AD~R121 938 EVALUATION OF ADA AS R COHMUNICHTIONS PROGRAMMING
o LRNGURGE(U) SYSCON_CORP SAN D cA

A L BRINTZENHOFF ET AL. 31 HRR 81 DCR180-88-C-0837
UNCLASSIFIED F/G 9/2

b -4
-

TR T e N e

r4...' _ e g e

N
o

Fs
I.O
| S
| g
.

4 1.l
A

-1

EEEE

I

]

MICROCOPY RESOLUTION TEST CHART
WATIONAL BUREAU OF STANDARDS ~ 1963 A

W ek Wy N T g B e TN T R g e B R

e NS wpm AR, e

ADA121938

T AT D WY ORI R R N 3
Pt “

A gl . i "

T
L]

& FILE COPY

'REPORT DCA100-80-C-0037

EVALUATION OF ADA
AS A '
COMMUNICATIONS
PROGRAMMING LANGUAGE

ALTON L. BRINTZENHOFF
"~ 'STEVEN W. CHRISTENSEN

DAVID T. MOORE

J. MARC STONEBRAKER

SYSTEMS CONSULTANTS, INC.
4015 HANCOCK ST.
SAN DIEGO, CA 92110

31 MARCH 1981

FINAL REPORT FOR PERIOD 1 AUGUST 1980 - 31 MARCH 1981

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

PRePARED FOR - _DTIC

DEFENSE COMMUNICATIONS AGENCY ELECTE
DEFENSE COMMUNICATIONS sucmssnmc CENTER

1860 WIEHLE AVE. A NOV3O m
RESTON, VIRGINIA 22090

ATTENTION: MR. PAUL COHEN AND MS. SUSAN ZUCKERMAN

Bt SRR st A G PSR S Ay S U Xon R N S § N G T 0 1 MO T T o B T i N .

¢ Y | ”

82 11 29 o5

y; R Y"“S”? 5 ""7"' s ';3" T v el mﬁmr;»-;wﬂm::_-c‘i:;mv,:;-cﬁ.‘-_.'-_'. WO NTOSIOEREN (G S el N N B
s " s Sy

8 Sy ey o Y g g (S

R N SN IR N Sl LI AT LY

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE BEF O L DTN FORM
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
DCA100-80-C~0037 /!2_ 3

4. TITLE (and Subtitle) 8. TYPE OF REPOART & PERIOD COVERED

Final Report 31 March

¢
t
W
W
i

‘wd,
]

»
ol

T3
3
3]

s

V34

% Evaluation of Ada as a Communications 1 August 1980 - 1981
'r:é Programming Language . PERFORMING ORG, REPORT NUMBER
d DCA100-80-C-0037

. 7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(®)

Alton L. Brintzenhoff, Steven W.
Christensen, David T. Moore, J. Marc

Stonebraker
. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT. PROJEC.T. TASK .

AREA & WORK UNIT NUMBER
Systems Consultants, Inc.
4015 Hancock Street

San Dieqo, CA 92110
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

- . . . 31 March 1981
Defense Communications Engineering Centeﬁ IR GF PAGES

1860 Wiehle Avenue

7 H%%I isﬂ'ﬁ AEiNéb Hkaf & ADDRESS(I{ different from Controlling Otfice) | 18. “SECURITY CLASS. (of thia report)

Unclassified

Sa !C& ASSIFICATION/ DOWNGRADING
SCHEOQULE
16. DISTRISUTION STATEMENT (of this Report)

Approved for Public Release, Distribution Unlimited

17. DISTRISUTION STATEMENT (ol the sbetract entered in Bleck 20, 1t dittorent trem Report)

For———
18. SUPPLEMENTARY NOTES

DCEC Contract Officer's Representatives:
Mr. Paul M. Cohen, Ms. Susan Zuckerman l

19. KEY WORDS (Continue on reverse side if necessary and Identity by bleock number)

Ada, Communications, Communication Protocpls, Concurrent pro-
gramming, Segment Interface Protocol (SIH), Advanced Data Com-
municaticn Control Procedure (ADCCP), CCITT High-Level Language
' (CHILL), Software Quality, Software Efficiency/effectiveness,

20. AGSTRACT (Continue on reverse aside If necessary and identily by block number)

This report details the results of an\evaluation of Ada
as a communications programming language. his report is
divided into three major sections coinciding with the efforts
conducted within three separate tasks of the overall evaluation
effort.__The following paragraphs provide abstracts of the

wp

(B S AR B i Aot r)

three sections. ~ - - . o 5
‘ ‘:-J ;
AJ
DD ,5R'3: 1473 £oiTioN OF 1 NOV 68 18 OBSOLETE Unclassified Wg
$/N 0102-LF-014.8001 ~3dE sacUMTY CLASHFICATION OF THIS PAGE ° S
[
1

POl LA N v ﬂwm o, 12 RN I W s L W Wra L Tt m e T e e B s, ST
T IO ATt T APV AL R A NS T T T -
‘:ﬁi’:‘ﬂ:‘h‘;ﬁa "‘ﬂ.\.‘& L'H"' AL AT AN :{'-1‘. o -L'L_'.-'L_';M.__q_‘f T e N e oy

bt o apa R e e Bad A Lt T b harta ke R Sandh "Rl M\ e T ol 7Sk i A OB WL gL, B D Ty A RS W WPEMIRERESE S SBNC I S R S

e B

e promises a realistic high

1 assive cost and unreliable nature
of present communication systex development efforts. Using

a generic communication model,Pthe first section analyzes the
ability of Ada to support commuffication system programming
applications, especially in the area of concurrency. Pre-
viously documented criticisms as well as other proplems dis-
covered during this analysis effort are addressed Alternatives
to these problem areas are presented followed by an evaluation
of the efficiency and affectiveness of the atives.

he CCITT High Level Language (CHILL) is being developed
§ specifically for programming of SPC exchange applications. Ada
g ' is being developed to serve as a programming standard for embed-

mili ter sys In many instances the functional

T rements o ese two application areas coincide and as such
second section examines the feasibility of Ada being used as
direct substitute for CHILL, both in the context of CHILL boini

‘\‘: a programming language, and in the context of CHILL being part o;
- a programming environment containing CHILL, SDL, and MML, The

5

LN et Y a s b il

2

7 report concludes that Ada is indeed a suitable replac t for
;. CHILL in both contexts.

: “As part of a foll n phase of thiz project, Ada will be
b used to implement, on « prototype basis, a communications ap-

plication which conpists of the AUTODIN II Segment Interface
Protocol/Advanced Pata Communications and Control Protocol
(SIP/ADCCP) and a/trusted software application which consists
of the Advanced ¢ommand and Control Architectural Testbed (ACCAT]
GUARD software. he third section of this report establishes
the approaches to be used in designing, developing, and testing
the software, evaluating the efficiency and effectiveness of
Ada as used in these applications, and identifying standards and

P

P o e 1

. guidelines to assure overall software quality in the use of .Mla,1
-
; |
f
by :
1
?
{
1
b
3
)
i
'g _ SR ‘rﬁ
} : :
y SRCURITY CLASSIFICATION OF THIS PAGE(When Dote Entered)
: et S P g T W W Wy YR T T v"*‘.’ ER AN NL SN L TS Tl ol N DR S St .:\1
o Rl e R R RN T S Y PR NN AR IR NSNS TPy

O,

TABLE OF CONTENTS

PART TITLE

I An Evaluation of the Ada Programming

Language for Concurrent Programming
in Communications Systems Applications

II A Comparative Analysis of the Ada and
CHILL Programming Languages '

III Plan for Evaluation of Ada as a Communica-

tions and Trusted Software Programming
Language

| Accession For

NTIS GRAI ”
DTIC TAB

By.
Distribg}}on/
Availability Codes

Avail and/or
Dist Special

Al |

I1I-i

PAGE

II-i

TN LN

i
|
!
1

(This Page Intentionally Left Blank)

s

LY

Ty,

LY

.-;?‘ h

P L

: vi

Ly
’-‘,‘,‘\‘f\f v,

 — A"t SN . o i, it nah bk ool

AR R

RS
“

A T SPLSTEIRISN R YOS STNRESYON.

. g N S A A L e

AN EVALUATION OF THE
ADA PROGRAMMING LANGUAGE
FOR CONCURRENT PROGRAMMING
IN
COMMUNICATIONS SYSTEMS APPLICATIONS

ABSTRACT

The predominant utilization of a high level language
for communications systems programming applications is an
attractive alternative to the current practice of machine code
implementation. The Ada programming language promises a
realistic high-level alternative to the excessive cost and
unreliable nature of present communication system development
efforts. Using a generic communication model, this report
analyzes the ability of Ada to support communication system
programming applications, especially in the area of
concurrency. Previously documented criticisms as well as other
problems discovered during this analysis effort are addressed.
Alternatives to these problem areas are presented followed by
an evaluation of the efficiency and effectiveness of the
alternatives.

I-iii

IR SR L AL P TP
AT AT A T e e

- A Y
R G Ry

(This Page Intentionally Left Blank)

1=-iv

N MO

T LW T -.‘-."t..-‘ ..
LN} RN LIS
‘-u"\u N, Wy . .:h ‘:.

"h \::.

SECTION

TABLE OF CONTENTS

g |

.EXECUTIVE SUMMARY

INTRODUCTION

1.1 Purpose

1.2 Scope

1.3 Assumptions

1.4 Methodology

1.5 Organization

COMMUNICATION SYSTEMS BACKGROUND
2.1 Communication Systems Types
2.2 Communication Systems Software
Characteristics
2.3 Software Architectures
2.3.1 “"Reference Model for Open Systems
Interconnection® (0OSI) Overview
2.3.1.1 Protocol Layer Description
2.3.1.2 Communication Systems
Management Considerations
2.3.1.3 Summary
2.3.2 DoD Communication Architecture
2.3.2.1 Protocol Layer Description
2.3.2.2 Systens Management
- Considerations
32.3.2.3 Summary

PAGE

I-iii

I-xiii

I-1-1
I-1-1
I-1-1
I-1-2
I-1-2

I-2-1

I-2-2
I-2-3

I-2-4
1-2-4

I-2-4
1-2-8
I-2-8
1-2-8

I-2-8
I-2-11

TABLE OF CONTENTS (Cont.)

SECTION TITLE PAGE
2.3.3 AUTODIN II System Overview I-2-11
2.3.3.1 Functional/Protocol Layer
Description I-2-13
2.3.3.2 System Management
Functions I-2-16
2.4 Future Considerations I-2-16
2.5 Conclusions I-2-18
3 COMMUNICATION SYSTEMS ENVIRONMENTS AND PRACTICES
3.1 Performance Considerations I-3-1
3.2 Hardware Considerations I-3-3
3.2.1 Hardware Resources I-3-3
3.2.1.1 Single Processor
Environments I-3-4
3.2.1.2 Multicomputer
Configurations I-3-4
3.2.1.3 Multiprocessor
Configurations I-3-8
3.2.1.4 Future Considerations I-3-9
3.3 Architectural Considerations I-3-10
3.3.1 External Interfaces I-3-10
3.3.1.1 Operating System/Executive
Software Interface I-3-10
3.3.1.2 Communications Hardware I-3-12
3.3.1.3 User Interface I-3-13
3.3.2 Modular Structures I-3-14
3.3.3 Common Data Structures I-3-14
3.3.4 1Internal Organization of the
Architecture I-3-15

D, P i

b
EAL S

5N
IR S

T

SECTION

3.4

TABLE OF CONTENTS (Cont.)
TITLE

3.3.5 Scheduling Considerations
3.3.5.1 Scheduling Criteria
3.3.5.2 Scheddling Mechanism

3.3.6 Timing Functions/Mechanisms

Software Engineering Considerations

Summary

3.5.1 Performance Issues

3.5.2 Hardware Issues

3.5.3 Architectural Issues

CONCURRENT PROCESSING CONSIDERATIONS

4.1

4.2

4.3

Communication Systems Software
Requirements
Concurrent Processing Environments
4.2,1 Single Processor/Multicomputer
Environments
4.2.1.1 Multiple Users
4.2.1.2 Parallel Processes
4.2,2 Multiprocessor Environments
4.2.2.1 Impact of Multiprocessor
Configurations Upon the
SCI Architecture
Concurrent Processing Associations
4.3.1 Disjoint Processes
4.3.2 Associated Processes
4.3.3 Logically Connected Processes
Traditional Solutions to Process Control
4.4.1 Process Control Mechanisms
4.4.1.1 Interlocks
4.4.1.2 Semaphores
4.4.1.3 Message Buffers

PAGE

I-3-15
I-3-15
I-3-16
I-3-17
I-3-17
I-3-18
I-3-18
I-3-19
I-3-19

I-4-1
I-4-1

I-4-2
I-4-2
I-4-2
I-4-4

L SR AW

iR M W R P T T Y MR MM 9 R

d
RSN |

1 &>

 alll

I S Veuy ey e B gt A L Lo S N

TABLE OF CONTENTS (Cont.)

SECTION TITLE
. 4.4.1.4 Monitors
’ 4.4.2 Applicability of Traditional
Solutions to Process Control Within
Communications Systems Software
4.5 The Ada Language Solution to Process
Control
4.5.1 Ada Task Structure
4.5.2 Ada Rendezvous
4.5.2.1 Task Synchronization
4.5.2.2 Task Communication
4.5.2.3 Mutual Exclusion
4.5.3 Summary
5 PROBLEMS AND ALTERNATIVES

5.1 Issues Raised by BBN Report No. 4188
£.1.1 Excessive Scheduler Interactions

5.1.2

5.1.3

5.1.4

5.1.1.1 Statement of Problem
5.1.1.2 Alternatives

Process Control Structure
Flexibility

5.1.2.1 Statement of Problem
5.1.2.2 Alternatives

Naming Convention Problems
5.1.3.1 Statement of Problem
5.1.3.2 Alternatives

Lack of Scheduling Control
5.1.4.1 Statement of Problem
5.1.4.2 Alternatives

I-viii

............

PAGE

I-4-13

I-4-14

I-4-15
I-4-16
I-4-16
I-4-17
I-4-17
I-4-17
I-4-18

I-5-1
I-5-2
I-5-2
I-5-3

I-5-7
I-5-7
I-5-8
I-5-14
I-5-14
I-5-14
I-5-16
I-5-16
I-5-16

T T TR T T T A T R TR R % At aTNE TR T AT AT ATNLAT AT W KT e AT A TR e N, A A A . e x!I

FI

TABLE OF CONTENTS (Cont.)

SECTION TITLE

5.2 Communication System Related Concurrency
Issues
5.2.1 Operating System Requirements
5.2.1.1 Statement of Problem
5.2.1.2 Alternatives
5.2.2 Scheduling Deficiencies
5.2.2.1 Statement of Problem
5.2.2.2 Alternatives
5.2.3 Mutual Exclusion
5.2.3.1 Statement of Problem
5.2.3.2 Alternatives
5.2.4 Dynamic Task Priority Assignment
5.2.4.1 Statement of Problem
5.2.4.2 Alternatives
5.3 Miscellaneous Issues
5.3.1 Dynamic Record Structure
Manipulation
5.3.1.1 sStatement of Problem
5.3.1.2 Alternatives

N T T RN R

.

4
.
I
!

3 6 EVALUATION OF PROPOSED ALTERNATIVES
6.1 Definition of Criteria
6.1.1 Efficiency Criteria
6.1.2 Effectiveness Criteria
6.2 Evaluation of Alternatives
: 6.2.1 Evaluation of Alternatives to
BBN Report Criticisms
1 6.2.1.1 Excessive Scheduler
Interactions
6.2.1.2 Process Control Structure
Inflexibility

Y —Ty

PR ST R

PAGE

I-5-23
I-5-23
I-5-23
I-5-24
I-5-24
I-5-24
I-5-25
I-5-26
I-5-26
I-5-30
I-5-30
I-5-30
I-5-30
I-5-32

I-5-32
I-5-32
I-5-33

I-6-1
I-6-1
I-6-2
I-6-2

I-6-~2

I-6-3

I-6-3

TP P

£ T O W TR NN TR TS ™ FUECDIE "R TRE TR AT W a ™ a Mo N aW o VN NetLipl W Catsy FE - - - - 8 el Rl i

TABLE OF CONTENTS (Cont.)

SECTION TITLE PAGE

6.2.1.3 Naming Convention
Problems I-6-6
6.2.1.4 Lack of Scheduling Control I-6-7
6.2.2 Evaluation of Alternatives to
Other Communication-Related

Concurrency Issues I-6-7
6.2.2.1 Operating System
& Requirements I-6-7

6.2.2.2 Scheduling Deficiencies I-6-7
3 6.2.2.3 Inefficiency of Rendezvous

- for Mutual Exclusion I-6-9
6.2.2.4 Dynamic Task Priority
Assignment I-6-9
6.2.3 Miscellaneous Issues I-6-10
6.2.3.1 Dynamic Record Structure
Manipulation I-6-10
7 CONCLUSIONS
7.1 Summary of Analysis I-7-1
7.2 Conclusions I-7-1
APPENDIX
A REFERENCE DOCUMENTATION I-A-1
I-x

It S e R R R

. -H J',I.‘-' ‘; AT S

I T T T T T T N N e T
R R O i T T TR e N S S R T AP Tt YR T

T R A TR I A S L e e ettt e et terss
- - - » - - . . - .
RO L AN . LA T e e T T T T e e e T

VORI PRI T DR PR TR Lt gt e St T o T et e

FIGURE

2-1
2-2

2-9
3-1

3-2

3-4

3-5

4-2
4-3

LIST OF ILLUSTRATIONS

TITLE

OSI Model Protocol Layer Block Diagram
OS1 Protocol Layer and Systems Management
Block Diagram

Complete OSI Model Block Diagram
Comparison of DoD vs. OSI Model
Functional Topology for SCI System

AUTODIN II Terminal Interface (TAC) Protocol

Structure

AUTODIN II Host Interface (SCCM) Protocol
Structure

0SI/DOD/AUTODIN II Models Prototype Layer
Compar ison

SCI Architecture Block Diagram

Relative Responsive Time vs. Throughput
Comparison in Packet Switches

Single Processor System

Processor Network Configuration

Fully Interconnected Multiprocessor System
SCI System Architecture

Multiple User Connection Points Within the
Architecture

Logically Disjoint Processes

Logically Associated Processes

Loyically Connected Processes

RGN SN -‘--sv.‘-
'."n.‘- \,.‘ DR .~ ‘ _‘.'

PAGE

I-2-5

I-2-7
I-2-9
I-2-10
I-2-12

I-2-14

I-2-15

I-2-17
I-2-19

I-3-2
I-3-5
I-3-6
I-3-7
I-3-11

I-4-3
I-4-7
I-4-8
I-4-10

T
::1 \'x_\'{i RN Y _x.x‘k\.‘s. s \\-\.‘-...L R PR P A

LA

- B TSI A SR SN R ACE AT,

L e

S

&

3

(2 ot Sl

-

ROAL ALY PR o)

y

RN

P I A,

- - o PR AL
AL NN LY
.1) i A

:
iilere
b’

bk o] B S R e e el et o)

(This Page Intentionally Left Blank)

A

o AW

e |

.,
CAr

et e, e e T T A e e e e e S N A A NI A A o W e IR
PRI 3P0 T AN IR I U "W o, N A WAL T I 0 g W WP S LR fant s fatat et atat

EXECUTIVE SUMMARY

Using a general communication model as a basis
for analysis, this report evaluates the ability of the Ada
programming language to support communication system
programming applications. The evaluation is directed
especially toward Ada's concurrent programming features, though
other advantages and disadvantages are examined as well.

Sections 2 and 3 of this report present a general
communications network environment and identify the key
components involved in supporting the network. 1In particular,
specific communications functions which are implemented via
software are identified and those areas which are associated
with concurrency are isolated.

Section 4 examines traditional solutions to
concurrent process control, i.e., interlocks, semaphores,
message buffers, and monitors. Advantages and disadvantages of
each mechanism are given. Ada's solution to process control,
parallel tasks with entry/accept rendezvous linkage, is then
described.

The material described above forms the basis for
the main thrust of the analysis effort which is contained in
the remainder of the report.

Section 5 examines three separate categories of
potential problems associated with the use of Ada for
concurrent programming applications in communication systems.
The first area represents an analysis of criticisms cited
within BBN Report No. 4188 /BBNE79/. The criticisms are
divided into four major categories: excessive scheduler
interactions, process control structure inflexibility, naming
convention problems, and lack of sufficient control over the
scheduling discipline. With one exception, realistic, viable
alternatives are presented in answer to the aforementioned
criticisms. The exception, control over the scheduling
discipline, was not considered a valid criticism for reasons
offered in Section 5. The second problem area concerns issues

I-xiii

AT T @ v A wm W
ST T ST N PR T

A ML Vo fI W e M e T
AT NN Y I M T A T
e et e) e N et

LR RN R ANAR dlh - e U odn o e g A T s B S

e.w

AURCACATRONA

MDA

"

U AU o

4 +
Torsesvy2g

LS5 SN 4

L viat carpl Sal g e —athal Rl T S Sl Pa R ates e

uncovered during the analysis of Ada's ability to support the
implementation of the general communication model developed in
Sections 2 and 3. Again, alternatives were presented using
available Ada constructs. A final problem area deals with
Ada's inability to dynamically manipulate a record's

structure. An alternative mechanism using unchecked conversion
is offered.

In Section 6, efficiency and effectiveness
criteria are defined in order to be able to evaluate the
developed alternatives. Each of the alternatives is then
qualitatively analyzed as to its ability to satisfactorily meet
the defined criteria. 1In all cases, the alternatives are
judged to be adequate solutions to the stated problems. 1In
fact, the alternatives serve to point out that, as a high level
programming language, Ada provides the implementor with the
flexibility to construct many alternatives to presumed problem
areas. A quantitative assessment of the efficiency and
effectiveness of any proposed solution can only be made when a
particular environment is identified and a compiler becomes
available.

Conclusions are presented in Section 7. 1It is
believed that, as a result of this preliminary analysis, the
current Ada language definition can be effectively applied to
communication systems programming applications.

P FH N’ 2 T HL Wl Wl W ol W ai? oo W T otV da TS W & o el 'T

SECTION 1
INTRODUCTION

1.1 PURPOSE

A Bolt, Beranek and Newman, Inc. (BBN) report,
"The Impact of Multiprocessor Technology on High-Level Language
Design," Report Number 4188 /BBNE79/, has raised several issues
and identified specific difficulties which are anticipated in
the use of the Ada programming language in concurrent
programming applications. The purpose of this report is to
address these issues and difficulties raised in the BBN report
and to evaluate the efficiency, effectiveness, and problems, if
any, of the Ada syntax and semantics which support concurrent
programming applications.

1.2 SCOPE
The analysis of efficiency, effectiveness, and
problems will be limited to those Ada areas which directly F

support concurrent programming applications. Other problem
areas which were uncovered in this analysis will be identified
and addressed. The context of the concurrency applications
will be that of communication processors functioning as
components of an AUTODIN II type of network.

1.3 ASSUMPTIONS r

In performing this analysis, several assumptions
have been made in order to provide a suitable framework for
defining the problems and seeking solutions.

First, it is assumed that Ada would be applied to
a state-of-the-art type communications network which is highly
interconnected, employs multilayer, standardized protocols for
achieving internode communications and which has demanding
message volume and response-time requirements.

A

Aok ol SR

I PO F e A Tt 8 T S S e s Ta e N Tm 4 e e e e T h e e e e ta e el e e
o ';:\. e RGO AR ACAE RO R AR AR S A e e e T e e e e e e e e,
q * g "9 - b

T e el e e = Tw e T % TaLTe e Ve - Ta e e T T TR e T T e e e ¥ s S st e Twl e bV w8 Tmiw e e I8

Second, it is assumed that a wide spectrum of
computers could be used to implement the communication
functions and that Ada implementations should consider the
ramificat}ons of different computer and operating system
architectures.

Third, it is assumed that the Ada language should
be used to the maximum extent possible in the communication
software so as to achieve a high level of transportability and
maintainability. Thus, applications which might normaily be
written in assembler code because of execution efficiency will }
be assumed to consist of Ada code.

fourth, the analysis will be based on the
pragmatic point of view of an implementor whose responsibility

is to use the existing Ada features in the best way possible.

1.4 METHODOLOGY

The analysis of this report encompasses the dual
disciplines of understanding the communication application
requirements and environments as well as the Ada language
syntax and semantics and the significance of various computer
architectures and associated operating systems. Thus, the
approach is to define the communication environment, and then
identify the computer architectures, operating system features
and specific communication software application functions.
Next, the issues, problems, and solution alternatives are
presented, evaluation criteria are defined, and the solution
alternatives are evaluated. Finally, a summary of the findings
is presented.

1.5 ORGANIZATION

Section 2 presents the general communications
network environment and identifies the key components involved
in supporting the network.

Section 3 identifies specific communications
functions which are implemented via software, and isolates
S subsets of the software which will be affected by the
: concurrency issues.

L8 mm soval Lot gy AN) A oG gk ey pouh N SN e AREY Wl g el g | el gty gl ppin i e -l grbis Japl Rl B SN gt Sr L AP S UM S S] 2y

A4] "’.'!.]

X
»

PRUCL
to'n'a e

Section 4 identifies the spectrum of concurrency
issues generically and addresses the Ada solutions to the
concurrent programming support requirements.

Section 5 identifies the BBN issues and other
uncovered, related issues, defines specific problems related to
each issue, and poses alternative solutions for each problem.

Section 6 establishes evaluation criteria which
will be used in assessing the efficiency and effectiveness of
each applicable alternative and concludes with an evaluation of
the alternatives.

Section 7 summarizes the results of Section 6 and
identifies any outstanding issues or problem areas.

OAVAVRLARASAA NS el

TRV W-F G ¥ ¥ Y ¥

vy

e I il B kit A M A TR Rl i

PSP e

ALY

POREEY WY RO

LIV I I

v, .

“fe e "e"a T, e T T T T e [Te e S e e . - . R e I - -

PRSI R e PC . “ _ . . R PR R . PR L -

CRGACNOAL O * . . [- IR -, . ~ P ST L e S S s
.t - - - -

"

]

[

. U

. w
kaJAAJ P-a

- T - e s a’eslal¥al]

(This Page Intentionally Left Blank)

SECTION 2
COMMUNICATION SYSTEMS BACKGROUND

The subject of communication systems software and
its design is a broad one and cannot be addressed in its
entirety here. However, a frame of reference is required to
provide the context for discussion of the software concurrency
problem with regard to current communication systems
environments and software practices. To this end, this section
generalizes the various aspects of communication systems and
identifies what are perceived as major considerations and
concepts from which issues and problems can be developed. This
section addresses communication system types, software

characteristics, software architectures, and future
considerations.

2.1 COMMUNICATION SYSTEMS TYPES

Communication systems are employed to provide a
multitude of services, which vary widely in their types of
service and performance capabilities. We offer here a brief
categorization of communication system types.
Text/Source-Line Processing
Data Acquisition/Distribution
Process Control
Interactive Information Processing
Specialized Hybrid Systems
Switching/Trunking Systems
- Circuit Switches (AUTOVON)
- Message (Store and Forward) Switches

(AUTODIN I)

- Packet Switches (AUTODIN II)
It should be noted that the types presented are not mutually
exclusive. The more complex systems often consist of a mixture
of the less complex types. Additionally, process control is
used here to represent the automation of electrical,
mechanical, and/or human processes. This term has a different

I-2-1

meaning when the topic of concurrent processing is discussed
later in the document.

2.2 COMMUNICATION SYSTEMS SOFTWARE CHARACTERISTICS

We feel that communication software exhibits
characteristics very similar to other "systems" software. This
point of view is supported by /BBNE76/. General documentation
refers to communication systems and communication applications
software interchangeably. This document will refer to
communication systems software rather than applications. The
key point is that many applications have been written in high-
level languages, while few communication systems have this
distinction.

The following characteristics of communication
software is evident to some degree in all the previously
mentioned system types:

® Concurrent Processes

Communication systems typically exhibit
multitasking, multiprogramming qualities.

e Event Driven Operation

Communication systems respond to events that
are not directly related to the local
software/hardware environment.

e Externally Performance Bounded

Communication systems are performance bounded
by factors other than local design and
implementation specifications. The

per formance characteristics of the
correspondents, the transmission facility, and
the characteristics of the various protocols
that are employed exhibit external performance

requirements that a system must adapt to in a
real-time sense.

Lt e 4

T

Transparency

Distributed users or processes converse with
each other in terms that they agree upon and
understand. The intervening software and
egquipment is apparent only in the resulting
delays encountered with data transfers.
Service Orientation

Communication systems provide users access to
distributed processes/resources. This service
has the following features:

- Responsiveness

- Bfficiency

- Reliability

- Availability

- Security

Operating System Qualities

Communication systems have what are
classically construed as operating system
qualities which are typical of "systems"
software:

- Manipulation of complex data structures

- Maintenance of low level hardware inter faces
- Management of local computing resources

- High performance requirements

2.3 SOFTWARE ARCHITECTURES

Current communication software adheres to
generalized, layered software architectures. This approach
goes beyond the software engineering and design advantages.
Such architectures transcend vendor, hardware, commercial,
military, and international boundaries. The use of layered
architectures provide a common approach in which dissimilar
users can implement standard protocols.

This section presents a highly generalized Open
System Interconnection (OSI) model, a so-called Department of
Defense (DoD) model and its relationship to the general model,
and a brief description of a representative implementation

I-2-3

..........

o

C3dFha TS ar R = . . X Pl A v DAY ar ST A ST it i o 4

currently within the Defense Communications Agency (DCA). A
comprehensive model will be formulated which is an accumulation
of concepts of these models and will provide the frame of
reference for the remainder of the document.

2.3.1 “Reference Model for Open Systems
Interconnection” (OSI) Overview

The International Standards Organization (ISO)
has proposed a layered software model for general communication
systems and their interconnection /OSIN79/. This model avoids
references to specific protocols and embraces functional layers
or protocol classes and their relationship to one another.

Although this model is aimed at the
interconnection of communication system components, it also
serves well to model general communication system types that
have no requirement to interconnect with other system types.

2.3.1.1 Protocol Layer Description

An important aspect of the OSI architecture is
that each layer of software represents a server to the uidiacent
superior layer. Each layer executes its protocol or fusactions
via a set of services provided by the adjacent inferior layer.
Additionally, equivalent layers across distributed components
of a system form peer associations or connections. Peer
associations are established, maintained, and terminated by
execution of a particular protocol.

Figure 2-1 illustrates the protocol layers of the
model. Specific details of this model are available in
/OSIN79/ and the material is also summarized by /ZIMM80/.

2.3.1.2 Communication Systems Management Considerations

An important portion of the model is the system
management structures that provide "those functions required to
initiate, maintain, account for, and terminate data transfers
among application processes" /ZIMM80/.

S

T T W

A=A T AT A TR T R M LT EN LN ST TR

T T TR

e TR T TR

wT e W W

e — S e WY T T ——

r Lar ot oney o 4 T I I T T IV ITIN KLV Y i . eve L% ST F ¢ £ T -.J..-..-. J
weaberqg yoold e
19ke 10003013 T2POW ISO
1~z @2anb1a =
SUOT303UU0) quaudinbg jusudtnby T
/SuoOTIeIO088Y 3TNOATD TeUTWIDY P
19ke1 1994 e3eq ejed -]
' 3
eTpoOn g
Teo¥siyd
1
(300) g
ATNOATD Keyoy To0x3U0D Y
eleg AI0MISN (31s) NI =
-exjur Lemajeo 4
JNIOMIDN
-I93uIr joyoed
13uueyd
I0M3D
eyeq /3AI0MIdN -
| g
~ y
suoT3oung n. "
uolsstusuely Touueyd axodsuex], -
ejeq 1eotbo] .4
— L - . e — G SE— g e e n -
) '
3TNOITD ' ’ UOTSSIS
1en3aTA " '
e eeemq
' '
suotjoung TeuTWLIa] ai1em33Jos ! !
pursssooag Ten3aTA NIOMIBN ! H uot3IvIUISIAd
eyeq Teuaojuy “ “
}
et |
?]
UOT3IeTOO08SY ! "
Ten3ITA !) potaeoy1ddy
' i
——— e o o od
--P.D\cllllh.l‘\.— H.L‘ 1:-< Q- l-a;llvl...iﬁA.u»..M:.l. ot z,-Pn N a.”? IE"I 4 4 A Al P!L EE’IEH

RURLURIE © — DU

DO« SORAOWT el #

‘>

it s et e
[y

FNERYR

1 -

CAG A P SRR

T

Tl ek TN

(Y

NeCatcat)
a3

System management functions can be characterized

as those that monitor, control, configure, support, and report
on the system. The following list serves to illustrate the
systems management functions. It should be noted that this
list does not encompass all the functions required by any
particular system.

e Internal and External Interface Management
Event Management
Resource Management
Per formance Management
Error Management
Recovery Structures/Procedures
Configuration Management

Data Management
Test/Diagnostic Management

Access Management

Additionally, system management functions must
address two perspectives:

e Local environment or component level

® Overall system level

The component level functions address buffer
acquisition, hardware and user configurations, and the
operating system environment. The system level functions
address connectivity to neighboring components, overall system
performance characteristics, system recovery, and acquisition
of system utilization statistics.

Another important aspect of the system management
portion is apparent. The protocol layers address the system
wide functions and processes of data transfers between
distributed components. System management software provides an
interface to the local operating system and hardware
environment of a component of a system.

Figure 2-2 illustrates the OSI protocol layer and
systems management block diagram.

Chrt Bt 300 it -Sair-aabc-amh s i b Al Sl Sl el TR A

-~
i
-t
g
| ,
. L}
" |
< .
) Application .
!
. |
-~ '
$
"]
§ Presentation)
R Communications
A Man¥SEa0Re
o t
{
i
N Session i
h‘:]
" System !Component
" Level : Level
E Mgmnt ; Mgmnt
; Transport |
' i
{
{
(
Network/ N
Packet |
]
)
'
'
Link Control i
|
{
L]
[)
.]
4 Physical : Firmware/Hardware
Media H
[]
i
Figure 2-2

0SI Protocol Layer and Systems Management

Block Diagram

DR P

TN W, T, oW, e N, . e .—.1

J
ki

Y

i

1

|

1-2-7 ;

. = -~ .

LIPS - h ST ‘-;."‘ St .:“ *.‘.._‘. . . A)

y"'- o) e Oy DAL VR IR AT A IR A RV ARSI WA T W e

L 0= St S T S S Rt S - - A b S ol M MR a2l e Bkl ca Senl Mt st o TR T — g T

2.3.1.3 Summary
The OSI model yields a general, yet highly

structured model. The model is included because the
architecture that the DoD is currently adopting is based on a
combination of the ARPANET structure and the OSI model.
Figure 2-3 serves as a complete block description of 0SI
software architecture.

2.3.2 DoD Communication Architecture

This section briefly summarizes the DoD
communication architecture as presented by /CLAR80/ and by
/POST80/. This model is presented to provide a frame of
reference for a communication system implementation of
AUTODIN II. The DoD model offers a transition vehicle between
the OSI model and the AUTODIN II system when discussion focuses
on specific examples in the later sections.

2.3.2.1 Protocol Layer Description
At its current stage of development, the DoD

model is considerably less general than the OSI model. The
model does not easily provide for those systems that do not
interconnect to other systems. Its development is heavily
oriented in network and internetwork activities. The adoption
of specific protocols such as Transmission Control Protocol
(TCP) and Internetwork Protocol (IP) has resulted in the
definition of sublayers rather than individual functional
layers. Figure 2-4 illustrates the protocol layers of the DoD
model and provides a correlation with the 0OSI model protocol
layers.

2.3.2.2 Systems Management Considerations
The proceedings at /CLAR80/ generated no direct

discussions in this area; however, numerous comments by various
presenters did indicate that there is some confusion in this
area. /ZIMM80/ points out that this area of communication
systems is relatively undefined at present. However, the OSI

..
.................

.....

...
............................

s

. R
!u el

Ay
2eael

:I;'_'. . ._'

PSS PAIUE XA

LN
Communications :
System H
Users { General Applications Software
: (Background)
L)
i
Communications i
Application ¢
'
]
! Operating
Presentation '
: System
'
Communications Software
Systems
Management
Session Software
i
System | Component
Level | Level
Mgmnt | Mgmnt
Transport :
{
|
1
l
Network/ i
Packet :
‘
t
(
Link :
Control '
[
|
'
Physical t
Media ! Hardware/Firmware i
]
] \
% :
!
{
|
Figure 2-3 -.;
Complete OSI Model Block Diagram]]
I-2-9 1
F‘
R o T e T e e e et e L

MEEE P TV IR TS W w--u-'n—“w

TR TN N Oy I TE

oa o i -1

suog3oungd
uoysstwsuexl
ejeq

suoyTlIoung
puyssd00ad
wv3eq

IS0

eTpen
1eovsiyd

uoy3zedT 1ddy

T9POH ISO °sA god
3o uosyaeduo)
y~Z @anbia

- G G G Ges TED WD e WD @ e EE AP G AuE D s AP MR @ SEP SN S D S

aoca

eIPaW

Teotrsiud
10x3U0D
10I3U0D JNIOMIDON
3jut] Te001]
- - -
joyoeg -
/AIOMIBN - - mﬁoo.wwwwa
- - - - - -
j""""'J
3xodsuexy, -
(d0%
3150Y-03 -380H
uoy¥ssas
uotrjeluasaiyg . .
$S300X
a9sn

1-2-10

Vot

N T
D I S AP
R T I
-

Yot e

BN

-

.
o
b Bt B

PRI

MRS N I
W s
.,

% i A

Y TP LY A R W B R B DR e e e TR EIVURTSTELTIw R TR RN LT TR N Y T, Te e e Ty T e T T e L0 8

model has defined it generally and provided a structural block
location in the model /OSIN79/.

2.3.2.3 Summary

The DoD Model can be correlated to the OSI model
in a general sense, as Figure 2-4 illustrates. However, the
following distinctions should be noted concerning the
comparison. The DoD model is less general in nature; it
deemphasizes the strong connection orientation of the 0SI
model, it is more prone to sublayering as opposed to the
definition of precise functional software divisions; and it
does not generally address systems that are not interconnected.

2.3.3 AUTODIN II System Overview

This section of the document is provided to
establish a correlation between a member of the DCS community
and the more general architectures. This treatment is derived
from /AUTO78/.

The communication system frame of reference is
narrowed to that of packet switches generally and to an
AUTODIN 1II type of system specifically. The reasons for this
are as follows:

e Packet switches are replacing other trunking
types of systems.
® Packet switches utilize the entire 0SI and DoD
architectural models.
® Packet switches exhibit severe performance
requirements.
® A portion of the AUTODIN II system, or an
interface to it, will be implemented in the
Ada language as a practical evaluation of Ada
in the context of communication software.
Figure 2-5 serves as a general functional
topology of the AUTODIN II system. It in no way implies
specific geographical or network configurations.

et adacole K e

¥
2

I-2-11

e M TR UM

TiA T

CTETRMRE CWTYRW R TR W R Am

aowvjIajuU]
woIsis
Te3thra

9ow3a9jul
yoITMs
3ITNOaTD

Aemajen

SaYOITMS

we3sis 10§
103 Abotodol Teuorloung
§-Z @anbyg
Kemajen Kemavo
S9YDITMS YIOMIBN
abessan 12201

SSeYISTUT]

wa3ysis
SOTO0A
Te3thta

88300V¥
YI0MI3N
Te3tbta

390Rg

N

aoezaajug
wo3ysis

23111938ES

/9T TAON

SR B

I93uUd)
30TAI3S
8S900Y

N\

(3SOH)
201A9(Q
19897
~yb1H

aoejzrajur
19A97-YbTH

88300y
NXOMIDN
~-I23Ur
NSd
NSd
II3UID
10a3u0)
HI0MIDN
f3117100a L3100
butrysay putUNOOOY
/3uawdotaaag /10a3u0)

NL

@oegyiajur
19A97-MO"]

1-2~12

e e i

2.3.3.1 Functional/Protocol Layer Description

Figures 2-6 and 2-7 depict the protocol layers
for various components of the system. The diagrams do not
represent the Control and Test facilities interface points.
These facilities and their functions are not requiréd as a
portion of the protocol layers. The general protocol
descriptions are as follows:

e Transmission Control Protocol

This function generally manages a connection
between correspondents. This involves data
' transfer, control, and synchronization at the
user message level.
® Segment Interface Protocol
This function controls data transfers between

i .

L

access area (user or data environment) and the
network area (transmission facility
environment).
e Terminal Interface/Host Interface
This function is a set of protocols and
signaling conventions that correspond to
particular terminal and host classifications
or sets, (i.e., RS-232, MIL-STD-188-114, IBM
channel interface, etc.)
e Terminal/Host Protocol
Two functions are provided at this level. One
function establishes the terminal/host
inter face characteristics and the other
function establishes the formats for data
exchange using the established characteristics.
® Source-Destination Protocol
This function provides addressing, routing,
) and control functions which direct traffic
across the network.

SRR AR IR Yo bttt

T LA

pl 4

..

...................

Nim s e oA cai Tai e Bes ey GoB g e~ el e gl el il i ine e aagt SEENN

A K IR - "% s eWeIERT Y

I &,

PP

YoITMS 3I3YoRq

IINIOoNIJS TOO0]

oad

(OV1) ®de3adJuI TeuTWIdL II NIGOLOV

9-z 3anbtg

eTPan
Teotsiydq
1333784}
yolTMg IITTOIIUOD §E5000Y TRUTWII
/U4o3ITMS
pud
10203024 (YUTT suoTIEOTUNUMIO) TITTered) juoxg
uotrjeuryisag I9a3snid
35eJIaUT dIVMpIE
/@danog 393Ul MpXeH TeuTwa’dy,
10003024 10203013
aoejaajul 3VIANUL | e
Juswbag) Juswubag d
'
[U, N —
-
“ ! : d.
'
' axem3jos ' 10903014 4 Aomouou& '
" " T0a3U0) ! 101340 '
1
I_ Buraunoooy K uotsstwsuexy, | uoTssTWsueIL :
! 3189 - i T TT T
u /s $ 10203014 " suotjeorddy '
i /10a3u0) " 3ISOH H 19asngy !
' ' /1eutusy, H Teurmray, '
"ll I.I" . = P - L.
H HIOMION ' 3 .
' aoeJIa
; . 3soqur | u Rk
. ! TeUTWIAdY, I §
1
' 2 1
e e e 4
AN Wy Tam e o 0 "0 "0 e aT oy < " L (LA I M B +"y -"p "y "i%%) U0 . .t > .

R

45N v S e

I-2-14

T e

L2 W]
P
"Ve ¥y

A% % i
LAY
. -

ey,

»

4
aIn3onIls 1000301d ;
(WDDS) ®oe3Ia3UI 3ISOH II NIAOLOV ‘..
L-z 9anbtg 4
.. ‘ --k
.. . .L
]
yoaTms ayoerd WOOS
o
eTpau eTpoN 5
—3 TeoTsiyd —— 1eorsiyg "
. (d20av) (d400av),
1095030143 10003014
Yoy tmg 1ox3u0)
/U2 INS NuTT
10003014 . 4 5
uoTjeUTISag { " 0
|
/92anosg ! X v...
199035924 10003014
9oezIajul soegzaajur e e e e mem o,
3 s Jusubag '
’
..-l - e - I-lll-' "J‘
' ' 10903014 H 10003014 !
! axem3Jos ' o130 ' 10I3U0)
'
" " uorssSTUSURLL , oyssrwsuexy °
Fl - -onad
! ' 10003014
“ 3833 ! 1SOH
! | /Teutuzay,
' 1
== T03x3U0) -1
! “ aoejaajur T ———
' ATom3eN) 1soH Tou h
| " _uey soH
]
R |

0T eRh fatin

Cae T aw e re e P v e e e
AR PRAAIIPTINS vt AL

RIS CINC . N RN

(Daadh Bost B Skl sl Nl it st Aaii puag iy

® Switch-Switch Protocol
This function provides the line control
procedures necessary to establish, maintain,
and release an Advanced Data Communications
Control Procedure (ADCCP) protocol type of
link between adjacent switches.

® Physical Media
This layer is perceived as the electrical,
mechanical, and procedural requirements of the
hardware data circuit.

2.,3.3.2 System Management Punctions

The AUTODIN II model, like the DoD model, lacks
completeness in this important area. We must again draw on the
0SI model for discussion involving system management software.
By using the 0SI, DoD, and AUTODIN II models, it is now
possible to form a composite model which describes for
AUTODIN II not only the protocol layers and functions, but also
the system management functions. Figure 2-8 illustrates the
architectural correlation between the 0SI, DoD, and AUTODIN II
models.

2.4 FUTURE CONSIDERATIONS

Communication protocol standards are emerging
within the framework of the architectural models. These
standards are propagating upward through the architectures.

