
RD-R12l 754 A UNIX BENCHMARKING TOOL WITH RESULTS FROM THE j/j
PDP-ii/44 VAX-ii/788 AND PERKIN-ELMER 3242(U) DEFENCE
AND CIVIL INST OF ENVIRONMENTAL MEDICINE DOMNSVIEW (0..

UNCLASSIFIED M TUORI JUN 82 DCIEM-RP-82-P-23 F/G 9/2 NL

ENDIJ|1Ehhh/|i

111W 1.0.02

1.2511.4 11.6_

MICROCOPY RESOL.UTION TEST CHART
) I"

3

NATIONAL NlU41AU OF STAWiARID$ -1963-Ag

33.6
mai

Defence an Cii Inttt of Enio mna Medcin

I

June 1982 U N L I ft1 a r ch Paper 82-P-23

* DISTRIBUTION

A UNIX AW&TAITool
with Results from the PDP-11/44,

VAX-1 1/780, and
Perkin-Elmer 3242

0

Martin Tuori

i".. For COO

nce and Civil Institute of Environmental Medicine
i1133 Sheppard Avenue West, P.O. Box 2000

Downsview, Ontario M3M 3B9

DEPARTMENT OF NATIONAL DEFENCE - CANADA

... . * 4 A

A UNIX Benchmarking Tool
with Results from the PDP-11/44, VAX-I1/780

and Perkin-Elmer 3242

Martin Tuori

D.C.I.E.M.
PO Box 2000, Downsview,
Ontario. Canada M3M 3B9

and
Computer Systems Research Group

University of Toronto
Toronto, Ontario

unix net address: decvax!hcr!dciem!martin

This is DCIEM Research Paper 82-P-23

Ab tract

'A facility is described that offers a high level means of exercising and
performance testing a UNIX 1 timesharing system. Its structure is explained,
and resulting issues and limitations are discussed. Results have been obtained
on several different computer systems, including a PDP-11/44, a VAX-11/780,
and a Perkin-Elmer 3242. each running a variation or extension of Version 7
UNIX.

1) Background

This facility was originally developed as a system exerciser, to check the
integrity of a PDP-11 based UNIX system that had undergone hardware repair.
The system had been unstable under heavy load, such as generated by the
normal user community, yet it passed all hardware diagnostic tests. Rather
than release the newly repaired system to the users and risk further crashes,
we decided to simulate that heavy load in a more controlled context. Several
typical user level processes were selected, and several copies of each were
run simultaneously. The results of each process were compared byte for byte
with a trusted copy prepared earlier. This proved to be an excellent barome-
ter of system health, and has been in use for about 3 years.

t UNIX is a trademark of Bell Laboratories
DEC, PDP, and VAX are trademarks of Digital Equipment Corporation
Perkin-Elmer is a trademark of Perkin-Elmer Corporation

By using the time command to measure the elapsed time required to
complete a set of exercises, we obtained an overall measure of the perfor-
mance of the system, as a hardware/software unit. This became useful in
evaluating changes to the UNIX kernel, such as the number of system buffers,
disc block interleaving (mkfs parameters), etc. Most recently, this same tool
has been used to measure the throughput of UNIX systems from different ven-
dors.

2) The flenchmarking Toole

The benchmarking tools are a collection of command files, source files
and data files, the focus of which is a single command file in the topmost
directory. This run file permits the operator to initiate multiple copies of
user level processes (jobs) which are to run concurrently. Four types of
processes are used -- a compile of a 729 line C program, formatting a section
of the UNIX online manual using nroff, performing global substitution in a text
file using the text editor ed, and execution of a moderate floating point pro-
cess.

Each process type lives in its own directory, where, in addition to the
necessary source and data files, there is a run file that support three opera-
tions - setup, run, and cleanup. The purpose of the setup phase is to run the
process once, to obtain a true version of whatever output is obtained, and to
create a sub-directory for each instance of the process that is to be run. The
run phase forks the desired number of instances, and awaits their completion.
The cleanup phase cleans out the sub-directories, etc.

