, the effect
of the variation of entropy, curvature and slope in axial
velocity calculation. (sample computation 2)

Key: 1l==radial point; 2--stationary airfoil; 3--moving airfoil.

In addition, if only the axial gap dimensions of the channel
are changed and not the radial dimension of the various calculated
cross-sectional areas or the geometric parameters of the airfoil,
calculation shows that there is very little difference between the
characteristics obtained and the original characteristics. This
also shows that the curvature and slope of the stream line has little
effect on the subsonic stage. Hence, in simulation testing, to
make the measurement more convenient, increasing the axial dimensions
will still give usable experimental results for the subsonic stage.
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Figure 5. Comparison of perfect radial equation of motion
and simple radial equation of motion — with the outlet

entropy, axial velocity and change in attack angle of sample
calculation 2.

Key: 1-- —0—0— simple radlial equation of motion
—A—-A— perfect radial equation of motion;
2--stationary airfoil; 3--radial point.

6. Comparison of simple radial equation of motion and perfect
radial equation of motion: For sample calculation 2, Figure 5 shows
the results calculated for the simple radial equation of motion and
perfect radial equation of motion, including the entropy behind
a moving airfoil and behind a Stationary airfoil, axial velocity
and the attack angle of a moving airfoll and of a stationary airfoil,
etc. From the dlagram , it can be seen that there is definitely
a difference in the 2 attack angles calculated. This is also reflected
in the radial distribution of the axlal velocity and the stage
characteristics. But, if the slope of the passage way 1s not large,
this difference is small. But, if the slope of the passage way
is large, then 1t 1s better to calculate according to the perfect
radial equation of motion. Figure 6 gives the difference between
the characteristics for these 2 methods of calculations.
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1 Figure 6. Comparison of 126 PP |
F characteristics for the 1.24[ ' ::i'gﬂ:ﬁ,’;g [P

perfect radial equation of L2t
L( motion and the simple radial + 120}
& equation of motion. 118}
- (sample calculation 2 -~ Lish
[ n= 8600 rev/min) 090k
- Key:1 -A-4- perfect radial L zﬁ’ac:tﬁ
b! equation of motion, 2.80

2 -0-0- simple radial .
equation of motion. >0

E ars o.'soo j;‘;us 0.9
:! 6. COMPARISON WITH TEST RESULTS e
Figures 6-8 gives the diagrams of the stage characteristics
and stream line in the 2 sample calculations. Figure 9 gives the
air stream exit angle inlet leading airfoil, moving airfoil and
[ stationary airfoil. Figure 7 and Figure 9 also show the experimental
results. From the diagrams, it can be seen that: 1in the vicinity
[ of the reference attack angle, the calculation agrees with the
d‘ experiment, but when we deviate from the reference attack angle
F region, there 1s a larger difference between calculation and
experiment in the characteristic, especially in the pressure ratio.
For positive attack angle , the calculated pressure ratio is higher
than the experimental value. One may regard this as due to the
?! angle of lag and loss unde:r changed working conditions in Reference
, [5], especially due to the unreasonable calculation of the angle
- of lag. We made corrections to the curve of Reference [5] based
£ on this (see Figure 1) and increased the change in the angle of
lag below the positive attack angle. The characteristics calculated
from the curve of corrected lag angle changes are also plotted in
Figure 7 which shows good agreement with experiment. From Figure g,
4 we see that in the vicinity of the design polnt, the calculated
lag angle value also agrees with the experimental value.
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Figure 7. Characteristics of single stage test comprecssor
(n 40000 and n=14000 rev/min.)

perfect radial equation of motion.

------------- simple radial equation of motion.

Key: 1--e@ calculated point; 2--x calculated point, from
corrected curved in Figure 1l; 3--0 experiment point;
4--e calculated point; 5--xcalculated point, based on
corrected curve in Figure 1; 6--0 experiment point.
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Figure 8. Channel shape and stream line distribution in
sample calculation 2. (n=8600, G=48.5 kg/sec)

o) experimental »= 0.781
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CONCLUSIONS

1. For subsonic stage with small channel slope, there is not
much difference in the calculated results between a perfect radial
equation of motion and simple radial equation of motion. But when

the slope 1s larger, one shnuld calculate with the perfect radial
equation of motion.

2. For the calculation of compressor characteristics,
th2 degree of accuracy of the reference angle of attack and its

corresponding angle of lag is more important than the cholce of
15ss model.

3. A problem requiring immediate solution in characteristic
calculations is the method of calculating the angle of lag and
loss under changing working conditions.

4., In order to apply 3 dimensional flow theory effectively
to engineering, the most pressing task currently is to strenthen
experimental research. It will not only provide experimental
data for the proposed physical models, but also will give the
criteria for Judging whether a physical model is good or tad.
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APPLICATION OF THE FINITE ELEMENT METHOD TO THE
SOLUTION OF TRANSIENT TWO-DIMENSIONAL
TEMPERATURE FIELD FOR AIR-COOLED

TURBINE BLADE

Guo Kuan-~liang 'Ge Xin-shi Sun Ziao-lan
(The Chinese University of Science of Technology)

Abstract

To assure air-cooled turbine blade of being able to operate safely and reliablely
during continuous variation of mechanieal, particularly thermal loads, it is necessary to
caleulate the transient temperature field of blades. In this paper the finite elemen:
method for computation of transient two-dimensional temperature distribution is dis-
cussed, the calculation of transient temperature field for a middle cross section of air-
vooled blade is made and discussed.

1. INTRODUCTION

The adootion of air-cooled blades has increased the inlet
temperature of turbines and provided a powerful measure in improving
the performance of jet engines. To make sure that the air-cooled
blades work safely and reliubly at high temperatures, high pressure,
burning gas, the calculation of the temperature field is a vital
l1ink in the research and development of air-cooled blades. Especially
when the engine is working under acceleration or deceleration, the
mechanical and thermal loads of the blades change drastically and
the blades are working under extremely severe conditions. Hence,
the calculation of a transient temperature field is even more
important.

*
This paper has been presented at the Second National Engineering
Thermal Physics Conference of Hangzhow in November, 1978.
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: As far as we know, there 1s a large quantity of work on the

- finlte element method for solving problems involving thermal conduc-
i. tion of solids in foreign countries, but very little has been

- reported on using the finite element method to calculate the trans-
ient temperature field of air-cooled blades and the treatment of
boundary parameters.

In recent years, works have been started domestically in apply-
ing the finite element method to calculate the steady state tempera-
ture field of air-cooled blades. In Reference [1l], a method of
air-cooled blade boundary parameter treatment is presented, and a
special computer program in ALGOL-60 language on the DJS-21 computer
is given. Reference [2] summarized how to establish the variational
principles thorugh analyzing the physical phenomena from which the
equations for the finite element method of solving the steady state
and transient thermal conductivity problems are derived. Reference
[3] proposed the computational method for the transient temperature
field of the alr stream in the passageway of air-cooled blades.

In this paper, we have compared the effects of various time
step sizes on computational results and presented a FORTRAN program
on the DJS-8 computer for calculating the 2-dimensional transient
temperature field of air-cooled blades.

2. FINITE ELEMENT METHOD FOR 2-DIMENSIONAL TRANSIENT THERMAL
CONDUCTIVITY PROBLEMS

For 2-dimensional transient thermal conductivity problems with
boundary conditions of the 3rd kind, the differential equation is

pc 0T _(&T 3T\ _, on region Q (1)
A O (ax’ + ayz) &
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The boundary condition is

3T /3n = (a,/AT, — T) on boundary T ' (2)

For alr-cooled blades, both the inner and outer walls will
exchange heat convectionally with the fluid. The corresponding
boundary condition may be written as

(a,/A)T., —T) oOn the burning gas side

ar
&GJLXT,—-T) on the cool gas side

an

The initial condition is

T(o,x,y)—To(toY) (3)
where: p,¢,12 are respectively the density, specific heat and
average thermal conductivity of the blade material. Gy O,

are, respectlvely, the convectional heat exchange coefficients

of the burning gas and the cool gas on the blade wall. Tees Tee
are, respectively, the absolute thermal recovery temperatures of
the burning and cooled gas. Since the stream velocity of the cool
gas 1s rather low, therefore Tu«=T. where the subscript s denotes
air streams.

To use the finite element method for solving the transient
temperature field, we must first obtalin the equivalent starting
equations of the finite element method for the above problem. This
is usually done through the mathematical treatment of the relatively
simple method of the weighted residual (e.g., Galerkin method)
on from the variatlional principle which is more intuitive in
its physical meaning [2].

Here, we present the result derived with the Galerkin method
(4,51

" 8: 6, Oy
+S T (T =T, )dl =0
r A

sj rL"g,g +S ao'r aT dr 61'“’
(4)
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1. Spatial discretization:

When we discretize equation (4), we assume that the thermal
expansion of the solid may be neglected.

We divide the solution region @ into NE triangular surface
elements, and represent respectively, with NP and NL, the number
of nodal points (i.e., the total number of vertices of the triangles)
and the line element on the boundary T . Consider the linear
insertion function of an arbitrary triangular surface element
(with vertices 1i,j,m)

T,
T-(N..Nf.N-)(Ta) (5)
Ta

where Ny, N; and N. are the shape function and

N‘-(‘Q'*'bgl""f.’)/ZA k-(', i’ ”} A-(.“‘_- "“)/2 . (6)

U FiYa " XYy B Y Yai € ze =3
G X)) = iYmi B Pa =y )z, — £a (7)

o ™ 2,7 = X%1Yi3 ba™ Y= 9i3 Cua™ g =3,

Take 4T with the same functional form as T, i.e.

