AD-a121 520

UNCLASSIFIED

AUTOMATIC SYNTHESIS OF IMPLEMENTATIONS FOR ABSTRACT 1/
DATA TYPES FROM ALGEB..{(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAB FOR COMPUTER SCIENCE.. M K SRIVAS JUH 82
MIT/LCS/TR-278 NOOO14-75-C-0661 F/G 9/2 NL

=

2

dddddd

"'"'EEEE
EEEE

FEEE

¥
e

E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 &

FHIA

SOl

LABORATORY FOR iy B M beactitst i

COMPUTER SCIENCE 7 o 11 anNot ooy

N

Al

()/”“

SVATMS

AUTOMATIC SYNTHESIS OF INIPLENENTATIONS
FOR

ABSTRACT DATA TYPES FRONM

. <
=)
< =
7 N
= =
S

7 <
= Q
— <<
>

ALGEBRAIC SPECHTCATTONS

Mandavam Ko Srivas

Py
. NOV 1 7198
© ‘
A

ERETIEREIN SM}M\« X

82 11 16 026

DG FILE Ccopy

SECUMTY CLASMIFICATION OF THIS PASE (Mar Date Bniered

REPORT DOCUSENTATION PAGE
W

| M1T/LCS/TR-276

Twm

S TITLE (and Bvbeiie) Automatic Synthesis of Implesenta-~
tions for Abstract Data Types from Algebraic
Specifications.

5. TYPE OF AEPOAT & PENOD COVERED
Technical Report Jume '82

(& PERFOMNNG ONG, REPORT WUNDEN
NIT/LCS/TR-276

R AL LT
Mandayam K. Srivas

DARPA M00014-75-C-0661

B Stavohuns orsam TaTion Rl aud aBSRTI
MIT Lad for Computer Science

545 Technology Squsre

Cambridge, Ma. 02139

11. CONTRADLLING OFFICE NANE AND ADONESS
DARPA

1400 Wilson Boulevard

Arlington, Virginie 22217
t []

Office of Naval Research

Department of the Navy

Information Systems Program

Arlington, Virginis 222117

2. AEPORY DAYE
June 1982

T Wnttn oF Pasts

161

T SECOMYY CLADS, fof Shie rapevt)

Unclassified

W'Km—

Unlimited

B e T " vy v-i v~ S Sy S — W
7. OISTAMBUTION STATEHENT (of e abotanl antered in Bloet 30, N G¥srent bum Rupery

This document is approved for public release and sale, distribution unlimited

o ———————
0. UPPLENENTARY NOTES

(19 K&V SOROS (Conttme o»

See back \

oy ot identtty by Mosk number)

T FOTE

Ny

See back

F ABSTRACT (Conttaue en roverce aide I avesccary and identtty by Sloch aumber)

Fonm
DD 2w » I3 smmon of ' nov &5 m oBeoLETR

MM.‘
Implementations for Data Types

Abstract

Algpheex Perificstions Yo b und ssnthely © poene preptstins of choat Gin WP
and ©» anbh By e of mpamunen of dis ypos This heash saplans a0
anetx mebed of gehenung Webmstions iy e Wou bom Gl dpsbmic

The gui (0 ¢ ool srandun s of o Qecificath +» v Ag implomenind YPe. o

W ok o G wybmeasg YU & s omnl danvption of Ge
mpramunee whese % wmad ty Go Wpbmmution Yhe cuput of On prwsdun
ants of & sphamuss i ab of G2 qpoenens of G nplensned Y9s b o guph
golumne hnguigs

Tin pun and B¢ cutpnt of G ethem pramdun o poucisly harsacrioad A Geemsd
S O O¢ ssbhad englnes by ¢ puasferw & ¢rosiiped The meted & busad o Be
pnnapls of svening e uxhangue of proveng G esrecwen of an inplumontes of ¢ 40
e wwxves & O Ngvts. 9 Gr wadnons wde siuxh e pushn
Qubass o eplasntnes el os rmlly hssnerted

e end Tale of Tamb Supenaer Jote V Cotng
Aasume Prohme: of Conpes Sume
and ingmesrng

Sy Vb oné Fowmae Absvent Ca Type. Alprbuic Spasifisasion.
Asssstates Sperthmieen. Abmauties Puscien,

s Y I . g /. r 31 r - [13 -~ ~'4 |}
Oaguny et Compase Summ & Oussts 151 & geres ASinen: of G e S G
Gapon of D Mgy

") - B
'

OFFICIAL DISTRIBUTION LIST

=v'uw 2 cepies }
'ense Advenced Research Prajects Ageacy -
1400 Wiisen Bevleverd

Ar)fagten, Virgints 22200

Atteatien: Progras fonsgament

0ffice of lave) Resesrch $ coptles
800 Nerth & Strest

Arliagten, Virgints 22217
Attontien: Marvia Denfcef?, Code &%

Office of Mavel Resesrch ’ 1 copy

festdent 1)
fhassachusetts Institute of Wechnelegy
Suilding E19-628

Cmiridge, Mass. 02199

Mtantion: A. Fervestar

}
Olrector ¢ copits ' 5
Bevel Research Ladoretery i
thashingten, 5.C. 20378

Mtantion: Code 2627

Camaren Statien

|
Befense Technical Infermatien Conter 12 cples
Arliagten, Virginta 22304

0fVice of Taval Reseerch 1 copy
Orench 0ff{ca/Deston

SuiNding 134, Section O

008 Sumer Strest

Ossten, Mass. SR210

fations) Sclence Fowndaties . - 2 coples

¥
t
i
{
)