Thus, the models serve not only as a convenience
from the software engineering point of view, but also are a
framework from which wider interconnectivity is possible
between dissimilar users.

Another important aspect of protocol standards is
apparent. As standards are adopted, the software issue becomes
one of implementation rather than design. The rapid increases
in hardware technologies and per formance along with the rapid
decrease in costs makes a hardware implementation of a
communication protocol a very attractive consideration. Thus,

uostaedwo) aaAe] 0203014

STIAOW II NIQOLNVY/d0d/ISO

8-z @anb1a
TIAOW TIAON T3AON
11 NIJOLOY aod ISO
eTPan eTPONW eTpanW
testrsiyq 1etosdud Tea1sdyq
10003034 B
10003013
yoa11IMS NIOMIDN [013UQ)
/UdITMS 1201 utg
10003014 - - S
uor3euT3Isag e Too0301d ~< Joxoed
/@0Inos - -~ (a1) Sso /jI0oMmareN
- v =~
- . T [S
- -
100030149 _-” -
aoegyIajul PR (dOL)
jusubag _-" - h Soy-03-3SOH aaodsueay,
4
- — - - ——— = ————
-
10003014 . - uoTSSsag
1013U0D _e-
uotssIusuex] -
- L
10003014 sassadoad
SOl xosn
PUTWLIS], o13)RIUISII]
/1eut uo'
soezaajuy
1SOH
/TeutuIay], uor3eotTddy

1-2-17

AL P ke v s

prey v‘m —— B'*v‘v"-' e
AL IR R YRR I RN ARSI

| P SAMEACHENERER P)

Co I e el ‘i it

Tao

y-.
S-S
B

>

« & -+
nnnnn

L

a e e e

........

T T KT A TR T A T WYL I W w7 W W STLT RS TR T TR T T T e T e T B T e

lower-level protocol layers could essentia.ly disappear from
the classical software implementation.

2.5 CONCLUSIONS

Using existing communication system models, a
communication software model which is representive of current
communication systems software architectures has been formed
and is illustrated in Figure 2-9. This model, which we will
refer to as the SCI architecture, will form the frame of
reference for the remainder of the document. The SCI
architecture is based on the 0SI, DoD, and AUTODIN II models.
It exhibits a highly modular, hierarchical structure. The
identified modules possess functional orientations. The SCI
architecture implies general user/server types of intermodular
relationships. A high-order language implementation should
generally map onto the SCI architecture.

I-2-18

al s ‘altacta o aldava N T L - SRR, NP PRSI SRS SN SRS NP

AR AN SR

.

AN, e & A_m. 3

} NI FE Ve

N
pA3
o
o
?i
i
e L4
iy ¢
Ve]
- User \ General Applications
W Processes ' Software
' (Background)
-, [}
N H
" i
W User Interface :
i
l
e s o e — S - - N o s - o [} Operating
{ System
User/Host '
Protocol { Software
i
[]
System
.. Management
Transmission Software
Control Protocol .
(TCP) System :Component
Level 1 Level
FTTTTTTETTT T T T T Mgmnt | Mgmnt
Segment :
Interface !
Protocol {
(SIP) ;
'
|
Source/Destination !
Protocol :
1
(
s s e ar ey eav ows b oD SR aP P EE ae l
1
Switch/Switch :
Protocol !
(ADCCP) !
t
i
[
1
Physical Media ’ Hardware/Firmware
L]
'
[]
Figure 2-9

SCI Architecture Block Diagram

1-2-19

P RO TR AL PR, RO AR

& 3 'R RSE s A o) SRhe e e M Saia

TR

PR Siudivne crdi dlt Deats Sevis—mrai s uEr AR RCS AIs. Rt hadht R Bl MAE AR

(This Page Intentionally Left Blank)

P B 2020 dieny gan

TTWY

SRR e . B Lo . - -~ ER I R RIS
e S e B ~ b . v ~

Pt e . . . o DR - t e R ~
(WY 2 B 2 s 20 a2 el a laam e e L WS S e B S A Wl

L TER oW

B
(SIS

Bamy g3 F2 "R j =]

SECTION 3
COMMUNICATION SYSTEMS ENVIRONMENTS AND PRACTICES

This section describes the hardware/software
environments and implementation practices in the development of
systems based on the SCI architecture. This will be
accomplished by providing an additional level of detail to the
discussion of Section 2. This section will establish an
environment from which to address the concurrent processing
considerations. 1In addition, issues that are not directly
related to concurrent processing that are deemed important and
warrant discussion will also be presented.

The following topics are addressed: performance
considerations, hardware considerations, architectural
considerations, and software angineering considerations.

3.1 PERFORMANCE CONSIDERATIONS
An AUTODIN II type system exhibits severe
per formance requirements. In this section we will identify the
performance environment in which the SCI system must operate.
Generally, a communication systems performance is
a measure of its responsiveness to user stimuli and the number
of users it can support. Figure 3-1 is an illustration of the
relative performance requirements on packet switch nodes. As
the graph indicates, the nodes operate in a narrow band around
the point of optimization. The AUTODIN II system handles mixed
query/response and bulk traffic. Query/response traffic
3 requires a rapiqd response time. Bulk traffic, alternatively,
requires high throughput capacity. The point of optimization
L is the point where the system is utilized efficiently while
allowing temporary excursions above and below without

saturating or grossly underutilizing the system. !
The sequential orientation of the protocol layers :

addresses the response time requirements of the system. i
Typically, the AUTODIN II system is required to transfer a high ﬁ
!

A A

priority query/response message across the network within three
seconds.

Ce e e Lt
PRI IR Ao SRS S i SR S - N . - - -
ERE s MR A/ S L L P - R . . B T I T T
PR G T Y I i D I L P P A L L T T e S d

., .. " N .
'-.\}."-"'u"n. PP AP TR O PR e LI AL W CIRC U UPRTIPE P S YL TP ST SOl P et alatant ot an]

b
+

ST

s9Yo3TMS J9yoed ut uostredwo)

ndybnoayl °sa awy] asuodsay aarieToM

I-¢ ®anbra
(sqd) 3Indybnoxyy

K311100d UOTSSTWSURL,
Xo/pue ndD 3o
UoTILZTITIN %08-0L)

H
]
'
[
'
[}
|
'
)
'
'
!
uorjeztwiido jo jutod .\I\.\\\\nl\NI"I\
|
'
]
)
]
]

— e - ot — G —_ e —— o —— av S a oem S — v —— -

lalamn R A SR 28 b beon RUA NRERt S IFSi LR Aer s St M St S i di i A T N e

The use of concurrent processing techniques
addresses the throughput requirements of the system. An
AUTODIN II node consisting of an interface processor and two
node processors (PDP-11/04,34) must be able to handle 250 KBPS
in traffic. This environment indicates that an implementation
of the SCI architecture must generate modules that execute
efficiently and intermodule interactions must be rapid.

3.2 HARDWARE CONSIDERATIONS

In this section, we will justify our assumption
of a wide range of hardware environments. Additionally, the
management and distribution of hardware resources will be
examined.

Communication software has proliferated across
all hardware boundaries, including hardware type, size,
architecture, and vendor boundaries.

The current. trend, however, is to transfer
communications~-related overhead out of the larger mainframe
environments. Communication software is essentially spreading
out into the "channel" itself. Communication software is
present in front-end processors, communication
controllers/multiplexors, intelligent line controllers,
intelligent terminals, and even smart transmission lines
(microprocessor-based frequency/time division line
multiplexors). Well-designed and implemented netwcck systems
comprised of mini~ and micro-machines are capable of
considerable sophistication and per formance.

3.2.1 Hardware Resources

The primary hardware resources of a communication
system are the CPU, memory, and the transmission facility
access,

Access of the CPU and the transmission facility
is potentially resolved via the software/hardware configuration
and a scheduling algorithm that incorporates
prior ity/demand/supply considerations.

B R MLl D i

Access of memory resources is not as straight
forward. A design requirement is that memory that is not
allocated to coding structures is made available to the system,
at compile time, in the form of common buffer pools.
Acquisition of portions of this fixed memory space represents a
dynamic in-line acquisition by the requesting process.

Memory resources have expanded greatly with the
strides made with memory technologies. However, communication
systems have been and probably will continue to be memory-space
constrained for the following reasons:

® User requirements as well as system

requirements will continue to grow.

® Performance of communication systems is

tightly coupled to the amount of buffer space
available to the system.

® The number of users of a communication system

is directly proportional to its success.

e Implementations are gravitating toward smaller

environments.

Memory resources must be closely monitored and
managed to ensure proper operation of such a system.

3.2.1.1 Single Processor Environments

Figure 3-~2 represents this type of
configuration. Contention for resources is strictly at the
user (and subsequent interrupt) level and is resolved by the
scheduling and IOC algorithms. Whichever user is being

PN

MO S G

serviced, at any point in time, potentially has access to all
the required resources.

DA s pun B AU

3.2.1.2 Multicomputer Configurations
/BBNE79/ distinguishes multicomputer

configurations, illustrated in Figure 3-3, from a general class
of multiprocessor configurations represented in Figure 3-4.

The distinction is the lack of shared memory between the
processors of the configuration.

.

..........

-

[5. 470 WAl il b - -l -

XHOWIW

wo3sLs xo883001g 9TbHUTS

Z-£ 9anbyg

SADIAHA
0/1

YITIONILNOD 0/1

ndo

et Sk 3

VT TR E AT EV SRR R %

At Sl Bt B il D JeadC)

Claie ~iaal

R e Tl “ T~ Pl

TR T T T

Y Ty WY T T RS

WSS . M LR TURITIE wih ISR

uotIRaINHTIUC) YIOMIAN I08ESDD01J
€-€ eanbyg

se0TASq
0/1

0abd
O aAad

JL
77

sng uotjeoTuUnWmo) xossddoxdialul

.

S of TIOARAPIIINTY o) Ch RN SCNCAY

I-3-6

Y S W W S .

—

P V. Y

s907A9Q
o/1

o/1

WP . SUPSs of BEMENGS NadsCoristiestd

0/1

Caae s e o pe o o (4 GELA ASACTEErLcu bt e Chrh aoubr M il Arae SR 4 ol R AL A FESE L 4

wo3sAs 10s8s900adT3ITUN pejosuuodIaIUTl ATIng

v-¢ 2anbtg

0/1

MAA SO PWE Y L]

HOLIMS

N

/

0ad

Oad

LIP3 B PP T LSNPS SI-we-

!
LUQ‘D

L REN R

I-3-7

This type of configuration is utilized to address 5
increased throughput and connectivity requirements of an
existing packet switch. The communications bus is utilized for
local intra-node message traffic.

From the communications point of view, these
configurations do not represent a quantum difference from a
series of single processors interconnected via the network
transmission facilities. Intra-node message traffic over the

[communications bus would be subject to peer layer or
? layer/layer interface conventions. (Although this method of
g intra-node communication is occasionally used, it is not an

g efficient or effective communication technique with regard to
use of resources and response time.) Access to the bus would
be according to local hardware conventions and legislated by

H system management and operating system software algorithms.
o
? 3.2.1.3 Multiprocessor Confiqurations

3 Using the descriptions in /BBNE79/, a
multiprocessor is a multicomputer configuration with shared
memory. Multiprocessors, illustrated in Figure 3-4, represent
significant interprocess resource contention and communication
potentials.

Multiprocessor environments form the basis for
the concurrent processing issues that have been raised

% concerning high-level language implementations of communication
systems. The protocol layers provide for widely distributed

- processes to synchronize and control data exchanges via

X transmission facilities. Locally distributed processes may

1 have the same requirement to synchronize and exchange data;

1 however, to use the full SCI architecture and the transmission
E facilities to achieve this would be a very inefficient use of
F multiprocessor facilities.

3

PIPETTITWTT TN

..........

3.2.1.4 Future Considerations

The requirements of current and future
communication systems hardware environments illustrate a
greater dependence on concurrent processing capabilities. The
following considerations illustrate this point:

® The use of multiprocessor configurations
should increase to address throughput
capacity, reliability, and connectivity
requirements of the larger, highly
interconnected systems.

e Traditionally, communication systems have been
conversational, transaction-oriented bursts of
high activity followed by longer periods of no
activity. This mode of operation raises two
problems: one consists of managing the
transmission resources on a real-time demand
basis; the other consists of overall
inefficient use of the transmission facility.
Communications systems should gravitate toward
multi-access interconnection mechanisms. The
ability to multiplex transmissions on a single
transmission facility is currently
accelerating. Fiber optics, laser, and
microwave transmission technologies, their
reduction in cost, and the refinement of
random access protocols /DEC080/ will bring
this about /TOBA80/. The consequence is that

I transmission requirements could approach (and
f possibly surpass) computer software capacity.
5 This in turn could drive the implementation of
é‘ standard protocols even further and faster

r into hardware/firmware structures to address

- future throughput requirements.

® Generally, more diverse (and specialized)
users will require greater interconnection

f with each other.

I-3-9

DOLAE AR

t

PRI B PSPt oates-on (N LTkERE N

e
aTele 4an

T

- g

it A Fanatmn o dr-aiaiy - e)

e Communications systems will be utilized for
digitized voice, image processing, and general
machine-to-machine types of interactions.

3.3 ARCHITECTURAL CONSIDERATIONS

This section will deal with the issues associated
with an Ada implementation of the SCI architecture. If an
additional level of detail is applied to the SCI architecture,
Figure 3-5 results. This drawing illustrates some of the more
intrinsic and subtle relationships that can exist within the
architecture. Adherence to the architectural model will
require:
Resolution of external interfaces.
Modular structures.
Common data structures.
Internal organization of the architecture.
Implementation of a scheduling algorithm.
Access to a timing mechanism.
Careful, complete definition of system
requirements.

3.3.1 External Interfaces
The SCI architecture will address three external
inter faces which consist of the Operating System/Executive

Software, Communications Hardware, and User Interfaces.

3.3.1.1 Operating System/Executive Software Interface
The interface is determined by the operating
system and may range from very low level memory manipulations
to very high level, multiple parameter calls. It is this
inter face and the range of management services provided that

achieve the operating system quality of communication systems
software. Communications systems are implemented on a wide
range of hardware env'ronments. Consequently, they experience
a variety of operating system/executive environments that range
from having no explicit operating system to sophisticated
multiprocessor operating systems.

——

SCAIC

R S

AL S0 N0 a an ma gt . Lum

L

e SRR . o am aay o ame

User
Interface [
_q In-Line
A:éi: Support T‘
" System Operating
Management
User/Host | tirxes System/
Protocol
Executive
I__-_y Software
45 Common
Transmisssion
Control L%—f‘ Data
Protocol '
Protocol
3 Sequence/ 3y Base
| Control
5 Logic
Segment
Interface &\
Protocol
Source/
Destination e—P—
Protocol l
Parallel ‘
~» System
. Management
‘I, Routines f
Switch/
Switch e
Protocol
l' T
f
Phy§ica1 ! Firmware/Hardware
Media '
[

Figqure 3-5
SCI System Architecture

I-3-11

LA ADAl Jhvan ANt e~ gy Rl it b by TSy,

These environments are not always favorable
ones. As /CLAR80/ pointed out, the analysis of an
implementation of the DoD model on a large MULTICS system
illustrated that the operating system was responsible for most
of the internal processing and that this overhead did not vary
with the length of the data transfers. Operating system
scheduling algorithms and memory management schemes may have to
be dynamically, and quite drastically, altered or circumvented
to provide a communicaticn system with sufficient resources to
operate at a required level of performance.

3.3.1.2 Communications Hardware

Communications equipment can vary widely in the
areas of performance, complexity, and intelligence. This
equipment actually falls on a continuous curve concerning the
parameters just mentioned. The following paragraphs will
highlight characteristics at the upper, middle, and lower
sections of this curve,

3.3.1.2.1 High-Level Communications Devices
High level communication devices are

software/firmware driven front-end or communication
processors., Access to these devices is at a file level of
I/0. The characteristics and subtleties of the communication
process are shielded from the central processor. Considerable
bandwidth over a number of different types of lines is
possible. The I/O interface to these devices could be at the
transmission control protocol level of the SCI model.

3.3.1.2.2 Mid-Level Communications Devices

{ These devices have considerable hardware/firmware
complexity, but they remain directly under the control of
software., I/O is at a message level or lower.

L

t-' I"3-12

and S Sn AR A AR
. .AJ.‘. PR

The interface in the SCI model is at the
source/destination protocol level or lower. The following
functions are typical:

e Enabling, disabling, and fielding of
interrupts is performed.

® Allocation and release of data buffers is
per formed.

® Buffered I/0 employing DMA is used.

® Supervisory/Control I/0 exchanges are
per formed.

e Transmission line characteristics are
addressed by the hardware/firmware.

® Medium-to-high line speeds are supported on a
group of similar line types.

3.3.1.2.3 Low-Level Communications Devices

4 These devices have no sophistication. They are
? employed where lower costs and lower performance requirements

prevail. I/0 processes are at a very low level:

® The transmission line interface is manipulated

directly by software.

® Interrupts are accepted, enabled, and disabled.
‘ ® Parity checking, redundancy checking is
! accomplished at the software level.
) e Transfer is on a character-by-character basis.
; ® Low to mid-range line speeds are supported on
- a single line.

3.3.1.3 User Interface
In practice, this interface varies widely from
3 system to system. Generally, the interface is determined by
é the communication system software; ho'.ever, it will have to f
address the following conditions:
® Previously designed and installed software
conventions.

e Human engineering requirements such as console
and terminal operator display conventions.

PP YW WY

I gy

ey

LT A B o 3w o dhchitiryb SN SUINLSN

()

O S JEY

® Mechanical/electrical requirements of low
level devices.

3.3.2 Modular Structures

Ideally, communications software should consist
of sets of functionally oriented modules (and supporting data
structures) that can be dynamically linked and invoked

according to real-time events and conditions. The SCI
architecture is a significant step toward this end. Modules
should have the following properties and characteristics:

e Be interruptible, re-entrant, and relocatable

® Be manageable in size with a common function
orientation

Share common data structures when needed

® Provide the ability to generate linkages to
software written in other languages (native
code, micro-code, assembly language, macro
structures, and foreign language coded
structures)

® Provide intermodule exchange of ID, control,

and data parameters

3.3.3 Common Data Structures

Communication systems are event driven systems.
An event can be associated with system state transitions. An
efficient, flexible, and maintainable method of controlling
software in this manner is to employ a data structure, similar
to a common area in FORTRAN, in which to:

® Record event occurrences.

® Record the state of the system.

® Record the current component level user and

hardware configurations.