N,
aT-(T..‘T';.T.)(M) (8)
N.
where T.,,T;,T. are respectively, the value taken by the arbitrary
function 8T at nodal points i,J, and m. Similarly for a line
element on the boundary T (let its end points be i1 and j) we may
take

7= N)(1): o7 = (T, () (9)

By using eq. (5)=(9), we may discretize the terms in eq. (4) as
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NE
a7 €< 97 4ogy = [, e 9T -TCF
U s o .2-.'].. T o ¢ =TcT

38T AT _ 3sT 3T < ([ (98T 8
— e dxdy == ss T _ 98T 6T
J % o oy 5) " " ) (5 3 )y =TRT

NL

Lar % (T-T)di=> L" . %(r = T,)dl = T(HT - R)

=]

and also get

CT+KT—R=0 (10)

where K=K, + H,

After eq. (U4) is spatially discretized, we obtain a set of
equations including NP first order ordinary differential equations
as mentioned above. The appearance of the ma.vrix C is related to
the thermal capacity term; the Kk in the K matrix has nothing to
do with time while H is related both to space and to time (it
contains the local thermal radiation coefficient and thermal
conductivity); R is a column vector, and is homogeneous; the
column vector T is the temperature function yet to bhe found.

2. Time discretization

To convert (10) into linear algebraic equations, we may use
different methods of time discretization. Three discretization
schemes are presented here:

(1) By using the method of a welghted residual with linear
approximation for the temperature function, etc., it 1s easy to
show that

((2/a:XC + 2G) + K, + 3K,1T,

where &s™=n =4 13 the time step.
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_ (2) By using the method of weighted residual with quadratic
approximation for the temperature function, etc. [6,7], we can
derive

ool 4 B P A (12)

'Mn My - M,y T

where

.\lu - KL”K‘ + KAO‘,I‘ + KAI,,M + KAZ“”) + CE“C/A‘/Z
Gy = “(RE-'!R. + RE-aRl + REuR:)

r224 28 28 -

KL = ] KAQ = [ s zo]
L 28 56 —14 -3 3
19 -

KAl = 2 16 16] KAZ-[ 20 SJ
L 16 20 -8 ' 20 39 —3

0 140 —

CE = 140] RE = [ 28 224 28]

L~140 105 35 —14 28 S6

(3) C-N scheme [8,9,10]
Let us assume that within the time step At, the derivative
T of temperature wrt time varies linearly with time, then

(Ti—T)/as= (T, + T)/2

Assume also that (pe/An/Cpc/ayy =1, 1.e., GG =1 (one may
not make this assumption) the subscript 1 means the inverse matrix
of the labeled matrix. Then we may transform eq. (10) into

[(2C/8s) + KT, = [(2C/as) = KT, + R + Ry (13)

It is worth while to point out that since in eq. (10), C,K, and
R are all functions of temperature, it is a set of non-linear
ordinary differential equations. When making use of the C-N
scheme, we have considered the non-linearity of the equations.
The result obtained (13) is an improvement over the usual linear
approximations.
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(4) Comparison of the 3 schemes above

The results of 3 discretization processes, i.e., eq. (11),
(12), and (13) are all implicit and are unconditionally stable.
When the 3 schemes are composed, we may for convenience assume
eq. (10) is linear and homogeneous{ Then it 1s not difficult
to prove that: Eg. (11) is accurate to order 0(h) (h being the time
step length) and eq. (12) and (13) are both accurate to order
0(h2) (better than eq. (11), but since the latter is much simpler
to calculate than the former, we shall use eq. (13) in our calcula-
tion. '

3. COMPUTATION OF BOUNDARY PARAMETERS

In order to calculate the various instantaneous C, K, and R
in eq. (13), and then solve for the transient temperature field of
the air-cooled blade, we must first know the instantaneous values
of the boundary parameters Ggs By Tog and T. 2nd the average
thermal conductivity X and specific heat C of the blade material.
In this work, we calculated a transient process, startingwiththe
initial state of the air-cooled blade (assumed to be a steady state)
and gradually accelerating for a given period time until the
parameters of the burning gas and cool gas stream no longer change
and flnally after a period of "stagnation" reaching the steady state
at the end. Of course, the finite element method and the method of
treating boundary conditions as mentioned above are also applicable
to other state-~changing situations. In the following, we shall
briefly introduce the method of treating the parameters. For a
detailed calculation, see Reference [3].

1. If we denote by .§&  (the subscript 1 indicates the parameter
under discussion) the ratio of the various instantaneous parameters
of the burning gas and cool gas stream to the corresponding parameter

at the final steady state, then @@ and T, can be

conveniently obtained from the known value of §- and the steady

state values of Ous % and Tew already obtained in Reference [1],
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and there is no need to go through the complicated computation
according to the original standard formulas one. by one.

For example:

Oy = 6, * Esp(Ew, /8B
a, = a,, * 5&,(;6‘/ §~)"

T

2. The thermal capacity of the blade must be taken into account
in calculating the transient temperature cf the cocl gas stream along
! . the blade wedge direction. Here the basic equations treating by
sections according to one dimensional problem should be

" ’

r. alF‘(Tc' - Tl) - Zatng‘(T. - ,.‘) + 7200;‘7(’. - r.)/Al

tm)
'C.‘F“(T. - f,.) - G,gcu(T:. - T:‘) k -] ,2, 3, 4
lf,.—(T&-i-T!.)/Z k=1,2,3,4
Th=Then &=4,3,2

Ty

where: T is the cool gas stream temperature in the kth channel;

v 1is thecgpecific gravity of the blade material; V is the volume
of each blade section; F,,. F, are respectively, the outer area
of the blade and the inner area of the kth channel; Ta is

the average temperature of each blade section at the beginning
instant of the time step At, its initial value being calculated
] from the initial steady state; the subscripts i and o denote,

respectively, the parameters at the outlet and inlet of each

———TTTTT

section.

+ Since Taw and T4 of the above equations are already known,
by solving the above equations, we can then get the temperature
variation of the cooling gas stream in the passages of the blade

at each instant, and also the average temperature T. of the
blade cross-section from which the corresponding -#s¢ and &,

may be found and #¢/4 and %/  computed.
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4. THE COMPUTER PROGRAM AND ITS EXPLANATION

From eq. (13 it is not difficult to see that although T, - is
w given by the initial conditions (3) and the initial state R, and
Ko can be calculated from known parameters, yet Rl’ Cl and K
are both functions of Tl' Hence, it is necessary to use the
iteration method to solve for T,. Since we have already obtained

1
the cross-sectional average temperature of the blade at each instant

1

when we calculate Tck’ it may be used as a very good approximation
of the cross-section average of Tl. With it we can calculate a
prior Rl, C, and X, and the R Ci and K, at each instant. Eq. (13)

1 1 i i
may then be transformed to the following form

KT=R
and may be solved by using the direct matrix analysis method. This
will not only satisfy the demand of engineering computations, but

also reduce greatly the amount of computation.

Because of the limitation of space, we shall omit the computational
flowchart, the FORTRAN program and explanations in this paper.

5. COMPUTATIONAL RESULT AND ANALYSIS

In this work, we have calculated the temperature distribution
of the blade at each instant of an accelerated working state. For
an intuitive understanding, Figure 1 and 2 show the instantaneous
54 temperature distribution at 5 different instants at the periphery
f. on the burning gas side of the blade middle cross-section (i.e.,

i blade back and blade bowl). In Figure 3, the time variation of
the average temperature of the middle cross-section calculated

by the finite element method 1s plotted. Also for comparison,

' the cross-sectional average temperature curve obtained from one
dimensional sectional treatment is also plotted.
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1. The point of maximum temperature on the air-cooled blade
is located at the boundary of the tail section on the burning gas
slde, and the point of lowest temperature is located at the
boundary of the internal cooling orifice. This is quite reasonable.
The isothermal distribution curve at each instant also agrees with
physical law.

It can be seen from Figure 1 and 2 that the temperature at the
front edge and tall edge 1s higher and that at the middle of the
blade back and bowl is relatively lower. When the blades are
continuously accelerated, their temperatures continue to rise. The
tendency of the temperature distribution -at different instants is
basically the same.

2. From Figure 3, comparing the cross-sectional average
temperature calculated from the finite element method and that from
one dimensional treatment by sections, the maximum difference is
below 2%. This shows that when solving eq. (13), by calculating
a priori Cl’ K1 and Rl with the various instantaneous cross-
sectional average temperatures obtained by sectional treatment and
reducing the non-linear problem to linear equations, it 1is definitely

possiole to provide the accuracy required.

3. To compare the effect of various time step length At, in

this calculation, we use respectively, 0.02, 0.5, 1 and 2 seconds as
the time step length. The results indicate that the time step lengths
used have littleeffect onthe cross-sectional average temperature. For
example, when A¢+=10.02 sec, T,=1008.2 K at 16 seconds which for

AOg =2 second, T,= 1011.4K at 16 seconds. Thus when the
time step length is increased 100 times, the blade cross-sectional
average temperature oniy varies by 3.2 degrees. The relative differ-
ence is only 0.3% (the other cases are even better than this).

4, Similar to the situation of finding the 2 dimensional

steady state temperature fleld of air-cooled blades with finite
element method [1], the accuracy of the transient temperature fileld
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calculation 1s also determined basically by the calculation of the

v

_ boundary parameters. Hence, accurate determination of the local /14
[ convective heat exchange coefficilent &, on the burning gas side,
& the convective heat exchange coefficient s, of each internal

cooling passages and the cool air flow rate ¢, of the air-cooled
blade requires further investigation.

T
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COMPUTERIZED LASER THERMAL DIFFUSIVITY
MEASUREMENT APPARATUS *

Xi Tung-geng, Zhou Sin-yu, Li Zong-jie, Ni He<dine, Gu Zong-yi**
(Shanghal Institute of Ceramics, Academia Sinica)

Abstract

This article discussed the physical model for thermal diffusivity measurement by
pulsed laser technique, and deseribled the fundamentals of data processing and contr.l
by a computer. Several boundary conditions must be satisfied in the measurement.