The topmost run command mirrors the setup-run-cleanup structure of
each process type by providing this choice of actions to the user, either as
arguments or through an interactive dialogue. It also provides an action to
select the numbers of each process to run, as well as the options of checking
the validity of the outputs produced (by using the cmp command against the
true version), and of noting the time taken to run the batch. This structure
results in one shell for each user level job, plus whatever children processes
are required, and cmp, expr, and test processes.

Several issues arise in considering the significance of these tests; these
are addressed in the following paragraphs. The check option is a comparison
against a local standard, assumed to be correct, not against a universal stan-
dard for all UNIX systems. While such a universal standard might be appropri-
ate for the work done by the text editor, it is certainly not useful for the C
compiler, since the target machine is not constant. The other process types
fall somewhere in the middle; a slight change in the spacing produced by nroff
might be acceptable to Most users, yet would fail in a simple byte by byte

comparison with a universal standard.

The UNIX time command produces data with some variance, but this is
minor at moderate load.. For example, 7 trials of the benchmark were run at
60 12rocesses on the P-E, giving the following average times: 2

real: 15:43 user: 11:13 sys: 3:51
with standard deviations of 3.3, 0.8, and 2.8 seconds respectively.

Version 7 UNIX and its variations permit each user a limited number of

W processes at any one time. To overcome this limitation, it is necessary to run

the benchmark as the superuser. This uncovers an ancient bug in the cc
command (C compiler), which remains in some systems. The method used for
creating names for temporary files is adequate for multiple compiles run by
normal users. When run by the superuser, however, multiple compiles collide,
resulting in errors. The correction to this is to use the library routine
ntemp to create the names for the temporary files. It was also necessary to

remove the optimization option from the C compile process, since the UNIX
for the P-E does not yet have an optimizer for the C compiler. Requesting it
causes no action, which would favour that system unfairly. The P-E system
does, however, suffer the disadvantage that its utilities are unoptimized, at
this time.

w

This is typical of the benchmark's ability to uncover problems in UNIX
systems that normal user communities do not encounter. As the load is
increased, various resource limits are reached within the kernel, often causing
the system to crash. Such problems are sometimes remedied by recompiling
the kernel with more of the resource(s) in short supply. One problem that

W requires a different type of change is a bug associated with the element
f.count in file.h; it is defined as a char in Version 7. Since all the processes
share an open file (/dev/tty), this count overflows, causing (we believe) the
file structure to be reassigned. Pandemonium results. While this does not
arise under normal conditions, the count has been changed to a short integer
to correct the problem.

Finally, The benchmark does not make any provision for think time, dur-
ing which a user's processes will be inactive. Nor does the benchmark exer-
cise terminal 1/0 in proportion with the processing that is carried out; only
the controlling terminal is active, and traffic there is light. In its current
form, the benchmark does not attempt to simulate a quantifiable number of
users; it only loads the system as fully as possible. Similarly, no effort is
made to exercise peripheral devices other than the discs used for files and
swapping. 3

2 The time command reports the total elapsed time (real), the time spent by
W the CPU on user code (user), and the time spent by the CPU on system code

(sys). These times are given as minutes:seconds.fractional seconds.

a A separate tool, called devex, was designed to exercise peripherals simultane-

ously. It has been used with a magtape drive, frame buffer, and film record-
er; one copy of it may be run concurrently with the benchmark.

w '5.

3) Specific Results

For purposes of comparison, the benchmark has been run on three
different systems, configured as follows:

* PDP-11/44, 256kb memory, floating point processor, one 80mb disc, run-
ning Version 7 UNIX.

• VAX-i1/780, 3mb memory, 4 floating point processor, 2 disc controllers, 3
300mb discs, running 4.1BSD.

* Perkin-Elmer 3242, 3mb memory, floating point processor, 2 disc con-
trollers, 3 300mb discs, running The Wollongong Group's Edition VII
UNIX.