O
| E g

Automatic Synthesis of

Implementations for Abstract Data Types
from Algebraic Specifications

by
Msandayam Ksunagpas Srivas

Copyright Masachusetts Institute of Technology

June 1962

This research was supported (in part) by the National Science Foundation under gramt
MCS78-01798 and by the Defense Advanced Research Projects Ageacy monitored by the
Office of Naval Research under Contract No. N0O0014-75-C-0661.

Massachnetts lnstitute of Technology

Laberatery for Computer Science
MA 219
MAELECTE Y
This dr—-mnent has been op?lﬂd | NOV 1 7 1982 b ,}
fo-v 0 -t 2o andcaleits . ‘
: woicd] R h_}
A

]

-2-

Automatic Synthesis of
Implementations for Abstract Data Types
from Algebraic Specifications

Abstract

.,
Algebraic specifications have been used eatensively 10 prove of abstract datn types
and 0 otablish the correciness of implementations of data types. JThis thesis eaplores an
automatic method of synthesizing implemientations for data ypies nm their sigebraic
specificar'ons. .

The inputs 10 the synthesis procedure consist of a specification for the implemented type. a
specification for cach of the implementing types. and a formal Coscription of the
representation scheme 10 be used by the implementation. The output of the proccdure
consints of an implementation for cach of the operations of the iniplemented type in a simple
applicatise language.

The inputs and the output of the synthesis procedure are prociscly charxtericed. A formal
dasis for the method employed by the procedure is developed. The method is based on the
principlc of reversing the technigue of proving the correctness of an implementation of a data
type. The rostrictions on the inputs, and the conditions under which the procedure
synthesizes an implementation successfully are formally characterized, ~

Name and Titie of Theshs Supesvibor: John V. Guliag
Amociate Profcssor of Computer Science
and Engincering

Key Words and Phrases: Abstract Data Type. Algebraic Specification,
Association Specification. Abstraction Function,
Invartant. Prcliminary impicmentation. Target
implementation. Torm Rewriting Sysiem, Principle
of Definition. Reduction. Expension.

1. This report is a minor revision of a thesis of the same title submitted 10 the Department of Floctrical
Enginecring and Compter Science in Ixcember 1981 in partsl fulfilimem of the requircments for the
degree of Docior Philosophy.

Acknowledgments

| want 10 eapress my appreciation to my thesis supervisor, John Guttag. for all the
help he has given me. His paticnee. encouragement, support. and constructive criticisms of
the work at various stages of its development have been invaluable.

Each of my thesis readers, Arvind. Rarbera Liskov, and Dave Muwcr, has
cmtributed important insights 0 differcnt asp xcts of both the rescarch and the presentation
of the thesis. | am especially thank(ul 10 Barbara for suggesting 10 me the topic of the thesis,
and 10 Duave for his careful reading of several drafts of the thesis which made the final version
substantially more readable.

My officemales, Decpak Kapeur, Picrre Lescanne, and Carl Scaquint, have helped
me in many ways during the research. They gave me a paticnt audience whencver | nooded.
and read drafts of the thesis. Deepak was especially helpful in organizing my idess st the
nitial stages of the research.

Many people st M.I.T., graduate students in the Laboratory of Computer Sclence
and outside. have hriped cresie an intcresting. stimulating. often diverting. but always
supportive environment in which 10 work. | want 10 thank in penticular Betty. Jeannetie,
Sriram, Ravi. and Kanchan for their continual encouragement.

This research was supported (in part) by the National Science Foundation under
gramt MCS78-01798 and by the Defensc Advanced Research Projects Agency monitored by
the Office of Naval Research under Contract No. N00014-75-C-0661.

CONTENTS
1. introduction
1.1 Geals of the Thesis
1.2 Meatisation ler The Rescarch
1.} Retasted Werk

1.4 Organiration of the Thesis

2. An Overview of the Synthesis Procedure

11 The User’s View

T2 \ Semmary of the Synthesis Procedure

L1 Stage 1: Preliminary impleaentation Iicrivation
L1 Ixtcrmining (he §.cft {land Side