The thermal diffusivities of standard specimens——-Armeo iron and a-AlO,, as well
as other materials were determined by the apparatus. Data obtained from the stan-
dard specimens were compared with recommended values in the literature and found

to be in goud agreemient. The r.m.s. crrors of Armeo iron and g-AlQ, specimen
measurements amount to —3.2— +4.3% and —2.4 — +5.6% respectively. This ap-
puratus features autumatic und ligh speed. measar-ment, and is rocommended to be
op-rated in the temperature range of 300 to 1800°¢'. The interval between laser emis.
st and display of resulr is approximatel: 5 sceonds.

1. INTRODUCTION

The pulsed laser technique to measure thermal diffusivity
A as developed in the sixties has overcome the limitations of other
methods, and provides the advantages of small sample size, high
speed, high precision and is applicable to the measurement of
a wide variety of materials. Hence, it attracts close attention
and develops very rapidly. According to reports [1,2], 75% and
more of the thermal diffusivity data have been measured with
this method after 1973. In the seventies, after the incorporation
of computer technique, the precision and speed of laser thermal

]
This paper has been presented at the Second Natiocnal Englneering
Thermal Physics Conference in Hangzhon, in November, 1978.

®%
Tan Chenxi, Wu Shanyu and Shao Jiesun also participated in this
work.
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diffusivity measurement apparatus have pronouncedly improved [2].

) Our Institute, together with the Shanghal Laser Station,

Shen Yang Metal Institute, Academia Sinica and Shanghai Steel
Institute, Jjointly researched and developed the laser thermal
diffusivity measurement apparatus in 1973. In April of 1978, our
institute also successfully developed a computerized laser thermal
diffusivity measurement apparatus and improved its various
characteristics.

2. METAL PHYSICS MODEL AND PRINCIPLE OF MEASUREMENT

The physical foundation of the steady state method and transient
method for measuring the thermal diffusivity X 1s the differential
equation of thermal diffusion. This equation may be solved by
using various specific boundary conditions. The solution obtained
is generally related to the thermal properties of matter [4].

The physical model of the pulsed laser measurement technique
for x» 1s to radiate normally on the front surface of a thin circular
disc (the sample) insulated at the periphery, with a uniform laser
pulse beam and then by measuring the temperature rise curve on the
back side of the sample under one dimensional heat flow conditions,
to find the temperature diffusivity a« from whick the A value may
be deduced.

Let the initial temperature distribution at any point X on
a circular disc with sample thickness L be T(x,0), then the temperature
distribution T(x,t) [5] at any time t 1is
- = nin'ae\  awx (* axz
Zexpk—r)m-z- S. T(l‘, O)COO L ds .

(L)

T(x,2) = L SLT(: 0) dr +2
» L Je 14 L (1)

At the instant «(4-—0), when the sample absorbs the laser /148
the temperature distribution at X within a very small distance_E
from the front surface (f=0) of the sample is
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T(‘s’o)-Q/D't", §o<‘<z; (2)
T(‘:’O)_oa §I<8<L. .
(3)

where D and ¢ are respectively the density and specific heat of
the sample, Q the radiation intensity of the laser pulse absorbed
by the sample and T(x,to) is the temperature rise of the sample
relative to the experimental store temperature.

Substituting eq. (2), (3) into (1), because "0 T(s,4)=~T(s,0)

then
0 2 s, (—niddat\ n 0 L
T(x,8) = —=—u + = xp axx, __9Q L %
)= L.Z;“‘( L )°°'z. ey mBT
-2 C — nixas nzx\ L _ . nx (4)
L.D.‘[l-i-zg‘exp( rx; )cos(T) ;T‘.nn_l.‘]'

To simplify the temperature measurement, we choose for the back
side of the sample (x=L) the following special case:

=L, coc"—:'-'-cosnt—(—l)'; (5)

.‘.—.0’ 3 "_'.E m
L =T 7T (6)

Substituting (5), (6) into (4), we get

Sy (TR, ()

-
T(L,s) L-D-c[l+z,., X

To simplify matters, define 2 dimensionaless parameters w and
V(L,t) and let

o= (8)
(L
VL, ) = Had, ,, (9)

where TM is the maximum temperature rise after the sample is
radiated by the laser, and
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Tyu=Q/L-D-¢c, . (10)
Substituting (8)-(10) into (7), we get

V(L,8) =1 +2 3 (=1)"exp(—n'w), (11)
LD
with V(L,t) and o as coordinate, then the curve in Figure 1
represents eq. (11). From eq. (11) and Figure 1, we can fix the
value of «. When V(L,:)=0.5 s =138
[8] becomes .

, then Reference

. ] o - 0.138 * L:
£
where t3 is the time required for the back side temperature of the sample

to reach % its maximum value, and may be found from the temperature

increase curve of the back side of the sample from which thermal
conductivity ¢ may be found.

(12)

The boundary conditions required by eq. (12) must be satisfied
during the measurement: we must establish a one dimensional heat
flow along the sample axis; the laser pulse time must be far smaller
than the time for the sample to reach thermal equilibrium; the laser
pulse should be uniformly distributed{ the heat loss of the same
should be minimized. Otherwise corrections must be made. Under
the condition of second apparatus permit, the temperature rise on
the backslde of the sample should be as small as possible so that
a may be treated as constant.

After a 1s measured, we may find X from the following equation. /}ﬂj

Aemagrc*D (13)

The error of C value as measured by the lce calorimeter or
copper calorimeter is generally less than 1—1.5%“" ; hence,
according to the usual way, the value of C may be found usually
in handbooks.
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Figure 1. Curve of eq. (11).

3. STRUCTURE OF THE APPARATUS AND THE COMPUTER CONTROLLED
MEASUREMENT SYSTEM

The apparatus basically consists of U parts (see Figure 2
and Figure 3).

1. Laser source: a Nd glass laser with xenon lamp excitation
is used. The wavelength is 1.06 u, Each pulse is about 0.6 ms with
an energy of about 20 Joules.

2. Vacuum carbon tube oven: the oven is insulated by carbon
fibre and heated with a 10 KVA high current heater. The oven
cavity contains graphite sample stand. A three-support point ZrO2
ring 1s used 1n the oven support to fix the sample and to reduce
heat loss. The vacuum chamber 1s water cooled and is capable
of automatic elevation.

3. Optlcoelectric measuring system. The sample back side

- - temperature rise 1s measured with a light sensitive PbS resistor.
It is installed in a blackened tube with adjustable grating,
Infrared lens with adjustable focus, and fllter. ©The optically
sensitive resistance 1is one arm of a bridge. When the laser
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Figure 2, Picture of the apparatus.

/ 2
I#Htﬁh[ 2L
10
£l arun g
it I ey
} v
R
!
1
! Muwz | = L axe Y5
i M '
i L____,_‘ ‘
lels-m,\il-nu i w|nire ¢
— e . - - — - U -4
]
/f AAite wnne 17

Figure 3. Block diagram of apparatus.

Key: 1l--parallel lamp; 2-~laser; 3--sample; U--infrared
detector; 5--electric bridge; 6--laser power supply; 7--oven
tube; 8--vacuum system; 9--amplifier; 10--oscilloscope;
11--CPU; 12--ALU; 13--A to D converter; lid--memory; 15--
quartz clock; 16--38-10A computer; 1l7--output device;
18--input device; 19--result of computation.

radiates on the front side of the sample, the temperature rise
on the back side increases the light sensitive resistance. The
bridge becomes unbalanced and outputs a small voltage on the load
which after direct current differential amplification 1s sent to
the oscilloscope with the time marker. The temperature increase
curve 1s photographed on ultra-violet film or the signals can be
sent to the computer. In both cases, a value may be calculated.
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4, Computer control system: we used a JS-10A computer for
the control. It has a computational speed of 30000 computations/
second and a memory of UK. To satisfy the special requirements
of thermal diffusivity apparatus control, we made some modifications
fo the computer system as well as the electronic circuitry. The main
control program designed by us consists of 5 sub programs:

Ty
Taee

" I

1. Recharging and starting the pulsed laser power supply;

2. Collecting and storing éample back side temperature rise
curve through A to D converter;

3. Processing and énalyzing the temperature rise curve;

4. Calculating the values of t3 and a;

5. Automatic printout of experimental results and all “he
original data.

Before testing, the above programs are input into the computer
from paper tape; then the data, and sample thickness are entered
into the computer display. The main switch of the computer 1is then
pressed and in 5 seconds the laser 1s charged up and activated.

In another 5 seconds or so, the experimental results will be
displayed on the printer.

4, THEORETICAL ANALYSIS OF THE VARIOUS BOUNDARY CONDITIONS IN
THE TEST

1. Criteria on the degree of satisfaction of boundary

conditions.

(1) Analyzing the characteristics of the temperature rise curve
_ on the back side of the sample: Figure 1 is the sample temperature
] rise curve under the circumstance that the experiment satisfies

temperature rise curve, if the latter reaches the final equilibrium
temperature very slowly after a rapid temperature rise, it may be
' due to the non-uniformity in the radiation heating of the sample front

s
t all the boundary conditions. Compared to the actually measured
] side. The result will lead to a higher value for a. If there 1s a
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serious radial heat flow in the sample, then the temperature

rise curve will be twisted. If the temperature rise curve decreased
wilth a large slope immediately after reaching the maximum, then it
indlcates a large radiation heat loss, causing a higher value for

a. When the boundary conditions are satisfied, the temperature
rise on the back side of the sample will be greater than 99% of

the maximum temperature rise after 4 ti,

(2) Relation between measured o and Q: From the mathematical
derivation in section 2, we know that irradiating the same sample
with lasers of different Q should give the same value of o and the
degree to which the boundary conditions are satisfied during the
test may be judged from this. With multiple hole carbon as
a sample for instance at 1420°C we have irradiated with 3 different
values of Q. The t3 and a obtained are all the same. (see figure
k)., The capacitances of the 3 experimental lasers are all 2000 uf. /li
The voltage values are respectively, 1300V, 1400V and 1500V.

