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AN EVALUATION OF THE

ADA PROGRAIMING LANGUAGE

FOR CONCURRENT PROGRAMMING

IN

COMMUNICATIONS SYSTEMS APPLICATIONS

ABSTRACT

The predominant utilization of a high level language

for communications system programming applications is an

attractive alternative to the current practice of machine code

implementation. The Ada programing language promises a

realistic high-,Ievel alternative to the excessive cost and

unreliable nature of present communication system development

efforts. Using a generic communication model, this report

analyzes the ability of Ada to support communication system

programming applications, especially in the area of

concurrency. Previously documented criticisms as well as other

problem discovered during this analysis effort are addressed.

Alternatives to these problem areas are presented followed by

an evaluation of the efficiency and effectiveness of the

alternatives.
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EXECUTIVE SUMMARY

Using a general communication model as a basis
for analysis, this report evaluates the ability of the Ada
programming language to support communication system
programming applications. The evaluation is directed
especially toward Ada's concurrent programming features, though
other advantages and disadvantages are examined as well.

Sections 2 and 3 of this report present a general
communications network environment and identify the key

components involved in supporting the network. In particular,
* specific communications functions which are implemented via

software are identified and those areas which are associated
with concurrency are isolated.

Section 4 examines traditional solutions to
concurrent process control, i.e., interlocks, semaphores,
message buffers, and monitors. Advantages and disadvantages of
each mechanism are given. Ada's solution to process control,
parallel tasks with entry/accept rendezvous linkage, is then
described.

The material described above forms the basis for

the main thrust of the analysis effort which is contained in
the remainder of the report.

Section 5 examines three separate categories of
potential problems associated with the use of Ada for

concurrent programming applications in communication systems.
The first area represents an analysis of criticisms cited
within BBN Report No. 4188 /BBNE79/. The criticisms are
divided into four major categories: excessive scheduler
interactions, process control structure inflexibility, naming

convention problems, and lack of sufficient control over the
scheduling discipline. With one exception, realistic, viable
alternatives are presented in answer to the aforementioned
criticisms. The exception, control over the scheduling
discipline, was not considered a valid criticism for reasons
offered in Section 5. The second problem area concerns issues

I -xiii



uncovered during the analysis of Ada's ability to support the
implementation of the general communication model developed in
Sections 2 and 3. Again, alternatives were presented using

available Ada constructs. A final problem area deals with

Ada's inability to dynamically manipulate a record's

structure. An alternative mechanism using unchecked conversion

is offered.
In Section 6, efficiency and effectiveness

criteria are defined in order to be able to evaluate the

developed alternatives. Each of the alternatives is then
qualitatively analyzed as to its ability to satisfactorily meet
the defined criteria. In all cases, the alternatives are
judged to be adequate solutions to the stated problems. In

fact, the alternatives serve to point out that, as a high level

programming language, Ada provides the implementor with the

flexibility to construct many alternatives to presumed problem

areas. A quantitative assessment of the efficiency and

effectiveness of any proposed solution can only be made when a

particular environment is identified and a compiler becomes

available.
Conclusions are presented in Section 7. It is

believed that, as a result of this preliminary analysis, the

current Ada language definition can be effectively applied to
communication systems programming applications.
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SECTION 1

INTRODUCTION

1. 1 PURPOSE

A Bolt, Beranek and Newman, Inc. (BBN) report,

"The Impact of Multiprocessor Technology on High-Level Language

Design," Report Number 4188 /BBNE79/, has raised several issues

and identified specific difficulties which are anticipated in
the use of the Ada programming language in concurrent

programming applications. The purpose of this report is to
address these issues and difficulties raised in the BBN report

and to evaluate the efficiency, effectiveness, and problems, if

any, of the Ada syntax and semantics which support concurrent
programming applications.

1.2 SCOPE
The analysis of efficiency, effectiveness, and

problems will be limited to those Ada areas which directly

support concurrent programming applications. Other problem

areas which were uncovered in this analysis will be identified

and addressed. The context of the concurrency applications
will be that of communication processors functioning as

components of an AUTODIN II type of network.

1.3 ASSUMPTIONS
In performing this analysis, several assumptions

have been made in order to provide a suitable framework for

defining the problems and seeking solutions.

First, it is assumed that Ada would be applied to
a state-of-the-art type communications network which is highly
interconnected, employs multilayer, standardized protocols for

achieving internode coimunications and which has demanding

message volume and response-time requirements.

'I
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Second, it is assumed that a wide spectrum of

computers could be used to implement the communication

functions and that Ada implementations should consider the

ramifications of different computer and operating system

architectures.
* Third, it is assumed that the Ada language should

be used to the maximum extent possible in the communication

software so as to achieve a high level of transportability and
maintainability. Thus, applications which might normally be
written in assemnbler code because of execution efficiency will

be assumed to consist of Ada code.

~'ourthp the analysis will be based on the

pragmatic point of view of an implementor whose responsibility

is to use the existing Ada features in the best way possible.

1.4 METHODOLOGY

The analysis of this report encompasses the dual
disciplines of understanding the communication application

requirements and environments as well as the Ada language
syntax and semantics and the significance of various computer

architectures and associated operating systems. Thus, the

approach is to define the communication environment, and then

identify the computer architectures, operating system features

and specific communication software application functions.
Next, the issues, problems, and solution alternatives are

presented, evaluation criteria are defined, and the solution
alternatives are evaluated. Finally, a summary of the findings
is presented.

1.5 ORGANIZATION

Section 2 presents the general communications

network environment and identifies the key components involved

in supporting the network.
Section 3 identifies specific communications

functions which are implemented via software, and isolates
subsets of the software which will be affected by the

concurrency issues.

1-1-2



Section 4 identifies the spectrum of concurrency
issues generically and addresses the Ada solutions io theI concurrent programming support requirements.

Section 5 identifies the BBN issues and other
uncovered, related issues, defines specific problems related to
each issue, and poses alternative solutions for each problem.

Section 6 establishes evaluation criteria which

will be used in assessing the efficiency and effectiveness of
* each applicable alternative and concludes with an evaluation of

the alternatives.
Section 7 summarizes the results of Section 6 and

* identifies any outstanding issues or problem areas.

1-1-3
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SECTION 2

COMMUNICATION SYSTEMS BACKGROUND

The subject of communication systems software and

its design is a broad one and cannot be addressed in its

entirety here. However, a frame of reference is required to

provide the context for discussion of the software concurrency

problem with regard to current communication systems

environments and software practices. To this end, this section

generalizes the various aspects of communication systems and

identifies what are perceived as major considerations and
concepts from which issues and problems can be developed. This

section addresses communication system types, software

characteristics, software architectures, and future

considerations.

* 2.1 COMMUNICATION SYSTEMS TYPES

Communication systems are employed to provide a

multitude of services, which vary widely in their types of

service and performance capabilities. We offer here a brief

categorization of communication system types.

" Text/Source-Line Processing

" Data Acquisition/Distribution

" Process Control

* Interactive Information Processing

" Specialized Hybrid Systems

" Switching/Trunking Systems

- Circuit Switches (AUTOVON)

- Message (Store and Forward) Switches

(AUTODIN I)

- Packet Switches (AUTODIN II)

It should be noted that the types presented are not mutually

exclusive. The more complex systems often consist of a mixture
of the less complex types. Additionally, process control is

used here to represent the automation of electrical,

mechanical, and/or human processes. This term has a different

-2
-4
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meaning when the topic of concurrent processing is discussed
later in the document.

2.2 COMMUNICATION SYSTEMS SOFTWARE CHARACTERISTICS

* We feel that communication software exhibits

characteristics very similar to other "systems" software. This

point of view is supported by /BBNE76/. General documentation

refers to communication systems and communication applications

software interchangeably. This document will refer to

communication systems software rather than applications. The

key point is that many applications have been written in high-

level languages, while few communication systems have this

distinction.

The following characteristics of communication

software is evident to some degree in all the previously

mentioned system types:

e Concurrent Processes

Communication systems typically exhibit

multitasking, multiprogramming qualities.

e Event Driven Operation

Communication systems respond to events that

are not directly related to the local

software/hardware environment.

* Externally Performance Bounded

Communication systems are performance bounded

by factors other than local design and

implementation specifications. The

performance characteristics of the

correspondents, the transmission facility, andI the characteristics of the various protocols
that are employed exhibit external performance
requirements that a system must adapt to in a

real-time sense.

1-2-2
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o Transparency

Distributed users or processes converse with

each other in terms that they agree upon and

understand. The intervening software and

equipment is apparent only in the resulting

delays encountered with data transfers.

* Service Orientation

Communication systems provide users access to

distributed processes/resources. This service

has the following features:

- Responsiveness

- Efficiency

- Reliability

"4 - Availability

- Security

* Operating System Qualities

Communication systems have what are

classically construed as operating system
qualities which are typical of "systems"

software:

- Manipulation of complex data structures

- Maintenance of low level hardware interfaces

- Management of local computing resources

- High performance requirements

2.3 SOFTWARE ARCHITECTURES

Current communication software adheres to

generalized, layered software architectures. This approach

goes beyond the software engineering and design advantages.

Such architectures transcend vendor, hardware, commercial,

military, and international boundaries. The use of layered

architectures provide a common approach in which dissimilar

users can implement standard protocols.

This section presents a highly generalized Open

System Interconnection (OSI) model, a so-called Department of

Defense (DoD) model and its relationship to the general model,

and a brief description of a representative implementation
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currently within the Defense Communications Agency (DCA). A

comprehensive model will be formulated which is an accumulation

of concepts of these models and will provide the frame of

reference for the remainder of the document.

2.3.1 "Reference Model for Open Systems

Interconnection" (OSI) Overview

The International Standards Organization (ISO)

has proposed a layered software model for general communication

systems and their interconnection /OSIN79/. This model avoids

references to specific protocols and embraces functional layers

or protocol classes and their relationship to one another.

Although this model is aimed at the

interconnection of communication system components, it also

serves well to model general communication system types that

have no requirement to interconnect with other system types.

2.3.1.1 Protocol Layer Description

An important aspect of the OSI architecture is

that each layer of software represents a server to the 1Aacent

superior layer. Each layer executes its protocol or fncti.ons

via a set of services provided by the adjacent inferior layer.

Additionally, equivalent layers across distributed components

of a system form peer associations or connections. Peer

associations are established, maintained, and terminated by

execution of a particular protocol.

Figure 2-1 illustrates the protocol layers of the

model. Specific details of this model are available in

/OSIN79/ and the material is also summarized by /ZIMM80/.

2.3.1.2 Communication Systems Management Considerations

An important portion of the model is the system

management structures that provide "those functions required to

initiate, maintain, account for, and terminate data transfers

among application processes" /ZIMM80/.

1-2-4
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System management functions can be characterized

as those that monitor, control, configure, support, and report

on the system. The following list serves to illustrate the

systems management functions. It should be noted that this

list does not encompass all the functions required by any

particular system.

e Internal and External Interface Management

o Event Management

o Resource Management

o Performance Management

o Error Management

o Recovery Structures/Procedures

o Configuration Management

o Data Management
0 Test/Diagnostic Management

o Access Management

Additionally, system management functions must

address two perspectives:

e Local environment or component level

o Overall system level

The component level functions address buffer

acquisition, hardware and user configurations, and the

operating system environment. The system level functions

address connectivity to neighboring components, overall system

performance characteristics, system recovery, and acquisition

-, of system utilization statistics.

Another important aspect of the system management

portion is apparent. The protocol layers address the system

wide functions and processes of data transfers between

distributed components. System management software provides an

interface to the local operating system and hardware

environment of a component of a system.

Figure 2-2 illustrates the OSI protocol layer and

systems management block diagram.
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2.3.1.3 Summary

The OSI model yields a general, yet highly
structured model. The model is included because the
architecture that the DoD is currently adopting is based on a
combination of the ARPANET structure and the OSI model.
Figure 2-3 serves as a complete block description of OSI

software architecture.

2.3.2 DoD Communication Architecture

This section briefly summarizes the DoD
communication architecture as presented by /CLAR8O/ and by
/POST8O/. This model is presented to provide a frame of
reference for a communication system implementation of

*'0AUTODIN II. The DoD model offers a transition vehicle between
the OSI model and the AUTODIN II system when discussion focuses
on specific examples in the later sections.

2.3.2.1 Protocol Layer Description

At its current stage of development, the DoD
model is considerably less general than the OSI model. The
model does not easily provide for those systems that do not
interconnect to other systems. Its development is heavily
oriented in network and internetwork activities. The adoption
of specific protocols such as Transmission Control Protocol

(TCP) and Internetwork Protocol (IP) has resulted in the
definition of sublayers rather than individual functional

layers. Figure 2-4 illustrates the protocol layers of the DoD
model and provides a correlation with the OSI model protocol
layers.

2.3.2.2 Systems Management Considerations

The proceedings at /CLAR80/ generated no direct

discussions in this area; however, numerous comments by various

presenters did indicate that there is some confusion in this
area. /ZIMMS0/ points out that this area of communication
systems is relatively undefined at present. However, the OSI

1-2-8



Comunications
System
Users i General Applications Software

0i (Background)

Communications i
Application

Operating
Presentation S

t System

Communications Software
Systems
Management

Session Software

System I Component
Level l Level
Mgmnt I Mgmnt

Transport I

INetwork/
Packeti

Link I
Control

Physical a
Media I Hardware/Firmware

Figure 2-3

Complete OSI Model Block Diagram

1-2-9

-? ~**



0

411.
0 P4

41 0 2 " 4 m

0l Ad m

v) 0 c c ;oleo

04 $4(A 14 41 40

0. 14204 .C) 04

I I I

I I\1 I
*I I

0

1 -2 1S I
I I I

I * II'

I I T
I I
I I

I I I -

I I
I II14.

I !
III 1
I II

g I
II I

II I

,I I I

I I

I I 'I

I _ _ _ _ _ __ _I_ _ _ __ _ _ _

4'.,

4-2-1



model has defined it generally and provided a structural block
location in the model /OSIN79/.

2.3.2.3 Summary
The DoD Model can be correlated to the OSI model

in a general sense, as Figure 2-4 illustrates. However, the
following distinctions should be noted concerning the
comparison. The DoD model is less general in nature; it
deemphasizes the strong connection orientation of the OSI
model, it is more prone to sublayering as opposed to the

definition of precise functional software divisions; and it
does not generally address systems that are not interconnected.

2.3.3 AUTODIN II System Overview
This section of the document is provided to

establish a correlation between a member of the DCS community
and the more general architectures. This treatment is derived
from /AUTO78/.

The communication system frame of reference is
narrowed to that of packet switches generally and to an
AUTODIN II type of system specifically. The reasons for this

are as follows:
" Packet switches are replacing other trunking

types of systems.
" Packet switches utilize the entire OSI and DoD

architectural models.
" Packet switches exhibit severe performance

requirements.

e A portion of the AUTODIN II system, or an
interface to it, will be implemented in the
Ada language as a practical evaluation of Ada

in the context of communication software.
Figure 2-5 serves as a general functional

topology of the AUTODIN II system. It in no way implies
specific geographical or network configurations.
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2.3.3.1 Functional/Protocol Layer Description

Figures 2-6 and 2-7 depict the protocol layers

for various components of the system. The diagrams do not

represent the Control and Test facilities interface points.

*These facilities and their functions are not required as a

portion of the protocol layers. The general protocol

descriptions are as follows:

9 Transmission Control Protocol

This function generally manages a connection

between correspondents. This involves data

transfer, control, and synchronization at the

user message level.

e Segment Inter face Protocol

This function controls data transfers between

access area (user or data environment) and the

network area (transmission facility

environment) .
e Terminal Interface/Host Interface

This function is a set of protocols and

signaling conventions that correspond to

particular terminal and host classifications

or sets, (i.e., RS-232, ?41L-STD-188-114, IBM

channel interface, etc.)

e Terminal/Host Protocol

Two functions are provided at this level. one

function establishes the terminal/host

interface characteristics and the other

function establishes the formats for data

exchange using the established characteristics.

* Source-Destination Protocol

This function provides addressing, routing,

and control functions which direct traffic

across the network.
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e Switch-Switch Protocol

This function provides the line control

procedures necessary to establish, maintain,

and release an Advanced Data Communications

Control Procedure (ADCCP) protocol type of

link between adjacent switches.
e Physical Media

This layer is perceived as the electrical,

mechanical, and procedural requirements of the

hardware data circuit.

2.3.3.2 System Management Functions

The AUTODIN II model, like the DoD model, lacks

completeness in this important area. We must again draw on the

OSI model for discussion involving system management software.

By using the OSI, DaD, and AUTODIN II models, it is now

possible to form a composite model which describes for

AUTODIN II not only the protocol layers and functions, but also

the system management functions. Figure 2-8 illustrates the

architectural correlation between the OSI, DoD, and AUTODIN II

models.

2.4 FUTURE CONSIDERATIONS

Communication protocol standards are emerging

y within the framework of the architectural models. These

standards are propagating upward through the architectures.

Thus, the models serve not only as a convenience

from the software engineering point of view, but also are a

framework from which wider interconnectivity is possible

between dissimilar users.

Another important aspect of protocol standards is

apparent. As standards are adopted, the software issue becomes
one of implementation rather than design. The rapid increases

in hardware technologies and performance along with the rapid

decrease in costs makes a hardware implementation of a

communication protocol a very attractive consideration. Thus,
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lower-level protocol layers could essentially disappear from

the classical software implementation.

2.5 CONCLUSIONS

Using existing communication system models, a

communication software model which is representive of current

communication systems software architectures has been formed

and is illustrated in Figure 2-9. This model, which we will

refer to as the SCI architecture, will form the frame of

reference for the remainder of the document. The SCI
architecture is based on the OSI, DoD, and AUTODIN II models.

It exhibits a highly modular, hierarchical structure. The
identified modules possess functional orientations. The SCI

architecture implies general user/server types of intermodular
relationships. A high-order language implementation should

generally map onto the SCI architecture.
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SECTION 3
COMMUNICATION SYSTEMS ENVIRONMENTS AND PRACTICES

- This section describes the hardware/software
environments and implementation practices in the development of
systems based on the SCI architecture. This will be

accomplished by providing an additional level of detail to the

- discussion of Section 2. This section will establish an

environment from which to address the concurrent processing
considerations. In addition, issues that are not directly

* related to concurrent processing that are deemed important and

* warrant discussion will also be presented.

The following topics art addressed: performance
considerations, hardware considerations, architectural
considerations, and software engineering considerations.

3.1 PERFORMANCE CONSIDERATIONS

An AUTODIN II type system exhibits severe
performance requirements. In this section we will identify the

* performance environment in which the SCI system must operate.

Generally, a communication systems performance is

a measure of its responsiveness to user stimuli and the number
of users it can support. Figure 3-1 is an illustration of the

* relative performance requirements on packet switch nodes. As
* the graph indicates, the nodes operate in a narrow band around
* the point of optimization. The AUTODIN II system handles mixed

query/response and bulk traffic. Query/response traffic

* requires a rapid response time. Bulk traffic, alternatively,
* requires high throughput capacity. The point of optimization

is the point where the system is utilized efficiently while

allowing temporary excursions above and below without

saturating or grossly underutilizing the system.

The sequential orientation of the protocol layers
addresses the response time requirements of the system.
Typically, the AUTODIN II system is required to transfer a high
priority query/response message across the network within three
seconds.
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The use of concurrent processing techniques

addresses the throughput requirements of the system. An
AUTODIN II node consisting of an interface processor and two
node processors (PDP-11/04,34) must be able to handle 250 KBPS

in traffic. This environment indicates that an implementation
- of the SCI architecture must generate modules that execute

efficiently and intermodule interactions must be rapid.

. 3.2 HARDWARE CONSIDERATIONS
- In this section, we will justify our assumption
* of a wide range of hardware environments. Additionally, the

management and distribution of hardware resources will be
examined.

Communication software has proliferated across

all hardware boundaries, including hardware type, size,
architecture, and vendor boundaries.

The current. trend, however, is to transfer
communications-related overhead out of te larger mainframe
environments. Communication software is essentially spreading
out into the "channel" itself. Communication software is

present in front-end processors, communication
controllers/multiplexors, intelligent line controllers,

intelligent terminals, and even smart transmission lines
(microprocessor-based frequency/time division line

multiplexors). Well-designed and implemented network systems
comprised of mini- and micro-machines are capable of
considerable sophistication and performance.

3.2.1 Hardware Resources
The primary hardware resources of a communication

system are the CPU, memory, and the transmission facility
access.

Access of the CPU and the transmission facility

is potentially resolved via the software/hardware configuration

and a scheduling algorithm that incorporates

priority/demand/supply considerations.
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Access of memory resources is not as straight

forward. A design requirement is that memory that is not

allocated to coding structures is made available to the system,
at compile time, in the form of common buffer pools.

Acquisition of portions of this fixed memory space represents a
dynamic in-line acquisition by the requesting process.

Memory resources have expanded greatly with the

strides made with memory technologies. However, communication

systems have been and probably will continue to be memory-space

constrained for the following reasons:

9 User requirements as well as system

requirements will continue to grow.

* Performance of communication systems is

tightly coupled to the amount of buffer space
available to the system.

" The number of users of a communication system

is directly proportional to its success.

e Implementations are gravitating toward smaller

environments.

Memory resources must be closely monitored and

managed to ensure proper operation of such a system.

3.2.1.1 Single Processor Environments

Figure 3-2 represents this type of

configuration. Contention for resources is strictly at the
user (and subsequent interrupt) level and is resolved by the

scheduling and IOC algorithms. Whichever user is being

serviced, at any point in time, potentially has access to all

the required resources.

3.2.1.2 Multicomputer Configurations

/BBNE79/ distinguishes multicomputer

configurations, illustrated in Figure 3-3, from a general class
of multiprocessor configurations represented in Figure 3-4.

The distinction is the lack of shared memory between the

processors of the configuration,
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This type of configuration is utilized to address

increased throughput and connectivity requirements of an

existing packet switch. The communications bus is utilized for

local intra-node message traffic.

From the communications point of view, these

configurations do not represent a quantum difference from a

series of single processors interconnected via the network

transmission facilities. Intra-node message traffic over the

communications bus would be subject to peer layer or

layer/layer interface conventions. (Although this method of

intra-node comyunication is occasionally used, it is not an

efficient or effective communication technique with regard to

use of resources and response time.) Access to the bus would

be according to local hardware conventions and legislated by

system management and operating system software algorithms.

3.2.1.3 Multiprocessor Configurations

Using the descriptions in /BBNE79/, a

multiprocessor is a multicomputer configuration with shared

memory. Multiprocessors, illustrated in Figure 3-4, represent

significant interprocess resource contention and communication

potentials.

Multiprocessor environments form the basis for

the concurrent processing issues that have been raised

concerning high-level language implementations of communication

systems. The protocol layers provide for widely distributed

processes to synchronize and control data exchanges via

transmission facilities. Locally distributed processes may

have the same requirement to synchronize and exchange data;

however, to use the full SCI architecture and the transmission

facilities to achieve this would be a very inefficient use of

multiprocessor facilities.
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3.2.1.4 Future Considerations

The requirements of current and future
communication systems hardware environments illustrate a

greater dependence on concurrent processing capabilities. The

following considerations illustrate this point:

* The use of multiprocessor configurations

should increase to address throughput

capacity, reliability, and connectivity

requirements of the larger, highly

interconnected systems.

o Traditionally, communication systems have been

conversational, transaction-oriented bursts of
high activity followed by longer periods of no

activity. This mode of operation raises two

problems: one consists of managing the
transmission resources on a real-time demand

basis; the other consists of overall

inefficient use of the transmission facility.

Communications systems should gravitate toward
multi-access interconnection mechanisms. The

ability to multiplex transmissions on a single

transmission facility is currently

accelerating. Fiber optics, laser, and
microwave transmission technologies, their

reduction in cost, and the refinement of
random access protocols /DEC080/ will bring

this about /TOBA8O/. The consequence is that

transmission requirements could approach (and

possibly surpass) computer software capacity.

This in turn could drive the implementation of

standard protocols even further and faster
into hardware/firmware structures to address

future throughput requirements.
o Generally, more diverse (and specialized)

users will require greater interconnection

with each other.
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*Communications systems will be utilized for

digitized voice, image processing, and general

machine-to-machine types of interactions.

3.3 ARCHITECTURAL CONSIDERATIONS

This section will deal with the issues associated

with an Ada implementation of the SCI architecture. If an

additional level of detail is applied to the SCI architecture,
Figure 3-5 results. This drawing illustrates some of the more

intrinsic and subtle relationships that can exist within the

architecture. Adherence to the architectural model will

require:

* Resolution of external interfaces.

* Modular structures.

* Common data structures.

* Internal organization of the architecture.

*Implementation of a scheduling algorithm.

o Access to a timing mechanism.

* Careful, complete definition of system

requirements.

3.3.1 External Interfaces

The SCI architecture will address three external

interfaces which consist of the Operating System/Executive

Software, Communications Hardware, and User Interfaces.

3.3.1.1 Operating System/Executive Software Interface

The interface is determined by the operating

system and may range from very low level memory manipulations

to very high level, multiple parameter calls. It is this
interface and the range of management services provided that

achieve the operating system quality of communication systems

software. Communications systems are implemented on a wide

range of hardware en,, *ronments. Consequently, they experience

a variety of operating system/executive environments that range

from having no explicit operating system to sophisticated

multiprocessor operating systems.
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These environments are not always favorable
ones. As /CLAR80/ pointed out, the analysis of an

implementation of the DoD model on a large MULTICS system

illustrated that the operating system was responsible for most

of the internal processing and that this overhead did not vary

with the length of the data transfers. Operating system

scheduling algorithms and memory management schemes may have to

be dynamically, and quite drastically, altered or circumvented

to provide a communicatin system with sufficient resources to

operate at a required level of performance.

3.3.1.2 Communications Hardware

Communications equipment can vary widely in the
areas of performance, complexity, and intelligence. This

equipment actually falls on a continuous curve concerning the

parameters just mentioned. The following paragraphs will

highlight characteristics at the upper, middle, and lower

sections of this curve.

3.3.1.2.1 High-Level Communications Devices

High level communication devices are

software/firmware driven front-end or communication

processors. Access to these devices is at a file level of

I/O. The characteristics and subtleties of the communication

process are shielded from the central processor. Considerable

bandwidth over a number of different types of lines is

possible. The I/O interface to these devices could be at the

transmission control protocol level of the SCI model.

3.3.1.2.2 Mid-Level Communications Devices
These devices have considerable hardware/firmware

complexity, but they remain directly under the control of

software. I/O is at a message level or lower.
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The interface in the SCI model is at the

source/destination protocol level or lower. The following

functions are typical:

* Enabling, disabling, and fielding of

interrupts is performed.

* Allocation and release of data buffers is

performed.
e Buffered I/O employing DMA is used.
o Supervisory/Control I/O exchanges are

performed.

* Transmission line characteristics are

addressed by the hardware/firmware.

* Medium-to-high line speeds are supported on a

group of similar line types.

3.3.1.2.3 Low-Level Communications Devices

These devices have no sophistication. They are

employed where lower costs and lower performance requirements

prevail. I/O processes are at a very low level:

* The transmission line interface is manipulated

directly by software.

* Interrupts are accepted, enabled, and disabled.

* Parity checking, redundancy checking is

accomplished at the software level.

o Transfer is on a character-by-character basis.

* Low to mid-range line speeds are supported on

a single line.

3.3.1.3 User Interface

In practice, this interface varies widely from

system to system. Generally, the interface is determined by

the communication system software; ho,,ever, it will have to

address the following conditions:
e Previously designed and installed software

conventions.

& Human engineering requirements such as console
and terminal operator display conventions.
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*Mechanical/electrical requirements of low

level devices.

*3.3.2 Modular Structures

Ideally, communications software should consist
of sets of functionally oriented modules (and supporting data

structures) that can be dynamically linked and invoked

according to real-time events and conditions. The SCI

architecture is a significant step toward this end. Modules

should have the following properties and characteristics:

* Be interruptible, re-entrant, and relocatable
0 Be manageable in size with a common function

orientation

e Share common data structures when needed

* Provide the ability to generate linkages to

software written in other languages (native

code, micro-code, assembly language, macro

structures, and foreign language coded

structures)

* Provide intermodule exchange of ID, control,

and data parameters

3.3.3 Common Data Structures

Communication systems are event driven systems.

An event can be associated with system state transitions. An

efficient, flexible, and maintainable method of controlling

software in this manner is to employ a data structure, similar

to a common area in FORTRAN, in which to:

* Record event occurrences.

e Record the state of the system.

e Record the current component level user and

hardware configurations.

* Record the current system level configuration.

* Record performance/utilization parameters.

e Share memory resources.
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Extensive use of data structures provides a key

advantage; when memory constraints exist, common data

structures are a means to share resources and can be allocated

and reclaimed dynamically.

3.3.4 Internal Organization of the Architecture

The architecture is partitioned into protocol

layers and system management structures as referred to in

Section 2. Thus, the need for a task-type software

architecture is readily apparent. Conceptually, each protocol

of the protocol layers can be viewed as being a task or a

nesting of tasks that can be scheduled on a demand/priority

basis.

3.3.5 Scheduling Considerations

In many respects, the software of communications

systems behaves inherently as a message processing system

itself with information, data, and control passing from one

protocol layer to the next. Each such exchange represents a

request for the use of one resource by another and thus

represents a need for scheduling the use of that resource.

Since many of these exchanges, both across a protocol interface

as well as within a protocol layer, will be event driven, there

exists a need for defining and being able to control parallel

processes whether the implementation is in a single processor

or multiprocessor. Thus, to accomplish this scheduling

successfully, the SCI architecture relies upon a separate

scheduling mechanism which is suited to the application

requirements but which is implemented outside the protocol

applications themselves as part of the operating system
software of the SCI model.

3.3.5.1 Scheduling Criteria

Task scheduling is based on a multifaceted set of

priorities. The SCI architecture dictates that events at the

physical layer have a higher priority than at the user level.

General efficiency dictates that resource-freeing processes
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have priority over resource-acquiring processes. Static
priorities are implemented via design considerations. Dynamic

precedence priorities may need to be formulated and acted upon

in real-time.

Flexible, efficient, comprehensive, and dynamic

scheduling algorithms must be possible within an implementation
of the SCI system.

The following states or events could invoke a

scheduling operation:
* Task suspension criteria

-Initiation of I/0 (Optionally dependent upon

the CPU/.[EOC hardware configuration)

-Initiation of a time delay

1 /0 termination for a higher priority task

- Empty message queues
- Expiration of a time slice (Solely dependent

upon the operating system)

- Task termination
*Task activation criteria

-Termination of I/O
-Expiration of a time delay

- Non-empty input queues
- Time slice available

3.3.5.2 Scheduling Mechanism
A mechanism with sufficient comprehensiveness,

flexibility, and efficiency is not perceived to be inherent
within any high-level language or available within general

operating system software used in communication systems. In

addition, tasks should not be required to be directly involved

in the scheduling function. Rather, tasks should be permitted

to perform actions which result in scheduler interactions which

in turn assure that the best use of available resources will be

made. Evaluation of any implementation language must assess

whether a scheduling algorithm can be implemented within the

syntax and semantics of the language and according to a

multifaceted set of scheduling conditions and priorities.
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Generally, the scheduling of tasks would be
provided by a system management scheduler, a

multiprogramming/multitasking executive, or some combination of

the two which determines which task can execute next and then
invokes the operating system dispatch mechanism to handle the
mechanics of the task context switching.

3.3.6 Timing Functions/Mechanisms
All protocols will require timing functions to

:* varying degrees of accuracy. Timing of I/O processes, protocol
segments, and institution of delays are essential functions of
a communication system. Timing functions are utilized to delay

processing until resources are available or specific conditions
are met, to provide response timing windows to maintain
protocols and interlayer interfaces, to detect idle conditions

within the system, and to detect certain types of errors.
A mechanism for timing functions could be a

message sent to the interval timing device software.
Expiration of the interval is reported to the requesting
process via a priority head-of-queue return of the message to
the requestor's message queue.