22.0.2 etermining the Right | Land Side

1213 Detiving the Synthesls Fguations
122 Stagel: Derivation of the Target lmplementation

12.21 Recurion § lminating Method

1221 The Hecursion IPrevening Methed
12.3 Fatending the Syntheshs Procedure

13 e Scope of the Syntheshs Procedure

LX) Restrictions on the lapets

132 The Claw of implcrsentations Devived

113 Flieens of ning the Procodure Outside &is Scope
3 Inputs e the Syntheshs Precedure

11 Nata Types and theie Sprcification

11.0 Prefiminary Concepts

10.2 Infinition of o Deta Type
113 Sgecification of 2 Nuta Type

3139 The Specification .aaguage

3112 Semumntics of o Specification

32 Assecistion Specification

311 What b an Asseriation Speciication ?

122 How Is It Fagresned ?

11.3 Further Discuswion on Assecistion Specification
13 Rewtrictions on the lapus

131 Rewrive Rules and Reweiting Systems

132 The Priaciple of efinkion

313 Checting the Principle of Definition

3331 Owrching Unigue Terminstion

13.32 Ciuching Fiake Terninntion

34 Preving Properties of 2 Data Type

~See o

-
od

YIRRRBBBRRERR2/NIY T XRELLE2IUERNEIS

4. Stage I: The Prefiminary implementation

4.1 A Preliminary implementation

4.2 The Prcliminary ldement sion 1ierivation Problem
421 The Criterion of Correctuess
422 ke Ixrivation Prebiem
4.3 Desivation of a I'relimiaary Implementation
430 Ihe Symtbhesis Conditions
412 Ixtivation of the Roles of PY
4311 ictcrmining the Lo liand Side
4322 ixtermining the Right {1and Side
44 Icriving the Symtheis Fquations
441 e Symthrsh Rules
4401 informal § \planation
4.41.2 toomal xcfinition of Frpand
442 Ixchation in ihe Fymational Theory
443 Ixrhation in the Inducthe Theery
4431 Ihe General Sirstegy
4412 The Predicatc Ivan-indect b e-theoremrof
4413 \n Inntantiation fes the Symthrvie Foualion

2gaeeEIIigagecsce R

45 A8 \bstruct Implcmentation of the Herhation Precedure
S. Extending the Derivation Problem ”
&) (haracterisation of the Problem ”
8.2 Dernation of 3 Prefiminary Implementation »
S.10 1 Symthesis ¢ onditions ”
812 Iviviag the roles of PY 10
Q212§ Ixtcrmining the L.cR Hand Side 12
$12.2 Ixtcrmining the Right land Side 10}
5.3 Ietiving the Symtherhs Vouations 19)
S0 A\ Simple IBeration "
S22 Nlere on the Temponary World [,
S1L1 The Purpoe of TW 1
$12.2 Construction of TW 1He
$.1) Prelininew) Implcuncntistion of Append 1ns
6. Stage 2: The Target impliementation (§]]
61 The Recursion Presening Methed 123
601 lmverting Functions and Iaverting Expressions 124
612 lmplementations for (he lnverting Fanctions 1
b 6.2 The Recursion F Reninsting Methed 132
, 63 An Mastration of 5 Comphrte Synthesls 1%
! 7. Conchnions sad Future Research 14

i

.6

Appeadix |. Equations as Rewrite Rules
Appeadix il. Cheching Finite Termination
Appendin 11). Preoks of Theorems

-7-

FIGURES

Fig 1. Specification of Queue_Int - 1§
Fig. 2. Specification of Circ_List ... 16
Fig. 3. Asociation Specification . 17
Fig 4. An Implementation - R ¢ |
Fig S. A Prcliminary Implemontation 19
Fig 6 Queuc_Int I ermSOf TAPIEot s snsasmeanes 32
Fig 7. Specification of Queue_int . - 4
Fig 8 Spccification of Circ_List . - sermveassssmmmesnssassenases 43
g 9 hoAummSpmnmmtotOcmc.lm . 46
Fig 10. Speoieation of ATy ML oo e rmreon e seesn e sencnarene 49
Fig 1). The Queuc_Int Rewriting System R SSRURIRRI. ¥
tig. 12 Proof by Inductive l.ogic .. 60
Fig 1) The Porturbed World " —
Fig. 14 A Panial Prenunary Implementation ... ocmrcnicnmmiscnmsnssssssssenss 11
Fig. 15. Qucue_int in icrms of Triple - s sevssasns s rmat sar b esmassepseten -9
Fig 16 The Perturbed World : : . —) |
tg 17, A Pantcdd Prelminary im . 102
Hig 18 An Implcmentation emerrssemmsarsmenssrosass ey smssesessasosssssss B
Fig 19 The Pmcedure RPM . — e esmmme s ires rrreanssamene 128
tg 20 The Levwographic Rocursive Mm vrreers 18T
Fig 21. mwuhwmm&aMTmlmmmSm 158

Fig 22 The Stndard A'phabet Ordering for Homoumorphism Specification 159

i
}
i
}
1

1. Introduction
1.1 Goals of the Thesis

This thesis is concemned with the problem of automatic synthesis of implementations
for abstract data types from their algebraic specifications. The inputs to the synthesis
proccdure include (i) a formal specification of the data type (o be implemented, (i) a formal
specification of cach of the implcmenting types. and (iii) a formal description of the
representation scheme be.uscd by the desired implementation. The output consists of an
implementation for cach of the operations of the implemented type. The inputs are specified
using an algebraic specification techuique (14, 18, 25)

The thesis has three main goals:

(1) To preciscly characterize both the inputs of the synthesis procedure, and the output.
(2) To devise an automatic method of deriving the output from the inputs.
(3) To prnide a formal basis 101 the method.