e Record the current system level configuration.
Record performance/utilization parameters.
e Share memory resources.

~~~~~~~~~~~~~~




B IO A et

L AR el

e\

[t o

rak Rt S

T Y

TR TR TRT X TN LT QT S T T R DO R A N b tavar

Extensive use of data structures provides a key
advantage; when memory constraints exist, common data
structures are a means to share resources and can be allocated
and reclaimed dynamically.

3.3.4 Internal Organization of the Architecture

The architecture is partitioned into protocol
layers and system management structures as referred to in
Section 2. Thus, the need for a task-type software
architecture is readily apparent. Conceptually, each protocol
of the protocol layers can be viewed as being a task or a

nesting of tasks that can be scheduled on a demand/priority
basis.

3.3.5 Scheduling Considerations

In many respects, the software of communications
systems behaves inherently as a message processing system
itself with information, data, and control passing from one
protocol layer to the next. Each such exchange represents a
request for the use of one resource by another and thus
represents a need for scheduling the use of that resource.
Since many of these exchanges, both across a protocol interface
as well as within a protocol layer, will be event driven, there
exists a need for defining and being able to control parallel
processes whether the implementation is in a single processor
or multiprocessor. Thus, to accomplish this scheduling
successfully, the SCI architecture relies upon a separate
scheduling mechanism which is suited to the application
requirements but which is implemented outside the protocol
applications themselves as part of the operating system
software of the SCI model.

3.3.5.1 Scheduling Criteria
Task scheduling is based on a multifaceted set of

priorities. The SCI architecture dictates that events at the
physical layer have a higher priority than at the user level.
General efficiency dictates that resource-freeing processes

T A S




e e A8 Sl PR S b ot Aewoohiaad i B s 8 st wad B Gl ok Mad aauh o smadh dead Beglh e s b RSk * St NEa Tt “B S en fbugy S -ty Redr it bal et St Ratv Bt i ST A A AR R

have priority over resource-acquiring processes. Static
priorities are implemented via design considerations. Dynamic
precedence priorities may need to be formulated and acted upon
in real-time.

Flexible, efficient, comprehensive, and dynamic
scheduling algorithms must be possible within an implementation
of the SCI system.

The following states or events could invoke a
scheduling operation:

e Task suspension criteria

- Initiation of I/0 (Optionally dependent upon
the CPU/IOC hardware configuration)

- Initiation of a time delay

- I/0 termination for a higher priority task

- Empty message queues

- Expiration of a time slice (Solely dependent
upon the operating system)

- Task termination

e Task activation criteria

- Termination of I/0

- Expiration of a time delay

- Non-empty input queues

- Time slice available

» 3.3.5.2 Scheduling Mechanism
E; A mechanism with sufficient comprehensiveness,
4 flexibility, and efficiency is not perceived to be inherent
F within any high~level language or available within general

' operating system software used in communication systems. 1In

: addition, tasks should not be required to be directly involved
b in the scheduling function. Rather, tasks should be permitted
ET to perform actions which result in scheduler interactions which
G

in turn assure that the best use of available resources will be
made. Evaluation of any implementation language must assess
whether a scheduling algorithm can be implemented within the
syntax and semantics of the language and according to a
multifaceted set of scheduling conditions and priorities.

NASLA AR AL SRARS B LIS

I-3-16

P R R R WA WA P W AE S U A0 S ML W P 2




::::: e s st At Mhar S AR S AL A Abae SFIC T S S AN S Ol Ll e S e T M Mt ..'-‘-“'1

Generally, the scheduling of tasks would be
provided by a system management scheduler, a
multiprogramming/multitasking executive, or some combination of
the two which determines which task can execute next and then
invokes the operating system dispatch mechanism to handle the
mechanics of the task context switching.

3.3.6 Timing Functions/Mechanisms

All protocols will require timing functions to
varying degrees of accuracy. Timing of I/O processes, protocol
segments, and institution of delays are essential functions of
a communication system. Timing functions are utilized to delay
processing until resources are available or specific conditions
are met, to provide response timing windows to maintain
protocols and interlayer ir.:erfaces, to detect idle conditions
within the system, and to detect certain types of errors.

A mechanism for timing functions could be a
message sent to the interval timing device software.

Expiration of the interval is reported to the requesting
process via a priority head-of-queue return of the message to
the requestor's message queue.

TR Tk okl

3.4 4 SOFTWARE ENGINEERING CONSIDERATIONS

In this section, we will define software
engineering as a formal, structured approach to management of
the life cycle of a product. Phases of the product life cycle
are:

oo

Requirements Definition
Design
Implementation
Operation/Maintenance/Support

With the above background, areas were sought in
which a high level language would significantly impact a
general engineering approach to the implementation of
communication system software. Thus, the major issue is how
the Ada language can be of assistance early in the design phase
] of the product life.

TN WL TT Y W Jas £ €&
e & o o




) el W] el SN LTS el T

NN

]
. e

...............

Three tools associated with the design process
have been identified that would lend themselves to Ada
implementations:

e Protocol specifications and program language

models /BOCH80/

The feasibility of using Ada for program language
models is demonstrated in /BOCH80/; "program language models
are motivated by the observation that protocols are simply
algorithms, and high level languages provide a clear and
relatively concise means of describing algorithms." This
technique is demonstrated in /BBNES80/.

® Program design language

An Ada translation of the program design language
description of the ADCCP protocol /AUTO78/ which is utilized by
the AUTODIN II system, produced a highly understandable and
improved documentation/specification vehicle.

e Simulation Languages

As /KOBA78/ points out, it is often desirable and
preferable that simulation vehicles be implemented in general
purpose high level languages to increase debugging potential,
compiler support potential, and decrease multidisciplined,
cross training, and multiple resource (simulator language)
support.

3.5 SUMMARY

In this section, we have identified the
environments and practices associated with communication
systems. The following issues associated with using a
high-level language as an implementation vehicle have been
identified.

3.5.1 Performance Issues

Packet switch networks represent severe
performance requirements. These requirements dictate that
modules execute efficiently, and also that a choice of
algorithms for process scheduling and interaction be available
such that the most appropriate may be utilized.

1-3-18




[ R R TR T T TR TR T e Ty T T LT T T T e
® -

r -

3.5.2 Hardware Issues

Several hardware issues have also been
identified: first, the implementation of communication systems
software across all hardware boundaries implies
transportabiiity of the software across a broad hardware
range. This will require wide acceptance of the language
and/or very comprehensive cross compilation capabilities.
Second, the management of access to resources in the single
processor and multiprocessor environments must be efficiently
resolved. Third, memory space constraints on communication
systems require that modules coded in a high-level language
compile into efficient machine code. Fourth, the use of
smaller environments for communication systems implies (1) the
ability of the software to fragment and execute across
architecture/vendor classes of hardware, and (2) the ability of
the language to serve as an implementation vehicle or guide to
lower level, less sophisticated hardware units. Fifth,
efficient interfaces to mid/low-level hardware devices must be

possible.
3.5.3 Architectural Issues
The following architectural issues have been
identified:
® Varying Operating System Environments
: Communication systems are implemented in a
: wide range of hardware and associated
2 operating system environments. High level

y language constructs should be sufficiently

s flexible to address this situation.

ﬁ e Common Data Structures

1 The SCI architecture utilizes common data

d structures to address memory space constraints.

e Efficient and Comprehensive Scheduling Vehicle
The SCI architecture is predicated on an
efficient, comprehensive, and real-time
scheduling capability.

............................

- -
.........




LA o it sl i B ek-hant gt - e S LA i S S A AR A St hr it G- R ” e SRS A e A gl i~ i

® Access to Interval Timers
Communication systems require a suite of
timing services.

- . . f eSS e~ = . - - - - - -

. - - - - = . « e, B

Y e I AT T TR P L A PR B AP SR Y At PSR Y TS I "t . -t e - . - - .
PP PV RT TSt wa gy PO TP S P T e P LRSI N TN IS LY P I PRI N e YA S, W Y G T




SECTION 4
CONCURRENT PROCESSING CONSIDERATIONS

Concurrent processing capabilities in
communication systems generally, and the SCI architecture in
particular, partially address the time and space requirements
of communication systems by sharing the primary resources of
the system. This section of the document will define
communication systems concurrency requirements, identify the
various concurrent processing environments, identify concurrent
process associations within the SCI architecture, and examine
conventional approaches to process control. This treatment
will yield the concurrent processing issues and problems of a
high level language implementation of communication systems
software for which solutions and alternative measures can be
determined and analyzed.

4.1 COMMUNICATION SYSTEMS SOFTWARE REQUIREMENTS
Concurrent processing is experienced in the SCI
architecture to address multiple users of the system, and the
invocation of system management processes that operate in
parallel or concurrent to the sequential protocol layers.
As Figure 3-1 illustrates, there is a significant
throughput/response time tradeoff consideration exhibited in
! packet switch systems; that being an optimization on both

) parameters. Concurrent processing generally addresses the
throughput parameters, while the sequential processing
exhibited by the protocol layers addresses the response time
parameters,

4.2 CONCURRENT PROCESSING ENVIRONMENTS

The degree of concurrent processing and process
control that exists within a system is dependent upon the
system requirements, the set of management services/functions
provided, and the hardware environment. This section will

A e et et M . ——



o

Prindnt ~— SoCURl

P
P £

examine the concurrent processing requirements of communication
systems in the light of various processor configurations.

4.2.1 Single Processor/Multicomputer Environments

Single processor environments, as illustrated in
Figure 3-2, are multiprogrammed, multitasked, or time-shared
environments. As a result, true parallelism or concurrency is
not achieved. However, the threads of control and process
interaction proceed as if true parallelism were possible.
Process~-to-process communication is via the exchange of
messages and process-to-process synchronization and processor
resource contention is handled by the scheduling algorithm.
Multicomputer configurations, as illustrated in Figure 3-3, are
not a significant departure from the single processor
environment. This type of configuration is usually implemented
to address throughput and internode connectivity considerations.

Multitasking/multiprogramming in these
environments exists to provide the capability for multiple
system users and to invoke background (parallel) system
management functions.

4.2.1.1 Multiple Users
Multiple users are interleaved via the SCI

architecture. Figure 4-1 illustrates possible connection
points (or delay/queue points) of a system employing several
protocols at individual protocol layers.

4.2.1.2 Parallel Processes

The parallel processing considerations in these
configurations are lower priority, system management types of
processes. Again, true parallelism is not possible in these
configurations. However, when conditions exist and resources
are available, these processes will be scheduled at a lower
priority, and the appearance of parallel operation results.




F‘-«w. AER B Jac- meces Sht Eaagy e Shagh SRRt i N

TERMINAL
CLUSTER
(Tn)
APPLICATION
LAYER
PRESENTATION
(::) LAYER

VIRTUAL,
LOGICAL,

SESSION

PHYSICAL
CONNECTION s2 o o s LAYER
- TRANSPORT
: Tl LAYER
2 TASK
; BOUNDARY
: NETWORK /PACKET
i LAYER

LINK CONTROL
Ll LAYER
PHYSICAL MEDIA

it SR

e

PR TN

A g O
N

A

TV TrrrIvyrsrer

iy

~
L

Y T~

F 4-1
Ml Sipte  User
Connection Points Within the Architecture

I-4-3




"(J, GG

NS - PEAICTO ML AS - SRORIRENITN

RAY - Caay

[P

MARAR 7 FLINLEA I e G ot

JEue SNS oo

T

RGN

Taen

A

F'rruv-‘\"ﬂvA AR )
]

4.2.2 Multiprocessor Environments

These configurations, as illustrated in
Figure 3-5, represent a complete interconnectivity of the
system resources (CPU, memory, and transmission facilities).
True concurrent processing is possible, due to the sharing of
memory between processors, to address the requirements on
communication systems software of multiple users of the system
and parallel system management functions.

4.2.2.1 Impact of Multiprocessor Confiqurations Upon the

SCI Architecture

The SCI architecture is oriented toward
multiprogramming/multitasking environments to address the event
driven nature of the software and the requirements of servicing
multiple users and providing parallel system management types
of functions and services. As /JONE80/ points out, "... there
are few differences between multiprogrammed systems with and
without multiprocessors."” The differences are perceived to be
the mechanics of process control, which should be for the most
part transparent to the protocol layers of the architecture.
Thus, the solutions to the issues of associated concurrent
processing and process control lie in the implementation of
system management processes and structures. It is for this
reason that significant discussion concerning the 0SI and DoD
models was presented and a prototype model, the SCI

architecture, was developed. It is our contention that the SCI
architecture is preserved in multiprocessor configurations; and
any implementation is facilitated by the architecture
concerning fragmentation and duplication of the architecture
across multiprocessor configurations.

4.2.2.1.1 Sequential Processes in Separate Machines

Shared memory greatly facilitates the
fragmentation of the SCI architecture along protocol layer
boundaries as illustrated in the AUTODIN II system
implementation. Such fragmentation requires the following
restrictions. First, cthe hardware boundary must coincide with

I-4-4

WPV W T Y £

| R T P I T T T S T T S N S o T U N T U o STV, S P PNy J



. PAr S gt 2 PR s S0 A D 6 -‘H NP e o —y——
R P : u.« e, _‘n.. PEPA Aft. l:“:. LAY '."':7
H

9

t

i

Nadooce e . o e seses

PP

the software boundary. Second, if a hardware interface is
employed at the boundary (such as a bus or I/O channel), then
the interface must be efficient and comprehensive (perform
error checking, flow control, etc.). Third, if the interface
between machines is via common memory, then mutual exclusion of
the associated data structures must be enforced. Sequential
processes in separate machines may be of the logically
associated type, such as adjacent protocol layer tasks; or they
may be of the logically connected type, such as a buffer
manager routine and the task requesting the resource.

4.2.2.1.2 Parallel Processes in Separate Machines

These types of processes may be either logically
associated, connected, or disjoint. Logically disjoint
processes require no knowledge of each other and no control
with regard to each other. Logically associated processes
(such as peer protocol layers) require communication and mutual
exclusion legislation but do not require synchronization in
time.

4.3 CONCURRENT PROCESSING ASSOCIATIONS

Communication systems are event driven systems.
At each layer of the SCI architecture, random message events,
protocol events, timing events, and sequence considerations are
sensed and acted upon, which illustrate a nondeterminant type
of processing.

Concurrent processing associations in
communication systems software can be categorized as follows:

® Disjoint processes

® Associated processes

® Connected Processes

4.3.1 Disjoint Processes

These processes do not require knowledge of or
dependence on each other tc complete their operation. The only
commonality between disjoint processes is system time, memory
space, and I/0 resources. Disjoint processes are exhibited in




:
-1
-
5
.
!:.
12
b
b

the SCI architecture as system management processes that
execute in parallel to the protocol layer processors.
Figure 4-2 serves as an illustration.

4.3.2 Associated Processes

These processes may require knowledge of each
other and a degree of loose dependence upon one another. This
type of association is exercised via interprocess communication
and possible sharing of a common resource such as a queue
strictly as producers or consumers, distributed in time. The
concept of associated processes is a departure from the
literature in a strict sense. /ICHB79b/ states "one of the
impor tant concepts introduced by /CONW63/ ...is that
synchronization and data transmission are two inseparable
activities". 1In communication systems, process-to-process
communication is a necessary condition for synchronization; it
is not in all instances a sufficient condition. For example,
the sending of a message across an interlayer inter face
requires the sending task to wait only for the length of time
necessary to deposit the message on the receiver's input
queue. There is no requirement to wait for the receiver to
accept or act on the message; in fact, to minimize the response
time parameter, it is undesirable to do so.

Perhaps the inconsistency arises due to lack of a
time parameter. The SCI architecture is designed to forward
messages between processes in an asynchronous, user/server,
relationship and distributed in time. Events at the
application layer are measured on a completely different time
scale than events at the lower layers. Synchronization (when
required) is achieved by the internal workings of the sending
and receiving processes themselves via peer protocols and the
protocol layer interfaces. Figure 4-3 serves to illustrate
logically associated interprocess relationships.




Cane ey

-

bl

0 VS mew o v ul gue gean gy

sassano1g jurolstg Arteorbon

Z-b @anbr3
pud
I9ke
uotjejuasaid
r~y
bo1
waysis
jutad
ho uoTILIUISIXF
uR3sis 103 3sanbay
peay Jewrog
BOT
uoT3IeZITTIN asenbay
uP3sis andano puas
:apooag ajeprITeA
aaem3jjos jusauabeuen wolsks a3heq uorjzeoriddy
|
I1sanbay
aTosuo) asanbay

\ puas A




Lt oage S

| a3 ot i ety e

95500014 po3eTO0SsY Ayleoibol

t-y 2anbra
a3dke
uotjejuasaig
1
por1 waysis
ay3 03
I9j3ng 93TaIM
-1 1
x933INnq uorlIe3uasS3’ad
03 paooAY 103
9ITaIM 3sanbay jeuwrog
onboy woTaeaTTIan
aje N N
Fepdn aasn a3jepdn
3sanboy
puag
9x1eM]1JOS o3eprieA
Juswabreuen
jusawsbeuey wa3isis walsis 29de7 uorzeoTTddy
L |
3Isanbay
puas
.—rn....-.NHL».TnL.L...».......Hl P ARSI NN, n.v.r.rr.PPE ko vt b 4 PP TareT

I-4-8




L BEEAan ae a §

DSy ~a we e SRaey e 2w dP g dP-es ol Sheth ]

e etalL it L b e AN T A A 2 e Pt e O L L

4.3.3 Logically Connected Processes

These processes require, at some point in time,
and possibly space, knowledge of and a high degree of
dependence upon one another to complete a function. Typically,
a process cannot complete, or proceed to the next step until
the operation of one or more logically connected processes have
completed. Logically connected processes exercise this type of
association via communication with one another, synchronization
with one another in time, sharing of common resources in a
producer/consumer dependence -or, in producer/producer,
consumer/consumer contention. Figure 4-4 illustrates this type

of relationship.

4.4 TRADITIONAL SOLUTIONS TO PROCESS CONTROL

The following subsection defines those facilities
available within current programming languages that are used to
support process control. Process control in this context may
be viewed as those commonly known concurrency aspects of
process—-to-process synchronization, process-to-process
communication, and mutual exclusion. Each of the mechanisms
outlined below is used to support one or more of these
aspects. Advantages and disadvantages associated with the
usage of these mechanisms are also presented.

Section 4.4.2 presents a description of how these
traditional solutions to process control apply to general
communication system implementations.

4.4.1 Process Control Mechanisms
4.4.1.1 Interlocks

An interlock is a primitive and efficient
mechanism used to provide access control to code or data
segments within a program. It is normally implemented via a
"TEST-and-SET FLAG" instruction in cooperation with hardware
features that guarantee uninterruptible fetch and store
operations on the flag in use.

I-4-9

S PR S YO NPT S S Y

.

e




S9589001gd pPajoduuo)d A1reorbhol

p-v 2anbyd N
aake]
. uotT3lPIUISAIAg ’
. Y
,r. ] T .

W B
:
,
. Bo1 uor3ezITTIn
ﬁ. e wa3sks -3
3 03} I333nd 9ITIM h
: I
ﬁ. uotlelUuadsSa’Ad
ﬁ.. a933ng I03
_., 03 proJax 3sanbay jewxog
. I9sn 93TaIM S
1 _
aseq /H.
eleq - :
pIooay -
a3epdn uwwww uoTIeZTTTIN ....
I 19sn 93epdn B
T N
aseq | L
eaeg ayy ur o
a3sn ajeoso] 1 .
L o
_ 4 o
(puadsns)
:
:
axem3jos
198 3 asanbay
PTTEA Juowsbeuey e3epitea
wa3sis x3de7 uoryeortddy
r
asoanbay
uadgo

T e ot e e PRI . RO - i - T30 UL SR SUILIS ol SUR-TUPITAPETATS. ol ARKL ARSI




T T T R T T Oy T T s s e s e e S Ol

..................................

A typical implementation would include objects
that could be LOCKED and UNLOCKED. For example, a programming
language would typically declare an interlock variable (I) upon
which LOCK and UNLOCK operations would be performed. When
mutually exclusive access to a shared object is desired, this
object would be surrounded by LOCK (I) and UNLOCK (I)
primitives. That is, before using the object, a program should
LOCK its corresponding interlock, and afterwards should UNLOCK
it. Thus, mutual exclusion is achieved.

The advantages and disadvantages of employing
interlocks as process control mechanisms are as follows:

Advantages

o Efficient implementation

® Simplicity of use

Disadvantages

® Lack of monitoring capability

e Lack of enforcement of access adherence or

compliance

e Tendency to make program sections in which

they appear difficult to maintain

e Tendency to defeat modular structure of

surrounding program elements

® Only addresses mutual exclusion aspect of

process control

4.4.1.2 Semaphores
Like the interlock, a semaphore is a primitive

and efficient process control mechanism. It is often used in
process control when a process is only concerned with receiving
a timing signal from another process when a certain event has
occurred, or when mutually exclusive access to a shared object
is desired. It can be regarded as a special case of process
communication in which an "empty message” is sent each time a
ce-tain event occurs. Since the messages are empty, it is
sufficient to count them and hence the semaphore (S) may be
viewed as a single element buffer containing the number of
signals sent, but not yet received (/BRIN73/).




e

) ISR

LA I e A

A SEN

A AR A At S S OR LIt IR IR IRy |

Aol

The only valid operations defined on semaphores
are P(S) and V(S), sometimes called WAIT and SIGNAL,
respectively. These two operations allow a process to block
itself to "wait"™ for a certain event and then to be awakened by
a "signal" from another process when the event occurs. Thus,
P(S) and V(S) have the following meaning:

P(S): Wait until S > 0, then § = s-1

V(sS): S = S+1
Note that the operations P(S) and V(S) must exclude each other
in time since the semaphore (S) is a common (shared) variable.

Semaphores exhibit many of the same advantages
and disadvantages of interlocks.

Advantages

® Efficiency of implementation

e Simplicity of use

® Possess rudimentary scheduling potential

® Possess some access control

Disadvantages

e Lack of monitoring capability

® Do not rigidly enforce access adherence or

compliance

e Tends to make surrounding program elements

difficult to maintain

® Tends to defeat modular structure of

surrounding program elements

® Only addresses synchronization and mutual

exclusion aspects of process control
Note that the degenerate semaphore case, in which only the
integer values 0 and 1 are emploved, functionally corresponds
to the interlock described previously. Such semaphores are
called binary semaphores. Note also that the "critical
section" or "critical region" /BRIN73/ syntactic form is really
only a construct equivalent to a bracketed pair of P and V
operations which prevents undesired entry and exit from the
region and thus overcomes one of the most undesirable features
of separately implemented semaphores. The conditional critical

4 2 > m ot e S Baoraa AR




)
’

et

i P S

awv—.-ww—rn.
- . Ve

v veryerr
NNy . Sl

—

v M S et

Y YT Ty Y

gy

region /BRIN73/ merely extends this to provide alt- ative
actions if a requested resource is busy.

4.4.1.3 Message Buffers
Interlocks and semaphores only address the
synchronization and mutual exclusion aspects of process

control. They cannot be used to directly effect message
exchange between cooperating processes. However, an extension
of the semaphore primitives allows them to become communication
operations that provide both synchronization and data
transmission. Usually, SEND and RECEIVE operations are defined
by which one process executes SEND to pass a message and a
second process accepts the information by executing RECEIVE.
Since it is desirable that the sending process not be blocked
awaiting acceptance of the message by the receiving process,
most implementations support the declaration of a message queue
or "mailbox."

The advantages and disadvantages of message
buffer mechanisms should be obvious, but are listed below for

conpleteness.
Advantages
e Fairly simple to use
@ Does not adversely affect modularity
e Reasonably maintainable
Disadvantages
® Tends to be inefficient due to overhead
associated with message transfers and queue
manipulation
® Does not directly address mutual exclusion or
process synchronization
4.4.1.4 Monitors

A monitor provides convenient facilities for
guaranteeing mutual exclusion and for blocking and signaling
processes. It is defined in /BRIN73/ as: "A common data
structure and a set of meaningful operations on it that exclude
one another in time and control the synchronization of

I-4-13




PRl ol SR et St iana gt i it anil il BN adi Sl iiday

L

Dt aa ) S

-t

concurrent processes.” A monitor may be viewed as a "fence
around critical data". All sequences of statements that
manipulate shared data are collected and moved inside this

Prp——
e o _=

"fence". The "fence" has several gates, one corresponding to
each sequence of statements. Each of the sequences thus form a
special purpose procedure called an "entry."” This means that
all the critical sections for a particular set of shared data
are collected into one place /HOLT78/.

It can easily be seen that whenever one of these
entries is invoked, mutually exclusive access to the shared
data is automatically provided. Furthermore, the enforcement
of mutual exclusion is implicit --- the programmer need only
invoke the entry --- the translator is responsible for

generating code to guarantee mutual exclusion.

The advantages and disadvantages are as follows:

Advantages

® Does not adversely affect modularity

® Guarantees mutually exclusive data access

® Precedence and priority considerations can be
provided

® Supports maintainability from a modularity
point of view

Disadvantages

e Somewhat inefficient in comparison to
semaphores and interlocks

® Only addresses mutual exclusion and

ch b el XT e VU

synchronization --- not communication
® Somewhat difficult to use and hence maintain
(from a complexity point of view)

4.4.2 Applicability of Traditional Solutions to Process
Control Within Communication Systems Software
The traditional approaches to implementing
process control mechanisms illustrates a tradeoff between
modularity and efficiency. Communication system software, such
as the SCI architecture, exhibits requirements for process
control mechanisms that span the efficiency/modularity spectrum.

I-4-14
‘o.'."~' Sos e A T oo oL ) - Lo T L.
R A L L I R L
PR WAL SRS TR SN S LIPS YO TP PR T VR R TS AP SRS S Y 1 SO

TP e

rE XL

i

"y




Interlocks

The use of shared data structures requires the
rapid access, mutual exclusion benefit of this
type of device.

Semaphores

The implementation of efficient access control
(synchronization and mutual exclusion) to
interval timing devices could well be served
by this type of device.

Message Buffers

Communication systems inherently employ
message exchanges between processes. Message
queues or "mail boxes" serve the data exchange
or interprocess communication requirements of
the SCI architecture.

Monitors

The system management portion of the SCI
architecture provides for the centralization
of common monitor type, in-line services and
functions (such as acquisition or release of a
resource) for the protocol layers of the
model. This type of device provides for
mutual exclusion and strict compliance of
access to system resources and shared data
structures where required.

4.5 THE ADA LANGUAGE SOLUTION TO PROCESS CONTROL

The Ada language, as documented in /USDO80/, has
addressed concurrent processing with the concept of tasks which
can run in parallel with other tasks. The details of Ada
tasking are documented in the literature (/USDO80/, /BBNE79/,
/BOUT80/ and /ICHB79b/), and need not be repeated here in
detail. The major concepts and points we wish to address are

detailed below.

I1-4-15

L JEPRULISS S S |




4.5.1 Ada Task Structure

The task structure which includes the entry,
select, delay, and accept statements make up a formidable high
level structure that maps well with the SCI architecture
tasking requirements. The entry statement provides visibility
to other processes; and it defines a queue for the calling
processes. The accept statement addresses the retrieval of
information (control and data) from the task requesting
service. The select statement provides for an examination of a
series of conditions (or guards) which together with input
information determined the control of processing within the
task. The delay statement provides for one of the timing
functions required by the SCI architecture.

4.5.2 Ada Rendezvous

Ada uses the concept of a "rendezvous" between
tasks to address process control for intertask communication,
synchronization, and mutual exclusion. The characteristics of
the task rendezvous are as follows:

e Asymmetry of Identity

The calling task has knowledge of the called
task. The called task has no knowledge of the
caller, except possibly via the data that is
exchanged, outside of a rendezvous.

® User/Server Connotation

The called task acts as a server to calling
tasks. Functions/processes are invoked by the
called task on behalf of the caller.

® Scheduling

The calling task is suspended until the
rendezvous is complete. The called task is
scheduled for execution, if not already
executing, at the start of rendezvous
(coincidence of an entry call and the
execution of an accept statement). The called
task continues executing for the duration of
the rendezvous. The called task may be

A e A e




2 e L R R R PN R L e L e A
T T W W L SRLE JENE ACHE A aduah ogl i pSE T pee et i A S St TR T T e T e e T T e T e E e T o

suspended at the completion of the rendezvous
and the calling task is rescheduled for
execution.
® Queuing
Ada associates a queue with each entry point
in a task. This is the means for
synchronization between tasks. Ada treats
tasks as objects and within the framework of
an Ada rendezvous, tasks are queued to one
another.
NOTE: The /USDO80/ does not specify what
suspension means. Task suspencion is an
implementation decision and could conceivably be
a spin-lock, a time delay, or a complete memory
rollout of tasks.

4.5.2.1 Task Synchronization
Tasks are synchronized with each other within the

task rendezvous of Ada. The calling task cannot proceed until
the called task has completed, i.e., the accept statement has
executed.

4.5.2.2 Task Communication

The exchange of data parameters between tasks may
occur within the rendezvous. The mechanism is
implementor/translator dependent.

4.5.2.3 Mutual Exclusion

Mutual exclusion of shared resources is achieved
within the rendezvous since only one of the task pairs is
actively processing until the rendezvous is completed.

No other mechanism is inherent within Ada
constructs to effect mutual exclusion, outside of the
rendezvous between task pairs.

hrs SR 2 AR MR uie BN ¢ i A e Py




T -

O™ B

vy
e

RN

LT Y—

o v
LIRS 7~ (AT

T

Ty I

P

L Aast Bad S Badh N Art At e A Sl A i e M S i M A

4.5.3 Summary

The task structure and rendezvous concept chosen
by the Ada designers generally provides for a high-level
solution to process control. The Ada rendezvous concept has
greater documentation and modularity potential than the
traditional solutions discussed, however, it lacks flexibility
and the efficiency of the more primitive mechanisms. The
concept of rendezvous in theory maps very closely to the
requirements, architectures, and overall purpose of
communication system software.

Although not directly stated above, we believe
that the other solutions to process control could be
implemented via Ada constructs as modularity and efficiency
requirements dictate.

I-4-18




SECTION 5
PROBLEMS AND ALTERNATIVES

This section addresses three categories of
problems associated with Ada's ability to support communication
software development. The first category stems from issues
raised by BBN Report No. 4188 /BBNE79/ and concerns Ada's
general ability to support concurrent programming activities.
These issues are repeated and discussed herein for ease of
reference. Alternatives or solutions to the stated problems
are presented, where appropriate. The next category addresses
issues specifically related to Ada's support of concurrency in
a communication system environment. These issues stem from a
mapping of Ada's concurrency facility onto the communication
model developed in Sections 2 and 3, and specifically address
how well this mapping compares with the required facilities
described in Section 4. Once again, solutions and/or
alternatives are discussed. The final category deals with
miscellaneous other communication-related software issues where
Ada exhibits problems or deficiencies. These other issues are
included for completeness, even though the emphasis of this
analysis effort is in the area of concurrent programming
support requirements within a communication environment.

5.1 ISSUES RAISED BY BBN REPORT NO. 4188

BBN Report No. 4188, titled "The Impact of
Multiprocessor Technology on High-Level Language Design",
surveys several representative multiprocessor systems,
describes classical approaches to process control and
concurrency, and then evaluates the parallel control facilities
provided by the Ada language in order to assess the
practicality of using Ada as a standard language for existing
multiprocessor systems. It should be noted that this report
was published 10 September 1979, and, as such, only addresses
the preliminary Ada definition /ICHB7%9a/, not that which is
defined within the Ada Language Reference Manual (LRM) /USDO80/.

St et

PR S v

W Y PN SR RPN




a"“'

o R, |

In the course of their evaluation, the authors
raised several issues related to Ada's ability to support
parallel processing within an assumed (generic) multiprocessor
environment. These issues are presented and discussed herein.

5.1.1 Excessive Scheduler Interactions

5.1.1.1 Statement of Problem
The authors feel that run-time efficiency is the

highest priority consideration in multiprocessor system
implementations. As such, they were particularly concerned
with evaluating Ada's parallel control features from an
efficiency standpoint. Based on their evaluation, they
concluded that the most severe problem with the process control
features in Ada (from the point of view of efficiency) is that
the transmission of data from a sender process to a receiving
process requires excessive scheduler interactions.

In particular, they state, "The use of a complete
rendezvous system results in unnecessary scheduling delays.
This problem is particularly severe in the relatively important
case of message passing in that Ada requires the sender of a
message to wait for the scheduler before it is allowed to
proceed.”

This conclusion is based on certain assumptions
as to the environment and the processes involved. The assumed
environment is a single processor executing parallel processes
in a message passing application. The processes involved are a
sender process generating messages and entering these messages
into a queue, and a receiving process which removes messages
from the queue. READ and WRITE entries to a buffering task
accomplish the message transfers. The authors contend that the
scheduling problems arise from the semantics of the Ada ENTRY
call issued by the sender process whereby the sender is blocked
until the buffer task is scheduled and completes the
rendezvous. During this time, the se~ler process is suspended
and must wait to be rescheduled when the buffer task
completes. The same basic sequence takes place when the




o g

— —
Y
" IR

4o

T o asam

i e ok L i sk oad el ount Stk EauE NS

consumer task executes the corresponding entry call. Thus a

total of four scheduling interactions are potentially required
Also,
each scheduler interaction may involve a complete context swap,

in this situation to transmit a single message. since

this implementation of messige passing is considered to be
prohibitively expensive for many applications.

5.1.1.2 Alternatives

When the BBN report was published, the
inefficiency of Ada's tasking facility was a subject receiving
considerable attention from the various language reviewers and
the academic community in general. It is unfortunate that so
much emphasis was placed on the inefficiency of Ada's
rendezvous mechanism and so little emphasis placed on its
advantages. It should be pointed out that a conscious effort
was made by the language defining groups to avoid the
proliferation of (the potentially more efficient) parallel
process control constructs, i.e., the previously descr ibed

(Section 4) interlocks, semaphores, etc. A trade-off exists
between the efficiency of various constructs and their
usability, implementability, reliability, and maintainability.
Wnile these lower level primitives are more efficient in their
implementation, they tend to make the program elements in which
they exist more difficult to correctly implement, less teliable
in operation, and harder to maintain. An argument can be made
that a certain percentage of real-time (communication)
applications exist wherein the efficiency of the tasking
facility becomes a problem. However, all of these applications
must be highly reliable and easily maintained. The desire for
a language to be efficient in operation often seems in conflict
with the goals of expressive power and program clarity.
Inevitably, trade-offs must be made, and hence the decision on
which approach to use depends to a large degree on design
priorities. The Ada rendezvous mechanism has obviously
prioritized expressive power and program clarity in an attempt
to foster the important goals of reliability and

maintainability. While all of this presents a valid defense of

PR AP I U S




...........

Ada's concurrency facilities, it falls short of offering
legitimate alternatives in those situations where efficiency of
implementation is a prime concern.

The first observation that can be made in dealing
with this problem is that there is no direct alternative
mechanism within the Ada framework which provides a more
efficient implementation than the one described within the BBN
report using the task rendezvous. If one implements buffered
message passing with non-blocking senders in the manner
described in the BBN report, one has to accept the inherent
"side-effects" of Ada's task rendezvous mechanism and, in fact,
it is readily agreed that potential difficulties can arise in
certain applications where efficiency‘is a prime concern. One
therefore has to search for alternatives to the problem rather
than alternative implementations of the Ada rendezvous. In
other words, the real problem lies not in making the rendezvous
more efficient for this implementation but lies instead in the
determination of an efficient alternative method of effecting
message transfers between concurrently executing producer and
consumer tasks in single processor, processor network, and
multiprocessor environments.

With this in mind, an alternative based on
manipulation of a common message queue is offered. Mutually
exclusive access to the queue is provided by the inclusion of
an interlock variable which can be locked and unlocked by the
appropriate task. Example 5-1 shows a typical implementation.
It can be noted that the message packets and associated control
variables are defined in the same manner as in the BBN report
example. The major difference is in the mutual exclusion
provided by the interlock variable and the absence of the
explicit task rendezvous for effecting message transfers. This
alternative is in keeping with more traditional implementaticns
of bounded buffer operations. The example as shown is oriented
towards a single processor environment but obwvious variations
extend the concept to the multicomputer and multiprocessor
environments, as well.

a2 )




package MESSAGE is
PACKET_SIZE:constant INTEGER:=256;
type PACKET is array (l..PACKET_SIZE) of CHARACTER;
SIZE:constant INTEGER:=10;
BUF:array (l1..SIZE) of PACKET:
INX,OUTX:INTEGER range l..SIZE:=1;
COUNT : INTEGER range 0..SIZE:=0;
type INTERLOCK is (LOCKED,UNLOCKED) ;
type ACCESS_I is access INTERLOCK;
L:ACCESS_I:=new INTERLOCK (UNLOCKED);
procedure LOCK (L:ACCESS_I);
procedure UNLOCK (L:ACCESS_I):;

end MESSAGE;

package body MESSAGE is
function TESTANDSET (L:ACCESS_I) return BOOLEAN is
-- body of TESTANDSET function
N end TESTANDSET;
- procedure LOCK (L:ACCESS_I) is
N -- body of LOCK procedure
- end LOCK;
[ procedure UNLOCK (L:ACCESS_I) is
y -- body of UNLOCK procedure
. end UNLOCK;
- end MESSAGE;

with MESSAGE; use MESSAGE;
package PRODUCER_CONSUMER is
task PRODUCER:
task CONSUMER;
end PRODUCER_CONSUMER;

DL

L AN

Y

T

YAV VIV, Ty

Example 5-1 (Page 1l of 2)




package body PRODUCER CONSUMER is
task body PRODUCER is
MSGl :PACKET;
begin
loop
while COUNT=SIZE loop
null;
end loop;
-- perform necessary processing

LOCK (L) ;
BUF (INX) :=MSG1l;
INX:=INX mod SIZE+1;
COUNT : =COUNT+1;
UNLOCK (L) ;
end loop;
end PRODUCER;:

AR~ bt paden
Al

task body CONSUMER is
MSG2:PACKET;
begin
loop
while COUNT=0 loop
null;
end loop;
LOCK (L) ;
MSG2 :=RUF (OUTX) ;
OUTX:=0UTX mod SIZE+1l;
COUNT : =COUNT-1;
UNLOCK (L) ;
-- perform necessary processing
-- on received message in MSG2
end loop;
end CONSUMER;
end PRODUCER_CONSUMER;

I AR

Rk

A

e Bl ot

Example 5-1 (Page 2 of

WP >
e

.t de

..........

-- to create desired message in MSGl

2)




3 In the example given, a producer task wishing to
- transmit a message to a consumer task enters a message on the
3 queue only when the queue is not full and the interlock

variable is unlocked, i.e., no other process is manipulating
the queue. The details of the LOCK and UNLOCK procedures, and
their associated interaction with a TEST and SET function, are

given in Section 5.1.2.2. For now, assume mutually exclusive
access to the queue is guaranteed through bracketed LOCK and
UNLOCK procedure calls. As a producer task enters a message in
the queue, it also adjusts the queue input pointer and
increments the count of messages in the queue. As a consumer

task removes a message from the queue, it likewise adjusts the
queue output pointer and decrements the count of messages in
the queue. Deadlock between producer and consumer tasks is
prevented by checking for "queue empty" and "queue full"

Nt Sivian

conditions prior to locking the interlock variable.

It can be seen that, while this example does not
offer a more efficient rendezvous mechanism, it does provide a

RARAANAMA LA N RS (i

more efficient solution to the stated problem --- that of
implementing buffered message passing with non-blocking senders
using Ada constructs.

5.1.2 Process Control Structure Flexibility

5.1.2.1 Statement of Problem
The BBN Report maintains that Ada does not

provide sufficient flexibility in its process control structure
to allow a programmer to choose the mechanism which is most
appropriate for the requirements of the application. The
authors state ... "In Ada, the only mechanism available for

ST b 25k

providing mutual exclusion is through the rendezvous of an
entry call in one task and an accept statement in another.
1 Although we feel that the entry/accept linkage is a powerful
9 tool which will be useful over a wide range of applications,

Ctaras (A 3 ame

o

there are limitations in the structure which will make it
f difficult to use Ada in certain applications environments in




- - - T T e W W T e . ® 0 a7 T - T e
AR e e N Sy} WY T h PR, va PN _Rov o N - . v & e 13 - e . Pl . . - - - - . - - - - e -

which efficiency is of considerable importance unless
additional primitives are included so as to provide a more
flexible synchronization mechanism.” Thus, the basic concern
here is very similar to the previously stated problem. That
is, if one assumes the rendezvous mechanism is an inefficient
tool for synchronization, then Ada must provide other
alternatives to the rendezvous mechanism (where appropriate)
for certain application environments.

A second problem area relates to Ada's
synchronization mechanism being control~based vice data-based.
The argument here is that, in Ada, the entry/accept linkage
results in the mutual exclusion mechanism being a function
solely of the task (i.e., control structure) and not of the
data structure (as in traditional implementations). The
authors believe that the Ada control-based implementation leads
to "convoluted program structures”™ or serious inefficiencies in
the use of space.

5.,1.2.2 Alternatives

The fact that Ada does not support a wide range
of synchronization or mutual exclusion mechanisms was the
expressed intent of the Ada design team.

In particular, on page ll-1 of the Ada Rationale
/ICHB79b/ they state ... "One reason has clearly been a lack of
confidence in the many different facilities put forward for the
control of parallelism. Semaphores, events, signals, and other
similar mechanisms are clearly at too low a level. Monitors,
on the other hand, are not always easy to understand and, with
their associated signals, perhaps seem to offer an unfortunate
mix of high level and low level concepts. 1t is believed that
Green [Ada] strikes a good balance by providing facilities

which are not only easy to use directly, but can also be used
as tools for the creation of mechanisms of different kinds."
Clearly, the Ada design team chose ease and
consistency of implementation over a "grab bag" philosophy.
This philosophy of one mechanism to handle all of the
concurrent process control requirements is considered desirable

PP

I-5-8




from a reliability and maintainability standpoint.
Furthermore, this philosophy is not solely fostered by the Ada
design team. Such notable experts in this field as Brinch
Hansen and Hoare have proposed similar tasking implementations
(/BRIN78/ and /HOAR78/) which strongly influenced the Ada
design.

If, however, one desires to implement different

mechanisms which could more closely address the requirements of
A a particular application, Ada provides the implementor with the
“ flexibility to do so. The following examples show some of the
? ways Ada can be used to build other process-control

mechanisms, These are by no means the only ways to implement
these mechanisms but give an indication of the existing
possibilities.

Example 5-2 illustrates an implementation of an
interlock in Ada (interlocks were previously described in
Section 4 along with the other "traditional" solutions to
: process control). In this example, a function TEST_AND_SET is
defined by means of an assembly language routine which accesses

the TEST_AND_SET instruction of the underlying machine. The
example shows a typical AN/UYK-7 implementation. LOCK and
UNLOCK procedures are then defined as shown. A call to the
LOCK procedure will perform a busy wait operation until the
function TEST_AND_SET returns a value FALSE indicating mutually
exclusive access to a shared resource has been granted. A ]
subsequent call to the UNLOCK procedure frees the resource for

W PPy

other users' access.
Ada can also be used to implement the traditional 4
semaphore as shown by the following examples of binary and
integer semaphores. The binary semaphore implementation shown
in Example 5-3 was taken from the Ada Rationale /ICHB79b/.
A critical section of code performing mutually
exclusive access to a shared data object can then be bracketed

by successive P and V entry calls as shown in Example 5-4.

s adR S S PTANACA A s« &

I-5-9

IR SEIE S SN WO S P, |

R T . T e P U T T T Ui Y D VAP S S L g



m-h‘h,.-;‘l Prn T Bivan Mewh it St - gt Shutel Bl e it i i i Cagli- b Znar ekt oeiy aelh Seduimeun ar-Sn di-ha ger SheaP i dut e Bgl Mgl Jeam dend - SacuuinrSiing - Mbe Sban S S R
)
[of}
1

N RIS LAY P DR AN

with INST_UYK_7;
function TESTANDSET (L:INTERLOCK)
return BOOLEAN is

Q:BOOLEAN;

procedure REAL_TESTANDSET;

pragma INLINE(REAL_TESTANDSET) ;

procedure REAL_TESTANDSET is
use INST_UYK_7;

begin
. FORM2' (OP= > TSF,A=> 0, B=> 0, I=> 0, SY=> L'ADDRESS);
B FORM3' (OP= > JNE,A=> 0, B=> 0, I=> 0, SY => LABl);
E FORML' (OP= > BZ,A=> 0, B=> 0, I=> 0, SY => Q'ADDRESS);
& FORM3' (OP= > RJ,A=> 0, B=> 0, I=> 0,
' SY = > REAL_TESTANDSET'RET_ADD) ;
<<LABl>>

FORM1' (OP= > BS,A=> 0, B=> 0, I=> 0, SY = > Q'ADDRESS);
FORM3' (OP= > RJ,A=> 0, B=> 0,
SY =>REAL_TESTANDSET'RET_ADD) ;
end REAL_TESTANDSET;
begin--function TESTANDSET
REAL_TESTANDSET;
return Q;
end TESTANDSET;

¥
4 0
3
b

procedure LOCK(L:ACCESS_INTERLOCK) is
begin
while TESTANDSET (L) loop
null; -- do nothing (busy wait)
end while;
end LOCK;

procedure UNLOCK (L:ACCESS_INTERLOCK) is
begin

L.all:=UNLOCKED;
end UNLOCK:

Example 5-2

I-5-10




Na B i - a-Sum thee B Ba e gleer gan euhairadr-Siedt” Sult-Rhatt Taah Bav st it dit it

Note that in this case the rendezvous merely
provides synchronization and no data are transferred. The P
entry call acts as the traditional "WAIT on SEMAPHORE" action
while the V entry corresponds to the "SEMAPHORE SIGNAL."

Similarly an integer semaphore may be implemented
as shown in Example 5-5.

Again critical regions can be bracketed by P and
V entry calls.

More elegant structures may also be constructed.
For example, consider Example 5-6, a monitor implementation in
Ada which illustrates one method of handling the classical
readers/writers problem.

By maintaining a count of readers and the status
of a writer and by being able to update these variables in a
mutually exclusive manner, the READ_WRITE monitor in
Example 5-6 ensures that readers never attempt to read while
writers are modifying shared objects. As with the semaphore
' implementation, readers can bracket critical sections of code
B with READ_REQ and READ_REL entry calls and writers likewise
3

with RITE_REQ and RITE_REL calls.
It should be noted that while the above examples

p—

provide means of implementing mechanisms more closely related
to the intended application, the inherent disadvantages of
these mechanisms (outlined in Section 4) are still present and
should be taken into consideration during any implementation.
It is felt that the above examples offer a range of "low level"”
facilities for mutual exclusion which adequately address the
concern expressed by the authors of the BBN report. In
applications where efficiency of implementation is not of a
critical nature the normal utilization of Ada's task rendezvous
mechanism as a means of providing mutual exclusion and
synchronization is of course adequate and, in fact, desirable. 4

The second problem area, related to the storage
inefficiency of Ada's control-based synchronization mechanism,
can be handled quite easily in revised Ada. The solution lies
in the ability to define "entity pointers" to objects of type
ENTITY which contain a record with an INTERLOCK as its

PSPV S S S

I-5-11 \




task type SEMAPHORE is
entry P;
entry V;
end;
task body SEMAPHORE is
begin
loop
accept P;
accept V;
: end loop;
- end:;

Example 5-3

LOC_SEM : SEMAPHORE ;

LOC_SEM.P;
COMMON_DATA (TRACK_NUMBER) :=TRK_INDEX;

TRACK_NUMBER: =TRACK_NUMBER+1
LOC_SEM.V;

Example 5-4

task type INT_SEMAPHORE is
entry P;
entry V;

end INT_SEMAPHORE;

task body INT_SEMAPHORE is
S:INTEGER range 0..INTEGER'LAST:=NUM_RESOURCE;

begin
select
when S>0= >
accept P do
S:=8-1;
end P;

or
accept V do
S:=5+1;

end V;
end select;
end INT_SEMAPHORE;

Example 5-5

I-5-12




.y

L e B P A

e« . ¥

task type READ_WRITE is
entry READ_REQ;
entry READ REL;
entry RITE_REQ;
entry RITE_REL;
end READ_WRITE;
task body READ_WRITE is
READ_COUNT:INTEGER range 0..INTEGER'LAST:=0;
MODIFY:boolean:= FALSE;
begin
loop
select
when MODIFY=FALSE and RITE_REQ'COUNT=0
= >

accept READ_REQ do
READ_COUNT :=READ_COUNT+1;
end READ_REQ;
or
accept READ_REL do
if
READ_COUNT>0
then
READ_COUNT : =READ_COUNT-1;
end if;
end READ_REL;
or
when READ_COUNT=0 and MODIFY=FALSE
= >
accept RITE_REQ do
MODIFY:=TRUE;
end RITE_REQ:
or
when MODIFY=TRUE
= >
accept RITE_REL do
MODIFY:=FALSE;
end RITE_REL;
end select;
end loop;
end READ_WRITE;

Example 5-6

I-5-13




ORI S (i

— I g

h 4

ey