/ TR A !l o
o t
7l il 1400V Ey
-
} »
i 1300V §5
| ' ! /7777777777-
1
£\ o L ) 7& L) 1000 1160
A i 2 O emmK @
Figure U. Experimental Figure 5. The optimum
curve to verify the thickness range of pure
indevendence of a, from Q. iron at various temperatures.
Key: l--temperature; Key: l--sample thickness
2--time. (mm); 2--experimental tempera-
ture (K).

2. Selection of sample optimum thickness: To better satisfy
the boundary conditions at testing time, we must select the optimum
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sample thickness. Too thick a sample wlll increase the time for
the temperature rise to reach-thermal equilibrium, increase the
heat loss and lead to a iarger value for a. Too thin a sample

will not satisfy the boundary condition that the laser pulse time

T should be much less than the time for the sample to reach thermal
equilibrium, and lead to a smaller value forn. Now by using pure
iron samples as examples, we shall calculate the range of the
optimum thickness.

(1) Calculation indicates that when the ratio of t to the
characteristic time To is less than 10'2, the effect of the time
limitation on pulse length may be neglected [8] namely

v/t - < 1072, (14)

———t——
(L/x) - a™
From the above equation, for pure iron samples at experimental

temperatures 600 K, 800 K and 1000 K, we calculate the optimum
thickness at >1.5, 1.3 and 0.98mm, respectively.

(2) Thermal diffusivity calculation indicates thatthe radiation
heat loss value 1is determined by the radiation parameter y. When
y=93Xx 10~ , the error introduced by radiation heat loss is
<1%™ . Also

y = o+ (L/r Yy, (15)
Y. = 4o 8, TU" - L, (16)
7'-4'7'-'1'31"". (17)

then
y = 40ed™TILLL +(L/7)). (18)

Where o is the Steffan-Boltzmann constant, r is the sample
radius, exander are respectively sample axlal and radial emissivity.
If we are to satisfy y=3Xx10" > then at testing temperatures of
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1000 K, 800 K and 600 K, the sample optimum thicknesses are respectively
<2.3,3.15 and Tmm.

Hence, the optimum thickness range of pure 1lron at various
temperatures lies in the shaded region in Figure 5.

5. EXPERIMENTAL RESULTS

The following are the experimental results for 3 types of

samples representative of the large number of samples measured

with our apparatus:

1. Armco pure iron: is the standard sample for measuring the /15]
thermal diffusivity of metals, and is supplied by the Metal Institute
of Academia Sinica. The measured results agree with the recommended
values of T.P.R.C. [9] and those of Powell [10] (see Table 1 and
Figure 6).

Table 1. Percentage difference between measured values of
ARMCO pure iron and the recommended values of T.P.R.C.

Temperature (xX) 600 | ' 800 | 900 | v

Percentage

Difference (™ +9 | +27 | +2 | +23 | +2.6
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Tigure 6. Thermal diffusivity
curve for ARMCO pure 1ron.

Key: l--(calorie/sec cm deg)
2--¢ our measured value
x T.P.R.C. recommended

value [9]
A Powell recommended value
[10];

3--temperature.
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Figure 8. Thermal diffusivity
curve for a-Al2O3.

Key: l-- (cal/sec-cm deg);

2-- Our measured valve;
I,II - the measured valves
from 2 thermal diffusivity
apparatus developed at our
institute;

3-- Temperature °C(10 ).
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Pigure 7. Thermal diffusivivz
curve for aA1203
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2--0 our measured value
¥ T.?.R.C. recommendel
value;
3--temperature.
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Figure 9. Thermal diffuslvity
curve of plasma sprayed erﬁe3
coating.
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Q) a-Al0,. : 1s the standard sample for thermal diffusivity
measurement of non-metallic materials and is prepared by our

Institute. The density is 3.96 gm/cm3, purity 2995%, The

measured results agree with the T.P.R.C. recommended values and
cther thermal diffusivity measurements made at our Institute
(11,12] (see Figure 7, Figure 8, and Table 2).

Table 2. Experimental values of i fn7 a-ALO, and the
percentage difference from T.P.R.C. recommended

values.

Temperature (k) ;nﬁ 1000 l Hw ‘_l;r;gm ’m‘__mpw ‘ LI

Percentage PO O A 2 2 | s [ s
difference (%) o

(3) Plasma sprayed with Cr,0, coating: Samp%e air orifice
rate and density are respectively 5% and 5.7 gm/cm~. The measured
values are shown in Figure 9.

Z. ERROR ANALYSIS

The welghts of total error in measurement of each single /15 %
term errors are all different for different samples at different

temperatures. We shall now analyze the error in the measurement
for pure iron at 971K.

1. The measurement error introduced by secondary =zpraratus:

(1) Zrror lel: 1is measuring the thickness L: L = 2mm
Thickness 1s measured with a 0 level one thousandth meter bar with
maximum error + 2u , 1.e., aL = 0002mm hence,

le, = 2]AL/L] == £0.2%,

(2) Error |el in measuring ¢ : 1t includes 5 terms namely
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(1) Error in the quartz crystal clock 10'6 sec. It may

be neglected compared to the value of 110 ms for t 1/2;
(2) A to D converter error *05%;

(3) DC amplifier error, including the DC enhanced precision,
enhanced stability and DC enhanced linearity are respectively =ul%,
with a total of =%0.3%;

(4) The computer stores one data point every 5 ms, intro-
ducing in t 1/2 an error of 2.5 ms. Since ,s =110ms, the error

introduced is *2.27%;

(5) Light sensitive resistor and differential amplifier
time constants are of the order of micro-seconds. The error intro-

duced in t 1/2 may be neglected.
The maximum relative error in the above 5 terms || = +3.1%,

2. Error introduced because the boundary conditions of
Zquation (12) cannot be completely satisfied:

(1) Error introduced by the effect of time-limited pulse
lesl calculation indicates that when /s, <10°* , this error
may be neglected. From measurement, tm~06ms , .7, may be

found from the equation below
.= (L, %)+ a™ = 250ms

T -
Thus <107 | therefore el =0

(2) Error introduced by sample heat loss lesd:  since the
experiment 1s carrlied out in vacuum, the heat loss due to air
convection and conduction may be neglected. However, radlation heat
loss increases with the rise of temperature and may be calculated
from Equation (18), where Ty=971K,A ".0%08cal/sec 2m

C,e~03,L=02cm,r =05cm . Hence, y=S4Xx |0, . From
the relationship [8] between y and #/s the constant term
75




in Equation (12) may be found as 0.137. Since the constant term
used in Equation (12) 1s 0.138, the error introduced |g| =~ 0.73%,

(3) Error introduced by the non-uniform heating of the laser
beam |&f; it 1s difficult to measure accurately the uniformity
of the beam. Analyzing the photograph we took of the beam, the
beam energy 1s gquite uniform. Besides, smoothing of the curve
is cbnsidered in the computer program. According to the estimate
of Taylor (2], the error in this part |[g! < £1%.

In the 5 error terms above, with the exception that the
radliation heat loss is a positive error, the others are 211
positive and negative errors. Treating them by using the roct

mean square error, we get the total error as ¢ —3.2—+3.3%.

total

Similarly -ALO, sample at 1448°K has a radiation error
fed =%, . With the other terms respectively lel=~ £032%,
lea] = £2.2%, |6, =0, |, =~ £1%, The total root mean square error is

Eg = —244% ~ +5.6%,

The root mean square errors of the 2 standard samples, and
the measured values and the recommended values from forelgn sources
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for the percentage errors are shown in Table 3.

-

Table 2 shows that compared to the recommended values from
foreign sources, the positive erfor in the measured value of 2
and its magnitude 1s 1in agreement with the result of our error
analysis.

Table 3. Measurement error in the 2 standard samples.

T.P.R.C. recommended Percentage error between Our measured
error [9] our measured value and error
T.P.R.C. recommended
value
Pure iron Pure iron Pure iron
(971K) a~Al,0,(1448K) . (ITIK) |a-AlJ)|(l*’Bk;i ONK) | a-ALO, (1448K)
+2%% +6—109% 2.4% ' 5.7 —2ge— e rae] NS

7. RESULTS AND DISCUSSION

1. After our apparatus 1s controlled by the computer, the
precision of measurement repeatabllity and speed of measurement
degree of automation have all pronounced improved.

2. Since the emmlissivity of the non-metal ¢ 1is large,
and 1ts thermal diffusivity i small, therefore at the same measure-
ment temperature the error introduced by heat loss is larger than
that of the metallic material. There are two ways to reduce this
error: deposit carbonized tungsten with small & on the sample or
correct by usilng correction formula for radiation heat loss.

3. Since the t} for metal is smaller, the error introcduced
in t3 when the computer takes in data is greater than that for
non-metallic material. The way to reduce this error is to increase
the data sampling rate of the computer, or to increase the sample
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thickness without 1increasing csignificantly the radiation heat
loss, 1.e. to use the upper limit value of the best thickness.
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EXPERIMENTAL INVESTIGATION OF SIMULATING
IMPINGEMENT COOLINCG OF CONCAVE SURFACES
OF TURBINE AIRFOILS

Cheng-Ji-rui Wang Bao-guan
(Nanjing Institute of Aeronautics and Astronautics)

Abstract
Presented in this paper are the experimental vesults of impingement cooling of
1wo aluminuim targets of different sizer with six  impingement  tubes. The target
simulating the leading edge of a turbine airfoil is preheated and cooled by jets of

different impingement tubes at varvious flow rates and distances. The lumped-capacity
method is used to determine the cooling rate of the aluminium target and the mean
heat transfer coefficients which are in turn correlated in dimensionless parameters.
Satisfactory results are obtained when Nu numbers calculated from the recommended
expression are compared with those by experiments. The recommended expression is
further compared with the correlated formula of Arizona State University by Metzgor
and those of University of Cincinnati by Ravuri and Tabakoff together with the
experimental data, and it is found that the expression correlated by this paper is more
or less reasonable,

FORWAR.