The method of derivation is described in terms of a sct of synrhesis rules. The
output s derived by invoking the synthesis rules a finite number of times. The thesis
doscribes how the synthesis rulcs are used in deriving a suitable implementation.

The purpose of providing 4 formal basis for the method is 0 justify the correctness
of the implementations derived by the synthesis procedure. The formal basis also helps in
characicrizing the sope of the synthesis procedure.

1.2 Motivation for The Research

The rcliability of computer software has reccived a great deal of attention in recent
years. Rapid advances in hardware technology have dramatically decreased the cost of
hardware relative (0 software. As a result, the cost of producing and maintaining software has
become 8 major concem. An effective way of improving the reliability and the cost of
software simultancously s 10 find methods o decrease the effort required to produce correct
software. At present, active research is underway [43) in exploring this avenue. Several

.9-

approaches have been proposed, cach of which can be put under onc of the following three
catcgories bascd on the degree of automation it offers: manual approachcs. scmi-automatic
approaches. and automatic approaches.

The manual approach advocates discipline in human programming [31. 11, 41} It
consists of identifying new mechanisms of abstractions [32] that cncourige the advocated
discipline. The most significant contribution of this approach has been the inducement of a
change in the attitude of programmers towards the style of programming. Concrete
nanifestations of 11:is change include the birth of the concept of abstract data types, and the
development of new languages [34. 29. 52] 0 <upport data (ypes.

The goat of the scmi-autosmatic approach is 10 seck machine help (o cstablish the
correctiness of programs writicn by the user. Formal methods are developed to specifly and
verify propertics of pieces of software {13, 12. 20J: systems are built to carry out verification
asutomatically or semi-automatically {27, 15) A variant of the verification method is the
pruogrammer’s appreniice method [19). The programmer’s apprentice provides an interactive
programming cnvironment built up by a sct of tools which helps the programmer in
preparing and chocking his work in several ways. The tools range from smple editors ©
more sophisticated oncs that can analyze and criticize a uscr's program during the various
phascs of programming. Yet another way of providing partial machine help is 0 build
systems [2. 3. 48] that will help apply transformation rukes chosen from a catalogue of
equivalence prescrving transformation: The programmer can refine or improve the
cfficiency of his programs by judiciously chamin the appropriate rules from the catalogue.

The automatic approach. under which our research falls, seeks 10 automate a part of
all of the programming process itself. Its goal is 10 generate code for programs from their
high-level declarstive descriptions. thereby relieving the programmer of having to worry
about error-prone. low-level details of programming. Though this may one day be feasible,
experience {1. 36] in the lant few ycars shows that not nearly enough is known about the
process 10 automaie it compictely. Two remedies have been used with some success to break
the stalemate in the situation: The first is 10 restrict the domain for which programs are being
synthesized [4]; the second is 10 expect the user 10 fumnish more information about the desired
properties of the program [6) 10 guide the synthesis procedure.

-10-

A third course of action that has not so far been employed in earnest is (o
complement the automatic approach with recent advances in programming mcthodology.
(Bauer, ctal., [3] have employed this idea with the scmi-automatic approach.) In particular,
the idea of designing software as a hicrarchy of abstractions can be used to aid the synthesis
procedure. Such a hicrarchical design for the program reduces the amount of rcfinement
requircd to be performed by the synthesizer at each step.

The thesis takes into consideration all the factors mentioned above. Within the
general area of programming, “we rcslnc(ourselves to the study of synthesis of
implementations for abstract data types. We believc that the synthesis of implementations for
abstract data types is amcnable 10 automation because the specification tochniques for data
types have been extensively studied, and hence, are better understood. We also expect
additional information about the implemcntation 0 be furnished by the uscr. This
information is provided in the form of a description of the representation scheme (0 be used
by the implcmentation.

1.3 Related Work

The works n.ated 10 ours lic partly in the area of general program synthesis and
partly in the area of astomatic impicmentation of data structures.

In the general arca of synthesis. the work most closely related 10 ours is that of
Darlington [8. 9. He has developed a sysiem that uses a set of transformation rules 0
improve semi-automatically the efficiency of recursive programs and also to construct new
recursive programs. Rccently, he has also applied the transformation rules to synthesize
impiementations for data types [7]. The synthesis rules developed in the thesis are closely
related to his. The difference lies in the method in which the synthesis rules are used to
synthesize implementations. Our method is based on verification tochniques of data types.
Our work has two advantages over his. Firstly, the class of implementations derived by our
method is larger than his. This is because we develop more ways of using the synthesis rules
for deriving implementations. Secondly, we formally characterize the conditions under which
the synthesis rules yield a correct i nplementation for data types.

g o gy

m

-11-

The ZAP system [30] of Feather's is a program transformation system in which the

basic rules of manipulations arc similar to our synthesis rules. His work is diffcrent from ours
in two ways. Firstly, he is concemed with developing highcer level stretegics to apply the basic
tranformation rules (in general, any cquivalence preserving rules) for the construction of
large-sized programs. Sccondly, his approach is less automatic than ours. The emphasis in
the design of ZAP is to use "metaprograms™ to improve communication between the user and
the system. There are two inputs to ZAP: the specification of the program o be constructed
and a metaprogram which consists of a scquence of commands that direct the transfo-mation
process. The metaprogram cxpresscs the higher level strategy to be uscd in applying the
tranformation rules.