3.4 SOFTWARE ENGINEERING CONSIDERATIONS

In this section, we will define software
engineering as a formal, structured approach to management of
the life cycle of a product. Phases of the product life cycle
are:

o Requirements Definition

* Design

* Implementation
* Operation/Maintenance/Support

With the above background, areas were sought in
which a high level language would significantly impact a
general engineering approach to the implementation of

communication system software. Thus, the major issue is how
the Ada language can be of assistance early in the design phase

of the product life.
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Three tools associated with the design process

have been identified that would lend themselves to Ada

implementations:

o Protocol specifications and program language
models /BOCH80/

The feasibility of using Ada for program language
models is demonstrated in /BOCH80/; "program language models
are motivated by the observation that protocols are simply
algorithms, and high level languages provide a clear and
relatively concise means of describing algorithms." This

technique is demonstrated in /BBNE80/.
* Program design language

An Ada translation of the program design language

description of the ADCCP protocol /AUTO78/ which is utilized by

the AUTODIN II system, produced a highly uiiderstandable and

improved documentation/specification vehicle.
" Simulation Languages

As /KOBA78/ points out, it is often desirable and
preferable that simulation vehicles be implemented in general
purpose high level languages to increase debugging potential,

compiler support potential, and decrease multidisciplined,

cross training, and multiple resource (simulator language)
support.

3.5 SUMMARY

In this section, we have identified the

environments and practices associated with communication
systems. The following issues associated with using a
high-level language as an implementation vehicle have been

identified.

3.5.1 Performance Issues

Packet switch networks represent severe
performance requirements. These requirements dictate that
modules execute efficiently, and also that a choice of

algorithms for process scheduling and interaction be available
such that the most appropriate may be utilized.
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3.5.2 Hardware Issues

Several hardware issues have also been

identified: first, the implementation of communication systems

software across all hardware boundaries implies

transportability of the software across a broad hardware

range. This will require wide acceptance of the language

and/or very comprehensive cross compilation capabilities.

Second, the management of access to resources in the single

processor and multiprocessor environments must be efficiently

* resolved. Third, memory space constraints on communication

systems require that modules coded in a high-level language

compile into efficient machine code. Fourth, the use of

smaller environments for communication systems implies (1) the

* ability of the software to fragment and execute across

architecture/vendor classes of hardware, and (2) the ability of

* the language to serve as an implementation vehicle or guide to

lower level, less sophisticated hardware units. Fifth,

efficient interfaces to mid/low-level hardware devices must be

possible.

*3.5.3 Architectural Issues

The following architectural issues have been

identified:

* Varying Operating System Environments

Communication systems are implemented in a

wide range of hardware and associated

operating system environments. High level

language constructs should be sufficiently

flexible to address this situation.

* Common Data Structures

The SCI architecture utilizes common data

structures to address memory space constraints.

*Efficient and Comprehensive Scheduling Vehicle

The SCI architecture is predicated on an

efficient, comprehensive, and real-time

scheduling capability.
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e Access to Interval Timers
Communication systems require a suite of

timing services.
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SECTION 4

CONCURRENT PROCESSING CONSIDERATIONS

Concurrent processing capabilities in

communication systems generally, and the SCI architecture in

particular, partially address the time and space requirements

of communication systems by sharing the primary resources of

the system. This section of the document will define

communication systems concurrency requirements, identify the

various concurrent processing environments, identify concurrent

* process associations within the SCI architecture, and examine

conventional approaches to process control. This treatment

will yield the concurrent processing issues and problems of a

high level language implementation of communication systems

* software for which solutions and alternative measures can be

determined and analyzed.

4.1 COMMUNICATION SYSTEM4S SOFTWARE REQUIREMENTS

Concurrent processing is experienced in the SCI

* architecture to address multiple users of the system, and the

* invocation of system management processes that operate in

parallel or concurrent to the sequential protocol layers.

As Figure 3-1 illustrates, there is a significant

* throughput/response time tradeoff consideration exhibited in

packet switch systems; that being an optimization on both

parameters. Concurrent processing generally addresses the

throughput parameters, while the sequential processing

exhibited by the protocol layers addresses the response time

parameters.

4.2 CONCURRENT PROCESSING ENVIRONMENTS

The degree of concurrent processing and process

control that exists within a system is dependent upon the

system requirements, the set of management services/functions

provided, and the hardware environment. This section will
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examine the concurrent processing requirements of communication

systems in the light of various processor configurations.

4.2.1 Single Processor/Multicomputer Environments

Single processor environments, as illustrated in

Figure 3-2, are multiprogrammed, multitasked, or time-shared

environments. As a result, true parallelism or concurrency is

not achieved. However, the threads of control and process

interaction proceed as if true parallelism were possible.

Process-to-process communication is via the exchange of
messages and process-to-process synchronization and processor

resource contention is handled by the scheduling algorithm.

Multicomputer configurations, as illustrated in Figure 3-3, are

not a significant departure from the single processor

environment. This type of configuration is usually implemented

to address throughput and internode connectivity considerations.

Multitasking/multiprogramming in these

environments exists to provide the capability for multiple
system users and to invoke background (parallel) system

management functions.

4.2.1.1 Multiple Users

Multiple users are interleaved via the SCI

architecture. Figure 4-1 illustrates possible connection
points (or delay/queue points) of a system employing several

protocols at individual protocol layers.

4.2.1.2 Parallel Processes

The parallel processing considerations in these
configurations are lower priority, system management types of

processes. Again, true parallelism is not possible in these

configurations. However, when conditions exist and resources

are available, these processes will be scheduled at a lower
priority, and the appearance of parallel operation results.
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4.2.2 Multiprocessor Environments

These configurations, as illustrated in

Figure 3-5, represent a complete interconnectivity of the

system resources (CPU, memory, and transmission facilities).

True concurrent processing is possible, due to the sharing of

memory between processors, to address the requirements on

communication systems software of multiple users of the system
and parallel system management functions.

4.2.2.1 Impact of Multiprocessor Configurations Upon the

SCI Architecture

The SCI architecture is oriented toward

multiprogramming/multitasking environments to address the event

driven nature of the software and the requirements of servicing

*' multiple users and providing parallel system management types

of functions and services. As /JONE80/ points out, "... there

are few differences between multiprogrammed systems with and

without multiprocessors." The differences are perceived to be

the mechanics of process control, which should be for the most

part transparent to the protocol layers of the architecture.

Thus, the solutions to the issues of associated concurrent

processing and process control lie in the implementation of

system management processes and structures. It is for this

reason that significant discussion concerning the OSI and DoD

models was presented and a prototype model, the SCI

architecture, was developed. It is our contention that the SCI

architecture is preserved in multiprocessor configurations; and

any implementation is facilitated by the architecture

concerning fragmentation and duplication of the architecture

across multiprocessor configurations.

4.2.2.1.1 Sequential Processes in Separate Machines

Shared memory greatly facilitates the

fragmentation of the SCI architecture along protocol layer

boundaries as illustrated in the AUTODIN II system

implementation. Such fragmentation requires the following

restrictions. First, the hardware boundary must coincide with
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the software boundary. Second, if a hardware interface is

employed at the boundary (such as a bus or I/O channel), then

the interface must be efficient and comprehensive (perform

error checking, flow control, etc.). Third, if the interface

between machines is via common memory, then mutual exclusion of
": the associated data structures must be enforced. Sequential

processes in separate machines may be of the logically

associated type, such as adjacent protocol layer tasks; or they

may be of the logically connected type, such as a buffer

" manager routine and the task requesting the resource.

4.2.2.1.2 Parallel Processes in Separate Machines

These types of processes may be either logically

associated, connected, or disjoint. Logically disjoint

processes require no knowledge of each other and no control

*with regard to each other. Logically associated processes

(such as peer protocol layers) require communication and mutual

exclusion legislation but do not require synchronization in
, time.

4.3 CONCURRENT PROCESSING ASSOCIATIONS

Communication systems are event driven systems.

At each layer of the SCI architecture, random message events,

protocol events, timing events, and sequence considerations are

sensed and acted upon, which illustrate a nondeterminant type

of processing.

Concurrent processing associations in

communication systems software can be categorized as follows:

* Disjoint processes

o Associated processes
o Connected Processes

4.3.1 Disjoint Processes

These processes do not require knowledge of or

dependence on each other to complete their operation. The only

commonality between disjoint processes is system time, memory

space, and I/O resources. Disjoint processes are exhibited in
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the SCI architecture as system management processes that
r execute in parallel to the protocol layer processors.

1# Figure 4-2 serves as an illustration.

4.3.2 Associated Processes

These processes may require knowledge of each

other and a degree of loose dependence upon one another. This

type of association is exercised via interprocess communication

and possible sharing of a common resource such as a queue

strictly as producers or consuers, distributed in time. The

concept of associated processes is a departure from the

literature in a strict sense. /ICHB79b/ states "one of the

important concepts introduced by /CONW63/ ... is that

synchronization and data transmission are two inseparable

activities". In communication systems, process-to-process

communication is a necessary condition for synchronization; it

is not in all instances a sufficient condition. For example,

the sending of a message across an interlayer interface

requires the sending task to waait only for the length of time

necessary to deposit the message on the receiver's input

queue. There is no requirement to wait for the receiver to

accept or act on the message; in fact, to minimize the response

time parameter, it is undesirable to do so.

Perhaps the inconsistency arises due to lack of a

time parameter. The SCI architecture is designed to forward

messages between processes in an asynchronous, user/server,

relationship and distributed in time. Events at the

application layer are measured on a completely different time

scale than events at the lower layers. Synchronization (when

required) is achieved by the internal workings of the sending

and receiving processes themselves via peer protocols and the

protocol layer interfaces. Figure 4-3 serves to illustrate

logically associated interprocess relationships.
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4.3.3 Logically Connected Processes

These processes require, at some point in time,

and possibly space, knowledge of and a high degree of

dependence upon one another to complete a function. Typically,

a process cannot complete, or proceed to the next step until

"* the operation of one or more logically connected processes have

completed. Logically connected processes exercise this type of

association via communication with one another, synchronization

with one another in time, sharing of common resources in a

" producer/consumer dependence-or, in producer/producer,

* consumer/consumer contention. Figure 4-4 illustrates this type

*: of relationship.

* 4.4 TRADITIONAL SOLUTIONS TO PROCESS CONTROL

The following subsection defines those facilities

available within current programming languages that are used to

* support process control. Process control in this context may

be viewed as those commonly known concurrency aspects of

process-to-process synchronization, process-to-process

communication, and mutual exclusion. Each of the mechanisms

outlined below is used to support one or more of these

aspects. Advantages and disadvantages associated with the

usage of these mechanisms are also presented.

Section 4.4.2 presents a description of how these

traditional solutions to process control apply to general

communication system implementations.

4.4.1 Process Control Mechanisms

4.4.1.1 Interlocks

An interlock is a primitive and efficient

mechanism used to provide access control to code or data

segments within a program. It is normally implemented via a

"TEST-and-SET FLAG" instruction in cooperation with hardware

features that guarantee uninterruptible fetch and store

operations on the flag in use.
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A typical implementation would include objects

that could be LOCKED and UNLOCKED. For example, a programming

language would typically declare an interlock variable (I) upon

7which LOCK and UNLOCK operations would be performed. when

* mutually exclusive access to a shared object is desired, this

object would be surrounded by LOCK (I) and UNLOCK (I)
primitives. That is, before using the object, a program should

LOCK its corresponding interlock, and afterwards should UNLOCK

* it. Thus, mutual exclusion is achieved.

The advantages and disadvantages of employing

interlocks as process control mechanisms are as follows:

Advantages

9 Efficient implementation

* Simplicity of use

Disadvantages

o Lack of monitoring capability

o Lack of enforcement of access adherence or

compliance

o Tendency to make program sections in which

* they appear difficult to maintain

o Tendency to defeat modular structure of

surrounding program elements

e Only addresses mutual exclusion aspect of

* process control

*4.4.1.2 Semaphores

Like the interlock, a semaphore is a primitive

and efficient process control mechanism. It is often used in

process control when a process is only concerned with receiving

a timing signal from another process when a certain event has

occurred, or when mutually exclusive access to a shared object

is desired. It can be regarded as a special case of process

communication in which an "empty message" is sent each time a

ce-tain event occurs. Since the messages are empty, it is

sufficient to count them and hence the semaphore (S) may be

viewed as a single element buffer containing the number of

signals sent, but not yet received (/BRfI73/).
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The only valid operations defined on semaphores

are P(S) and V(S), sometimes called WAIT and SIGNAL,

respectively. These two operations allow a process to block

itself to "wait" for a certain event and then to be awakened by

a "signal" from another process when the event occurs. Thus,

P(S) and V(S) have the following meaning:

P (S) : Wait until S > 0, then S - S-1

V(S): S - S+l

Note that the operations P(S) and V(S) must exclude each other

in time since the semaphore (S) is a commnon (shared) variable.

Semaphores exhibit many of the same advantages

and disadvantages of interlocks.

Advantages

* Efficiency of implementation

* Simplicity of use
e Possess rudimentary scheduling potential

* Possess some access control

Disadvantages

* Lack of monitoring capability

* Do not rigidly enforce access adherence or

compliance

e Tends to make surrounding program elements

difficult to maintain

* Tends to defeat modular structure of

surrounding program elements

a Only addresses synchronization and mutual

exclusion aspects of process control

Note that the degenerate semaphore case, in which only the

integer values 0 and 1 are employed, functionally corresponds

to the interlock described previously. Such semaphores are

called binary semaphores. Note also that the "critical

section" or "critical region" /BRIN73/ syntactic form is really

only a construct equivalent to a bracketed pair of P and V

operations which prevents undesired entry and exit from the

region and thus overcomes one of the most undesirable features

of separately implemented semaphores. The conditional critical
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region /BRIN73/ merely extends this to provide alt" ative

actions if a requested resource is busy.

4.4.1.3 Message Buffers

Interlocks and semaphores only address the
synchronization and mutual exclusion aspects of process

control. They cannot be used to directly effect message

* exchange between cooperating processes. However, an extension
* of the semaphore primitives allows them to become communication

* operations that provide both synchronization and data
transmission. Usually, SEND and RECEIVE operations are defined

.- by which one process executes SEND to pass a message and a
second process accepts the information by executing RECEIVE.

Since it is desirable that the sending process not be blocked
awaiting acceptance of the message by the receiving process,

*. most implementations support the declaration of a message queue

or "mailbox."

The advantages and disadvantages of message
buffer mechanisms should be obvious, but are listed below for

completeness.

Advantages

* Fairly simple to use

e Does not adversely affect modularity

* Reasonably maintainable

Disadvantages
* Tends to be inefficient due to overhead

associated with message transfers and queue

manipulation

@ Does not directly address mutual exclusion or
process synchronization

4.4.1.4 Monitors

A monitor provides convenient facilities for

guaranteeing mutual exclusion and for blocking and signaling

processes. It is defined in /BRIN73/ as: "A common data

structure and a set of meaningful operationa on it that exclude
one another in time and control the synchronization of
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, concurrent processes." A monitor may be viewed as a "fence

around critical data". All sequences of statements that
manipulate shared data are collected and moved inside this
"fence". The "fence" has several gates, one corresponding to

each sequence of statements. Each of the sequences thus form a
special purpose procedure called an "entry." This means that

all the critical sections for a particular set of shared data
are collected into one place /HOLT78/.

It can easily be seen that whenever one of these
entries is invoked, mutually exclusive access to the shared
data is automatically provided. Furthermore, the enforcement
of mutual exclusion is implicit --- the programmer need only

invoke the entry --- the translator is responsible for
generating code to guarantee mutual exclusion.

The advantages and disadvantages are as follows:

Advantages

* Does not adversely affect modularity

e Guarantees mutually exclusive data access
* Precedence and priority considerations can be

provided
o Supports maintainability from a modularity

point of view
Disadvantages

" Somewhat inefficient in comparison to
semaphores and interlocks

" Only addresses mutual exclusion and
synchronization --- not communication

" Somewhat difficult to use and hence maintain

(from a complexity point of view)

4.4.2 Applicability of Traditional Solutions to Process

Control Within Communication Systems Software
The traditional approaches to implementing

process control mechanisms illustrates a tradeoff between
modularity and efficiency. Communication system software, such

as the SCI architecture, exhibits requirements for process
control mechanisms that span the efficiency/modularity spectrum.
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* Interlocks

The use of shared data structures requires the

rapid access, mutual exclusion benefit of this

type of device.

o Semaphores
The implementation of efficient access control

(synchronization and mutual exclusion) to

interval timing devices could well be served

by this type of device.

o Message Buffers
Communication systems inherently employ

message exchanges between processes. Message

queues or "mail boxes" serve the data exchange

or interprocess communication requirements of

the SCI architecture.

o Monitors

The system management portion of the SCI

architecture provides for the centralization

of common monitor type, in-line services and

functions (such as acquisition or release of a

resource) for the protocol layers of the

model. This type of device provides for

mutual exclusion and strict compliance of

access to system resources and shared data

structures where required.

4.5 THE ADA LANGUAGE SOLUTION TO PROCESS CONTROL

The Ada language, as documented in /USD080/, has

addressed concurrent processing with the concept of tasks which

can run in parallel with other tasks. The details of Ada

tasking are documented in the literature (/USDO80/, /BBNE79/,

/BOUT8O/ and /ICHB79b/), and need not be repeated here in

detail. The major concepts and points we wish to address are

detailed below.
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4.5.1 Ada Task Structure

The task structure which includes the entry,

select, delay, and accept statements make up a formidable high

level structure that maps well with the SCI architecture

tasking requirements. The entry statement provides visibility

to other processes; and it defines a queue for the calling

processes. The accept statement addresses the retrieval of

information (control and data) from the task requesting

service. The select statement provides for an examination of a

series of conditions (or guards) which together with input

information determined the control of processing within the

task. The delay statement provides for one of the timing

functions required by the SCI architecture.

4.5.2 Ada Rendezvous

Ada uses the concept of a "rendezvous" between

tasks to address process control for intertask communication,

synchronization, and mutual exclusion. The characteristics of

the task rendezvous are as follows:

*Asymmetry of Identity

The calling task has knowledge of the called

task. The called task has no knowledge of the

caller, except possibly via the data that is

exchanged, outside of a rendezvous.

e User/Server Connotation

The called task acts as a server to calling

tasks. Functions/processes are invoked by the

called task on behalf of the caller.

9 Scheduling
The calling task is suspended until the

rendezvous is complete. The called task is

scheduled for execution, if not already

executing, at the start of rendezvous

(coincidence of an entry call and the

execution of an accept statement). The called

task continues executing for the duration of

the rendezvous. The called task may be
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suspended at the completion of the rendezvous

and the calling task is rescheduled for

execution.

. Queuing

Ada associates a queue with each entry point

in a task. This is the means for
synchronization between tasks. Ada treats

tasks as objects and within the framework of
an Ada rendezvous, tasks are queued to one

another.
NOTE: The /USDO80/ does not specify what

suspension means. Task suspencion is an

implementation decision and could conceivably be

a spin-lock, a time delay, or a complete memory
rollout of tasks.

4.5.2.1 Task Synchronization

Tasks are synchronized with each other within the

task rendezvous of Ada. The calling task cannot proceed until

the called task has completed, i.e., the accept statement has

executed.

4.5.2.2 Task Communication

The exchange of data parameters between tasks may

occur within the rendezvous. The mechanism is

implementor/translator dependent.

4.5.2.3 Mutual Exclusion

Mutual exclusion of shared resources is achieved

within the rendezvous since only one of the task pairs is

actively processing until the rendezvous is completed.

No other mechanism is inherent within Ada

construzts to effect mutual exclusion, outside of the

rendezvous between task pairs.
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4.5.3 Summary

The task structure and rendezvous concept chosen

by the Ada designers generally provides for a high-level

solution to process control. The Ada rendezvous concept has

greater documentation and modularity potential than the
traditional solutions discussed, however, it lacks flexibility

and the efficiency of the more primitive mechanisms. The

concept of rendezvous in theory maps very closely to the

requirements, architectures, and overall purpose of

communication system software.

Although not directly stated above, we believe

that the other solutions to process control could be

implemented via Ada constructs as modularity and efficiency

requirements dictate.
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SECTION 5

PROBLEMS AND ALTERNATIVES

This section addresses three categories of

- problems associated with Ada's ability to support communication

software development. The first category stems from issues
raised by BBN Report No. 4188 /BBNE79/ and concerns Ada's
general ability to support concurrent programming activities.

- These issues are repeated and discussed herein for ease of

reference. Alternatives or solutions to the stated problems

are presented, where appropriate. The next category addresses

* issues specifically related to Ada's support of concurrency in

a communication system environment. These issues stem from a

mapping of Ada's concurrency facility onto the communication

* model developed in Sections 2 and 3, and specifically address

how well this mapping compares with the required facilities

* described in Section 4. Once again, solutions and/or

alternatives are discussed. The final category deals with

miscellaneous other communication-related software issues where

* Ada exhibits problems or deficiencies. These other issues are

included for completeness, even though the emphasis of this

analysis effort is in the area of concurrent programming

support requirements within a communication environment.

3.1 ISSUES RAISED BY BBN REPORT NO. 4188

BEN Report No. 4188, titled "The Impact of

multiprocessor Technology on High-Level Language Design",

surveys several representative multiprocessor systems,

describes classical approaches to process control and

concurrency, and then evaluates the parallel control facilities

* provided by the Ada language in order to assess the

practicality of using Ada as a standard language for existing

multiprocessor systems. It should be noted that this report

was published 10 September 1979, and, as such, only addresses

the preliminary Ada definition /ICHB79a/, not that which is

defined within the Ada Language Reference Manual (LRM) /USDOBO/.



In the course of their evaluation, the authors

raised several issues related to Ada's ability to support

parallel processing within an assumed (generic) multiprocessor

environment. These issues are presented and discussed herein.

Excessive Scheduler Interactions

5.1.1.l Statement of Problem

The authors feel that run-time efficiency is the

highest priority consideration in multiprocessor system

implementations. As such, they were particularly concerned

with evaluating Ada's parallel control features from an

efficiency standpoint. Based on their evaluation, they

concluded that the most severe problem with the process control

features in Ada (from the point of view of efficiency) is that

the transmission of data from a sender process to a receiving

process requires excessive scheduler interactions.

In particular, they state, "The use of a complete

rendezvous system results in unnecessary scheduling delays.

This problem is particularly severe in the relatively important

case of message passing in that Ada requires the sender of a

message to wait for the scheduler before it is allowed to

proceed."

This conclusion is based on certain assumptions

as to the environment and the processes involved. The assumed

environment is a single processor executing parallel processes

in a message passing application. The processes involved are a

sender process generating messages and entering these messages

into a queue, and a receiving process which removes messages

from the queue. READ and WRITE entries to a buffering task

accomplish the message transfers. The authors contend that the

scheduling problems arise from the semantics of the Ada ENTRY

call issued by the sender process whereby the sender is blocked

until the buffer task is scheduled and completes the

rendezvous. During this time, the se' ,er process is suspended

and must wait to be rescheduled when the buffer task

completes. The same basic sequence takes place when the
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consumer task executes the corresponding entry call. Thus a
total of four scheduling interactions are potentially required

in this situation to transmit a single message. Also, since

each scheduler interaction may involve a complete context swap,

* this implementation of messige passing is considered to be

prohibitively expensive for many applications.

6.1.1.2 Alternatives

When the BBN report was published, the

* inefficiency of Ada's tasking facility was a subject receiving

considerable attention from the various language reviewers and
* the academic community in general. It is unfortunate that so

much emphasis was placed on the inefficiency of Ada's

rendezvous mechanism and so little emphasis placed on its

- advantages. It should be pointed out that a conscious effort

was made by the language defining groups to avoid the

proliferation of (the potentially more efficient) parallel

process control constructs, i.e., the previously described

(Section 4) interlocks, semaphores, etc. A trade-off exists

* between the efficiency of various constructs and their

usability, implementability, reliability, and maintainability.

While these lower level primitives are more efficient in their

implementation, they tend to make the program elements in which

they exist more difficult to correctly implement, less reliable

in operation, and harder to maintain. An argument can be made

that a certain percentage of real-time (communication)

applications exist wherein the efficiency of the tasking

facility becomes a problem. However, all of these applications

must be highly reliable and easily maintained. The desire for

a language to be efficient in operation often seems in conflict

with the goals of expressive power and program clarity.

Inevitably, trade-offs must be made, and hence the decision on

which approach to use depends to a large degree on design

priorities. The Ada rendezvous mechanism has obviously

prioritized expressive power and program clarity in an attempt

to foster the important goals of reliability and

maintainability. While all of this presents a valid defense of

1-5-3



Aasconcurrency faiiieiralls short of offering

legitimate alternatives in those situations where efficiency of

implementation is a prime concern.

The first observation that can be made in dealing

with this problem is that there is no direct alternative

mechanism within the Ada framework which provides a more

efficient implementation than the one described within the BBN

report using the task rendezvous. If one implements buffered

message passing with non-blocking senders in the manner

described in the BBN report, one has to accept the inherent
"side-effects" of Ada's task rendezvous mechanism and, in fact,

it is readily agreed that potential difficulties can arise in

certain applications where efficiency is a prime concern. One

therefore has to search for alternatives to the problem rather
than alternative implementations of the Ada rendezvous. In

other words, the real problem lies not in making the rendezvous

more efficient for this implementation but lies instead in the

determination of an efficient alternative method of effecting

message transfers between concurrently executing producer and

consumer tasks in single processor, processor network, and

multiprocessor environments.

With this in mind, an alternative based on

manipulation of a common message queue is offered. mutually

exclusive access to the queue is provided by the inclusion of

an interlock variable which can be locked and unlocked by the

appropriate task. Example 5-1 shows a typical implementation.

It can be noted that the message packets and associated control

variables are defined in the same manner as in the BBN report

example. The major difference is in the mutual exclusionLj provided by the interlock variable and the absence of the
explicit task rendezvous for effecting message transfers. This

alt3rnative is in keeping with more traditional implementations

of bounded buffer operations. The example as shown is oriented

etenads ah cnlepocetor envuicomut and mbuipressos

etwads ah sinlep proeo enviromet but obvipsosriain

environments, as well.
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package MESSAGE is
PACKET SIZE:constant INTEGER:=256;
type PACKET is array (1..PACKETSIZE) of CHARACTER;
SIZE:constant INTEGER:=10;
BUF:array (1..SIZE) of PACKET;
INX,OUTX:INTEGER range 1..SIZE:=1;
COUNT:INTEGER range O..SIZE:=O;
type INTERLOCK is (LOCKED,UNLOCKED);
type ACCESS I is access INTERLOCK;
L:ACCESSI:=new INTERLOCK (UNLOCKED);
procedure LOCK (L:ACCESSI);
procedure UNLOCK (L:ACCESS_I);

end MESSAGE;

package body MESSAGE is
function TESTANDSET (L:ACCESS I) return BOOLEAN is

-- body of TESTANDSET function
end TESTANDSET;
procedure LOCK (L:ACCESSI) is

-- body of LOCK procedure
end LOCK;
procedure UNLOCK (L:ACCESS_I) is

-- body of UNLOCK procedure
end UNLOCK;

end MESSAGE;

with MESSAGE; use MESSAGE;
* package PRODUCERCONSUMER is

task PRODUCER;
task CONSUMER;

end PRODUCERCONSUMER;

Example 5-1 (Page 1 of 2)
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package body PRODUCER CONSUMER is
task body PRODUCER is
MSG1 :PACKET;
begin

loop
while COUNT=SIZE loop

null;
end loop;

-perform necessary processing
-to create desired message in MSGl

LOCK(L);
BUF(INX) :=MSGl;
INX:mINX mod SIZE+l;
COUNT :=COUNT+1;
UNLOCK (L);

end loop;
end PRODUCER;

task body CONSUMER is
MSG2 :PACKET;
begin

loop
whiile COUNT=O loop

null;
end loop;
LOCK (L);
MSG2:-RUF(OUTX);

* OUTX:=OUTX mod SIZE+l;
COUNT: COUNT-l;
UNLOCK (L);

-perform necessary processing
-on received message in MSG2

end loop;
end CONSUMER;

end PRODUCER-CON SUMER;

Example 5-1 (Page 2 of 2)
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In the example given, a producer task wishing to

transmit a message to a consumer task enters a message on the

queue only when the queue is not full and the interlock
variable is unlocked, i.e., no other process is manipulating

the queue. The details of the LOCK and UNLOCK procedures, and

their associated interaction with a TEST and SET function, are

given in Section 5.1.2.2. For now, assume mutually exclusive

access to the queue is guaranteed through bracketed LOCK and
UNLOCK procedure calls. As a producer task enters a message in

the queue, it also adjusts the queue input pointer and

increments the count of messages in the queue. As a consumer

task removes a message from the queue, it likewise adjusts the
* queue output pointer and decrements the count of messages in

the queue. Deadlock between producer and consumer tasks is

prevented by checking for "queue empty" and "queue full"
conditions prior to locking the interlock variable.

It can be seen that, while this example does not

offer a more efficient rendezvous mechanism, it does provide a

more efficient solution to the stated problem -- that of

* implementing buffered message passing with non-blocking senders
* using Ada constructs.

i.1.2Process Control Structure Flexibility

3.1.2.1 Statement of Problem

The BBN Report maintains that Ada does not

*provide sufficient flexibility in its process control structure

to allow a programmer to choose the mechanism which is most
appropriate for the requirements of the application. The

authors state ... "In Ada, the only mechanism available for
providing mutual exclusion is through the rendezvous of an

entry call in one task and an accept statement in another.
Although we feel that the entry/accept linkage is a powerful

* tool which will be useful over a wide range of applications,

there are limitations in the structure which will make it

difficult to use Ada in certain applications environments in
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which efficiency is of considerable importance unless

additional primitives are included so as to provide a more

flexible synchronization mechanism." Thus, the basic concern

here is very similar to the previously stated problem. That

is, if one assumes the rendezvous mechanism is an inefficient

tool for synchronization, then Ada must provide other

alternatives to the rendezvous mechanism (where appropriate)

for certain application environments.

A second problem area relates to Ada's

synchronization mechanism being control-based vice data-based.

The argument here is that, in Ada, the entry/accept linkage

results in the mutual exclusion mechanism being a function

solely of the task (i.e., control structure) and not of the

data structure (as in traditional implementations). The

authors believe that the Ada control-based implementation leads

to "convoluted program structures" or serious inefficiencies in

the use of space.

5.1.2.2 Alternatives

The fact that Ada does not support a wide range

of synchronization or mutual exclusion mechanisms was the

expressed intent of the Ada design team.

In particular, on page 11-1 of the Ada Rationale

/ICHB79b/ they state ... "One reason has clearly been a lack of

confidence in the many different facilities put forward for the

control of parallelism. Semaphores, events, signals, and other

similar mechanisms are clearly at too low a level. Monitors,

on the other hand, are not always easy to understand and, with

their associated signals, perhaps seem to offer an unfortunate

mix of high level and low level concepts. It is believed that

Green [Ada) strikes a good balance by providing facilities

which are not only easy to use directly, but can also be used

as tools for the creation of mechanisms of different kinds."

Clearly, the Ada design team chose ease and

consistency of implementation over a "grab bag" philosophy.

This philosophy of one mechanism to handle all of the

concurrent process control requirements is considered desirable



from a reliability and maintainability standpoint.

Furthermore, this philosophy is not solely fostered by the Ada

design team. Such notable experts in this field as Brinch

* Hansen and Hoare have proposed similar tasking implementations

(/BRIN78/ and /HOAR78/) which strongly influenced the Ada

* design.

If, however, one desires to implement different

mechanisms which could more closely address the requirements of

* a particular application, Ada provides the implementor with the

* flexibility to do so. The following examples show some of the

ways Ada can be used to build other process-control

* mechanisms. These are by no means the only ways to implement

* these mechanisms but give an indication of the existing

possibilities.

Example 5-2 illustrates an implementation of an

interlock in Ada (interlocks were previously described in

Section 4 along with the other "traditional" solutions to

process control). In this example, a function TESTANDSET is

defined by means of an assembly language routine which accesses

the TESTANDSET instruction of the underlying machine. The

example shows a typical AN/UYK-7 implementation. LOCK and

UNLOCK procedures are then defined as shown. A call to the

LOCK procedure will perform a busy wait operation until the

* function TESTANDSET returns a value FALSE indicating mutually

exclusive access to a shared resource has been granted. A

subsequent call to the UNLOCK procedure frees the resource for

other users' access.

Ada can also be used to implement the traditional

semaphore as shown by the following examples of binary and

integer semaphores. The binary semaphore implementation shown

in Example 5-3 was taken from the Ada Rationale /ICHB79b/.