component. With this approach, one can then implement "Action
procedures” in the same manner outlined on page 116 of the BBN
report. This implementation is as shown in Example 5-7.

Alternately, instead of using an interlock object
of type RESOURCE, one could employ the interlock mechanism
described previously.

5.1.3 Naming Convention Problems

5>.1.3.1 Statement of Problem
The authors of the BBN Report feel that Ada's
task naming conventions do not allow the programmer to name

processes with names which accurately reflect the underlying
algorithm structure. 1In particular, they feel that the array
structure imposes a relatively arbitrary task structure which
may or may not reflect the nature of the particular application.

A second, potentially more serious problem, is
posed by the asymmetry of knowledge between the called and the
calling task in which a server task has no way to reply to a
requesting task outside of the rendezvous since the identity of
the requesting task is not known by the server. This is called
the “"return address problem" by the authors. Note that the
problem is not one of authenticating a requestor but rather one
of being able to identify the requestor in a subsequent entry
call.

5.1.3.2 Alternatives
The first pioblem discussed above is no longer

applicable. Due to revised aAda's treatment of tasks as types,
task objects may now be created and named in a meaningful
manner with names more closely associated with the underlying
process structure.

Furthermore, the limitations of the array
structure of tasks in preliminary Ada are no longer present.
In preliminary Ada, one could not easily build linked lists of
task objects (or any other structure of task objects besides
arrays, for that matter). This problem no longer exists, as

I-5-14




R A Al A i

RrTTrTTY

task type RESOURCE is
entry SEIZE;
entry RELEASE;

end RESOURCE;

task body RESOURCE is
FREE:boolean:=TRUE;

begin
loop
select
when FREE =>
accept SEIZE do
FREE:=FAI'SE;
end SEIZE;
or
accept RELEASE do
FREE:=TRUE;
end RELEASE;
or
when FREE=>
tarminate;
end select;
end loop;

end RESOURCE;

type ENTITY is
record
INTERLOCK:RESQOURCE;

-- other necessary declarations
end record;

type E_PNTR is access ENTITY;

procedure ACTIONn(ENT:E_PNTR) is
begin
ENT.INTERLOCK.SEIZE;
-- perform action n
ENT.INTERLOCK.RELEASE;
end ACTIONn;

Example 5-7

L I
P> Rl |

-------




AD-A121 938 EVRLURTION OF ADA AS A CDHHUNICRTIONS PROGRAMMING
GURGE(U) SYSCON CORP SAN D CA

R L BRINTZENHOFF ET AL. 31 HRR 81 DCR168-88-C-8037

UNCLASSIFIED

.“
~ 1
[~2]
n o
~
N




RN IR 2 S R, N Nio 8 ]

3

e ger—p——

S B2 W25
™

m L g2
w B

= W 20

E

MICROCOPY RESOLUTION TEST CHARTY
NATIONAL BUREAU OF STANDARDS - 1963 ~A

U W

e S

1



T R MR B

PO IR ARV LI IR P Iy Y

"t and Al = "Nl
WIS IC S R ISR R IMEI A e A A T S O S S A S RO WA WAL VA SR AR A S S

illustrated by Example 5-8, an implementation of a linked list
of terminal drivers. Note that this example reflects the
solution to the terminal driver problem cited in the BBN report.
The "return address problem" can be handled
within the Ada language by defining access types which provide
pointers to task types as shown in Example 5-9. ‘
The solution to the "return address problem" is
accomplished in the above example by including an ACCEPT
statement within USER task's body that is used to establish the
USER's own identity. The parameter passed within the ACCEPT
statement of task SERVER is a pointer to the USER task itself
and is saved locally. The USER task is then free to perform a
call to the associated SERVER task and pass its own identity
(pointer) with the call. The USER task then loops forever
carrying out necessary processing while it awaits a reply from
the SERVER task. The SERVER task is able to know (and
remember) the identity of the USER task since it was passed as
a parameter (pointer) upon ENTRY call, and then stored locally.

5.1.4 Lack of Scheduling Control
5.1.4.1 Statement of Problem

The BBN Report expresses concern as to whether
the scheduling discipline provided by the language is
sufficiently general to support applications with important
timing constraints, and in particular, whether Ada provides
adequate control over the scheduling strategy.

5.1.4.2 Alternatives

It is believed that the example provided by the
authors on pages 130 and 131 of the BBN Report outlines
considerations traditionally handled by an executive/operating
system - not within a language definition. Requiring the Ada
definition to encompass task run-time limit specification
and/or forcible descheduling is above and beyond the
requirements of a language definition. It should be emphasized
that Ada does not provide any scheduling discipline, but rather

I-5-16




package TERM DRVR_SYSTEM is

task TERM_DRVR is -- Terminal Driver Specification
entry START _UP(N:NATURAL); -- Activation entry
entry SHUT_DOWN; - -- Deactivation entry

end TERM _DRVR; -- Assumes only one user

type TERM;
type TERM_PNTR is access TERM;
type TERM is
record
PNTR: TERM_PNTR;
DRVR: TERM_DRVR;
T_NUM: INTEGER range 0..INTEGER'LAST:=0;
end record;
FREE_TERM_DRVR: TERM_PNTR;
ACTIVE TERM DRVR: TERM PNTR;
procedure BUILD FREE LIST(N NATURAL) ;
procedure ACTIVATE (ACTERM:NATURAL) ;
procedure DEACTIVATE (ACTERM:NATURAL);
STATUS_ERROR:exception;
end TERM _DRVR_SYSTEM;

package body TERM_DRVR_SYSTEM is

-- TERM_DRVR represents the terminal

-= driver task which will monitor and

-- interface to a particular terminal

-- represented by a positive integer.

-- Details of the interaction are not

-~ presented here...only the capabilities
-=- to start and stop the actions of the
-~ terminal driver.

MY_TERM:NATURAL; -= Terminal Number
~.EADY :BOOLEAN : =TRUE; -- Initialization flag
task body TERM_DRVR is
begin
loop
select

when READY =>
accept START_UP(N:NATURAL)do
MY _TERM:=N;
RUADY : =FALSE;
-- perform any START_UP processing
end START_UP;
or
accept SHUT_DOWN do
-- perform any housecleaning
READY :=TRUE;
end SHUT_DOWN;
end select;
end loop;
end TERM_DRVR;

Example 5-8. (Page 1 of 3)

..........
.................

.""‘ I A
PP L AP B Yol Wl Y e e e I R AT

...............




p:ocedure BUILD_FREE LIST(N:NATURAL) is
This procedure is used to 1nit1a11y
-= create a list of N FREE
-- terminal driver task objects in
-- a simple linked list structure
TEMP : TERM_PNTR;
begin
FREE_TERM_DRVR:=new TERM; -- point to head
TEMP:=FREE_TERM_DRVR;

for I in 2..N loop -- add N-1 nodes
TEMP.PNTR:=new TERM; -~ to linked list
TEMP : =TEMP .PNTR;

end loop;

TEMP.PNTR:=null;

end BUILD FREE_LIST;

procedure ACTIVATE(ACTERM:NATURAL) is

-- This procedure is used to remove

-=- terminal driver tasks from the

-- FREE list and place them on

-- an ACTIVE list. Note that a

particular task is associated with

-- a terminal via a specified terminal

-- number

TEMP: TERM_PNTR;

begin '

if FREE TERM DRVR = null then -- test for any drivers
raise STATUS _ERROR; -~ error if none

end if;

TEMP:=FREE_TERM_DRVR; -- remove head from FREE

FREE_TERM | DRVR : sFREE _TERM_DRVR.PNTR; ~- terminal driver

TEMP.T NUM-sACTERM; -- save terminal number

TEMP. PNTR~=ACTIVE TERM_DRVR; -- place at head of ACTIVE

ACTIVE_TERM | DRVR:=TEMP;

ACTIVE_TERM_DRVR.DRVR. START _UP (ACTERM) ; -- start driver

end ACTIVATE;

Example 5-8. (Page 2 of 3)




ok T

procedure DEACTIVATE (ACTERM:NATURAL) is
-- This procedure is used to remove active
-= terminal drivers from the ACTIVE list

- i?dtplace them back on the FREE
- St.
TEMP : TERM_PNTR;
LAST_ PNTR: TERM |_PNTR;
begin
TEMP:=ACTIVE TERM DRVR;
if TEMP.T_NUM=ACTERM then
TEMP .DRVR.SHUTDOWN ;
ACTIVE_TERM_DRVR:=TEMP.PNTR;
TEMP. PNTR:tFREB TERM_DRVR;
FREE_TERM DRVR°-TEHP;
return;
end if;
LAST_PNTR:=TEMP;
while TEMP /= null loop
if TEMP.T NUM=ACTERM then
TEMP.DRVR.SHUT_DOWN; -- disable driver
LAST_PNTR. PNTR:=TEMP. PNTR; -- remove from list
TEMP, PNTRs=FREE_TERM_DRVR; -~ place at head of
FREE_TERM DRVR--TEMP; -- FREE list
return;
end if;
LAST_PNTR:=TEMP;
TEMP : =TEMP . PNTR;
end loop;
raise STATUS_ERROR; -~ no driver error
end DBACTIVRT!;
end TERM_DRVR_SYSTEM;

with TERM_DRVR_SYSTEM; use TERM_DRVR_SYSTEM;
procedure MAIN is

begin
EUILD_!RII_LIST(SO); -- get up 50 node FREE list
oop
-= {if terminal n needs a driver
ACTIVATE(n) s

-= Oor if terminal n is done
DEACTIVATE (n) ;

end loop;
end MAIN;

EBxample 5-8. (Page 3 of 3)

1-5-19




Wm“t‘ﬁm‘o‘mﬂ

procedure MAIN is
type MESSAGE is...; =-- some form of message to process

type ANS is...; -- some fcrm of server response

type USER;
type ACC_USER is access USER;
task type USER is
entry NAME (N:ACC_USER); -- used to get own name
entry ANSWER (A:ANS):; -- used for server response
end USER;

type U_INFO is
record
USER_ID:ACC_USER;
MSG:MESSAGE;

end record;

task type SERVER is
entry CALL(U:U_INFO);
entry SHUT_DOWN;
end SERVER;
SERVE: SERVER;
task body SERVER is separate;
task body USER is separate;

begin
declare
TEMP :ACC_USER;
begin
while WANT TO_BUILD_USERS loop
TEMP:=new USER;
TEMP . NAME (TEMP) ;
end loop:;
end;
end MAIN; -- wait for users and servers to complete

Example 5-9 (Page 1 of 3)

1-5-20 |

W, Mg VLR WL N W W e WL W e WL e etk -
A ARE R AL S AL A S A S SR RSN
- -

AL A R

L 2P S i o
t‘ "'.‘-

B A T AT N Y
A B RNy Ay

R T s




PN M A - - “pRY i‘.j

task body SERVER is

SIZE:=constant INTEGER:=...; -- gome max buffer size

U_RECS:array (l1l..SIZE) of U_INFO; -- user request buffer

IN: INTEGER range (l1l..SIZE):=l; -=- buffer input index

OUT: INTEGER range (l..SIZE):=1; -- buffer output index

COUNT : INTEGER range (0..SIZE):=0; -- num items in buffer

A:ANS; -=- gome form of server response
begin

loop

while CALL'COUNT>0 and COUNT<SIZE locp
accept CALL(M:U_INFO) do
U_RECS (IN) :=M;
end CALL;
IN:=IN mod SIZE+l;
COUNT : =COUNT+1;

end loop;

while CALL'COUNT=C and COUNT>0 loop
== process the request
-- for service 0 one user
== at a tixe,

U_RECS (OUT) . USER_ID.ANSWER(A) ;
OUT:=0UT mod SIZE+l;

COUNT :=COUNT-1;
end loop;
select
when CALL'COUNT=0 and COUNT=(Q=>
accept SHUT DOWN;
exit;
else
null;
end select;
end loop;
end SERVER;

Example 5-9 (Page 2 of 3)




task body USER is
-- representative one of potentially many
-- user tasks that may request service
-- from single server task
INFO:U_INFO;
begin
accept NAME (N:ACC USER) do -~- get own name
INFO.USER_ID:-N;
end NAME;
-- carry out processing to build
-- message cr data to have
-- processed by server
SERVE.CALL (INFO); -- call gserver task
loop
select
accept ANSWER (A:ANS) do
-=- process response from server
end ANSWER;
exit;
else .
-- carry out alternative processing
-- while waiting for answver
end select;
end loop:;
-- other processing, as required
end USER;

Example 5-9 (Page 3 of 3)




ptovidgg a task interaction mechanism to be used however the
user wishes.

5.2 COMMUNICATION SYSTEM RELATED CONCURRENCY ISSUES

Sections 2 and 3 laid the foundation for
considering a model on which one may build a particular
implementation for analysis. Section 4 established general
concurrency facilities traditionally used for process control
as well as those facilities supported within the Ada language
and how they apply to the SCI model. This section will address
deficiencies of the Ada language tasking constructs discovered
by mapping the Ada facilities onto the SCI model. Alternatives
or solutions to these deficiencies are also presented, where

possible.
5.2.1 Operating System Requirements
5.2.1.1 Statement of Problem

A minimum operating system framework sufficient
to support the Ada tasking constructs as well as the SCI model
architecture would have to contain the following capabilities:

e Scheduler software

® Task context switching software

e Task activation table storage and queuing

structure

e Memory allocation and mapping mechanism

e Interval timing mechanism and associated

software

@ Means to associate hardware interrupts with

interrupt service routines and tasks

e I/0 interface(s) to a general complement of

peripheral equipment

The problem lies in the fact that these operating
system requirements could potentially impact the smaller
hardware environments that currently support communication
systems,

R - T TR TET et g s L e e 4 e et e A e e e e e
; B A e I O O A S B LR Sl o

it "8

R YL IR PR Sl Rl VL DR TR PO YR N T St T Rl SR VL S R R T N S A S A T T - - . . - A . . -
7 3 S ) i f i LA R Sy S S PR A PR P AL T TR PO P T WY RS .
y ! N TR, AR ERAE AR I N R A I ST IR T T ST RIS S LR A PR




hangll  JCIW S

it

wrtoard, Vel Ty

>

LA L= TS

20

s e ¥ i

it

TR BN T ET AW o N a2 TER AN ol a " a¥ o™V awa W iV ENEFITIN aTaPINRTTETA A7TIV I TV I¥ T PR Y WY

5.2.1.2 Alternatives

If future communication system implementations
were to follow the patterns of past and present implementations
then the above stated problem would indeed be valid. However,
communication systems design efforts, like other
state-of-the-art embedded computer systems design efforts, are
turning away from the general purpose processor environment
(and its associated operating system) and turning towards
implementations which exhibit a greater number of smaller
dedicated distributed processors. In these environments more
emphasis will be placed on hardware/firmware support of what
were once traditional operating system tasks. A single task
running on a single processor obviously doesn't require the 0S
support described above. Furthermore, what operating system
software there is will be dedicated rather than general purpose
and will almost certainly be written in the same high level
language used for the application software.

The point being made is this. The above stated
problem is currently valid. However, as times goes on, it
becomes less of a problem since future design directions will
eventually minimize the impact. The time frame in which this
will happen should conveniently coincide with the introduction
of Ada compilers into the user domain.

5.2.2 Scheduling Deficiencies
5.2.2.1 Statement of Problem

There are actually two issues included in this
category. One of these issues coincides with the previously
stated BBN issues. It will again be discussed here, however,
for completeness.

First, it should be pointed out that certain
assumptions are made as to the implementation of the scheduling
algorithm. For the sake of simplicity, the criteria given in
the Ada Rationale are used /ICHB79b/. These are as follows:

® The processor is available

® A new task is placed on the ready queue of the

scheduler

.................




® The scheduler is an external process
" (operating system)
® Ready queue is examined top to bottom and the
first task ready to execite will be invoked
It should also be noted that under the Ada
rendezvous concept, the scheduler will be invoked according to
the following events: .
e Initiation of a task
® Termination of a running task
® Entry call
® Reaching an accept statement for which no call
has been issued or a select statement for
which there is no possible alternative for
immediate execution
e Termination of a rendezvous
® Execution of a delay statement
e Expiration of a delay
® Reception of an interrupt awaited by a task
The first problem encountered closely resembles
the first listed BBN issue. The problem is that the rendezvous
concept associates interprocess communication with
synchronization in time in all cases. In a communication
environment synchronization is not always required or des.red.
The inability to optionally specify whether synchronization
(rendezvous) is to take place during interprocess communication
is the deficiency. ,
r The second problem deals with the inability to 5
directly manipulate queues within the available Ada framework.
Ada has chosen a FIFO implementation for task queuing at the
expense of all others.

5.2.2.2 Alternatives

The fact that Ada requires a calling process to
synchronize in time with a called process in order to directly
perform interprocess communication is an unfortunate side
effect of the rendezvous mechanism. The problem here is not so
much one of inefficiency or scheduler delays, but rather one of




‘ot lalesx

T sy

Iy

¥ SO

oo *

555

- "
e aca-0 2at .01

S R Eew ";‘".r"

communication system requirements in which interprocess
communication is desired while synchronization is not. The
message passing alternative presented in Section 5.l1.1l.2 again
becomes a viable mechanism in these situations. Another
obvious alternative is to provide an intermediate buffering
task which is dedicated to receiving and sending messages
between application tasks. This allows a sending process to
deposit a message with the buffering task and proceed with its
appointed tasks without waiting for a receiving task to
rendezvous, as shown in Example 5-10. Note that message
context switching is avoided by the use of access types.

The problem of dynamic queue manipulation is not
directly addressed by the available language constructs. The
FIFO nature of the entry queue might be thought to be a severe
constraint in cases where some requests may be of high
priority. The handling of requests with priorities is achieved
by the use of separate entries for each level. As shown in the
Ada Rationale, a family can be conveniently used for this
purpose. See Example 5-11.

Note that this approach only addresses a small
number of priority levels. Efficient handling of large numbers
of requests with priorities in a realistic, flexible manner is
possible but beyond the scope of this report.

5.2.3 Mutual Exclusion
5.2.3.1 Statement of Problem

This problem area addresses the inflexibility of
the Ada tasking constructs in much the same light presented
within the BBN Report. It has been shown that mutual exclusion
is a necessary aspect of parallelism within communication

systems. The only vehicle for mutual exclusion directly
available within the Ada language is the task rendezvous.
However, this construct is inefficient in situations which only
require mutually exclusive access to shared objects and which
are not concerned with synchronization and/or interprocess
communication.




T I V.Y,

[ oAy

Ko
.
L2

Lary 8

T W ST ATATe TR T T

o e B e R N T W e w7 [ U 8ag® 0% S 0N L hea @ g v T e Ty

package TGT_SY¥S is
-- TGT_SYS describes the characteristics
-- of tasks which can receive messages
-- asynchronously from a sender task
type MSG IS ...; -- some form of message
task type TGT_TASK is
entry MSG_RCVR(M:MSG); -- entry to receive msgs
end TGT_TASK;
type ACC_TGT is access TGT_TASK; -- access value used as an
procedure SEND_MSG(T:ACC_TCT:M:MSG); -- msg delivery addr
end TGT_SYS;

package body TGT SYS is
task type MSG_CARRIER is --- acts as mailman
entry TEXT(T:ACC_TGT,M:MSG) ;
end MSG_CARRIER;

type ACC_MSG is access MSG_CARRIER;

task body MSG_CARRIER is
-- accepts a message and
-- to whom to deliver it.
-- Then attempts delivery...
-- will terminate
-- following delivery
Tl: ACC_TGT;
Ml: MSG;
begin
accept TEXT (T:ACC_TGT;M:MSG) do
Tl:= T;
Ml:= M;
end;
T1.MSG_RCVR(M1) ;
end MSG_CARRIER;

procedure SEND_MSG (T:ACC_TGT;M:MSG) is
-- will dynamically create
-- mailman tasks in a
-- uniform manner...
-- existence of mailman
--~ depends on access type
-- not this procedure
TEMP: ACC_MSG:= new MSG_CARRIER;
begin
TEMP .TEXT (T,M) ;
end SEND_MSG;

Example 5-10 (Page 1 of 2)

'y

AR




- R T T TR TR Al AP e N e L w L WU e T e BT R T e T

task body TGT_TASK is

. -- accept MSG_RCVR

end TGT_TASK;
end TGT_SYS;

with TGT_SYS; use TGT_SYS;
procedure MAIN is
task type USER is -- sender of messages

e .

b .

24

y end USER;

‘ type ACC_USER is access USER;

L TGT_ARRAY: array(l..n) of ACC_TGT;
g USER_ARRAY: array(l..m) of ACC_USER;

task body USER is
-- USER sends messages to
-- TGT_TASKS in an
-=- asynchronous manner
U_MSG: MSG;
J: INTEGER range TGT_ARRAY'RANGE;
begin
-- create message in U_MSG;
-- set J to index of target task in TGT_ARRAY
SEND_MSG (TGT_ARRAY (J) ,U_MSG) ;
-- continue processing

end USER;
begin
for I in TGT_ARRAY'RANGE loop
TGT_ARRAY(I) := new TGT_TASK; -- create target tasks
end loop;
for I in USER ARRAY'RANGE loop
USER_ARRAY(I) := new USER; -- create user tasks
end loop;
end MAIN;

Example 5-10 (Page 2 of 2)

...............
............................




task CONTROL is
type LEVEL is (URGENT ,MEDIUM,LOW) ;
entry REQUEST (LEVEL'FIRST. .LEVEL'LAST) (D:DATA) ;
end;
task body CONTROL is
loop
select
accept REQUEST (URGENT) (D:DATA) do
-- high priority processing
end;
or when (REQUEST (URGENT) 'COUNT=0)=
accept REQUEST (MEDIUM) (D:DATA) 4o
--dmedium priority processing
end;
or when ( (REQUEST (URGENT) 'COUNT=0) and
: (REQUEST (MEDIUM) 'COUNT=0) ) =
accept REQUEST (LOW) (D:DATA) do
-- low priority processing

%
|

TR

TR

. end;

. end select;
b end loop;

: end CONTROL;

TR

LYY

TEW

i
|
|
|

Example 5-11

e M ety A e ey ma . e e .
A N B i A R e A R AL R R T R
PR AT D AR DL oL T L L M R ) et e et W . e e ey e .

P AT Wik G 2 A It T P70 S Wi, W W R PR WA I A W PSSV B IR AL S S S

............
--------

g T YT WL TR, S AR TR AT T TR T e . T Ve Vet evaw TR TFUYA




AP 2AGGe-Lr e eupng SIS ;LR e-A AR A MRld IS SINLARISARAA NS §

RCTER e BTN LT S T 2T T’ Te - T iTe - e TR T TR LY L T LYW YT XYY TR TR mmﬁm

5.2.3.2 Alternatives
As previously stated, the intent of the Ada
design team was to incorporate one mechanism into the language

which could address all three aspects of concurrent process
control: process synchronization, process communication, and
mutual exclusion. The requirements for simplicity of use,
reliability and maintainability were seen as taking precedence
over efficiency of implementation. Again, if more efficient
primitive mechanisms are desired simply to provide mutually
exclusive access to shared objects within a critical region,
they can be implemented. Section 5.1.2.2 provided a
representative sampling of candidate mechanisms.

5.2.4 Dynamic Task Priority Assignment

5.2.4.1 Statement of Problem
The ability to dynamically change task priorities

is a desirable feature to have when dealing with momentary,
heavy resource load or casualty conditions. It is also a
convenient method of handling the so-called "starvation effect"
whereby a low-priority task never gets scheduled due to
continual preemption by higher priority tasks.

Preliminary Ada, as documented in /ICHB79a/,
provides for a dynamic or static assignment (pragma) of task
priority. The current documentation /USDO80/ has dropped the
dynamic flexibility.

5.2.4.2 Alternatives

As in so many previous cases, the decision to
remove dynamic task priority manipulation from the language was
based on a conscious decision on the part of the design team.
Again, reliability and maintainability of generated code took
precedence over the convenience of including this capability
within the language. And, as before, the above mentioned
feature can be implemented with available constructs and data
structures; however, the solutions are not as direct.




L i T R AT e LR T AR WL STL L WRE LR T .Y LAV oV aP LT 'ﬁ

One indirect method of solving this problem is to
use duplicate "instances” of tasks each having a different
statically assigned priority. As exceptional conditions occur,
the appropriate priority task object is "spawned” using access
pointers. When the exceptional conditions cease to exist, the
task objects may be deallocated and the allocated space may be
reclaimed with an available "garbage collection®™ mechanism.
Obviously, what priority scheme is used and which mechanisms
are employed to reclaim deallocated space are considerations
which will be functions of the particular application.

One example of this method of handling priorities
might be to spawn a duplicate copy of an executing task (at a
higher priority) from an exception handler buried within the
executing task. This has the effect of artificially raising
one's own priority. Another example might be to define
duplicate copies of diagnostic routines at each priority level
(assume there are three: 1low, medium, and high). Under normal
conditions a channel diagnostic, for example, may be requested
to isolate faults on a particular channel on a background (low
priority) basis. This may result from an operator action at a
monitoring console, for example, and would cause the system
management routine to spawn this low priority copy of the
channel diagnostic task. 1In a casualty situation, an executing
application task might raise an exception in response to
detection of a fault on a message transmission and signal the
gsystem manager to immediately spawn a high priority channel
diagnostic task, perhaps preempting other executing application
p tasks.

A possible third method might employ dedicated
server tasks at predefined priority levels whose only purpose
i is to receive requests from application tasks to spawn a
desired diagnostic task. The rendezvous associated with the
application task/server task linkage will be executed at the
higher priority of the two tasks. Similarly, the, server
task/diagnostic task rendezvous will be executed at the higher
priority of these two tasks. Thus, if an application task
calls the highest priority server task which subsequently calls

b":;v’"—‘vr‘ A ‘v.. 2 TR
* "~Y$".'"":i‘_"'"""""3'«".'." RN




gy Ry o

* o

wrinfaiarey .’

OAN TR P N Y

Ly v p B2

'

i d e vensies

the appropriate diagnostic task, the nature of the priority
mechanism dictates that, at least during rendezvous, all
statements within the body of the accept statement will be
executed at the higher priority. Therefore, one could place
all desired high priority statements within the context of the
end task's accept statement to guarantee high priority
execution. Obviously, there are many variations of these
examples and the implementation of the particular method will
be dependent upon the application in question.

5.3 MISCELLANEOUS ISSUES

The main emphasis of the analysis effort was to
examine Ada concurrency features and how they can be applied to
communication system requirements. 1In the course of this
analysis another non-concurrency related issue surfaced.

5.3.1 Dynamic Record Structure Manipulation
5.3.1.1 Statement of Problem

Generally, a communication system architecture is
layered according to functional specification. Moreover, the
type of processing that occurs on data structures (message
buffers, packets, and headers) varies from layer to layer
within a given architecture. Usually, the upper layers will
generate headers and manipulate user data at the character,
string, or array levels, while the lower layers will view the
same data at a bit level. This requires the ability to
dynamically represent and access particular data structures in
different manners at different points during execution. Ada
does not provide a convenient direct way to perform this
manipulation. In Ada, the set of values of a record type
discriminant must be statically determined at compile time. 1In
order to change values (or form) at run time, it is necessary
to perform a complete record assignment which could be
extremely cumbersome.

............
.....................

............
....................



e

DV RE Y A S L)

it LR

’ﬁc..—dw

N0
R TSR )

Ll e ¥

OOl w

la T4 0 02

5.3.1.2 Alternatives

Run time structure manipulation was specifically
prevented for reliability reasons. However, there is a
potential means of performing dynamic record structure
manipulation if one so desires. Example 5-12 shows how one may
employ the generic function UNCHECKED_CONVERSION to dynamically
convert record structures. If the records in question are
large, this alternative may result in inefficient data context
swapping. Therefore, a further alternative is provided by
Example 5-13, which shows an implementation employing unchecked
conversion on the pointers to the records.




with UNCHECKED_CONVERSION;

type FORMATTED MESSAGE is
record
ID: INTEGER range 0..255;
D:DATE;
M:STRING(1..10);
end record;
type UNFORMATTED MESSAGE is
array (l..FORMATTED )_MESSAGE'SIZE) of BOOLEAN;
pragma PACK (UNFORMATTED MESSAGE) ;
function DECODE is new
UNCHECKED_CONVERSION (FORMATTED MESSAGE, UNFORMATTED_MESSAGE) ;
function ENCODE is new
UNCHECKED_CONVERSION (UNFORMATTED_MESSAGE, FORMATTED_MESSAGE) ;

MSG: FORMATTED _MESSAGE:= (5, (8,0CT,1947) ,"HI THERE ");
BITS : UNFORMATTED_MESSAGE;

BITS : =DECODE (MSG) ;
MSG : =ENCODE (BITS) ;

Example 5-12

............

O S Y T N T T Py S Y S U Y T S T Y Y CoW T v l.vj

I




with UNCHECKED_CONVERSION;

type FORMATTED_MESSAGE is

record

ID: INTEGER range 0..255;

D:DATE;

M:STRING(1..10);

end record;
type ACCESS_FM is access FORMATTED_MESSAGE;
type UNFORMATTED_MESSAGE is

array (1..FORMATTED MESSAGE'SIZE) of BOOLEAN;
pragma PACK(UNFORMATTED MESSAGE) ;
type ACCESS_UM is access UNFORMATTED MESSAGE;
MSG:ACCESS ™ :=new FORMATTED MBSSAGB;
BITS:ACCESS_UM:s=new UNFORMATTED MESSAGE;
function DECODE is new

UNCHECKED CONVERSION (ACCESS_FM,ACCESS UH).
function ENCODE is new

UNCBECKBD_CONVERSION(ACCESS_DM,ACCESS_?H);

-- assume message transmission results

-- in buffer arriving in binary format

-=- in object of UNFORMATTED_MESSAGE type.
-- By performing ENCODE operation on access
-~ types, you can now access fields of

-~ PORMATTED_ MESSAGE objects.

MSG:=ENCODE (BITS);

if MSG.ID = 4 then
MSG_TYPE_FOUR PROCBSSOR}

end if;

Example 5-13

WAL 7. 8T T e B W W BTN e w¥ o7 « Nl oS ale Ve a -l & e % «ali-B" -1




e il B AN

- .

W N g

At pi’ i il NN Ty W Ol gl AL T gy ¢

-4

. (This Page Intentionally Left Blank)

O T T T e T e e T L T T T T T e T T N T NN L
i i A w I

.
. .t N " . N . cu. . . . e
. e e s * AR Iy I ) PR St et et et et e et e, I R A



SECTION 6
EVALUATION OF PROPOSED ALTERNATIVES

This section presents the details of an overall
evaluation of those alternatives which were proposed in
Section 5. The evaluation will be performed from the viewpoint
of (1) the efficiency of implementation of the alternatives and
(2) the effectiveness of the alternatives themselves.

6.1 DEFINITION OF CRITERIA
6.1.1 Efficiency Criteria

Efficiency can be defined as a measure of the
ability to do a job versus the cost incurred. Specifically in
terms of software, it can be defined as a measure of the amount
of computing resources and code required by a program to
perform a particular function. Efficiency only can truly be
measured, and hence realistically evaluated by empirical
observation of the software operating in a controlled test
environment. Since no compiler is currently available by which
empirical data may be obtained, it is necessary to resort to a
somewhat subjective evaluation. However, when a legitimate
compiler becomes available, then exhaustive test and evaluation
of both the built-in and constructed Ada process control
mechanisms previously proposed can be performed.

In the meantime, the proposed alternatives will
be evaluated on the basis of two efficiency criteria:
execution efficiency and storage efficiency. These criteria
are defined in the following manner:

® Execution Efficiency - a measure of the

ability of the alternative to provide for
minimum processing time.

e Storage Efficiency - a measure of the ability

of the alternative to provide for minimum
storage requirements during operation.




ORERE iy -

3
Yo

6.1.2 Effectiveness Criteria
Effectiveness can be defined as a measure of how
well something does a job for which it was designed. 1In
particular, the effectiveness of software can be defined as a
measure of the extent to which a program satisfies its
requirements and fulfills its intended functional and
operational objectives.
Again, to properly measure the effectiveness of a
particular mechanism or proposed alternative, one needs to
gather empirical data. However, some qualitative assessment of
the effectiveness of the proposed alternatives may be made on
the basis of the following definitions of various criteria:
® Usability - a measure of how easily an
alternative may be applied to the problem at
hand, i.e., ease of programmer specification.

® Manageability - a measure of how easily one
can control the alternative in use.

® Reliability - a measure of how accurately an

alternative repeatedly performs its intended
function.

¢ Documentability - a measure of the ability of

an alternative to be self-documenting.

® Portability - a measure of the ease by which

an alternative may be applied to a similar but
distinct problem.

® Maintainability - a measure of the ability of

an alternative to withstand changes - to
itself or to its environment.

6.2 EVALUATION OF ALTERNATIVES
6.2.1 Evaluation of Alternatives to BBN Report
Criticisms

This section presents evaluations of the
efficiency and effectiveness of the various alternatives to the
BBN criticisms detailed in Section 5.

............................




T T T W o Wl W W N W, W P, ¢ % e e e, o,
r—-mﬂl- L i s o A A A W AT T T T T e T T a A e Y a s e e e ]
«

'

3} 6.2.1.1 Excessive Scheduler Interactions

N The buffered message passing example

(Example 5-1) offers an efficient alternative to the problem of
excessive scheduler interactions associated with a strict task
rendezvous implementation. 1In fact, it was shown that the
rendezvous mechanism for buffering operations was avoided
through use of a shared queue with an associate interlock. The
execution efficiency of this alternative is totally dependent
on the nature of the application. Since a spin lock mechanism
is used for those tasks awaiting access to the queue, any
situation which results in inordinate amounts of busy waiting
will certainly undermine the efficiency of the alternative. 1In
fact, if system performance analysis indicates that the busy
waiting time approaches the overhead associated with scheduler
interactions, the conventional Ada rendezvous mechanism would
be more appropriate. However, the assumption here is that on
the average this busy wait time is small compared to scheduler
overhead.

In examining the effectiveness, or. can see that
this alternative provides an effective means of avoiding the
scheduler delays associated with a strict Ada rendezvous. The
method employed follows more traditional bounded buffer
manipulation methods and is hence easy to use and manage.
Reliability is not really a concern since the code is simple
and straightforward and does not lend itself to errors. The
method is conceptually portable in that it may be employed in
any situation requiring buffered message passing with
non-blocking senders. The disadvantage lies in the utilization
of the interlock mechanism whereby deadlock can occur in any
situation leading to unmatched pairs of LOCK and UNLOCK
operations. Thus, maintenance becomes a concern since the
compiler does not enforce this "synchronization" as it does in
the case of the Ada rendezvous.

Y

.......................................
.............................................................




O P Jiriie v ity

ettt S Trtrr, fx o

B
R
¥
g
X

6.2.1.2 Process Control Structure Inflexibility

This area actually involves two separate problem
areas. The first concern is related to inflexibility of Ada's
process control mechanisms. The second one involves the

problem of the synchronization mechanism being control-based
instead of data-based. The evaluation of the alternatives to
each of these problem areas will be presented separately below.

6.2.1.2.1 Process Control Mechanism Inflexibility
As an answer to this problem area, Section 5

presented four alternatives ranging from low level (interlock)
mechanisms to high level (monitor) mechanisms. Each of the
examples offers an alternative to the use of the direct
entry/accept linkage for mutual exclusion.

Considering the efficiency of the proposed
alternatives, the interlock implementation using assembly
language offers the most efficient mechanism in terms of
execution time and space. These mechanisms, however, tend to
exhibit the same disadvantages and advantages described in
Section 4 for interlocks in general. That is, their
effectiveness is limited by the fact that they are difficult to
manage (control) and furthermore tend to make the code in which
they occur difficult to maintain. As mentioned previously, the
problem is one of "enforcing" implementation of matched pairs
of "LOCK" and "UNLOCK" operations.

The binary and integer semaphore examples exhibit
roughly the same characteristics. They are somewhat less
efficient than the interlock mechanisms but are easier to
control since the nature of the entry/accept linkage of the P
and V operations forces a sequential ordering of the calls.
However, like the interlock, they can be abused. As noted in
the Ada Rationale /ADARAT79/, they exhibit problems which
severely limit their effectiveness. The advantages are their
relative efficiency, ease of programmer specification, and
documentability. The integer semaphore may be viewed as simply
a more flexible implementation of the binary semaphore. The
advantages and disadvantages may be similarly applied.

I-6-4




EVETAYE: “ AR

Lt o E)

~

TITTORY v PRy v

Ty W T T R T T T ey e e TR e ey TN e T e LT e e R e

The last example illustrates an implementation of
a monitor in Ada. Advantages lost in efficiency of execution
and space are gained in effectiveness of implementation. The
monitor implementation is probably the least efficient of any
of the process control mechanism Ada implementations. It also
tends to be more difficult to implement and use. However, it
is reliable, manageable (once implemented) and lends itself
very well to maintenance since all operations and protected
data are centralized within the monitor itself.

The conclusion reached in the evaluation of these
four alternatives is that they are mechanisms which offer
various trade-offs in advantages and disadvantages and a
decision as to which one to apply to a particular situation
should be based on the requirements of the situation. The
point is that Ada does provide the implementor with the
capability to construct a wide range of process control
mechanisms with which to work.

6.2.1.2.2 Storage Inefficiency of Control-Based

Synchronization Mechanisms

The problem of storage inefficiency associated
with Ada's control-based synchronization mechanism was
addressed by Example 5-7. 1In this example, the solution was to
define pointers to each of the entities which are defined as
records containing interlock objects as their components.

It can be seen that this produces an efficient
solution in terms of storage since the objects are created on
an as-needed basis using access types. Note that the execution
efficiency can be improved by employing the previously
described interlock instead of the interlock of type RESOURCE.

The solution offered is a very straightforward
implementation, though the usefulness and manageability is
dependent on the availability and controlled use of some
garbage collection mechanism. This is an assumption which also
governs the portability of the solution. Finally, the solution
is thought to be very readable and easily maintained.

I-6-5




,ﬂv LSS aanan
- JO R S .

LT * L. I3 AR

6.2.1.3 Naming Convention Problems

Again, there are actually two distinct problem
areas in this category. The first problem area is that Ada's
task naming conventions do not allow the programmer to name or
create tasks which accurately reflect the underlying algorithm
structure. In other words, the array structure of task
families did not allow one to create task objects with
meaningful names. Moreover, the array structure did not easily
map onto any underlying structure except arrays. The second,
potentially more serious problem is posed by the asymmetry of
knowledge between the called and the calling task.

6.2.1.3.1 Task Naming/Structure Inconsistency
The problem of not being able to meaningfully

name tasks is no longer applicable. Tasks are now defined as
types and named objects may be created to meaningfully match
the underlying structure.

Furthermore, the limitations of the array
structure of tasks in preliminary Ada a.: no longer present.
Example 5-8 illustrates ar implementation of a linked list of
terminal drivers which a&d:~sses zhe terminal driver problem
cited in the BBN report. Obvicusly, this is a much more
efficient implementation than the three preliminary Ada
alternatives list>d on page 123 of the BBN report.

In terms of effectiveness, it can be seen that
the alternative presents the most direct solution to the stated
problem. In fact, it satisfactorily meets all of the defined
effectiveness criteria.

6.2.1.3.2 Return Address Problem

There is no direct mechanism available in Ada
whereby a server task can know the identity of its customers.
Example 5-9 provides an indirect method to soive this problem.
In the example, an accept statement within the customer task's
body is used to establish the customer's own identity, which is
then passed as a parameter (using a ouinter) to the server task.

. . e . T L .- e e e ST r ._.I



~
o ta

R~ DOLT LRI A4 SN (TR

3
3
[
b,
X

-—uTY

T T T W T R T T T T . T T LT e T e et e AT e T e T T e TV T T U T LT T N R

Because the mechanism employs pointers to the
customers, it is considered to be a fairly efficient solution
in terms of both execution time and storage. Because it is an
indirect mechanism, it is seen to be less effective than a
mechanism which could be built into the language to provide
symmetry of knowledge between customer and server tasks. This
is because it is somewhat difficult to use, manage, and
maintain. For example, if the programmer neglects giving the
customer task its own task name, the whole scheme breaks down.

6.2.1.4 Lack of Scheduling Control
Not applicable for reasons cited in Section 5,
paragraph 5.1.4.2.

6.2.2 Evaluation of Alternatives to Other

Communication-Related Concurrency Issues

This subsection presents evaluations of the
efficiency and effectiveness of the various alternatives to
other communication-related concurrency issues outlined in
Section 5.2.

6.2.2.1 Operating System Requirements
Not applicable for reasons cited in

Section 5.2.1.2.

6.2.2.2 Scheduling Deficiencies

There are actually two issues included in this
category. The first problem closely resembles the first listed
BBN issue and involves the fact that Ada always associates
interprocess communication with synchronization in time. The
second problem deals with the inability to directly manipulate
queues within the available Ada framework since Ada has chosen
a FIFO implementation for task queuing at the expense of all
others.

.........................
.................

...........

PP T T Y

faAaaca & sl EG A LcAC

em R Aa




TR W RN T W I oW ™

...............
......

TR TUW TR B T4 TR T T e R YT e T AN Rl Rl L.

6.2.2.2.1 Interprocess Communication Problems

The alternative to this problem area was
presented in Example 5-10. It involves an intermediate
buffering task which is dedicated to receiving and sending
messages between application tasks. This allows a sending
process to deposit a message with the buffering task and
proceed with its appointed tasks.

The main advantage of this alternative is that
the application (user) tasks are not held up waiting for
rendezvous to occur. It is not necessarily efficient in terms
of overall execution time since several additional scheduler
interactions may be required. 1In fact, in the case where the
target task (receiver) is almost always in a position to
rendezvous, the proposed alternative would be much less
efficient in the long run. 1In addition, it is not necessarily
storage efficient since extra storage for the intermediate task
is required.

The advantage of the alternative is that it is a
direct, effective means of handling situations in which
application tasks cannot be delayed waiting for rendezvous to
occur. It is not very easily implemented and does not lend
itself to readability. It is, however, somewhat easy to
control since the users must explicitly indicate the target
system in question. Furthermore, it is conceptually portable
and easily maintained.

6.2.2.2.2 Inability To Directly Manipulate Entry Queues
Ada does not provide the direct capability to

dynamically manipulate queues of calling tasks waiting to
rendezvous with a called task. The Ada Rationale provided
Example 5-11 as an alternative to this problem. Even though
this is a viable mechanism to solve the problem, it is
unfortunately not very efficient. Note also that the example
addresses only a small number of priority levels. Thus, a more
sophisticated and hence less efficient mechanism would have to
be employed to handle a larger number of priority levels.

1-6-8

..........................................

M e T T e T TR M e O RROWORTET T T AT e TR e "L, N o

EUREEN




B B L W e ¥ e ¥ W W e ¥ g T la T ' -~ -
T T R T R MR L T R T R A T A T AT E TR TL VL T T TR TTNT o e e T T e T T T T e e Y e N e e s, Ce T e Lt

The example given, however, is easily
implemented, easy to control, reliable, very readable,
conceptually portable, and easily maintained. As such, it is
considered to be an effective solution to the stated problem.

6.2.2.3 Inefficiency of Rendezvous for Mutual Exclusion
This problem was previously addressed in

paragraph 6.2.1.2.1.

- 6.2.2.4 Dynamic Task Priority Assignment
5 The ability to dynamically change task priorities

is a desirable feature to have available when dealing with
momentary heavy resource load or casualty conditions. Even
though there is no direct mechanism available within Ada to
handle this problem, paragraph 5.2.4.2 described some viable
alternatives.

The alternatives described are not very
efficient. 1In the first example, storage efficiency is poor
since duplicate copies of tasks have to be maintained, Also,
the spawning and subsequent execution of the duplicate tasks
leads to execution time inefficiency since it will almost

pubanauRLL L Jai

certainly involve scheduler interactions. The last example
offered is more efficient in terms of storage since the
prioritized server tasks are small dedicated tasks which only
call the desired diaqnostic tasks. However, execution

ot 4

efficiency could be adversely affected in situations where the
amount of processing placed within the context of the accept
statement might be excessive.

Unfor tunately, these are not very effective

é, mechanisms to employ either. They are difficult mechanisms for,
a programmer to specify and even more difficult to manage once
y implemented. Reliability is a question since it is difficult

to track one's location when a fault occurs. They are somewhat
readable in the sense that the task definitions offer visible
evidence of the intended task priorities. As such, they are
also somewhat easily maintained since the different priority

' tasks can be localized.

I-6-9

” .,h —l. ------
..\.‘{... . Sl PP e PR N
- - . hd - . - - ~ . e e . Wz N e O . A . . . -
P T WLCR "2y SOGETOAE UH U SR T U TP SN Sl S S St S VL W - » a

Aassdiirisr o L8 st inte e s




T T W e W o Wi e % v, v W, SRy Y <« ¥ ¥ ML FLE WL R wWTW O Wae TUweTTT R R R sV Ry e TRy

o 6.2.3 Miscellaneous Issues

p This subsection presents an evaluation of the
! alternative to the one significant non-concurrency related

g issue that surfaced during the course of the analysis effort.
K 6.2.3.1 Dynamic Record Structure Manipulation

Since Ada places restrictions on dynamic
manipulation of the form and contents of a record structure
during runtime, it is necessary to formulate an alternative
mechanism to do this. Obviously, it is desirable to be able to
represent and access a particular data structure in both a
formatted and an unformatted manner.

Example 5-12 presented one such method using the
generic function UNCHECKED_CONVERSION to dynamically convert a
record structure. The alternative presented is not very
efficient in either time or space since the generic functions
must be instantiated and a complete context switch of the
message most likely occurs upon the conversion. Example 5-13
offers a second method employing unchecked conversion of
pointers to the records, rather than the records themselves.
This is obviously more efficient since the conversion is
performed on the pointer, avoiding the message context swap of
the previous example.

Both methods offer fairly effective means of
handling the problem. They satisfactorily meet all of the
defined effectiveness criteria with the exception that they are
somewhat cumbersome to implement.




g CWTTLILOA  RRRAL WY LK

e
3
«

A

-~

. ,r‘ ".7 ';i."'.:“;.:i.. o:.'_*-_ ;1;

SECTION 7
CONCLUSIONS

7.1 SUMMARY OF ANALYSIS

Sections 2 and 3 provided the framework for the
definition of requirements associated with concurrent
programming in communication systems appiications. The general
requirements were analyzed as well as those features required
by a programming language to satisfactorily implement those
requirements. Section 4 then addressed traditional solutions
to process control and described the means whereby the Ada
programming language addresses the three aspects of concurrent
programming, i.e., interprocess synchronization, communication,
and mutual exclusion. Section 5 discussed alternatives to all
identified problem areas. First, the issues uncovered by the
BBN Report /BBNE79/ were analyzed and alternatives to these
problem areas were presented. Second, problems uncovered
during the analysis of communications systems requirements for
concurrent programming were presented and alternatives to these
problems were offered. Last, the non-concurrency related
problem of dynamic record manipulation was addressed. 1In
Section 6, definitions of efficiency and effectiveness criteria
were presented, followed by a qualitative evaluation of each of
the solutions to the identified problems.

7.2 CONCLUSIONS

There were six distinct criticisms listed in the
BBN report, five concurrency related probleﬁs, and one
non-concurrency issue. Out of all of these, only two problem
areas were left unanswered. These are (1) Ada's lack of
control over the scheduling discipline and (2) the operating
system requirements of an Ada-based communication
implementation. 1In fact, these may not be problem areas in
some implementations for reasons given in Section 5.




One overriding observation can be made following
this analysis. As a high level programming language, Ada
provides the implementor with the flexibility to construct
: alternatives to known deficiencies. 1In fact, the alternatives
! presented in this report are merely representative samples of a
: wider range of potential alternatives to the identified
problems. The choice of a particular alternative to a
particular problem area will be governed by a determination of
the efficiency and effectiveness of the alternative in

; question. This determination can be properly made only when

\ the applicable environment is identified and quantitative

: measurements can be made. The existence of a legitimate

N compiler and a viable support environment are obviously

3 necessary requirements. To the extent possible, some

preliminary measures of the efficiency and effectiveness of the

various alternatives can be made during Phase II of this

ongoing effort. While this effort will only have access to the

L NYU Ada/ED Translator/Interpreter, some comparative analysis of

; the efficiency of the various alternatives can be performed as
well as a preliminary evaluation of the effectiveness of the
proposed solutions. To this end, tests should be devised to
specifically address the cited problems and alternatives.

: This report has served to document the evaluation

of using the Ada programming language for concurrent

communication system programming applications. It has

addressed previously cited criticisms as well as ones

discovered during the course of the analysis. As a result of

this preliminary analysis, it can be concluded that the current

Ada language definition can be effectively applied to

communication systems applications. A quantitative proof of

4 this conclusion will be required during follow-on efforts as
the applications are identified and the necessary tools become
available.

I1-7-2




Y

AT

e el mact oo anie ance it Ohiag Mg fa AP A A e R SR

APPENDIX A
REFERENCE DOCUMENTATION

I-A-1

Vel JTRRTW .0 T e

R L D . L O
- - . » . C e e - . - - c. . . \ LR T
- - a At o, P . IR Y - v
AP T gl LTS WD UATIIR AP AL TR D0 Y T ) 2

. v e
ot PRI TR
PSR SRR T S S S PRSP SR - W

.
S it Bl B ® o R

P R e




S B s e L S b B (e S 2 E A runie. il Saull e SRt Saadr Sl o-de el Nk aln ol ol -adeir- SRT. —— Zhas B St Dl it aS ar-a - Mna ka4

/AUTO78/ AUTODIN II Mode/VI (ADCCP) Line Control
Procedures Functional Spec Ication, Final

Draft. June R

/BBNE76/ Bolt, Beranek, and Newman, Development of a
Communications Oriented Lanquage, Parts 1 and 2.
March 1976.

/BBNE79/ Bolt, Beranek, and Newman, The Impact of

Multiprocessor Technology on High Level Langquage
Design, Final Report. DCA Contract
No. 100-78-C-0028, September 1979.
/BBNE80/ Bolt, Beranek, and Newman, Formal Specification
of the Transport and Session Protocols, Draft
Report. Contract No. NB79SBCA(0092, 1980.
/BOCH80/ Bochman, Sunshine, Communications Protocol

Design. IEEE Trans., Vol. COM-28, No. 4,
April 1987.

/BOUT79/ Boute, R. T., Ada and CHILL: A joint language
evaluation. Report RTB-7908. Bell Telephone
Manufacturing Company, Antwerpen, August 1978.

/BRIN73/ Brinch Hansen, P., Operating System Principles.
Prentice~Hall, Inc., Englewood Cliffs, New
Jersey, 1977.

/BRIN78/ Brinch Hansen, P., Distributed Processes. A

concurrent programming concept. Comm.
Volume 21, Number 11, November 1978, 933 941.

/CLAR80/ Clark, Proceedings from the Seminar on DOD Data
Communications: Host-to-HOSt Protocol
Standards. NBS, November 1980.

/CONW63/ Conway, Design of Separable Transition Diagram
Compiler. Comm. ACM 6,7, July 1963.

/DCAC78/ DCA, AUTODIN II Design Executive Summary. DCA
Contract No. 200-C-637, May 1978.

/DECO80/ DEC, INTEL, XEROX, The Ethernet: A Local Area
Network Data Link Layer and Physical Layer
§gecIfIcatIon; Version 1.0. 1980.

/HOAR78/ Hoare, C. A. R., Communicating Sequential

Processes. ACM 21, 8 (August 1978), 666-677.
/HOLT78/ Holt, R. C., et al., Structured Concurrent

Programming with Operating Systems Applications.
Kaggson-WEsIey. Iggﬁ.

......................................................

...........




A W W L W W ¥ e T TN NS i Saak SRR 2 At Sl At M ity A Calltaik 4 e .~'.~1

‘
-

- =
A

/ICHB79a/ Ichbiah, J. D., et al., Preliminary Ada Reference
Manual. ACM SIGPLAN Notices 14, 6 (June 1979),
Part A.

/ICHB79b/ Ichbiah, J. D., et al., Rationale for the Design

of the Ada Programming Language. ACM SIGPLAN
Notices 14, 6 (June 1979), Part B.

ety - ALV S Lal oA 2

/JONESO/ Jones, Schwarz, Experience Using Multiprocessor
Systems -~ A Status Report. ACM Computing

Surveys, Vol. 12, No. 2. June 1980.

/KOBA78/ Kobayashi, Systems Programming Series: Modeling
and Analysis. .