For an aeronautical Jjet engine, the thrust-to-weight ratio
is an important index for Jjudging the design standard. In order
to improve the thrust-~to-weight ratio, it 1s necessary to increase
the Tront inlet temperature of the turbire. Because the blade material
cannot endure too high a temperature, it is often necessary
to employ cooling techniques so that the temperature in front
of the turbine can be railsed as far as possible while still
staying within a temperature endurahle by the blade material.
Air convection cooling has been the basic method for cooling
the aeronautical combustion turbine blades, but for some severely
heated regions on the blade (e.g. the front and rear edge of the
blade) convection cooling along is not enough. Other cooling
techniques must be incorporated for local cooling. The usual

¥
Thls paper was presented at the 2nd National Engineering Thermal
Physics Conference at Hangzhon in November, 1978.
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by using air jets for 1impingement cooling (internal cooling)

method is to use local air film cooling (external cooling) or

directly on the front edge of the blade, or by using both.
Using impingement air jet to reinforce the local cooling of
the leading edge 1s a structurally simple, practical and easy
method.

The theory of jets and experimental study has long been
discussed, but the discussions are usually limited to free jet
or wall jet and not about impingement Jjets normal to flat plates
or concave surfaces. In some papers, only the flow characteristics
of flat plate imbingementjets are supplied while the heat exchange
problems of impingement jets on plane or concave surfaces are
not discussed.

From the end of the sixties to the beginning of the seventies,
in order to apply impingement jets to the cooling of the leading
edge of turbine airfoll some research was carried out [5-12] on
the impingement cooling of concave surfaces, the majority of which
was basically experimental studies. Among fhese experimental
studies, the research works of D.E. Metzger of the University
of Arizona and those of W. Tabakoff of the University of Cincin-
nati in the U.S. are more outstanding.

Metzger did some experimental studles on the impingement
cooling of a row of circular jets on concave surfaces [6,7]. He
analyzed the effect of the parameters Re,c./d., 1/d. and Z,/b
on the Stanton number St (for the meaning of symbols, see the
symbol explanation) and finally proposed the empirical formula [6]

StuaxRe"T(1/8)"5 = 0.355 (1)
The range of applicability 1s 4.65<1/6< 550, 1.67 < c./dy<6.67, [150 < Re < 6300,
He did not include in eq. (1) quantitatively the effect of c./d,

and z.,t , but only used 1/b to implement indirectly the /16|
effect of cn/dn and to eliminate the effect of Zn/b by taking the
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maximum value of St nymber.

Tabakoff, et al., also carried out a more thorough analysis
and study [9-12] over a period of time on the impingement cooling
of seml-spherical concave surfaces. In Reference [10] he proposed

Nuy, = cRe{®Pr/(c,/d,)7(F /f) (2)

as the standard relationship for impingement cooling of semi-
spherical concave surfaces by multiple array of circular jets.
In Reference [11] he proposed

Nu, = 0.8113Re}™(d,, D)™™ (¢, 'd,) " (Z,/d, )" 15 (3)

as the standard relationship for the impingement cooling of
semi-spherical concave surface by single array of circular jets.
In the above 2 equations,

Rey, = Vod,/u (4)

Rc,. = VoW 4"_u

(5)

where W 1s the length of the curved surface of the impinged

concave plate, i.e.

= /2
W = =D (6)

In eq. (2), the coefficient ¢ and the index q are both functions
of Zn/dn:

¢ = 1.36exp( — N/Z,./d_,) — 0.002(Z./d,) — 0.153,(Z./da) 7
q = l.ls‘)(z,/’d.‘) — 323 (8)

In the formulae proposed in Reference [10,11], the diameter
of the jet orifice or the length of the curved surface W of the
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impinged concave surface are taken respectively as the formative
dimension of Re and Nu, whlle the parameters such as the number
of jet orifices n and the center distance Ch hgve not been taken
into consideration. This seems to be a lack of completeness.

In this paper, we synthesized the results of the papers men-
tioned above and simulated the impingement cooling of the leading

edge of the airfoil by cooling air by impinging against the

semi-spherical concave surface with a single array of circular

alr jets. The experimental set up is basically based on the

University of Arizona method while the data are treated »nrimarily
- according to the University of Cincinnati method.

EXPERIMENT AND MEASUREMENT SET UP AND TEE EXPERIMENTAL PROCEDURE

Figure 1 shows the diagram of the air passage system in the
experimental set up. The air stream from the pressure stilling
chamber passes through the regulator valve 4, the rotor flow

™ LA AAD AR ChANEE LGN s

rate meter 7, the air storage chamber 10 and impingement tube
17 and impinges on the test sample 16 to simulate cooling of the
leading edge of the airfoil. Finally the cooling air stream

! is expelled to the surrounding environment. The rotor flow rate
meter and the nickel-chromium-copper thermal couple have all

Cade')

been calibrated.

Figure 1. Diagram of the experimental set up.

Key:l=-=source of alr; 2--pressure-stilling chamber; 3--pressure
gauge; U--regulating valve; 5--heating oven; 6--pressure gauge;
T--rotor flow rate meter; 8--digital voltmeter; 9--soft turbine;

T

P ————
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Key to Fig. 1 cont.: 1l0--alr storage chamber; ll--thermometer;
l2--pressure gauge; l3--work bench; l4--thermal couple;
15~-~-insulated chamber; l6--test sample; 17--impinge tube;
18--coordinate regulating stand.

Figure 2 shows the diagram of the test piece, the impingement /167
tube and their set up. The seml-circular concave surface on
the test piece is impinged directly by the cooling air stream.
Qur experiment used 2 test pleces with semi-circular concave
surfaces of different diameters D: D=15mm and D=11lmm. The
test piece is heated first in a small electric heater. Its tempera- <
ture 1s determined by the nickel-chromium-copper thermal couple
buried in the test piece with a PZ8 digital DC voltmeter. After
being heated, the test piece is removed from the electric
s heater and placed into the cavity of an insulated box made from
B Tung wood. The cover of the insulated box is then closed with
E' only the semi-circular concave surface of the test plece exposed
3 to the jet of the impingement tube and cooled by it. The tempera-
ture change of the test piece is displayed on the PZ8 digital
voltmeter through the thermal couple. After the impingement air
_ stream flow rate is stabilized and fixed at a required volume
' by adjusting the regulating valve, the instantaneous test plece
F temperatures are recorded with the timer and the digital voltmeter
so that the variational relationship between the instantaneous
, temperature of the plece and time ¢ 1s obtained, from which the
{ heat exchange coefficlent a.of the impingement jet on the test
[ piece averaged over the semi-circular concave surface is found. }
Thlis a value corresponds to the average heat exchange coefficient
at a certailn flow rate. Thus different o values for different flow |

fr.ﬂfﬁfvv M {

SN §

r rates are obtalned.

The width 4 of the impingement tube is 1/2 of the dlameter
of the semi-circular concave surface of the corresponding test
piece, 1.e. d/D=1/2. Hence there are 2 different widths for the
impingement tube: d=7.5 and d=5.5mm. The orifice diameter of
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1 Figure 2. Diagram of test pilece and impingement
tube arrangement.

Key: 1l--insulating box; 2--test plece; 3--impinge-
ment tube.
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the impingement tube is determined by a tool microscope and
an average value dn is then obtained. For an impingement tube
of the same wldth, there are 3 different center distances Cn

cads = 167,333 and 6.67.

a tri-directional coordinate regulator stand 18 so that the dis-

i.e., The implngement tube 1is fixed on
tance Zn from the impingement tube to the semi-circular concave
surface of the test plece may be adjusted at will. Each impinge-
ment tube is first adjusted to be at the glven distance Zn‘

Then a set of average heat exchange coefficients corresponding

to a given flow rate is measured and their average value is

taken to be the average heat exchange coefficient at that flow
This 1s done for different

Then the above -=xperiment is repeated for another

rate to reduce accldental error.
flow rates.
Zn value.

each test plece, there are 3 impingement tubes.

In our experiment there are 2 test pieces and for
Flve Zn

values are used for each tube and for each Zn value, experiments
are carried out for five different flow rates. Hence, one
empirical formula may be found for each Zn value, for a total

of 30 empirical formulae. (for detail, see Table 1).

TREATMENT OF EXPERIMENTAL DATA

As the thermal
conductivity of aluminum blocks is large and the test pilece
dimension is small, the average heat exchange coefficient obtained
from this experiment 1s mainly between 170 to 1200 Kcal/mz' time
Preliminary estimation gives Biot number B.=0.025 ~ 0.125 ,
The non-uniformity in temperature 1s no nore

The test pieces are made from pure aluminum.

degree.
averaging about 0.1.
than 2.5%. The characteristic dimension of the aluminum block
is obtained from the ratio of the aluminum block volume to the
cooled heat exchange surface. We may assume that the spatial
temperature distribution of the aluminum block 1s basically
uniform so that the cooling rate of the aluminum block may be
calculated from the concentrated total thermal capacity method.

The thermal equilibrium equation of the test piece during cooling is

—Gucq*dT/dt = aF(T — T.) (9)
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Integrating the above equation, we get

n((T; = Ta)/(T — Ta)l = aF(t — 1)/ Cuca (10)

where T1 is the initial temperature at the initial instantaneous
time ti, GAL and Cpp, are respectively the welght and speciric
heat of the aluminum block. Let

c = G,;,_c‘ " F ’

and take into account of heat loss by leakage, the above equation
may be re-written as

a=[c‘/’(t~t.)]ln[(T,-—'1",)/(’1‘__7‘)]_ (11)

The leakage heat loss is measurable: Place the aluminum block
into the insulated box after heating, block the seml-circular
concave surface with Tung wood and let it cool by itself. The

required time interval for T, to decrease to T 1s measured and

the leakage heat loss is estimated from it. Experiment indicates
that the 1leakage heat loss is very small, about 3% of the heat
exchange coefficient at the minimum flow rate. It may be neglected
within the accuracy of our experiment, when the impingement Jjet
flow rate has stabilized, time measurement with the second timer

is started (take ti=0) and simultaneously the instantaneous tempera-
ture Ti of the aluminum block 1s also recorded. Then the aluminum
temperatures at a sequence of pre-arranged time intervals are
recorded and a set of heat exchange coefflclents for a given

value of impingement jet flow rate is calculated according to

Eq. (11) from which the arithmetic average value is taken to be

the average heat exchange coefficient at this flow rate. The Nu

number 1is then calculated

Nu = wud, /) =a- 2b/A (12)

where de is the equivalent dlameter when the single array circular
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hole is converted into the equivalent 2-dimensional jet channel
and b 1s the width of the equivalent 2-dimensional jet channel,
i.e.

b= n(m,4)d% 1,
(13)

The Re number of the Jjet is

Re = Vpd, == (G + 2b) [y (14)

The volume flow rate measured by the rotor flow rate meter
is standardized by the standard state PO=10332 kg/mz, TO=293K.
This volume flow rate value should be corrected according to the
alr stream state during experiment and converted to the weight
flow rate G according to the current air stream pressure and
temperature with the following ejuation:

G o= 020290,y P T (15)
where P 1s the absolute pressure (kg/mz) of the alr storage chamber,
T the absolute temperature (K) of the air storage chamber and

Qo the volume flow rate at STP.