A critical section of code performing mutually

exclusive access to a shared data object can then be bracketed

by successive P and V entry calls as shown in Example 5-4.
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with INSTUYK 7;
function TESTANDSET (L: INTERLOCK)

Q:BOOEAN;return BOOLEAN is

K procedure REAL TESTANDSET;
pragma INLINE (REAL TESTANDSET);
procedure REALTESTANDSET is

use INSTUYK_7;
begin

FORM2'(0P= > TSFIA=> 0, B=> 0, I=> 0, SY=> L'ADDRESS);
FORM3' (OP. > JNE,A=> 0, B=> 0, I=> 0, SY => LABi);

KFORMi' (OPu > BZ,A=> 0, B-> 0, I=> 0, SY '~Q'ADDRESS);

FORM3'(OP= > RJ,A-> 0, B-> 0, I-> 0,
SY - > REALTESTANDSET'RETADD);

<<LABi >
FORMi' (OP= > BS,A-> 0, Bu> 0, I=> 0, SY => Q'ADDRESS);
FORM3' (OP. > RJ,A-> 0, B=> 0,

SY = >REALTESTANDSET' RETADD);
end REALTESTANDSET;

begin--function TESTANDSETLi REALTESTANDSET;
return Q;

end TESTANDSET;

procedure LOCK(L:ACCESSINTERLOCK) is
begin

while TESTANDSET(L) loop
null; -- do nothing (busy wait)

end while;
end LOCK;

procedure UNLOCK(L:ACCESSINTERLOCK) is
begin

L .all : UNLOCKED;
end UNLOCK;

Example 5-2
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Note that in this case the rendezvous merely

* provides synchronization and no data are transferred. The P

entry call acts as the traditional "WAIT on SEMAPHORE" action

.4 while the V entry corresponds to the "SEMAPHORE SIGNAL."

Similarly an integer semaphore may be implemented

as shown in Example 5-5.

Again critical regions can be bracketed by P and

* V entry calls.

More elegant structures may also be constructed.
For example, consider Example 5-6, a monitor implementation in

Ada which illustrates one method of handling the classical

* readers/writers problem.

By maintaining a count of readers and the status

of a writer and by being able to update these variables in a

mutually exclusive manner, the READWRITE monitor in

Example 5-6 ensures that readers never attempt to read while

writers are modifying shared objects. As with the semaphore

implementation, readers can bracket critical sections of code

with READ_REQ and READ_-REL entry calls and writers likewise

* with RITEREQ and RITEREL calls.

It should be noted that while the above examples

* provide means of implementing mechanisms more closely related

to the intended application, the inherent disadvantages of

these mechanisms (outlined in Section 4) are still present and

* should be taken into consideration during any implementation.

It is felt that the above examples offer a range of "low level"

facilities for mutual exclusion which adequately address the

concern expressed by the authors of the BBN report. In

applications where efficiency of implementation is not of a

critical nature the normal utilization of Ada's task rendezvous

mechanism as a means of providing mutual exclusion and

synchronization is of course adequate and, in fact, desirable.

The second problem area, related to the storage

inefficiency of Ada's control-based synchronization mechanism,

can be handled quite easily in revised Ada. The solution lies

in the ability to define "entity pointers" to objects of type

ENTITY which contain a record with an INTERLOCK as its
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task type SEMAPHORE is
entry P;
entry V;

end;
task body SEMAPHORE is
begin

loop
accept P;
accept V;

end loop;
end;

Example 5-3

LOCSEM:SEMAPHORE;

LOC SEM.P;
CdOMMONDATA(TRACKNUMBER) :-TRKINDEX;
TRACKNUMBER:-TRACKNUMBER+1

LOCSEM.V;

Example 5-4

task type fINTSEMAPHORE is
entry P;
entry V;

end INTSEMAPHORE;

task body INT_-SEMAPHORE is
5: IITEGER range 0.. INTEGER' LAST:=NUM RESOURCE;

begin
select

when S>O->
accept P do

S:=5-l;
end P;

or
accept V do

S:=5+l;
end V;

end select;
end INTSEMAPHORE;

Example 5-5
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-- .. .

task type READ WRITE is
entry READ REQ;
entry READ REL;
entry RITE REQ;
entry RITE REL;

end READ WRITE;
. task body READ WRITE is

READ COUNT:INTEGER range 0 ..INTEGER'LAST:=0;
MODIFY:boolean:= FALSE;

begin
loop

select
when MODIFY-FALSE and RITEREQ'COUNT=0

accept READREQ do
READ COUNT:=READCOUNT+1;

end READ_REQ;
or

accept READ REL do
if

READCOUNT>0
then

READCOUNT:=READCOUNT-1;
end if;

end READREL;
or

when READCOUNT=0 and MODIFYfFALSE

accept RITEREQ do
MODIFY: =TRUE;

end RITEREQ;
or

when MODIFY=TRUE

accept RITE REL do
MODIFY: =FALSE;

end RITEREL;
end select;

end loop;
end READWRITE;

Example 5-6
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component. With this approach, one can then implement "Action

procedures" in the same manner outlined on page 116 of the BBN

report. This implementation is as shown in Example 5-7.

Alternately, instead of using an interlock object

of type RESOURCE, one could employ the interlock mechanism

descr ibed previously.

5.1.3 Naming Convention Problems

5.1.3.1Statement of Problem

The authors of the BBN Report feel that Ada's

task naming conventions do not allow the programmer to name

processes with names which accurately reflect the underlying

algorithm structure. In particular, they feel that the array

structure imposes a relatively arbitrary task structure which

may or may not reflect the nature of the particular application.

A second, potentially more serious problem, is

posed by the asymmetry of knowledge between the called and the

calling task in which a server task has no way to reply to a

requesting task outside of the rendezvous since the identity of

the requesting task is not known by the server. This is called

the "return address problem" by the authors. Note that the

problem is not one of authenticating a requestor but rather one

of being able to identify the requestor in a subsequent entry

call.

5.1.3.2 Alternatives

The first pioblem discussed above is no longer

applicable. Due to revised Ada's treatment of tasks as types,

task objects may now be created and named in a meaningful

m'anner with names more closely associated with the underlying

process structure.
Furthermore, the limitations of the array

structure of tasks in preliminary Ada are no longer present.

In preliminary Ada, one could not easily build linked lists of

task objects (or any other structure of task objects besides

arrays, for that matter). This problem no longer exists, as



task type RESOURCE is
entry SEIZE;
entry RELEASE;

end RESOURCE;
"" task body RESOURCE is

FREE: boolean: =TRUE;
begin

loop
select

when FREE =>
accept SEIZE do

FREE: =FAI-SE;
end SEIZE;

or
accept RELEASE do

FREE:=TRUE;
end RELEASE;

or
when FREE=>

terminate;
-J end select;

end loop;
end RESOURCE;

type ENTITY is
record

INTERLOCK: RESOURCE;
-- other necessary declarations

end record;

type EPNTR is access ENTITY;

procedure ACTIONn(ENT:E_PNTR) is
begin

ENT. INTERLOCK.SEIZE;
-- perform action n
ENT. INTERLOCK. RELEASE;

end ACTIONn;

Example 5-7
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illustrated by Example 5-8, an implementation of a linked list

of terminal drivers. Note that this example reflects the

solution to the terminal driver problem cited in the BBN report.

The "return address problem" can be handled

* within the Ada language by defining access types which provide

pointers to task types as shown in Example 5-9.

The solution to the "return address problem" is

accomplished in the above example by including an ACCEPT

statement within USER task's body that is used to establish the

USER's own identity. The parameter passed within the ACCEPT

statement of task SERVER is a pointer to the USER task itself

and is saved locally. The USER task is then free to perform a

call to the associated SERVER task and pass its own identity

(pointer) with the call. The USER task then loops forever

carrying out necessary processing while it awaits a reply from

the SERVER task. The SERVER task is able to know (and

remember) the identity of the USER task since it was passed as

a parameter (pointer) upon ENTRY call, and then stored locally.

5.1.4 Lack of Scheduling Control

5.1.4.1 Statement of Problem

The BEN Report expresses concern as to whether

the scheduling discipline provided by the language is

sufficiently general to support applications with important

timing constraints, and in particular, whether Ada provides

adequate control over the scheduling strategy.

3.1.4.2 Alternatives

it is believed that the example provided by the

authors on pages 130 and 131 of the BBN Report outlines

considerations traditionally handled by an executive/operating

system - not within a language definition. Requiring the Ada

definition to encompass task run-time limit specification

and/or forcible deacheduling is above and beyond the

requirements of a language definition. It should be emphasized

that Ada does not provide any scheduling discipline, but rather
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package TERM DRVR SYSTEM is
task TEEM DRVR is -- Terminal Driver Specification

entry START UP(N:NATURAL); - Activation entry
entry SHUTDOWN; -- Deactivation entry

end TERM DRVR; -- Assumes only one user
type TERM;
type TERM PNTR is access TERM;
type TERM-is

record
PNTR: TERM PNTR;
DRVR: TERM DRVR;
T NUM: INTEGER range O..INTEGER'LAST:-O;

end record;
FREE TEEM DRVR: TERMPNTR;
ACTIVE TEFRM DRVR: TERM PNTR;
procedure BUILD FREE LIST(N:NATURAL);
procedure ACTIVATE (ACTERM:NATURAL);
procedure DEACTIVATE (ACTEM:NATURAL);
STATUS ERROR: exception;

end TERMDRVRSYSTEM;

package body TERM_DRVRSYSTEM is
-- TERM DRVR represents the terminal
-- driver task which will monitor and
-- interface to a particular terminal
-- represented by a positive integer.
-- Details of the interaction are not
-- presented here...only the capabilities
-- to start and stop the actions of the
-- terminal driver.

MYTEM:NATURAL; -- Terminal Number
'2EADY:BOOLEAN:-TRUE; -- Initialization flag
task body TERMDRVR is
begin

loop
select

when READY =>
accept STARTUP (N:NATURAL) do
MY TERM: -N;

IADY: -FALSE;
-- perform any STARTUP processing
end START-UP;

or
accept SHUTDOWN do
-- perform any housecleaning
READY: -TRUE;
end SHUT-DOWN;

end select;
end loop;

end TERMDRVR;

Example 5-8. (Page 1 of 3)
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procedure BUILD FREE LIST(N:NATURAL) is
- This procedure is used to initially

-- create a list of N FREE
-- terminal driver task objects in
-- a simple linked list structure

TEMP : TERM PNTR;
begin

FREE TENM DRVR:-new TERM; -- point to head
TEMP:--FE- TERM DRVR;
for I in 2..N loop -- add N-I nodes

TEMP.PNTR:-new TERM; -- to linked list
TEMP:-TEMP.PNTR;

end loop;
TEMP.PNTR:-null;

end BUILDFREELIST;

procedure ACTIVATE(ACTERM:NATURAL) is
-- This procedure is used to remove
-- terminal driver tasks from the
-- FREE list and place them on
-- an ACTIVE list. Note that a
-- particular task is associated with
-- a terminal via a specified terminal
-- number
TEMP: TERMPNTR;
begin

if FREE TERM DRVR = null then -- test for any drivers
raise STATUS ERROR; -- error if none

end if;
TMP:-FREE TERMDRVR; -- remove head from FREE
FREE TERM DRVR:'FREE TERM DRVR.PN'"R; -- terminal driver
TEMP-.T NUM:-ACTER; -- save terminal number
TEMP.P-NTR:-ACTIVE TERM DPVR; -- place at head of ACTIVE
ACTIVE_ TERM DRVR: TEMP*
ACTIVE TERMDRVR.DRVR.STARTUP(ACTERM); -- start driver

end ACTIVATE;

IE
Example 5-8. (Page 2 of 3)
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procedure DEACTIVATE (ACTERMzNATURAL) is
- This procedure is used to remove active

-- terminal drivers from the ACTIVE list
- and place them back on the FREE

-- list.
TEMP: TERM_PNTR;
LAST PNTR: TERIMPNTR;
begiR

TEMP: ACTIVE TEN DRVR;
if TRNP.T NURoACTIRM then

TEMP. DRVR. SHUTDOWN;
ACTIVE TERM DRVR:=TIP.PNTR;
TEMP. PNTR: -RE TERM DRVR;
FREE _TERN DRVR: TEP-;
return;

end if;
LAST PNTR: -TEMP;
whili TEMP /- null loop

if TEMP.T NUM-ACTENR then
TMF.DRVR.SHUT DOWN; -- disable driver
LAST PNTR.PNTR:wTEMP.PNTR; -- remove from list
TEMP'.PNTR:-FREE TERM DRVR; -- place at head of
FREE TEMDRVR:-TEMP; -- FREE list
return

end if;
LAST PHTR:-TDIP;
TEMP : -TEKP. PNTR;

end loopI
raise STATUS BRRORI -- no driver error

end DEACTIVATE;
end TEM DRVRSYSTEMI

with TERN DRVR SYSTDE; use TEBM DRVR.SYSTE4;
procedure MIN-is
begin

WILDRhBLIST(S0); - set up 50 node FREE list
loop
- if terminal n needs a driver
ACTIVATZ(n);
- or if terminal n is done
DEACTIVATE (n)
end loopl

end M IN;

Example 5-8. (Page 3 of 3)
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procedure MAIN is
type MESSAGE is...; -- some form of message to process
type ANS is...; - some form of server response

type USER;
type ACCUSER is access USER;
task type USER is

entry NAhME(N:ACC USER); -- used to get own name
entry ANSWER (A:ANS); -- used for server response

end USER;

type UINFO is
record
USER ID:ACC USER;
MSG :MESSAGE;

end record;

task type SERVER is
entry CALL(U:UINFO);
entry SHUT DOWN;

end SERVER;
SERVE: SERVER;
task body SERVER is separate;
task body USER is separate;

begin
declare

TDIP:ACCUSER;
begin

while WANT TO BUILD USERS loop
TEMP:-niw USER;
TEMP. NAME (TIM)

end loop;
end;

end MAIN; -- wait for users and servers to complete

Example 5-9 (Page 1 of 3)
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task body SERVER is
SIZME-constant INTZGER:-...; -- some max buffer size
U.ECS:array (l..SIZE) of U INFO; -- user request buffer
IN:INTEGER range (l..SIZE):Zl; -- buffer input index
OUT:INTEGER range (l..SIZE):ul; -- buffer output index
COUNT:INTEGER range (O..SIZE):oO; -- num items in buffer
A:ANS; -- some form of server response

begin
loop

while CALL'COUNT>O and COUNT<SIZE loop
accept CALL(X:U INFO) do
U RECS(IN) :-M;
end CALL;
IN:-IN mod SIZE+l;
COINT: -COUNT+li

end loop;
while CALL'COUNT-O and COUNT>O loop

process the request
for service co one user

-- at a time.
U RECS(OUT).USER ID.ANSWER(A);
OUT:nOUT mod SIZZ+l;
COUNT: -COUNT- 11

end loop;
select

when CALL'COUNT-0 and COUNT-O->
accept SHUT-DOWN;
exit;

else
null;

end select;
end loop;

end SERVER;

Example 5-9 (Page 2 of 3)
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task body USER is
-- representative one of potentially many
-- user tasks that may request service
-- from single server task
INFO:U INO;
begin

accept NAME(N:ACC USER) do -- get own name
INFO. USER ID: =;

end NAME;
carry out processing to build
message cr data to have
processed by server

SERVE.CALL(INFO); -- call server task
loop

select
accept ANSWER(A:ANS) do

-- process response from server
end ANSWER;
exit;

else
carry out alternative processing
while waiting for answer

end select;
end loop;
-- other processing, as required

end USER;

Ii

Example 5-9 (Page 3 of 3)

1-5-22
%" - I , ,J, ,. ,' . -.

.' ,
", ':. .". '" ." .", ;:. r.""'" . . ... ... ,. -. ,. . .. , , .. .. /? ,.



provid"s a task interaction mechanism to be used however the

user wishes.

s.*2 COMMUNICATION SYSTEM RELATED CONCURRENCY ISSUES
Sections 2 and 3 laid the foundation for

considering a model on which one may build a particular
implementation for analysis. Section 4 established general
concurrency facilities traditionally used for process control
as well as those facilities supported within the Ada language

and how they apply to the SCI model. This section will address
deficiencies of the Ada language tasking constructs discovered

by mapping the Ada facilities onto the SCI model. Alternatives

or solutions to these deficiencies are also presented, where

possible.

5.2.1 Operating System Requirements

5.2.1.1 Statement of Problem
A minimum operating system framework sufficient

to support the Ada tasking constructs as well as the SCI model

architecture would have to contain the following capabilities:

" Scheduler software
" Task context switching software

* Task activation table storage and queuing

structure

" Memory allocation and mapping mechanism
" interval timing mechanism and associated

software
" Means to associate hardware interrupts with

interrupt service routines and tasks

* 1/O interface(s) to a general complement of

peripheral equipment
The problem lies in the fact that these operating

system requirements could potentially impact the smaller

hardware environments that currently support communication
systems.
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5.2.1.2 Alternatives
If future communication system implementations

were to follow the patterns of past and present implementations
then the above stated problem would indeed be valid. However,
communication systems design efforts, like other
state-of-the-art embedded computer systems design efforts, are
turning away from the general purpose processor environment

(and its associated operating system) and turning towards
implementations which exhibit a greater number of smaller
dedicated distributed processors. In these environments more
emphasis will be placed on hardware/firmware support of what
were once traditional operating system tasks. A single task
running on a single processor obviously doesn't require the OS
support described above. Furthermore, what operating system
software there is will be dedicated rather than general purpose

and will almost certainly be written in the same high level
language used for the application software.

The point being made is this. The above stated
problem is currently valid. However, as times goes on, it

becomes less of a problem since future design directions will
eventually minimize the impact. The time frame in which this
will happen should conveniently coincide with the introduction
of Ada compilers into the user domain.

5.2.2 Scheduling Deficiencies

5.2.2.1 Statement of Problem
There are actually two issues included in this

category. one of these issues coincides with the previously
stated BBN issues. It will again be discussed here, however,
for completeness.

First, it should be pointed out that certain
* assumptions are made as to the implementation of the scheduling

algorithm. For the sake of simplicity, the criteria given in
the Ada Rationale are used /ICHB79b/. These are as follows:

" The processor is available
" A new task is placed on the ready queue of the

scheduler
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0 The scheduler is an external process

(operating system)

* Ready queue is examined top to bottom and the

first task ready to execite will be invoked

It should also be noted that under the Ada

rendezvous concept, the scheduler will be invoked according to

the following events:

" Initiation of a task

" Termination of a running task

" Entry call

" Reaching an accept statement for which no call

has been issued or a select statement for

which there is no possible alternative for

immediate execution

" Termination of a rendezvous

" Execution of a delay statement

" Expiration of a delay

" Reception of an interrupt awaited by a task

The first problem encountered closely resembles

the first listed BBN issue. The problem is that the rendezvous

concept associates interprocess communication with

synchronization in time in all cases. In a communication

environment synchronization is not always required or de&ared.

The inability to optionally specify whether synchronization

(rendezvous) is to take place during interprocess communication

is the deficiency.

The second problem deals with the inability to

directly manipulate queues within the available Ada framework.
Ada has chosen a FIFO implementation for task queuing at the
expense of all others.

5.2.2.2 Alternatives

The fact that Ada requires a calling process to

synchronize in time with a called process in order to directly

perform interprocess communication is an unfortunate side

effect of the rendezvous mechanism. The problem here is not so

much one of inefficiency or scheduler delays, but rather one of
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communication system requirements in which interprocess

communication is desired while synchronization is not. The

* message passing alternative presented in Section 5.1.1.2 again

becomes a viable mechanism in these situations. Another

obvious alternative is to provide an intermediate buffering

task which is dedicated to receiving and sending messages

between application tasks. This allows a sending process to

deposit a message with the buffering task and proceed with its

appointed tasks without waiting for a receiving task to

rendezvous, as shown in Example 5-10. Note that message

context switching is avoided by the use of access types.

The problem of dynamic queue manipulation is not

directly addressed by the available language constructs. The

FIFO nature of the entry queue might be thought to be a severe

constraint in cases where some requests may be of high

priority. The handling of requests with priorities is achieved

by the use of separate entries for each level. As shown in the

Ada Rationale, a family can be conveniently used for this

purpose. See Example 5-11.

Note that this approach only addresses a small

number of priority levels. Efficient handling of large numbers

of requests with priorities in a realistic, flexible manner is

possible but beyond the scope of this report.

5.2.3 Mutual Exclusion

5.2.3.1 Statement of Problem

This problem area addresses the inflexibility of

*the Ada tasking constructs in much the same light presented

within the BBN Report. it has been shown that mutual exclusion

is a necessary aspect of parallelism within communication

systems. The only vehicle for mutual exclusion directly

available within the Ada language is the task rendezvous.

However, this construct is inefficient in situations which only

require mutually exclusive access to shared objects and which

are not concerned with synchronization and/or interprocess

communication.
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package TGT SYS is
-- TGT SYS describes the characteristics
-- of tasks which can receive messages
-- asynchronously from a sender task

type MSG IS ... ; -- some form of message
task type TGTTASK is

entry MSG_RCVR(M:MSG); -- entry to receive msgs
end TGT TASK;
type ACCTGT is access TGTTASK; -- access value used as an

procedure SEND_MSG(T:ACCTCT-M:MSG); -- msg delivery addr
end TGTSYS;

package body TGT SYS is
task type MSGZARRIER is - acts as mailman

entry TEXT(T:ACCTGT M:MSG);
end MSG CARRIER;

type ACCMSG is access MSGCARRIER;

task body MSGCARRIER is
-- accepts a message and
-- to whom to deliver it.
-- Then attempts delivery...
-- will terminate
-- following delivery

Tl: ACC TGT;
Ml: MSG;

begin
accept TEXT(T:ACCTGT;M:MSG) do

Tl:- T;
Ml:= M;

end;
T1. MSG RCVR (Ml);

end MSG_CARRIER;

procedure SEND MSG(T:ACCTGT;M:MSG) is
-- will dynamically create
-- mailman tasks in a
-- uniform manner...
-- existence of mailman
-- depends on access type
-- not this procedure

TEMP: ACCMSG:- new MSGCARRIER;
begin

TMP.TEXT (T,M);
end SENDMSG;

Example 5-10 (Page 1 of 2)
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task body TGTTASK is

* -- accept MSGRCVR

end TGTTASK;
end TGTSYS;

with TGTSYS; use TGTSYS;
procedure MAIN is

task type USER is -- sender of messages

end USER;
type ACCUSER is access USER;
TGT ARRAY: array(l..n) of ACC TGT;
USER ARRAY: array(l..m) of ACC_USER;
task-body USER is
-- USER sends messages to
-- TGT TASKS in an
-- asynchronous manner

U MSG: MSG;
J INTEGER range TGTARRAY'RANGE;

begin
-- create message in U MSG;
-- set J to index of target task in TGTARRAY
SEND MSG(TGT ARRAY(J),U MSG);
-- c6ontinue processing

end USER;
begin

for I in TGTARRAY'RANGE loop
TGT ARRAY(I):= new TGTTASK; -- create target tasks

end loop;
for I in USER ARRAY'RANGE loop

USERARRAYTI) := new USER; -- create user tasks
end loop;

end MAIN;

Example 5-10 (Page 2 of 2)
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task CONTROL is
type LEVEL is (URGENTMEDIUM,LOW);
entry REQUEST (LEVEL'FIRST..LEVEL'LAST) (D:DATA);

end;
task body CONTROL isloop

select

accept REQUEST (URGENT) (D:DATA) do
-- high priority processing
end;

or when (REQUEST (URGENT) 'COUNT0) =
accept REQUEST(MEDIUM) (D:DATA) do
-- medium priority processing
end;

or when((REQUEST(URGENT)'COUNT=0) and
(REQUEST (MEDIUM) COUNT-0))-

accept REQUEST(LOW) (D:DATA) do
-- low priority processing

end;
end select;

end loop;
end CONTROL;

Example 5-11
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5.2.3.2 Alternatives

As previously stated, the intent of the Ada

design team was to incorporate one mechanism into the language

which could address all three aspects of concurrent process

control: process synchronization, process communication, and

mutual exclusion. The requirements for simplicity of use,

reliability and maintainability were seen as taking precedence

over efficiency of implementation. Again, if more efficient

primitive mechanisms are desired simply to provide mutually

exclusive access to shared objects within a critical region,

they can be implemented. Section 5.1.2.2 provided a

representative sampling of candidate mechanisms.

5.2.4 Dynamic Task Priority Assignment

5.2.4.1 Statement of Problem

The ability to dynamically change task priorities

* is a desirable feature to have when dealing with momentary,

heavy resource load or casualty conditions. It is also a

convenient method of handling the so-called "starvation effect"

whereby a low-priority task never gets scheduled due to

continual preemption by higher priority tasks.

Preliminary Ada, as documented in /ICHB79a/,

provides for a dynamic or static assignment (pragma) of task

priority. The current documentation /USDO8O/ has dropped the

dynamic flexibility.

F5.2.4.2 Alternatives

As in so many previous cases, the decision to

remove dynamic task priority manipulation from the language was

based on a conscious decision on the part of the design team.

Again, reliability and maintainability of generated code took

precedence over the convenience of including this capability

within the language. And, as before, the above mentioned

feature can be implemented with available constructs and data[ structures; however, the solutions are not as direct.
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one indirect method of solving this problem is to

use duplicate winstancesm of tasks each having a different
statically assigned priority. As exceptional conditions occur,

the appropriate priority task object is "spawned" using access
pointers. When the exceptional conditions cease to exist, the

task objects may be deallocated and the allocated space may be
reclaimed with an available "garbage collection' mechanism.

obviously, what priority scheme is used and which mechanisms
are employed to reclaim deallocated space are considerations
which will be functions of the particular application.

one example of this method of handling priorities

might be to spawn a duplicate copy of an executing task (at a
higher priority) from an exception handler buried within the
executing task. This has the effect of artificially raising
one's own priority. Another example might be to define
duplicate copies of diagnostic routines at each priority level
(assume there are three: low, medium, and high). Under normal
conditions a channel diagnostic, for example, may be requested
to isolate faults on a particular channel on a background (low

* priority) basis. This may result from an operator action at a
* monitoring console, for example, and would cause the system

management routine to spawn this low priority copy of the

channel diagnostic task. In a casualty situation, an executing
application task might raise an exception in response to
detection of a fault on a message transmission and signal the
system manager to immediately spawn a high priority channel
diagnostic task, perhaps preempting other executing application
tasks.

A possible third method might employ dedicated

server tasks at predefined priority levels whose only purpose
* is to receive requests from application tasks to spawn a

desired diagnostic task. The rendezvous associated with the

application task/server task linkage will be executed at the

higher priority of the two tasks. Similarly, the server
task/diagnostic task rendezvous will be executed at the higher
priority of these two tasks. Thus, if an application task
calls the highest priority server task which subsequently calls
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the appropriate diagnostic task, the nature of the priority

mechanism dictates that, at least during rendezvous, all
statements within the body of the accept statement will be
executed at the higher priority. Therefore, one could place

all desired high priority statements within the context of the
end task's accept statement to guarantee high priority

execution. Obviously, there are many variations of these

examples and the implementation of the particular method will
be dependent upon the application in question.

5.3 MISCELLANEOUS ISSUES

-4 The main emphasis of the analysis effort was to
examine Ada concurrency features and how they can be applied to

communication system requirements. in the course of this
analysis another non-concurrency related issue surfaced.

5.3.1 Dynamic Record Structure Manipulation

5.3.1.1 Statement of Problem

Generally, a communication system architecture is

layered according to functional specification. Moreover, the
type of processing that occurs on data structures (message
buffers, packets, and headers) varies from layer to layer
within a given architecture. Usually, the upper layers will
generate headers and manipulate user data at the character,

string, or array levels, while the lower layers will view the

same data at a bit level. This requires the ability to

dynamically represent and access particular data structures in
different manners at different points during execution. Ada

does not provide a convenient direct way to perform this
manipulation. In Ada, the set of values of a record type
discriminant must be statically determined at compile time. In
order to change values (or form) at run time, it is necessary
to perform a complete record assignment which could be
extremely cumbersome.
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5.3.1.2 Alternatives

Run time structure manipulation was specifically
prevented for reliability reasons. However, there is a

potential means of performing dynamic record structure
manipulation if one so desires. Example 5-12 shows how one may

employ the generic function UNCHECKEDCONVERSION to dynamically
convert record structures. If the records in question are
large, this alternative may result in inefficient data context
swapping. Therefore, a further alternative is provided by

Example 5-13, which shows an implementation employing unchecked
conversion on the pointers to the records.
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with UNCHECKED-CON VERS ION;

type FORMATTED-MES SAGE is
record

ID:INTEGER range 0..255;
D:DATE;
M4:STRING (1. . 10)g

end record;
type UNFORMATTED M4ESSAGE is

array (l..FORM-ATTED MESSAGE'SIZE) of BOOLEAN;
pragma PACK (UNORMTTED MESSAGE) ;
function DECODE is new
UNCHECKED CON VERS ION (FORMATTEDMESSAGE, UNFORMATTED-MESSAGE);

function WOODS is new
UNCHECKED CON VERB ION (UNFORMATTED MESSAGE, FORMATTED-MESSAGE);

MSG:FORMATTED MESSAGE:- (5, (8,OCT,1947) ,"HI THERE )
B ITS :UNFORMATTEDMESSAGE;

BITS:LDECODE(MSG);

Example 5-12
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with UNCHECKED CONVERSION;

type FORMATTED-MzSSAGE is
record
ID:INTEGER range 0..255;
D:DATE;
M:STRING(1..10);
end record;

type ACCESS FH is access FORMATTED-MESSAGE;
type UNFORMATTEDJEESSAGE is

array (1..FORATTED MESSAGE'SIZE) of BOOLEAN;
pragma PACK (UNFORMATTEDMESSAGE);
type ACCESS UN is access UNFORMATTEDNESSAGE;
MSG:ACCESS FM:-new FORMATTED MESSAGE;
BITS :ACCESI UN: =new UNFORMATTED MESSAGE;
function DECODE is new

UNCHECKED CONVERSION (ACCESSFM, ACCESS UK);
function ENCODE is new

UNCHECKEDCONVERS ION (ACCESSUN, ACCESS__M);

assume message transmission results
in buffer arriving in binary format

-- in object of UNFORFATTEDMNESSAGE type.
-- By performing ENCODE operation on access
-- types, you can now access fields of
-- FORMATTED MESSAGE objects.

4SG: =iCODZ (BITS);
if MSG.ID = 4 then

MSG TYPE FOUR PROCESSOR;
end i1;

Example 5-13
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SECTION 6

EVALUATION OFP PRO POSED ALTERNATIVES

This section presents the details of an overall
evaluation of those alternatives which were proposed in
Section 5. The evaluation will be performed from the viewpoint
of (1) the efficiency of implementation of the alternatives and
(2) the effectiveness of the alternatives themselves.

6.1 DEFINITION OF CRITERIA

*6.1.1 Efficiency Criteria

Efficiency can be defined as a measure of the
ability to do a job versus the cost incurred. Specifically in

terms of software, it can be defined as a measure of the amount
of computing resources and code required by a program to
perform a particular function. Efficiency only can truly be
measured, and hence realistically evaluated by empirical
observation of the software operating in a controlled test
environment. Since no compiler is currently available by which

* empirical data may be obtained, it is necessary to resort to a
somewhat subjective evaluation. However, when a legitimate
compiler becomes available, then exhaustive test and evaluation
of both the built-in and constructed Ada process control
mechanisms previously proposed can be performed.

In the meantime, the proposed alternatives will
4 be evaluated on the basis of two efficiency criteria:

execution efficiency and storage efficiency. These criteria
are defined in the following manner:

" Execution Efficiency - a measure of the
ability of the alternative to provide for
minimum processing time.

" Storage Efficiency -a measure of the ability

of the alternative to provide for minimum

storage requirements during operation.



6.1.2 Effectiveness Criteria
Effectiveness can be defined as a measure of how

well something does a job for which it was designed. In
particular, the effectiveness of software can be defined as a

measure of the extent to which a program satisfies its
requirements and fulfills its intended functional and
operational objectives.

Again# to properly measure the effectiveness of a
particular mechanism or proposed alternative# one needs to
gather empirical data. However, some qualitative assessment of
the effectiveness of the proposed alternatives may be made on

the basis o f the following definitions of various criteria:
* Usability - a measure of how easily an

alternative may be applied to the problem at
hand, i.e., ease of programmer specification.

* Manageability - a measure of how easily one
can control the alternative in use.