/OSINT79/ 0SI/TC97/SCl6, Reference Model for Open Systems

Interconnection. June 1979.

/POST80/ Postel, Internetwork Protocol Approaches. IEEE
Trans., Vol. COM-28, No. 4, April 1980.

/TOBA80/ Tobagi, Multi-Access Protocols in Packet
Communications Systems. IEEE Trans.,

/uUsSD080/ U.S. Department of Defense, Reference Manual for
the Ada Programming Language. July 1980,
/Z2IMMB0/ Zimmerman, OSI Reference Model. I1EEE Trans.,

Biaagss KLAR 4

rebeid

......................




Hasmaless’d

[

A > BRA

atees del d k

. o)

NS

i

P

- a

I

(This Page Intentionally Left Blank)




-t

T
-~ o

!

L

p—

Culh

]

NS §

mas -
~ -

Comparative Analysis
of the
Ada and CHILL
Programming Languages



L qtir amn o o
J

v wvrwrfvwﬂ, mevarr—s

(This Page Intentionally Left Blank)

II-ii




e e

D St ghu eh o

WEOR W SELPLC TS e w8 Ty Cadn

Comparative Analysis
of the
Ada and CHILL
Programming Languages

Abstract

With the increasing use of Stored Program Control
telephone exchanges, the development and use of proper software
tools takes on added importance. The CCITT High Level Language
(CHILL) is being developed specifically for programming of SPC
exchange applications. Ada is being developed to serve as a
programming standard for embedded military computer systems.

In many instances the functional requirements of these two
application areas coincide and as such this report examines the
feasibility of Ada being used as a direct substitute for CHILL,
both in the context of CHILL being a programming language, and
in the context of CHILL being part of a programming environment
containing CHILL, SDL, and MML. The report concludes that Ada
is indeed a suitable replacement for CHILL in both contexts.

II-iii




- W W e T AT RTTEON TN MO T e & T VT T L U T T T e T VAT T TN OO, TR TR TNV TRV LT Y, T TN YT

(This Page Intentionally Left Blank)

)

II-iv

.
0
.

g ) @ g




TABLE OF CONTENTS

% SECTION TITLE PAGE
ABSTRACT II-iij
EXECUTIVE SUMMARY II-ix
INTRODUCTION
1.0 Introduction II-1-1
l.1 Purpose II-1-1
1.2 Scope II-1-1

2 ADA/CHILL OVERVIEW
2.0 Overview of Ada and CHILL I1-2-1
2.1 Ada I1-2-1
2.2 CHILL I1-2-5

3 ADA/CHILL FEATURE COMPARISON

3.0 Feature Comparison I11-3-1
3.1 Lexical Elements II-3-1
3.2 Data Typing II1-3-4
3.2.1 Type Definition II-3-6
3.2.2 Type Equivalence I1-3-7
3.2.3 Parameterization I1-3-9
_ 3.2.4 Representation Control I1-3-11
' 3.3 Names, Expressions and Statements I1I-3-12
F 3.3.1 Names and Expressions IT-3-13
3 3.3.2 Statements I1-3-14
A 3.4 Program Structure II-3-16
i 3.4.1 Modularity I1-3-16
[ 3.4.2 Scope and Visibility I1-3-22
E 3.5 Concurrency II-3-23
L 3.6 Exception Handling I1-3-29 5
E 3.7 Input/Output II-3-30 I
h 3.8 Discussion I1-3-32 i
T L
| SRS RN




BT ETETTE TR e TR

e L aWa LW . .oy

TABLE OF CONTENTS (Cont.)

SECTION TITLE
4 PROGRAMMING ENVIRONMENT EVALUATION
4.1 CHILL/SDL/MML Environment
4.2 Ada Programming Support Envirf)nment
(APSE) '
4.3 Discussion
5 CONCLUSIONS
APPENDIX
A REFERENCES
&
*‘ II-vi
I
h | o .
Bt i e R

e & O4T W W W T T AT W e e W eT T

PAGE

II-4-1

II-4-3
II-4-7

II-5-1

II-A-1

...............
....................




TR TR RN T e TR T T TS T T RS WINTTR T TR T RS T W a T T KT AT AT AT AT AT T AT aT e s T e M BT Y T v 8 A = .

LIST OF ILLUSTRATIONS

TABLE TITLE PAGE

<72 v e e g ST
. a -
y“i’l.l.:.'\’l_%v._c.h“

2
w
!
-

Ada/CHILL Data Types II-3-5

N
o

L A
e

A]

XY

-

t Sl WSO e ST W {

TR p— v ey

..................




o gy oy s b~ 2 oy ~xy da S <ea arh Wil A Gul M- il MR g SO i SR ey Ged pan sy ape: gty Al L Lo dan - L -

. (This Page Intentionally Left Blank)

R PR TRYCE R

Sl N T A

Totalatsli sl

R S R

4 a A

P ANt A T Y R LN, .
JENUCTA NI RS VI S s T T PG Mt WY
« '.n':'a "-"o' e o \s-". ot




EXECUTIVE SUMMARY

This report presents the results of a comparative
analysis between the CHILL and Ada programming languages. The
approach taken in this analysis effort was to perform an
exhaustive feature-by-feature comparison of the languages and
the programming environments to determine if Ada can be used as
a suitable replacement for CHILL. The objective of this effort
was twofold:

1) To demonstrate the suitability of Ada as a
replacement for CHILL in a programming
language context.

2) ‘o demonstrate the ability of Ada to replace
CHILL in a programming environment containing
CHILL, SDL, and MML.

The feature-by-feature comparison presented in

Section 3 demonstrates that the language differences are

minor. When viewed from a circuit switching application point
of view, no evidence can be found that CHILL exhibits any
linguistic or functional advantage over Ada. In fact, no
feature exists in CHILL that dictates choosing CHILL over Ada
for any telecommunication application. Since the language
feature evaluation uncovered no major differences, it is
concluded that Ada is, indeed, a suitable replacement for CHILL
from a programming language point of view.

The examination of the Ada Programming Support
Environment (APSE) and the programming environment of CHILL,
SDL, and MML is presented in Section 4. It is seen that no
dependency exists between the CHILL, SDL, and MML elements, and
as such, no restriction is placed on their portability because
of a dependency. Furthermore, the APSE is shown to be able to
support the inclusion of external program tools within its
outermost level. It is concluded that Ada can replace CHILL in
a CHILL/SDL/MML environment, but that a more attractive
approach is to incorporate the SDL and MML tools into the APSE.

P e O AR PUNL PO S P
. P T T A T O e ST T S S U B
- . ST, e .




These conclusions, along with other relevant
issues, are presented in Section 5. Additionally, three other
reports are discussed which treat the same subject and arrive
at the same basic conclusions.

In summary, it is felt that the comparative
analysis described in this report has convincingly demonstrated
that Ada can, in fact, be used as a suitable reélacement for
CHILL.

R P R T S PUC T S
e A T « e te T - - . P R SRR
.................

e, .

SN

- e . o i . . ot
G T S AR T ST e e L O L e
o Wiy 3 N € Ny Sy SR R I NP, S A LA S AT SRS N NP SO N STl st S NPT BT i R et ot oed LA 3 a CIBI S




SECTION 1
INTRODUCTION

1.0 INTRODUCTION

1l.1 PURPOSE

The purpose of this report is to describe the
results of a comparative analysis of the CCITT High Level
Language (CHILL) and the Ada programming language. This
analysis, as detailed herein, was conducted by Systems
Consultants, Inc. (SCI) in support of the Defense Communication
Agency (DCA) under Contract Number DCA 100-80-C-0037.

1.2 SCOPE

This report presents material which provides
answers to the following two questions:

1) Can Ada be used as a direct substitute for

CHILL in the context of CHILL being a
programming language designed for circuit
switching applications?

2) Can Ada be used as a direct substitute for

CHILL in the context of CHILL being part of a
programming environment containing CHILL,
SDL, and MML?

To answer the first question a feature-by-feature
comparison will be presented. The intent of this comparison is
to examine the form and function of the two languages to
determine how similar they are in terms of the definition and
availability of their respective features. The integration of
the features within each language will be addressed and it will
be shown that CHILL does not hold a distinct linguistic or
functional advantage over Ada. Since CHILL was, in fact,
designed for circuit switching applications, it will be shown
that the answer to the first question is affirmative.

AL AR i Nl T e T T e R P IP EUUE JEN RPN S ST e T tae L L I
YRS .’.',"\ ~.~:.‘_. AL e e s e RIRFLIAE S . o . .

» " w . - - R S T e
e A NI W D TS PR B R, SR I I AT WA . DR SPUCRP 3PS A T Tl VLRI Sl S : e ia - e e ta e s s

T BTN E TR s B B TR O oMl o B o W e T W T e Vet aleaP o b or Va®uw?a M. HaTae"wars

" w T e




To answer the second question, the CHILL/SDL/MML
environment will be examined to determine the specific
relationship that exists between CHILL/SDL and CHILL/MML.
Additionally, the Ada Programming Support Environment (APSE)
will be examined to determine its ability to support external
tools such as SDL and MML. It will be shown that CHILL, SDL,
and MML are not dependent on each other, that the APSE can
support the incorporation of SDL/MML, and that incorporation of
SDL and MML into the APSE represents an attractive formulation
of a programming environment for circuit switching applications.

The report is organized in the following manner.
The following section, Section 2, presents a high level
overview of Ada and CHILL. This overview will include a brief

history of their respective development efforts, a description
of the language design goals, and current development status.
This is mainly intended to provide the uninitiated reader with
pertinent background information.

s
s

v

‘

Section 3 presents the feature by feature
comparison organized into the following subsections for
convenience:

DR~ R

Lexical Elements
Data Typing
Names, Expressions, and Statements
Program Structure
Concurrency
Exception Handling
e Input/Output
Differences between the form and function of Ada's features and
those of CHILL will be detailed. It will be shown that Ada and
4 CHILL are technically very similar in terms of the definition
and availability of their respective features.
Section 4 addresses the issue of a programming

P AR MO (R AL ELIAINE By

support environment. The Ada Programming Support Environment
(APSE) will be examined to determine its interaction,
compatibility, and implementation requirements. The
programming environment of CHILL, SDL, and MML will be examined
in similar fashion. The method and feasibility of replacing

II-1-2

............

o B B B i PR S P WP AL P

TR TE. TR T TRITYTTRN TV R MR YR T R TEY A Y T o ToaTL. W, TNV T T e b et e s e e e e ey T T e s e T e




M e 4

CHILL with Ada will then be evaluated.

TN T Y e LT [

It will be shown that

an environment consisting of APSE hosting SDL/MML is the most
practical and that in this context, Ada can replace CHILL.

Section 5 presents the overall conclusions of the

Ada/CHILL comparative analysis effort.

II-1-3

PPN AP S UL WK Uy S

PO D

ol e e T T e L s e




(This Page Intentionally Left Blank)




SECTION 2
ADA/CHILL OVERVIEW

-.v' .
e
.

2.0 OVERVIEW OF ADA AND CHILL

Prior to conducting an in-depth comparison of Ada
and CHILL, it is advantageous to present a brief high level
overview of the languages. It will be seen that, at least
superficiaily, the stated goals, development histories, and

SR

-y
.

-~

"
-
o'
)
=
A
e
~

overall features of the langquages are not at all dissimilar.

2.1 ADA

The Ada programming language is being developed
by the Department of Defense (DoD) to serve as a programming
standard for embedded military computer applications; e.g.,
shipboard, communications, avionics, or command and control
systems. The DoD High Order Language (HOL) program was
initiated in 1975 with the goal of establishing a single high
order computer programming language appropriate for all DoD
system development efforts. 1In 1976, the HOL program became
part of an overall program (established by DoD
Directive 5000.29) to improve the management of computer
resources in major defense systems. A High Order Language
Working Group (HOLWG) was established to define the HOL
requirements, evaluate existing languages against those
requirements, and to i.plement the minimal set of languages
required for DoD use. As a result of HOLWG efforts, DoD
Instruction 5000.31 defined a list of seven interim acceptable
languages and concluded that none of tite languages fully
satisfied the initially defined HOL requirements.

The initial requirements were specified in a DoD
document entitled STRAWMAN (1975) and evolved through
WOODENMAN (1975), TINMAN (1976), IRONMAN (Jan 1977) and revised
IRONMAN (July 1977), to the present STEELMAN (1978) document.

II-2-1




;' The following general HOL design criteria is abstracted from
i STEELMAN /USDO78/:
°

Generality. The language shall provide
generality only to the extent necessary to
satisfy the needs of embedded computer
applications. Such applications involve real
time control, self diagnostics, input-output
to nonstandard peripheral devices, parallel
processing, numeric computation, and file
processing.

Reliability. The language should aid the
design and development of reliable programs.
The language shall be designed to avoid error
prone features and to maximize automatic
detection of programming errors.
Maintainability. The language should promote
ease of program maintenance. It should
emphasize program readability (i.e., clarity,
understandability, and modifiability of
programe). The language should encourage user
documentation of programs.

Efficiency. The language design should aid
the production of efficient object programs.
Simplicity. The language should not contain
unnecessary complexity. It should have a
consistent semantic structure that minimizes
the number of underlying concepts. It should
be as small as possible consistent with the
needs of the intended applications.
Implementability. The language should be
composed from features that are understood and
can be implemented. The semantics of each
feature should be sufficiently well specified
and understandable that it will be possible to
predict its interaction with other features.
To the extent that it does not interfere with
other requirements, the language shall




facilitate the production of translators that

X are easy to implement and are efficient during

! translation. There shall be no language
restrictions that are not enforceable by
translators.

® Machine Independence. The design of the

!! language should strive for machine

&f independence. It shall not dictate the

characteristics of object machines or

2 operating systems except to the extent that

5 such characteristics are implied by the

semantics of control structures and built-in

operations. It shall attempt to avoid

features whose semantics depend on

characteristics of the object machine or of
2 the object machine operating system.
5 Nevertheless, there shall be a facility for
- defining those portions of programs that are
" dependent on the object machine configuration

and for conditionally compiling programs
depending on the actual configuration.

® Complete Definition. The language shall be
completely and unambiguously defined.

A [ SRR

Given that none of the interim approved languages satisfied all
of the STEELMAN requirements, DoD opted to set forth a program
to develop a single language which could, and subsequently

' funded four contractors to produce competing prototype designs
known as GREEN, RED, YELLOW, and BLUE. All four design
contractors chose PASCAL as their design point of departure.
Design was completed in early 1978 and the GREEN and RED
languages were chosen for a one year follow-on design
development. On May 2, 1979, the GREEN language (designed by
CII-Honeywell Bull) was chosen and renamed Ada.

T YN

. g e

Since that time Ada has undergone several minor
updates resulting in the release in July 1980 of the (proposed
standard) Reference Manual for Ada /USDO80b/. Minor revisions
will most likely still be required but a fairly stable

A o Ml ) SR th AL YR RN CHAN

I1-2-3

ald
A
{

1

+3

1

P N y VNS o - e o PP Y S




et
Y

definition baseline exists at present. Given this existing
baseline the U.S. Army and the U.S. Air Force have recently
awarded contracts worth $2.5 million and $9 million
(respectively) for Ada compiler development with delivery
expected in the 1983-84 time frame.

It is generally agreed that the current
definition of Ada, as detailed within the DoD Ada Reference
Manual /USDO80b/ has faithfully met the intent of the STEELMAN
requirements. It is readily seen that Ada has inherited most
of its traits from other modern high level languages. But,
unlike most of its predecessors, Ada is designed to be
universal, totally portable, and exceptionally reliable. The
first stipulation tends to make Ada large and complex - it must
support mathematical, process control, or list sorting
requirements, as well as system programming requirements.
Under the second stipulation, Ada defines its run-time
environment so that it executes the same on a microcomputer as
it would on a mainframe. But the one trait that was given top
priority in Ada design was reliability. An embedded military
system obviously cannot tolerate faults during stress periods.
Ada must be able to support the development cf easily
maintained, very reliable computer programs, and the design of
particular Ada features reflects this requirement. Those
features which most characterize the Ada rationale are as
follows:

® Provide strong data typing facilities with

strong type checking to improve software
reliability and simplify debugging.

® Provide modularity of program structure to

implement nested program units which
facilitates information hiding and visibility
control.

® Support both top-down and bottom-up design

methodologies and provide separate program
element compilation capabilities.




Lt e SR Mo

e

A
»

T

.
‘e
.o
2
.
-
»
»
re
>
'~
»
I
[-
{e

vt

® Provide realtime features for parallel
processing and scheduling as part of the
language definition.
e Provide language defined and user defined
exception handling capabilities.
@ Provide flexible yet powerful representation
features.
If a description of Ada can be summarized within one sentence,
it would be that Ada is a versatile general purpose language
designed to meet the needs of numerical, scientific, system
programming, and real-time applications with an overriding
design goal of reducing the cost and improving tne reliability
of large scale software development.

2,2 CHILL

The CCITT High Level Language (CHILL) design
effort was initiated at approximately the same time as that of
Ada. The effort actually indirectly began in 1968 when CCITT
Study Group XI undertook the evaluation of over 70 existing
high level languages in order to determine if any of them would
be suitable for Stored Program Control (SPC) programming of
telecommunication circuit switching applications which, at that
time, were exclusively programmed in assembly language with all
of the attendant disadvantages. Approximately 30 of the
original 70 languages were then chosen to be used to conduct
extensive programming exercises as part of the evaluation
effort. A report called the Yellow Document was released in
April 1975 detailing the exercises and their results. The
basic conclusion arrived at during this existing language
evaluation was that no single language was deemed suitable for
SPC programming applications. Also published by CCITT in 1975
was the outline proposal for the CHILL language development
which presented the CHILL functional requirements and was known
as the GREEN Document.

I1-2-5

Ann ok ot at i alaam aowlaala la

VAP TER I R SN ST S TN SRy TP Aaed

L'.' PRI BV Y S BETCICIY S




TV PoTeYY s eragr gyt
L Tt v el

R
- .

- W LTE LT LY TR TaT e e s RTWITR TS TR AT . T oM e T T T T T T e e

During the period of 1976 through 1980, CCITT
Working Party XI/3 conducted the language definition effort
resulting in the release in February 1980 of the proposal for a
recommendation for CHILL known as the BROWN Document or Draft
Recommendation 2.200. This version was incomplete, however,
and a {final) updated version was released in May 1980. This
document is numbered COM XI-No. 396 or alternately
AP VII-No. 21-E.

CHILL has been the subject of several trial
implementations, the first of which was initiated in 1977.
Several trial compilers exist or are in progress, although they
currently address only language subsets based on preliminary or
incomplete definitions.,

The features which characterize the CHILL
language are almost identical to those of Ada when viewed at a
high level. Despite the fact that the original CHILL design
objective was limited to development of a language expressly
designed for programming SPC telephone exchanges, it can now be
seen that CHILL is equally suitable for other general
telecommunication applications, as well. It was initially
believed by the CHILL designers that SPC programming
applications required a High Level Language (HLL) to exhibit
some special features not normally associated with an HLL. It
was soon discovered that SPC telephone exchange programming was
not totally unlike other commonly known real time programming
applications, e.g., systems programming, and that certain
modern high level languages have been used successfully in
these specialized application areas. When viewed in this
manner it is seen that the CHILL language design objectives are
not very different from those of Ada. 1In fact, the features
listed within the previous section can be duplicated here for
CHILL. It is in the interpretation and implementation of these
features where the two languages differ and these differences
will be discussed in detail within the next section.

i - WP PPN SOUPCIS W TPty PR W WLy Iy Y WP N PPN ST o




—y

Ncarme s

———T Y Y " o w m e A T ST T TATRF T T T AT e T A T e et e,

SECTION 3
ADA/CHILL FEATURE COMPARISON

3.0 FEATURE COMPARISON

This section will examine the Ada and CHILL
programming languages in a dual fashion. The features of the
language will be evaluated in terms of their syntatic form,
ease of use, availability, etc., and in terms of their
function, e.g., if and how well a particular function is
implemented and the efficiency of its implementation. The
discussion is not intended to be all inclusive but rather to
hignlight those areas where significant differences exist
between the languages in the definition, implementation, or
availability of particular features. The following subsections
represent major feature categories grouped in this manner for
convenience of comparison. The individual language reference
manuals, /USDO80b/ and /CCIT80a/, were used as primary sources
for material in this section.

3.1 LEXICAL ELEMENTS

The lexical elements of a language represent the
smallest identifiable units defined by the language, i.e., the
character set, delimiters, identifiers (including reserved
words), numbers, character strings, character literals, and
comments.

The lexical elements of Ada and CHILL are very
similar both in appearance and usage. However, some
significant differences do exist as described below.

The character sets used by Ada and CHILL are very
similar. Ada uses the standard 128-character ASCII set while
CHILL employs the CCITT alphabet No. 5, recommendation V3. The
basic character set used to represent CHILL programs is a
subset of the basic Ada character set. The differences between
the overall sets exist in the representation of the (printable)
characters "dollar sign" and "tilde" and in the (non-printable)
control character terminology. The binary internal

LR W S A . e

A e

PRI VS A |




representation and lexicographical ordering of the two

character sets are identical. Note, however, that Ada permits
the overloading of any character set through use of the
representation specification capability. Additionally, the ‘
transliteration facility of Ada allows characters to be
represented which are not contained within the basic character ‘
set. |
Identifiers are the names defined and used within
programs. The definition and use of identifiers is almost
identical in either language. 1Identifiers can be built with
combinations of letters, digits, and underscores, limited
solely by the length of the logical input record. CHILL syntax
definition allows multiple repeated underscores and digits in
identifiers. This is deemed a significant oversight which
could lead to readability problems and fosters unconventional
naming/labeling. CHILL distinguishes between identifiers
differing only in upper and lower case characters, i.e., CHILL
and Chill are two distinct identifiers. Ada does not make this
distinction. Both languages have reserved words which may not
be used as identifiers. CHILL, however, has a language defined
compiler directive ("FREE") which explicitly frees a reserved
word for subsequent use as an identifier. Even though explicit
use of the compiler directive is a visible clue that reserved

L, T

words have been freed, this feature is felt to be unnecessary
and potentially harmful from a maintenance point of view.
The definition of numeric literals in the

languages represents an area of significant difference. Ada
defines two classes of numeric literals -- integer and real --
and both integer and real literals can have exponents as well
as be represented in any number base between base 2 and

base 16. CHILL simply defines integer literals, without
exponents, representable in base 2, base 8, base 10 (default),
and base 16. While real numbers are not absolutely required in
a circuit switching application, there are certain indirectly
related applications that make it desireable to have the
capability to specify real numbers. For example, it is more
convenient (and, in fact, appropriate) to conduct statistical

.................
..........................................




T T hacs gl et aeeiiand Al e Sngiet RieCunie i int S Tt N g S A = e TR T TR LY R

analysis or accounting tasks if one has access to the set of
real numbers. Although off-line reduction and analysis of
collected data can be performed by programs written in the more
traditional algorithmic languages such as FORTRAN or PASCAL,
the significance of collected data is potentially lost at the
point of extraction and can never be recovered. If, as is
currently proposed, CHILL is to be used in message switching
applications as well, this real number exclusion becomes more
ciitical. On the other hand, inclusion of a real number
capability creates more difficulties in the area of
transportability and representation. However, work is being

r? carried out by IEEE to establish floating point math standards
which would reduce these problems.

- The representations of character literals and

[} character strings are very similar with one minor difference.
: Ada a.lows the non-printable control characters to be used as
E_ literals or placed into strings by utilization of the

~, predefined package ASCII. For example, the control characters
b

"carriage return” and "linefeed" would be represented by
ASCII.CR and ASCII.LF, respectively. CHILL provides a somewhat
similar mechanism using a construct whereby the desired
character is specified by a pair of hexidecimal digits which
correspond to the lexicographic order of the character in the
set. For example, "carriage return" and "linefeed" in CHILL
would be C'D0' and C'A0', respectively. While this is equally
as effective, it is somewhat more cumbersome and indirect.

Finally, though perhaps not entirely appropriate
under the category of lexical elements, there is the definition
of compiler directives. Ada supports a wide range of
language-defined compiler directives known as pragmas, as well
as supporting the creation of implementation-defined

vy vy .;.‘ RAEASIT SR

D S A VAP S A S

directives. CHILL defines only one language-defined directive
f ("FREE"-reserved word) but also supports implementation-defined
' directives as well.

I1-3-3

............
.............

....... P P R D RO S e e et " ke PP




3.2 DATA TYPING
This feature category represents the area in
which Ada and CHILL most strongly exhibit their Pascal/ALGOL
inheritance. A data type defines the set of values which can
be assumed by a variable and the operations that may be
performed on the variable. The type concept is an abstraction
whick permits one to ignore the actual values of variables and
state that an operation has the effect defined for all values
of each given type. Both languages are classified as being
“strongly” typed in the sense that they both support strict
data typing, data structuring, and compile time (data type)
error checking facilities. A good treatment of the
justification for associating a type with constants, variables,
or parameters of subprograms can be found within the Ada
Rationale /ICHB79b/, and is summarized as follows:
e Factorization of Properties, Maintainability.
Knowledge about common properties of objects
should be centralized and named. Program

updates are more convenient since they can be
performed at this single central location.

® Abstraction, Hiding of Implementation Details.
Implementation details should be hidden from
the user. The user need only have knowledge

of the external properties of data or program
objects.

® Reliability. Objects with distinct properties
should be treated in a distinct manner to
avoid ambiguity and this distinction can be
enforced by the translator.

In order to provide a foundation for presentation
of the material contained herein, a high level data type
comparison is depicted in Table 3-1. In some cases there is
not a direct one-for-one correspondence as might be implied by
the chart. Note that the term MODE in CHILL (ALGOL68
derivation) is synonymous with the term TYPE in Ada (PASCAL
derivation).




Maadn 2 S

— T R e — Chay ang o

Table 3-1.

w b
E &

DISCRETE
| INTEGER
CHARACTER
BOOLEAN
! ENUMERATION
(Not Available)
4

/QQMQ.U_S.

; FLOATING POINT

FIXED POINT (Not Available)
COMPOSITE COMPOSITE

ARRAY ARRAY

STRING STRING

RECORD STRUCTURE
PQINTER POINTER

ACCESS REFERENCE
DEFINITION DEFINITION

DERIVED NEW

SUBTYPE (w/0 constraint) SYNONYM

SUBTYPE (with constraint) RANGE

(Not Available) PROCEDURE*

* Not necessarily appropriate to this class, but placed here
for convenience.

Ada/CHILL Data Types

CHILL Modes

SCALAR
DISCRETE
INTEGER
CHARACTER
BOOLEAN
SET
POWERSET*

CONTINUOUS

(Not Available)

"

s _m 8 A » &  eam. B3




A e s 4.

PR

.

............
......

.......
............

........

-----

3.2.1 Type Definition

The method of declaring types within Ada and
CHILL is similar in function, though not in form. In both
languages, new types are defined in terms of already defined
ones by means of type definitions. Both languages offer a set
of predefined types (INTEGER, BOOLEAN, etc.) as well as a set
of language recognized primitive types (ARRAY, SET, etc.).
Using the Ada derived type definition feature (NEWMODE in
CHILL), one can create new, logically distinct types having the
same properties as the base type. 1In Ada, if a type is
declared in a package specification, the subprograms (including
overloaded operators) applicable to the type and declared in
the package specification are derived by any derived type
definition given after the end of the package specification.
CHILL does not support this inheritance of applicable
subprograms.

A new mode may be defined by using the SYNMODE
feature (subtypes without constraints in Ada) which allows
creation of a new mode denotation for the defining or base mode
(type renaming). 3oth Ada and CHILL support combined
operations of typing, object declaration, and initialization.

CHILL provides a powerset mode which defines
values which are sets of values of an associated member mode.
These values range over all subsets of the member mode and
CHILL supports the usual set~theoretic operations to manipulate
powerset values. Ada does not support a comparable feature
within the language definition but does permit a contiguous set
of a discrete type to be represented as a range.

Ada provides a real number typing capability
wherein the real numbers are approximations of the actual
values and which can be represented by the (predefined)
floating point type (relative error bound on the value) or the
primitive fixed point type (absolute error bound on the
value). CHILL does not provide a real number typing capability.

Composite types, i.e., those found by aggregating
others, are treated very similarly in the languages. Ada and
CHILL both support array, string, and record composite types.

.......................

E3adi Sk 3




mrm—r. ' i o aEn- adn dmy S am SR AN A St e el el Lbaradii eeuchei inC ML RSN EER R L S S S N SN SR

i
Strings and arrays are handled almost identically but records
(structures) in CHILL have two distinct representations: nested
! structure, which is comparable to the more conventional Ada
; record representation and level structure, which is derived
R syntax for a unique nested structure. The level structure mode

-
.
g
b
.

allows explicit nesting of components within structures as
shown by the following example:
synmode A = 1,
2 B bool,
2 C bool,
j 3 D int,
4 E int;
Both Ada and CHILL support the idea of variant structures
whereby the values of discriminants are used to define
alternative lists of components within a record.
Pointer types are available in both Ada and
CHILL. The access type in Ada corresponds to the reference
mode in CHILL with both being used in a like manner. CHILL,
however, distinguishes between bound reference (access to a

location of a given static mode, comparable to the Ada access
type) and free reference (access to a location of any static
mode). Additionally, CHILL provides a row reference capability
F which allows definition of reference values for locations of

some parameterized mode with statically unknown parameters. 1In
particular, a row value may refer to string locations with
statically unknown length, array locations with statically
unknown upper bound, or parameterized structure locations with
statically unknown parameters.

3.2.2 Type Equivalence
This area has been the subject of many

discussions dealing with the relative merits of the typing
conventions of modern programming languages. When comparing
the features of Ada and CHILL, one of the most relevant issues
is the question of name equivalence versus structural
equivalence. Name equivalence is based on the principle that
every type definition introduces a distinct type. Structural




Ty

A
e,

A AP St

AOSRCE P Attt

aecan s, 5 LOSAR ORI FAEY B OO

................

ARSIV IPR. A Wy RN Y N | NS S R R GG W WS AL L NPUE A . Wil P VLI YA Wwur S

.....................

equivalence, on the other hand, is determined recursively by
means of a precise set of rules. It refers to a mechanism
whereby some form of equivalence rule is defined between types
on the basis of their properties.

Ada employs the name equivalence concept of type
equivalence. Two type definitions introduce two distinct types
even if they are textually identical. Using the example from
the Ada Language Reference Manual /USDO80b/, the objects A and
B declared by

A: array (l..10) of BOOLEAN;

B: array (l..10) of BOOLEAN;
represent two distinct types while the objects C and D declared
by

C,D: array (l1l..10) of BOOLEAN;
belong to the same type since they are declared via the same
type definition. Note that C and D are also distinct from A
and B. Ada does, however, allow the user to indirectly create
and manipulate types through the use of the subtype
definition. Definition of a subtype does not produce a
distinct type but rather creates a type which is the same as
the parent type except for some (optional) constraint on the
value set. This constraint may assume the form of a range,
accuracy, index, or discriminant constraint.

CHILL follows the structural equivalence concept
though neither name nor structural equivalence are preimposed.
The following example illustrates this subtle difference.

newmode WEEKDAY = set (MON,TUE,WED,THUR,FRI);

synmode WORKDAY = WEEKDAY;

newmode NOT_WEEKEND = WEEKDAY;

dcl WORK, SICK, VAC NOT_WEEKEND;

CARPOOL WEEKDAY;
EARN_MONEY WORKDAY ;

In this example, WORK, SICK, and VAC are all of
the same type, but different from CARPOOL and EARN MONEY.
However, CARPOOL and EARN MONEY belong to the same type since
the synmode definition only served to rename WEEKDAY to be
WORKDAY, not creating a new type. This is similar to the

11-3-8




1)

Ty

g

—

L o o ad Al s ae as IR oa e

renaming facility in Ada, i.e., defining a subtype without
constraints.

In all the discussions that have been generated
concerning the notion of type equivalence it appears to be
common that the very arguments one presents against one
mechanism are the same arguments for it. For example, in a
recent Ada/CHILL comparison by R. T. Boute /BOUT79/, a list of
arguments against name equivalence is presented basically
stating that it harms program clarity, restricts type
manipulation, and undermines program modularity and
maintainability. The Ada Rationale uses these exact points to
justify rejecting structural equivalence in favor of name
equivalence stating ... "We have rejected structural
equivalence in order - to avoid matching problems for the
translator and for the human reader. We also believe that
structural equivalence tends to defeat the purpose of strong
typing since objects may be considered as being of the same
type because their structures are identical by accident, or
because they have become identical as a result of textual
modification performed during program maintenance. Such
objects can then be mixed erroneously without causing
translator diagnostics." The argument in the Ada Rationale is
a stronger one. The main purpose of employing name equivalence
was to restrict type manipulation (mainly for reliability
reasons) and lifting that restriction defeats the rationale and
most certainly invites programmer abuse.

3.2.3 Parameterization

Another area which is important to the evaluation
of a languace is the facility for parameterization.
Specifically, issues which are usually examined include (1)
whether the language provides some form of parameterization for
data types and their associated properties and (2) if the
evaluation of type parameters is performed entirely at
translation time or deferred until execution time.




L Gaatai o

r
e

In Ada, array type definitions can leave index
bounds unspecified (unconstrained). These can be subsequently
specified by an index constraint for a given array object, so
that different array objects of the same type may have
different numbers of components. Also, a record type may have
variants, i.e., alternative definitions of its components.
Different variants are associated with the values of a
discriminant component. If the discriminant is constrained,
the composition of the record is statically fixed. 1If the
discriminant is unconstrained, the composition of record can be
changed during run time by a complete record assignment.

CHILL provides a slightly different data type
parameterization facility. There are fixed array and structure
modes in which the composition does not change during run
time. Also, there are parameterized array and structure modes
in which the composition is fixed at the point of creation of
the parameterized mode and may not change during run time.
Finally, there is the variant structure mode whose composition
may change during run time according to the values of certain
associated tag fields.

It can be seen that the type parameterization
facilities in Ada and CHILL overlap in most respects. The one
advantage held by CHILL is the language-defined ability to
dynamically change the composition of a structure. This is
potentially cumbersome in Ada (employing complete record
assignment) if the record structure is complex.

Another aspect of parameterization is whether a
language allows types and procedures to be typed and hence,
treated in the same fashion as other objects, e.g., passed as
parameters to functions or procedures.

Types and procedures are not typed in Ada and
thus cannot be passed as parameters to functions or
procedures. However, the Ada generic clause provides a general
facility for translation time parameterization of program
units. A generic clause permits parameterization of the text
of a package or of other program units. Replication of text
can thereby be avoided, promoting readability. Also, the

II1-3-10




Ve e WL

bt

translator may use its knowledge of data type representations
to achieve certain optimizations. Seen in this light, the
generic facility provides a natural complement to strong typing
/ICHB79b/.

CHILL allows procedures to be defined as modes
and allows them to be passed as parameters to other
procedures. Procedure modes in CHILL thus allow procedures to
be handled in exactly the same manner as other variables.

3.2.4 Representation Control

One of the most important features a high level
language must possess in a systems environment is the ability
to provide an efficient means of mapping the software onto the
hardware. This potentially contradicts the notion of
generality in terms of having to deal with specific physical
representations. And, it goes against the stated objectives of
HOL implementation whereby data typing and abstraction are
encouraged. However, by providing language features which
allow explicit control over the physical mapping, efficient
(though less machine independent) software can be generated,
and this is an equally critical nbjective.

Both Ada and CHILL provide adequate
representation control capabilities, and both associate the
representation specifications with the type rather than with
individual objects of the type.

CHILL provides explicit layout control of both
structure and arrays. For structures, the positions of fields
may be described in terms of word and bit positions. For
arrays, the step specification indicates the position of the
first element and the number of bits allotted to each element
in the array.

Ada allows enumeration (set) type representation
specification, which CHILL does not. Ada provides for array
type layout control when embedding the array within a record,
and provides explicit record layout control capabilities which
are very similar to CHILL's. However, the syntactic structure
of the Ada representation construct is considered cleaner and

II-3-11



easier to use than that of CHILL, as seen in the following
example of a record layout which similarily maps onto the same
machine. 1In CHILL, assuming l6-bit words, the following
declaration:
dcl CALL_RECORD struct (JUNCTION_NO int pos(0),
ANSWER_TIME int (0:100) pos (1,0:6),
STANDARD RATE bool pos (1,7)):
produces the following binary layout:

Bit
word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 JUNCTION_NO
1 (NOT USED) \ ANSWER_TIME

STANDARb_RATE
In Ada, assuming the type definition had already been
elaborated, the equivalent form is:
for CALL_RECORD use
record;
JUNCTION_NO at 0 range 0..15;
ANSWER_TIME at 1 range 0..6;
STANDARD _RATE at 1 range 7..7;
end record;
which produces the same internal mapping as the CHILL example.
It can be seen, however, that the Ada example is more readable
and explicit in its presentation.

3.3 NAMES , EXPRESSIONS AND STATEMENTS

Names are used to reference declared entities,
expressions are formulas that define the computations of
particular values, while statements constitute the algorithmic
part of a particular program. This section presents
information on how Ada and CHILL define and manipulate named
entities and how expressions and statements are used.

I1-3-12

ot gt e e e e s,




v"'-l.'..,
. e e

PPy "V,_'.q"anv_~f_.:m P

Py

3.3.1 Names and Expressions

Names and expressions are handled almost
identically in both languages. Array component indexing and
record field selection are performed in like fashion in either
language, using paranthetical and dot notation, respectively.
Slices of one dimensional arrays (or strings) may be specified
with CHILL allowing a slice (subarray/substring) to be declared
using either a range (as in Ada) or a start position and length.

Aggregates (tuples) may be formed from array or
record component values. Ada and CHILL both allow aggregate
construction using either positional and/or named assignment.
In Ada, these two forms of assignment may be mixed in any one
aggregate specification, while CHILL requires utilization of
one method or the other in any one specification. CHILL
provides for powerset aggregate specification as well as array
and structure aggregates.

Expressions are formed in analogous fashion in
either language with slight differences reflected in the
availability and usage of operators. Ada provides short
circuit control operations (with the same precedence as logical
operators) which provide additional control over expression
evaluation by "short-circuiting" a potential exception causing
condition. This feature fosters program integrity at execution
time as shown in the following example:

if I/=0 and then A/I=B then

end if;

Without the short circuit operator "and then", a
run time exception would occur on the attempt to divide by zero
in the second term of the expression above.

Both languages provides membership operators and,
in addition, CHILL supports a wide range of language-defined,
set-theoretic operators in conjunction with its powerset mode
feature.

LAl et it gt seuateniy Sinsst Sttt M anntn i A S RS S el el Rt il e A
P A PARACIrthadic] - . AR L LA . P -

-

I U WV S SRR

La e it &cm e = ™



it anrt g s SN g P i et T T W T N o N W o e W

Finally, Ada allows most operators to be
redefined. This "overloading” of an operator is used to hide
the declaration of another operator as well as to provide local
explicit control over operator utilization. Ada's ability to
redefine operators through overloading coupled with the
capability to define data types in package specifications
allows Ada to be extended in a safe manner through data

encapsulation. For example, operator overloading would permit
one to define arithmetic operations on very short or very long
objects in an efficient manner. CHILL does not support the
concept of operator overloading, and this is viewed as a
deficiency.

3.3.2 Statements

The action statements that are available within
each language are comparable in both form and function. The
assignment, exit, return, goto, and if statements are all
handled in very similar fashion.

The CHILL loop control statement provides three
different forms: the traditional "do loop", the "do while", and
the "do with", which is used as a shorthand notation for
accessing structure fields. The loop construct in CHILL allows
non-unitary increments in both a forward and reverse
direction. Ada supports only forward and backward unitary
increments. Both languages define an infinite loop feature.

The basic case statement features of Ada and
CHILL are comparable. However, CHILL extends the case concept
to include a decision table case statement in which complicated
conditions can be expressed in tabular form. Ada does not
support a comparable feature. An example from /NCSY80/
illustrates this feature.

module

dcl I read int:=ININT(),
C read char :=INCHAR(),
B read bool:=INBOOL(),
X int;

I1-3-14

o~ RV Y G TR I Y WY S S UL N x PR N S T S S S S Ny S S N

.




case I, C, B, of

(1), ('A'), (TRUE) : X:=1;

(2:5), ('D':'F'), (FALSE):  X:=2;

(else), ('G':'2"), (*): X:=3;

else X:=4;
esac;

end;

This example basically says, if cases I, C, and B
are all true in each subsequent line, appropriate assignment to
X takes place. Note that the asterisk is used as a "don't
care" value. Note also the multiple (and hence, ambiguous)
usage of the colon,

While Ada does not support a comparable feature
in the language definition, the equivalent form of the above
example in Ada (assuming the same variables) is as follows:

if I = 1 and C = 'A' and B=TRUE then X:=1;
elsif I in 2..5 and C in 'D'..'F' and B=FALSE then X:=2;
elsif I not in 1..5 and C in 'G'..'Z’ then X:=3;
else X:=4;
end if;

All statements can be labeled in Ada while CHILL
: restricts statement labeling to bracketed action statements or
F statements with named handlers for errors. Note that Ada
X distinguishes between a label and a loop identifier in that the

latter is not a label but an aid in viewing program structure.
It should also be noted that CHILL allows a statement to have a
handler appended in order to take care of possible exceptions
caused by statement execution, Ada permits case statements or
even arms of case statements to have their own exception
handler and, in fact, permits appending an exception handler to
any statement through the use of a begin block. And, as a
final note, CHILL uses the backward opening bracket name as the
closing bracket on compound statements (e.g., CASE...ESAC)
while Ada employs the more readable closing bracket mechanism
(i.e., CASE...END CASE).

L BB o S came Ot SR f

.........




LA A e,

£

e LNt s A

3.4 PROGRAM STRUCTURE

Within this feature category are several issues
key to the goal of defining a reliable, maintainable
programming language. These issues are addressed within the
concepts of modularity, scope, and visibility. The following
subsections will address these areas and how they are handled
within Ada and CHILL. These areas tend to overlap leading to
some recursiveness in discussion.

3.4.1 Modularity
One of the more popular topics associated with

software engineering and programming languages in recent years
is the concept of modularity. Building programs through the
use of modules allows the progammer to group logically related
items. The ability to package declared entitites, such as
subprograms, data elements, types, and other modules provides a
powerful structuring tool for complex programs.

Ada supports modules called packages. Packages
may have two textually distinct parts which can be separately
written and compiled; a package specification, which determines
the resources made available by a package to the user, and a
package body, which implements the resources provided by the
package. The declaration (specification) and the
implementation (body) are well separated. 1In fact, the
specification represents the complete interface definition for
the programmers using the package, for the implementation of
the package body, and for separate compilation.

Ada considers three uses of packages /ICHB79b/:

(1) Named collections of declarations: logically

related variables, constants, and types to
be used in other program units.

(2) Groups of related subprograms: logically

related functions and procedures which share
internal "own" data, types, and subprograms.

II-3-16

---- - . PRI OPTA SORP ST TP RPN SNy Ny SO




W T T TR T T henn upel odes mmal it ool GSRELIRCSR b St U RARE AL et I SR M A T L S e e T .- s .}'

2 (3) Encapsulated data types: definition of new
l types and associated operations in such a
way that the user does not have knowledge of
the type's internal properties.
Named collections of declarations can most closely be
associated with the idea of system level common data. In fact,
this type of package can be likened to named common in FORTRAN,
with the exception that types as well as objects may be
declared. The following example shows how groups of logically
related entities can be meaningfully grouped:
package CALL_SIGNALS is
ON_HOOK ,METERING :boolean;
SUBS_ID,DIGIT:integer;
type SIGNAL is (D_TONE,R_TONE,R_SIG);
end CALL_SIGNALS;

Accessibility to objects declared within the
above package is obtained by dot notation (as with record
component selection) or by a use clause, as shown below:

declare”’
use CALL_SIGNALS;
begin
ON_HOOK:=FALSE;
end;

The grouping of related subprograms can be
likened to the concept of a subroutine library. Typically, the
package will contain a visible part where declarations of the
) contained subprograms reside, and a hidden part where the

. e

actual subprogram bodies and local data reside. The separation
of the two parts is clear and distinct. 1In general, the two
parts need not be textually contiguous and can be compiled
separately - providing protection for and physically hiding the
package body:
package LOCAL_CALL is
procedure RCV_SIGNAL (ON_HOOK:out boolean);
procedure SND_SIGNAL(A:in SIGNAL);
procedure MAINTENANCE (IN_SERVICE:out boolean);
end;

PRV INS S TROGwI ey




package body LOCAL_CALL is
type STATE is (IDLE,OFF_HOOK,RINGING,OUT_OF_SERVICE) ;
procedure METERING (SUBS_ID:in INTEGER) is

begin
-- perform call metering tasks
end;
procedure RCV_SIGNAL (ON_HOOK:out boolean) is
begin
-- perform signal recognition tasks
end;
procedure SND_SIGNAL(A:in SIGNAL) is
begin
-—- perform signal sending tasks
end;
procedure MAINTENANCE (IN_SERVICE:out boolean) is
begin

-- perform maintenance processing tasks
end;
end LOCAL_CALL;

In the above example, the three procedures
declared in the package specification are visible while
procedure METERING is hidden. Note, however, that METERING is
visible to the three procedures within the package.

Excapsulated data types correspond to a situation
in which we want the name of a type to be public, but where the
knowledge of its internal properties is to be available only to
the subprogram bodies contained in the module body /ICHB79b/.
The type name is specified within the visible part of the
package along with the specification that the type is
"private”. The full definition of the type then follows within
a hidden private part:

package CALL_SIGNALS is

type SUBS_ID is private;

ON_HOOK ,METERING:boolean;
private

type SUBS_ID is new INTEGER range 0..9999;
end;

PR .
........
. e

3 C e Vet .

PR P I ..

- k] ~ - . - - . - . . - . .
PR L. W s ) "'_A.A_:L-A-‘._L"".' S




The three rms of modules or packages described
above can be used in the traditional manner to construct
libraries containing common pools of data and types,
application packages, and complete systems.

Additionally, Ada provides the capability to
parameterize modules by means of generic clauses. Generic
program units can be viewed as models or templates for other

variant program units and expansion of the generic unit at

translation time has the effect of creating a named instance

‘ (copy) of the unit. According to the Ada Rationale /ICHB79b/

B the objectives in providing the generic program unit capability

; were as follows:

1) Allow additional freedom of factorization
without sacrificing efficiency

2) Minimize the amount of code presented to the
translator

3) Preserve regular program unit security

4) Introduce a modest language extension with

minor impact
This feature is considered to be very useful in avoiding
wasteful replication of text while yielding better
readibility. Also, it is possible for a translator to use its
knowledge of instantiated data representation to optimize space

allocation when data is to occupy the same amount of space in
the same representation.

CHILL supports two kinds of modular structures
4 called modules and regions. Regions are similar to modules in

form but are associated with processes and concurrency and will

be addressed later. The module as defined in CHILL is similar

in function to the package in Ada. However, in CHILL it is not ,
possible to separate the specification part from the '
implementation part. This is seen as a definite liability