Within the area of automatic implementations for data structurcs, the work of
Okrent [40] has goals closest to ours. Okrent's method uscs only the algebraic specifications
of the data types involved as inputs. Because of the lack of information about the desired
representation scheme, the implementations gencrated by his synthesis procedure are not as
interesting as the ones generated by ours. He limits severely the range of the data types
acccptable as inputs. He also concentrates on a fixed set of target structures such as
contiguous memory and hcap memory for the implementations.

Another work in this arca that is related to ours is that of Subrahmanyam's [50}.
Subrahmanyam’s method like Okrent's does not use any information about the
representation scheme. His method has a provision for the user to specify performance
constraints on the desircd implementation. The method is based on partitioning the
operation set of the data type into a kemnel sct and a nonkemel set. Implementations for the
kemel operations are derived by identifying pairs of functions (on the representation type)
called retrievable insertion function pairs. Implementations for the nonkemel operations are
derived in terms of the implementations for the kemel operations so as to meet the
performance constraints.

Most of the other research in the automatic generation of data structure
implementations has been concemed with the automatic selection of an optimal
representation for data structures. Rowe and Tonge [47). Rovner [46). and Tompa and
Gotlieb [S1] have studied optimization problems for a language containing a fixed set of high

r—-———————-——————-r ,
; h

level data structures. First they build a library of possible implementations for cach fixed
high level data structure in the language, along with a parameicrized description of the
performance of cach library cntry. Then they proceed to sclect the "best” implementation for
each instance of the data structure, by making a flow analysis of the program that uses the
data structure. The goal of our work is to derive an implementation for a given
representation rather than to sclect an optimal onc aniong a given set of representations.
Standish, ctal., [49). Bauer, ct.al., [3}, and Wile, ctal, |2) have developed catalogues

of equivalence prescrving transformation rules as a part of program development systems.

‘The programmer can refine or improve the efficicacy of his programs by instructing the
system 0 apply appropriate transformation rules on the programs. None of these works,
however, deals explicitly with the implcmentation of data types. 1t is possible, with some

modiﬁcali'ons. to incorporate our synthcsis rules as a part of their system.
1.4 Organization of the Thesis

The next chapter gives an overview of the synthesis procedure. The third chapter
describes in detail the inputs of the synthesis procedure, and formalizes the restrictions on the
inputs. The synthesis procedure derives an implementation in two stages: The
implementation is first derived in a preliminary form which is then transformed into a final
form. The first stage of the procedure is the topic of the fourth and the fifth chapters. The

sixth chapter describes the scocond stage. The last chapter gives the concluding remarks.

f

<13-

2. An Overvicw of the Synthesis Procedure

This chapter gives an overview of the synthesis procedure. The first section gives a
scenario of the synthesis procedure from a user's point of view. It briefly describes the form
of the inputs 10 the synthesis procedure, and the form of its outputs via an cxample. The
second section gives a summary of the synthesis procedure. It points out the nontrivial issucs
involved in the method employced by the procedure for deriving an implementation. The last
section describes the scope of the procedure.

2.1 The User's View

Consider the following scenario involving a programmer. The programmer has
designed an abstrict data type (the implemented type) to be used in solving onc of his
programming problems. He is now secking the help of a system for implementing the type
using another data type. called the represeniation 1ype. The representation type is chosen by
the uscr himsclf. Furthermore, he is willing to fumish information about how he wants the
values of the representation type 10 be used in representing the values of the implemented
type. The system is crpected to generate automatically (or with some help from the user) an
implementation for the implemented type that uses the representation type as the
representation in a manncr consistent with that suggested by the user.

Viewed as a black box, the inputs to the procedure are:

(i) A specification of the implemented type,

(ii) a specification of the rcpresentation type, and specifications of all the types used in
the specification of the represcntation type. We refer to the representation type, and
all the types its specification uses as the implementing types.

(iii) an association specification that describes how the values of the representation type
are to be used in representing the values of the implemented type: this corresponds
1o the represeniation (or abstraction) function defined by Hoare in [21).

The output of the synthesis procedure consists of an implementation for each of the

~a———

P

-14-

operations of the implemented type in terms of the operations of the implementing types. To
get a better idca about the inputs and the output, let us consider an example of deriving an
implementation for the diata type Quene_Int in terms of Circ_List. Queuc_int is a
first-in-first-out qucue of integers. Elements are added (o a queue at the rear end, and
removed from the front cnd. Clre_List is a list of integers. Elements are inscrted into and
removed from « list at the sante end, which is the rear end of the list. The operation that gives
Circ_List a circular character is Rotate. Rotate moves every clement in a list by one position
towards the rear end in a cyclic fashion, i.c., the element at the rear cnd is moved (0 *he front
end.