9 Reliability - a measure of how accurately an
alternative repeatedly performs its intended
function.

9 Documentability - a measure of the ability of
an alternative to be self-documenting.

e Portability - a measure of the ease by which

an alternative may be applied to a similar but
* distinct problem.

e Maintainability -a measure of the ability of
an alternative to withstand changes - to
itself or to its environment.

6.2 EVALUATION OF ALTERNATIVES

6.2.1 Evaluation of Alternatives to BDN Report
Criticisms
This section presents evaluations of the

efficiency and effectiveness of the various alternatives to the

BBN criticisms detailed in Section 5.
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6.2.1.1 Excessive Scheduler Interactions

The buffered message passing example

(Example 5-1) offers an efficient alternative to the problem of

excessive scheduler interactions associated with a strict task

;.. rendezvous implementation. In fact, it was shown that the

rendezvous mechanism for buffering operations was avoided

through use of a shared queue with an associate interlock. The

execution efficiency of this alternative is totally dependent
on the nature of the application. Since a spin lock mechanism

is used for those tasks awaiting access to the queue, any
situation which results in inordinate amounts of busy waiting

will certainly undermine the efficiency of the alternative. In

'* fact, if system performance analysis indicates that the busy
waiting time approaches the overhead associated with scheduler

"* interactions, the conventional Ada rendezvous mechanism would

be more appropriate. However, the assumption here is that on

the average this busy wait time is small compared to scheduler

overhead.

- In examining the effectiveness, or- can see that

this alternative provides an effective means of avoiding the

scheduler delays associated with a strict Ada rendezvous. The

method employed follows more traditional bouiided buffer

manipulation methods and is hence easy to use and manage.

Reliability is not really a concern since the code is simple

and straightforward and does not lend itself to errors. The

method is conceptually portable in that it may be employed in

any situation requiring buffered message passing with

non-blocking senders. The disadvantage lies in the utilization
of the interlock mechanism whereby deadlock can occur in any

situation leading to unmatched pairs of LOCK and UNLOCK
operations. Thus, maintenance becomes a concern since the

compiler does not enforce this "synchronization" as it does in

the case of the Ada rendezvous.
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6.2.1.2 Process Control Structure Inflexibility

This area actually involves two separate problem

areas. The first concern is related to inflexibility of Ada's

process control mechanisms. The second one involves the

problem of the synchronization mechanism being control-based

instead of data-based. The evaluation of the alternatives to

each of these problem areas will be presented separately below.

6.2.1.2.1 Process Control Mechanism Inflexibility

* As an answer to this problem area, Section 5

presented four alternatives ranging from low level (interlock)

mechanisms to high level (monitor) mechanisms. Each of the

examples offers an alternative to the use of the direct

entry/accept linkage for mutual exclusion.

Considering the efficiency of the proposed

alternatives, the interlock implementation using assembly

language offers the most efficient mechanism in terms of

execution time and space. These mechanisms, however, tend to

exhibit the same disadvantages and advantages described in

Section 4 for interlocks in general. That is, their

effectiveness is limited by the fact that they are difficult to

manage (control) and furthermore tend to make the code in which

they occur difficult to maintain. As mentioned previously, the

problem is one of "enforcing" implementation of matched pairs

of "LOCK" and "UNLOCK" operations.

The binary and integer semaphore examples exhibit

roughly the same characteristics. They are somewhat less

efficient than the interlock mechanisms but are easier to

4. control since the nature of the entry/accept linkage of the P

and V operations forces a sequential ordering of the calls.

However, like the interlock, they can be abused. As noted in

the Ada Rationale /ADARAT79/, they exhibit problems which

severely limit their effectiveness. The advantages are their

relative efficiency, ease of programmner specification, and

documentability. The integer semaphore may be viewed as simply

a more flexible implementation of the binary semaphore. The

advantages and disadvantages may be similarly applied.
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The last example illustrates an implementation of

* a monitor in Ada. Advantages lost in efficiency of execution

and space are gained in effectiveness of implementation. The

monitor implementation is probably the least efficient of any

of the process control mechanism Ada implementations. It also

* tends to be more difficult to implement and use. However, it

is reliable, manageable (once implemented) and lends itself

very well to maintenance since all operations and protected

data are centralized within the monitor itself.

The conclusion reached in the evaluation of these

four alternatives is that they are mechanisms which offer

* various trade-offs in advantages and disadvantages and a

decision as to which one to apply to a particular situation

* should be based on the requirements of the situation. The

* point is that Ada does provide the implementor with the

* capability to construct a wide range of process control

* mechanisms with which to work.

*6.2.1.2.2 Storage Inefficiency of Control-Based

Synchronization Mechanisms

The problem of storage inefficiency associated

* with Ada's control-based synchronization mechanism was

addressed by Example 5-7. In this example, the solution was to

define pointers to each of the entities which are defined as

records containing interlock objects as their components.

It can be seen that this produces an efficient

* solution in terms of storage since the objects are created on

- an as-needed basis using access types. Note that the execution

efficiency can be improved by employing the previously

described interlock instead of the interlock of type RESOURCE.

The solution offered is a very straightforward

implementation, though the usefulness and manageability is

dependent on the availability and controlled use of some

garbage collection mechanism. This is an assumption which also

governs the portability of the solution. Finally, the solution

is thought to be very readable and easily maintained.
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6.2.1.3 Naming Convention Problems
Again, there are actually two distinct problem

areas in this category. The first problem area is that Ada's

task naming conventions do not allow the programmer to name or

create tasks which accurately reflect the underlying algorithm

structure. In other words, the array structure of task

families did not allow one to create task objects with

meaningful names. Moreover, the array structure did not easily

map onto any underlying structure except arrays. The second,

potentially more serious problem is posed by the asymmetry of

knowledge between the called and the calling task.

6.2.1.3.1 Task Naming/Structure Inconsistency

The problem of not being able to meaningfully

name tasks is no longer applicable. Tasks are now defined as

types and named objects may be created to meaningfully match

the underlying structure.

Furthermore, the limitations of the array

structure of tasks in preliminary Ada at, no longer present.

Example 5-8 illustrates an implementation of a linked list of

terminal drivers which 44dsses thi% terminal driver problem
cited in the BBN report. Obviously, this is a much more

efficient implementation than the three preliminary Ada

alternatives listed on page 123 of the BBN report.

In terms of effectiveness, it can be seen that

the alternative presents the most direct solution to the stated

problem. In fact, it satisfactorily meets all of the defined

effectiveness criteria.

6.2.1.3.2 Return Address Problem

There is no direct mechanism available in Ada

whereby a server task can know the identity of its customers.

Example 5-9 provides an indirect method to soive this problem.

In the example, an accept statement within the customer task's
body is used to establish the customer's own identity, which is

then passed as a parameter (using a nointer) to the server task.
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Because the mechanism employs pointers to the

customers, it is considered to be a fairly efficient solution

in terms of both execution time and storage. Because it is an

indirect mechanism, it is seen to be less effective than a

mechanism which could be built into the language to provide

symmetry of knowledge between customer and server tasks. ThisI is because it is somewhat difficult to use, manage, and
maintain. For example, if the programmer neglects giving the

* customer task its own task name, the whole scheme breaks down.

6.2.1.4 Lack of Scheduling Control

Not applicable for reasons cited in Section 5,

paragraph 5.1.4.2.

6.2.2 Evaluation of Alternatives to Other

Communication-Related Concurrency Issues,
This subsection presents evaluations of the

efficiency and effectiveness of the various alternatives to

other communication-related concurrency issues outlined in

Section 5.2.

6.2.2.1 Operating System Requirements

Not applicable for reasons cited in

Section 5.2.1.2.

6.2.2.2 Scheduling Deficiencies

There are actually two issues included in this

category. The first problem closely resembles the first listed

BBN issue and involves the fact that Ada always associates

* interprocess communication with synchronization in time. The

second problem deals with the inability to directly manipulate

queues within the available Ada framework since Ada has chosen

a FIFO implementation for task queuing at the expense of all

others.
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6.2.2.2.1 Interprocess Communication Problems
6% The alternative to this problem area was

- presented in Example 5-10. It involves an intermediate

buffering task which is dedicated to receiving and sending

messages between application tasks. This allows a sending

process to deposit a message with the buffering task and

proceed with its appointed tasks.

The main advantage of this alternative is that

the application (user) tasks are not held up waiting for

rendezvous to occur. It is not necessarily efficient in terms

of overall execution time since several additional scheduler

interactions may be required. in fact, in the case where the

target task (receiver) is almost always in a position to

rendezvous, the proposed alternative would be much less

efficient in the long run. in addition, it is not necessarily

storage efficient since extra storage for the intermediate task

is required.

The advantage of the alternative is that it is a

direct, effective means of handling situations in which

application tasks cannot be delayed waiting for rendezvous to

occur. It is not very easily implemented and does not lend

itself to readability. It is, however, somewhat easy to

control since the users must explicitly indicate the target
system in question. Furthermore, it is conceptually portable

and easily maintained.

6.2.2.2.2 Inability To Directly Manipulate Entry Queues

Ada does not provide the direct capability to

dynamically manipulate queues of calling tasks waiting to

rendezvous with a called task. The Ada Rationale provided

Example 5-11 as an alternative to this problem. Even though

this is a viable mechanism to solve the problem, it is
unfortunately not very efficient. Note also that the example
addresses only a small number of priority levels. Thus, a more
sophisticated and hence less efficient mechanism would have to
be employed to handle a larger number of priority levels.
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The example given, however, is easily

*implemented, easy to control, reliable, very readable,

conceptually portable, and easily maintained. As such, it is

* considered to be an effective solution to the stated problem.

*6.2.2.3 Inefficiency of Rendezvous for Mutual Exclusion

This problem was previously addressed in

paragraph 6.2.1.2.1.

*6.2.2.4 Dynamic Task Priority Assignment

The ability to dynamically change task priorities

* is a desirable feature to have available when dealing with

momentary heavy resource load or casualty conditions. Even

* though there is no direct mechanism available within Ada to

handle this problem, paragraph 5.2.4.2 described some viable

* alternatives.

The alternatives described are not very

* efficient. In the first example, storage efficiency is poor

since duplicate copies of tasks have to be maintained. Also,

the spawning and subsequent execution of the duplicate tasks

* leads to execution time inefficiency since it will almost

certainly involve scheduler interactions. The last example

offered is more efficient in terms of storage since the

prioritized server tasks are small dedicated tasks which only

* call the desired diagnostic tasks. However, execution

efficiency could be adversely affected in situations where the

amount of processing placed within the context of the accept

statement might be excessive.

Unfortunately, these are not very effective

mechanisms to employ either. They are difficult mechanisms for,
a programmer to specify and even more difficult to manage once

* implemented. Reliability is a question since it is difficult

to track one's location when a fault occurs. They are somewhat

readable in the sense that the task definitions offer visible

evidence of the intended task priorities. As such, they are

also somewhat easily maintained since the different priority

tasks can be localized.
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6.2.3 Miscellaneous Issues
This subsection presents an evaluation of the

alternative to the one significant non-concurrency related
issue that surfaced during the course of the analysis effort.

6.2.3.1 Dynamic Record Structure Manipulation
Since Ada places restrictions on dynamic

manipulation of the form and contents of a record structure
during runtime, it is necessary to formulate an alternative

mechanism to do this. Obviously, it is desirable to be able to
represent and access a particular data structure in both a
formatted and an unformatted manner.

Example 5-12 presented one such method using the
generic function UNCHECKED -CONIVERSION to dynamically convert a
record structure. The alternative presented is not very
efficient in either time or space since the generic functions
must be instantiated and a complete context switch of the

message most likely occurs upon the conversion. Example 5-13
offers a second method employing unchecked conversion of

pointers to the records, rather than the records themselves.
This is obviously more efficient since the conversion is
performed on the pointer, avoiding the message context swap of
the previous example.

Both methods offer fairly effective means of
handling the problem. They satisfactorily meet all of the
defined effectiveness criteria with the exception that they are
somewhat cumbersome to implement.



SECTION 7

CONCLUS IONS

7.1 SUMMARY OF ANALYSIS

Sections 2 and 3 provided the framework for the

definition of requirements associated with concurrent

programming in communication systems applications. The general

requirements were analyzed as well as those features required

by a programming language to satisfactorily implement those

requirements. Section 4 then addressed traditional solutions

to process control and described the means whereby the Ada

programming language addresses the three aspects of concurrent
[. programming, i.e., interprocess synchronization, communication,

and mutual exclusion. Section 5 discussed alternatives to all

identified problem areas. First, the issues uncovered by the
BBN Report /BBNE79/ were analyzed and alternatives to these
problem areas were presented. Second, problems uncovered
during the analysis of communications systems requirements for
concurrent programming were presented and alternatives to these
problems were offered. Last, the non-concurrency related

problem of dynamic record manipulation was addressed. In
Section 6, definitions of efficiency and effectiveness criteria
were presented, followed by a qualitative evaluation of each of
the solutions to the identified problems.

7.2 CONCLUSIONS
There were six distinct criticisms listed in the

BBN report, five concurrency related problems, and one
non-concurrency issue. Out of all of these, only two problem

areas were left unanswered. These are (1) Ada's lack of
control over the scheduling discipline and (2) the operating
system requirements of an Ada-based communication

implementation. In fact, these may not be problem areas in
some implementations for reasons given in Section 5.
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one overriding observation can be made following
this analysis. As a high level programming language, Ada
provides the implementor with the flexibility to construct
alternatives to known deficiencies. In fact, the alternatives
presented in this report are merely representative samples of a
wider range of potential alternatives to the identified
problems. The choice of a particular alternative to a

particular problem area will be governed by a determination of
the efficiency and effectiveness of the alternative in

question. This determination can be properly made only when

the applicable environment is identified and quantitative
measurements can be made. The existence of a legitimate
compiler and a viable support environment are obviously
necessary requirements. To the extent possible, some
preliminary measures of the efficiency and effectiveness of the
various alternatives can be made during Phase 11 of this
ongoing effort. While this effort will only have access to the

NYU Ada/ED Translator/interpreter, some comparative analysis of
the efficiency of the various alternatives can be performed as
well as a preliminary evaluation of the effectiveness of the
proposed solutions. To this end, tests should be devised to
specifically address the cited problems and alternatives.

This report has served to document the evaluation
of using the Ada programming language for concurrent
communication system programming applications. It has
addressed previously cited criticisms as well as ones
discovered during the course of the analysis. As a result of

this preliminary analysis, it can be concluded that the current
Ada language definition can be effectively applied to
communication systems applications. A quantitative proof of
this conclusion will be required during follow-on efforts as
the applications are identified and the necessary tools become

available.
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Comparative Analysis

of the

Ada and CHILL

Programming Languages

Abstract

With the increasing use of Stored Program Control

telephone exchanges, the development and use of proper software

tools takes on added importance. The CCITT High Level Language

(CHILL) is being developed specifically for programming of SPC

exchange applications. Ada is being developed to serve as a

programming standard for embedded military computer systems.

In many instances the functional requirements of these two

application areas coincide and as such this report examines the

feasibility of Ada being used as a direct substitute for CHILL,

both in the context of CHILL being a programming language, and

in the context of CHILL being part of a programming environment

containing CHILL, SDL, and MML. The report concludes that Ada

is indeed a suitable replacement for CHILL in both contexts.
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EXECUTIVE SUMMARY

This report presents the results of a comparative

I analysis between the CHILL and Ada programming languages. The
approach taken in this analysis effort was to perform an

exhaustive feature-by-feature comparison of the languages and

the programming environments to determine if Ada can be used as

a suitable replacement for CHILL. The objective of this effort

*was twofold:

I) To demonstrate the suitability of Ada as a

replacement for CHILL in a programming

language context.
2) To demonstrate the ability of Ada to replace

CHILL in a programming environment containing

CHILL, SDL, and MML.
The feature-by-feature comparison presented in

* Section 3 demonstrates that the language differences are

minor. When viewed from a circuit switching application point

*. of view, no evidence can be found that CHILL exhibits any
.! linguistic or functional advantage over Ada. In fact, no

feature exists in CHILL that dictates choosing CHILL over Ada

for any telecommunication application. Since the language

feature evaluation uncovered no major differences, it is

concluded that Ada is, indeed, a suitable replacement for CHILL

from a programming language point of view.

The examination of the Ada Programming Support

Environment (APSE) and the programming environment of CHILL,
SDL, and MML is presented in Section 4. It is seen that no

dependency exists between the CHILL, SDL, and MML elements, and

as such, no restriction is placed on their portability because

*of a dependency. Furthermore, the APSE is shown to be able to

*support the inclusion of external program tools within its

outermost level. It is concluded that Ada can replace CHILL in

a CHILL/SDL/MML environment, but that a more attractive

approach is to incorporate the SDL and MML tools into the APSE.
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These coniclusions, along with other relevant

issues, are presented in Section 5. Additionally, three other

reports are discussed which treat the same subject and arrive

at the same basic conclusions.

in summary, it is felt that the comparative

analysis described in this report has convincingly demonstrated

that Ada can, in fact, be used as a suitable replacement for

CHILL.
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SECTION 1

INTRODUCTION

1.0 INTRODUCTION

1.*1 PURPOSE

The purpose of this report is to describe the

results of a comparative analysis of the CCITT High Level

* Language (CHILL) and the Ada programming language. This

analysis, as detailed herein, was conducted by Systems

Consultants, Inc. (SCI) in support of the Defense Communication

Agency (DCA) under Contract Number DCA 100-80-C-0037.

1.2 SCOPE

This report presents material which provides

answers to the following two questions:

1) Can Ada be used as a direct substitute for

CHILL in the context of CHILL being a

programming language designed for circuit

switching applications?

2) Can Ada be used as a direct substitute for

CHILL in the context of CHILL being part of a

programming environment containing CHILL,

* SOL, and MMII?

To answer the first question a feature-by-feature

comparison will be presented. The intent of this comparison is

to examine the form and function of the two languages to

determine how similar they are in terms of the definition and

availability of their respective features. The integration of

the features within each language will be addressed and it will

be shown that CHILL does not hold a distinct linguistic or

functional advantage over Ada. Since CHILL was, in fact,

designed for circuit switching applications, it will be shown

that the answer to the first question is affirmative.



To answer the second question, the CHILL/SDL/MML

environment will be examined to determine the specific

relationship that exists between CHILL/SDL and CHILL/MML.

Additionally, the Ada Programming Support Environment (APSE)

will be examined to determine its ability to support external

tools such as SDL and MML. It will be shown that CHILL, SDL,

and MML are not dependent on each other, that the APSE can

support the incorporation of SDL/MML, and that incorporation of

SDL and MML into the APSE represents an attractive formulation

of a programming environment for circuit switching applications.

The report is organized in the following manner.

The following section, Section 2, presents a high level

overview of Ada and CHILL. This overview will include a brief

history of their respective development efforts, a description

of the language design goals, and current development status.

This is mainly intended to provide the uninitiated reader with

pertinent background information.

Section 3 presents the feature by feature

comparison organized into the following subsections for

convenience:

e Lexical Elements

* Data Typing

e Names, Expressions, and Statements

* Program Structure

e Concurrency

e Exception Handling

e Input/Output

Differences between the form and function of Ada's features and

those of CHILL will be detailed. It will be shown that Ada and

CHILL are technically very similar in terms of the definition

and availability of their respective features.

Section 4 addresses the issue of a programming

support environment. The Ada Programming Support Environment

(APSE) will be examined to determine its interaction,

compatibility, and implementation requirements. The

programming environment of CHILL, SDL, and MML will be examined
71 in similar fashion. The method and feasibility of replacing

11-1-2



CHILL with Ada will then be evaluated. It will be shown that

an environment consisting of APSE hosting SDL/MML is the most

... practical and that in this context, Ada can replace CHILL.

Section 5 presents the overall conclusions of the

Ada/CHILL comparative analysis effort.
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SECTION 2

ADA/CHILL OVERVIEW

2.0 OVERVIEW OF ADA AND CHILL

Prior to conducting an in-depth comparison of Ada

and CHILL, it is advantageous to present a brief high level

overview of the languages. It will be seen that, at least

superficially, the stated goals, development histories, and

overall features of the languages are not at all dissimilar.

* 2.1 ADA

The Ada programming language is being developed

, by the Department of Defense (DoD) to serve as a programming

standard for embedded military computer applications; e.g.,

- shipboard, communications, avionics, or command and control

.- systems. The DoD High Order Language (HOL) program was

*! initiated in 1975 with the goal of establishing a single high

order computer programming language appropriate for all DoD

. system development efforts. In 1976, the HOL program became

part of an overall program (established by DoD

Directive 5000.29) to improve the management of computer

resources in major defense systems. A High Order Language

Working Group (HOLWG) was established to define the HOL

requirements, evaluate existing languages against those

requirements, and to iwplement the minimal set of languages
required for DoD use. As a result of HOLWG efforts, DoD

Instruction 5000.31 defined a list of seven interim acceptable

languages and concluded that none of tio languages fully

satisfied the initially defined HOL requirements.

The initial requirements were specified in a DoD

document entitled STRAWMAN (1975) and evolved through

, WOODENMAN (1975), TINMAN (1976), IRONMAN (Jan 1977) and revised

- IRONMAN (July 1977), to the present STEELMAN (1978) document.

11-2-1



* The following general HOL design criteria is abstracted from

STEELM4AN /USD078/:

0 Generality. The language shall provide

generality only to the extent necessary to
satisfy the needs of embedded computer

applications. Such applications involve real
time control, self diagnostics, input-output

to nonstandard peripheral devices, parallel

processing, numeric computation, and file

processing.
9 Reliability. The language should aid the

design and development of reliable programs.

The language shall be designed to avoid error

prone features and to maximize automatic

detection of programming errors.

* Maintainability. The language should promote

ease of program maintenance. It should

emphasize program readability (i.e., clarity,
understandability, and modifiability of

* programs). The language should encourage user

documentation of programs.

o Efficiency. The language design should aid

the production of efficient object programs.

e Simplicity. The language should not contain

unnecessary complexity. It shouild have a

consistent semantic structure that minimizes

the number of underlying concepts. It should

be as small as possible consistent with the

needs of the intended applications.

o Implementability. The language should be
composed from features that are understood and

can be implemented. The semantics of each

feature should be sufficiently well specified

and understandable that it will be possible to

predict its interaction with other features.

To the extent that it does not interfere with

other requirements, the language shall
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facilitate the production of translators that

are easy to implement and are efficient during

translation. There shall be no language

restrictions that are not enforceable by

translators.

9 Machine Independence. The design of the

language should strive for machine

independence. It shall not dictate the

characteristics of object machines or

operating systems except to the extent that

such characteristics are implied by the

semantics of control structures and built-in

operations. It shall attempt to avoid

features whose semantics depend on

characteristics of the object machine or of

the object machine operating system.

Nevertheless, there shall be a facility for

defining those portions of programs that are

dependent on the object machine configuration

and for conditionally compiling programs

depending on the actual configuration.

*Complete Definition. The language shall be

completely and unambiguously defined.

Given that none of the interim approved languages satisfied all

of the STEELMAN requirements, DoD opted to set forth a program

to develop a single language which could, and subsequently

funded four contractors to produce competing prototype designs

known as GREEN, RED, YELLOW, and BLUE. All four design

contractors chose PASCAL as their design point of departure.

Design was completed in early 1978 and the GREEN and RED

languages were chosen for a one year follow-on design

development. On May 2, 1979, the GREEN language (designed by

CII-Honeywell Bull) was chosen and renamed Ada.

Since that time Ada has undergone several minor

updates resulting in the release in July 1980 of the (proposed

standard) Reference Manual for Ada /USDO8Ob/. Minor revisions

will most likely still be required but a fairly stable
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definition baseline exists at present. Given this existing

baseline the U.S. Army and the U.S. Air Force have recently

awarded contracts worth $2.5 million and $9 million

(respectively) for Ada compiler development with delivery

expected in the 1983-84 time frame.

It is generally agreed that the current
definition of Ada, as detailed within the DoD Ada Reference

Manual /USDO8Ob/ has faithfully met the intent of the STEELMAN

requirements. It is readily seen that Ada has inherited most

of its traits from other modern high level languages. But,

unlike most of its predecessors, Ada is designed to be

universal, totally portable, and exceptionally reliable. The

first stipulation tends to make Ada large and complex - it must

support mathematical, process control, or list sorting

requirements, as well as system programming requirements.

Under the second stipulation, Ada defines its run-time

environment so that it executes the same on a microcomputer as

* it would on a mainframe. But the one trait that was given top

priority in Ada design was reliability. An embedded military

system obviously cannot tolerate faults during stress periods.

Ada must be able to support the development cf easily

maintained, very reliable computer programs, and the design of

particular Ada features reflects this requirement. Those

features which most characterize the Ada rationale are as

follows:

*Provide strong data typing facilities with

strong type checking to improve software

reliability and simplify debugging.

*Provide modularity of program structure to

implement nested program units which

facilitates information hiding and visibility

control.
e Support both top-down and bottom-up design

methodologies and provide separate program

element compilation capabilities.
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* Provide realtime features for parallel

processing and scheduling as part of the

language definition.

0 Provide language defined and user defined

exception handling capabilities.

* Provide flexible yet powerful representationI features.
*If a description of Ada can be summarized within one sentence,

it would be that Ada is a versatile general purpose language

*designed to meet the needs of numerical, scientific, system

programming, and real-time applications with an overriding

design goal of reducing the cost and improving tne reliability

* of large scale software development.

2.2 CHILL

The CCITT High Level Language (CHILL) design

effort was initiated at approximately the same time as that of

Ada. The effort actually indirectly began in 1968 when CCITT

Study Group XI undertook the evaluation of over 70 existing

* high level languages in order to determine if any of them would

* be suitable for Stored Program Control (SPC) programming of

* telecommunication circuit switching applications which, at that

time, were exclusively programm'ed in assembly language with all

of the attendant disadvantages. Approximately 30 of the

original 70 languages were then chosen to be used to conduct

extensive programming exercises as part of the evaluation

effort. A report called the Yellow Document was released in

April 1975 detailing the exercises and their results. The

* basic conclusion arrived at during this existing language

evaluation was that no single language was deemed suitable for

SPC programming applications. Also published by CCITT in 1975

was the outline proposal for the CHILL language development

which presented the CHILL functional requirements and was known

as the GREEN Document.
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During the period of 1976 through 1980, CCITT

Working Party XI/3 conducted the language definition effort

resulting in the release in February 1980 of the proposal for a

recommendation for CHILL known as the BROWN Document or Draft

Recommendation Z.200. This version was incomplete, however,

and a (final) updated version was released in May 1980. This
document is numbered COM XI-No. 396 or alternately

AP VII-No. 21-E.

CHILL has been the subject of several trial

implementations, the first of which was initiated in 1977.

Several trial compilers exist or are in progress, although they

currently address only language subsets based on preliminary or
incomplete definitions.

The features which characterize the CHILL

language are almost identical to those of Ada when viewed at a

high level. Despite the fact that the original CHILL design

objective was limited to development of a language expressly

designed for programming SPC telephone exchanges, it can now be

seen that CHILL is equally suitable for other general

telecommunication applications, as well. It was initially

believed by the CHILL designers that SPC programming

applications required a High Level Language (HLL) to exhibit

some special features not normally associated with an HLL. It

was soon discovered that SPC telephone exchange programming was

not totally unlike other commonly known real time programming

applications, e.g., systems programming, and that certain

modern high level languages have been used successfully in

these specialized application areas. When viewed in this

manner it is seen that the CHILL language design objectives are

not very different from those of Ada. In fact, the features

listed within the previous section can be duplicated here for

CHILL. It is in the interpretation and implementation of these

features where the two languages differ and these differences

will be discussed in detail within the next section.
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SECTION 3

ADA/CHILL FEATURE COMPARISON

3.0 FEATURE COMPARISON

This section will examine the Ada and CHILL

* programming languages in a dual fashion. The features of the

language will be evaluated in terms of their syntatic form,

4 ease of use, availability, etc., and in terms of their

* function, e.g., if and how well a particular function is

implemented and the efficiency of its implementation. The

discussion is not intended to be all inclusive but rather to

highlight those areas where significant differences exist

between the languages in the definition, implementation, or

availability of particular features. The following subsections

* represent major feature categories grouped in this manner for

convenience of comparison. The individual language reference

manuals, /USDO8Ob/ and /CCIT8Oa/, were used as primary sources

for material in this section.

*3.1 LEXICAL ELEMENTS

The lexical elements of a language represent the

smallest identifiable units defined by the language, i.e., the

character set, delimiters, identifiers (including reserved

words), numbers, character strings, character literals, and

comments.
The lexical elements of Ada and CHILL are very

similar both in appearance and usage. However, some

significant differences do exist as described below.

The character sets used by Ada and CHILL are very

similar. Ada uses the standard 128-character ASCII set while

*CHILL employs the CCITT alphabet No. 5, recommendation V3. The

basic character set used to represent CHILL programs is a

subset of the basic Ada character set. The differences between

the overall sets exist in the representation of the (printable)

characters "dollar sign" and "tilde" and in the (non-printable)

control character terminology. The binary internal

11-3-1



representation and lexicographical ordering of the two

character sets are identical. Note, however, that Ada permits
the overloading of any character set through use of the

representation specification capability. Additionally, the

transliteration facility of Ada allows characters to be

represented which are not contained within the basic character

set.

Identifiers are the names defined and used within

programs. The definition and use of identifiers is almost

identical in either language. Identifiers can be built with

combinations of letters, digits, and underscores, limited
solely by the length of the logical input record. CHILL syntax

definition allows multiple repeated underscores and digits in

identifiers. This is deemed a significant oversight which

could lead to readability problems and fosters unconventional

naming/labeling. CHILL distinguishes between identifiers

differing only in upper and lower case characters, i.e., CHILL

and Chill are two distinct identifiers. Ada does not make this

distinction. Both languages have reserved words which may not

be used as identifiers. CHILL, however, has a language defined

compiler directive ("FREE") which explicitly frees a reserved

word for subsequent use as an identifier. Even though explicit

use of the compiler directive is a visible clue that reserved

words have been freed, this feature is felt to be unnecessary

and potentially harmful from a maintenance point of view.

* The definition of numeric literals in the

languages represents an area of significant difference. Ada

defines two classes of numeric literals -- integer and real -[ and both integer and real literals can have exponents as well
as be represented in any number base between base 2 and

base 16. CHILL simply defines integer literals, without
exponents, representable in base 2, base 8, base 10 (default),
and base 16. While real numbers are not absolutely required in

a circuit switching application, there are certain indirectly

related applications that make it desireable to have the

* capability to specify real numbers. For example, it is more

convenient (and, in fact, appropriate) to conduct statistical
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analysis or accounting tasks if one has access to the set of

real numbers. Although off-line reduction and analysis of

collected data can be performed by programs written in the more

traditional algorithmic languages such as FORTRAN or PASCAL,

the significance of collected data is potentially lost at the

point of extraction and can never be recovered. If, as is

• .currently proposed, CHILL is to be used in message switching

applications as well, this real number exclusion becomes more

* cLitical. On the other hand, inclusion of a real number

capability creates more difficulties in the area of

transportability and representation. However, work is being

carried out by IEEE to establish floating point math standards

which would reduce these problems.

The representations of character literals and

character strings are very similar with one minor difference.

" Ada &.lows the non-printable control characters to be used as

literals or placed into strings by utilization of the

predefined package ASCII. For example, the control characters
1"carriage return" and "linefeed" would be represented by

ASCII.CR and ASCII.LF, respectively. CHILL provides a somewhat

similar mechanism using a construct whereby the desired

character is specified by a pair of hexidecimal digits which

correspond to the lexicographic order of the character in the

set. For example, "carriage return" and "linefeed" in CHILL

would be C'DO' and C'AO', respectively. While this is equally

as effective, it is somewhat more cumbersome and indirect.

Finally, though perhaps not entirely appropriate

under the category of lexical elements, there is the definition

of compiler directives. Ada supports a wide range of

language-defined compiler directives known as pragmas, as well

as supporting the creation of implementation-defined

directives. CHILL defines only one language-defined directive

("FREE"-reserved word) but also supports implementation-defined

directives as well.
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3.2 DATA TYPING

This feature category represents the area in
*which Ada and CHILL most strongly exhibit their Pascal/ALGOL

inheritance. A data type defines the set of values which can
be assumed by a variable and the operations that may be

performed on the variable. The type concept is an abstraction

which permits one to ignore the actual values of variables and

state that an operation has the effect defined for all values

of each given type. Both languages are classified as being
ustronglyu typed in the sense that they both support strict

data typing, data structuring, and compile time (data type)

4 error checking facilities. A good treatment of the
justification for associating a type with constants, variables,
or parameters of subprograms can be found within the Ada

Rationale /ICHB79b/, and is summarized as follows:

e Factorization of Properties, Maintainability.