According to similarity theory, the heat exchange coefficient
may be expressed with the following equation

Nu = j(Re, Pr, p1; P25 Ps o) (16)
For air, the Prandtl number Pr basically does not vary very much.
We may take its value as fixed. Py Pas Pyt are geometrical
similarity standards. According to experimental analvysis, we take

the following similarity standards:

p=Z./b | the relative distance between the test piece and
Jet orifice;
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pr= v, d, , the relative center distance of the jet orifices;

F‘ +#=F 1 | ratio of the semi-circular concave surface area

to the total cross-sectional area of the jet orifice, which
reflects the effect of the diameter of the concave surface on
a. £q. (16) may te written as

h Nu= {{Re*(c,/d,) (7, b)"(F f)4
' (17)

For a given impingement tube and test piece, Cn/dn and F/f 's

i values are all fixed. For a given Z_/b Eq. (17) may be re-written
' as

Nu == .IQRC"

where

.'10 == .’11((,., Jq),{,(szb)‘l‘(l: ,f).l’

(19)

YPERIMENTAL RESULTS AND ANALYSIS

7]

Table 1 shows the empirical formulae obtained from the data
of 6 impingement tubes at 5 different Zn/b values for 5 different
flow rates in the experiment, after re-ordered into the form of
Nu=ARe™. Because of the effects of different experimental condi-
tions and measurement errors, etc., the A and m values of each
formula will not be the same.

Figures 3 through 7 show the comparison between experimental
data and the empirical formula obtained from them for the 6 impinge-
ment tubes at a fixed Zn/b value (3 types with Q/L-tlﬁ7,333,&67 )
Details about the meaning of the symbols in the figures may be
found in Table 1. Generally speaking, Nu number decreases v..th
the increase of Zn/b , but Zn/b 's value varies from 3 to 80
while cn/dn from 1.67 to 6.67. Hence, relatively speaking, the
effect of Zn/b on the Nu number is not as. large as that of cn/dn'
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In Figure 7, with the exception of line 16 labeled with the
experimental value of Zn/b=3’ the other 5 lines all are the
experimental data at Zn/b=80.

From Figures 3 through 7, we can observe the effect of
Cn/dn on Nu: the Nu number decreases significantly with the
l! increase of cn/dn‘ Under the condition of equal Cn/dn value,

the Nu numbers of test pileces are relatively close. The Nu

number of the test pilece with C-1l1mm is slightly higher than that
of the test piece wilth D-15mm. From this it can be seen that
1 Nu number is related to the heat exchange surface area of the test
ﬁ piece, and hence, related to the radius of the semi-circular

concave surface of the simulating airfoil's leading edge.

Metzger [6] has pointed out that the averagé heat exchange
coefficient of the impingement jet varies with Zn/b; for a fixed
value of cn/dn’ a maximum heat exchange coefficient is found
for some Zn/b value. After passing through the value,
decreases with increment of Zn/b‘
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The value of Zn/b producing the maximum heat exchange coeffi- /171

clent 1s related to c /d,. When Caldn = 1.67 , the maximum

value of heat exchange coefficient occurs at 1<2Z,/6 <3 ; when
ca/ds = 3.33 , 1t occurs at 2<2,/6<5 and when «c./d, =667 ,

it occurs at 5<Z./b< 11 . In our experiment, only for the

test plece with D=15mm did it reach Z /b=3 once when Cofdy = 1.67

With the exception of this, it 1is very difficulit to achieve Z,/b=3
in the experiment; therefore it is not possible to determine the
Zn/b value through experiment that produces the maximum heat
exchange coefficient. The above is the empirical formulae obtained
for each impingement tube at a given value of Zn/b in the experiment:

Nu = ARe™,

The values of A and m vary for various values of cn/dn and Zn/b5
hence, 30 empirical formulae are obtained. They are not convenient
to use although it is easler to compare them to experimental data.
Hence, we took all the data (150 experimental points) obtained

from experiment and put them in a matrix form according to the
least square method based on Eq. (17) and finally find the solution
through the electronic computer with a program (which is here
omitted). The coefficients and indices in Eq. (17) are obtained
respectively as

Ay = 0269, A;=0.666, A;= —0.401, A,= —0.065, A;5= —0.201,
(20)

Nu = 0.269Re™%( c./d.)""*( Z./6)"%(F /)~
(21) /1

-~3

|

The applicable ranges of the above equation are:

1950 < Re < 8900, 1.67 < ¢,/d, < 6.67, 3 Z,/6<80,36< F/f <135,
The qualitative temperature 1s taken as the total temperature
(air température of the air storage chamber) of the impingement
air stream in front of the orifice. From the index of Eq. (21)
one can see intuitively that besides Re, the factor that affects

[}
-
-
b,
-
x
p..
b,
=
re
|
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the heat exchange coefficlent the most 1is cn/dn while the effect

due to Zn/b 1s the least. To test the agreement of the composite
relation (21) with experimental data, we compare the Nu
ated from Eq. (21) to the corresponding Nuexp
ment. The experimental data points are shown with the symbols

cal calcul-

measured from experi-

in Table 1, as shown in Figure 8. From Figure 8, it can be seen
that the maximum deviation between Nucal and Nuexp 1s within
+17%. 90% of the experimental points fall within $8%. This
result 1s satisfactory. The index of Re in the composite formula
(17) is precisely the middle value of the 30m values in the
empirical formula listed in Table 1. The size of the index shows

that the flow state of the jet stream is close to turbulent flow.

If the Eq. (21) is to be extended to the impingement cooling
by other fluid, it can be done by the traditional method by adding
on the LHS of the equation a factor Pr1/3 as a correction. The
coefficient A1 should be changed to 0.326 namely

Nu = 0.326Re™“Pr'*(c,/d, )" (Z./6)™"*(F /)™ (21a)

COMPARISON EQ.(21) OF THIS PAPER TO REFERENCE [6] AND [11]

Metzger pointed in Reference [6] that the average heat exchange
coefficient varies with Zn/b . Yet when the data are organized,
only the largest heat exchange coefficient value for each Zn/b
value and the effect of Zn/b is not incorporated with the
formula. The formula realizes the effects of °n/dn and F/f
indirectly through the parameter 1/b. In practical applications,
the value of Zn/b that gives the maximum heat exchange coefficlent
is usually unknown and the effects of cn/dn and F/f cannot be
expressed in the formula.

In order to make it easier to compare Eq. (1) to the Eq. (21)
recommended in our paper and to the experimenta; data, 1t 1is
necessary to transform the equation as follows:

Nua,Re"2(1/5)*3 == 0.355. Rel'r
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Nunuch‘Ln(l,/b)u'“ = () 355 Rcl’r. ( 22 )

Combining the case of D=15mm in our experiment, in air Pr=0.7
in Eq. (22)

| = (1/2)(1/2_)(1:0) = 1]1.76mm,

b 1s related to the impingement tube used. Substituting the b
values corresponding to the 3 cn/dn values into Eq. (22), the
Metzger equation may be changed to:

(a) % c./d, = 1.67 I, Nipas == 0.0577Re?
(b) % c,/d, = 333K, Nup, = 0.04025Re"? (23)
(c) % c,/dy = 6.670, Nuy, = 0.0307Re"?

Figure 9 shows the comparison of Eg. (21) in this paper to
the Metzger Eqg.(23). In the diagram, it can be seen that:
When ca/da= 167 , Eq. (23) 1s close to Eq. (21) and to the
experimental data in thls paper. When ¢o/dy = 3.33 , Eq. (23)_
is slightly higher than our Eq. (21) or (18) at Zn/b=5, and when

co/da = 6.67 , Eq. (23) deviates more from (21) or (18).
This is because the heat exchange coefficient in Eq. (23) is
meant to be the maximum value. When Calde = 1.67 , the maximum
value occurs when Zn/b is between 1 and 3; hence, Eq. (23) is
closer to Eq. (21) at Z,/b=3. When culds = 6.67 » the maximum

value situation did not occur and Eq. (23) is higher than Eq. (21).