which restricts the modularity of the CHILL language and limits

the ability to effectively follow a top-down design approach.

L auh a0 aean

RN - P o e o LIPS Y Do aiembiscomemnh elhccatbiratmi e BmentSosms PV G- |




The following example shows a CHILL module that is analogous to
the previous Ada package:
i LOCAL_CALL:
b module
- newmode STATE=set (IDLE,OFF_HOOK, RINGING,OUT_OF_SERVICE) ;
i METERING:
proc (SUBS_ID int in);

: /*perform call metering tasks*/
g end METERING;
: RCV_SIGNAL:
proc (ON_HOOK bool out)):;

/*perform signal recognition tasks*/
end RCV_SIGNAL:
SND_SIGNAL:
proc (A SIGNAL in);

/*perform signal sending tasks*/
end SND_SIGNAL;
MAINTENANCE:
proc (IN_SERVICE bool out);
& /*perform maintenance processing tasks*/
) end MAINTENANCE;

end LOCAL_CALL;

The above module must be compiled as a unit -

there is no separation of item declaration from its associated
body. It is felt that the Ada package concept is superior in

terms of modularity and separate compilation. CHILL also does
not support any feature comparable to Ada's generic feature,
and this is considered a drawback.

The Ada package represents one of three forms of
program units of which Ada programs can be composed. The other
forms are tasks (discussed later) and subprograms.

In Ada there are two forms of subprograms:

e e e

procedures and functions. A procedure call is a statement; a
function call returns a value. The specification of a
procedure specifies its identifier and its formal parameters

oo e

(if any). The specification of a function specifies its
designator, its formal parameters (if any), and the subtytpe of

. . .
.....

L Lt L e e Ve e . e e e T e




) 2O Al GO0 &0 00

DE, 4

Lo

the returned value. All Ada subprograms can be called
recursively and are reentrant.

The formal parameters of an Ada subprogram are
considered local to the subprogram and can assume one of three
modes: 4

IN The parameter acts as a local constant which
obtains its value from the actual parameter.
OUT The parameter acts as a local variable whose
value is assigned to the actual parameter upon
subprogram execution.

IN OUT The parameter acts as a local variable,
permitting access and assignment to the actual
parameter.

Scalar or access type parameters are passed by
value (actual parameter copied into formal parameter and vice
versa, as appropriate) upon subprogram call. Array, record, or
private types may be copied, or alternately, the formal
param:ter may only provide access to the actual parameter
during subprogram execution (pass by reference or location).
Ada does not define which mechanism is to be employed for
parameter passing. This could potentially result in
inefficient parameter passing if the particular implementation
does not optimally choose the appropriate mechanism for the
parameters being passed.

CHILL does not distinguish be“ween a procedure
and a function in a true sense. Instead, the procedure
definition dictates whether it is to be used as a value
returning procedure (function) or as a normal procedure.

As in Ada, the formal parameters of a CHILL
procedure are considered local to the procedure and can assume
one of three modes - IN, OUT, or IN OUT.

The storage and manipulation of the formal
parameters in relation to their local usage is nearly identical
to Ada. One exception is that the mechanism for passing
parameters by value or by location can be explicitly specified
in CHILL. This can result in inefficient implementation if one
neglects to specify the pass by location mechanism for large

II-3-21




Tt

W Ve T U TN

objects. It could also lead to maintenance-related problems if
the size of a particular parameter is changed and the
programmer neglects to also change the passing mechanism
specification to match the data structure being passed.

3.4.2 Scope and Visibility

This subject was touched upon in the previous
section and will be addressed further herein.

A declaration associates an identifier with a
program entity such as a variable, a type, a subprogram, a
formal parameter, or a composite structure component. The
region of text over which a declaration has an effect is called
the scope of the declaration. An entity declared immediately
within a unit is said to be local to the unit; an entity
visible within but declared outside the unit is said to be
global to the unit. A closed scope is one where only the
external objects that have been explicitly indicated by a
visibility expansion clause are visible. This is the most
restricted and hence the most secure interpretation. An open
scope implies thec identifiers declared in outer contexts are
automatically visible in inner nested contexts unless an
explicit visibility restriction is given.

Ada follows an open scope policy as the default
option in its definition. The rationale for this decision is
that (1) the lists of explicit visibility expansion clauses
would grow to unmanageable lengths and (2) the programmer would
tend to use "standard" (all-inclusive) lists anyway. The
visibility rules provided in Ada combine a traditional
visibility inheritance mechanism with the ability to explicitly
control the set of names that can be accessed within a given
program context. This ability follows from the naming
conventions and the previously mentioned module facility and
visibility restrictions. A renaming capability is also
provided to assist in resolving name conflicts. As an
additional syntactic convenience, a USE clause mentioning names
of visible packages may appear in the declarative part. The

I1-3-22

e e . —— e — A e A e e



&)
»,
I
»
(B8
S

>

.

|

_____ MMt canhi unent Maant MMt Sh ol T SO AP B

effect of the USE clause is to cause certain identifiers of the
visible parts of the named packages to become directly visible.

CHILL, on the other hand, applies the same open
scope rules for blocks and procedures, but restricts the scope
of a module, i.e., no identifiers are automatically inherited.
Names declared in a module are local to that module. However,
global names, i.e., names declared outside the module, are not
automatically visible inside the module. Furthermore, local
names of a module may be made visible outside the module. To
make a global name visible within a module,; the name must be
mentioned in a "seize" statement. To make a local name visible
outside a module, the name must be mentioned in a "grant"
statement.

3.5 CONCURRENCY

Concurrent processes are those which overlap in
time. They are called disjoint processes if they do not

interact and interacting or cooperating processes if they do.
Much has been written on the subject of concurrency and it
represents an area which attracted considerable attention
during Ada and CHILL definition activities. Obviously, -
concurrent processes model the activities which occur within
many embedded computer applications. This section will examine
the tools provided within Ada and CHILL for handling
concurcency. No attempt will be made to address the nature of
the implementation necessary to support the features, as this
is outside the scope of this report.

The rationale employed for definition of the
concurrent processing (tasking) facility in Ada is that the
traditional semaphores, events, and signaling mechanisms are
clearly at too low a level and ind.viuually exhibit too many
drawbacks. Monitors /BRIN73/ on the other hand are too
difficult to understand, awkward to use, and an unfortunate mix
of low level and high level concepts /ICBH7%b/.

R A i i e T e '




4

The Ada design philosophy was to strike a balance
between the low level and the high level controlling mechanisms
while providing a simple powerful tool. It appears that the
designers achieved their goal.

The task represents the basic parallel processing
structure within the Ada language. Structurally the task is
analagous to the Ada package. Communication and
synchronization between executing tasks is provided by using
the concept of a rendezvous between a task issuing an entry
call and a task accepting the call by an accept statement.
Thus, both the "caller" and the "callee" must be present at the
rendezvous for synchronization and/or communication to occur.
Subsequent tasks calling a currently executing task are
suspended, queued, and handled on a first-in, first-out basis.
The priorities of tasks in the system are assigned at compile
time using the pragma PRIORITY. The effect of priorities on
scheduling is defined by the following rule: If two tasks with
different priorities are both eligible for execution and could
sensibly be executed using the same processing resources, then
it cannot be the case that the task with the lower priority is
executing while the task with the higher priority is not.

Tasks may be created by (1) defining a task type
that indicates a general specification from which objects may
pe created or (2) a single task declaration which is equivalent
to using an anonymous task type. The ability to specify task
types offers roughly the same advantages associated with
generic packages, as described previously.

A task body defines the execution of the tasks of
the corresponding type. The activation of a task object
consists of the elaboration of the declaration part, if any, of
the corresponding task body. After activation, the statements
of the task body are executed. Normal termination of a task
occurs when its execution reaches the end of its task body and
all dependent tasks, if any, have terminated. Abnormal
termination can be forced by means of an abort statement.

II-3-24

- W ST S T A T I . S S S 1



o Further flexibility is provided by the select
gi statement which allows a calling or called task to select from
- a set of alternatives at the point of rendezvous. The select
statement can assume three forms:
® Selective wait by the called task
e Conditional entry by the calling task
e Timed entry by the calling task
The following buffering task example taken from
the Ada reference manual /USDO80b/ illustrates the Ada tasking
facility. Assume there is a producer task outputting
characters until an EOT is encountered and a consumer task
inputting characters until receipt of the EOT:
task BUFFER is
entry READ (C:out CHARACTER) ;
entry WRITE(C:in CHARACTER) ;

end;

task body BUFFER is
POOL_SIZE:constant INTEGER:=100;
POOL:array(l..POOL_SIZE) of CHARACTER;
COUNT: INTEGER range 0..POOL_SIZE:=0;
IN_INDEX,OUT_INDEX:INTEGER range l..POOL_SIZE:=1;
begin
loop
select
when COUNT < POOL_SIZE= >
accept WRITE(C:in CHARACTER) do
POOL (IN_INDEX) :=C;

end;

IN_INDEX:=IN_INDEX mod POOL_SIZE + 1;

COUNT :=COUNT + 1;
F or when COUNT > 0= >
X accept READ(C:out CHARACTER) do

C:=POOL (OUT_INDEX) ;

end;
OUT_INDEX:=0UT_INDEX mod POOL_SIZE + 1;
COUNT :=COUNT - 1;

I1-3-25




REatREa

, T

or

terminate
end select;
end loop;
end BUFFER:

The Ada definition of tasks is consistent with
the state of the art philosophy of handling the concurrency
concept. In fact, Ada's approach closely resembles recent
proposals by Brinch Hansen /BRIN78/ and Hoare /HUAR78/.

CHILL offers a range of features to handle
synchronization and communication between cooperating
processes. The CHILL analogy to the Ada task is the process,
though it is more similar to the process of concurrent Pascal.
CHILL also provides regions and events which are similar to the
concurrent Pascal monitors and queues, respectively.

A CHILL process is textually similar to, but
semantically different from, i CHILL procedure. Process
instances can be created and activated by means of a start
statement. When a process is activated by a start sta .ement,
actual parameters may be passed to the activated task at
activation time. The CHILL instance mode is similar to the Aaa
task type. Like Ada, a process may terminate itself (via a
stop statement) or terminate normally. The operations defined
for instance modes are equality and the parameterless procedure
"THIS" which yields the instance value of the process invoking
it. Ada does not have these features.

The CHILL region is the means of providing mutual
exclusion. Regions correspond to modules and all previous
remarks dealing with CHILL modules apply here. Critical
procedures are procedures which are defined within regions.

There are also several synchronizing primitives
defined in CHILL. Events are provided which facilitate process
synchronization. It is possible to delay a process to make it
wait for an event to occur, and a process may cause an event to
occur su-1 that delayed processes are able to continue. A
delayed process becomes a member (with a priority) of a set of
delayed processes attached to a specified event location. The

II-3-26




C N “Bha-ma ~Saih - Mt Ty e MR i nur RS A CER et M e S St i At B Rt e . SuOUER DI P S s o et

delay statement allows the optional process priority to be
specified. Upon execution of the corresponding continue

e e i, ey e
My P YOt e S RUCAIER

statement, the process with the highest priority associated
with the particular event is selected to become active
according to an implementation-defined scheduling algorithm. A

I

delay case statement is provided which allows a process to wait
for one of a number of events. Buffer mode objects and their
operations are used to provide communication between
processes., Messages can be sent to and received from buffers
by processes through the use of send and receive constructs.
Also, there are CHILL signals. Signals are used to provide
both synchronization and communication. A feature called the
receive case statement allows the receipt of any one of a set
of buffers or signals and is similar to the delay case
statement in form but with added facilities to handle the
message part of buffers or signals.
The following call queuing example taken from the
CHILL reference manual /CCIT80a/ illustrates the CHILL tasking
facility:
SWITCHBOARD:
module
dcl OPERATOR_IS_READY,
SWITCH_IS_CLOSED event;

CALL_DISTRIBUTOR:
process();
do for ever;
wait (10 /*seconds*/);
continue OPERATOR_IS_READY;
od;
end CALL_DISTRIBUTOR;

T YT Y.y b i

Al b~ §

\ Bt AER L2 _SEEL L5 e

I1-3-27

I, A T [ o N [ - N . - . CHN ST PO SOl SN VN RIS W S U S T

PPN S G ST ST

&5 B es A2 .3

P




e M a  a t a  w TE ——— e TR RGN TR TR e T T T TR e R

; CALL;
: process () ;
delay case
- (OPERATOR_IS_READY): /*some action*/ ;
(SWITCH_IS_CLOSED): do for i int(1:100);
continue OPERATOR_IS_READY;
/*empty the queue*/
od;
esac;
end CALL;

OPERATOR:
process () ;
do for_ever;
if TIME = 1700
then
continue SWITCH_IS_CLOSED;
fi;
od;
end OPERATOR;

start CALL_DISTRIBUTOR() :
start OPERATOR();

: do for i int(1:100);
" start CALL();

% od;

- end SWITCHBOARD;

It is readily seen that CHILL provides a wide
selection of tools to handle concurrency. This is seen as a

v

B A B
GG B AT

disadvantage by some. One author says, "The CHILL approach
indicates the 'if in doubt, put it in' attitude of the language
designers. This has resulted in a heterogeneous collection of
mechanisms, for which it is difficult to develop a unified
program design and analysis model. There is also a high degree
of redundancy, for example, the "buffer" can be easily
implemented by regions and events (classical concurrent Pascal

T

AR P DA

I1-3-28




R T T ——
.

rvrvy
e e %

C

4
3
Ve

ML - RS TR

PP I ant

L Aol

. Ve

———

example) and vice versa. The obvious indecision has resulted
in a poor overall design." /BOUT79/

The Ada approach on the other hand is concise and
powerful. There appears to be a minimum amount of redundancy
in design.

3.6 EXCEPTION HANDLING
Exceptions can be categqgorized as either errors or
infrequent (non-normal) events and there are many schools of

thought as to the mechanisms that should be employed to handle
exceptions. It is generally agreed, however, that a facility
for handling exceptional conditions is essential for
reliability of real time systems. In many cases, systems must
be designed to continue to function (though perhaps in a
reduced capability configuration) through hardware or software
casualty situations. This is especially true for embedded
military weapons and communications systems where failure in
time of stress could have serious consequences. Ada and CHILL
both have extensive exception handling features which are very
similar in form and function.

In Ada, there are both user-defined exceptions
and predefined exceptions. Exceptions may be recognized
automatically (i.e., the predefined exceptions are raised when
the indicated error conditions arise) or by the user by
executing the "raise" statement. When an exception has been
raised, the execution of the program is stopped at that point
and processing proceeds at the appropriate exception handler.

The exception handler is the mechanism which
provides the executable code in response to a named exception.
In Ada, the handler appears at the end of a block or of a body
of a subprogram, a package, or a task. As previously stated,
Ada permits case statements (and arms of case statements) to
nave their own exception handler and, in fact, permits
appending an exception handler to any statement through the use
of a begin block. Note that the handler is a substitute for
retaining the code at the point an exception is raised. 1In
Ada, the syntactic form of the handler is similar to the case
statement.

I1-3-29

Y PR . . i S g P P o PTG S G S O S S S FTT U S,

I S S VR S vl




T ety
R ML N W

RIS SLAAb i) (O

I Tove v o

ARG B ENSAE N

0
TN
R0
..
LA
3
AR
L
'
o

Ada provides a compiler directive which may be

used to suppress some exceptions. This suppression may apply
to all appropriate operations, all appropriate operations on a
given type, or all appropriate operations on a given object.

Special attention is given to exception handling
in parallel Ada tasks. Restrictions are placed on propagation
of an exception from one task to another. 1In general,
exceptions are propagated during rendezvous (i.e., intertask
communication). A task may explicitly raise the failure
exception in any other visible task.

The CHILL exception handling facilities are
nearly identical to those of Ada and as such need not be
elaborated. The only items which should be pointed out are as
follows:

® CHILL does not support the explicit
suppression of exceptional conditions.

@ CHILL allows an exception to be directly
appended to a statement. This can be helpful
but can also lead to readability problems, if
abused.

@ CHILL allows an exception list to be specified
in a procedure definition indicating which
exception can be propagated to a caller. This
is useful in the case where an exception is
not explicitly specified in the current unit
and propagation must occur.

3.7 INPUT/OUTPUT

"No standard input and output routines are
defined in CHILL. Such routines may be written in CHILL
itself." /NCSY80/ Unfortunately there is no information in
either the CHILL introduction /NCSY80/ or the CHILL definition
document /CCIT80a/ to confirm or deny the second statement
above. Therefore, this section can only address the I/0

features within the Ada language definition.




[ 2a dat Ml icundRIIL I
PRV IS | Lo

ot The Ada Rationale states the problems associated
b with language defined I/O features very well. "... the needs
[ for application level input-output may vary greatly between

classes of applications. For example, file manipulation, batch
processing, line and page layout, interactive input, and
non-character processing pose significantly different
problems. An attempt to build in special features to cover the
. range of input-output applications would mean that every user
3 and every translator would be forced to take account of this
ﬂ! additional complexity. A major design goal in the ... language
was therefore to provide the ability to develop a rich set of
input-output facilities without additional language
constructs.” /ICHB79b/

Three standard input-output packages are provided
in the Ada language definition.

The generic package INPUT_OUTPUT defines a
general set of user level I/O operations. These operations are

applicable to files containing elements of a single type -
e.9., character files, integer (binary) files. General
operations which are provided for file manipulation include
file creation, OPEN/CLOSE file commands, NAME file commands in
addition to traditional file I/O operations (e.g., READ,
WRITE, EOF).

Additional operations for text related I/O are
defined in the second s-andard package, TEXT_IO, which is
defined in terms of the package INPUT_OUTPUT. Basically,
TEXT_IO provides facilities to perform file I/O in human
readable form.

Finally, the package LOW_LEVEL_IO defines the
form of the operations used when dealing with low level I/O to
a physical device. Such operations are handled by using one of
the predefined procedures SEND_CONTROL and RECEIVE_CONTROL.
These procedures are declared in LOW_LEVEL_IO and have two
parameters which identify the device and the data. However,
the kinds and formats of these control parameters will depend
on the physical characteristics of the particular device.




N - TEAEONROMREN P AR SR MY

M P A

RSN~ I

¢
g
2
:

e 4 -

T Yo

.....

e e e e B i s B o a e S g e R T aT———.

3.8 DISCUSSION

The above material has shown the technical
similarities of the two langages. In no feature category does
the CHILL language exhibit any distinct linguistic or
functional advantage over Ada. Certainly there are minor
tradeoffs seen in the form or usage of a particular construct.
But the overall feature comparison has uncovered no distinct
technical advantage in using CHILL over Ada for SPC circuit
switching applications.

Additionally, no information was provided within
the CHILL language definition document as to the nature and
extent of the facilities for (1) Input/Output, (2) in-line
machine code insertion, or (3) interface to "foreign" code.
These are three very critical areas within the context of
circuit switching software applications, and the fact that the
form and function of these (somewhat machine dependent)
facilities were not addressed within the language definition is
extremely disconcerting.

Ada provides facilities for language defined I/0
packages, defines a mechanism for machine code insertion, and
allows Ada programs to interface to programs written in other
languages (for example, CHILL).

CHILL does not support any language defined
Input/Output features. Also, no evidence could be found that
the language definition supports machine code insertion or a
foreign code interface mechanism. One can perhaps argue that
these features are not necessary and hence, better left out.
However, the fact is that in certain situations, having access
to the capability to write (and execute) in-line machine code
can be a valuable tool for space and time optimization. A
similar argument can be made for the ability to interface to
foreign code, where optimization in the other language might be
required for efficient implementation. The exclusion of the
ability to support these features within the language
definition is considered a rather major oversight.

I1-3-32

CR D W} " CRRRMISC IR -...'.-'a'_-_‘_l'g 2 P 5 alh P IO SR g e P




v

SECTION 4
PROGRAMMING ENVIRONMENT EVALUATION

4.1 CHILL/SDL/MML ENVIRONMENT

This section will present overviews of the
Specification and Description Language (SDL) and the
Man-Machine Language (MML), and discuss their overall
relationship to CHILL.

"SDL is a means of representing the specification
of the functional requirements and also the description of the
logic processes necessary to implement the specification, in
stored programme control (SPC) switching systems.” /CCIT80b/.
The method of presentation is based on state transition
diagrams.

The main areas of application cover all types of
SPC switching systems. Within these systems examples of
processes which can be documented using SDL are: call
processing (e.g., call handling, routing, signalling, metering,
etc.), maintenance and fault treatment (e.g., alarms, automatic
fault clearing, configuration control, routine tests, etc.) and
system control (e.g., overload control).

The requirements of a system are defined in the
specification of that system and the implementation of those
requirements is defined in the description of that system.

The objective of the SDL is to provide a
standardized method of presentation that /CCIT80b/:

e Is easy to learn, to use, and to interpret in
relation to the needs of operational
organizations.

e Provides unambiguous specifications and/or
descriptions for tendering and ordering.

e Provides the capability for meaningful
compar isons between competitive types of SPC
switching systems.

e Is open-ended to be extended to cover new
developments.

I1-4-1

PRI WP N TOr S S -"‘ < N PR P I LA U T UP G S W L . wo




1

————YT

s i

I .‘,I' A )

ig

T
[ I A

Y,
G e eE

To meet these objectives two forms of the SDL
have been developed. The graphical form, SDL/GR, is a method
whereby each process is represented in terms of states and the

transitions between them. An input causes the process to leave
a state and travel along a transition executing tasks,
generating output signals, and branching on decisions until
another state is reached. The representations may be linear,
with multiple appearances of a single state if convenient, or
may be of mesh form or any combination of the two. The
concepts of state, input, task, output, decision, and save are
represented by their respective symbols. The appropriate
interconnection of such symbols by flow lines represents the
logical flow of a process. Strict rules for drawing sequence,
flow, and annotation are applied. There is no correlation
petween the graphical form of SDL and the CHILL programming
language.

_ The other form of SDL is the program-like form
SDL/PR, previously known by the more descriptive name, Machine
Readable Form (MRF). The SDL/PR is intended to facilitate the
automatic generation, modification, and analysis of SDL
diagrams. SDL/PR is still in the development stage at this
time.

Much effort has been expended in the
determination of the correlation requirements for CHILL and
SDL. In fact, CCITT Study Groups XI/3-1A (MRF subgroup) and
XI/3-1B (SDL/HLL subgroup) devoted much time in 1978 to this
very question and concluded ". . . a strong correlation between
SDL and CHILL is now not only possible but also more likely to
occur in actual implementation.” /CCIT78/ This conclusion
enabled them to justify the disbanding of the sepaiate subgroup
for ensuring correlation. Since that time however, less
emphasis has been placed on the requirement for correlation.
In fact, at present there is no correlation between SDL/PR and
CHILL beyond the obvious similarities of their form and
application domain.

II-4-2

s el e e




g g
.

R~ o '
A S

—r x_",;u i £ S

T

s

The Man-Machine Langquage (MML) is used to
facilitate operation and maintenance functions of SPC switching
systems of different types. According to different national
requirements, MML can also be used to facilitate installation
and testing of such systems /CCIT80c/.

The MML contains inputs (commands), outputs,
control actions, and procedures sufficient to ensure that all
relevant functions for the operation, maintenance, installation
and testing of SPC systems can be performed. It has been
designed with an open ended structure such that any new
function or requirement added will have no influence on the
existing ones. The language structure is such that subsets can
be created which may be necessary for administrative or
implementation reasons.

The MML is a totally independent tool which is
not correlated with CHILL in any sense other than the fact that
they may share the same application environment in a (mutually)
cooperative manner.

4.2 ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE)

This section presents an overview of the Ada
Programming Support Environment (APSE, taken from the STONEMAN
document /USDO80a/.

The overall objective of an APSE is to offer
cost-effective support to all functions in a project team
engaged in the development, maintenance and management of a
sof tware project, particularly in the embedded computer system
field, throughout the lifetime of the project.

An APSE adopts a host/target approach to software

construction. That is, a program which will execute in an
embedded target computer is developed on a host computer which
offers extensive support facilities. Except where explicitly
stated otherwise, this document refers to an APSE system

running on a host machine and supporting development of a
program for an embedded target machine.




it LS Sl St ekt A el Sl e e DRl 3 L Anan dasi et Rt S Mt v - B I

An APSE offers a coordinated and complete set of
tools which is applicable at all stages of the system life
cycle, from initial requirements specification to long-term
maintenance and adaptation to changing requirements.

The tools communicate mainly via the database,
which stores all relevant information concerning a project
throughout its life cycle. The database is structured so that
relationships between objects in the database can be
maintained, in order that configuration control problems can be
resolved.

Individual functions supported by the tools in an
APSE include:

Creation. It is possible to create database
objects which contain specifications, design
documentation, program source text, program
documentation, test data, and so on.
Modification. A database object can be
modified to produce a new object (or a new
version of the same object), for example, by
editing.

Analysis. The entities in a database object
can be analyzed, producing a new object which
records the results of this analysis.
Examples of such analysis are set/use and
cross reference listings.

Transformation. The representation of a
database object may be changed by
transformation tools.

Display. Objects can be displayed on
terminals, printers, and so on.

Linking. A collection of compiled code
objects can be consolidated, resulting in a
new object ready for loading and execution.
Execution. Once a program has been ccmpiled
«.nd linked, it can be loaded and executed,
possibly with an appropriate environment being

II-4-4




NN

¥y
[ R

T

" — — T W T T Y, v, TewWTTwE T W T
RS Se S A M I S S L T T T ¥ L RACERE AR AR Ty TS aw T TR . .~
Cav el . - R Pl

used to supply test information and to monitor
execution.

e Maintenance. The APSE must enable
configuration control to be maintained. For
any configuration of software, it is necessary
to be able to determine the origin and purpose
of each component of the configuration and to
control the process of further development and
maintenance of the configuration.

The user interface offered by an APSE is

independent of the host machine.

At all stages of the development of a program -
design, coding, testing, maintenance - an APSE encourages the
programmer to work in Ada source terms, rather than in terms of
the assembly language of the particular host or target machine.

Extension of an APSE toolset requires knowledge
only of the particular APSE and of the Ada language. A new
tool - for example, an environment simulator - is written
within the APSE. This tool can then be installed as part of
the APSE and subsequently invoked.

An APSE supports the use of libraries of standard
routines for incorporation in programs written for both host
and target machines,

The above paragraphs outline the facilities
offered by an APSE to its users in support of Ada programming.
However, a further requirement is for portability both of APSE
tools between, for example, APSEs hosted on different machines
and of complete APSE toolsets. To address this aim and to
indicate a means of implementation of an APSE designed to
provide portability, this document gives requirements for a low
level portability inter face and support function set (the
KAPSE) together with a minimal toolset (the MAPSE).

The purpose of the KAPSE is to allow portable
tools to be produced and to support a bacic machine-independent
user interface to an APSE. Essentially, the KAPSE is a virtual
support environment (or a "virtual machine") for Ada programs,
including tools written in Ada.




e

vwe w oy

e

T Ll R

v
Y Voe ox

-

BNAAMEIS 7 SO

LaND am ase o

N A

Y amta 4

The declarations which are made visible by the
KAPSE are given in one or more Ada package specifications.
These specifications will include declarations of the primitive
operations that are available to any tool in an APSE. They
will also include declarations of abstract data types which
will be common to all APSEs, including the data types which
feature in the interface specifications for the various stages
of compilation and execution of a program.

While the external specifications for the KAPSE
will be fixed, the associated bodies may vary from one
implementation to another. In general all software above the
level of the KAPSE will be written in Ada, but the KAPSE itself
will bpe implemented in Ada or by other techniques, making use
of local operating systems, filing systems or database systems
as appropriate.

The minimal APSE (MAPSE) is one which provides a
minimal but useful Ada programming environment and supports its
own extension with new tools written in Ada. Hence, the MAPSE
is an APSE and must meet the general requirements set down for
APSEs,.

For many important activities during a project
life cycle as listed below, the only support offered by the
MAPSE consists of general text manipulation facilities. A more
comprehensive APSE will offer specialized tools to support a
wide range of these activities, possibly including:

1) Requirements Specification

2) Overall System Design

3) Program Design

4) Program Verification

5) Project Management

Clearly, the MAPSE does not emphasize any
particular development methodology at the expense of any
other. However a comprehensive APSE may encourage, or even
enforce, one specific system development methodology.

II-4-6




v 'ﬂ"‘—j

% 258 ) -Hp.'w e
e ol A

T

o

>

bk St S5 2 o o ———
RN RE S . .

r——

Y

_——

[t i des S dhstmes it S ShE A S et SR e s D A

4.3 DISCUSSION

The previous two sections have shown that (1) the
SDL and MML languages have no dependency on CHILL (and vice
versa) and (2) the APSE supports the incorporation of external
tools such as SDL and MML. The significance of these two
points will be discussed further herein.

The relationship that exists between SDL, MML,
and CHILL poses no known portawility problems. They ¢ ist in
the same environment because of the fact that they support the
same application. It is perhaps misleading to consider them as
part of a "programming environment". One does noi generate
code for the other, for example. Rather, their
interrelationship is more along the lines of "peaceful
co-existence." SDL and MML existing in the same environment is
somewhat analogous to a word processing package and an
accounting package co-existing with a FORTRAN compiler. The
accounting package may even be written in FORTRAN. But this
situation does not create a dependency in a sense that
restricts portability or replacement. Hence there is nothing
to prevent another language (for example, Ada) from replacing
CHILL in a particular environment which happens also to incluae
SDL and MML. However, this view is directed towards a
development type environment.

The relationship that exists with:ir CHI
and MML in a production environment is even eas:»:
consider. SDL and MML are basically off-lin=
no requirement for them to co-exist witnh rea.

Hence, this places no additional restr: .
context of replacing CHILL.

The above discussi~>~ 1+ .
whether Ada can replace CHILL .-
part of a programming envi: “rre -
further area to cons:iid=: . - .
fit within tne Ada ?r .

The Ao

programming er. .

1mplementa®




D-A124 938 EVALUATION OF ADA RS A COMMUNICATIONS PROGRAMMING
LANGURGE(U) SYSCON CORP SAN DIEGO CA

UNCLASSIFIED




L ow e s

n e or via IR -f,’:w il 4..“‘?:‘“,7_).:,,-;‘«} f“;;_"ﬁf*“‘".“m;.""":'\“h A “;‘!« :""T‘:‘~,?rv4' . o ‘- w . it 1"—,‘” v, i s, W ET t"‘. .*’a"‘-"" 7 . :
~
e . e g e
I [ 1] l2.8 2.5
8 : e 32 g
: = u L g22
— -
= w B2
[ ]
[ ) 20
' Il £
. "t
= 1.8

I T

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUREAU OF STANDARDS — 1963 ~ A




N o " o 2 v - . s T Y Y . < i) . -
G40 R e AV, Wt S TR MR Pt AT s IS T NS SRR AR I R AT TR MR AP L BT V) T PASI RV RIS L whontz L.
&

=

Y

LS

fn

WPy

s
s

2

provides more than adegquate development support of Ada
programs. The third level is the area of most interest to this
study. This level provides the capability of extending the
MAPSE to allow fuller support of particular applications or

L methodologies. In particular, this level can support the
inclusion of the SDL/PR and MML tools. 1In fact, there is
nothing to prevent the inclusion of the CHILL compiler and its
associated tools as well. This is considered to be an
attractive alternative to the question of Ada replacing CHILL
in its environment.

" "y
€ 8 e
e taltala

g .
I

LYYy

(i 21200 L

- ( -y - X 4 . .
La%t% Trevs e 38 PRE A A R

%

e L R CAN

MCs 4 Enhr et )




B . . N . " ’ " e I AN I A T ) —y
N e earh e e e gl e Tt et el U N The 5 U A ANl W P NI AT IR AT P I S s S S N LI s i A OGN

SECTION S
CONCLUSIONS

; This section will present the overall conclusions
of the Ada/CHILL comparative analysis effort. But first it is

¥ instructive to examine the conclusions of three other recent
ﬁ reports which deal with the same subject.

3 The first report was written in March 1980 by

g Mr. Kristen Rekdal (a member of CCITT study group XI and

i principal author of the CHILL language introduction). This

: report makes the claim that CHILL and Ada are technically very
} similar and that the differences are primarily political. 1In
ii fact, the following paragraphs are significant:

2 "These two languages have been designed

,3 with basically the same requirements in

ii mind. The result is languages that are

A very similar both in power, structure

v and style. It is almost possible to d>

a a detailed feature by feature

? compar ison.

From a purely technical point of view,
there is reason to believe that either
language c¢ould cover all purposes

'g equally well. One may attempt to argue
the preferability of details in one
language above the other. Such
comparisons will, however, be highly
subjective and probably largely

irrelevant.
y Language design is an exercise in
] making compromises, and some will be

less pleasing than others. It is not
difficult to £ind, in any language,
properties to disagree with. But what
{ counts is the overall result. There
exists today no means by which it is

S SRRy

I1-5-1

Y X ot " Ve e R, 1C* LI s, I Sa b YOO /Bt gt Aigs Thull SR WIRL AL SR Sad Ll KNl " . K - , . s
B R R SR R e S e o N ne P g ey | I e e

a

. I e




PRC DA T i Y04 WP o

possible to detect any significant

difference in overall language power or

programmer productivity between so

closely similar languages." /REKD80/

Mr. Rekdal then goes on to point out the
polxtlcal issues behind Ada and CHILL and concludes that "World
agreement has been reached that, for right or wrong, CHILL is
the language neéded for SPC-programming." /REKD80/ He then
advocates a "you go your way and I'll go mine” philosophy
between CCITT/CHILL and DoD/Ada.

The second report details a study conducted under
the auspices of the GTE Software Steering Committee by members
of the Special Interest Group on High Level Languages
/KORNXX/. This report elected to concentrate the comparative
analysis of the two languages into four areas considered to be
relatively new concepts in programming languages;
modularization, data abstraction, parallelism, and exception
handling. The authors uncovered no significant differences in
the languages and concluded that

"In the development of the four

concepts, both Ada and CHILL have

extended the features and facilities

defined in basic PASCAL. Ada does not

conflict with the CCITT requirements

and is the most encompassing and

ambitious effort we have encountered.

Implementation of the complete language

will be difficult and we believe that

compilers supporting only subsets of

the language will be available in the

immediate future.

CHILL more than adequately meets its

design goals by supporting the
development of real-time
telecommunications software. It does
not allow for any file handling or
provide a 'real' number capability.




Rl AT AR I

S

O T8 T s WA DRI s 3 . & B R AP I Lo el R L R D I i imi B B Ve e P A g Ay By Y S T Y Nl o LA

Most telecommunications software

designers will therefore have to resort

to supplemental languages to fulfill

'~ any requirements for file handling or

scientific computations.”

The third report was written by Mr. R.T. Boute of
Bell Telephone Mfg. in Antwerpen, Belgium. /BOUT79/
Mr. Boute's report is by far the most detailed. His discussion

. of the two languages also centers around four issues: types,

data abstraction, c¢oncurrency, and exception handling. Mr.
Boute considers these features germaine to a communications
oriented programming language and concludes that "Although no
compar ison was originally intended, Ada turns out to be
definitely superior in the last three topics mentioned, as well
as in the overall design." /BOUT79/ Furthermore, he goes on to
say "The potential user is entitled to question the need for
both languages, with all support and standardization problems
it entails. The fast progress of Ada and the wide attention it
has recently been getting may well establish its position
before CHILL reaches Ada's present level of definition. 1In
this case, and unless the CHILL design team decides on an
approach which is superior to Ada in all respects, a second
language would be superfluous."™ /BOUT79/ This again implies,
as in the previous two reports, that the languages are 80
similar that the other is "super fluous."

The purpose of discussing these reports is to
point out that studies performed by three diverse individual
activities have generally arrived at the same conclusion, i.e.
the technical similarity of Ada and CHILL.

Unfortunately, none of these reports addressed
the entire spectrum of Ada and CHILL features and issues. The
first report did not provide (and did not claim to provide) any
technical justification on which to base its conclusions. The
report was very clear in pointing out that the Ada/CHILL
differences involved political rather than technical
questions., The second report provided some limited technical
information but isolated four areas (modularization, data

> . - . - « - el »
AR -’_v‘__vﬁ.of B RO S A R A N O L T

.'?i 75‘.‘7"'.,'W" \"* ”""‘. AT A et St AL P T N T I S S S S P I b S P T T ML TR IR .--'_-\q:)_-. R




AL

abstraction, parallelism, and exception handling) for purposes
of comparison. This concentration was intentional and was

performed to highlight what the authors termed "new concepts in
programming languages.” The third report also concentrated the
comparison in four areas (types, data abstraction, concurrency,
and exception handling) and provided detailed technical
information in these areas, omitting only the purely sequential
control structures and basic details of the languages

; considered trivial for comparison purposes.

T

Discounting the last two referenced reports for
the stated reasons is not meant to be a negative judgment of
their worth. Rather it is meant to point out that failure to
» explicitly cover all aspects of Ada and CHILL during a
comparative analysis could perhaps result in a potential reader
being misled into thinking either (1) the languages are
identical in all unstated areas or (2) significant differences
in these unstated areas are not being addressed. Also, it
should be noted that all three reports dealt with preliminary
Ada, not the recognized version of Ada defined in /USDO80b/.

For these reasons, the comparative analysis
described within this report attempted to take a more global
compar ison approach which can be accepted in both technical and
o logical terms. The reader will recall that there were two

! basic questions to be answered during this study and they are
reiterated here:

R A

oy -
e a

s l) Can Ada be used as a direct substitute for
CHILL in the context of CHILL being a

% programming language designed for circuit

g switching applications?

v 2) Can Ada be used as a direct substitute for
CHILL in the context of CHILL being part of a

; programming environment containing CHILL,

3 SDL, and MML?

t The most common method of answering the first
question would be to address the functional requirements of
circuit switching applications and attempt to show that Ada
meets those requirements. A more direct and less subjective

A
.
“1 (T Y]

b g e, e, e TN T e T T
t l,’.‘f o, A Tagt s» e



T L)

N O

I

AL Ty e e R
LN L A T ey, R AR Fo : +* . > ¥ e WS -

-----
-----

A s e g R RN

method is simply to follow deductive logic. PFor example, no
one will argue the point that CHILL is a suitable language for

circuit éwitching applications. Thus, if one wants to evaluate

whether another language is also suitable, simply compare the
features of this other language with CHILL. In Section 3 of
this report, that feature by feature comparison was presented.
This comparison showed that the languages are in fact nearly
identical. Granted, there are minor differences (features
exist in CHILL, but not in Ada, and vice versa), but the fact
remainsg that the differences are virtually insignificant when
considered in totality. One can therefore conclude that Ada
can be used as a direct substitute for CHILL in the context of
CHILL being a programming language designed for circuit
switching applications.

To answer the second question a further argument
must be proposed. 1In Section 4 the CHILL/SDL/MML environment
was examined., It was shown that no critical dqpehdency exists
between these three entities. In particular, the SDL and MML
tools exhibit no characteristics which force them to depend on
CHILL (or vice versa). Thus, in answer to the second question
there is nothing to prevent Ada from coexisting with SDL and
MML in a particular programming environment. BEowever, we
demonstrated in Section 4 that a more complete and useful
capability can be formed by using the Ada Programming Support
Environment (APSE). The APSE, as currently defined within the
STONEMAN document can support the incorporation of external
tools at its "outermost® level. Therefore, a very powerful
support environment for SPC switching system applications can
be formed by'tho incorporation of SDL and MML into the APSE.
In fact, there is nothing to prevent the CHILL capability from
being incorporated as well, allowing Ada programs to coexist
and interface with CHILL programs, where appropriate. This is
seen as a powerful, logical approach to the Ada/CHILL duality
and it is a solution that the CRILL proponents can neither
offer nor argue against.

In addition to the above, two other points are
relevant to this discussion.

L g s AN IO, 9 o I OREON SO R R N L et e M Naa® o b ta B L o Y a b Ml b,

RS,




2 vl el Sl M e WL R e S 0. S i xS Ml St Sl T Y AL AR v Al Sl T R S = T A WL iy il i LAy AP )

k. O e

Both DoD and CCITT have stated their desire for
defining a language standard for their respective application
£ areas. Having a programming language achieve a standard level
E is advantageous to many activities, not the least of which
- might be configuration management, quality control,

documentation, and training. Allowing (or not strictly
& controlling) the proliferation of compiler subsets tends to
defeat the purpose of establishing a language standard. All
too frequently, there is incompatibility among the subsets.
Occasionally, the subset fails to accurately reflect the
standard from which it is supposed to have been derived.

DoD is seeking to prevent this condition from
occurring. They are doing this by forbidding the recognition
H of Ada compiler subsets within their application domain. Every
Ada compiler will be required to recognize every legitimate Ada
statement. This obviously does not prevent independent
compiler development outside their domain, but at least it
restricts the proliferation of subsets within their own
environment. Additionally, no development activity will be
able to call a subset compiler an Ada compiler because of the
copyright restrictions which DoD intends to place on the use of
the name.

Lo Tt P et e

. od
o

Pt W ]
PR S

P st aaratiig 2

CCITT, on the other hand, has not yet been able
to establish firm control over the generation of CHILL compiler
subsets within their own sphere of influence. This is
evidenced by several ongoing trial compiler development
activities. Whether these compilers are faithful subsets of
the CHILL definition or are, in fact, compatible with each
other is unknown at this time. The point is that the CHILL
designers/proponents have to date failed to adequately control
this condition, and this is considered contradictory to their
stated goals.

Another closely related question then is: How
does one validate these compiler subsets or compilers which
have been generated within different development environments?
The answer is that the defining authority must require that
compiler validation be performed. Furthermore, the defining

TAREE

. - * [}
et LA 2

100N I

II-5-6

RIS IR IR Tt R AT SR AL P LS JETE PEL AE IE S TSR SR S S PRI S PR L S 4
A R N N R R O T T U
.0 [y e e te e e e T R A N A R O S

¥
o
'’

. e iw t M T T A m - - " ~ e am - ERL AL SR
N RGN NP L AT SR NN NTARONT IR iy S AR




CEXD

P

activity or, at least, the implementing activity must establish
procedures to be used to certify that the compiler in question
meets the established language standard.

The STEELMAN document states: "There will be a

standard definition of the language. Procedures will be
established for standards control and for certification that
translators meet the standard.” /USDO78/ The DoD'obviously
intends to keep Ada under tight configuration control and to
ensure that compilers 4o not introduce dialects through
inconsistent implementations. 1In particular, a language
control agent (which includes a compiler validation facility)
is required to be in place before DoD will accept a language
for the approved list, as stated in DoDI 5000.31. Toward this
end, a contract has been awarded by DoD to develop an initial
Ada Compiler Validation Capability (ACVC) to be available by
late 1980 and a complete state of the art capability by late
1981.

CCITT, on the other hand, has not yet been able
to establish a firm commitment to a compiler validation
facility. And, due to the fact that several trial compilers
are in the late stages of development, it appears unlikely that
satisfactory validation efforts will be possible. Again, this
seems contrary to CCITT goals.

In summary, it is felt that a strong case has
been presented for Ada being used as a programming language for
circuit switching apblications. It has been shown that Ada is
equal or superior to CHILL in almost all aspects ranging from
availability and definition of language features to strict
control over compiler dialects. Moreover, the study has
produced no evidence which precludes Ada from being used in
other, more general, telecommunications prograﬁming
applications, as well. Many people believe that Ada could
emerge as the universal programming language standard by the
end of the decade, and therefore, there appears to be no reason
why the communications community should not take advantage of
Ada's power and appeal in all of their present and future
software development activities.

11-5-7




ot ME L,

Db AR ¥ LI s

poi- oul -2 fetr-ed e

-4

pArhary

o oy

-

15 oo s

T T o1

B 2d B i

(This Page Intentionally Left Blank)
I1I-5-8
’NO,' .;: . _,::.. ~'~. 'f: R .‘.; ?.&:_ .: ..{_‘A ':‘4"‘- ‘\";r':-“..'...;_..: '~ .;‘n .v‘..'_\ .. e .:_‘. IR

R~ P G R A A SN s S i

TSN .
ST . o A




Lt M e I R T Sk r AR AL A0 -l e Tl S B 0 g B W iR N ek W AL S RSN IR SRR AT, o Ho g o e e

Sy oY, Y Ty

L s

APPENDIX A
REFERENCES

L e

S

II-A-1

AT o

e q . “..""'-‘ 3 '.'" "...~'.‘~:I‘.'. Nt ‘-:'-..'-:‘."."":d.'-.'-. RN
il Bla ‘e 8 s .



B BT e
<

/BOUT79/

/BRIN73/

/BRIN78/

/CCIT78/

/CCIT80a/

/CCIT80b/

/CCIT80c/

/HOAR78/

/ICHB79a/

/ICHB79b/

/KORNXX/

/NCSY80/

/REKD80/

/uUspo78/

OB A ek a et i) SR AP A5 MNP0l i it A M IR b SOOI A L AT LA AN D it/ St~ Sl

o *Ta @

Boute, R.T., Ada and CHILL: A joint language
evaluation. Report RTB-7908. Bell Telephone
Mfg. Cy., Antwerpen, August 1978.

Brinch Hansen, P., Operating System Principles.
Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, 1977.

Brinch Hansen, P., Distributed Processes: A
concurrent programming concept.

Comm. ACM Volume 21, Number 11, November 1978,
pp 934-941.

CCITT, Report on the Meeting held in Geneva from
19 to 23 June 1978. COM XI-No 200-E, June 1978.

CCITT, Draft Recommendation Z.200: Proposal for
a Recommendation for a CCITT High Level
Programming Language (CHILL). February, 1980.

CCITT, Proposed Revised and Expanded
Recommendations for the CCITT Specification and

Description Language (SDL). AP VII-No. 20-E,
June 1980. '

CCITT, Proposed New and Revised Recommendations
for the CCITT Man-Machine Lanquage (MML).

AP VII-No. 22-E, June, 1980.

Hoare, C.A.R., Communicating Sequential
Processes. ACM 21, 8 (August, 1978), 666-677.

Ichbiah, J.D., et al., Preliminary Ada Reference
Manual. ACM SIGPLAN Notices 14, 6 (June, 1979),
Part A.

Ichbiah, J.D., et al., Rationale for the design
of the Ada Programming Language. ACM SIGPLAN
Notices 14, 6 (June, 1979), Part B.

Kornfeld, C., et al., "Development of New

Language Concepts in Ada and CHILL," GTE Software
Steering Committee, undated.

National Communications System Introduction to
the CCITT High Level Language, NCS TIB 80-1,
January, 1980.

Rekdal, Kristen, CHILL, Ada, and ESL, (Technical
Report), March, 1 .

U.S. Dept. of Defense, STEELMAN Requirements for

High Order Computer Programming Languages.
une, .

...........
-




. Rl

RS RN b i m e T A 3 N S A V4 PIRG4S A S0 BN M M SO A Y AL e S % e Ta Y e Seae

/USD080a/ U.S. Dept. of Defense, STONEMAN Requirements for

Ada Programming Support Environments.
February, 1980.

/USDO80b/ U.S. Dept. of Defense, Reference Manual for the
Ada Programming Language. July, 1980.




PSS d”,

2%

ety
at 1LY

P % a5 s %A RO

- PLEN P

“ta.

P Y R

28 e v T

'
9
"
'
'O
'

B T W e L

-y

N AR o S e A

AN M IR IRl i Db IS CI I TIAC IR, S~ vy 27D PA ARICEARE

(This Page Intentionally Left Blank)

M " - - P P - - - . a® AT e """
. . DR N et B e
- TP S YT U7 SORA T TPOIPIPOS AP W LIPS PTG o TR LY




e B i oo







PR TP i M S A A »'.f.‘?

PLAN FOR
EVALUATION OF ADA
AS A