Knowledge about common properties of objects

should be centralized and named. Program

updates are more convenient since they can be

performed at this single central location.

* Abstraction, Hiding of Implementation Details.

Implementation details should be hidden from

the user. The user need only have knowledge

of the external properties of data or program

objects.

* Reliability. Objects with distinct properties

should be treated in a distinct manner to

avoid ambiguity and this distinction can be

enforced by the translator.

In order to provide a foundation for presentation

of the material contained herein, a high level data type

comparison is depicted in Table 3-1. In some cases there is

not a direct one-for-one correspondence as might be implied by

the chart. Note that the term MODE in CHILL (ALGOL68

derivation) is synonymous with the term TYPE in Ada (PASCAL

derivation).
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Table 3-1. Ada/CHILL Data Types

Ada es CHILL Modes

SCALhR SCALAR

DISCRETE DISCRETE

I INTEGER INTEGER

CHARACTER CHARACTER

BOOLEAN BOOLEAN

I ENUMERATION SET

(Not Available) POWERSET*

CONTINUOUS CONTINUOUS

FLOATING POINT (Not Available)

FIXED POINT (Not Available)

COMPOS ITE COMPOSITE

ARRAY ARRAY

STRING STRING

RECORD STRUCTURE

POINTER POINTER

ACCESS REFERENCE

DEFINITION DEFINITION

DERIVED NEW

SUBTYPE (w/o constraint) SYNONYM

SUBTYPE (with constraint) RANGE

(Not Available) PROCEDURE*

* Not necessarily appropriate to this class, but placed here

for convenience.
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3.2.1 Type Definition

The method of declaring types within Ada and

CHILL is similar in function, though not in form. In both

* languages, new types are defined in terms of already defined

ones by means of type definitions. Both languages offer a set

of predefined types (INTEGER, BOOLEAN, etc.) as well as a set

of language recognized primitive types (ARRAY, SET, etc.).

Using the Ada derived type definition feature (NEWI4ODE in

CHILL), one can create new, logically distinct types having the

same properties as the base type. In Ada, if a type is

declared in a package specification, the subprograms (including

overloaded operators) applicable to the type and declared in

the package specification are derived by any derived type

definition given after the end of the package specification.

CHILL does not support this inheritance of applicable

subprograms.
A new mode may be defined by using the SYNMODE

feature (subtypes without constraints in Ada) which allows

creation of a new mode denotation for the defining or base mode

(type renaming). Both Ada and CHILL support combined

operations of typing, object declaration, and initialization.

CHILL provides a powerset mode which defines

values which are sets of values of an associated member mode.

These values range over all subsets of the member mode and

CHILL supports the usual set-theoretic operations to manipulate

powerset values. Ada does not support a comparable feature

within the language definition but does permit a contiguous set

of a discrete type to be represented as a range.

Ada provides a real number typing capability

wherein the real numbers are approximations of the actual

values and which can be represented by the (predefined)

floating point type (relative error bound on the value) or the

primitive fixed point type (absolute error bound on the

value). CHILL does not provide a real number typing capability.

* Composite types, i.e., those found by aggregating

others, are treated very similarly in the languages. Ada and

CHILL both support array, string, and record composite types.
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Strings and arrays are handled almost identically but records

* (structures) in CHILL have two distinct representations: nested

structure, which is comparable to the more conventional Ada

record representation and level structure, which is derived

* syntax for a unique nested structure. The level structure mode

* allows explicit nesting of components within structures as

shown by the following example:

synmode A a 1,

2 B bool,

* 2 C bool,
3 D int,
4 B int;

Both Ada and CHILL support the idea of variant structures

* whereby the values of discriminants are used to define

alternative lists of components within a record.

Pointer types are available in both Ada and

CHILL. The access type in Ada corresponds to the reference

mode in CHILL with both being used in a like manner. CHILL,

however, distinguishes between bound reference (access to a

location of a given static mode, comparable to the Ada access

* type) and free reference (access to a location of any static

mode). Additionally, CHILL provides a row reference capability

which allows definition of reference values for locations of

some parameterized mode with statically unknown parameters. In

particular, a row value may refer to string locations with

statically unknown length, array locations with statically

unknown upper bound, or parameterized structure locations with

statically unknown parameters.

3.2.2 Type Equivalence

This area has been the subject of many

discussions dealing with the relative merits of the typing

conventions of modern programming languages. When comparing

the features of Ada and CHILL, one of the most relevant issues

is the question of name equivalence versus structural

equivalence. Name equivalence is based on the principle that

every type definition introduces a distinct type. Structural
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equivalence, on the other hand, is determined recursively by

means of a precise set of rules. It refers to a mechanism

whereby some form of equivalence rule is defined between types

on the basis of their properties.

Ada employs the name equivalence concept of type

equivalence. Two type definitions introduce two distinct types

even if they are textually identical. Using the example from

the Ada Language Reference Manual /USDO80b/, the objects A and

B declared by

A: array (l..10) of BOOLEAN;

B: array (1..10) of BOOLEAN;

represent two distinct types while the objects C and D declared

by

C,D: array (l..10) of BOOLEAN;

belong to the same type since they are declared via the same

type definition. Note that C and D are also distinct from A

and B. Ada does, however, allow the user to indirectly create

and manipulate types through the use of the subtype

definition. Definition of a subtype does not produce a

distinct type but rather creates a type which is the same as

the parent type except for some (optional) constraint on the

value set. This constraint may assume the form of a range,

accuracy, index, or discriminant constraint.

CHILL follows the structural equivalence concept

though neither name nor structural equivalence are preimposed.

The following example illustrates this subtle difference.

newmode WEEKDAY a set (MON,TUE,WED,THUR,FRI);

synmode WORKDAY a WEEKDAY;

newmode NOT WEEKEND - WEEKDAY;

dcl WORK, SICK, VAC NOTWEEKEND;

CARPOOL WEEKDAY;

EARN MONEY WORKDAY;

In this example, WORK, SICK, and VAC are all of

the same type, but different from CARPOOL and EARN MONEY.

However, CARPOOL and EARN MONEY belong to the same type since

the synmode definition only served to rename WEEKDAY to be

WORKDAY, not creating a new type. This is similar to the
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renaming facility in Ada, i.e., defining a subtype without

constraints.

In all the discussions that have been generated

concerning the notion of type equivalence it appears to be

common that the very arguments one presents against one

mechanism are the same arguments for it. For example, in a

recent Ada/CHILL comparison by R. T. Boute /BOUT79/, a list of

arguments against name equivalence is presented basically

stating that it harms program clarity, restricts type

manipulation, and undermines program modularity and

* maintainability. The Ada Rationale uses these exact points to

* justify rejecting structural equivalence in favor of name

equivalence stating ... "We have rejected structural

equivalence in order-to avoid matching problems for the

* translator and for the human reader. We also believe that

* structural equivalence tends to defeat the purpose of strong

* typing since objects may be considered as being of the same

type because their structures are identical by accident, or

because they have become identical as a result of textual

* modification performed during program maintenance. Such

- objects can then be mixed erroneously without causing

* translator diagnostics." The argument in the Ada Rationale is

a stronger one. The main purpose of employing name equivalence
was to restrict type manipulation (mainly for reliability

* reasons) and lifting that restriction defeats the rationale and

most certainly invites programmer abuse.

*3.2.3 Parameterization

Another area which is important to the evaluation

of a language is the facility for parameterization.

Specifically, issues which are usually examinied include (1)

* whether the language provides some form of parameter ization for

data types and their associated properties and (2) if the

evaluation of type parameters is performed entirely at

translation time or deferred until execution time.
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In Ada, array type definitions can leave index

bounds unspecified (unconstrained). These can be subsequently

specified by an index constraint for a given array object, so

that different array objects of the same type may have

different numbers of components. Also, a record type may have

variants, i.e., alternative definitions of its components.

Different variants are associated with the values of a

discriminant component. If the discriminant is constrained,

the composition of the record is statically fixed. If the

discriminant is unconstrained, the composition of record can be

changed during run time by a complete record assignment.

CHILL provides a slightly different data type

parameterization facility. There are fixed array and structure

modes in which the composition does not change during run

time. Also, there are parameterized array and structure modes

in which the composition is fixed at the point of creation of

the parameterized mode and may not change during run time.

Finally, there is the variant structure mode whose composition

may change during run time according to the values of certain

associated tag fields.

It can be seen that the type parameterization

facilities in Ada and CHILL overlap in most respects. The one

advantage held by CHILL is the language-defined ability to

dynamically change the composition of a structure. This is

potentially cumbersome in Ada (employing complete record

assignment) if the record structure is complex.

Another aspect of parameterization is whether a

language allows types and procedures to be typed and hence,

treated in the same fashion as other objects, e.g., passed as

parameters to functions or procedures.

Types and procedures are not typed in Ada and

thus cannot be passed as parameters to functions or

procedures. However, the Ada generic clause provides a general

facility for translation time parameterization of program

units. A generic clause permits parameterization of the text

of a package or of other program units. Replication of text

can thereby be avoided, promoting readability. Also, the
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translator may use its knowledge of data type representations

to achieve certain optimizations. Seen in this light, the

generic facility provides a natural complement to strong typing

/ICHB79b/.

CHILL allows procedures to be defined as modes

and allows them to be passed as parameters to other

procedures. Procedure modes in CHILL thus allow procedures to

be handled in exactly the same manner as other variables.

3.2.4 Representation Control

One of the most important features a high level

language must possess in a systems environment is the ability

to provide an efficient means of mapping the software onto the

hardware. This potentially contradicts the notion of

generality in terwrs of having to deal with specific physical

representations. And, it goes against the stated objectives of

HOL implementation whereby data typing and abstraction are

encouraged. However, by providing language features which

allow explicit control over the physical mapping, efficient

(though less machine independent) software can be generated,

and this is an equally critical objective.

Both Ada and CHILL provide adequate

representation control capabilities, and both associate the

representation specifications with the type rather tbin with

individual objects of the type.

CHILL provides explicit layout control of both

structure and arrays. For structures, the positions of fields

may be described in terms of word and bit positions. For

arrays, the step specification indicates the position of the

first element and th'e number of bits allotted to each element

in the array.

Ada allows enumeration (set) type representation

specification, which CHILL does not. Ada provides for array

type layout control when embedding the array within a record,

and provides explicit record layout control capabilities which

are very similar to CHILL's. However, the syntactic structure

of the Ada representation construct is considered cleaner and
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easier to use than that of CHILL, as seen in the following

example of a record layout which similarily maps onto the same

machine. In CHILL, assuming 16-bit words, the following

declaration:

dcl CALLRECORD struct (JUNCTIONNO int pos(0),

ANSWERTIME int (0:100) pos (1,0:6),

STANDARDRATE bool pos (1,7));

produces the following binary layout:

Bit

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 JUNCTIONNO

1 (NOT USED) ANSWER TIME

STANDARDRATE

In Ada, assuming the type definition had already been

elaborated, the equivalent form is:

for CALLRECORD use

record;

JUNCTIONNO at 0 range 0..15;

ANSWERTIME at 1 range 0..6;

STANDARDRATE at 1 range 7..7;

end record;

which produces the same internal mapping as the CHILL example.

It can be seen, however, that the Ada example is more readable

and explicit in its presentation.

3.3 NAMES, EXPRESSIONS AND STATEMENTS

Names are used to reference declared entities,

expressions are formulas that define the computations of

particular values, while statements constitute the algorithmic

part of a particular program. This section presents

information on how Ada and CHILL define and manipulate named

entities and how expressions and statements are used.
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* 3.3.1 Names and Expressions

Names and expressions are handled almost
identically in both languages. Array component indexing and

record field selection are performed in like fashion in either

-* language, using paranthetical and dot notation, respectively.

Slices of one dimensional arrays (or strings) may be specified

with CHILL allowing a slice (subarray/substring) to be declared

* using either a range (as in Ada) or a start position and length.

Aggregates (tuples) may be formed from array or

record component values. Ada and CHILL both allow aggregate

construction using either positional and/or named assignment.

In Ada, these two forms of assignment may be mixed in any one

aggregate specification, while CHILL requires utilization of

-one method or the other in any one specification. CHILL

provides for powerset aggregate specification as well as array

and structure aggregates.

Expressions are formed in analogous fashion in

either language with slight differences reflected in the

availability and usage of operators. Ada provides short

. circuit control operations (with the same precedence as logical

*l operators) which provide additional control over expression

* evaluation by "short-circuiting" a potential exception causing

condition. This feature fosters program integrity at execution

time as shown in the following example:

if I/=O and then A/I=B then

end if;

Without the short circuit operator "and then", a

run time exception would occur on the attempt to divide by zero

in the second term of the expression above.

Both languages provides membership operators and,

in addition, CHILL supports a wide range of language-defined,

set-theoretic operators in conjunction with its powerset mode

feature.
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Finally, Ada allows most operators to be
redefined. This "overloading" of an operator is used to hide

the declaration of another operator as well as to provide local

explicit control over operator utilization. Ada's ability to
redefine operators through overloading coupled with the

capability to define data types in package specifications

allows Ada to be extended in a safe manner through data

encapsulation. For example, operator overloading would permit

one to define arithmetic operations on very short or very long

objects in an efficient manner. CHILL does not support the

concept of operator overloading, and this is viewed as a
deficiency.

3.3.2 Statements

The action statements that are available within

each language are comparable in both form and function. The

assignment, exit, return, goto, and if statements are all

handled in very similar fashion.

The CHILL loop control statement provides three

different forms: the traditional "do loop", the "do while", and
the "do with", which is used as a shorthand notation for

accessing structure fields. The loop construct in CHILL allows
non-unitary increments in both a forward and reverse

direction. Ada supports only forward and backward unitary
increments. Both languages define an infinite loop feature.

The basic case statement features of Ada and

CHILL are comparable. However, CHILL extends the case concept

to include a decision table case statement in which complicated
conditions can be expressed in tabular form. Ada does not

support a comparable feature. An example from /NCSY80/

illustrates this feature.

module

dcl I read int:-ININTO,

C read char:nINCHARO,
B read bool:-INBOOLO,

X int;
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case I, C, B, of

(1), ('A'), (TRUE): X: I;

(2:5), ('D':'F'), (FALSE): X:=2;

(else), ('G':'Z'), (*): X:=3;

* else X:-4;

esac;

end;

This example basically says, if cases I, C, and B

are all true in each subsequent line, appropriate assignment to

X takes place. Note that the asterisk is used as a "don't

care" value. Note also the multiple (and hence, ambiguous)

usage of the colon.
While Ada does not support a comparable feature

in the language definition, the equivalent form of the above

example in Ada (assuming the same variables) is as follows:

if I 1 and C = 'A' and B=TRUE then X:=l;

elsif I in 2..5 and C in 'D'..'F' and B=FALSE then X:=2;

elsif I not in l..5 and C in 'G'..'Z' then X:=3;

else X:=4;

end if;

All statements can be labeled in Ada while CHILL

restricts statement labeling to bracketed action statements or

statements with named handlers for errors. Note that Ada

distinguishes between a label and a loop identifier in that the

latter is not a label but an aid in viewing program structure.

It should also be noted that CHILL allows a statement to have a

handler appended in order to take care of possible exceptions

caused by statement execution. Ada permits case statements or

even arms of case statements to have their own exception

handler and, in fact, permits appending an exception handler to

any statement through the use of a begin block. And, as a

final note, CHILL uses the backward opening bracket name as the

closing bracket on compound statements (e.g., CASE...ESAC)

while Ada employs the more readable closing bracket mechanism

(i.e., CASE...END CASE).
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3.*4 PROGRAM STRUCTURE

Within this feature category are several issues

key to the goal of defining a reliable, maintainable

programming language. These issues are addressed within the

concepts of modularity, scope, and visibility. The following

subsections will address these areas and how they are handled

within Ada and CHILL. These areas tend to overlap leading to

some recursiveness in discussion.

3.4.1 Modularity

One of the more popular topics associated with

software engineering and programming languages in recent years

is the concept of modularity. Building programs through the

use of modules allows the progaimmer to group logically related
* items. The ability to package declared entitites, such as

subprograms, data elements, types, and other modules provides a
powerful structuring tool for complex programs.

Ada supports modules called packages. Packages

may have two textually distinct parts which can be separately

* written and compiled; a package specification, which determines

the resources made available by a package to the user, and a

package body, which implements the resources provided by the

package. The declaration (specification) and the

implementation (body) are well separated. In fact, the

specification represents the complete interface definition for

the programmers using the package, for the implementation of

the package body, and for separate compilation.

Ada considers three uses of packages /ICHB79b/:

(1) Named collections of declarations: logically

related variables, constants, and types to

be used in other program units.

(2) Groups of related subprograms: logically

related function~s and procedures which share

internal "own" data, types, and subprograms.
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(3) Encapsulated data types: definition of new

types and associated operations in such a

way that the user does not have knowledge of

the type's internal properties.

Named collections of declarations can most closely be

associated with the idea of system level common data. In fact,

this type of package can be likened to named common in FORTRAN,

with the exception that types as well as objects may be

declared. The following example shows how groups of logically

related entities can be meaningfully grouped:

package CALLSIGNALS is
ONHOOK,METERING : boo lean;

SUBSID ,DIGIT: integer;

type SIGNAL is (DTONE,R_TONE,R_SIG);

end CALL-SIGNALS;

Accessibility to objects declared within the

above package is obtained by dot notation (as with record

component selection) or by a use clause, as shown below:

declare'

use CALL-SIGNALS;

begin

ON HOOK:-=FALSE;
end;

The grouping of related subprograms can be

likened to the concept of a subroutine library. Typically, the

package will contain a visible part where declarations of the

contained subprograms reside, and a hidden part where the

actual subprogram bodies and local data reside. The separation

of the two parts is clear and distinct. In general, the two

parts need not be textually contiguous and can be compiled

separately - providing protection for and physically hiding the

package body:

package LOCALCALL is
procedure RCV SIGNAL(ON_HOOK:out boolean);

procedure SNDSIGNAL(A:in SIGNAL);

procedure MAINTENANCE(INSERVICE:out boolean);
end;
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package body LOCAL-CALL is

type STATE is (IDLE,OFFHOOK,RINGING,OUT_OFSERVICE);

procedure METERING (SUBSID:in INTEGER) is

begin

-- perform call metering tasks

end;

procedure RCVSIGNAL(ONHOOK:out boolean) is

begin

-- perform signal recognition tasks

end;

procedure SNDSIGNAL(A:in SIGNAL) is

begin

-- perform signal sending tasks

end;

procedure MAINTENANCE(INSERVICE:out boolean) is

begin

-- perform maintenance processing tasks

end;

end LOCALCALL;

In the above example, the three procedures

declared in the package specification are visible while

procedure METERING is hidden. Note, however, that METERING is

visible to the three procedures within the package.

Excapsulated data types correspond to a situation

in which we want the name of a type to be public, but where the
knowledge of its internal properties is to be available only to

the subprogram bodies contained in the module body /ICHB79b/.

The type name is specified within the visible part of the

package along with the specification that the type is
"private". The full definition of the type then follows within

a hidden private part:rpackage CALLSIGNALS is
type SUBS ID is private;

ONHOOK,METERING: boolean;

private

type SUBSID is new INTEGER range 0..9999;

end;
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The thre, rms of modules or packages described

*above can be used in th1 -raditional manner to construct
libraries containing commnon pools of data and types,

* application packages, and complete systems.

Additionally, Ada provides the capability to

parameterize modules by means of generic clauses. Generic
program units can be viewed as models or templates for other

* variant program units and expansion of the generic unit at

* translation time has the effect of creating a named instance

(copy) of the unit. According to the Ada Rationale /ICHB79b/

the objectives in providing the generic program unit capability

were as follows:

1) Allow additional freedom of factorization

without sacrificing efficiency

2) Minimize the amount of code presented to the

translator

3) Preserve regular program unit security

4) Introduce a modest language extension with

minor impact

This feature is considered to be very useful in avoiding

wasteful replication of text while yielding better

readibility. Also, it is possible for a translator to use its

knowledge of instantiated data representation to optimize space

allocation when data is to occupy the same amount of space in
the same representation.

CHILL supports two kinds of modular structures

called modules and regions. Regions are similar to modules in

form but are associated with processes and concurrency and will

be addressed later. The module as defined in CHILL is similar

in function to the package in Ada. However, in CHILL it is not

possible to separate the specification part from the

implementation part. This is seen as a definite liability

which restricts the modularity of the CHILL language and limits

the ability to effectively follow a top-down design approach.
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The following example shows a CHILL module that is analogous to

the previous Ada package:
LOCAL-CALL:

module

newmode STATE-set (IDLE,OFF HOOK, RINGING,OUTOFSERVICE);

METERING:

proc (SUBS_ID int in);
/*perform call metering tasks*/

end METERING;

RCV_SIGNAL:

proc (ONHOOK bool out));
/*perform signal recognition tasks*/

end RCVSIGNAL:

SNDSIGNAL:

proc (A SIGNAL in);
/*perform signal sending tasks*/

end SNDSIGNAL;

MAINTENANCE:

proc (IN_SERVICE bool out);

/*perform maintenance processing tasks*/

end MAINTENANCE;

end LOCAL-CALL;

The above module must be compiled as a unit -

there is no separation of item declaration from its associated

body. It is felt that the Ada package concept is superior in

terms of modularity and separate compilation. CHILL also does

not support any feature comparable to Ada's generic feature,

and this is considered a drawback.

The Ada package represents one of three forms of

program units of which Ada programs can be composed. The other

forms are tasks (discussed later) and subprograms.

In Ada there are two forms of subprograms:

procedures and functions. A procedure call is a statement; a

function call returns a value. The specification of a

procedure specifies its identifier and its formal parameters

(if any). The specification of a function specifies its

designator, its formal parameters (if any), and the subtytpe of
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the returned value. All Ada subprograms can be called

recursively and are reentrant.

The formal parameters of an Ada subprogram are

considered local to the subprogr-am and can assume one of three
* modes:

IN The parameter acts as a local constant which

obtains its value from the actual parameter.

OUT The parameter acts as a local variable whose

value is assigned to the actual parameter upon

subprogram execution.

IN OUT The parameter acts as a local variable,

permitting access and assignment to the actual

parameter.

Scalar or access type parameters are passed by

value (actual parameter copied into formal parameter and vice
* versa, as appropriate) upon subprogram call. Array, record, or
* private types may be copied, or alternately, the formal

* paran~ter may only provide access to the actual parameter

during subprogram execution (pass by reference or location).

Ada does not define which mechanism is to be employed for

* parameter passing. This could potentially result in

inefficient parameter passing if the particular implementation

does not optimally choose the appropriate mechanism for the

parameters being passed.

CHILL does not distinguish between a procedure
and a function in a true sense. Instead, the procedure

definition dictates whether it is to be used as a value

returning procedure (function) or as a normal procedure.

As in Ada, the formal parameters of a CHILL

procedure are considered local to the procedure and can assume
* one of three modes - IN, OUT, or IN OUT.

The storage and manipulation of the formal

parameters in relation to their local usage iSnearly identical

* to Ada. One exception is that the mechanism for passing

parameters by value or by location can be explicitly specified

in CHILL. This can result in inefficient implementation if one
neglects to specify the pass by location mechanism for large
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objects. It could also lead to maintenance-related problems if
the size of a particular parameter is changed and the

programmer neglects to also change the passing mechanism

specification to match the data structure being passed.

3.4.2 Scope and Visibility

This subject was touched upon in the previous

section and will be addressed further herein.

A declaration associates an identifier with a

program entity such as a variable, a type, a subprogram, a

formal parameter, or a composite structure component. The

region of text over which a declaration has an effect is called

the scope of the declaration. An entity declared immediately

within a unit is said to be local to the unit; an entity

visible within but declared outside the unit is said to be

global to the unit. A closed scope is one where only the

external objects that have been explicitly indicated by a

visibility expansion clause are visible. This is the most

restricted and hence the most secure interpretation. An open

scope implies thez identifiers declared in outer contexts are

automatically visible in inner nested contexts unless an

explicit visibility restriction is given.

Ada follows an open scope policy as the default

option in its definition. The rationale for this decision is

that (1) the lists of explicit visibility expansion clauses

would grow to unmanageable lengths and (2) the programmer would

tend to use "standard" (all-inclusive) lists anyway. The

visibility rules provided in Ada combine a traditional

visibility inheritance mechanism with the ability to explicitly

control the set of names that can be accessed within a given

program context. This ability follows from the naming

conventions and the previously mentioned module facility and

visibility restrictions. A renaming capability is also

provided to assist in resolving name conflicts. As an

additional syntactic convenience, a USE clause mentioning names

of visible packages may appear in the declarative part. The
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*" effect of the USE clause is to cause certain identifiers of the
1 visible parts of the named packages to become directly visible.

CHILL, on the other hand, applies the same open

scope rules for blocks and procedures, but restricts the scope

of a module, i.e., no identifiers are automatically inherited.

Names declared in a module are local to that module. However,

global names, i.e., names declared outside the module, are not
automatically visible inside the module. Furthermore, local

names of a module may be made visible outside the module. To

make a global name visible within a module, the name must be

mentioned in a "seize" statement. To make a local name visible

outside a module, the name must be mentioned in a "grant"K.
statement.

* 3.5 CONCURRENCY

Concurrent processes are those which overlap in
time. They are called disjoint processes if they do not

interact and interacting or cooperating processes if they do.

Much has been written on the subject of concurrency and it

* represents an area which attracted considerable attention

during Ada and CHILL definition activities. Obviously,

concurrent processes model the activities which occur within

many embedded computer applications. This section will examine

the tools provided within Ada and CHILL for handling

concurrency. No attempt will be made to address the nature of

the implementation necessary to support the features, as this

is outside the scope of this report.

The rationale employed for definition of the

lI concurrent processing (tasking) facility in Ada is that the

traditional semaphores, events, and siqnaling mechanisms are

clearly at too low a level and individually exhibit too many

drawbacks. Monitors /BRIN73/ on the other hand are too

difficult to understand, awkward to use, and an unfortunate mix

of low level and high level concepts /ICBH79b/.
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The Ada design philosophy was to strike a balance

between the low level and the high level controlling mechanisms
while providing a simple powerful tool. It appears that the

designers achieved their goal.

The task represents the basic parallel processing

structure within the Ada language. Structurally the task is

analagous to the Ada package. Communication and

synchronization between executing tasks is provided by using

the concept of a rendezvous between a task issuing an entry

call and a task accepting the call by an accept statement.

Thus, both the "caller" and the "callee" must be present at the

rendezvous for synchronization and/or communication to occur.

Subsequent tasks calling a currently executing task are

suspended, queued, and handled on a first-in, first-out basis.

The priorities of tasks in the system are assigned at compile

time using the pragma PRIORITY. The effect of priorities on

scheduling is defined by the following rule: If two tasks with

different priorities are both eligible for execution and could

sensibly be executed using the same processing resources, then

it cannot be the case that the task with the lower priority is

executing while the task with the higher priority is not.

Tasks may be created by (1) defining a task type

that indicates a general specification from which objects may

be created or (2) a single task declaration which is equivalent

to using an anonymous task type. The ability to specify task

types offers roughly the same advantages associated with

generic packages, as described previously.

A task body defines the execution of the tasks of

the corresponding type. The activation of a task object

consists of the elaboration of the declaration part, if any, of
the corresponding task body. After activation, the statements

of the task body are executed. Normal termination of a task

occurs when its execution reaches the end of its task body and

all dependent tasks, if any, have terminated. Abnormal

termination can be forced by means of an abort statement.
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Further flexibility is provided by the select

statement which allows a calling or called task to select from

a set of alternatives at the point of rendezvous. The select

statement can assume three forms:

* Selective wait by the called task

* Conditional entry by the calling task

e Timed entry by the calling task

The following buffering task example taken from

the Ada reference manual /USDO80b/ illustrates the Ada tasking

facility. Assume there is a producer task outputting

characters until an EOT is encountered and a consumer task

inputting characters until receipt of the EOT:

task BUFFER is

entry READ(C:out CHARACTER);

entry WRITE(C:in CHARACTER);

end;

task body BUFFER is

POOL_SIZE:constant INTEGER:=100;

POOL:array(l..POOLSIZE) of CHARACTER;

COUNT:INTEGER range 0..POOL SIZE:=0;

ININDEX,OUTINDEX:INTEGER range l..POOLSIZE:=;

begin

loop

select

when COUNT < POOL SIZE = >

accept WRITE(C:in CHARACTER) do

POOL(IN_INDEX) :=C;

end;

ININDEX:=IN_INDEX mod POOL-SIZE + 1;

COUNT: =COUNT + 1;

or when COUNT > 0= >

accept READ(C:out CHARACTER) do

C:=POOL(OUT_INDEX);

end;

OUTINDEX:=OUTINDEX mod POOLSIZE + 1;

COUNT:-COUNT - 1;
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or

terminate

end select;

end loop;

end BUFFER:

The Ada definition of tasks is consistent with
the state of the art philosophy of handling the concurrency

concept. In fact, Ada's approach closely resembles recent

proposals by Brinch Hansen /BRIN78/ and Hoare /HOAR78/.

CHILL offers a range of features to handle

synchronization and communication between cooperating

processes. The CHILL analogy to the Ada task is the process,

though it is more similar to the process of concurrent Pascal.

CHILL also provides regions and events which are similar to the
concurrent Pascal monitors and queues, respectively.

A CHILL process is textually similar to, but

semantically different from, a CHILL procedure. Process

instances can be created and activated by means of a start

statement. When a process is activated by a start sta .eent,

actual parameters may be passed to the activated task at

activation time. The CHILL instance mode is similar to the Ada

task type. Like Ada, a process may terminate itself (via a
stop statement) or terminate normally. The operations defined

for instance modes are equality and the parameterless procedure
"THIS" which yields the instance value of the process invoking

it. Ada does not have these features.

The CHILL region is the means of providing mutual

exclusion. Regions correspond to modules and all previous
remarKs dealing with CHILL modules apply here. Critical

procedures are procedures which are defined within regions.
There are also several synchronizing primitives

defined in CHILL. Events are provided which facilitate process

synchronization. It is possible to delay a process to make it

wait for an event to occur, and a process may cause an event to

occur su- i that delayed processes are able to continue. A

delayed process becomes a member (with a priority) of a set of
delayed processes attached to a specified event location. The
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delay statement allows the optional process priority to be

specified. Upon execution of the corresponding continue

statement, the process with the highest priority associated

.[ with the particular event is selected to become active

according to an implementation-defined scheduling algorithm. A

delay case statement is provided which allows a process to wait

for one of a number of events. Buffer mode objects and their

operations ate used to provide communication between

processes. Messages can be sent to and received from buffers

by processes through the use of send and receive constructs.

Also, there are CHILL signals. Signals are used to provide

*. both synchronization and communication. A feature called the

receive case statement allows the receipt of any one of a set

of buffers or signals and is similar to the delay case

statement in form but with added facilities to handle the

message part of buffers or signals.

The following call queuing example taken from the

*CHILL reference manual /CCIT80a/ illustrates the CHILL tasking

*facility:

SWITCHBOARD:

module

dcl OPERATOR IS READY,

SWITCHISCLOSED event;

CALLDISTRIBUTOR:

process (;

do for ever;

wait(10 /*seconds*/);

continue OPERATORISREADY;

od;

end CALLDISTRIBUTOR;
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CALL;

process (;

delay case

(OPERATORISREADY): /*some action*/ ;

(SWITCH IS CLOSED): do for i int(1:100);

continue OPERATOR IS READY;
/*empty the queue*/

od;

esac;

end CALL;

OPERATOR:

process 0;
do forever;

if TIME = 1700

then

continue SWITCH IS CLOSED;

fi;

od;

end OPERATOR;

start CALLDISTRIBUTORO:
start OPERATORO;

do for i int(1:100);

start CALL();

od;

end SWITCHBOARD;

It is readily seen that CHILL provides a wide

selection of tools to handle concurrency. This is seen as a

disadvantage by some. One author says, "The CHILL approach

indicates the 'if in doubt, put it in' attitude of the language

designers. This has resulted in a heterogeneous collection of

mechanisms, for which it is difficult to develop a unified

program design and analysis model. There is also a high degree

of redundancy, for example, the "buffer" can be easily

implemented by regions and events (classical concurrent Pascal
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example) and vice versa. The obvious indecision has resulted

in a poor overall design." /BOUT79/

The Ada approach on the other hand is concise and
powerful. There appears to be a minimum amount of redundancy

in design.