The two larger systems have very similar configurations; the root filesystem is
on a controller and disc by itself, /tmp and the user filesystem are on
separate discs on the other controller.

The four types of processes involved are of short duration; individually,
they take the following times (in sec.) on the P-E:

editor: real 10.2 user 4.4 sys 3.8
C compile: real 39.0 user 26.5 sys 7.1
floating point: real 16.0 user 12.7 sys 2.2
nroff: real 9.6 user 5.0 sys 3.1

and on the VAX:

editor: real 11.6 user 3.7 sys 2.4
C compile: real 30.5 user 20.3 sys 3.5
floating point: real 25.0 user 23.5 sys 1.3
nroff: real 9.0 user 4.4 sys 1.9

The first graph shows the elapsed time for each system, as reported by
the time command, as a function of the number of processes running. Since
it is difficult to see variations in the slope of these curves, we have plotted
the total times divided by the number of processes. The next three graphs
show user time, system time, and eLapsed tite as a function of the number of
processes. We can see that user time is fairly constant with load; this is
expected, since the user programs have a fixed number of instructions to be
performed. Those instructions may be spread out over a long period, but the
work done (time taken) for each process remains the same. The Perkin-Elmer

.6 system is the fastest in this comparison, due entirely to the factor of two on

4 The system has a total of 6mb of main memory; CSRG was kind enough to dis-
able half of it for these tests..

I

the floating point process. The system times grow slowly with load. This
probably indicates an increasing effort by the operating system at such tasks
as scheduling, swapping, and virtual memory management. In this component,
the VAX system is considerably faster, due probably to the performance' tun-
ing done by the developers of 4. 1BSD UNIX. The graph for elapsed time shows
that the savings in system time on the VAX are enough to make it the fastest
system tested. The elapsed times drop as the number of processes grows
from the lowest levels; we attribute this to processes becoming 1/0 bound, at

* which time the CPU may become idle. As the load grows, there is enough work
outstanding that a system may be able to keep each disc controller and the
CPU busy, thus reducing wasted idle time.

It is important to note that the two larger systems are too slow for
effective timesharing when they are running more than 60 or 80 active
processes. While the systems cah cope with larger loads, the delays experi-

* enced at a terminal are greater than most users would accept. We were
unable to load the 11/44 past 60 processes -- it simply doesn't have sufficient
resources. We were able to run one test of the VAX at 200 processes, but a
problem in the report from timne forced us to treat that result separately.
The elapsed time for that run is indicated as a small box on the graphs.

.4

4) Conclusions

A high level benchmark technique that simulates a group of active users
on a UNIX timesharing system has been described. This technique treats a
system as a hardware and software package, and gives elapsed times for a
blend of typical process types. It can easily' be modified to reflect a different
balance among the process types, or to include other processes. It would be
straightforward to add think time to the benchmark, and terminal output (ter-
minal input is more difficult, and normally a smaller percentage of overall ter-
minal 1/0). We hope that these results, and the ability to test further
enhancements to UNIX systems will encourage the developers of these and
other systems to evaluate and improve their products. The benchmarking
package will be made available through the distribution facilities of the
USENIX Association.

Acknowledgements

I would like to thank Dave Galloway and Dave Wortman for their
encouragement, and for providing time on CSRG's VAX system to run the
benchmarks. Sandra Wright coauthored the original version of this bench-
marking facility.

60

Elapsed Time vs Processes

50-

40- P-E

VAX at 200

(one run only)

30-

44,/ VAX

~20 I

lo-/

40 /0 12/6 0

30-

User Time per Process
vs Processes

44

20-

02

408 1016 0

30

System Time per Process
vs Processes

S20

0

04

12 to 0

30-

44-

Elapsed Time per Process
vs Processes

~20-

'a-.E

VA

VAX at 200

10 (one run only

0-

40 80 120 160 200