COMMUNICATIONS AND TRUSTED SOFTWARE
PROGRAMMING LANGUAGE

ABSTRACT

The availability of the new programming language,
Ada, presents new opportunities for developing quality software
through the use of language features used previously only in
research environments. With the new features, however, new
controls in the form of programming standards and guidelines
will be required to assure that the potential for producing
quality software is actually achieved. As a means of
formulating these standards and guidelines, Ada will be used to
implement, on a prototype basis, a communications application
which consists of the AUTODIN II Segment Inter face |
Protocol/Advanced Data Communications Control Procedure
(8IP/ADCCP) and a trusted software application whicih consists
of the Advanced Command and Control Architectural Testbed
(ACCAT) GUARD software. This Evaluation Plan establishes the
approaches to be used in designing, developing, and testing the
software, evaluating the efficiency and effectiveness of Ada as
used in these applications, and identifying standards and
guidelines to assure overall software quality in the use of Ada.

TN

S

RIS




Lo T b ] S AP Ao e S g A "l i S s, St gy - un] AT A e A LK a . (83 o g e v e g e s S O T . |

SR
Iy
3
p

it Wk

pied

Py STnra Y

L

-~ St Sl gk N

I L)

SPINTD DRtV <y,

R

(This Page Intentionally Left Blank)

ha PV

2 4er &

<.

LEE L L

III-iv

I W
r

T e A e o e e A N S T I W e e

ak, Aty AT Y N, PR L A R N A OSSR -




SECTION

YAt A SV L TPl S S I AL
Ty

: *, ’* RO .‘ 4 f.,:-..' s T

1 L g P’ A oL 09 Y Cobe e
A e e e A R N T S A s Nt el oca e LS £ 0O AKX g T aE 0 T T sl

TABLE OF CONTENTS

3
-
3
>

ABSTRACT

EXECUTIVE SUMMARY

INTRODUCTION

l.1 Purpose

l.2 Scope

l.3 Schedule Summary

l.4 Test and Evaluation Level Summary
l.4.1 Test Level Summary
1.4.2 Evaluation Level Summary

APPLICABLE DOCUMENTS

2.1 Military Standards and Specifications
2.2 System Specifications and References
2.3 Other Government References

2.4 Non-Government References

TEST AND EVALUATION REQUIREBMENTS
3.1 Overview
3.2 Software Test and Evaluation Approa.:
3.2.1 Software Evaluation Approach
3.2.2 Software Testing Approach
3.2.3 Application Overviews
3.2.3.1 SIP/ADCCP Overview
3.2.3.2 ACCAT GUARD Overview
3.2.4 Test and Evaluation Constraints
3.3 Software Quality
3.3.1 Software Quality Factors

3.3.1.1 Software Quality Factors

(Development)

III~-v

PAGE
ITI-iii

III-xi

III-1-1
III-1-1
III-1-2
III-1-4
III-1-4
III-1~4

I1I-2-1
III-2-1
I1I1-2-2
III-4-2

III-3-1
I1I-3-1
I1I-3-1
I1I-3-3
I1I-3-3
III-3-3
III-3-5
I1I=-3-7
III-3-9
III-3-9

III-3-10




€l I AW
§

§

2 34 55 WY .
s Ny ¥

et R A G A R

Al

5 -
Pplasia

PG S LN

b

SECTION

3.4

3.5

3.6

e ont kP ® P a SR T ¥ at® A Wom ¥ I TR o A B o 0 R Sl U R @ G A o St

TABLE OF CONTENTS (Cont.)

TITLE

3.3.1.2 Software Quality Factors
(Per formance)
3.3.2 Criteria for Software Quality
Pactors
3.3.3 Software Quality Metrics
3.3.3.1 Objectives
3.3.3.2 Impurity Classes
3.3.3.3 Selected Software Metrics
3.3.4 Application-Oriented Requirements
3.3.4.1 Communication Application
Requirements
3.3.4.2 Trusted Software
Application Requirements
3.3.5 Ada Language Features
Software Development Structure
3.4.1 General Approach
3.4.2 Design Phase
3.4.3 Code/Debug/Modify Phase
3.4.4 Integration and Test Phase
3.4.5 Test Software Development
3.4.6 Software Development Standards
Data Acquisition and Analysis
3.5.1 BError Statistics
3.5.2 Software Structure
3.5.3 Programmer Interviews
3.5.4 Data Acquisition and Analysis
Procedures
Software Tests
3.6.1 SIP/ADCCP Software Tests
3.6.2 ACCAT GUARD Software Tests
3.6.3 Software Performance Tests

PAGE

III-3-10

III-3-10
III-3-16
III-3-16
III-3-18
III-3-18
I11-3-20

IT11-3-21

I1I-3-21
III-3-25
III-3-27
II1-3-27
III-3-31
III-3-32
III-3-32
III-3-33
III-3-33
II1-3-33
III-3-33
III-3-34
III-3-35

II1-3-35
III-3-36
III-3-36
II1-3-37
III-3-37




. Jﬁ ‘t:\.;f"‘-

g a

Wk | ¢ i,y ‘ 2 AR LW A edt Yoo Ao S AP L EPNL B 0 ‘i".'.'v'.‘~'.»_. R T P I
R T N N Y A R R Rt e e

300 " - A_lm‘.‘ A I R R Y PR A A

P B R B T =t - T o - L % e PN RN - ‘SRR i i oI IS MRS P

TABLE OF CONTENTS (Cont.)

SECTION TITLE

3.7 Ada Evaluation Results
3.7.1 Project Summary

3.7.2 Ada Programming Standards and
Guidelines .

4 TEST AND EVALUATION MANAGEMENT REQUIREMENTS
4.1 Contractor Responsibilities
4.1.1 Software Development/Management
Plan
4.1.2 Ada/ED Acquisition/Installation
4.1.3 Software Design
4.1.3.1 Macroscopic Software
' Design
4.1.3.2 Microscopic Software
Design
4.1.3.3 Test Plans/Procedures
4.1.3.4 Design Review
4.1.4 Software Development
4.1.5 Evaluation Procedures
4.1.5.1 Software-Development
Evaluation Procedures
4.1.5.2 Software-Performance
Evaluation Procedures
4.1.6 Data Acquisition
4.1.7 Data Analysis
4.1.8 Development/Performance Evaluation
Report
4.1.9 Software Delivery
4.2 - Procuring Agency Responsibilities
4.2.1 Software Development/Management
Plan Review
4.2.2 8Software Design Review
4.2.3 Test Plans/Procedures Review

I1I-vii

PAGE

III-3-38
III-3-38

II1-3-39

ITII-4-1

III-4-1
III-4-1
III-4-2

III-4-2

III-4-2
III-4-2
III-4-3
III-4-3
III-4-3

III-4-3

III-4-4
III-4-4
III-4-4

III-4-4
III-4-5
III-4-5

I11-4-5
III-4-5
III-4-5




IV ' N

o ‘-“

k-

. 990 X BTl g

Palelele=vns?

YRy

2amIRS

. 4

a8 an A

Vi W

#
)
F
b
A
fy

Y,

Doyt v mpe g e
VN BT AL

N NN

SECTION TITLE PAGE
4.2.4 Development/Performance Evaluation
Plans/Procedures Review III-4-6
4.2.5 Development/Performance Evaluation
Report Review II1-4-6
4.2.6 Ada Language Processor II1-4-6
4.3 Other Agency Responsibilities I1I-4-7
4.4 Associated Supplier Responsibilities II1I-4-7
PERSONNEL REQUIREMENTS
5.1 Project Management Personnel I1I-5-1
5.2 Software Development and Evaluation
Personnel III-5-1
5.2.1 SIP/ADCCP Software Personnel III-5-1
5.2.2 ACCAT GUARD Software Personnel III1-5-2
HARDWARE REQUIREMENTS
6.1 Development System III-6-1
6.2 Demonstration System III-6-1
SUPPORTING SOFTWARE REQUIREMENTS
7.1 Systems Software III-7-1
7.2 Ada Programming Support Software III-7-1
7.3 Test Support Software II1I-7-1
7.3.1 SIP/ADCCP Test Support Software II1I1-7-2
7.3.1.1 Terminal Subscriber
Interface II1-7-2
7.3.1.2 Pseudo Line Control
Module I1I-7-2
7.3.2 ACCAT GUARD Test Support Software III-7-4
7.3.2.1 High-Level Input/Output II1-7-4
7.3.2.2 Low-Level Input/Output III-7-6
7.3.2.3 Terminal Interface/
Sanitization Personnel II1-7-6
ITII-viii
YA LA N e S A e ey o T T T N S R L

Al X BV S

L Vil B o - Y e M . . ety Vo Nl SUIU R AL Yodh Wi

TABLE OF CONTENTS (Cont.)

Dt Yt 30 AL e A L e e ¥ o ¥

o




i

oy

g ", Wil W L Wl by N gt A T il W BT

TABLE OF CONTENTS (Cont.)

SECTION TITLE PAGE .

'

8 SCHEDULE
8.1 Ada Evaluation Schedule III-8-1

9 QUALITY ASSURANCE
9.1 Quality Assurance Objectives III-9-1
9.2 Quality Assurance Reviews I1I-9-2

\_'_.d,.‘*‘_ TR

-

g

by G e

sl Py N

IIlI-ix

N L IR TR I L AR L ) R v - @ e e M@ B T® et cn LA ® v . it ate e e e
RIS ,.,.'.,.v,";.r}., AN a\’_“.‘.'.\ .",.,.4.-._:,_.-\ ._ﬁ'_.‘f“n "V'““‘,,-\.“,_\h. .._'_._...._:-_...._.~‘.. CRPRETIRN . e e e ST
it o ¥k v o Sy uty B3 e T TN A AP A WAL M e . A AR R R R T T N P R I,




g W T P

£

LR D |

LIST OF ILLUSTRATIONS

FIGURE TITLE
]
1.3-1 Summary Schedule
3.2-1 Levels of Process-to-Process Protocols
2 (Reprint: Pigure ES.2-1 /WEST78/)
4 3.2-2 ACCAT GUARD Configuration
, (Reprint of Figuie 1 /LOG1796/)
? 3.2-3 Basic ACCAT GUARD Process and Information Flow
? (Reprint of Figure 2 /LOGI796/)
g 3.3-1 Software Quality Pactor-Criteria
i Interrelationships
z 7.3~1 SIP/ADCCP Test and Evaluation Configuration
rf 7.3-2 ACCAT GUARD Test and Evaluation Configuration
: 8-1 Ada Evaluation Schedule
, TABLE TITLE
7
: 3.3-1 Software Development Quality Pactors
' 3.3-2 Software Performance Quality Pactors
3.3-3 Criteria for Software Quality Pactors
3.3-4 Impurity Classes
3 3.3-5 Communication Application Regquirements (Set 1)
' 3.3-6 Communication Application Requirements (Set 2)
3.3-7 Communication Application Requirements (Set 3)
] 3.3-8 Communication Application Requirements
G 3.3-9 Trusted Software Application Requirements

3.3-10 Ada Language Peatures

....................

PAGE

ITI-1-3

II1-3-4

I11-3-6

III-3-8

I1I-3-17
I11-7-3
III-7-5
III-8-2

PAGE

III-3-11
I1I-3-12
I11-3-13
II1-3-19
1I1-3-22
I1I-3-22
III-3-23
III-3-24
II1I-3-26
III-3-28

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
................
............




P e s e U b a wp oa e e e i e mw B N AR O e G N A I Bt i ud e N o S M M o R

EXECUTIVE SUMMARY

The availability of the new programming language,
" Ada, presents new opportunities for developing quality software
through the use of language features available previously only

3 - in research or small-scale software development environments.

% Although the existing, July 1980 version of Ada has resulted

g from extensive, open review, test and evaluation by individuals
1 from government, industry, and educational institutions, to

p date no major software design or development effort using Ada
;J as the implementing language has been undertaken.

N Based on limited actual use of Ada for

1ﬁ implementations of stand-alone applications, preliminary

results indicate that different software development approaches
may be required to effect the optimal use of Ada. These
include, for example, the use of Ada as a software design
% language as well as the implementing language, changes in the
approach to modularization including the definition of
compilation units, additional emphasis on the use of the data
abstraction capabilities, and the use of the Ada tasking
f constructs for designing and implementing concurrent
programming applications. Another separate, but not unrelated,
issue is the effect of individual programming styles on the
production of quality software, particularly with regard to
{ maintainability of software. Ada is a rich, powerful, and
versatile language which provides the creative programmer with
b many opportunities and among these is also the opportunity for
: misuse or abuse of the language features. Finally, another
area of concern is how suitable, effective, and efficient the
features of Ada are with regard to specific classes of
applications.

As a means of evaluating Ada in the above
context, the Defense Communication Agency, through the Defense
Communication Engineering Center, has selected two classes of
software to be implemented using Ada. The first is a
communication application, which is the Segment Interface

III-xi

......

i oy R AR R WU LT Y 7 € ol A Py Ay A o WU e L A W ST T SO e, et L T T v e R T N N R TN
., N1 1@',"."&,(%%’9'#. 150 P 4‘1 l‘\._lr"".-. " .\_-.v._ y RSN -.’~... I BT et ..,\_. sl

y




Protocol and Advanced Data Communication Control Procedure
(SIP/ADCCP) used in the AUTODIN II system. The second is a
trusted software application, the Advanced Command and Control
Architectural Testbed (ACCAT) GUARD, which functions as a
trusted process for permitting the controlled exchange of
information between separate SECRET and TOP SECRET systems.
This Evaluation Plan identifies the approaches, criteria, and
key elements required to perform an evaluation of Ada in

Phase II of this project with regard to its suitability,
effectiveness, and efficiency in the SIP/ADCCP and ACCAT GUARD
applications. As a result of the evaluation, a set of

programming standards and guidelines will be defined to assure
that the potential for producing quality software is actually
achieved.

The methodology presented in the Evaluation Plan
consists of defining the concept of software quality and
establishing software quality factors related to software
development and maintenance, and to software performance which
provide the basis for the evaluation of Ada. These software
quality factors are in turn related to more detailed criteria
and the definition of software metrics to evaluate specific,
quantitative aspects of the developed application software. 1In
addition, specific, application-oriented language features
which will be used to evaluate Ada as a suitable programming
language are also defined.

The software development will be organized as a
mini software development project with nominal standards,
internal reviews, milestones, and semi-formal testing of the
developed software. The objective is to emulate, to.the
maximum extent practicable, the phases and operations of a
major software development effort to assure that results
obtained will not be out of context when applied to such
efforts. By and large, the two applications will be treated as
separate and distinct development efforts in order to obtain as
much diverse experience and knowledge as possible regarding the
suitability of Ada. The execption to this will be a small
amount of prog.amming by each programmer in the other

ITI-xii

......................................
............................................




'y

«oplication area to help in assessing maintainability issues
and develcoping broader perspectives regarding the best use of
Ada.

The evaluation will comprise the acquisition and
analysis of data from three sources. These are error
statistics (compile-time and run-time), software structure
analysis (modularity, internal structure, assessment of Ada
features), and programmer interviews (overall qualitative
evaluation, identification of problem areas, design
rationale). The results of the data analysis will be used to
identify specific or generic problems which were encountered
and to formulate solutions in the form of standards and
guidelines which will diminish or eliminate those problems.

The software development tools which will be used
consist of the Ada/ED translator-interpreter which has been
developed by the Courant Institute of Mathematical Sciences of
New York University under the auspices of the U.S. Army
Communication Research and Development Command (CORADCOM) and
standard Digital Equipment Corporation VAX 11/780 system
software. Plans include the hosting of Ada/ED on the
VAX 11/780 at the ﬁniversity of California at San Diego
Computer Center for the development and evaluation effort. The
developed software and Ada/ED will subsequently be delivered to
DCEC for operation on its VAX 11/780.

The planned development and evaluation effort
spa’'.s a period of approximately thirteen months and will
utilize the skills of two senior system analysts and a project
manager who will also have major responsibilities in the
evaluation effort.

III-xiii

-------------




' ot

RCCN PR paion

A A e
S

- ® -

e

AL A

a

-
" .

-

-

PP S
LT N s T e
e a e e e,

T

(This Page Intentionally Left Blank)




*ala

| Jpuis- Ut SRa-hdtSia dr-tan e an A at_aie R DA e e T e B A TS TR @R e VT e Y e

SECTION 1
INTRODUCTION

1.1 PURPOSE

The purpose of this Evaluation Plan is to
identify all the key elements which will be required to
evaluate the suitability of Ada as a language for developing
communications and trusted software. These key elements
include the levels of testing and evaluation to be performed,
the specific requirements and approach for each level, the

responsibilities of all personnel associated with the
requirements, identification of test site, hardware and
software, the evaluation schedule and relevant quality
assurance factors.

The goals associated with the implementation of
this Evaluation Plan are twofold: the first is to assess the
ability to develop quality communication and trusted software
using Ada as the programming language; the second is to provide
a set of guidelines and standards, which, if implemented, will
help to assure the development of quality software using Ada.

1.2 SCOPE

The scope of the Evaluation Plan will encompass
two areas of quality in communications and trusted software
which are development and performance. The development area
will be concerned with assessing software quality factors
related to the development, maintenance, and modification of
software. These factors include, for example, testability,
flexibility, and maintainability. The performance area will be
concerned with assessing software gquality factors related to
the run-time performance of the software. These factors
include, for example, reliability, correctness, and efficiency.

Two separate applications will be implemented in
order to evaluate Ada with regard to the development and
per formance quality factors. The communications applications
involves the implementation of the AUTODIN II Segment Interface




Protocol (SIP) and the AUTODIN II Advanced Data Communications
Control Procedures (ADCCP); the other application, related to
computer security, is the Advanced Command and Control
Architectural Test Bed (ACCAT) GUARD function which is an
adjunct to the Kernelized Secure Operating System (KSOS).

In order to have the Ada evaluation produce
results which are relevant to real-world software development,
the Phase II evaluation will be structured as a mini-software
development project. The project phases will consist of
macroscopic and microscopic design phases (using the present
top-level software designs), code/debug/modify, test plan,
procedure and test data development, software testing, and
software operation via simulation of inputs. As the project
progresses through the various phases, data which are related
to the software quality factors will be collected and analyzed
to evaluate Ada and to formulate the guidelines and standards.

1.3 SCHEDULE SUMMARY

The detailed schedule for the proposed test and
evaluation effort is presented in Section 8, Schedule. The
schedule, as proposed, spans a period of thirteen months. A
brief description of each of the task categories, as shown in
Figure 1.3-1, is given below along with the corresponding
approximate time periods. An Ada Orientation task of one month
will be devoted to establishing initial guidelines for the use
of Ada, acquiring the Ada translator-interpreter and providing
indoctrination on the concepts embodied in the Ada language
constructs. The Software Design task, encompassing
approximately five months, will provide the macroscopic and
microscopic designs and the development of test plans,
procedures and data. The Code/Debug/Modify task, encompassing
approximately four months, will be concurrent, in part, with
the Integration/Test task. These tasks will result in the
implementation of the ACCAT GUARD, SIP/ADCCP, test support
software and the testing of the software. The Evaluation
Procedures Development task, encompassing approximately five
months, will produce detailed procedures for acquiring data

.............................................................

LA A L R AT B -4 bt st A Jea i fha-Samn SaEIND AP Y -‘T




BT M e e - .

aTnpayos Kaewmmg °I-g°7 2anb1d

i
o
330day uotjenTeAd .
Y aouruio3 19d/3uswdotaaaa o7
\ 4 s1s&yeuy e3jeqg ...
v uor3Tsinbov ejed M .‘“
juamdotaaaq S
\ A S2inpadoid uotrienTead —
v 3891 /uotieabajul .M
v K31 poW/6nqad/apod h
v ubysag aiem3jos “
v UOT3IE3U3TIO ©pY ”
E€ETW ZTH TTH OTW 60W BOW LOW 90W SOW YOW £€OW ZOW TOW SNSVL

- . i- . - - .

ye's o pateryis P e B * A AT A Ly s e LR AR - TR L A A - eme L g--e o . e e




e

FY st

(ihl

L O PAPLI Ph

OO

ol e ®

Q‘ - .
O A s A o A A R )
P N Y AR

during the Data Acquisition Task. The Data Acquisition Task,
encompassing approximately five months will run concurrently,
in part, with the Data Analysis task. These tasks will result
in the collection and analysis of error statistics, software
statistics and results of programmer interviews. The
Development/Performance Evaluation Report task, encompassing
approximately five months, will produce the draft and final
versions of the Development/Performance Evaluation Report and
provide a summary oral presentation based on the draft report.

1.4 TEST AND EVALUATION LEVEL SUMMARY

There will be a total of four test and evaluation
levels. The two test levels will comprise module and system
integration testing. The two evaluation levels will comprise
software-development evaluation and software-per formance
evaluation.

1.4.1 Test Level Summary
The testing of the two test levels will be

designed to assure that the software of each application meets
its respective specifications established in the requirements
and design documentation irrespective of the language,
standards and guidelines, programming style, and similar
characteristics associated with the development process. This
testing, as the names of the test levels imply, will be
performed as the software progresses through its development
phases. Therefore, the development of test plans, procedures,
specifications, test data and the conduct of the testing will
be defined and implemented as part of the mini software

development effort and reference to them in the Evaluation Plan
will be only cursory.

l1.4.2 Evaluation Level Summary
The two evaluation levels, software development

and software performance, will be designed to measure software
development and software performance with regard to the fact
that Ada is the implementing language. Thus, this Evaluation

e A A AT A T A R L U A R
e PN b e . LR e R T T IR YT
LI TR IL vyt N Y " e T T > PP N

- »f




RN

I TS S e A A ;".7'". WL L T e . _;. I _". W
o, lk ) ‘f.‘..- PO _. AT e e

Plan will focus on how the software development and performance
will be measured, what the measurement criteria are and how
they will be used to assess the suitability of Ada for
developing communication and trusted software.

The objective of the software-development
evaluation will be to determine what problems, if any, result
from the use of Ada as the implementation language and to then
formulate suitable guidelines or standards which will eliminate
or reduce the problems. The evaluation methods will use
quantitative data, such as the number and type of errors
encountered during the compilation and testing process and the
size of the programs, and qualitative data, such as programming
styles, software complexity, and software organization.

The objective of the software-performance
evaluation will be to determine how well the Ada constructs, in
their machine implementation, perform during the execution of
the software. At present, it appears that a software
performance evaluation will be limited for two reasons. First,
there will be no production quality compiler available during
the planned Phase II period. Second, the Ada
translator-interpreter being produced by New York University is
believed to be too far removed from the planned production
quality compilers to permit any meaningful extrapolation of
performance results. However, as indicated below, certain
software performance factors can still be evaluated. 1In fact,
with the Ada translator-interpreter, the only software
performance factor which cannot be evaluated is performance
efficiency which deals with such factors as execution and
memory efficiencies and optimizations.




PaZalals

L LA

Qs
ol

)

AR ittt T

o=

LAl W N

LK LI

DO,

. oY

- ok Sl I ]

" a b s 8

PR LS

ARV R

Pod P

V"."d‘ —'. -
“, " * -
P PPN

(This Page Intentionally Left Blank)

- e g g - . .

I M L e, - : el el N

e e e W e e PR .~ S Se e e, e -
. B I P IS

PN W Y Y SRPRLAY Yaip PV V- Nl P O U RN P ST Y. T QT S YT

ey portis goiy . S




< Aol

,
y
A

s e ®,

03

2.1

2.2

-------
L.
S RN SR R T

......

DR
......

“o_ st vl Naulh Wl P S £ Iy S AP N wN e at Al Al e e T .

SECTION 2
APPLICABLE DOCUMENTS

MILITARY STANDARDS AND SPECIFICATIONS

a. /M16778/
Department of Navy, Military Standard, Weapon
System Software Development; MIL-STD-1679
(Navy), 1 December 1978.

b. /D21478/
Department of Navy, Data Item Description,
Computer Program Test Plan; DI-T-2142,
29 November 1978.

c. /M84773/
Military Standard - Format Requirements for
Scientific and Technical Reports Prepared By
or For the Department of Defense;
MIL-STD-847A, 31 January 1973 including
Update Notices 1, 2.

SYSTEM SPECIFICATIONS AND REFERENCES

a. /WOOD78/
J.P.L. Woodward, "ACCAT GUARD System
Specification (Type A)", MIR-3634, The MITRE
Corporation, Bedford, MA, August, 1978.

b. /LOGl1l79%a/
LOGICON, "Formal Specification of GUARD
Trusted Software (Draft),"™ ARPA-78C032303,
September, 1979.

c. /LOGl79b/
LOGICON, "ACCAT GUARD Program Development
Specification (Type BS5)," ARPA-78C0323-01,
February, 1979.

d. /BALD79/
David L. Baldauf, "ACCAT GUARD Overview," the
MITRE Corporation, Bedford, MA,
November, 1979.

Y a"e" "™ -

v et et A . )
et at et et al A AT .

L . AR P WP

.......
.......
‘‘‘‘‘



8 WA T D T O D e T

e. /WEST79/
Western Union, "Initial AUTODIN II Segment
Inter face Protocol (SIP) Specification,”
(System Engineering Technical Note TN
78-07-31), DCA 200-C-637-P003, 5 March 1979.
£. /WEST78/
Western Union, "AUTODIN II Design Executive
Summary,” Western Union Telegraph Company,
McLean, Virginia 22101, 18 May 1978.

2.3 OTHER GOVERNMENT REFERENCES

a. /uUsposOa/
United States Department of Defense,
"Reference Manual for the Ada Programming
Language, " United States Government, Director
of Defense Advanced Research Projects
Agencies, July, 1980.

b. /USDO80b/ '
United States Department of Defense,
“Requirements for Ada Programming Support
Environments,® "Stoneman," United States
Government, February, 1980.

2.4 NON-GOVERNMENT REFERENCES

a. /BBNI76/
Bolt, Bernek, and Newman, Inc., "Development
of a Communications Oriented Language, Parts
I and II", Report No. 3261, 20 March 1976.

b. /SRI178/
SRI International, "Verification of
Communications-Oriented Language Programs,”
SRI International Final Report, Project 6413,
August, 1978,

c. /HALS77/
Maurice H. Halstead, Elements of Software
Science, Elsevier North Holland, Inc.,
New York, 1977.

- R T T T R e T N L O SR RS O R
P

L) PR, RN R R et N N T Rk X Rl - v omet - NS S e e R R R ., PRI
RN E‘.ﬂz'-"-b"\.‘;\' z"'.“-,‘—."v -{.Q*._ N A e e AR TR e e e e T
o ! . %0 T IR/ 5, PO P X TN R VLR ! PUBEIPNACTN SIS B ST 1N O AL APV Sl WV Y




TP o . - D LIk bR Smadn: e PR e - w-et WROF TS ITITATRETATY Vs Y

oy ..J_;!"

d. /COOP79/
John D. Cooper and Matthew J. Fisher Editors;
Software Quality Management
Petrocelli Books, Inc., New York, 1979;
"An Introduction to Software Quality Metrics"
by James A. McCall.

pea——
xywr =

-y -y
e

LAt

RIS

4
.
4
2
M
o
4
b

......................................
........................ . .
e e P Tt T W T e T Tt ST e . R S S P L

fal aSas o ke Bl s o AR S S Wiy Wil VLA




(This Page Intentionally Left Blank)

Wy W‘.mr—.‘wﬂ




. SECTION 3
TEST AND EVALUATION REQUIREMENTS

3.1 OVERVIEW

The following sections establish the basic
requirements for the Ada evaluation. Section 3.2 identifies
the overall approach to conducting the testing of the software
and the evaluation of Ada. Section 3.3 establishes the concept
of software quality and identifies specific elements of
software quality that will be evaluated in the context of using
Ada as the implementation language. Section 3.4 identifies the
software development methodology within which the application

software will be developed. Section 3.5 presents the approach
to collecting and analyzing the data which will be used in

evaluating Ada. Section 3.6 identifies how results and
conclusions of the Phase II effort will be organized and
presented.

3.2 SOFTWARE TEST AND EVALUATION APPROACH

This section identifies the overall approach
which will be taken with respect to the testing of the
developed applications and the evaluation of Ada as a suitable
programming language for the selected applications.

3.2.1 Software Evaluation Approach
The overall approach to evaluating Ada as a

programming language suitable for developing communication and
trusted software will be to develop those types of software and
measure the extent to which Ada is adequate by evaluating the
developed software. In order to accomplish this, two critical
elements must be defined. These elements are the concept and
supporting details of software quality and the software
development methodology which will be used to produce the
software.

.............................................
-

..............

............




P iR i~ e Il e W e - p

The software development methodology will provide
a framework within which the application software will be
developed. The primary objective of this is to emulate, as
closely as possible, the salient aspects of a major software
development effort. This will assure that information obtained
during the evaluation and subsequent conclusions will be
germane to similar software applications developed under actual
project conditions.

The software quality concepts and supporting
details are the second critical element since they will be the
basis for determining what evaluation criteria are to be used.
The quality concepts fall into two broad areas which are
software quality factors and application-oriented
requirements. The software quality factors will be used to
define the constituents of software quality at the conceptual
level. These in turn will be related to lower-level entities
which can be either measured quantitatively or evaluated
qualitatively to determine how well Ada supports the factors
and to assess the influence of individual programming styles.
The application-oriented requirements will provide a basis for
evaluating Ada with respect to the suitability of Ada
constructs for addressing data design and control structures
which are frequently found in the types of software being
developed. '

Finally, by acquiring the necessary data as the
software development progresses and analyziné the data during
and at the conclusion of the development, ah assessment of Ada
will be made. The results of this assessfent will then be
translated into a set of programming standards and guidelines
to assist in the development of quality software. Moreover,
even if Ada is found highly suitable, there will still be the
need for developing and maintaining prg@ramming guidelines and
standards to deal ith issues such as programming styles which
transcend the features of any language.

III-3-2

Ol ol it gl




3.2.2 Software Testing Approach

The approach to testing the SIP/ADCCP and ACCAT
GUARD application will consist of exercising the software via
the use of specially designed test-support software which is
identified in Section 7.

The objectives of the software testing in each
application area will be twofold, First, the standard test
objective of discovering problems and correcting them will be
employed to produce applications which satisfy their

requirements. An additional test objective, however, will also
be defined. Since the ultimate goal of this evaluation is to
formulate a set of standards or guidelines for communications
and trusted software programs written in Ada, the results of
testing will serve as input data for conducting the Ada
software development and software performance evaluations.
Specifically, the errors detected will be analyzed and
organized into classes or groups in order to determine if there
are broad classes of problem areas in understanding or using
the Ada constructs which warrant the definition of specific
guidelines or standards.

3.2.3 Application Overviews

In order to provide a more complete understanding
of the SIP/ADCCP and ACCAT GUARD applications and to provide
the proper context for the test and evaluation, an overview of
each application is given below. For more detailed
information, the references of Section 2 may be used.

3.2.3.1 S1P/ADCCP Overview
The SIP/ADCCP applications represent the two

lowest-level protocol layers of the AUTODIN II packet-switching
network. The functional location of the protocols is shown in
Figure 3.2-1.

The SIP is designed to accept data, commands, and
responses from the next higher AUTODIN II protocol layer, the
Transmission Control Protocol (TCP), process them accordingly
and effect the transfer of packets via the Packet Switch Nodes

III-3-3

el S




VIRTUAL INTERACTIONS

HOST SUBSCRIAE R

PROCESS- TO-PROCESS

TEAMINAL TERMINAL [ TERacmons L process
SUBSCRIBER SUBSCRISER
CMANNEL INTEREACE
PROTOCOL
LINE CONTROL
MODULE (LCMY R PR
TAC ccu J
TERMINAL CONTROL HOST SPECIFIC
WANDLER (TH} INTEREACE MODUL E
1S
TH- THP DATA WS -THP DATA
EVENTS 8LOCKS EVENTS 8LOCKS
T™H-TO_The \ /
- PROTOCOL ™
TEAMINAL (:S'S'T PROTOCOL j N R / \
THP-TCP THP-TCP
EVENTS LETTERS o EVENTS LETTERS
l TCP-T0-TCr \ /
TRANSMISSION CONTROL PROTOCOL | TP
PROTOCOL iTCP e IROTOCOL e | o
TCP-SIP Ter-SIP
EVENTS S~ SEGMENTS e —— fCr- S $ SEGMENTS et
v \
SEGMENT INTERFACE s®
PROTOCOL (SIP) T
SEGMENTS SEGMENTS
ADCCP PROTOCOL
PARALLEL COMMUNICATI
[t SROTOCOL on LINE CONTROL
eL MODULE (LCMI
PACKETS
—— e —— <n

Figure 3.2-1,

(Reprint:

III-3-4

Levels of Process-to-Process Protocols
Figure EC.2-1 /WEST78/.)




of the AUTODIN II network for transmit operations. For receive
operations, the SIP is designed to accept data, commands, and
responses from the Packet Switch Nodes, process them
accordlngly, and effect the transfer of packets to the TCP.
To control the transmission of packets (data,
commands, and responses) on an inter-PSN basis using the
Mode VI access lines, the SIP will use the Advanced Data
Communication Control Procedure (ADCCP). Thus, the ADCCP
functions as the line control protocol, the protocol layer
which is lowest and next to the hardware, of the AUTODIN II
network. In particular, the ADCCP will be used to control

Y

Mode VI line access for synchronous character and synchronous
binary data transmissions. L

j 3.2.3.2 ACCAT Guard Overview

% The ACCAT GUARD application has been designed to
provide secure, monitored, controlled transfer oflaata between
a high-level (TOP SECRET) and a low-level (SECRET) system. An
overview of the system configuration is given in Figure 3.2-2,
Separation of high-level and low-level entities (files, queues)
is maintained by use of the Kernelized Secure Operating System
(KSOS). To accomplish the intersystem transfer of data, the
high-level and low-level software in the ACCAT GUARD system is
interfaced by two trusted processes. The Upgrade Trusted

Process (UGTP) is reponsible for transferring low-level
information to the high-level system; the Downgrade Trusted
Process (DGTP) is responsible for transferring high-level
information to the low-level system under the control of
Sanitization Personnel (SP) and a Security Watch Officer
(SWO). The SWO is responsible for downgrading information and
providing controlled and monitored transfer of data to the
low-level system. The SP are responsible for sanitizing
information which is deemed unsuitable for downgrading by the
SWO in its present form. Six types of intersystem transfers
and two types of operations can be performed. The transfers
consist of high-low and low-high mail and high-low queries and
responses and low-high queries and responses. The queries are

ITI-3-5

B W T e e 1Y b e M i i M)

.....




aaan |

PR AR gy AN

(/96LI90T/ 1 2anbTd Jo Iutaday) uoTIRINGTIUOD QUVND IVOIV °Z~Z°€ 9anbra

sHasn
HOM

ison
Hom

ZAIMN

fo o e

14

Suasn
Mo

L1soi
MY

vegogrEvgIigey

LA
— — ~ -

"d

<sSa<Iuwr

TINNOSH I
NOUVYZILINYS

TAIN

— e o

(1]

LA

e — —

3018
wom

"4

1son auvno

H3an4do
HOLVM
AUNDIS

I1I-3-6



in either canonical form (preformatted data base gqueries) or
English-language form which is then translated into canonical
form by the SP. The two types of operations are sanitization
which entails selecting, reading, and editing text files to
remove TOP SECRET information and downgrading which entails
enforced reviewing of data to be transferred to the low system
and either accepting or rejecting the transfer.

Although only two of the processes are trusted
processes and thus subject to formal specification and
verification, several other processes on both the high and low
side are required to support the trusted processes. The
processes and their interactions are shown in Figure 3.2-3.

3.2.4 Test and Evaluation Constraints

As indicated above, the objective of the
evaluation is to assess Ada in both the software-development
and software-performance areas. Within the time frame of the
currently planned Phase II, however, there are certain
limitations or constraints which exist and which impact the
extent of the evaluations. The constraints and their impacts
are summarized below.

First, the Ada language processor which is
proposed for this effort is not mechanized as a

production-quality compiler which would include such features
as memory-space and execution-time optimization of the
generated target code. Instead, the processor, Ada/ED, is
mechanized as a translator-interpreter which is implemented in
the high-level language, SETL. Thus, from a performance
standpoint it will not be possible to assess the effect of
memory space and execution time trade-offs or to extrapolate
per formance with regard to these criteria to other computer
architectures or operating system types.

A second type of constraints will also need to be
considered with respect to the ACCAT GUARD application. The
existing ACCAT GUARD application is designed to operate under
Western Electric UNIX (a trademark of Bell Laboratories),
Version 6.0 and specifically takes advantage of those features

.....................
.................




‘;-_b.->‘_-_-_v_.JVT

AR ENEANPN PAVT TN S SR ISP S e POy LA 2 . AISORDANLY v NIRRT RO L MY RO AR RE Y, - v

(/96L1907T/ T @anbyg 3o 3uradoy) ]
MOTJd UOTIPWIOIUI SS800Id QUVND LV¥IOV drsed °€-T°¢ aanbryg =

(OIS 30U} () NS SINIB RS/ gierg Y St adaut gewg

(ssan M0 §) NHOMLIN MOT (s0290) 4MN9) NNOME IN HDNY

# _ ﬂ
N §

i B o e

I11-3-8

A
. P

nvIIm ony

. . - taN » .~
M P P I A

et

A PR
AT
B N A

W NV T,
wRe ¥, W
>,

ALY -~
MR

P

N

r—--————————

W

RN
RERIC,

n

depeny \ swprany
(OMS) W wg() prpg Avnaeg (AS) $MNIT g BONE NG

VINNOSH 14 (v (itin

s
)
R

* "

L g

~



., -" ;l;l o

such as ports, interprocess communication features and a text
editor all of which operate under UNIX. To the maximum extent
possible, the trusted software components will be isolated from
these peripheral issues; however, there may be some additional
limitations which need to be imposed to make the development
tractable.

Finally, in terms of more completely addressing
the performance evaluation, several true complilers are being
developed and are projected for completion in the second half
of calender year 1981. Three of these are Intel Corporation's
implementation for the IAPX 432 computer, Telesoftware's
implementation under UCSD Version 4 Pascal (host and target),
Control Data Corporation's implementation on its CYBER class
computer, and Intermetrics Inc.'s compiler for the DEC 20 with
TOPS-20. If one or more of these compilers were available,
then it would be possible to complete the evaluation as
currently planned and rehost the developed software to one or
more of the available compilers to specifically evaluate
execution and memory efficiency.

3.3 : SOFTWARE QUALITY

This section identifies the software parameters
and application-oriented language requirements which affect the
development and performance of quality software.

3.3.1 Software Quality Factors

In order to define software quality, a
nierarchical set of software quality parameters will be
defined. At the highest level is the concept of software
quality which is "the composite of all attributes which
describe the degree of excellence of computer software",
/COO0P79/. Next are the conceptual software quality factors
which represent attributes that are desirable for software to
have. At the lowest level are the measurable parameters which
can be related to the software quality factors.

[T Y U S AP I M a PR T RS .




5 The software quality factors defined in this

. section consist of those which are related to and impact on
E software development and software performance as presented in
- /COOP79/. 1t should be noted that "the degree of excellence"
5 required of software is not absolute since different

organizations and projects may have different objectives. For
example, "throw-away" code need be given very little
consideration with respect to life-cycle maintainability. In
addition, some software quality factors such as
transportability and efficiency are potentially in conflict and
thus necessitate a trade-off or balance to be struck.

3.3.1.1 Software Quality Factors (Development)

The software quality factors defined in this
section are those which are related to or impact on the
software development, maintenance, and modification process as
opposed to software performance. Table 3.3-1 lists the
software quality factors and their definitions. Their
associated criteria are defined in Table 3.3-3.

3.3.1.2 Software Quality Factors (Performance)

The software quality factors defined in this
section consist of those which are related to or impact on the
performance of software implemented in Ada. Table 3.3-2 lists
the software quality factors and their definitions. Their
associated criteria are defined in Table 3.3-3.

3.3.2 Criteria for Software Quality Factors

The criteria identified in Table 3.3-3 represent
a set of independent attributes which software may possess both
with regard to software development and software performance.
In many instances, an individual criterion will be correlated
with more than one software quality factor. Because of this,
the total set of criteria is presented here even though some
criteria also support, either partially or exclusively, the
software performance quality factors. The interrelationships
between the software quality factors and the software quality

I11-3-10




............
..................

Table 3.3-1. Software Development Quality Factors

EFFICIENCY I

A measure of the extent to which algorithms are or can be
represented in compact format using the available language
constructs.

FLEXIBILITY
A measure of the extent to which an operational program can be
modified to include new functional capabilities.

INTEROPERABILITY

A measure of the extent to which two operational programs of
different systems can be coupled or interfaced without
modification to enhance performance or functional capabilities.

MAINTAINABILITY
A measure of the extent to which an error in an operational
program can be identified, isolated, and corrected.

REUSABILITY
A measure of the extent to which an operational program can be
used as a component in another application without modification.

TESTABILITY

A measure of the extent to which a program can be readily
tested to assure that performance criteria are met during the
development, maintenance, and modification phases.

TRANSPORTABILITY

A measure of the extent to which an operational program can be
readily transferred to a different hardware or software
environment and perform correctly without modification.

III~3-11




29 p MM PR - e W et i B AP bbb APUR SO0 Suams S MOME At S 0Bt iy IR e e B Sl e ae i e e R e tehe M -'T

Table 3.3-2., Software Performance Quality Factors

CORRECTNESS
A measure of the extent to which an operational program

complies with its specifications, performs its functions and
produces acceptable results.

EFFICIENCY II

A measure of the extent to which an operational program makes
optimal use of system resources including CPU time, memory, and
peripherals.

INTEGRITY

A measure of the extent to which an operational program
performs only its intended functions and does not overtly or
covertly perform any other functions.

RELIABILITY

A measure of the extent, with regard to frequency and
criticality of failures, to which a program can be expected to
perform its required functions in its intended environment.

ROBUSTNESS

A measure of the extent to which an operational program is able
to acceptably manage or respond to conditions outside its
intended operational environment.

USABILITY
A measure of the extent to which program users can prepare
input data for, interpret output data from, and control

operation of the program and learn to use the program in its
intended environment.

III~3-12




. v AT T TN T T T T e

: Table 3.3-3. Criteria for Software Quality Factors
: (Page 1 of 3)

ACCURACY

The attribute of software that provides for the usability of
the computational results with regard to correctness,
precision, and timeliness.

COMMUNICATIONS COMMONALITY

The attribute of software which provides for the use of
standard protocols and mechanisms for the interfacing of two
software components.

COMMUNICATIVENESS

The attribute of the software that provides outputs which can
be readily assimilated by a user and reguires inputs which can
be readily supplied by the user.

COMPLETENESS
The attribute of software that provides for the full
implementation of all functions and capabilities specified.

CONCISENESS
The attribute of software that provides for implementation of a
function with the use of a minimum quantity of source code.

CONSISTENCY
The attribute of software that provides uniform design and
implementation techniques, guidelines, standards, and notation.

DATA COMMONALITY
The attribute of software which provides for the use of
standardized data formats and representations.

III-3-13

........




g — ™ v - —— T v—
LAl e e A A aask e o MGl b dFS Bk S e g Eadl A Wit Sagk Ml g A AR

Table 3.3-3. Criteria for Software Quality Factors
(Page 2 of 3)

ERROR MANAGEMENT
The attribute of software to correctly detect, isolate, manage,
and inform on all specified error conditions.

GENERALITY
The attribute of software that permits it to handle a broader
scope of problems or conditions than those specified.

HARDWARE ARCHITECTURE COMPATIBILITY
The degree to which hardware elements and their configuration
are effectively used by application programs.

HARDWARE INDEPENDENCE

The attribute of software that indicates the degree of coupling
between the language constructs and the hardware on which the
software will operate.

INSTRUMENTATION

The attribute of software which provides for the control or
display of intermediate conditions, events, or data on a
conditional or non-conditional basis.

LANGUAGE CONSTRUCTS
The syntax and associated semantics of the programming language
used in the software development.

LANGUAGE IMPLEMENTATION

The mechanization of the language constructs in a machine
representation which can be executed.

MODULARITY
The attribute of software that provides for the organization of
the software into independent cooperating elements.

II1-3-14

......................................




Table 3.3-3. Criteria for Software Quality Factors
(Page 3 of 3)

OPERABILITY

The attribute of software that determines the type and quantity
of user procedures required to operate or interface with the
software.

OPERATING SYSTEM ARCHITECTURE COMPATIBILITY

The degree to which operating system elements, their
configuration, and their accessibility are effectively used by
applications programs.

OPERATING SYSTEM INDEPENDENCE

The attribute of software which provides for the minimum direct
interaction of developed software with specific operating
system features.

SELF-DESCRIPTIVENESS

The attribute of software that provides for clarity and
apparentness in describing the purpose or function of the
software as well as the algorithm being used and its
organization.

SIMPLICITY
The attribute of software which provides for the implementation
in terms most easily understood.

TRACEABILITY

The attribute of software that provides for logical and
structured connectivity from the highest level of specification
to the source code implementation.

I111-3-15




............

| AP

T e

E criteria are illustrated in Figure 3.3-1. These criteria are

¢| taken from /COOP79/ and minor additions have been made.
a
- 3.3.3 Software Quality Metrics

Software science is a term used by the late
Maurice H. Halstead in /HALS77/ to describe a science that
"deals only with those properties of algorithms that can be

measured, either directly or indirectly, statically or
dynamically, and with relationships among those properties that
remain invariant under translation from one language to
another." Although software science has also been applied to
various textual materials, the application here will be to
software developed using Ada.

3.3.3.1 Objectives
In any programming language, there are many

different ways of representing an algorithm. Among those
alternative representations some will be recognized as "poor,"
some as "good," some as "average," and some as "equivalent" by
programmers fluent in the given language. The problem is that
without quantitative measures, it is difficult to make
meaningful comparisons based on common criteria.

The purpose of using selected software metrics as
part of the Ada evaluation is to provide a common foundation
for measuring certain properties of a given algoriihm. It is
anticipated that two circumstances will exist under which the
sof tware metrics will be used. First, in cases where notable
difficulty was encountered in implementing particular
algorithms (tasks, packages, subprograms in Ada) or portions
thereof, alternative representations will be explored to
determine if clearer, more compact or less difficult
representations can be found. Second, as a result of software
science efforts, several stylistic flaws, known as impurity
classes, have been identified. By being able to identify them
and relate them to the use or lack of use of Ada features, it
will be possible to assess how Ada impacts on these flaws and
what, if any, standards or guiizlines are needed.

III-3-16




3
ALINI8VIIVYL ° ° 8
ALIDITAWIS ° ° ° 3
SSINIAILAIHISIO-413S ° o 0o 0 0
3INIANIJIANI WILSAS INILVHIdO °
JUNLIILIHIYY WILSAS INILVHIAO ° °
ALITIGVY34O0 o o °
ALIBYINAONW o 0o 0 0 0 0
NOILVINIWITdNI 39VNINYI °
SLINYLSNOI 39VNINVT | @
NOILYLNIWNYLSNI °
3INIONIJIANI IHYMAYYH ° ® °
JUNLIILIHIYY FUVMAYVH °
ALITVHINID ° ° °
ANIWIOVNVIN HOYY3 °
ALITYNOWWO3 V1VQ
AINILSISNGD ° °
$SIN3SIONGY | @ ° °
$SINILITAN0ID °
SSINIAILVIINNWINOD ° °
ALITVNOWWOI NOILVIINNWWOD °
AJVHNIIY ® °
w
Tiz : z
- >
38 s5, 3
(] - -
T T > < @ > > <« 8 = >
3% sEEisEE([Ez:E8;
=3 <<s5§5||s8:z38¢¢
Q x £ =z 4 X = e 2 @ £ 35 3
t s sass|l|lsktsdsS S
w o w e 2 F o e - ] :'a ® g & g
TEs
=0
£
u<&’
8533 1INIWdOT3A3A FONVIWHO4H3d
JHVYML40S JHVYML4A0S
I1I-3-17

Software Quality Factor-Criteria Interrelationships

Figure 3.3-1.




3.3.3.2 Impurity Classes

Impurity classes are important to recognize for
two reasons. First, to the extent that impurities remain in an
algorithm, the software metrics calculated will be less
reliable. Second, the existence of impurity errors in most
cases appears to be an indication of less than "polished"™ code
and thus an indication of potential lack of software quality in
both the software development (e.g., maintainability,
efficiency, testability) and the software performance
(e.g., efficiency, robustness) areas. The definitions of six
impurity classes which will be considered are given in
Table 3.3-4.

3.3.3.3 Selected Software Metrics
In order to provide a quantitative evaluation of

alternative Ada representations, several selected software
metrics will be defined. The following definitions apply:
- number of unique or distinct operators
appearing in a specific implem:ntation.

Ny =  number of unique or distinct operands
appearing in a specific implementation.

N]j -  total usage of all of the operands
appearing in that implementation.

Ny - total usage of all of the operands
appearing in that implementation.

From these definitions, several metrics are defined and
described below:

The implementation length, N, and estimated
implementation length, ﬁﬁ are given by

N =7 1log"; + M, log ", (3.3-2)
in which log denotes the logarithm, base 2, unless otherwise
noted.

I11-3-18

TR S deancd, > e N LI UPRT S WP




L2t M gt Jadit Badlh Siag P I A i L SN T Rru AR e Sl e R - ARl SR

Table 3.3-4 Impurity Classes

. Type Description Example
} I Complementary Operations Y=2*T+X ~-T
ﬂz II Ambiguous Operands X = PI*R**2
. X = MI*Y + CONST
III Synonomous Operand Tl = P + Q
T2 =P + Q
R =Tl * T2
v Common Subexpressions R=(P+Q) * (P + Q)
v Unwarrented Assignment T=P+Q
R=TH*T
\'a ¢ Unfactored Expressions R = P*P + 2*P*Q + Q*Q
vs.
R = (P + Q)**2

III-3-19




B R DA

e

Chair A A D ~ - i~ o A Ui o tudat ot o Mt e i - A e o

The program or implementation size, called the
volume, is given by

V = Nlogn (3.3-3)
which gives the interpretation of volume in terms of bits with

N= "N, +M,. An additional volume, known as the potential
or minimal volume is given by

V' = (2 +13)1log(2 +13) (3.3-4)

and denotes the most compact from (e.g., predefined subroutine)
in which an algorithm could be represented with n;
representing the minimum number of unique input/output
parameters.

The program level and estimated program level of
an implementation are given as

L=V*/V (LZ1) (3.3-5)

and
L= (] /np) iny/Ny) (3.3-6)
= (2 /m)(ny/Ny) (3.3-7)

provide a means of comparing alternative representations in the
same implementation language where ﬂz = 2 by definition.

The "effort" required to implement a program, in
terms of the total number of elementary discriminations, is
given by

E = V/L = Ve/V* (3.3-8)
and thus provides a means of measuring the effort required to
implement the same algorithm in alternative ways.

Of the above equations, 3.3-4, 5, 6, and 8 will
be used along with the identification and elimination of
impurities to evaluate alternative Ada representations and
determine the merits of the alternative representations,

3.3.4 Application-Oriented Requirements
The software quality parameters which were

previously identified can be applied, in genéral, to any
software irrespective of the application. But in addition to
these parameters, there are also application-oriented
requirements which a language must satisfy in order to

II1-3-20

- R I T




eIt M A et aben RS SR A e i S

facilitate the development of software for the target
applications. This section identifies the application-oriented
requirements for the communication and trusted software
requirements.

3.3.4.1 Communication Application Requirements
A previous study performed for the Defense

Communication Agency /BBNI76/ resulted in the definition of the
syntax and semantics of the Communications Oriented Laaguage
(COL). As part of that study, three alternative sets of
requirements, which are desirable for a COL to have, were
examined. The first set, obtained from the "U.S. Air Force HOL
Standardization Study," is given in Table 3.3-5; the second
set, obtained from "The Initial Report on the Suitability of
JOVIAL for Communications Systems Implementation®” is given in
Table 3.3-6; the third set, obtained from "The Rome Air
Development Center Report on Common-Communications Processors”
is given in Table 3.3-7. As can readily be seen, there is
commonality among the items of each set; however, there is also
some discrepancy. Furthermore, each list is also a mixture of
high-level language-inherent features as well as requirements