*3.6 EXCEPTION HANDLING

Exceptions can be categorized as either errors or

infrequent (non-normal) events and there are many schools of

*thought as to the mechanisms that should be employed to handle

exceptions. It is generally agreed, however, that a facility

for handling exceptional conditions is essential for

reliability of real time systems. In many cases, systems must

be designed to continue to function (though perhaps in a
reduced capability configuration) through hardware or software

* casualty situations. This is especially true for embedded

* military weapons and communications systems where failure in

time of stress could have serious consequences. Ada and CHILL

both have extensive exception handling features which are very

similar in form and function.

In Ada, there are both user-defined exceptions

and predefined exceptions. Exceptions may be recognized

automatically (i.e., the predefined exceptions are raised when

the indicated error conditions arise) or by the user by

executing the "raise" statement. When an exception has been

raised, the execution of the program is stopped at that point

and processing proceeds at the appropriate exception handler.

The exception handler is the mechanism which

provides the executable code in response to a named exception.

In Ada, the handler appears at the end of a block or of a body

of a subprogram, a package, or a task. As previously stated,

* Ada permits case statements (and arms of case statements) to

have their own exception handler and, in fact, permits

appending an exception handler to any statement through the use

of a begin block. Note that the handler is a substitute for

retaining the code at the point an exception is raised. In

Ada, the syntactic form of the handler is similcar to the case

statement.
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Ada provides a compiler directive which may be

used to suppress some exceptions. This suppression may apply
to all appropriate operations, all appropriate operations on a

given type, or all appropriate operations on a given object.

Special attention is given to exception handling

in parallel Ada tasks. Restrictions are placed on propagation
of an exception from one task to another. In general,

exceptions are propagated during rendezvous (i.e., intertask

communication). A task may explicitly raise the failure

exception in any other visible task.
The CHILL exception handling facilities are

nearly identical to those of Ada and as such need not be

elaborated. The only items which should be pointed out are as

follows:

e CHILL does not support the explicit

suppression of exceptional conditions.

* CHILL allows an exception to be directly

appended to a statement. This can be helpful

but can also lead to readability problems, if

abused.

* CHILL allows an exception list to be specified

in a procedure definition indicating which

exception can be propagated to a caller. This

is useful in the case where an exception is

not explicitly specified in the current unit

and propagation must occur.

3.7 INPUT/OUTPUT
"No standard input and output routines are

defined in CHILL. Such routines may be written in CHILL
itself." /NCSY80/ Unfortunately there is no information in

either the CHILL introduction /NCSY80/ or the CHILL definition

document /CCIT80a/ to confirm or deny the second statement

above. Therefore, this section can only address the I/O

features within the Ada language definition.
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The Ada Rationale states the problems associated

with language defined I/O features very well. "... the needs

for application level input-output may vary greatly between

*j classes of applications. For example, file manipulation, batch

processing, line and page layout, interactive input, and
non-character processing pose significantly different

problems. An attempt to build in special features to cover the

range of input-output applications would mean that every user

and every translator would be forced to take account of this

additional complexity. A major design goal in the ... language
was therefore to provide the ability to develop a rich set of

input-output facilities without additional language

constructs." /ICHB79b/

Three standard input-output packages are provided

in the Ada language definition.

The generic package INPUTOUTPUT defines a

general set of user level I/O operations. These operations are

applicable to files containing elements of a single type -

e.g., character files, integer (binary) files. General

operations which are provided for file manipulation include
file creation, OPEN/CLOSE file commands, NAME file commands in

addition to traditional file I/O operations (e.g., READ,

WRITE, EOF).

*- Additional operations for text related I/O are

defined in the second standard package, TEXT_IO, which is

defined in terms of the package INPUTOUTPUT. Basically,

TEXT_IO provides facilities to perform file I/O in human

readable form.

Finally, the package LOWLEVELIO defines the

form of the operations used when dealing with low level I/O to

a physical device. Such operations are handled by using one of

the predefined procedures SEND CONTROL and RECEIVECONTROL.

These procedures are declared in LOWLEVELIO and have two

parameters which identify the device and the data. However,
the kinds and formats of these control parameters will depend

on the physical characteristics of the particular device.
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3.8 DISCUSSION

The above material has shown the technical

similarities of the two langages. In no feature category does

the CHILL language exhibit any distinct linguistic or

functional advantage over Ada. Certainly there are minor

tradeoffs seen in the form or usage of a particular construct.

But the overall feature comparison has uncovered no distinct

technical advantage in using CHILL over Ada for SPC circuit

switching applications.

Additionally, no information was provided within

the CHILL language definition document as to the nature and

extent of the facilities for (1) Input/Output, (2) in-line

machine code insertion, or (3) interface to "foreign" code.

These are three very critical areas within the context of

circuit switching software applications, and the fact that the

form and function of these (somewhat machine dependent)

facilities were not addressed within the language definition is

extremely disconcerting.
Ada provides facilities for language defined I/O

packages, defines a mechanism for machine code insertion, and

allows Ada programs to interface to programs written in other

languages (for example, CHILL).

CHILL does not support any language defined

Input/Output features. Also, no evidence could be found that

the language definition supports machine code insertion or a

foreign code interface mechanism. One can perhaps argue that

these features are not necessary and hence, better left out.

However, the fact is that in certain situations, having access

to the capability to write (and execute) in-line machine code

can be a valuable tool for space and time optimization. A
similar argument can be made for the ability to interface to

foreign code, where optimization in the other language might be

required for efficient implementation. The exclusion of the

ability to support these features within the language

definition is considered a rather major oversight.
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SECTION 4

PROGRAMMING ENVIRONMENT EVALUATION

4.1 CHILL/SDL/MML ENVIRONMENT

This section will present overviews of the

Specification and Description Language (SDL) and the

Man-Machine Language (MML), and discuss their overall

relationship to CHILL.

"SDL is a means of representing the specification

of the functional requirements and also the description of the

logic processes necessary to implement the specification, in

stored programme control (SPC) switching systems." /CCIT80b/.

The method of presentation is based on state transition

diagrams.

The main areas of application cover all types of

SPC switching systems. Within these systems examples of

processes which can be documented using SDL are: call

processing (e.g., call handling, routing, signalling, metering,

etc.), maintenance and fault treatment (e.g., alarms, automatic

fault clearing, configuration control, routine tests, etc.) and

system control (e.g., overload control).

The requirements of a system are defined in the

specification of that system and the implementation of those

requirements is defined in the description of that system.

The objective of the SDL is to provide a

standardized method of presentation that /CCIT80b/:

" Is easy to learn, to use, and to interpret in

relation to the needs of operational

organizations.

" Provides unambiguous specifications and/or

descriptions for tendering and ordering.

" Provides the capability for meaningful

comparisons between competitive types of SPC

switching systems.

" Is open-ended to be extended to cover new

developments.
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To meet these objectives two forms of the SDL

have been developed. The graphical form, SDL/GR, is a method

whereby each process is represented in terms of states and the

transitions between them. An input causes the process to leave

a state and travel along a transition executing tasks,

generating output signals, and branching on decisions until

another state is reached. The representations may be linear,

with multiple appearances of a single state if convenient, or

may be of mesh form or any combination of the two. The

concepts of state, input, task, output, decision, and save are

represented by their respective symbols. The appropriate

interconnection of such symbols by flow lines represents the

logical flow of a process. Strict rules for drawing sequence,

flow, and annotation are applied. There is no correlation

between the graphical form of SDL and the CHILL programming

language.

The other form of SDL is the program-like form

SDL/PR, previously known by the more descriptive name, Machine
Readable Form (MRF). The SDL/PR is intended to facilitate the

automatic generation, modification, and analysis of SDL

diagrams. SDL/PR is still in the development stage at this

time.

Much effort has been expended in the

determination of the correlation requirements for CHILL and

SDL. In fact, CCITT Study Groups XI/3-1A (MRF subgroup) and

XI/3-1B (SDL/HLL subgroup) devoted much time in 1978 to this

very question and concluded ". .. a strong correlation between

SDL and CHILL is now not only possible but also more likely to

occur in actual implementation." /CCIT78/ This conclusion

enabled them to justify the disbanding of the separate subgroup
for ensuring correlation. Since that time however, less

emphasis has been placed on the requirement for correlation.

In fact, at present there is no correlation between SDL/PR and

CHILL beyond the obvious similarities of their form and

application domain.
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The Man-Machine Language (MML) is used to

facilitate operation and maintenance functions of SPC switching

-* systems of different types. According to different national

requirements, MML can also be used to facilitate installation

and testing of such systems /CCIT8Oc/.

The MML contains inputs (commands), outputs,

control actions, and procedures sufficient to ensure that all

* relevant functions for the operation, maintenance, installation

* and testing of SPC systems can be performed. It has been

* designed with an open ended structure such that any new

function or requirement added will have no influence on the

* existing ones. The language structure is such that subsets can

be created which may be necessary for administrative or

implementation reasons.

The MML is a totally independent tool which is

not correlated with CHILL in any sense other than the fact that
* they may share the same application envIironment in a (mutually)

* cooperative manner.

4.2 ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE)

This section presents an overview of the Ada

* Programming Support Environment (APSE" taken from the STONEMAN

document /USDO8Oa/.

The overall objective of an APSE is to offer

cost-effective support to all functions in a project team

* engaged in the development, maintenance and management of a
* software project, particularly in the embedded computer system

* field, throughout the lifetime of the project.

An APSE adopts a host/target approach to software

*construction. That is, a program which will execute in an

embedded target computer is developed on a host computer which

offers extensive support facilities. Except where explicitly

stated otherwise, this document refers to an APSE system

running on a host machine and supporting development of a
program for an embedded target machine.
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An APSE offers a coordinated and complete set of

tools which is applicable at all stages of the system life

cycle, from initial requirements specification to long-term

maintenance and adaptation to changing requirements.

The tools communicate mainly via the database,

which stores all relevant information concerning a project

throughout its life cycle. The database is structured so that

relationships between objects in the database can be

maintained, in order that configuration control problems can be

resolved.

Individual functions supported by the tools in an
APSE include:

* Creation. It is possible to create database

objects which contain specifications, design

documentation, program source text, program

documentation, test data, and so on.

* Modification. A database object can be

modified to produce a new object (or a new
version of the same object), for example, by

editing.
9 Analysis. The entities in a database object

can be analyzed, producing a new object which

records the results of this analysis.

Examples of such analysis are set/use and

cross reference listings.

o Transformation. The representation of a

database object may be changed by

transformation tools.
0 Display. Objects can be displayed on

terminals, printers, and so on.
o Linking. A collection of compiled code

objects can be consolidated, resulting in a

new object ready for loading and execution.

o Execution. Once a program has been compiled
i.nd linked, it can be loaded and executed,

possibly with an appropriate environment being
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used to supply test information and to monitor

execution.
e Maintenance. The APSE must enable

configuration control to be maintained. For
any configuration of software, it is necessary

to be able to determine the origin and purpose

of each component of the configuration and to

control the process of further development and
maintenance of the configuration.

The user interface offered by an APSE is

independent of the host machine.

At all stages of the development of a program -

design, coding, testing, maintenance - an APSE encourages the

programmer to work in Ada source terms, rather than in terms of

* thR assembly language of the particular host or target machine.

Extension of an APSE toolset requires knowledge

only of the particular APSE and of the Ada language. A new

tool - for example, an environment simulator - is written

within the APSE. This tool can then be installed as part of

the APSE and subsequently invoked.

JA n APSE supports the use of libraries of standard

routines for incorporation in programs written for both host

and target machines.

The above paragraphs outline the facilities

offered by an APSE to its users in support of Ada programming.

However, a further requirement is for portability both of APSE

tools between, for example, APSEs hosted on different machines

and of complete APSE toolsets. To address this aim and to

indicate a means ot implementation of an APSE designed to

provide portability, this document gives requirements for a low

7level portability interface and support function set (the

KAPSE) together with a minimal toolset (the MAPSE).

The purpose of the KAPSE is to allow portable

* tools to be produced and to support a bac4.c machine-independent

*T user interface to an APSE. Essentially, the KAPSE is a virtual

support environment (or a "virtual machine") for Ada programs,
*. including tools written in Ada.
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The declarations which are made visible by the
KAPSE are given in one or more Ada package specifications.

These specifications will include declarations of the primitive

operations that are available to any tool in an APSE. They

will also include declarations of abstract data types which

will be common to all APSEs, including the data types which

feature in the interface specifications for the various stages

of compilation and execution of a program.

While the external specifications for the KAPSE

will be fixed, the associated bodies may vary from one

implementation to another. In general all software above the

level of the KAPSE will be written in Ada, but the KAPSE itself

will be implemented in Ada or by other techniques, making use

of local operating systems, filing systems or database systems

as appropriate.

The minimal APSE (MAPSE) is one which provides a

minimal but useful Ada programming environment and supports its

own extension with new tools written in Ada. Hence, the MAPSE

is an APSE and must meet the general requirements set down for

APSEs.

For many important activities during a project

life cycle as listed below, the only support offered by the

MAPSE consists of general text manipulation facilities. A more

comprehensive APSE will offer specialized tools to support a

wide range of these activities, possibly including:

1) Requirements Specification

2) Overall System Design

3) Program Design

4) Program Verification

5) Project Management

Clearly, the MAPSE does not emphasize any

particular development methodology at the expense of any

other. However a comprehensive APSE may encourage, or even

enforce, one specific system development methodology.

11-4-6



4.3 DISCUSSION

The previous two sections have shown that (1) the

SDL and MML languages have no dependency on CHILL (and vice

versa) and (2) the APSE supports the incorporation of external

tools such as SDL and MML. The significance of these two

points will be discussed further herein.

The relationship that exists between SDL, MML,

and CHILL poses no known portauility problems. They t ist in

the same environment because of the fact that they support the

same application. It is perhaps misleading to consider them as

part of a "programming environment". One does not generate

*i code for the other, for example. Rather, their

interrelationship is more along the lines of "peaceful

co-existence." SDL and MML existing in the same environment is

somewhat analogous to a word processing package and an

accounting package co-existing with a FORTRAN compiler. The

accounting package may even be written in FORTRAN. B-t this

situation does not create a dependency in a sense that

restricts portability or replacement. Hence there is nothing

to prevent another language (for example, Ada) from replacing

CHILL in a particular environment which happens also to inclJce

SDL and MML. However, this view is directed towards a

development type environment.

The relationship that exists withir 7H:

and MML in a production environment is even easi--:

consider. SDL and MML are basically off-11i

no requirement for them to co-exist witn :P.

Hence, this places no additional restr,.-,.

context of replacing CHILL.

The above discissi ,

whether Ada can replace CHILL

part of a programmln env : .

further area LO conszi :

fit within the Ada Pr

proqramming . -,

impleme : t A.
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provides more than adequate development support of Ada

programs. The third level is the area of most interest to this

study. This level provides the capability of extending the

MAPSE to allow fuller support of particular applications or

methodologies. In particular, this level can support the
inclusion of the SDL/PR and MML tools. In fact, there is

nothing to prevent the inclusion of the CHILL compiler and its

associated tools as well. This is considered to be an

attractive alternative to the question of Ada replacing CHILL

in its environment.
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SECTION 5

CONCLUS IONS

This section will present the overall conclusions

of the Ada/CHILL comparative analysis effort. But first it is
* instructive to examine the conclusions of three other recent

reports which deal with the same subject.

The first report was written in March 1980 by
Mr. Kristen Rekdal (a member of CCITT study group XI and

-* principal author of the CHILL language introduction). This

report makes the claim that CHILL and Ada are technically very

similar and that the differen ces are primarily political. In

fact, the following paragraphs are significant:
"These two languages have been designed

with basically the same requirements in
mind. The result is languages that are

very similar both in power, structure
and style. It is almost possible to do

a detailed feature by feature

comparison.
From a purely technical point of view,
there is reason to believe that either

language could cover all purposes
equally well. One may attempt to argue

the preferability of details in one
language above the other. Such

comparisons will, however, be highly
subjective and probably largely

irrelevant.
Language design is an exercise in

4 making compromises, and some will be
loe pleasing than others. it is not

difficult to find, in any language,
properties to disagree with. But what
counts is the overall result. There

exists today no means by which it is



possible to detect any significant

difference in overall language power or

programmer productivity between so

closely similar languages." /REKD8O/
Mr. Rekdal then goes on to point out the

political issues behind Ada and CHILL and concludes that "World
agreement has been reached that, for right or wrong, CHILL is

the language needed for SPC-programming." /REKD8O/ He then
advocates a "you go your way and I'll go mine" philosophy
between CCITT/CHILL and DoD/Ada.

The second report details a study conducted under

the auspices of the GTE Software Steering Committee by members
of the Special Interest Group on High Level Languages

/KORNXX/. This report elected to concentrate the comparative
analysis of the two languages into four areas considered to be
relatively new concepts in programming languages;
modularization, data abstraction, parallelism, and exception
handling. The authors uncovered no significant differences in
the languages and concluded that

"In the development of the four

concepts, both Ada and CHILL have
extended the features and facilities

defined in basic PASCAL. Ada does not

conflict with the CCITT requirements
and is the most encompassing and

ambitious effort we have encountered.

Implementation of the complete language

will be difficult and we believe that
compilers supporting only subsets of
the language will be available in the
immediate future.

CHILL more than adequately meets its
design goals by supporting the

development of real-time

telecommunications software. It does

not allow for any file handling or

provide a 'real' number capability.
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Most telecommunications software
designers will therefore have to resort

to supplemental languages to fulfill
any requirements for file handling or

scientific computations."
The third report was written by Mr. R.T. Boute of

Bell Telephone Mfg. in Antwerpen, Belgium. /BOUT79/
Mr. Boute's report is by far the most detailed. His discussion
of the two languages also centers around four issues: types,

data abstraction, concurrency, and exception handling. Mr.
Boute considers these features germaine to a communications

oriented programming language and concludes that "Although no

comparison was originally intended, Ada turns out to be

definitely superior in the last three topics mentioned, as well

as in the overall design.0 /BOUT79/ Furthermore, he goes on to

say "The potential user is entitled to question the need for
both languages, with all support and standardization problems

it entails. The fast progress of Ada and the wide attention it
has recently been getting may well establish its position

before CHILL reaches Ada's present level of definition. In
this case, and unless the CHILL design team decides on an

approach which is superior to Ada in all respects, a second
language would be superfluous." /BOUT79/ This again implies,

as in the previous two reports, that the languages are so
similar that the other is "superfluous."

The purpose of discussing these reports is to
point out that studies performed by three diverse individual

activities have generally arrived at the same conclusion, i.e.

the technical similarity of Ada and CHILL.
Unfortunately, none of these reports addressed

the entire spectrum of Ada and CHILL features and issues. The

first report did not provide (and did not claim to provide) any
technical justification on which to base its conclusions. The

report was very clear in pointirg out that the Ada/CHILL

differences involved political rather than technical

questions. The second report provided some limited technical
information but isolated four areas (modularization, data
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abstraction, parallelism# and exception handling) for purposes
of comparison. This concentration was intentional and was
performed to highlight what the authors termed 'new concepts in
programming languages.* The third report also concentrated the
comparison in four areas (types, data abstraction, concurrency,
and exception handling) and provided detailed technical
information in these areas, omitting only the purely sequential

control structures and basic details of the languages

considered trivial for comparison purposes.

Discounting the last two referenced reports for

the stated reasons is not meant to be a negative judgment of
their worth. Rather it is meant to point out that failure to
explicitly cover all aspects of Ada and CHILL during a
comparative analysis could perhaps result in a potential reader
being misled into thinking either (1) the languages are
identical in all unstated areas or (2) significant differences
in these unstated areas are not being addressed. Also, it

* should be noted that all three reports dealt with preliminary
Ada, not the recognized version of Ada defined in /USDOS0b/.

For these reasons, the comparative analysis

described within this report attempted to take a more global
comparison approach which can be accepted in both technical and

logical terms. The reader will recall that there were two
basic questions to be answered during this study and they are

reiterated here:
1) Can Ada be used as a direct substitute for

CHILL in the context of CHILL being a

programming language designed for circuit

2)switching applications?
2)Can Ada be used as a direct substitute for
CHILL in the context of CHILL being part of a

programing environment containing CHILL,
SDL, and HI4L?

The most common method of answering the first
question would be to address the functional requirements of
circuit switching applications and attempt to show that Ada
meets those requirements. A more direct and less subjective
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method is simply to follow deductive logic. For example, no

one will'argue the point that CHILL is a suitable language for

circuit switching applications. Thus, if one wants to evaluate

whether another language is also suitable, simply compare the

features of this other language with CHILL. In Section 3 of

this report, that feature by feature comparison was presented.

This comparison showed that the languages are in fact nearly

identical. Granted, there are minor differences (features

exist in CHILL, but not in Ada, and vice versa), but the fact

remainsthat the differences are virtually insignificant when

considered in totality. One can therefore conclude that Ada

can be used as a direct substitute for CHILL in the context of

CHILL being a programming language designed for circuit

switching applications.

To answer the second question a further argument

must be proposed. In Section 4 the CHILL/SDL/MML environment

was examined. It was shown that no critical dependency exists

between these three entities. In partticular, the SDL and MML

tools exhibit no characteristics which force them to depend on

CHILL (or vice versa). Thus, in answer to the second question

there is nothing to prevent Ada from coexisting with SDL and

MML in a particular programming environment. However, we

demonstrated in Section 4 that a more complete and useful

capability can be formed by using the Ada Programming Support

Environment (APSE). The APSE, as currently defined within the

STONEMAN document can support the incorporation of external

tools at its woutermost" level. Therefore, a very powerful

support environment for SWC switching system applications can

be formed by the incorporation of SDL and MML into the APSE.

In fact, there is nothing to prevent the CHILL capability from

being incorporated as well, allowing Ada programs to coexist

and interface with CHILL programs, where appropriate. This is
seen as a powerful, logical approach to the Ada/CHILL duality

and it is a solution that the CHILL proponents can neither

offer nor argue against.

In addition to the above, two other points are

relevant to this discussion.
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Both DoD and CCITT have stated their desire for
defining a language standard for their respective application
areas. Having a programming language achieve a standard level
is advantageous to many activities, not the least of which
might be configuration management# quality control,

documentation, and training. Allowing (or not strictly
controlling) the proliferation of compiler subsets tends to
defeat the purpose of establishing a language standard. All
too frequently, there is incompatibility among the subsets.
occasionally, the subset fails to accurately reflect the
standard from which it is supposed to have been derived.

DoD is seeking to prevent this condition from
occurring. They are doing this by forbidding the recognition

of Ada compiler subsets within their application domain. Every
Ada compiler will be required to recognize every legitimate Ada
statement. This obviously does not prevent independent
compiler development outside their domain, but at least it
restricts the proliferation 'of subsets within their own
environment. Additionally, no development activity will be

2 able to call a subset compiler an Ada compiler because of the
copyright restrictions which DOD intends to place on the use of

the name.
CCITT, on the other hand, has not yet been able

to establish firm control over the generation of CHILL compiler
subsets within their own sphere of influence. This is
evidenced by several ongoing trial compiler development
activities. Whether these compilers are faithful subsets of
the CHILL definition or are, in fact, compatible with each
other is unknown at this time. The point is that the CHILL
designers/proponents have to date failed to adequately control
this condition, and this is considered contradictory to their
stated goals.

Another closely related question then is: How

does one validate these compiler subsets or compilers which
have been generated within different development environments?
The answer is that the defining authority must require that
compiler validation be performed. Furthermore, the defining
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activity or, at least, the implementing activity must establish
procedures to be used to certify that the compiler in question
meets the established language standard.

The STEELMAN document states: "There will be a
standard definition of the language. Procedures will be
established for standards control and for certification that
translators meet the standard." /USDO78/ The DoD obviously
intends to keep Ada under tight configuration control and to

.ensure that compilers do not introduce dialects through
inconsistent implementations. In particular, a language
control agent (which includes a compiler validation facility)
is required to be in place before DoD will accept a language
for the approved list, as stated in DoDI 5000.31. Toward this
end, a contract has been awarded by DoD to develop an initial
Ada Compiler Validation Capability (ACVC) to be available by

late 1980 and a complete state of the art capability by late
1981.

CCITT, on the other hand, has not yet been able
to establish a firm commitment to a compiler validation

facility. And, due to the fact that several trial compilers
are in the late stages of development, it appears unlikely that
satisfactory validation efforts will be possible. Again, this
seems contrary to CCITT goals.

In summary, it is felt that a strong case has
been presented for Ada being used as a programming language for

circuit switching applications. it has been shown that Ada is
equal or superior to CHILL in almost all aspects ranging from

availability and definition of language features to strict
control over compiler dialects. Moreover, the study has
produced no evidence which precludes Ada from being used in
other, more general, telecommunications programming

applications, as well. Many people believe that Ada could

emerge as the universal programming language standard by the
end of the decade, and therefore, there appears to be no reason
why the communications community should not take advantage of
Ada's power and appeal in all of their present and future

software development activities.
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PLAN FOR

EVALUATION OF ADA

ASA

COMMUNICATIONS AND TRUSTED SOFTWARE
PROGRAMMING LANGUAGE

ABSTRACT

The availability of the new programming language,

Ada, presents new opportunities for developing quality software

through the use of language features used previously only in
research environments. With the new features, however, new
controls in the form of programming standards and guidelines
will be required to assure that the potential for producing

quality software is actually achieved. As a means of
formulating these standards and guidelines, Ada will be used to

implement, on a prototype basis, a communications application
which consists of the AUTODIN II Segment Interface

Protocol/Advanced Data Communications Control Procedure
(SIP/ADCCP) and a trusted software application which consists

of the Advanced Command and Control Architectural Testbed

(ACCAT) GUARD software. This Evaluation Plan establishes the

approaches to be used in designing, developing, and testing the

software, evaluating the efficiency and effectiveness of Ada as

used in these applications, and identifying standards and

guidelines to assure overall software quality in the use of Ada.
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EXECUTIVE SUMMARY

The availability of the new programming language,

Aa, presents new opportunities for developing quality software

through the use of language features available previously only

in research or small-scale software development environments.

Although the existing, July 1980 version of Ada has resulted

from extensive, open review, test and evaluation by individuals

from government, industry, and educational institutions, to

date no major software design or development effort using Ada

as the implementing language has been undertaken.

Based on limited actual use of Ada for

implementations of stand-alone applications, preliminary

results indicate that different software development approaches

may be required to effect the optimal use of Ada. These
include, for example, the use of Ada as a software design

language as well as the implementing language, changes in the

approach to modularization including the definition of

compilation units, additional emphasis on the use of the data

abstraction capabilities, and the use of the Ada tasking

constructs for designing and implementing concurrent

programming applications. Another separate, but not unrelated,
issue is the effect of individual programming styles on the

production of quality software, particularly with regard to

maintainability of software. Ada is a rich, powerful, and

versatile language which provides the creative programmer with

many opportunities and among these is also the opportunity for
misuse or abuse of the language features. Finally, another

area of concern is how suitable, effective, and efficient the

features of Ada are with regard to specific classes of

applications.

As a means of evaluating Ada in the above

context, the Defense Commication Agency, through the Defense

Communication Engineering Center, has selected two classes of

software to be implemented using Ada. The first is a

communication application, which is the Segment Interface
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Protocol an~d Advanced Data Communication Control Procedure

(SIP/ADCCP) used in the AUTODIN II system. The second is a
trusted software application, the Advanced Command and Control

Architectural Teatbed (ACCAT) GUARD, which functions as a

trusted process for permitting the controlled exchange of
information between separate SECRET and TOP SECRET systems.

This Evaluation Plan identifies the approaches, criteria, and

key elements required to perform an evaluation of Ada in

Phase II of this project with regard to its suitability,

effectiveness, and efficiency in the SIP/ADCCP and ACCAT GUARD

applications. As a result of the evaluation, a set of

programming standards and guidelines will be defined to assure

that the potential for producing quality software is actually

achieved.

The methodology presented in the Evaluation Plan

consists of defining the concept of software quality and
establishing software quality factors related to software

development and maintenance, and to software performance which

provide the basis for the evaluation of Ada. These software

quality factors are in turn related to more detailed criteria

and the definition of software metrics to evaluate specific,

quantitative aspects of the developed application software. In

addition, specific, application-oriented language features

which will be used to evaluate Ada as a suitable programming

language are also defined.

The software development will be organized as a

mini software development project with nominal standards,

internal reviews, milestones, and semi-formal testing of the

developed software. The objective is to emulate, to the

maximum extent practicable, the phases and operations of a

major software development effort to assure that results

obtained will not be out of context when applied to such

efforts. By and large, the two applications will be treated as

separate and distinct development efforts in order to obtain as

much diverse experience and knowledge as possible regarding the

* suitability of Ada. The execption to this will be a small

amount of prog, amming by each programmer in the other
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;.pplication area to help in assessing maintainability issues
and developing broader perspectives regarding the best use of

Ada.

The evaluation will comprise the acquisition and

analysis of data from three sources. These are error

statistics (compile-time and run-time), software structure

analysis (modularity, internal structure, assessment of Ada

features), and programmer interviews (overall qualitative

evaluation, identification of problem areas, design

rationale). The results of the data analysis will be used to

identify specific or generic problems which were encountered

and to formulate solutions in the form of standards and

guidelines which will diminish or eliminate those problems.

The software development tools which will be used

consist of the Ada/ED translator-interpreter which has been

developed by the Courant Institute of Mathematical Sciences of

New York University under the auspices of the U.S. Army

* Communication Research and Development Command (CORADCO4) and

standard Digital Equipment Corporation VAX 11/780 system

* software. Plans include the hosting of Ada/ED on the

VAX 11/780 at the University of California at San Diego

Computer Center for the development and evaluation effort. The

* developed software and Ada/ED will subsequently be delivered to

DCEC for operation on its VAX 11/780.

The planned development and evaluation effort

spa..s a period of approximately thirteen months and will

utilize the skills of two senior system analysts and a project

manager who will also have major responsibilities in the

* evaluation effort.
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SECTION 1

INTRODUCTION

1.1 PURPOSE

The purpose of this Evaluation Plan is to

identify all the key elements which will be required to

evaluate the suitability of Ada as a language for developing

communications and trusted software. These key elements

include the levels of testing and evaluation to be performed,
* the specific requirements and approach for each level, the

responsibilities of all personnel associated with the
requirements, identification of test site, hardware and

software, the evaluation schedule and relevant quality

assurance factors.

The goals associated with the implementation of

this Evaluation Plan are twofold: the first is to assess the

ability to develop quality communication and trusted software

using Ada as the programming language; the second is to provide

a set of guidelines and standards, which, if implemented, will
help to assure the development of quality software using Ada.

1.2 SCOPE

The scope of the Evaluation Plan will encompass

two areas of quality in communications and trusted software

which are development and performance. The development area

will be concerned with assessing software quality factors

related to the development, maintenance, and modification of

software. These factors include, for example, testability,

flexibility, and maintainability. The performance area will be

concerned with assessing software quality factors related to

the run-time performance of the software. These factors

include, for example, reliability, correctness, and efficiency.

Two separate applications will be implemented in

order to evaluate Ada with regard to the development and

performance quality factors. The communications applications

involves the implementation of the AUTODIN II Segment Interface
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Protocol (SIP) and the AUTODIN II Advanced Data Communications

Control Procedures (ADCCP); the other application, related to

computer security, is the Advanced Command and Control

Architectural Test Bed (ACCAT) GUARD function which is an

adjunct to the Kernelized Secure Operating System (KSOS).

in order to have the Ada evaluation produce
results which are relevant to real-world software development,

the Phase II evaluation will be structured as a mini-software
development project. The project phases will consist of

macroscopic and microscopic design phases (using the present

top-level software designs), code/debug/modify, test plan,

procedure and test data development, software testing, and

software operation via simulation of inputs. As the project

progresses through the various phases, data which are related

to the software quality factors will be collected and analyzed

to evaluate Ada and to formulate the guidelines and standards.