Through comparison, it 1is recognized that it 1is impossible to
include all the different geometrical conditions with a single
geometric parameter 1/b .,
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Figure 9. Comparison of
Eq. (21) and Eq. (23) of o,
Reference [6]. 3
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- The empirical Eq. (3) proposed in Reference [11] covers the

: experimental range

¥ ¢ Tdy = 2.5—50 Z./d, =26

i For the convenience of making comparisons, we choose our experimental

! data closer to the experimental range of Eq. (3):

. D == 15Smm,c./d, = 3.33, Z,/b=35,10,20 and 40 (corresponding to
94
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the cases of Z./da=1125,25,350 and 10.0 in Reference [11].
Eq. (3) must also be changed to the dimension 2b adopted in our
paper:

Nu = 0.8113Re"™(W /26)™#(d,/D )" ™(b;d,) " (Z,./6)""(c,/d)™* (32)
3a

Since"

[V = xD/2 = 3.14 X 15/2 = 23.55 mm

d, = 1.48mm, & =037mm, F/f=683

Substituting the above values in Eq. (3a) and simplifying, we get

Nu = 0.0589Re""(c,/da) " ¥(Z ./ 6)™™ 30)

Substituting again F/f=68.3 into Eg. (21), we get after simplifi-
cation

Nu = 0.1153Re"%( ¢, /d,)**(Z,/ b))% (21a)

Figure 10 shows the comparison between our (21a) and 3b) of
Reference [11] with the experimental data in our paper also
indicated in the diagram. From the diagram it can be seen that
Eq. (3) of Reference [11] is lower than Eq. (21) recommended in
our paper and the experimental data, and is close only for the
cases of Zn/b-s and 10. This is apparently due to the fact tlat
Eq. (3) in Reference [11] is only applicable for Zz.d,=2—6
which corresponds to the case of Z,/Jb=8—24 . Therefore when

z,/6>12 , Eq. (3) is not really applicable.

Since the impingement jets introduced in Reference [10] have

been multiple array orifices, it is too different from our experi-
mental environment and no comparison can be made.
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CONCLUSIONS
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Our major conclusions are as follows:

1. The major parameters affecting the impingement heat

exchange coefficient are

Re, c./d., Z,/b

and F/f. The geometric

parameters having the largest effect on Nu number 1is cn/dn, next

is 2 /b and the least is Z,/b.

2. When the experimental data are treated with the least
square method through computer calculations, the standard relational

equation obtained is

Nu = 0.269Re™4( c,/d,)"(Z./6)*%(F /1)~

3. When the results calculated with the above equation are
compared to the experimental data in this paper, basic agreement

is obtained.

When the above equation is compared to those recom-

mended in Reference [6] and [11], our equation is considered to

be closer to the experimental data.

4., The equation proposed in our paper basically includes
a number of factors affecting the heat exchange coefficient of
impingement jet in a compoéite, standardized relational formula.

It has a definite practical value.

SYMBOL EXPLANATION

4, 4., 4,, - cOnstant
b equivalent 2-dimensional Jet
¢ coefficient . =GacalF

center distance of impingement
tube orifice

CaL specific heat of aluminum

D diameter of semi-circular
concave surface of test plece

°n

.......

P absolute pressure
Pr Prandtl number Pr= ug,/a

Qo Volume flow rate at STP
(Pe = 10332, T = 293K)

q index, see Eq. (2) and (8)

Re Reynold number Re = Vod,/u = G« 2b/Ipg
Re, Re, = VoW/u
T d4nstantaneous time
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d impingement tube thickness .St Stanton number st=a/¥rc, (3600)
d'e equivalent diameter Stues Stmss = Tmes/ V7¢5(3600)
d Jet orifice diameter T initial temperature of
n 1 test pilece
F heat exciange surface area
f Jet orifice total cross- Ta total temperature or ambient
sectional area temperature of jet in the
G Jjet flow rate by weight ~ ailr storage chamber
G,; Weight of aluminum block t time
(test piece) ' V velocity
g gravitational acceleration W arc length of semi-circular

concave surface of the test

L 1length of test plece piece i = xD/2
1 1length of semli-circular arc
of the heat exchange surface Zn gtzgggc:ofgggtjegegzifice
of test plece ia(1/2)(x0/2) P
1 outer distance between the a average heat exchange coefficient
n o2 ends of the impingement A thermal conductivity
tube p density
m power index , u dynamic viscosity
Nu Nusselt number Numa-25/2
n number of Jet orifices on the
impingement tube
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EXPERIMENTAL INVESTIGATION OF TOTAL-PRESSURE
LOSS AND AIRFLOW DISTRIBUTION FOR GAS
TURBINE COMBUSTORS

Fan Zuo-min, Chao Zhi-fang
(China Gas Turbine, Establishment)

Abstract

A lot of theoretical and experimental investigations in relation to the subjeet have
“been done, and the results demonstrate that the present solution for the one dimensional

s‘multancous equations is reasonable. Both the widely current flow drag ealeulating
method and the hole blank off experimental method which was developed on the base
of the above said method have some defeets.

This paper provides a simple caleulating method which utilizes the mean flow
coefficient. The method is simple in caleulation, clear in coneept und has a wide runge
of applications. The caleulating result is in good agreement with the solution for the
wie dimensional simultaneous equations.

1. EXPERIMENTAL SET UP, TEST PIECE AND MEASUREMENT SCHEME

This experiment was carried out on a water flow-simulation
experimental unit. The test piecels a2-dimensional test section
made of organic glass with the 2 passages separated from the flame
tube with a separator.

The flow field of the 2 passages is measured by the total
static pressure difference. On each cross-sectional area, total
pressure 1s measured at 9 points. The flow rate coefficient over
the cross-sectional area 1s standardized a priori with Venturil
tube flow rate; then the flow rate through each cross-section
may be measured during the actual experiment. The flow rate
through a small orifice is determined by the difference between
the flow rates of the passage cross-section before and after
the orifice.

-
This paper was presented at the 2nd National Engineering Thermophysics
Conference at Hangzhon in November, 1978.
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The orifice jet velocity and orifice flow rate coefficient
are treated according to the cross-section area parameter before
the orifice.

2. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 1 shows the relation between the orifice flow rate
coefficient ¢ and flow rate parameter F,- This result is very
close to the data given in most papers (e.g. Reference [1]) with
the ¢ value at large Fp slightly higher. " (Note: the internal
flow of the flaming tube in our experiment is not zero.)

Figure 2 shows the relation between the orifice flow rate
coefficient ¢ and area parameter. The curve given in Reference
[2] 1is also drawn in this diagram (Miller curve). From the
diagram, it can be seen that for small Gp values,'the experimental
values of the orifice flow rate coefficient are far lower than
the Miller values.

The variational relations between the flow rate distri-

bution Wl of various test pieces and the relative area of the
orifice of the flaming tube A are shown in Figure 3 and Figure U.
We only emphasize one point here: namely that for a fixed

a; value, the bigger the curve xmax , the more curved 1s the
curve #w,={(4) . The smaller the value of X the more

o max?
w,={(4) approaches a straight line of U5".

Figures5 and Figure 6 respectively, show the value of the
combustion chamber friction coefficient $a . It can be seen
that in general, the total pressure loss of the combustion chamber
is usually larger than the velocity head at the inlet of the 2
passages.

Now we shall discuss an experimental method introduced in
some references to measure the flow rate distribution in a
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combustion chamber by a orifice-blocking method which is the
so-called orifice blocking method. The method is as folliows:

the total friction coefficient £ in the combustion chamber is
measured first. Then the ith row of orifices is blocked and

the friction coefficient £ is again measured. From the equation
in Reference [2], we should mention that this method 1s

quite questionable. 1In fact, we can easily see that

this method basically 1s incapable of showing the difference

of the flow rate coefficient C corresponding to the different
orifice arrays at positions in front of or behind the flaming
tube. Experimental results verified this completely. From

Table 1 we see that the flame tube flow rate distribution measured
by the orifice blockage method 1is basically the same for each
array of orifices. In other words, the flow rate distribution
measured -by the orifice blockage method is in fact distributed
according to area. It deviates quite severely from accurately
measured experimental results (respectively, 0.013 and 0.504).

Of course, when the total orifice area of the flaming tube is very
small, the law of actual flow rate distribution is very close

to be law of distributson by area. Here the orifice block method
naturally agrees with the experimental value, but what meaning
does this agreement have?

Figure 1. Relation between
orifice flow rate coefficient
and flow parameter.




Figure 2. Relation between orifice

flow rate and area parameter.
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Table 1. Experimental result of orifice blockage method
(a1 = 0.63, Xuge = 6.523)

pE— :
parameter 3 & Ay 5 W12

experi
nental

nethod

10 orifice is 1.13 - : 0.0k20 0.504
»locked

Lst and 2nd

row of orifices - ’ 1.18 | 0.021k _—
s»locked . \

l1th & 12th row
>f orifices
blocked

-~ 1.16 -— 0.013

METHOD OF CALCULATING THE COMBUSTION CHAMBER FLOW RATE DISTRI-
BUTION AND THE AVERAGE FLOW RATE COEFFICIENT OF TOTAL PRESSURE
LOSS

The relative flow rate inside the flame tube of the i cross-
setion combustion chamber is

Wim 1l —Vidi/V,4, = | — vjwa, (3-1)
iere
0= y,./vj (3-2)
nce
¥ioCol 10 + vaaq = \
ierefore
vio ™ 1/(coape + Omazan)
(3-3)
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From Eq. (3-1) and (3-3), we know that we only need to know
the ?1 value in order to compute the wli value. It 1s not hard
to see that what the value of wy represents is the average flow
rate coefficlent of all the orifices behind the ith a.ray of orifices.
The results of calculation and experiment indicate that the
wy value may be expressed as a function of the X¢ value, where

b ™= Vil v,

(3-4)

Xim D0 A5 /4 = | G, (3-5)

i=i

Figure 7 shows the w curve obtained from the

HER ™ Sty

experimental values. The horizontal coordinate in the plot is
X¢ and the vertical coordinate is Wy Wy ™ Egs '@ .« 1IN the

rrrreY

i Eq. ®max is the coefficient determined by X, > See Figure 8.
Notlce that the air-inlet orifice in the head section of the flame
tube is not included in the value of X From the diagram it

max”’
can be seen that all the experimental points of various a1 and
Xmax values basically fall on one curve. Thus curve may be

represented as (pXp. <1 .