for access to data, instructions, and controls at the machine
level. From these lists a composite list of specific
requirements shown in Table 3.3-8 was formed. This list will
serve as a basis for assessing the efficiency and effectiveness
of Ada as a language for developing communications software.
The report also indicated some generalized requirements which
are also shown in Table 3.3-8 .

3.3.4.2 Trusted Software Application Requirements
Unfortunately, it appears that no studies have

been performed which identify explicitly a set of requirements
that a language should possess for implementing trusted

sof tware. Upon examination of the application area, however,
it is apparent that many desirable features are similar or
identical to communication applications. Thus, to a large

I11-3-21

S, PO a PET AP AP SO S DA e (I g P S I SN S S W

..................




e P S B R n U S LI S GBI oot r et iy ey

ey
(S i

paadin aas ae oo S s s whoss aee i Bt Aedit gt e Sl gt e gt S Ci s Bkt Yhoti SR SAACIPS Tt - A R Baol it e Sl ACEMEA T A S PR CED

Table 3.3-5. Communication Application Requirements (Set 1)*

a. Operating system functions
b. Access to timers

c. Bit manipulation

d. List processing

e. Character manipulation

* *"UJ.S. Air Force HOL Standardization Study"

Table 3.3-6. Communication Application Requirements (Set 2)*

a. Capability to patch programs at the binary level
in a rapid manner

b. Accessibility to the operating systems via
privileged instructions

c. Run~time loading of a program from another program

d. Capability to shift to different random access
devices

e. Capability to monitor the operation of individual
programs in the system

f. Resolution of all relative addresses for overlay
actions

g. Modification of various run-time parameters for
assigning I/0 devices

h. Handling of many and unique I/0 devices

i. Processing of time critical events

j. Special requirements for automated recovery and
accounting of messages

*

"The Initial Report on the Suitability of JOVIAL for
Communications System Implementation”

I11-3-22

VNN VRN VO R VAR VI SN Sy i - FORE WP .




Table 3.3-7. Communication Application Requirements (Set 3)*

a. Modularity

b. Bit and byte access and manipulation

c. Interrupt-register access and manipulation

d. 1I/0 device table generation

e. Real-time clock and interval timer access

f. A program-controlled interrupt capability

g. Communications channel control word access and
manipulation

h. Insertion of machine language subroutines in the
higher level language stream

% i. Insertion of machine language instructions

7 j. Macro-generation

k. Diagnostic and debug statements

: * "The Rome Air Development Center Report on
; Common-Communications Processors”




Table 3.3-8. Communication Application Requirements

General Requirements

a.
b.

Specific Requirements

a.
b.

Ce.

d.
e.

f.
g.
h.
i.
j.
K.
1.

Very high performance

Capability to interface with and manipulate
specialized hardware

High portability of source code
Sophisticated data structures

Sophisticated control structures

Very high reliability

Bit and byte string access and manipulation
Insertion of assembly language code

Access to operating system functions and
primatives

Access to and control of interrupts

Access to real-time clock and associated interval
timer(s) or equivalent capability

Macro definition and generation

Access to debugging and diagnostic statements
Generation of I/0 tables

Modularity

Parallel processing constructs

Strong data typing

Structured programming constructs

I11-3-24




extent Table 3.3-9 is identical to Table 3.3-8 for
communication applications.

In addition, however, two other features are
believed to be strongly related to the characteristics inherent
in trusted software. The first of these is data and control
encapsulation. With this ability it should be possible to
construct tamperproof data and control structures which can be
used effectively but without knowledge of the details of the
implementation and therefore, without the ability for
unauthorized alteration or manipulation of the structures. The
second is formal verification of the source code. Although
this evaluation of Ada will not include formal verification of
the trusted software source code, indications are that there is
a strong correlation between the style in which programs are
written and the ability to formally verify those programs
/SRII78/. Also, there is a correlation between the style in
which programs are written and the features provided by a
language which encourages the writing of programs in a clear,
intelligible, and verifiable style or at least proscribes
certain undesirable styles.

3.3.5 Ada Lanquage Features
In order to complete the evaluation of Ada with

regard to producing qualify software, two additional areas of
evaluation must be defined. The first of these is the use of
the Ada features in a given application area; the second is the
relationship between the Ada features and the software quali:y
criteria previously defined.

Beginning with the second area, the Ada
programming language includes many new language features which
are available for the first time in a language designed for use
on large-scale, embedded-computer-system, software projects.

It is necessary to relate them to the software quality factors
for two reasons. First, this will permit an assessment of Ada
regarding which features affect which quality factors. Second,
it will also provide an explicit identification of Ada features

III-3-25

<o




Table 3.3-9. Trusted Software Application Requirements

General Requirements

a.
b.

c.
d.
e.
£.

a.
b.
c.

d.
e.

£.
g.
h.
i.
j.
k.
1.
m.

............

Very high performance

Capability to interface with and manipulate
specialized hardware

High portability of source code
Sophisticated data structures

sophisticated control structures

Very high reliability

Specific Requirements

Bit and byte string access and manipulation
Insertion of assembly language code

Access to operating system functions and
primatives

Access to and control of interrupts

Access to real-time clock and associated interval
timer(s) or equivalent capability

Macro definition and generation

Generation of I/0 tables

Modularity

Parallel processing constructs

Strong data typing

Structured programming constructs

Data and control encapsulation (hiding)
Formal verification of source code

I1I1-3-26




for reference in assessing the application software. The Ada
language features are presented in Table 3.3-10 below and are
divided into six categories which are data structures, data
manipulation, modularity, concurrent programming, error
management, and machine and implementation dependencies.

The next step will then be to evaluate the
application software itself by determining the extent to which
the Ada features have been used and the extent to which
alternative features could have been used to achieve a better
representation of the algorithm or data. 1In this context it
will be important to identify which software factors are
affected since, for example, maintainability may be improved at
the expense of either development costs or execution efficiency.

3.4 SOFTWARE DEVELOPMENT STRUCTURE
3.4.1 General Approach

The general approach to the evaluation of Ada
with regard to software development will consist of organizing
a mini software development project for the SIP/ADCCP and ACCAT
GUARD applications, collecting data related to the software
quality factors on each application as it progresses through
the various software development phases and providing a nominal
set of software development standards and guidelines which are
consistent with MIL-STD-1679 (NAVY) /M16778/.

The intent of this approach is to have the
software developed under circumstances which, as nearly as
possible and practicable, duplicate those of a major software
development project. The reasons for this are twofold: first,
to provide a comprehensive Ada evaluation, it is desirable to
utilize as many Ada features as possible; second, in order for
the results to have validity when extrapolated to large
sof tware development projects, this effort should be as
representative in kind as possible.

I11-3-27




L Gl Jad M~ I VD arad peih piens amn Sl el aeent - uRaSair RIS )

Table 3.3-10. Ada Language Features (Page 1 of 3)

: Data Declaration

: Data Abstraction

Type declarations
Subtype declarations
Overloading

Aliasing
Attributes
Renaming of objects
Data Checking
Strong typing
Mode declaration for formal parameters

Data Manipulation
Aggregrates
Arrays
Records
Variant Records
Unchecked Programming
Object deallocation
Type conversions
Overloading
Subprograms
Operators
Structured programming constructs
Attributes
Dot notation for object referencing
Dot notation for component referencing in records
Index notation for component referencing in arrays
Object creation via allocators

IITI-3-28




Table 3.3-10. Ada Language Features (Page 2 of 3)

Modularity

Modules
Program units
Compilation/Library units
Compilation Subunits
Generic unit definition
Generic unit instantiation
Separation of Specifications and bodies

Encapsulation of data/controls

Importing of modules

Blocks

Concurrent Programming

Task definition

Task interaction control
Rendezvous
Selective wait
Conditional entry call
Timed entry call

Task attribute definitions

Task activation/termination

Task priorities

Visibility Control
Scope declarations
Renaming declarations
Direct visibility
Qualified visibility
Private types
Limited private types

I11-3-29




>

O VI ASEanan

™

-

v Ty
MY AL PR

s
DV i

g

PR Fih g

T LT T

AR (e gen e

—_—

AR E BB

F LA AP I . . PPN

Table 3.3-10. Ada Language Features (Page 3 of 3)

Error Management
Internally defined error conditions
Exception processing
Declaration
Raising
Handling
Propagation

Machine and Implementation Dependencies

Pragmas

STANDARD package

SYSTEM package

Data representation control
Length specifications
Enumeration type representations
Record type representations
Multiple representations

Address/interrupt control

Machine code insertion

Foreign code inter face

Input/output

IIT-3-30




-

3.4.2 Design Phase

The design phase of Phase II will use the
stepwise-refinement design approach consisting of two design
steps using Ada as the design language. The first step or
portion will consist of establishing the macroscopic software
designs; the second step will consist of refining those designs
sufficiently to permit completion of the code.

The macroscopic design portion will focus on
using existing Program Performance Specifications or Computer
Program Development Specifications (Type B-5) as the basis for
designing the SIP/ADCCP and ACCAT GUARD applications. This
information will be supplemented with additional or changed
requirements in the case of ACCAT GUARD to account for the
facts that the original implementation was on a Western
Electric UNIX-based system and that the design was modified.
The objective of the macroscopic design phase will be to
establish all program modules (packages, tasks, subprograms,
compilation units and subunits, and their dependencies), the
definition of all formal parameters used as module inputs or
outputs, and the definition of abstract data types for inputs,
outputs, and global and common data. In some instances, major
decisions within a module may also be indicated as a means of
delineating overall control flow. Finally, lists of called and
calling modules will be formed for each module. 1In
accomplishing the macroscopic design, a proper subset of Ada
constructs will be used as a design or specification language
and will result in modules which can be compiled and
error-checked. The objectives here are to gain an early,
increased understanding of Ada without the need to consider
irrelevant details and to, as early as possible, orient the
designs of the applications to the Ada language features.

The microscopic design portion will modify the
macroscopic designs as required and refine them to the next
level of detail. This level of detail will include the
definition of the components of the abstract data types, the
refinement of all global or common data objects (as opposed to
strictly local) including preset values, anc the specification

III-3-31




of all major control decisions within each module. As during
the macroscopic designs, the refined modules will be compiled
to achieve error-checking of the refined design.

During the microscopic design phase composite
test plans/procedures will be produced which will define the
tests to be performed in debugging and integrating the software.

The detailed design phase will be conducted in
accordance with the software development standards identified
below. The design phase will include an informal Preliminary
Design Review (PDR) and a Critical Design Review (CDR) with the

:‘ objective of highlighting any difficulties encountered during
gi the design.

¥ 3.4.3 Code/Debug/Modify Phase

1

- The code and debug phase will consist of
. translating the microscopic designs into Ada code, compiling
& .. the code and removing compilation errors, desk-checking the
. - code, and performing the tests defined in the test
3 plans/procedures.
s During the modify portion of this phase, the
’ programming of one or more application modules will be shifted
;- to the person responsible for the other application. The
*! objective of this shift is to duplicate the circumstances
‘ surrounding software maintenance in which the maintenance
personnel had no previous involvement with the project. This

T

will also provide preliminary familiarization with the other

T

application and give the basis for subsequent participation in
E‘ the software evaluation.
g
32 3.4.4 Integration and Test Phase
¢ The integration and test phase will consist of
? producing the required, completed program for each
; application. This will include conducting program and, if
required, system integration tests according to the test
Li plans/procedures, and integrating all software elements into a
if complete program which is ready for performance evaluation.
;i
- IT11-3-32




N YV

T .n‘!d', ety

T

3.4.5 Test Software Development

Specific test support software which needs to be
developed for the SIP/ADCCP and ACCAT GUARD applications has
‘been identified in Section 7.3. The software will be designed
using the macroscopic/microscopic approach established for the
application software and will be coded during the
code/debug/modify portion of the software development.

3.4.6 ‘Software Development Standards
The software development guidelines of

Sections 5.3, 5.4, 5.5, 5.6, and 5.8 of MIL-STD-1679 (NAVY)
/M16778/ will be used in a nominal manner consistent with the

software development effort and incorporated as part of the
Software Development/Management Plan.

3.5 DATA ACQUISITION AND ANALYSIS

The data acquisition and analysis portion will be
concerned with obtaining data from three sources for use in the
analysis and evaluation of Ada. These souces are error
statistics, the structure of the developed software, and
programmer interviews.

3.5.1 Error Statistics

The error statistics to be compiled comprise two
groups which are compilation-related errors and
execution-related errors. The objectives in collecting these
error statistics are: 1) to determine if there are any

particular Ada constructs or sequences of constructs which seem

to be systematically difficult to use, 2) to determine which
type(s) of errors, if any, remain hidden following a successful
compilation and must be detected during execution, 3) to relate
errors to module complexity, and 4) to help in the
identification of guidelines and alternatives which will either
diminish or remove the problem-causing areas which are deemed
most severe.

III-3-33

. oA . PP W U NI S U VD S S S T % e o et CUD Py

kol o




''''''''

T —— T T RO

For compilation-related errors, the errors
encountered for each compilation unit or subunit will be
identified by type and frequency of occurrence. Additionally,
the total number of compilations per compilation unit or
subunit will also be maintained.

For execution-related errors, the errors detected
via unanticipated exceptions and erroneous (inaccurate,
incomplete, inconsistent) computational results will be
similarly grouped by type and frequency of occurrence.

3.5.2 Software Structure

The primary objective of the software structure
analysis is to determine which Ada features were used and to
assess the degree of success or difficulty encountered in their

use. The secondary objective is to assess in a qualitative
and, if possible, quantitative manner the effectiveness and
suitability of the features used.

To accomplish the first objective, the software
will be examined at two levels. The first level will address
the overall organization of the software into modules
comprising packages, subprograms, tasks and compilation units
and subunits. This organization will be compared with the
totality of Ada features and with the software quality factors
in order to determine how "good" or suitable the structure is.
The second level will address the internal organization of the
data structures and bodies of the various modules for the
purpose of assessing the breadth of the Ada features used as
well as determining the overall composition of the features
used., Of particular concern here will be whether full
advantage was taken of the Ada features or whether a subset of
Ada features was used in the style of some other language. To
accomplish the second objective, the Ada features used within
each module will be analyzed. In those cases where a
particular Ada feature, construct, or set of constructs appears
to be awkward or suboptimal regarding efficient representation
in Ada, or especially difficiult to implement or understand, a
detailed review of the constructs will be made with a view

II1-3-34

————




A

..............

toward finding alternate, improved representations. For those
cases in which alternative representations are found, the
software metrics previously defined will be used to evaluate
some of the merits of each alternative.

3.5.3 Programmer Interviews
The third source of data will be interviews

conducted with the programmers who implemented the SIP/ADCCP
and ACCAT GUARD software. The overall objective of these
interviews will be to elicit qualitative information regarding
Ada. First, information will be obtained regarding both the
suitability of the Ada features with respect to the type of
applications implemented and the limitations and unwise use of
Ada features. Second, a cross-perspective of two potentially
different design and implementation approaches will be obtained
by having one programmer implement a small portion of the
other's design as a means of assessing maintainability issues.
Third, an attempt will be made to understand the rationale
applied in the design and development phase for those
approaches which worked, as well as those approaches which had
problems. An additional result of this understanding should be
the ability to formulate new and improved approaches to design
and implementation using Ada.

3.5.4 Data Acquisition and Analysis Procedures
The sections above have identified the three

sources from which data will be extracted and analyzed. During
the early portions of Phase II, the detailed data acquisition
and analysis procedures will be formed. For the error
statistics, the Ada/ED compilation errors will be identified
and divided into various classes so that error types and
frequencies of each module can be readily identified and
associated with that module. A similar classification of
run~-time errors will be established. 1In conjunction with the
error statistics, the software modules will also be ordered by
complexity ranging from arithmetic computations (least complex)
to input/output and operating system functions (most complex).

III-3-35

P A PR




In the software structure area, the software
metrics identified previously will be compared against the Ada
language constructs to establish consistent and unambiguous
procedures for counting the program operators and operands in
those cases in which detailed quantitative analysis of the
sof tware structure will be performed. 1In addition, the Ada
language features such as data abstraction and overloading will
be related to the software quality criteria so as to identify
explicitly relationships and trade-offs between the features
and the various software quality criteria.

For the programmer interviews, questionhaires
will be formed to obtain qualitative assessments of the various
Ada features. Procedures or methods will then be established
which relate those assessments to the established software
quality factors and criteria.

3.6 SOFTWARE TESTS

As indicated above, two levels of testing will be
performed. These comprise module testing and system
integration testing. The objective of the module testing is to
exercise each module so as to assure that all internal program
errors have been detected and corrected prior to system
integration testing. The objective of the system integration
testing is to combine all software for each application,
including the test support software, and exercise the software
through the use of the functionally oriented system integration
tests. The functional tests for each of the software
applications are defined below.

3.6.1 SIP/ADCCP Software Tests

The SIP/ADCCP system integration tests will
compr ise three groups of tests which are the SIP, ADCCP, and
line control module (LCM) tests. The SIP tests will include
the simulation of missing segments, duplicate segments, and
segment checksum errors. The ADCCP tests will include the
simulation of out-of-sequence packets, controls, commands and
responses, time-outs, and invalid-frame errors. The line

III-3-36

T R P N [ENCIPIT SO T T30 SIPAE NN St A S . et i 4 LA SPO W T Sy 8 P




svg ¥ W .
Sl

control module tests will include the insertion of time-out
errors, CRC errors, and data errors as the data is transferred
on an inter-ADCCP mode.

3.6.2 ACCAT GUARD Software Tests

The ACCAT GUARD System integration tests will be
designed to exercise the ACCAT GUARD functional capabilities.
The specific tests to be conducted include high-low and
lqw-high mail transfers, the use of the free-style English
language queries in the high-low query and response and
low-high query and response transfers. (Canonical queries
(preformatted data base queries) will not be used because there
is no actual high-host or low-host data base and because they
are, in effect, a subset of the free~style English language
queries.) Two additional functional tests will include the
review of information for downgrading (accept or reject) by the
Security Watch Officer (SWO) and the sanitization of high-low
transfers by the Sanitization Personnel (SP) for downgrading
requests rejected by the SWO.

In addition to the execution testing of the ACCAT
GUARD software, the source code of the Upgrade Trusted Process
(UGTP) and the Downgrade Trusted Process (DGTP) will undergo an
implementation correspondence test with the formal
specification of the trusted processes. This will be done as
an additional means of both detecting errors and verifying
general correspondence between the implementation and the
formal specifications for the trusted processes. To the extent
possible, an attempt will also be made to assess the viability
of formally verifying the code as would be done if an Ada
verifier were availablea.

3.6.3 Software Performance Tests

As indicated earlier, the use of the Ada/ED
language translator will preclude the evaluation of certain
software performance quality factors. Software performance
quality factors which can be evaluated within the capabilities
of Ada/ED are correctness, integrity, reliability, and
robustness.

111-3-37

e die o - e ol ual-efer sleaCaer Sbd VR Ul e S S SR SRS SE R A -




5 The Efficiency II factor, memory, and execution

- efficiency can be evaluated only with the use of a native code
compiler which may include the capabilities for selected memory
space or execution speed optimization. Examples of tests which
should be conducted are event timing (accuracy and
repeatability), error management alternatives (error
propagation vs. handling at source), consequences of
system~initiated vs. user-controlled garbage collection,
consequences of task creation via task types vs. use of
anonymous tasks, effects of optimized vs. non-optimized code,
task interaction delays using the various tasking constructs,
effects of priority on processing and rendezvous, and memory
utilization of alternative data structures.

3.7 ADA EVALUATION RESULTS

At the conclusion of the project the results and
findings of the project will be documented in the
Development/Per formance Evaluation report in two categories;
the project summary and the programming standards and
guidelines.

3.7.1 Project Summary

The project summary will provide several types of
information regarding the project as a whole. This information
will include an assessment of the suitability of the software
development structure followed throughout Phase II, an
identification of impacts caused by the immaturity of some
sof tware tools, the lack of an Ada Programming Support
Environment, the results of implementing only portions of the
ACCAT GUARD application, and similar project-related
assessments. The objective here is to identify and separate
those aspects of the project, if any, which may impact on the
final results, but are not inherent in the Ada language
itself. Secondary objectives are to document the progress of
the project as a means of identifying which alternatives were
selected, why, and what their consequences were in terms of the
project structure and identifying Ada language problems (syntax

III-3-38




; or semantics) which should be reviewed with regard to
‘ modification.

. 3.7.2 Ada Programming Standards and suidelines
. As stated previously, the primary objective of

Phase II, the test and evaluation phase, is to evaluate the
suitability of Ada for producing communications and trusted

= software, Because of the many new features provided in Ada, it
é will be possible to produce software with a new degree of

i sophistication and complexity. Conversely, with the
sophistication of the Ada constructs, it is also necessary to
assure that the constructs are used in a controlled manner so

; that the overall software quality objectives will be achieved.
Thus, as a result of the data acquisition and data analysis
performed during the latter portion of Phase II, a set of

A programming standards and guidelines will be formed. These

- standards and guidelines will be designed to specifically

i indicate what control and usage measures hould be implemented
over and above the capabilities provided by the Ada language to
assure the consistent, effective and efficient use of Ada in a
production, software-development environment.

4 A a N IT Ve

PR A

»|
3
']
.
.
!
N
“

{ II11-3-39




Toe e T ——_—— - B N T R T IR - e TR RN YW T W W W R T W Ty

(This Page Intentionally Left Blank)

II1-3-40

CRICR IR NE S e C e ~ EE N
- C e v e L . ..

RIS e m BIRS .

VUL AL S S S - o & o e . o - o 2




..........

SECTION 4
TEST AND EVALUATION MANAGEMENT REQUIREMENTS

4.1 CONTRACTOR RESPONSIBILITIES

The contractor responsibilities defined below are
identical to those tasks specified in the schedule in
Section 8. All documentation except the final version of the
Development/Performance Evaluation Report will be produced as
- draft reports for review by the COR.

4.1.1 Software Development/Management Plan

SCI shall produce a draft Software
) Development/Management Plan. The purpose of this plan is to
3 establish preliminary programming standards which are
3 consistent with MIL-STD-1679 /M16778/ and to completely specify
X the extent of the software to be developed, to identify the
environment in which the software will be developed and to
establish specific procedures which will be used to monitor and
control the software development.

As an adjunct to the Software
Development/Management Plan, SCI will conduct an Ada language
indoctrination. The purposes of this indoctrination will be to

emphasize maximal use of the Ada features, emphasize the
objectives of the macroscopic and microscopic design efforts,
establish guidelines with respect to any compiler limitations
which may exist, and to formally review and evaluate existing
documents and research results which may have a bearing on the
"best" use of Ada.

4.1.2 Ada/ED Delivery/Installation

At the beginning of Phase II SCI shall initiate
the request for the Ada/ED translator-interpreter and
corresponding documentation and shall supply the necessary
magnetic tape(s) for obtaining Ada/ED and all required support
sof tware.

III-4-1

........
....... TN P . N . .
clelie e Ty LAt tat et A it e ata atanatatava e yan s s




Following delivery of Ada/ED and the
documentation, SCI shall host the Ada/ED on the VAX 11/780
located at the University of California San Diego (UCSD)
Computer Center (CC) and verify that Ada/ED is functioning
properly. SCI shall also initiate the necessary
contracting/purchasing procedures with the UCSD CC for the use
of the VAX 11/780 facility and associated services.

4.1.3 Software Design

During the software design stage SCI shall
per form the macroscopic and microscopic designs for the
SIP/ADCCP and ACCAT GUARD applications and shall produce drafts
of test plans/procedures to be used in testing the software.

4.1.3.1 Macroscopic Software Design

In the macroscopic software design stage, SCI
shall translate the software requirements for the SIP/ADCCP and
ACCAT GUARD applications into macroscopic (high-level)

designs. This shall be accomplished by using a proper subset
of the Ada constructs to represent the macroscopic designs.

4.1.3.2 Microscopic Software Design

In the microscopic software design stage SCI
shall translate the macroscopic software designs into a
sufficient level of detail such that completed code can be
produced during the Code/Debug/Modify stage.

4.1.3.3 Test Plans/Procedures

During this stage SCI shall produce draft
versions of a test plan/procedures for the SIP/ADCCP and ACCAT
GUARD applications. These plans/procedures shall identify test

software to be used and test cases to be performed to determine
the correctness of the developed Ada programs with emphasis on
the system integration testing.,




4.1.3.4 Design Review
SCI shall conduct two design reviews. The first

design review shall be conducted at the conclusion of the
macroscopic design to assure that all functional capabilities
have been addressed. The second design review shall be
conducted at the conclusion of the microscopic design to assure
that the detailed design provides for the best use of the Ada
features.

4.1.4 Software Development
During the code/debug portion SCI shall translate

the microscopic designs for SIP/ADCCP and ACCAT GUARD into Ada
code which can be compiled and debugged. Similarly, test
drivers which are needed to exercise -the applications shall
also be coded and debugged. As significant portions of the
code become available SCI shall integrate and test them,

During the modify portion of this stage,
modifications or additions will be made to existing code to
assess the maintainability of the code.

4.1.5 Evaluation Procedures

During this stage, SCI shall produce the detailed
software-development and software-performance evaluation
procedures based upon the requirements of Section 3. Because
of the limitations of the planned Ada compiler, the emphasis
shall be placed on the software-development instead of the
software-performance evaluation.

4.1.5.1 Software-Development Evaluation Procedures
SCI shall translate the software-development

evaluation requirements into specific procedures and data

formats which will readily permit the necessary data to be
obtained during the software development effort.

III-4-3

LAY UL SO W LAY S W SRy PR S S L SO S Sy we




KO AR

Lo g s o gm0 ey . A 22 oEn acs s a6 Y
. AT PN RO RS A ST

4.1.5.2 Software—~Performance Evaluation Procedures

SCI shall translate the software-performance
evaluation requirements into specific procedures and data
formats which will readily permit the necessary data to be
obtained during the software-performance (testing and
integration) effort.

4.1.6 Data Acquisition

SCI shall extract the data required to assess the
effectiveness of Ada as a programming language for
communications and trusted software applications. The data
will be acquired from three sources which are error statistics,
software statistics and analysis, and programmer interviews.

4.1.7 Data Analysis
SCI shall perform an analysis of the extracted

data in accordance with the evaluation requirements and
procedures. This analysis shall be designed to identify any
efficiency or effectiveness criteria regarding the use of Ada
for communications or trusted software applications. 1In
addition, any specific Ada-related problems shall also be
identified and a set of guidelines or standards shall be
provided which indicate the best use of Ada in the two
application areas.

4.1.8 Development/Per formance Evaluation Report

SCI shall present summaries of the data collected
and results of the data analysis through a
Development/Per formance Evaluation Report. The prelimrinary
data and results will be compiled into a draft report which
shall be submitted to the Contract Officer's Representative
(COR) for review, comment and approval. SCI shall then produce
a final report which incorporates any corrections, additions or
changes. The report shall be produced according to
MIL-STD-847A, 31 January 1973, "Format Requirements for
Scientific and Technical Reports Prepared by and for the
Department of Defense" /M84773/.

III-4-4

A




4.1.9 Software Delivery

At the conclusion of Phase II, SCI shall rehost
the source and executable test software and any other support
software which was developed to the VAX 11/780 located at the
Defense Communications Engineering Center in Reston, Virginia.
A summary users guide will be provided with the delivered
software and final drafts of produced documents will be
delivered also.

4.2 PROCURING AGENCY RESPONSIBILITIES

4,2.1 Software Development/Management Plan Review

As part of the evaluation effort an abbreviated
Software Development/Management Plan will be produced. This
plan will be submitted to the COR for review, comment, and
approval early in the design portion of the evaluation.

4.2.2 Software Design Review

The macroscopic and microscopic software designs
will be submitted to the COR for review and comment prior to
the conduct of the planned SCI design review., In addition, the
COR will be invited to participate in the actual design review
process if he so chooses.

4.2.3 Test Plans/Procedures Review

As part of the design and development portion of
the evaluation, combined test plans/procedures will be produced
to test the developed software with regard to correctness.
These plans will be submitted to the COR for review, comment,
and approval prior to the initiation of the integration and
test effort.

III~4-5

|
.
|
|
1
‘
1
!
[
‘
|




A7 DR

LAm A L aen o

r
-

na AU A An s reea ) g e 0
U - ok

4.2.4 Development/Performance Evaluation
Plans/Procedures Review
If during the course of the Ada evaluation

problems occur which necessitate a change in the evaluation
plans/procedures, the changes will be documented and submitted
to the COR for review, comment and approval prior to proceeding
with them.

4.2.5 Development/Per formance Evaluation Report Review

After the development and performance evaluation
data have been collected and analyzed, a draft of the
Development/Per formance Evaluation Report will be produced and
submitted to the COR for review and comment. Comments and
suggestions will be incorporated into the fidal report which
will be delivered at the end of the contract.

4.2.6 Ada Language Processor

The U.S. Army Communications Research and
Development Command (CORADCOM) CENTACS is currently sponsoring
the development of an Ada "compiler”™ by the Courant Institute
of Mathematical Science (CIMS) of New York University. It is
recommended that this "compiler" be obtained by the Defense
Communication Agency for use under this Evaluation Plan.

The Ada language processor being developed has
been designated Ada/ED and is mechanized as a
translator-interpreter which has been coded in SETL and is
hosted and targeted on a Digital Equipment Corporation (DEC)
VAX 11/780.

Ada/ED is planned for public release in April
1981. A subsequent, planned release will be directed at
improving the throughput of Ada/ED. Because of the
translator-interpreter mechanization of Ada/ED it will not
produce native code for the VAX 11/780. Thus, it will not be
possible to obtain or project software-performance statistics
relating to optimizing, production-quality compilers which are
being designed and built to produce native code.

ITII-4-6

il e it




. a

The U.S. Army will provide user documentation on
the hosting of Ada/ED and its operation. This documentation

‘ will be required for the development of the software identified
> in this Evaluation Plan. Also, in order to minimize impact of
s problems on Evaluation Plan efforts, a mechanism will be

established to remain informed of Ada/ED problems and planned
new versions or releases.

The Ada/ED translator-interpreter will be
provided as a complete software package which includes all
supporting software written in SETL. The software will be
supplied on 9-track/1600BPI magnetic tape which is suitable for
hosting and execution of VAX 11/780 operating under VMS 2.1.

4.3 OTHER AGENCY RESPONSIBILITIES

L No other agencies will be required in support of
this effort.

t 4.4 ASSOCIATED SUPPLIER RESPONSIBILITIES :
h

ﬁ? No associated suppliers will be required in

F support of this effort.

e ko Ak S o it

III-4-7 !




T P T T v

(This Page Intentionally Left Blank)

-
ITI-4-8
- . o
S Lt e 94
PRI W VS PR S S SRy Ao PR PSP UL I ¢ Dasedn A h3 S




SECTION 5
PERSONNEL REQUIREMENTS

5.1 PROJECT MANAGEMENT PERSONNEL

A senior program engineer will be required as a
Project Manager, to provide customer liaison, to coordinate all
project activities which interface with other agencies or
organizations, to direct the software design, coding, debugging
and evaluation, and to report on project technical and
financial status.

In addition to the management responsibilities,
the senior program engineer will be responsible for producing
the Software Development/Management Plan, defining the data
acquisition procedures, collecting the data for subsequent
analysis, analyzing the data and produced software, and
contributing to the writing of the Development/Per formance
Evaluation Report.

5.2 SOFTWARE DEVELOPMENT AND EVALUATION PERSONNEL
Two senior system analysts will be required to
design, develop, and evaluate the Ada software.

5.2.1 SIP/ADCCP Software Personnel

The senior system analyst assigned to the
SIP/ADCCP software development effort will be responsible for
producing the macroscopic and microscopic software designs,

developing and debugging the code, developing the associated
test plans and procedures, and conducting the software tests.
He will also be responsible for integrating all software so
that a comprehensive evaluation of the SIP/ADCCP software can
be conducted with respect to the development and per formance
criteria.

This senior system analyst will also participate
in the evaluation of the SIP/ADCCP and ACCAT GUARD software and
will be assigned to code/debug a portion of the ACCAT GUARD
software from the established design in order to help assess

III-5-1




certain software~-development quality factors such as
maintainability.

5.2.2 ACCAT GUARD Software Personnel

The senior system analyst assigned to the ACCAT
GUARD software development effort will be responsible for
producing the macroscopic and microscopic software designs,
developing and debugging the code, developing the associated
test plans and procedures, and conducting the software tests.
He will also be responsible for integrating all software so
that a comprehensive evaluation of the ACCAT GUARD software can
be conducted with respect to the development and performance
criteria.

This senior system analyst will also participate
in the evaluation of the SIP/ADCCP and ACCAT GUARD software and
will be assigned to code/debug a portion of the SIP/ADCCP
software from the established design in order to help assess
certain software development quality factors such as
maintainability.

I11-5-2




P R

—
-

AL T A
SR

X agn o
i

SECTION 6
HARDWARE REQUIREMENTS

6.1 DEVELOPMENT SYSTEM

The software will be developed on a VAX 11/780
located at the Computer Cente. (CC) of the University of
California, San Diego. This facility has dialup, remote access
and is within 15 miles of SCI's facilities.

The CC operates a VAX 11/780 with 2.25M bytes of
memory under the VMS 2.1 operating system.

The VAX 11/780 is supported by 9-track 800/1600
BPI tape drives, REPO6-AA disks and has 24 dialup ports which
can be operated at either 300 or 1200 baud.

The VAX 11/780 is fully supported by an operator
for tape and printer services from 0800 to 0100, Monday through
Friday and operates in an unattended mode during other times.

A full range of user services is also provided including
analysis and programming support, data preparation,
dispatchers, hardware maintenance personnel and system support
personnel. Several terminals are available at SCI's facility.
These include LSI's ADM Information Display, Teletype Model 43,
TI Silent 700 and IBM 3101.

6.2 DEMONSTRATION SYSTEM

The VAX 11/780 located at the Defense
Communications Engineering Center in Reston, Virginia will
serve as the demonstration system to demonstrate the developed
software for the COR. This system will also serve as the
system for rehosting the software at the conclusion of the
contract.

...................




N S

IR 4

(This Page Intentionally Left Blank)

!
1
1

I1I-6-2
R . B
SN —aa ]




SECTION 7
SUPPORTING SOFTWARE REQUIREMENTS

7.1 SYSTEMS SOFTWARE

The following VAX system software, which is
supported by DEC, may be used either during the software
development effort or during the software test/evaluation
effort:
VMS 2.1 - Operating System
SOS - Interactive Text Editor
SCP - Batch (Programmed) Text Editor
MACRO - Macro-assembler
LINKER - Object module linker
LIBRARIAN - Object module librarian
SORT - Native-code sort utility

LIBRARY - Common run~-time library

7.2 ADA PROGRAMMING SUPPORT SOFTWARE

The Ada/ED software will consist of the Ada
translator-interpreter and supporting SETL routines. This
software will be provided to the Defense Communications Agency
in object format on magnetic tape by the U.S. Army, CORADCOM.
The Ada/ED translator-interpreter will operate as an
application program on the VAX.

7.3 TEST SUPPORT SOFTWARE

After the software has progressed to the
integration and test portion of the development, certain
additional software will be required to simulate inputs to and
collect outputs from the software undergoing evaluation.

Software areas which will require this support
are identified below. Specific software requirements will be
identified during the software design effort and implemented as
part of the debug, test and integration effort.

III~-7-1

...........

X
b
3
1
3
{
f
’
r
!
E
1
-
f
L
}
b
f
!
ix PN

......................




7.3.1 SIP/ADCCP Test Support Software

The SIP and ADCCP functions in the AUTODIN II
configuration are shown in Figure 3.2-1. Since the software
development effort entails only the SIP and ADCCP software,
those functions will have to be supported with test support
software. Figure 7.3-1 indicates the SIP/ADCCP test and
evaluation configuration. The test support software, which
will be developed to exercise the SIP/ADCCP software as
integral components, is indicated by asterisks "*"., This test

support software consists of two components which are the
Terminal Subscriber Inter face and the Pseudo Line Control
Module.

7.3.1.1 Terminal Subscriber Interface

The Terminal Subscriber Inter face (TSI) will
provide the interface between a "network" user accessing the
"network" from a CRT-type device and the SIP/ADCCP software.
In this test configuration the user will act as both the source
and destination of messages.

Two specific functions will be performed by the
TSI. First, the TSI will provide the user with the capability
for entering and examining messages as well as controlling the
transmission and receipt of messages. Such functions will
consist of sending messages of various sizes, sending single or
multiple messages and controlling the receipt of messages.
Second, the TSI will provide the user with the capability to
introduce various types of errors into transmitted packets via
the Pseudo Line Control Module which is described below.

7.3.1.2 Pseudo Line Control Module
The Pseudo Line Control Module (PLCM) software
will serve two purposes. First, the PLCM will act as a

pseudo-network which will permit messages to be sent and
received through the "networks" thereby being able to exercise
the SIP/ADCCP in the full duplex transmission mode. Second,
the PLCM will also be used to introduce various types of errors
into packets which are transiting the "network". This will

I11-7-2




; N \..A.H
: 3
. s
X o
uotrjeandbTJUO) uorjenieag pue 3ISdL dIOAV/dIS “T-€°L 9Inbrg M
. ]
) o
.

! 3UVYMLI0S LHOINS 1531 SILONIA :

: HLVd TOULINOD V S3LON3Q : — —

! HLvd V1va V SILON3Q : — g
_s .

neTzZe-10s

v o oo el w e

III-7~-3

IMNAoON IIVANILN
T0ULNOD YaNudsans

.
]

1 (W Vds) {181e)
: ann . TvNIaL
\




— "y
. Lt e

5

LR el Sl SR i A ah . ~ NI ANES . - B Padiniy M . . T TR T A S S . L - . L - o

S

enable the SIP/ADCCP software to undergo moderately extensive
testing with regard to the software performance factors of :
correctness, reliability, robustness, and integrity. 1

The error injection process at the PLCM will be
under the control of the TSI software with different error b
conditions to be selected by the user. Such errors will
include CRC errors, data errors, invalid frame errors, time-out 4
errors, out-of-sequence packets and out-of-context responses
and commands. ]

7.3.2 ACCAT GUARD Test Support Software ]

The ACCAT GUARD configuration showing the ACCAT :
GUARD system and the interfaces to the high-level and low-level 3
networks is shown in Figure 3.2-2. The ACCAT GUARD software in 1
its present configuration is shown in Figure 3.2-3. Of the
thirteen distinct processes and one aggregate process (HGO),
only two processes (DGTP and UGTP) comprise trusted software.
However, in order to simplify interfacing and provide a more
comprehensive and realistic software development evaluation,
four other processes (HGSD, HDGD, LGSD, and SPCI) will also be
implemented. The other interfaces with these processes will be
implemented with test support software indicated by an asterisk
"#", as shown in Figure 7.3-2. The functions of the GUARD test
support software are described below.

7.3.2.1 High-Level Input/Output
The High-Level Input/Output (HLIO) module will be

used to simulate the interface between ACCAT GUARD and the
high-level network. Thus, this module will replace the
functional operations relating to intersystem data flow which
are performed by the existing HFS, HDP, HMD, and HDMD processes.
The high-level network will be represented
through a combination of a high~le-el user terminal interface
and files which are used to generate and release external
nigh-level data and to receive and examine received data.
Externally supplied data (inputs) will consist of mail and

queries to be transmitted to the low-level network. Internally

III-7-4

S




nN6ZZZ 108

HISN NHOMLIN TIAIT-MOT

uotjeaINbTIUOD uOoTIenieag pue 3Is3]

’

VD IVOOWY °Z-€°L 2anbrdg

JYVYML40S LHOLdINS 1S31 SILION3AQ ©

HISN NHOMLIN TIATT-HOIK

ason

\

d190

(OMS)
4321440 HOLVM ALIHND3S

(dS)
T3INNOSH3d NOILVZILINYS

III-7-5

o 42 A oon oo




supplied data (outputs) will consist of mail and query
responses received from the low-level network. In addition to

the data exchanged, various control and status information will

I ™ ANy

also be exchanged.

& 7.3.2.2 Low—~Level Input/Output

u The Low-Level Input/Output module will be used to

- simulate the interface between ACCAT GUARD and the low-level

: network. Thus, this module will replace the functional

operations relating to intersystem data flow which are

performed by the existing LFS, LDP, LMD, and LDMD processes,.
The low-level network will be represented through

a combination of a low-level user terminal interface and files

which are used to generate and release external, low-level data
and to receive and examine received high-level data.

Externally supplied data (inputs) will consist of mail and
queries to be transmitted to a high-level network; internally
supplied data (outputs) will consist of mail and query
responses received from the high-level network. 1In addition to
the data exchanged, various control and status information will
also be exchanged.

7.3.2.3 Terminal Interface/Sanitization Personnel

The Terminal Interface/Sanitization Personnel
(TI/SP) module will be used to perform the functions of the
processes identified within the HGO module and will interface
with the SPCI and HDGD modules. Of the functions identified
within the HGO module, only the following functions will be

implemented totally or in part via the TI/SP module to allow
the SP to function in a quasi-realistic manner: CONTROL,
LETE, EDIT, LiST, LOGOUT, LOGIN, NEXT, RELEASE, and SANITIZE.

-
-
-
)
~
)
7




SECTION 8
SCHEDULE

8.1 ADA EVALUATION SCHEDULE

The development schedule showing the planned
Phase II tasks is given below in Figure 8-1.

Evaluation of Efficiency II, the memory and
execution performance factor, has been explicitly indicated on
the schedule since there is no plan to perform such an

evaluation at this time due to the lack of an Ada compiler
which generates native code.

III-8-.




AD-A121 938 EVALUATION OF ADA AS A COMMUNICATIONS PROGRAMNING
LANGUAGECU) SYSCON CORP SAN DIEGO C

A
A L BRINTZENHOFF ET AL. 31 MAR 81 DCA188-86-C-08037
UNCLASSIFIED . F/G 9/

. . . . -
ramen
ore

NL




P R R A iR I S PSR AR R R e ST Y W i, 0 T R T, o B S M ST T e S W

!
r o T
28
12.2
. 20

MICROCOPY RESOLUTION TEST CHART
WATIONAL SUREAU OF STANDARDS - 1963 - A




L L e Bt A 5 AL WA W G B A T 205 POV P A S SR ¥l o “APRTIUNL A SO A PG o, Wt Syl MNP M

S ik

Figey W

TASKS

ey

wo1 | woz uo:lm mos|wos| wo? me 10 [ 11 | 2 s

: ADA ORIENTATION ,
SOFTWARE DEVASSMT. PLAN —r
3 ADA/ED ACGUISITION

ADA INDOCTRINATION

RN

A
|
SIP/ADCCP MACRO. ——

SIP/ADCEP MICRO.
ACCAT GUARD WICRO.

onsnenesnd
LY
SIP/ADCCP TEST PLAN/PROC. e
ACCAT GUARD TEST PLANASROC. onm—
ounmnmessnll
omm———

CODE/DESUG/MODIFY
Sip/ADCCP
ACCAT GUARD
SIP/ADCCP TEST SOFT. ——
ACCAT GUARD TEST SOFT. —

AR OMRATIIRSY W s S SO I RO

INTEGRATION/TEST
Sw/a0cer _—

ACCAT QUARD L "

Lyt o i il p s

EVALUATION PROCEOURES OEVELOPMENT

) SOFTWARE DEVELOMMENT connse————

; SOFTWARE PERFORMANCE c—
EFFICIENCY N —

hy ERRORA STATISTICS
{ SOFTWARE STRUCTUNE s o o ® consssm—gw"
: PROGRAMMER INTERVIEWS -

OATA ACOUISITION/ABALYSIS CEEE————
[ Y

DATA ACQUISITION/ANALYSS
EFFICIENCY N easmsnss—r)

OEVELOPMENT/PERFORMANCE
EVALUATION AEPORT

) DRAFT cusEsEssne——r

? ORAL PRESENTATION A

’ - e

Figure 8-1. Ada Evaluation Schedule

111-8-2

TR T (T o4t * ., G ee. L SR SR TP R A
VAT T T AT e s

RN T T



SECTION 9
QUALITY ASSURANCE

9.1 QUALITY ASSURANCE OBJECTIVES
Typically, the quality assurance objectives or
requirements portion of a test plan is to define the necessary
testing controls, configuration management procedures,
pass/fail criteria and overall management-review procedures
relating to the conduct of the testing. In the context of the
Phase II objectives of evaluating the suitability of Ada for
developing communications and trusted software, the objectives
will be shifted somewhat. PFirst, rigid configuration
4 management procedures will not be established since the
' objective is not to retain rigid control of production software
and documentation. Second, pass/fail criteria will be
established during the macroscopic design portion of Phase II t
because detailed modifications may need to be made to the
SIP/ADCCP software and modifications will need to be made to
the ACCAT GUARD software to make the evaluation effort
tractable. Third, all compilations, design notes, test results
and other project documentation will be retained throughout the
entire project in order to provide a record of what decisions
were made and why. PFourth, since the objective of the
evaluation is to formulate standards and guidelines for using
Ada, only minimal, inicial programming guidelines and standards
will be formed. These will be used primarily to focus on the
Ada features as they relate to the applications with emphasis
placed on using Ada as a new tool and not an old tool. This
; approach will also allow the maximum opportunity for innovative
use of the Ada features. Finally, since this is an evaluation
of Ada and not the developed software per se, the guality
assurance emphasis will be placed on maintaining historical
data as the development progresses and on providing interim
teviews both for the purpose of measuring progress and for
providing early and continuing opportunities for customer
review.

A R G,

S B0 St IC




&

e

Lol

LR QL Y,

N e

o pit]

O N T S,

PR
T W L

e S

Ly W

s

gt jair oW el AT N I TR N a5 g J P M R oA R gy W iy N e T 2l DRI TN Bees i o Y S

9.2 QUALITY ASSURANCE REVIEWS

Several intermediate milestones will be planned
to provide interim reviews of progress and results. First,
since it is planned that Ada will be used as the design
language as well as the implementation language the first
significant review will occur at the conclusion of the software
design phase. The second significant review will follow the
interviews with the programmers who developed the stP/ADCCP and
ACCAT GUARD software. The third review will coincide with the
completion of the draft of the final report and will provide a
significant review opportunity for the DCA prior to the oral
presentation. The fourth review will be in the form of an oral
presentation which will provide an opportunity for discussion
of the draft report, present any additional information, and
provide for interactive discussion of the preliminary results.