1.3 SCHEDULE SUMMARY

The detailed schedule for the proposed test and

evaluation effort is presented in Section 8, Schedule. The

-: schedule, as proposed, spans a period of thirteen months. A
brief description of each of the task categories, as shown in

Figure 1.3-1, is given below along with the corresponding

approximate time periods. An Ada Orientation task of one month

will be devoted to establishing initial guidelines for the use

of Ada, acquiring the Ada translator-interpreter and providing

indoctrination on the concepts embodied in the Ada language

constructs. The Software Design task, encompassing

approximately five months, will provide the macroscopic and
microscopic designs and the development of test plans,

procedures and data. The Code/Debug/Modify task, encompassing

approximately four months, will be concurrent, in part, with

the Integration/Test task. These tasks will result in the

implementation of the ACCAT GUARD, SIP/ADCCP, test support

software and the testing of the software. The Evaluation

Procedures Development task, encompassing approximately five
months, will produce detailed procedures for acquiring data
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during the Data Acquisition Task. The Data Acquisition Task,

encomrpassing approximately five months will run concurrently,

in part, with the Data Analysis task. These tasks will result

in the collection and analysis of error statistics, software

statistics and results of programmer interviews. The

Development/Performance Evaluation Report task, encompassing

approximately five months, will produce the draft and final

versions of the Development/Performance Evaluation Report and

provide a sumary oral presentation based on the draft report.

1.4 TEST AND EVALUATION LEVEL SUMARY

There will be a total of four test and evaluation

levels. The two test levels will comprise module and system

integration testing. The two evaluation levels will comprise

software-development evaluation and software-performance

evaluation.

1.4.1 Test Level Sumary

The testing of the two test levels will be

designed to assure that the software of each application meets

its respective specifications established in the requirements

and design documentation irrespective of the language,
standards and guidelines, programing style, and similar

characteristics associated with the development process. This
testing, as the names of the test levels imply, will be

performed as the software progresses through its development
phases. Therefore, the development of test plans, procedures,

specifications, test data and the conduct of the testing will

be defined and implemented as part of the mini software

development effort and reference to them in the Evaluation Plan
will be only cursory.

1.4.2 Evaluation Level Summary

* The two evaluation levels, software development

and software performance, will be designed to measure software

* development and software performance with regard to the fact

that Ada is the implementing language. Thus, this Evaluation
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Plan will focus on how the software development and performance

will be measured, what the measurement criteria are and how

they will be used to assess the suitability of Ada for
developing communication and trusted software.

The objective of the software-development
evaluation will be to determine what problems, if any, result
from the use of Ada as the implementation language and to then

formulate suitable guidelines or standards which will eliminate

or reduce the problems. The evaluation methods will use

quantitative data, such as the number and type of errors
encountered during the compilation and testing process and the

size of the programs, and qualitative data, such as programming
* styles, software complexity, and software organization.

The objective of the software-performance
evaluation will be to determine how well the Ada constructs, in
their machine implementation, perform during the execution of
the software. At present, it appears that a software
performance evaluation will be limited for two reasons. First,

there will be no production quality compiler available during
the planned Phase II period. Second, the Ada

translator-interpreter being produced by New York University is

believed to be too far removed from the planned production

quality compilers to permit any meaningful extrapolation of

performance results. However, as indicated below, certain
software performance factors can still be evaluated. In fact,
with the Ada translator-interpreter, the only software
performance factor which cannot be evaluated is performance
efficiency which deals with such factors as execution and

memory efficiencies and optimizations.
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SECTION 2
APPLICABLE DOCUMENTS

2.1 MILITARY STANDARDS AND SPECIFICATIONS

a. /M16778/

Department of Navy, Military Standard, Weapon

System Software Development; MIL-STD-1679

(Navy), 1 December 1978.

b. /D21478/

Department of Navy, Data Item Description,

Computer Program Test Plan; DI-T-2142,
29 November 1978.

c. /1484773/

Military Standard - Format Requirements for

Scientific and Technical Reports Prepared By

or For the Department of Defense;

MIL-STD-847A, 31 January 1973 including

Update Notices 1, 2.

2.2 SYSTEM SPECIFICATIONS AND REFERENCES

a. /WOOD78/
J.P.L. Woodward, "ACCAT GUARD System

Specification (Type A)", MTR-3634, The MITRE

Corporation, Bedford, MA, August, 1978.

b. /LOGl79a/
LOGICON, "Formal Specification of GUARD

Trusted Software (Draft)," ARPA-78C032303,

September, 1979.

c. /LOGI79b/
LOGICON, "ACCAT GUARD Program Development

Specification (Type BS)," ARPA-78C0323-01,

February, 1979.
d. /BALD79/

David L. Baldauf, "ACCAT GUARD Overview," the

MITRE Corporation, Bedford, MA,

November, 1979.

1II-2-i



e. /WEST79/

Western Union, "Initial AUTODIN II Segment

Interface Protocol (SIP) Specification,*

(System Engineering Technical Note TN

78-07-31), DCA 200-C-637-P003, 5 March 1979.

f. /WEST78/

Western Union, OAUTODIN II Design Executive

Summary," Western Union Telegraph Company,

McLean, Virginia 22101, 18 May 1978.

2 .3 OTHER GOVERNMENT REFERENCES

a. /USDO80a/

United States Department of Defense,

OReference Manual for the Ada Programming
Language," United States Government, Director

of Defense Advanced Research Projects

Agencies, July, 1980.

b. /USDO0b/
United States Department of Defense,

"Requirements for Ada Programming Support

Environments," "Stoneman," United States
Government, February, 1980.

2.4 NON-GOVERNMENT REFERENCES
a. /BBNI76/

Bolt, Bernek, and Newman, Inc., "Development

of a Communications Oriented Language, Parts

I and II", Report No. 3261, 20 March 1976.

b. /SRI178/
SRI International, "Verification of

Communications-Oriented Language Programs,"

SRI International Final Report, Project 6413,

August, 1978.

c. /HALS77/
Maurice H. Halstead, Elements of Software

* Science, Elsevier North Holland, Inc.,

New York, 1977.
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d. /COOP79/

John D. Cooper and Matthew J. Fisher Editors;

Software Quality Management

Petrocelli Books, Inc., New York, 1979;

"An Introduction to Software Quality Metrics"

by James A. McCall.

1
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SECTION 3

* TEST AND EVALUATION REQUIREMENTS

3.1 OVERVIEW

The following sections establish the basic

requirements for the Ada evaluation. Section 3.2 identifies

the overall approach to conducting the testing of the software

and the evaluation of Ada. Section 3.3 establishes the concept

of software quality and identifies specific elements of

software quality that will be evaluated in the context of using

Ada as the implementation language. Section 3.4 identifies the

software development methodology within which the application

* software will be developed. Section 3.5 presents the approach

* to collecting and analyzing the data which will be used in

* evaluating Ada. Section 3.6 identifies how results and

conclusions of the Phase II effort will be organized and

presented.

3.2 SOFTWARE TEST AND EVALUATION APPROACH

This section identifies the overall approach

which will be taken with respect to the testing of the

developed applications and the evaluation of Ada as a suitable

programming language for the selected applications.

3.2.1 Software Evaluation Approach

The overall approach to evaluating Ada as a

programming language suitable for developing communication and

* trusted software will be to develop those types of software and

measure the extent to which Ada is adequate by evaluating the

developed software. In order to accomplish this, two critical

elements must be defined. These elements are the concept and

* supporting details of software quality and the software

development methodology which will be uspd to produce the

software.



The software development methodology will provide

a framework within which the application software will be

developed. The primary objective of this is to emulate, as

closely as possible, the salient aspects of a major software

development effort. This will assure that information obtained

during the evaluation and subsequent conclusions will be

germane to similar software applications developed under actual

project conditions.

The software quality concepts and supporting
details are the second critical element since they will be the

basis for determining what evaluation criteria are to be used.

The quality concepts fall into two broad areas which are

software quality factors and application-oriented

requirements. The software quality factors will be used to

define the constituents of software quality at the conceptual

level. These in turn will be related to lower-level entities

which can be either measured quantitatively or evaluated

qualitatively to determine how well Ada supports the factors

and to assess the influence of individual programming styles.

The application-oriented requirements will provide a basis for

evaluating Ada with respect to the suitability of Ada

constructs for addressing data design and control structures

which are frequently found in the types of software being

developed.

Finally, by acquiring the necessary data as the

software development progresses and analyzing the data during

and at the conclusion of the development, ad assessment of Ada

will be made. The results of this assess~ent will then be

translated into a set of programming standards and guidelines
to assist in the development of quality software. Moreover,

even if Ada is found highly suitable, there will still be the

need for developing and maintaining pr W ramming guidelines and

standards to deal 'ith issues such as programming styles which

transcend the features of any language.
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*3.2.2 Software Testing Approach

The approach to testing the SIP/ADCCP and ACCAT

GUARD application will consist of exercising the software via

* the use of specially designed test-support software which is

-. identified in Section 7.

The objectives of the software testing in each
application area will be twofold. First, the standard test

* objective of discovering problems and correcting them will be

* employed to produce applications which satisfy their

requirements. An additional test objective, however, will also

be defined. Since the ultimate goal of this evaluation is to

* formulate a set of standards or guidelines for communications

and truasted software programs written in Ada, the results of

testing will serve as input data for conducting the Ada
software development and software performance evaluations.

Specifically, the errors detected will be analyzed and

* organized into classes or groups in order to determine if there
* are broad classes of problem areas in understanding or using

the Ada constructs which warrant the definition of specific

* guidelines or standards.

3.2.3 Application Overviews

In order to provide a more complete understanding

* of the SIP/ADCCP and ACCAT GUARD applications and to provide

* the proper context for the test and evaluation, an overview of

- each application is given below. For more detailed

information, the references of Section 2 may be used.

3.2.3.1 SIP/ADCCP Overview

The SIP/ADCCP applications represent the two

* lowest-level protocol layers of the AUTODIN II packet-switching

network. The functional location of the protocols is shown in

Figure 3.2-1.

The SIP is designed to accept data, commands, and

* responses from the next higher AUTODIN II protocol layer, the

Transmission Control Protocol (TCP), process them accordingly

and effect the transfer of packets via the Packet Switch Nodes
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*: of the AUTODIN II network for transmit operations. For receive

operations, the SIP is designed to accept data, commands, and
responses from the Packet Switch Nodes, process them

"* accordingly, and effect the transfer of packets to the TCP.

To control the transmission of packets (data,
commands, and responses) on an inter-PSN basis using the
Mode VI access lines, the SIP will use the Advanced Data

Communication Control Procedure (ADCCP). Thus, the ADCCP
functions as the line control protocol, the protocol layer
which is lowest and next to the hardware, of the AUTODIN II

network. In particular, the ADCCP will be used to control
Mode VI line access for synchronous character and synchronous

binary data transmissions.

3.2.3.2 ACCAT Guard Overview

The ACCAT GUARD application has been designed to
provide secure, monitored, controlled transfer of data between
a high-level (TOP SECRET) and a low-level (SECRET) system. An
overview of the system configuration is given in Figure 3.2-2.

Separation of high-level and low-level entities (files, queues)
is maintained by use of the Kernelized Secure Operating System
(KSOS). To accomplish the intersystem transfer of data, the

high-level and low-level software in the ACCAT GUARD system is
interfaced by two trusted processes. The Upgrade Trusted

. Process (UGTP) is reponsible for transferring low-level
information to the high-level system; the Downgrade Trusted
Process (DGTP) is responsible for transferring high-level

information to the low-level system under the control of
Sanitization Personnel (SP) and a Security Watch Officer
(SWO). The SWO is responsible for downgrading information and
providing controlled and monitored transfer of data to the

low-level system. The SP are responsible for sanitizing
information which is deemed unsuitable for downgrading by the
SWO in its present form. Six types of intersystem transfers

and two types of operations can be performed. The transfers
consist of high-low and low-high mail and high-low queries and
responses and low-high queries and responses. The queries are
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in either canonical form (preformatted data base queries) or

English-language form which is then translated into canonical

form by the SP. The two types of operations are sanitization

which entails selecting, reading, and editing text files to

remove TOP SECRET information and downgrading which entails

* enforced reviewing of data to be transferred to the low system

and either accepting or rejecting the transfer.

Although only two of the processes are trusted

processes and thus subject to formal specification and

verification, several other processes on both the high and low

side are required to support the trusted processes. The

processes and their interactions are shown in Figure 3.2-3.

3.2.4 Test and Evaluation Constraints
As indicated above, the objective of the

*evaluation is to assess Ada in both the software-development

* and software-performance areas. within the time frame of the

currently planned Phase II, however, there are certain

limitations or constraints which exist and which impact the

extent of the evaluations. The constraints and their impacts

f are summarized below.

First, the Ada language processor which is

*proposed for this effort is not mechanized as a

* production-quality compiler which would include such features

as memory-space and execution-time optimization of the

generated target code. Instead, the processor, Ada/ED, is

mechanized as a translator-interpreter which is implemented in

the high-level language, SETL. Thus, from a performance

standpoint it will not be possible to assess the effect of

* memory space and execution time trade-of fs or to extrapolate

performance with regard to these criteria to other computer

architectures or operating system types.

A second type of constraints will also need to be

considered with respect to the ACCAT GUARD application. The

* existing ACCAT GUARD application is designed to operate under

Western Electric UNIX (a trademark of Bell Laboratories),

Version 6.0 and specifically takes advantage of those features

111-3-7
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such as ports, interprocess communication features and a text

editor all of which operate under UNIX. To the maximum extent
possible, the trusted software components will be isolated from

these peripheral issues; however, there may be some additional
2 limitations which need to be imposed to make the deielopment

tractable.

Finally, in terms of more completely addressing

the performance evaluation, several true complilers are being

developed and are projected for completion in the second half

of calender year 1981. Three of these are Intel Corporation's

implementation for the IAPX 432 computer, Telesoftware's

implementation under UCSD Version 4 Pascal (host and target),

Control Data Corporation's implementation on its CYBER class

computer, and Intermetrics Inc.'s compiler for the DEC 20 with

TOPS-20. If one or more of these compilers were available,

then it would be possible to complete the evaluation as

currently planned and rehost the developed software to one or

more of the available compilers to specifically evaluate

execution and memory efficiency.

3.3 SOFTWARE QUALITY

This section identifies the software parameters

and application-oriented language requirements which affect the

development and performance of quality software.

3.3.1 Software Quality Factors

In order to define software quality, a

hierarchical set of software quality parameters will be

defined. At the highest level is the concept of software
quality which is "the composite of all attributes which

describe the degree of excellence of computer software",

/C00P79/. Next are the conceptual software quality factors

which represent attributes that are desirable for software to

nave. At the lowest level are the measurable parameters which

can be related to the software quality factors.
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The software quality factors defined in this

section consist of those which are related to and impact on

software development and software performance as presented in

/C00P79/. It should be noted that "the degree of excellence"

required of software is not absolute since different

organizations and projects may have different objectives. For

example, "throw-away" code need be given very little

consideration with respect to life-cycle maintainability. In

addition, some software quality factors such as

transportability and efficiency are potentially in conflict and

thus necessitate a trade-off or balance to be struck.

3.3.1.1 Software Quality Factors (Development)

The software quality factors defined in this

section are those which are related to or impact on the

software development, maintenance, and modification process as

* opposed to software performance. Table 3.3-1 lists the

software quality factors and their definitions. Their

associated criteria are defined in Table 3.3-3.

3.3.1.2 Software Quality Factors (Performance)

The software quality factors defined in this

section consist of those which are related to or impact on the

performance of software implemented in Ada. Table 3.3-2 lists

the software quality factors and their definitions. Their

associated criteria are defined in Table 3.3-3.

3.3.2 Criteria for Software Quality Factors

The criteria identified in Table 3.3-3 represent

a set of independent attributes which software may possess both

with regard to software development and software performance.

In many instances# an individual criterion will be correlated

with more than one software quality factor. Because of this,

the total set of criteria is presented here even though some

criteria also support, either partially or exclusively, the

software performance quality factors. The interrelationships

between the software quality factors and the software quality
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Table 3.3-1. Software Development Quality Factors

EFFICIENCY I

A measure of the extent to which algorithms are or can be

represented in compact format using the available language

constructs.

FLEXIBILITY

A measure of the extent to which an operational program can be

modified to include new functional capabilities.

INTEROPERABILITY

A measure of the extent to which two operational programs of

different systems can be coupled or interfaced without

modification to enhance performance or functional capabilities.

MAINTAINABILITY

A measure of the extent to which an error in an operational

* program can be identified, isolated, and corrected.

REUSABI LI TY

A measure of the extent to which an operational program can be

used as a comrponent in another application without modification.

TESTABILITY

A measure of the extent to which a program can be readily

tested to assure that performance criteria are met during the

development, maintenance, and modification phases.

TRANSPORTABILITY

A measure of the extent to which an operational program can be

* readily transferred to a different hardware or software

environment and perform correctly without modification.
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Table 3.3-2. Software Performance Quality Factors

CORRECTNESS

A measure of the extent to which an operational program

complies with its specifications, performs its functions and

produces acceptable results.

EFFICIENCY II

A measure of the extent to which an operational program makes

optimal use of system resources including CPU time, memory, and

peripherals.

INTEGRITY

A measure of the extent to which an operational program

performs only its intended functions and does not overtly or

covertly perform any other functions.

RELIABILITY

A measure of the extent, with regard to frequency and

criticality of failures, to which a program can be expected to

perform its required functions in its intended environment.

ROBUSTNESS

A measure of the extent to which an operational program is able

to acceptably manage or respond to conditions outside its

intended operational environment.

USABILITY

A measure of the extent to which program users can prepare

input data for, interpret output data from, and control

operation of the program and learn to use the program in its

intended environment.
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Table 3.3-3. Criteria for Software Quality Factors

(Page 1 of 3)

* ACCURACY

* The attribute of software that provides for the usability of

the computational results with regard to correctness,

precision, and timeliness.

COMMUJNICATIONS COMMONALITY

The attribute of software which provides for the use of

-. standard protocols and mechanisms for the interfacing of two

software components.

COMMUNICATIVENESS

The attribute of the software that provides outputs which can

* be readily assimilated by a user and requires inputs which can

be readily supplied by the user.

* COMPLETENESS

The attribute of software that provides for the full

implementation of all functions and capabilities specified.

* CONCISENESS

The attribute of software that provides for implementation of a

function with the use of a minimum quantity of source code.

* CONSISTENCY

* The attribute of software that provides uniform design and

implementation techniques, guidelines, standards, and notation.

DATA COMMONALITY

* The attribute of software which provides for the use of
standardized data formats and representations.
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Table 3.3-3. Criteria for Software Quality Factors

d ERROR MANAGEMENT

*The attribute of software to correctly detect, isolate, manage,
and inform on all specified error conditions.

GENERALITY

The attribute of software that permits it to handle a broader
scope of problems or conditions than those specified.

HARDWARE ARCHITECTURE COMPATIBILITY

The degree to which hardware elements and their configuration
are effectively used by application programs.

HARDWARE INDEPENDENCE

The attribute of software that indicates the degree of coupling
between the language constructs and the hardware on which the
software will operate.

INSTRUMENTATION

The attribute of software which provides for the control or
display of intermediate conditions, events, or data on a
conditional or non-conditional basis.

LANGUAGE CON STRUCTS

The syntax and associated semantics of the programming language
used in the software development.

LANGUAGE IMPLEMENTATION

The mechanization of the language constructs in a machine
representation which can be executed.

MODULARITY

The attribute of software that provides for the organization of
the software into independent cooperating elements.
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Table 3.3-3. Criteria for Software Quality Factors

(Page 3 of 3)

OPERABILITY

* The attribute of software that determines the type and quantity

of user procedures required to operate or interface with the

software.

OPERATING SYSTEM ARCHITECTURE COMPATIBILITY

The degree to which operating system elements, their

* configuration, and their accessibility are effectively used by

* applications programs.

OPERATING SYSTEM INDEPENDENCE

The attribute of software which provides for the minimum direct

interaction of developed software with specific operating

system features.

* SELF-DESCRIPTIVENESS

The attribute of software that provides for clarity and

apparentness in describing the purpose or function of the

software as well as the algorithm being used and its

organization.

SIMPLI CITY
The attribute of software which provides for the implementation

in terms most easily understood.

TRACEABILITY

The attribute of software that provides for logical and

structured connectivity from the highest level of specification

to the source code implementation.
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criteria are illustrated in Figure 3.3-1. These criteria are

taken from /C00P79/ and minor additions have been made.

3.3.3 Software Quality Metrics

* Software science is a term used by the late

Maurice H. Halstead in /HALS77/ to describe a scienice that

"deals only with those properties of algorithms that can be

measured, either directly or indirectly, statically or

dynamically, and with relationships among those properties that

remain invariant under translation from one language to

another.m Although software science has also been applied to

various textual materials, the application here will be to

software developed using Ada.

3.3.3.1 Objectives

In any programming language, there are many

different ways of representing an algorithm. Among those

alternative representations some will be recognized as "poor,"

some as "good," some as "average,* and some as "equivalent" by

programmers fluent in the given language. The problem is that

without quantitative measures, it is difficult to make

meaningful comparisons based on common criteria.

The purpose of using selected software metrics as

part of the Ada evaluation is to provide a common foundation

for measuring certain properties of a given algoriL-hm. It is

anticipated that two circumstances will exist under which the

software metrics will be used. First, in cases where notable

difficulty was encountered in implementing particular

algorithms (tasks, packages, subprograms in Ada) or portions

thereof, alternative representations will be explored to

determine if clearer, more compact or less difficult

representations can be found. Second, as a result of software

science efforts, several stylistic flaws, known as impurity

classes, have been identified. By being able to identify them

and relate them to the use or lack of use of Ada features, it
will be possible to assess how Ada impacts on these flaws and

what, if any, standards or guih%..lines are needed.
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3.3.3.2 Impurity Classes

Impurity classes are important to recognize for

two reasons. First, to the extent that impurities remain in an

algorithm, the software metrics calculated will be less

reliable. Second, the existence of impurity errors in most

cases appears to be an indication of less than "polished"I code

and thus an indication of potential lack of software quality in

both the software development (e.g., maintainability,

efficiency, testab~ility) and the software performance

(e.g., efficiency, robustness) areas. The definitions of six

impurity classes which will be considered are given in

Table 3.3-4.

3.3.3.3 Selected Software Metrics

In order to provide a quantitative evaluation of

alternative Ada representations, several selected software

metrics will be defined. The following definitions apply:

- number of unique or distinct operators
appearing in a specific implemtntation.

72- number of unique or distinct operands
appearing in a specific implementation.

N, - total usage of all of the operands
appearing in that implementation.

N2  - total usage of all of the operands
appearing in that implementation.

From these definitions, several metrics are defined and

described below:

The implementation length, N, and estimated

implementation length, N, are given by

N =N 1 + N(3.3-1)

n T1lg 2lg12 (3.3-2)
in which log denotes the logarithm, base 2, unless otherwise

noted.
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Table 3.3-4 Impurity Classes

ZY2eDescription Example

I Complementary Operations Y = 2*T + X -T

II Ambiguous Operands X = PI*R**2

X = l4I*Y + CONST

III Synonomous Operand Tl = P + Q

T2 - P + Q
R *Tl * T2

IV Comon Subexpressions R =(P + Q) *(P + Q)

V Unwarrented Assignment T =P + Q
R=T* T

VI Unfactored Expressions R =P*P + 2*P*Q + Q*Q
VS.

R =(P + Q)**2
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The program or implementation size, called the

volume, is given by

V = Niogn (3.3-3)

which gives the interpretation of volume in terms of bits with

n= 91+ 712 An additional volume, known as the potential
or minimal volume is given by

V (2 + 7 ) log (2 + 7) (3.3-4)

and denotes the most compact from (e.g., predefined subroutine)

in which an algorithm could be represented with n1

representing the minimum number of unique input/output

parameters.

The program level and estimated program level of

an implementation are given as

and

2T /~)T 22  (3.3-6)

=(2 / 1)~T 2 N)(3.3-7)
provide a means of comparing alternative representations in the

same implementation language where n* - 2 by definition.
The "effort"' required to implement a program, in

terms of the total number of elementary discriminations, is

given by

E - V/L a V2/v* (3.3-8)

and thus provides a means of measuring the effort required to

implement the same algorithm in alternative ways.

Of the above equations, 3.3-4, 5, 6, and 8 will

be used along with the identification and elimination of

impurities to evaluate alternative Ada representations and

determine the merits of the alternative representations.

3.3.*4 Application-Oriented Requirements

The software quality parameters which were

previously identified can be applied, in general, to any

software irrespective of the application. But in addition to

these parameters, there are also application-oriented

requirements which a language must satisfy in order to
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facilitate the development of software for the target

applications. This section identifies the application-oriented

requirements for the communication and trusted software

requirements.

" 3.3.4.1 Communication Application Requirements

A previous study performed for the Defense

Communication Agency /BBNI76/ resulted in the definition of the

* syntax and semantics of the Communications Oriented Luiguage

(COL). As part of that study, three alternative sets of

requirements, which are desirable for a COL to have, were

examined. The first set, obtained from the "U.S. Air Force HOL

Standardization Study," is given in Table 3.3-5; the second

set, obtained from "The Initial Report on the Suitability of
JOVIAL for Communications Systems Implementation" is given in

-v Table 3.3-6; the third set, obtained from "The Rome Air

* Development Center Report on Common-Communications Processors"

is given in Table 3.3-7. As can readily be seen, there is

commonality among the items of each set; however, there is also

some discrepancy. Furthermore, each list is also a mixture of

*i high-level language-inherent features as well as requirements
* for access to data, instructions, and controls at the machine

* level. From these lists a composite list of specific

requirements shown in Table 3.3-8 was formed. This list will
*: serve as a basis for assessing the efficiency and effectiveness

*of Ada as a language for developing communications software.

*The report also indicated some generalized requirements whichI
* are also shown in Table 3.3-8

- 3.3.4.2 Trusted Software Application Requirements

Unfortunately, it appears that no studies have

been performed which identify explicitly a set of requirements

* that a language should possess for implementing trusted
software. Upon examination of the application area, however,

it is apparent that many desirable features are similar or
identical to communication applications. Thus, to a large
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Table 3.3-5. Communication Application Requirements (Set l)*

a. Operating system functions

b. Access to timers

c. Bit manipulation

d. List processing

e. Character manipulation

*"U.S. Air Force HOL Standardization Study"

Table 3.3-6. Communication Application Requirements (Set 2)*

a. Capability to patch programs at the binary level

in a rapid manner

*b. Accessibility to the operating systems via

privileged instructions

c. Run-tim loading of a program from another program

d. Capability to shift to different random access

devices

e. Capability to monitor the operation of individual

programs in the system

f. Resolution of all relative addresses for overlay

actions

g. Modification of various run-tim parameters for

assigning 1/0 devices

h. Handling of many and unique 1/0 devices

i. Processing of time critical events

J. Special requirements for automated recovery and

accounting of messages

*"The Initial Report on the Suitability of JOVIAL for
Communications System Implementation"
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Table 3.3-7. Communication Application Requirements (Set 3)*

a. Modularity

b. Bit and byte access and manipulation
c. Interrupt-register access and manipulation

d. 1/0 device table generation

e. Real-time clock and interval timer access

f. A program-controlled interrupt capability

g. Communications channel control word access and

manipulation

h. Insertion of machine language subroutines in the

higher level language stream

i. Insertion of machine language instructions

j. Macro-generation

k. Diagnostic and debug statements

*uThe Rome Air Development Center Report on
*Commnon-CommunicationsPrcso"
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Table 3.3-8. Communication Application Requirements

General Requirements

a. Very high performance

b. Capability to interface with and manipulate
specialized hardware

c. High portability of source code
d. Sophisticated data structures

e. Sophisticated control structures
f. Very high reliability

Specific Requirements
a. Bit and byte string access and manipulation
b. Insertion of assembly language code
c. Access to operating system functions and

pr imatives
d. Access to and control of interrupts
e. Access to real-time clock and associated interval

timer(s) or equivalent capability
f. Macro definition and generation
g. Access to debugging and diagnostic statements
h. Generation of I/O tables
i. Modularity

* j. Parallel processing constructs

k. Strong data typing
1. Structured programming constructs
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extent Table 3.3-9 is identical to Table 3.3-8 for

communication applications.

In addition, however, two other features are

* believed to be strongly related to the characteristics inherent

* in trusted software. The first of these is data and control

* encapsulation. with this ability it should be possible to

construct tamperproof data and control structures which can be

used effectively but without knowledge of the details of the

-* implementation and therefore, without the ability for

unauthorized alteration or manipulation of the structures. The

second is formal verification of the source code. Although

this evaluation of Ada will not include formal verification of

the trusted software source code, indications are that there is

a strong correlation between the style in which programs are

written and the ability to formally verify those programs

/SR1178/. Also, there is a correlation between the style in

which programs are written and the features provided by a

language which encourages the writing of programs in a clear,

- intelligible, and verifiable style or at least proscribes

certain undesirable styles.

*3.3.5 Ada Language Features

In order to complete the evaluation of Ada with

regard to producing qualify software, two additional areas of

evaluation must be defined. The first of these is the use of

the Ada features in a given application area; the second is the

* relationship between the Ada features and the software quality

criteria previously defined.

Beginning with the second area, the Ada

programming language includes many new language features which

are available for the first time in a language designed for use

on large-scale, embedded-computer-system, software projects.

* it is necessary to relate them to the software quality factors

- for two reasons. First, this will permit an assessment of Ada

* regarding which features affect which quality factors. Second,

it will also provide an explicit identification of Ada features
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Table 3.3-9. Trusted Soft~ware Application Requirements

General Requirements
a. Very high performance
b. Capability to interface with and manipulate

specialized hardware
c. High portability of source code
d. Sophisticated data structures

e. sophisticated control structures

f. Very high reliability

Specific Requirements
a. Bit and byte string access and manipulation
b. Insertion of assembly language code
c. Access to operating system functions and

primatives
d. Access to and control of interrupts
e. Access to real-time clock and associated interval

timer(s) or equivalent capability
f. Macro definition and generation
g. Generation of 1/0 tables

h. Modularity
i. Parallel processing constructs
J. Strong data typing
k. Structured programming constructs
1. Data and control encapsulation (hiding)
m. Formal verification of source code
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for reference in assessing the application software. The Ada

language features are presented in Table 3.3-10 below and are

divided into six categories which are data structures, data

* manipulation, modularity, concurrent programming, error

management, and machine and implementation dependencies.

The next step will then be to evaluate the

application software itself by determining the extent to which

the Ada features have been used and the extent to which

alternative features could have been used to achieve a better
representation of the algorithm or data. In this context it

will be important to identify which software factors are

affected since, for example, maintainability may be improved at

the expense of either development costs or execution efficiency.

3.4 SOFTWARE DEVELOPMENT STRUCTURE

3.4.1 General Approach

The general approach to the evaluation of Ada

with regard to software development will consist of organizing

a mini software development project for the SIP/ADCCP and ACCAT

GUARD applications, collecting data related to the software

quality factors on each application as it progresses through

* the various software development phases and providing a nominal

* set of software development standards and guidelines which are

consistent with MIL-STD-1679 (NAVY) /M416778/.

The intent of this approach is to have the

software developed under circumstances which, as nearly as

possible and practicable, duplicate those of a major software

* development project. The reasons for this are twofold: first,

to provide a comprehensive Ada evaluation, it is desirable to

utilize as many Ada features as possible; second, in order for

the results to have validity when extrapolated to large

software development projects, this effort should be as

* representative in kind as possible.
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Table 3.3-10. Ada Language Features (Page 1 of 3)

Data Declaration

Data Abstraction

Type declarations

Subtype declarations

Overloading

Aliasing

Attributes

Renaming of objects

Data Checking

Strong typing

Mode declaration for formal parameters

Data Manipulation

Aggregrates

Arrays

Records

Variant Records

Unchecked programming

Object deallocation

Type conversions

Overloading

Subprograms

Operators

Structured programming constructs

Attr ibutes

Dot notation for object referencing

Dot notation for component referencing in records

Index notation for component referencing in arrays

Object creation via allocators
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Table 3.3-10. Ada Language Features (Page 2 of 3)

Modularity

Modules

Program units

Compilation/Library units

Compilation Subunits

Generic unit definition

Generic unit instantiation

Separation of Specifications and bodies
Encapsulation of data/controls

Importing of modules

Blocks

* Concurrent Programming

Task definition

Task interaction control

Rendezvous

Selective wait

Conditional entry call

Timed entry call

Task attribute definitions

Task activation/termination

Task priorities

Visibility Control
Scope declarations

Renaming declarations

Direct visibility

Qualified visibility

Private types

Limited private types
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Table 3.3-10. Ada Language Features (Page 3 of 3)

Error Management

Internally defined error conditions

Exception processing

Declaration

Raising

Handling

Propagation

Machine and Implementation Dependencies

Pr agma s

STANDARD, package

SYSTEM package

Data representation control

Length specifications

Enumeration type representations

Record type representations

Multiple representations

Address/interrupt control

Machine code insertion

Foreign code interface

Input/output
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3.4.2 Design Phase

The design phase of Phase II will use the
stepwise-refinement design approach consisting of two design

steps using Ada as the design language. The first step or

* portion will consist of establishing the macroscopic software
* designs; the second step will consist of refining those designs

sufficiently to permit completion of the code.