In this éxample, the implemented type is Queuc_Int and the represcntation type is
Circ_List. Circ_List uses (this notion is defined preciscly in the next chapter) the data types
Integer and Bool, so the implementing types include Cire_List, Integer. and Bool. Figures 1,
2, and 3 give the inputs to the synthesis procedure. (The figures also give an informal
description of the operations of the data types.) Specifications of lateger and Bool should
also be given as inpults, although we have not shown them here. The language used to express
the data type specifications is equational, similar to the ones developed in [14, 18, 25). One of
the crucial diffcrences is the following: We assume that the specification of every data type
identifics a basis for the data type. A basis is a minimal sct of operations of the data type that
can be used to generate all the valucs of the type. The operations in the basis are called the
generators of the type. For example, the operations Create and Insert can be the generators
for Circ_List. The specification language is described in the next chapter.

Fig. 3 gives the association specification for the implementation to be derived. It
charactcrizes the represcntation scheme to be used by the implementation. The association
specification is expressed in two parts. The first part specifies the imariant 3. 3 is a predicate
that specifies the set of values that may be used to represcnt the values of the implemented
type: only those values of the representation type for which 3 is True may be used to
represent the values of the implemented type. In the present example, § is True for all values
of Circ_List. The second part specifies the abstraction function A, A maps a value the
representation type to the value of the implemented type that the former may represent. In

the present example A specifies the following mapping: The empty queue is represented by

-15-

Fig. 1. Specification of Quene_Int
Queuc_lut is Nullq, Faquewe, Front, Doyucue, Append, Slze

Defining Types
Bool, Int

Operations

Nullg :-> Queuc_Int

Fagueve : Queue_int X Int <> Queue_lut

Froat Qucuc_lat <> Int U { ERROR }
Dequeue : Quene_lnt -> Queve_Int U { ERROR }
Append : Queuc_lmt X Queuc_Int -> Quewe_Int
Size : Quenc_int > It

Comment.

Queuc_int is 2 FIFO queuc of integers. Nullq constnucts the empty qucuc. Eaguese adds an clement (o
a qucue At the rear end. NDequeuc removes the clement at the front of a qucuce. Fromt retums the
clement at the front of a queuc. Appesd joins two qucucs adding the clements of the sccund argument
at the rear of the first argument. Size computes the number of clements in a queue.

Basis
{ Nullq. Faquewe }

Axioms

(1) Front(Nuliq) = FRROR
(2) Front(Enqueuc(Nullq, ¢)) 1 ¢
, (3) Front(Fnqucue(Faqueuc(q. c1), c2)) = Front{(Faqueuc(q. 1))

(4) Dequenc{Nullq) = FRROR
(5) Dequence{Faqucuc{Nullg, ¢)) = Nullq
(6) Dequese(Enqueuc(Fnqueuc(q, cl). ¢2)) = Faqueuce{Dequevc{Faqucuc(q, ¢)), €2)

(10) Append(q, Nuliq) = q .
; (11) Append(ql. Enqucuc(q2, ¢2)) = Eaqucuc(Append(ql, q2), €2)

(12) Size(Nuliq) = 0
(13) Sizc{Enquene(q, ¢)) = Size(q) + 1

Fig 2. Specification of Circ_List
Clec_List is Create, lnsert, Value, Remove, Rotate, Panpty, Joia

Defining Types
intcger, Roolean

Operations

Create - Clire_List

Josert : Circ_List X Integer -> Cire_list
Value :Circ_List -> Intcger U { FRROR }
Remove : Cire_List <> Cire_list U { ERROR)
Rotate : Circ_list -> Circ_List

Empty : Circ_list -> Boolean

Join : Ciec_list X Circ_Rst <> Clre_list

Comment
Cire_List is a list of integers with a front end and a rear cnd. (reate constructs an empty list: the front

and the rcar ends of an cmply Jist are the same. Insert inserts an clement into a list at the rear ond.
Value rcturns the clement at the rear end of a list. Remove removes the clement at the rear end from a
list. Rotate moscs every clement in a list by one position towards the rear ond in a cyclic fashion, ie.,
the clement at the reur s moved to the front. Faspty checks if a list is cmpty. Joia juins two lists by
positioning the first argument in front of the sccond.

Basis
{Crcate, lasert}

Axioms

(1) Valuc({Creatc) = FRROR
(2) Valuc(insert(c.)) m |

(3) Remove{Create) = FRROR
(4) Removelinsert(c, i)) = ¢

(5) Rotate(Create) = Create
(6) Rotate(lnscri(Create, i)) = Insert(Create, i)
(7) Rotatc{lascri(Insert(c, i), i2})) = Inscrt(Rotate(lnsert(c, i2)). if)

- — g P S =

(8) Empty(Crente) = true
(9) Empty(inscri(c, i)) = faise

(10) Join{c. Create) m ¢
(11) Join{c, Insert(d, i) = lasert(Join{c, d), i)

«17-

Fig. 3. Association Specification

Invaniant

c) = True

Abstraction Fungtion

A(Crcate) = Nullq
Alinsert(c. D) = add_st_head{A(c),)

add__hcad({Nullg, i) = Fnquenc(Nullg. i)
add_at_heud(Fnquenclq. i), i1) m Faquenc(add_st_head(q. 1),)

the empty list. A nonemipty qucue is represcnted by a list whose elements are identical to the
oncs in the qucue. but are arranged in the reverse order. The mwtivation for this
representation scheme is that' madi;ag and delction of ck:tbcnls from a quecuc can be
performed cfficicntly. Note that the specification of A uses an auxiliary function
Add_at_hcad on Queue_Int; the auniliary function adds an element at the front end of a
queue.