@ 22 0.895() — cmusex)

e (3-6)
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Figure 7a. Relation between w and X (for small X¢ values).
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The ¢

max curve in Figure 8 may be approximated as

Emz = 0.725 + 0.090v $Xpa — 1 - (3-7)

From the definition of Eq.
the last array of orifice cross-section of the flame tube, i.e.,

(3-2), we can see that: mex=0, for
the outlet cross-section of the combustion chamber, and “max"l for
the cross-section of the first row of orifices of the flame tube

when ¢Xmax+

Since the coordinate parameter of the w curve 1s w, and
not directly w, hence it is more convenient to write (3-1) in
the following form

0gi8,;

! CodroEmazr T Demaxdy, ( 3-8 )
T 7 |
10 L. ot
= RS- aSa
T T
0.9 - ol ﬁll q_ELIT
Q= e
' Bl
08} ;
IL 4 3 d *
1
: i SEEEN o
‘)7L_L ] 7T I T e
0 1 2 3 4 5 6 7T 8 9 101l
. FRY
Figure 8. Pelation between €max 209 ¢Xpo.-
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The w curve in Figure 7 1s obtained from the data for cooling
air state (water flow simulation) when there is no vortex generator
on the test piece. However, the.largequantity of computational results
indicate that the w curve in Figure 7 is truly a meaningful curve
in the general sense. It is cavable of taking into account the
effects of many factors such as din Xmass i and combustion heat
release, etc., and for flame tube or combustion chamber with variable
cross-sectional area, the w curve above and some of the computational
formula (including thé dynamic equation) to be introduced below are
still applicable. Their degree of accuracy is even surprising. We
shall illustréte this point below by using as a concrete example
a staged flame tube. The combustion chamber has constant cross-
section (a,; + ay; = const) . The flame tube is staged with 6 rows
of orifices (all with flat surface a;; = const = 0.1333) ) except the
vortex generator fco™= 0.60, ape= 0.08) . For the two front
rows, a; = 0.5 , the middle two rows, a; = 0.6, and the
last 2 rows a=07 . Heating ratio is =1 . The
comparison of the calculated results by the average flow rate coeffi-
cient method to the results in Reference [3] (see Reference [3]
Figure li4a and Figure 23) is shown in the table below.

L5

A 0 0.167 0.353 0.500 0.667 0.834 1.000

Average

f:iz;’f{:;;t 0.116 0.212 0.369 0.482 0.645 0.802 1.000| 5.41

method

Ref.[3] 0.125 0.231 0.363 0.494 0.640 0.802 1.000| 5.40

The w curve obtained above 1s based on the experimental data
of the inlet orifice in this experiment. The relation between the
flow rate coefficient ¢° (the superscript "o" represents the inlet
orifice in our experiment here) and the flow parameter Fp is shown
in Figure 1. When the geometric shape of the inlet orifice we want
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to calculate is different from the inlet orifice used in this experi-
ment so that its flow rate coefficient C and Fp relation is different
from the relation in Figure 1, the effect of the variation in flow
rate coefficient must be taker into account. Under this circumstance,
w2 may convert the various shaped inlet orifice area Ah to Ag according /1
to the principle of CAh- constant, i.e., the Ag in Eq. (3-5) should
be calculated by the equation below

A = (e/c®)J, (3-9)

Results of calculatlion show that the flow rate coefficient of the
inlet orifice 1s basically only related to xv ¢ ; hence the value
of the flow parameter Fp wll also be determined basically by the value
of vaZ: . The relational curves between c° and Fp and x./ ¢ may

be formed from our experimental result as shown in Figure 9 and Figure
10. According to Figure 9, the c° value may be determined and the
value of Fp may be determined from Figure 10 and hence the ¢ value for
other inlet orifice shapes may be found from the given [ u'{(F,)
relationship (this relation must be given first in the calculation

of combustion chamber flow rate distribution).

As mentioned above, it is necessary to know c/c® when X 1is
to be determined and the value of c/co is to determined based on the
X value. Hence

3
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A computational process 1s required in the calculation. Under
these circumstances, it is best to calculate backward from the
last row of orifices of the flame tube toward the front.

In the section below, we shall discuss the method of finding

\') and VJex values:

Jo
The value of the jet velocity vJo at the initial flame tube

' cross-section may be easily determined from Eq. (3-3). However,

- the value of Ymax needs to be found from the curves based on the

. value of X¢ and the value of ¢ is still unknown. Hence, in the
calculation, one may first take a ¢ value (e.g. for cooling air
we may take o=1 and when heating ratio >1, we may choose larger
values for ¢ ), find Wnax from w curve, then calculate VJO value
from Eq. (3-3). We shall see below that the jet velocity Viex at
the outlet cross-section of the combustion chamber may be calculated
from the value of vjo’ and therefore a new value of ¢ may be found.
Based on this ¢ value, we can re-calculate VJO until the 2 successive

values of VJO are close to each other.

R eV PP

Rat e !z:. CACr A

Table 2 gives the comparison between the vJo value as calculated

above and the experimental results. We can see that the VJo values
calculated from the w curves are very close to the experimental

values.

AR AL S e |, amesm e

Table 2. Comparison of the results calculated from the average
flow rate coefficient method to the experimental values.

. t I. :
. \method t”piece J] -0-79L| =0.79'4, 20.63 4, =0.63 '*‘a "0-63|1:: =0.63|¢; m0.63 ) -0.43"‘1"0-‘3

...\.\ Xoae ™ ] Xau ™ | Ny = Xauz™ Xaer = Xmex ™ | Xpag ™ ' Xous = Xoas =
. para- 65231 5.435 | 6523 5.435 )| 4348 f| 2,174 | 1087} 6.523 || 3.4%5
g meter

average flow

rate coeffi. 5.25 | 5.26 | 2.96 | 2.98 | 3.00 | 3.35 4.74 2.02 1.86
method
m| {. val ls 2 ’—340[463 1.94 ‘192
i experi. value -s.u _v.zz 2.97 .98 3.00 | 3. e . .
avg. flow rate I ] . | .62
1.02 1.03 | 0.96{ O. 0.99 1.29 2.84 1.66
coeff. method o 7, | | —_1
$a ' e e -
chpori. value 1.02 1.05 1.13] 1.16 .21 1.40 2.62 1.34 1.39
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It is necessary to know the value of ¢ 1n order to make use
of the w curve 1in Figure 7 in computations. It should be pointed out
that the-vJex value in the horizontal coordinate ¢X of Figure 7 has
not taken into account the total pressure loss of the 2 passages.
Detailed calculation shows that the effect of whether or not taking
into account of the Vjex of the total pressure loss of the 2 passages
in getting the w curve 1n the calculation of flow rate distribution
and total pressure loss 1s basically the same, but the latter is much
simpler. Under this condition, we have

- e:l = Dlex
(i 2)V2 4 (3-10)

2
Viex

From the flame tube dynamic equation:

Prxdia + prendieaVien — Z (AQV.,) = pudn + pndnVi

- (3-11)
+ (-'llu - «'ll!)(Plu + Pll)/l2
We get
3ug — J..:l) 3
2wl __j_—— Pjs‘_ — 2‘ (('“ﬁl;,u{/, )1 - (-.‘_'*"'“_ ( "vu“’mal) l -

Yies o + dn + diex ' dies dn ’ 4 (3_-'*2)

under the condition of a,; = const and dy == oot , then

3 26,. — ¢ “ho”ic)z —_ Ay, 2

"lz'u- vie + 1 26, (‘!‘T a) (viewms) (3-13)

@

The combustion chamber friction coefficient 1is

¢ m 0= '“_,,gﬂ_ﬁ'_ (3-14)
> pVi/2 G}ea

It should be pointed out that the average flow rate coefficient
method introduced above 1is also applicable to the situation of ring
type combustion chamber. Due to the limitation of space, we shall not
discuss it here.

110

Cavi oven atee b |




L I Ty ——— L R ¥

4. -COMPARISON OF EXPERIMENTAL RESULTS AND COMPUTATIONAL RESULTS
FOR COMBUSTION CHAMBER FLOW RATE DISTRIBUTION AND TOTAL

PRESSURE LOSS

In Figures 11, 12, 5 and 6 are presented respeétively the com-
parison of the calculated results and experimental results for flow
rate distribution and total pressure loss; From the diagrams, it
can be seen that the results .calculated by solving the one dimensional
flow equations (not taking into account of total pressure loss of
2 passages) and the results calculated by the average flow rate
coefficlent are in good agreement with the experimental result while
those calculated by the flow resistance method differ more from the
experimental result.
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Figure 11. Comparison between Figure 12. Comparison between
calculated results of flow the computed values of flow
distribution and experimental rate and the experimental
value. (s = 0779, Xmea = 6.523) value (e =0.43, Xau=6.5T)
1l - Experimental results; 1l - Experimental results;
2 - calculated results; 2 - calculated results;
3 - average flow rate 3 - average flow rate
coefficient; 4 - Knight method coefficient; 4 - Knight
method
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SYMBOL EXPLANATION

A,a - represent respectively the X"/G==ggd&uf
, area and relative area (A/A.) s=Gn-rmy/Sv - friction
4= Zf‘u/z A coefficient

imt jm

c - orifice flow rate coefficient SUBSCRIPT

(corresponding to total static

pressure difference) a,l - represent respectively

2 passage and flame tube.

Fp=(nf¥e) - flow parameter h - flame tube orifice

L]
Qis.ﬂw/:SAZ-- area parameter

iwy

i - order number of the cross-
section of the orifice
array or in front of the
orifice array of the flame
tube

n - number of orifices (not including
the orifice in the head of the
flame tube)

», 7%, ar* - respectively static
pressure, total pressure
and total pressure
difference

J - order number of the orifice
Jet or orifice array

0 - head orifice of the com-
bustion chamber (including

Ay - welght flow rate through the vortex generator)

flame tube orifice

ex, in - respectively the
outlet and inlet c¢ross-
section of the combus-
tion chamber or the 2
passage way.

9= (0/2)V' = veloclty head

V,v - respectively velocity and
relative velocity (V/Vr)

[
W, = ZAQI/ﬂlAer
aw = ag/0, - relative flow rate
through flame tube
orifice

r - reference cross-section
(taken as 4, =4,+.4, 1in
this paper)

SUPERSCRIPT

o - corresponds to the inlet
orifice used in our experi-
ment

® . stagnation parameter
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