The macroscopic design portion will focus on

using existing Program Performance Specifications or Computer

* Program Development-Specifications (Type B-5) as the basis for

designing the SIP/ADCCP and ACCAT GUARD applications. This

information will be supplemented with additional or changed
requirements in the case of ACCAT GUARD to account for the

facts that the original implementation was on a Western
Electric UNIX-based system and that the design was modified.

The objective of the macroscopic design phase will be to

* establish all program modules (packages, tasks, subprograms,

compilation units and subunits, and their dependencies), the

definition of all formal parameters used as module inputs or

* outputs, and the definition of abstract data types for inputs,

outputs, and global and coummon data. In some instances, major

decisions within a module may also be indicated as a means of

delineating overall control flow. Finally, lists of called and

calling modules will be formed for each module. In

* accomplishing the macroscopic design, a proper subset of Ada

constructs will be used as a design or specification language

and will result in modules which can be compiled and

error-checked. The objectives here are to gain an early,

increased understanding of Ada without the need to consider

* irrelevant details and to, as early as possible, orient the

designs of the applications to the Ada language features.

The microscopic design portion will modify the

macroscopic designs as required and refine them to the next

level of detail. This level of detail will include the

definition of the components of the abstract data types, the

refinement of all global or common data objects (as opposed to

strictly local) including preset values, and the specification
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of all major control decisions within each module. As during
the macroscopic designs, the refined modules will be compiled

to achieve error-checking of the refined design.

During the microscopic design phase composite

test plans/procedures will be produced which will define the

tests to be performed in debugging and integrating the software.

The detailed design phase will be conducted in

accordance with the software development standards identified

below. The design phase will include an informal Preliminary

Design Review (PDR) and a Critical Design Review (CDR) with the

objective of highlighting any difficulties encountered during

the design.

3.4.3 Code/Debug/Modify Phase

The code and debug phase will consist of

translating the microscopic designs into Ada code, compiling

_the code and removing compilation errors, desk-checking the

code, and performing the tests defined in the test

plans/procedures.

During the modify portion of this phase, the

programming of one or more application modules will be shifted

to the person responsible for the other application. The

objective of this shift is to duplicate the circumstances

surrounding software maintenance in which the maintenance

personnel had no previous involvement with the project. This

will also provide preliminary familiarization with the other

U application and give the basis for subsequent participation in

the software evaluation.

3.4.4 Integration and Test Phase

The integration and test phase will consist of
producing the required, completed program for each

application. This will include conducting program and, if

required, system integration tests according to the test

4 plans/procedures, and integrating all software elements into a

complete program which is ready for performance evaluation.
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3.4.5 Test Software Development

Specific test support software which needs to be

developed for the SIP/ADCCP and ACCAT GUARD applications has

'been identified in Section 7.3. The software will be designed

using the macroscopic/microscopic approach established for the

application software and will be coded during the

code/debug/modify portion of the software development.

3.4.6 Software Development Standards

The software development guidelines of

Sections 5.3, 5.4, 5.5, 5.6, and 5.8 of MIL-STD-1679 (NAVY)
/M16778/ will be used in a nominal manner consistent with the

software development effort and incorporated as part of the
Software Development/Management Plan.

3.5 DATA ACQUISITION AND ANALYSIS

The data acquisition and analysis portion will be

concerned with obtaining data from three sources for use in the

analysis and evaluation of Ada. These souces are error

statistics, the structure of the developed software, and

programmer interviews.

3.5.1 Error Statistics

The error statistics to be compiled comprise two

groups which are compilation-related errors and

- execution-related errors. The objectives in collecting these

error statistics are: 1) to determine if there are any

particular Ada constructs or sequences of constructs which seem

to be systematically difficult to use, 2) to determine which

type(s) of errors, if any, remain hidden following a successful

compilation and must be detected during execution, 3) to relate
errors to module complexity, and 4) to help in the

identification of guidelines and alternatives which will either

diminish or remove the problem-causing areas which are deemed

most severe.
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For compilation-related errors, the errors
encountered for each compilation unit or subunit will be
identified by type and frequency of occurrence. Additionally,

the total number of compilations per compilation unit or

subunit will also be maintained.

For execution-related errors, the errors detected

via unanticipated exceptions and erroneous (inaccurate,

incomplete, inconsistent) computational results will be

similarly grouped by type and frequency of occurrence.

3.5.2 Software Structure

The primary objective of the software structure

analysis is to determine which.Ada features were used and to

assess the degree of success or difficulty encountered in their

use. The secondary objective is to assess in a qualitative

and, if possible, quantitative manner the effectiveness and

suitability of the features used.

To accomplish the first objective, the software

will be examined at two levels. The first level will address

the overall organization of the software into modules

comprising packages, subprograms, tasks and compilation units

and subunits. This organization will be compared with the

totality of Ada features and with the software quality factors

in order to determine how "good" or suitable the structure is.

The second level will address the internal organization of the

data structures and bodies of the various modules for the

purpose of assessing the breadth of the Ada features used as

well as determining the overall composition of the features

used. Of particular concern here will be whether full

advantage was taken of the Ada features or whether a subset of

Ada features was used in the style of some other language. To

accomplish the second objective, the Ada features used within

each module will be analyzed. In those cases where a

particular Ada feature, construct, or set of constructs appears

to be awkward or suboptimal regarding efficient representation

in Ada, or especially difficlult to implement or understand, a

detailed review of the constructs will be made with a view
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toward finding alternate, improved representations. For those

cases in which alternative representations are found, the

software metrics previously defined will be used to evaluate

some of the merits of each alternative.

*3.5.3 Programmer Interviews

The third source of data will be interviews

conducted with the programmers who implemented the SIP/ADCCP

and ACCAT GUARD software. The overall objective of these

* interviews will be to elicit qualitative information regarding

Ada. First, information will be obtained regarding both the

* suitability of the Ada features with respect to the type of

* applications implemented and the limitations and unwise use of

* Ada features. Second, a cross-perspective of two potentially

different design and implementation approaches will be obtained

* by having one programmer implement a small portion of the
* other's design as a means of assessing maintainability issues.

Third, an attempt will be made to understand the rationale

applied in the design and development phase for those

* approaches which worked, as well as those approaches which had

* problems. An additional result of this understanding should be

the ability to formulate new and improved approaches to design

and implementation using Ada.

*3.5.4 Data Acquisition and Analysis Procedures

The sections above have identified the three

sources from which data will be extracted and analyzed. During

the early portions of Phase II, the detailed data acquisition

* and analysis procedures will be formed. For the error

* statistics, the Ada/ED compilation errors will be identified

and divided into various classes so that error types and

* frequencies of each module can be readily identified and

* associated witti that module. A similar classification of

run-time errors will be established. in conjunction with the

error statistics, the software modules will also be ordered by

complexity ranging from arithmetic computations (least complex)

to input/output and operating system functions (most complex).
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In the software structure area, the software

metrics identified previously will be compared against the Ada

language constructs to establish consistent and unambiguous

procedures for counting the program operators and operands in

those cases in which detailed quantitative analysis of the

software structure will be performed. In addition, the Ada

language features such as data abstraction and overloading will

be related to the software quality criteria so as to identify

explicitly relationships and trade-of fs between the features

and the various software quality criteria.

For the programmer interviews, questionnaires

will be formed to obtain qualitative assessments of the various

Ada features. Procedures or methods will then be established

which relate those assessments to the established software

quality factors and criteria.

3.6 SOFTWARE TESTS
As indicated above, two levels of testing will be

performed. These comprise module testing and system

integration testing. The objective of the module testing is to

exercise each module so as to assure that all internal program

errors have been detected and corrected prior to system
integration testing. The objective of the system integration

testing is to combine all software for each application,

including the test support software, and exercise the software

through the use of the functionally oriented system integration

tests. The functional tests for each of the software

applications are defined below.

3.6.1 SIP/ADCCP Software Tests

The SIP/ADCCP system integration tests will

comprise three groups of tests which are the SIP, ADCCP, and

line control module (LCM) tests. The SIP tests will include

the simulation of missing segments, duplicate segments, and

segment checksum errors. The ADCCP tests will include the

simulation of out-of-sequence packets, controls, commands and

responses, time-outs, and invalid-frame errors. The line
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control module tests will include the insertion of time-out

errors, CRC errors, and data errors as the data is transterred

on an inter-ADCCP mode.

3.6.2 ACCAT GUARD Software Tests

The ACCAT GUARD System integration tests will be

designed to exercise the ACCAT GUARD functional capabilities.

The specific tests to be conducted include high-low and

* low-high mail transfers, the use of the free-style English

language queries in the high-low query and response and

" low-high query and response transfers. (Canonical queries

(preformatted data base queries) will not be used because there

is no actual high-host or low-host data base and because they

are, in effect, a subset of the free-style English language

queries.) Two additional functional tests will include the

review of information for downgrading (accept or reject) by the

Security Watch Officer (SWO) and the sanitization of high-low

transfers by the Sanitization Personnel (SP) for downgrading

requests rejected by the SWO.

In addition to the execution testing of the ACCAT

GUARD software, the source code of the Upgrade Trusted Process

(UGTP) and the Downgrade Trusted Process (DGTP) will undergo an

implementation correspondence test with the formal

specification of the trusted processes. This will be done as

an additional means of both detecting errors and verifying

general correspondence between the implementation and the

formal specifications for the trusted processes. To the extent

possible, an attempt will also be made to assess the viability

of formally verifying the code as would be done if an Ada

verifier were available.

3.6.3 Software Performance Tests

As indicated earlier, the use of the Ada/ED

language translator will preclude the evaluation of certain

software performance quality factors. Software performance

quality factors which can be evaluated within the capabili-ties

of Ada/ED are correctness, integrity, reliability, and

robustness.
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The Efficiency II factor, memory, and execution
efficiency can be evaluated only with the use of a native code

compiler which may include the capabilities for selected memory

space or execution speed optimization. Examples of tests which

should be conducted are event timing (accuracy and

repeatability), error management alternatives (error
propagation vs. handling at source), consequences of

system-initiated vs. user-controlled garbage collection,

consequences of task creation via task types vs. use of

anonymous tasks, effects of optimized vs. non-optimized code,

task interaction delays using the various tasking constructs,

effects of priority on processing and rendezvous, and memory

utilization of alternative data structures.

3.7 ADA EVALUATION RESULTS

At the conclusion of the project the results and
4-. findings of the project will be documented in the

Development/Performance Evaluation report in two categories;

the project summary and the programming standards and

guidelines.

3.7.1 Project Summary

The project summary will provide several types of

information regarding the project as a whole. This information

will include an assessment of the suitability of the software
development structure followed throughout Phase II, an

identification of impacts caused by the immaturity of some
software tools, the lack of an Ada Programming Support

Environment, the results of implementing only portions of the
ACCAT GUARD application, and similar project-related

assessments. The objective here is to identify and separate

those aspects of the project, if any, which may impact on the

final results, but are not inherent in the Ada language

itself. Secondary objectives are to document the progress of

the project as a means of identifying which alternatives were

selected, why, and what their consequences were in terms of the

project structure and identifying Ada language problems (syntax
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or semantics) which should be reviewed with regard to
modification.

3.7.2 Ada Programming Standards and Guidelines

* As stated previously, the primary objective of

*Phase II, the test and evaluation phase, is to evaluate the

suitability of Ada for producing communications and trusted

software. Because of the many new features provided in Ada, it

will be possible to produce software with a new degree of

* sophistication and complexity. Conversely, with the
sophistication of the Ada constructs, it is also necessary to

assure that the constructs are used in a controlled manner so
that the overall software quality objectives will be achieved.

Thus, as a result of the data acquisition and data analysis

* performed during the latter portion of Phase II, a set of

* programming standards and guidelines will be formed. These

* standards and guidelines will be designed to specifically

indicate what control and usage measures ;hould be implemented

* over and above the capabilities provided by the Ada language to

assure the consistent, effective and efficient use of Ada in a

production, software-developmuent environment.
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SECTION 4
TEST AND EVALUATION MANAGEMENT REQUIREMENTS

4.1 CONTRACTOR RESPONSIBILITIES

The contractor responsibilities defined below are

identical to those tasks specified in the schedule in

* Section 8. All documentation except the final version of the

- Development/Performance Evaluation Report will be produced as

*draft reports for review by the COR.

4.1.1 Software Development/Management Plan

SCI shall produce a draft Software

Development/Management Plan. The purpose of this plan is to

establish preliminary programmuing standards which are

* consistent with MIL-STD-1679 /M16778/ and to completely specify
- the extent of the software to be developed, to identify the

* environment in which the software will be developed and to

establish specific procedures which will be used to monitor and
control the software development.

As an adjunct to the Software

* Development/Management Plan, SCI will conduct an Ada language
- indoctrination. The purposes of this indoctrination will be to

- emphasize maximal use of the Ada features, emphasize the

objectives of the macroscopic and microscopic design efforts,

* establish guidelines with respect to any compiler limitations

which may exist, and to formally review and evaluate existing

documents and research results which may have a bearing on the

"bestu use of Ada.

4.1.2 Ada/ED Delivery/Installation

4 At the beginning of Phase II SCI shall initiate

the request for the Ada/ED translator-interpreter and

corresponding documentation and shall supply the necessary

magnetic tape(s) for obtaining Ada/ED and all required support

sof tware.
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Following delivery of Ada/ED and the

documentation, SCI shall host the Ada/ED on the VAX 11/780

located at the University of California San Dioego (UCSD)

Computer Center (CC) and verify that Ada/ED is functioning
properly. SCI shall also initiate the necessary

contracting/purchasing procedures with the UCSD CC for the use
of the VAX 11/780 facility and associated services.

4.1.3 Software Design
During the software design stage SCI shall

perform the macroscopic and microscopic designs for the
SIP/ADCCP and ACCAT GUARD applications and shall produce drafts

of test plans/procedures to be used in testing the software.

4.1.3.1 Macroscopic Software Desiqn

In the macroscopic software design stage, SCI

shall translate the software requirements for the SIP/ADCCP and
ACCAT GUARD applications into macroscopic (high-level)

designs. This shall be accomplished by using a proper subset
of the Ada constructs to represent the macroscopic designs.

4.1.3.2 Microscopic Software Design

In the microscopic software design stage SCI

shall translate the macroscopic software designs into a

sufficient level of detail such that completed code can be

produced during the Code/Debug/Modify stage.

4.1.3.3 Test Plans/Procedures

During this stage SCI shall produce draft

versions of a test plan/procedures for the SIP/ADCCP and ACCAT
*I GUARD applications. These plans/procedures shall identify test

software to be used and test cases to be performed to determine
the correctness of the developed Ada programs with emphasis on

the system integration testing.
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4.1.3.4 Design Review
SCI shall conduct two design reviews. The first

design review shall be conducted at the conclusion of the

macroscopic design to assure that all functional capabilities

* have been addressed. The second design review sluall be

conducted at the conclusion of the microscopic design to assure

that the detailed design provides for the best use of the Ada

features.

4.1.4 Software Development

During the code/debug portion SCI shall translate

* the microscopic designs for SIP/ADCCP and ACCAT GUARD into Ada

code which can be compiled and debugged. Similarly, test

* drivers which are needed to exercise-the applications shall

also be coded and debugged. As significant portions of the

code become available SCI shall integrate and test them.

During the modify portion of this stage,

*modifications or additions will be made to existing code to

assess the maintainability of the code.

4.1.5 Evaluation Procedures

During this stage, SCI shall produce the detailed

software-development and software-performance evaluation

procedures based upon the requirements of Section 3. Because

* of the limitations of the planned Ada compiler, the emphasis

* shall be placed on the software-development instead of the

software-performance evaluation.

*4.1.5.1 Software-Development Evaluation Procedures

SCI shall translate the software-development

* evaluation requirements into specific procedures and data

formats which will readily permit the necessary data to be

obtained during the software developmnent effort.
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4.1.5.2 Software-Performance Evaluation Procedures

SCI shall translate the software-performance

evaluation requirements into specific procedures and data

formats which will readily permit the necessary data to be

obtained during the software-performance (testing and

integration) effort.

4.1.6 Data Acquisition

SCI shall extract the data required to assess the
effectiveness of Ada as a programming language for

communications and trusted software applications. The data
will be acquired from three sources which are error statistics,

software statistics and analysis, and programmer interviews.

4.1.7 Data Analysis

SCI shall perform an analysis of the extracted
data in accordance with the evaluation requirements and

procedures. This analysis shall be designed to identify any

efficiency or effectiveness criteria regarding the use of Ada

for communications or trusted software applications. In

addition, any specific Ada-related problems shall also be

identified and a set of guidelines or standards shall be

provided which indicate the best use of Ada in the two

application areas.

4.1.8 Development/Performance Evaluation Report

SCI shall present summaries of the data collected

and results of the data analysis through a

Development/Performance Evaluation Report. The preliminary

data and results will be compiled into a draft report which

shall be submitted to the Contract Officer's Representative

(COR) for review, comment and approval. SCI shall then produce

a final report which incorporates any corrections, additions or

changes. The report shall be produced according to

MIL-STD-847A, 31 January 1973, "Format Requirements for

Scientific and Technical Reports Prepared by and for the

Department of Defense" /M84773/.
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4.1.9 Software Delivery

At the conclusion of Phase II, SCI shall rehost

the source and executable test software and any other support
software which was developed to the VAX 11/780 located at the

Defense Communications Engineering Center in Reston, Virginia.

* A summary users guide will be provided with the delivered

software and final drafts of produced documents will be

delivered also.

4.2 PROCURING AGENCY RESPONSIBILITIES

*4.2.1 Software Development/Management Plan Review,
As part of the evaluation effort an abbreviated

Software Development/Management Plan will be produced. This

plan will be submitted to the COR for review, comment, and

approval early in the design portion of the evaluation.

4.2.2 Software Design Review

The macroscopic and microscopic software designs

* will be submitted to the COR for review and comment prior to

the conduct of the planned SCI design review. In addition, the

COR will be invited to participate in the actual design review

process if he so chooses.

4.2.3 Test Plans/Procedures Review

As part of the design and development portion of

* the evaluation, combined test plans/procedures will be produced

to test the developed software with regard to correctness.

These plans will be submitted to the COR for review, comment,

and approval prior to the initiation of the integration and

test effort.
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4.2.4 Development/Performance Evaluation

Plans/Procedures Review

If during the course of the Ada evaluation

problems occur which necessitate a change in the evaluation

plans/procedures, the changes will be documented and submitted

to the COR for review, comment and approval prior to proceeding

with them.

4.2.5 Development/Performance Evaluation Report Review

After the development and performance evaluation

data have been collected and analyzed, a draft of the

Development/Performance Evaluation Report will be produced and

submitted to the COR for review and comment. Comments and

suggestions will be incorporated into the final report which

will be delivered at the end of the contract.

4.2.6 Ada Language Processor

The U.S. Army Communications Research and

Development Command (CORADCOM) CENTACS is currently sponsoring

the development of an Ada "compiler" by the Courant Institute

of Mathematical Science (CIMS) of New York University. It is

recommended that this "compiler" be obtained by the Defense

Communication Agency for use under this Evaluation Plan.

The Ada language processor being developed has

been designated Ada/ED and is mechanized as a

translator-interpreter which has been coded in SETL and is

hosted and targeted on a Digital Equipment Corporation (DEC)

VAX 11/780.

Ada/ED is planned for public release in April

1991. A subsequent, planned release will be directed at

improving the throughput of Ada/ED. Because of the

translator-interpreter mechanization of Ada/ED it will not

produce native code for the VAX 11/780. Thus, it will not be

possible to obtain or project software-performance statistics

relating to optimizing, production-quality compilers which are

being designed and built to produce native code.
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The U.S. Army will provide user documentation on

the hosting of Ada/ED and its operation. This documentation

will be required for the development of the software identified

in this Evaluation Plan. Also, in order to minimize impact of

problems on Evaluation Plan efforts, a mechanism will be
established to remain informed of Ada/ED problems and planned
new versions or releases.

The Ada/ED translator-interpreter will be

provided as a complete software package which includes all

supporting software written in SETL. The software will be

supplied on 9-track/1600BPI magnetic tape which is suitable for

hosting and execution of VAX 11/780 operating under VMS 2.1.

4.3 OTHER AGENCY RESPONSIBILITIES

No other agencies will be required in support of

this effort.

4.4 ASSOCIATED SUPPLIER RESPONSIBILITIES

No associated suppliers will be required in

support of this effort.
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SECTION 5

PERSONNEL REQUIREMENTS

5.1 PROJECT MANAGEMENT PERSONNEL

A senior program engineer will be required as a

Project Manager, to provide customer liaison, to coordinate all

project activities which interface with other agencies or

organizations, to direct the software design, coding, debugging

and evaluation, and to report on project technical and

financial status.

In addition to the management responsibilities,

the senior program engineer will be responsible for producing

the Software Development/Management Plan, defining the data
acquisition procedures, collecting the data for subsequent

* analysis, analyzing the data and produced software, and

contributing to the writing of the Development/Performance

Evaluation Report.

5.2 SOFTWARE DEVELOPMENT AND EVALUATION PERSONNEL

Two senior system analysts will be required to

design, develop, and evaluate the Ada software.

5.2.1 SIP/ADCCP Software Personnel

The senior system analyst assigned to the

* SIP/ADCCP software development effort will be responsible for

producing the macroscopic and microscopic software designs,

developing and debugging the code, developing the associated

test plans and procedures, and conducting the software tests.

He will also be responsible for integrating all software so
that a comprehensive evaluation of the SIP/ADCCP software can

be conducted with respect to the development and performance

criteria.
This senior system analyst will also participate

in the evaluation of the SIP/ADCCP and ACCAT GUARD software and

will be assigned to code/debug a portion of the ACCAT GUARD

software from the established design in order to help assess
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certain software-development quality factors such as

maintainability.

5.2.2 ACCAT GUARD Software Personnel

The senior system analyst assigned to the ACCAT

GUARD software development effort will be responsible for

producing the macroscopic and microscopic software designs,

developing and debugging the code, developing the associated

test plans and procedures, and conducting the software tests.

He will also be responsible for integrating all software so

that a comprehensive evaluation of the ACCAT GUARD software can

be conducted with respect to the development and performance

criteria.

This senior system analyst will also participate

in the evaluation of the SIP/ADCCP and ACCAT GUARD software and

will be assigned to code/debug a portion of the SIP/ADCCP

software from the established design in order to help assess

certain software development quality factors such as

maintainability.
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SECTION 6

HARDWARE REQUIREMENTS

6.1 DEVELOPMENT SYSTEM

The software will be developed on a VAX 11/780

located at the Computer Cente: (CC) of the University of

California, San Diego. This facility has dialup, remote access

and is within 15 miles of SCI's facilities.

The CC operates a VAX 11/780 with 2.25M bytes of

memory under the VMS 2.1 operating system.

The VAX 11/780 is supported by 9-track 800/1600

BPI tape drives, REPO6-AA disks and has 24 dialup ports which

*can be operated at either 300 or 1200 baud.

The VAX 11/780 is fully supported by an operator

for tape and printer services from 0800 to 0100, Monday through

Friday and operates in an unattended mode during other times.

A full range of user services is also provided including

analysis and programming support, data preparation,

dispatchers, hardware maintenance personnel and system support

personnel. Several terminals are available at SCI's facility.

* These include LSI's ADM Information Display, Teletype Model 43,

TI Silent 700 and IBM 3101.

6.2 DEMONSTRATION SYSTEM

The VAX 11/780 located at the Defense

Communications Engineering Center in Reston, Virginia will

serve as the demonstration system to demonstrate the developed

* software for the COR. This system will also serve as the

*system for rehosting the software at the conclusion of the

contract.

4-
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SECTION 7

SUPPORTING SOFTWARE REQUIREMENTS

7.1 SYSTEMS SOFTWARE

The following VAX system software, which is

supported by DEC, may be used either during the software

development effort or during the software test/evaluation

effort:

* VMS 2.1 - Operating System

e SOS - Interactive Text Editor

* SCP - Batch (Programmed) Text Editor

e MACRO - Macro-assembler

* LINKER - Object module linker

* LIBRARIAN - Object module librarian

e SORT - Native-code sort utility

e LIBRARY - Common run-time library

7.2 ADA PROGRAMMING SUPPORT SOFTWARE

The Ada/ED software will consist of the Ada

*. translator-interpreter and supporting SETL routines. This

software will be provided to the Defense Communications Agency

in object format on magnetic tape by the U.S. Army, CORADCOM.

*. The Ada/ED translator-interpreter will operate as an

, application program on the VAX.

7.3 TEST SUPPORT SOFTWARE

After the software has progressed to the

*I integration and test portion of the development, certain

additional software will be required to simulate inputs to and

collect outputs from the software undergoing evaluation.

Software areas which will require this support

are identified below. Specific software requirements will be

identified during the software design effort and implemented as

part of the debug, test and integration effort.
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7.3.1 SIP/ADCCP Test Support Software

The SIP and ADCCP functions in the AUTODIN II

configuration are shown in Figure 3.2-1. Since the software

development effort entails only the SIP and ADCCP software,
those functions will have to be supported with test support

software. Figure 7.3-1 indicates the SIP/ADCCP test and

evaluation configuration. The test support software, which

will be developed to exercise the SIP/ADCCP software as

integral components, is indicated by asterisks "*". This test

support software consists of two components which are the

Terminal Subscriber Interface and the Pseudo Line Control

Module.

7.3.1.1 Terminal Subscriber Interface

The Terminal Subscriber Interface (TSI) will

provide the interface between a "network" user accessing the

"network" from a CRT-type device and the SIP/ADCCP software.

In this test configuration the user will act as both the source

and destination of messages.

Two specific functions will be performed by the
TSI. First, the TSI will provide the user with the capability

for entering and examining messages as well as controlling the

transmission and receipt of messages. Such functions will

consist of sending messages of various sizes, sending single or
multiple messages and controlling the receipt of messages.

Second, the TSI will provide the user with the capability to
introduce various types of errors into transmitted packets via

the Pseudo Line Control Module which is described below.

7.3.1.2 Pseudo Line Control Module

The Pseudo Line Control Module (PLCM) software

will serve two purposes. First, the PLCM will act as a

pseudo-network which will permit messages to be sent and

received through the "networks" thereby being able to exercise

the SIP/ADCCP in the full duplex transmission mode. Second,

the PLCM will also be used to introduce various types of errors
into packets which are transiting the "network". This will
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enable the SIP/ADCCP software to undergo moderately extensive

testing with regard to the software performance factors of

correctness, reliability, robustness, and integrity.

The error injection process at the PLCM will be

under the control of the TSI software with different error

conditions to be selected by the user. Such errors will

include CRC errors, data errors, invalid frame errors, time-out

errors, out-of-sequence packets and out-of-context responses

and commands.

7.3.2 ACCAT GUARD Test Support Software

The ACCAT GUARD configuration showing the ACCAT

GUARD system and the interfaces to the high-level and low-level

networks is shown in Figure 3.2-2. The ACCAT GUARD software in

its present configuration is shown in Figure 3.2-3. Of the

thirteen distinct processes and one aggregate process (HGO),

only two processes (DGTP and UGTP) comprise trusted software.

However, in order to simplify interfacing and provide a more

comprehensive and realistic software development evaluation,

four other processes (HGSD, HDGD, LGSD, and SPCI) will also be

implemented. The other interfaces with these processes will be

implemented with test support software indicated by an asterisk
"*", as shown in Figure 7.3-2. The functions of the GUARD test

support software are described below.

7.3.2.1 High-Level Input/Output

The High-Level Input/Output (HLIO) module will be

used to simulate the interface between ACCAT GUARD and the

high-level network. Thus, this module will replace the

functional operations relating to intersystem data flow which

are performed by the existing HFS, HDP, HMD, and HDMD processes.

The high-level network will be represented

through a combination of a high-le-el user terminal interface

and files which are used to generate and release external

nigh-level data and to receive and examine received data.

Externally supplied data (inputs) will consist of mail and

queries to be transmitted to the low-level network. Internally
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supplied data (outputs) will consist of mail and query

responses received from the low-level network. In addition to

the data exchanged, various control and status information will

also be exchanged.

7.3.2.2 Low-Level Input/Output

The Low-Level Input/Output module will be used to

simulate the interface between ACCAT GUARD and the low-level

network. Thus, this module will replace the functional

* operations relating to intersystem data flow which are

performed by the existing LFS, LDP, LMD, and LDMD processes.

The low-level network will be represented through

a combination of a low-level user terminal interface and files

which are used to generate and release external, low-level data

and to receive and examine received high-level data.

Externally supplied data (inputs) will consist of mail and

queries to be transmitted to a high-level network; internally

supplied data (outputs) will consist of mail and query

responses received from the high-level network. In addition to

the data exchanged, various control and status information will

also be exchanged.

7.3.2.3 Terminal Interface/Sanitization Personnel

The Terminal Interface/Sanitization Personnel

(TI/SP) module will be used to perform the functions of the

processes identified within the HGO module and will interface

with the SPCI and HDGD modules. Of the functions identified

within the HGO module, only the following functions will be

implemented totally or in part via the TI/SP module to allow

the SP to function in a quasi-realistic manner: CONTROL,

LETE, EDIT, LIST, LOGOUT, LOGIN, NEXT, RELEASE, and SANITIZE.
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SECTION 8

SCH EDULE

8.1 ADA EVALUATION SCHEDULE

The development schedule showing the planned

Phase II tasks is given below in Figure 8-1.

Evaluation of Efficiency II, the memory and

- execution performance factor, has been explicitly indicated on
* the schedule since there is no plan to perform such an

evaluation at this time due to the lack of an Ada compiler

which generates native code.
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Figure 8-1. Ada Evaluation Schedule
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SECTION 9

QUALITY ASSURANCE

9.*1 QUALITY ASSURANCE OBJECTIVES

Typically, the quality assurance objectives or
requirements portion of a teat plan is to define the necessary
testing controls, configuration management procedures#

pass/fail criteria and overall management-review proceduresI relating to the conduct of the testing. In the context of the

Phase II objectives of evaluating the suitability of Ada for

developing communications and trusted software, the objectives
will be shifted somewhat. First, rigid configuration

management procedures will not be established since the
objective is not to retain rigid control of production software

and documentation. Second, pass/fail criteria will be

established during the macroscopic design portion of Phase 11

* because detailed modifications may need to be made to the
SIP/ADCCP software and modifications will need to be made to
the ACCAT GUARD software to make the evaluation effort

tractable. Third, all compilations, design notes, test results
* and other project documentation will be retained throughout the

entire project in order to provide a record of what decisions

were made and why. Fourth, since the objective of the

evaluation is to formulate standards and guidelines for using

Ada, only minimal, inicial programing guidelines and standards

will be formed. These will be used primarily to focus on the

Ada features as they relate to the applications with emphasis
placed on using Ada as a new tool and not an old tool. This

approach will also allow the maximum opportunity for innovative

use of the Ada features. Finally, since this is an evaluation

of Ada and not the developed software per ae, the quality

assurance emphasis will be placed on maintaining historical

data as the development progresses and on providing interim
reviews both for the purpose of measuring progress and for

providing early and continuing opportunities for customer
review.
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9.2 QUALITY ASSURANCE REVIEWS
Several intermediate milestones will be planned

to provide interim reviews of progress and results. First,
since it is planned that Ada will be used as Lhe design
language as well at the implementation language the first
significant review will occur at the conclusion of the software

design phase. The second significant review will follow the
interviews with the prograers who developed the SIP/ADCCP and
ACCAT GUARD software. The third review will coincide with the

completion of the draft of the final report and will provide a
significant review opportunity for the DCA prior to the oral
presentation. The fourth review will be in the form of an oral

presentation which will provide an opportunity for discussion
of the draft report, present any additional information, and

provide for interactive discussion of the preliminary results.

4
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