Fig. 4 shows the output of the synthesis procedure. The output defines a sct of
functions. called the implementing functions, on Circ_lList. Every implementing function
implecments an operation of Queve_lat. The implementing function implcmenting the
operation f is given the name F. For instance, NULLQ implements Nully. The target

Fig. 4. An implementation
NULLQ() :: = Createl)

ENQUEUE(c, }) :: = Rotate(insert(c, }))
FRONT(c) :: = Valuelc)
DEQUEUE(c) :: = Removelc)

APPEND(c, d) :: = Join(d, ¢)

SIZE(c) :: = it Emptylc) then O
else SIZE(Removelc)) + 1

w

<18 -

language used 10 capress the implementations for the operations is a simple applicative
language. ‘The only mechanisms availuble in the language W build programs are: functional
compusition, conditional eapressions, and recursive function definition. The Lnguage uscs a
method of defining function that is customarily used in applicative tanguages like pure LISP
370 A function F is defined using the following schema: Flv,,...,v) = e, where

v,...,v, arc variables, and e is an eapression containing those variabics. A function

' Y
definition may usc the operations of the implementing types as bise functions.

L2 A Summary of the Synthesis Procedure

The synthesis procedure is summarized in an illustrative fashion using the example
already introduced. This is donce in the first two subsactions. In the example introduccd, the
invariant 3 is a trivial onc: It is True on all valucs. In the third subscction, we highlight the
issucs involved in deriving an implementation in the presence of a nontrivial invariant by
introducing a ncw cxample.

The method used by the procedure to derive an implemcntation is bascd on treating
every cquation in the specifications as a rewrite ruleX The procedure begins by combining all
the input specification.. into a rewriting system catled the /nitial World (IW). (W is obtained
by simply replacing the symbol = by — in the input specifications.) The proccdure assumes
that IW satisfics the uniform termination property as well as the unique termination property.
(IW is said to be convergent in such a case. This is similar to the Church-Rosser property.)
The uniform termination property ensures that cvery chain of reductions starting from an
expression terminates. The unique termination property ensures that all chains of reductions
starting from an expression terminate in the same expression. These two propertics ensure
that the equivalence relation characterized by a specification can be computed by using the
rules in IW for reducing expressions. The procedure also assumes that there is a predefined

2. A rewrite rule (written a — B) is an ordered pair- a left hand side and a right hand side - of
expressions, A rewrite rule can be used to reduce any cxpression that is an instance of the lefl hand
side into an cxpression that i an instance of the right hand side. A rewriling system is a sct of rowrite
rules.

m .

-19-

termination ordering (>) on cxpressions which can be used (or showing the uniform
termination property of rewriting systems.

The synthesis procedure derives the implementation in two stages. In the first stage
the procedurc derives the implementation in an intcnnediate form. The intcrmediate form is
called a preliminary implementation. In the scoond stage the preliminary implementation is
transformed into an implementation in the target language (rarget implementation). Fig. S
gives a preliminary implementation for Queue_nt that is consistent with the association
spevification given in Fig. 3. There are two crucial differcnces between a pretiminary
implementation and a target implementation. The first one concers the methods uscd for
defining the implementing functions. A prcliminary implementation defines a function as a
sct of rewrite rules. The rewrite rukes defining an implementing function F arc the ones that
have F as the outermost symbol on their kel hand side. For instance. rules (2) and (3) in
Fig. 5 define ENQUELE. ‘The sccond difference is that the only operations of the
representation type that arc permitted 10 appear in a preliminary implementation are its
generators. A target implementation is permitied (0 use all the operations of the
representation type. In the cxample under consideration, for instance, a preliminary
implcmentation may use all the operations of Isteger and Bool. but only the gencrators

| Fig. 5. A Preliminary implementation
I (1) NULLQ() — Createl)

y (2) ENQUEUE(Create,)) — Inseri(Create,))
' (3) ENQUEUE(Insert(c, i),) — Insert(ENQUEUE(c, }), 1)

{4) FRONT(Create) — ERROR
{3) FRONT(Insertic, 1)) — 1

I {6) DEQUEUE(Create) — ERROR
(7) DEQUEUE(Insertic,i)) — ¢

(8) APPEND(c, Create) — ¢
(9) APPEND(c, insert(d, i)} — APPEND(ENQUEUE(c, 1), d)

(10) SIZE(Create) — O
(11) SIZE(insert(c, 1)) ~ SIZE(c) + 1

(Create, and lasert) of Circ_lIst.

There are two rexsons for the decomposition. Firstly, it mukes the synthesis
procedure more modular. Target language dependent transformations are separated from the
language independent transfoimations. The decomposition also lends itsclf naturally to
deferring cfficiency improving transformations t the later stage. In the first stage one can
concentrale on deriving a simple correct implementation. Secondly, the devomposition
reduccs the complesity of the structure of synthesis procedure. The first stage deals with the
wechniques for deriving an implementation from the specification of the data type. The
second stage deals with the techniqucs for deriving altemate forms of implementations from
an preliminary implementaion. The decomposition provides a better insight into the
synthesis method. and simplifies the description of the synthesis procedure. The next two
subscctions give an overview of the two stages of the synthess proccdure.

12.1 Stage I: Preliminary implementation Derivation

A preliminary implementation of a data type is correct with re.pect 10 an abstract
function A if the following condition holds: Every implcmenting function F (that implements
the opcration) defined by the preliminary implementation is a total function on the
representation values 50 that the homomorphism property J(F(x)) = R36(x)) holds. Here %
is a function on the values of the implementing types: % behaves exactly like the abstraction
function & on the representation valucs. and like an identity function on all other values. The
synthesis procedure derives a preliminary implementation 30 that the above criterion of
correciness is satisfied.

The procedure synthesizes the preliminary implementation for one operation at a
time by deriving a separate set of rewrite rules for every operation. Since the method used is
the same for cvery operation, we illustrate the synthesis of only a couple of operations. The
procedure first determines the left hand sides of all the rules of the preliminary
implementation. Then, it determines a suitable right hand side for each of the rules.

e e e e B e -

m

-2-

2.2.1.1 Determining the 1.0 FHand Side

Onc of the correciness requiremients of a preliminary implementation is that it must
define a total funclion on the representation type. This roquirement is ensured by deriving
the rules of the preliminary implementation so that (1) they satisfy the uni “m termination
property, and (2) they are well-spanned. The fint property is ensured while deriving the nght
hand side of the rules. The second property is used 10 determine the left hund sides.

The sccond property requises the kel hand side eapressions of the rules o be of a
particular form. For instance, any pair of nules that have the form given below comtitute a
well-spanned sct of rules for ENQUEUE. (In the following vis, and ?ris, are used as place
holdcrs for capressions to be deticrmined kater.)

ENQUFUF(Creste,) - vis,

ENQUEUE(Imert(c, I},) -- rhs,

Notc that the lefi hand side of cach of the above nules consists of ENQUEUE
applicd 1o arguments that are generator c\pmixm" The sct of arguments. i ¢.. scquences of
generator eaprassions, 0 ENQUEUE on the ket hand side of the rules s
ArgsSet = {<Create, . Clmscrt(c, Ik J>}. ArpSct spans the set of all ordered pairs of
generator constants. in other words, every pair of generator constants is an instance of one of
the arguments in ArgsSct. This property cnsures that the definition of ENQUEUE accounts
for all the representation values. 1t is casy 0 build a procedure that automatically generatcs 8
well-spanned ArgsSet, once the generators of the represcntation type are identified. Thus, an
appropriate sct of left hand sides for the rewrite rules 10 be derived can be determined
sutomaticafly.

| 3. A generator expression is an canrewion in which the only function symbols involved are the
generatons. A gencrator cunstant is a generator expression that does not contain any varisbles.

-22-

2.2.1.2 Determining the Right Hand Side

The rght hand sides of the rules are dctermined so that the preliminary
implementation satisfies the homomorphism property mentioned carlier. For this, the Initial
World. IW, is lirst supplemiented with a set of rules, called the J6-rules. The J6-rules express
the homomorphism property: there is an X_rule for cvery implementing function, For
nstance, the %-rule corresponding to ENQUEUE is
XENQUEUEK(c. J)) — Enqueuc(36(c). 36(j)). Let us call the supplemented system the
Perturbed World (PW).‘

The Perturbed World (IPW) is then used (o derive a set of synthesis equations, one
equation for cvery rule in the prelimiinary implementation. The right hand side of a rule is
determined from the right hand side of the corresponding synthesis equation. For instance,
the synthess cquation corresponding o the rule ENQUEUE(Irsert(c, i), j) — hs, is an
cquation of the form X(ENQUEUE(Inseri(c, i), j)) = 3(?rhs,) that satisfics the following
conditions:

(1) XENQUEUE(Imsert(c, 1), J)) = 3(?rhs,) is a thcorem of PW
(2) ENQUEUE(Imert(c, i) J) > 7rhs,

(3) hs, contains only the permitted operations of the implementing types, and the
implcmenting functions.

The Symthesis Theorem in chapter4 shows that, when a preliminary
implementation is well-spanned. the preliminary implementation satisfies the
homomorphism propenty if the synthesis equation corresponding to cach of the rules in the
preliminary implementation is a theorem of PW. Note that the second condition above
ensures that the rewrite rulcs derived satisfy the uniform termination property. The third
condition ensures the syntactic correctness of the preliminary implementation.

4. Note that sice X s a function that behaves cssentially like A, the rewrite rules specifying it in PW
are obtained by simply replacing A by 36 in the asociation specifcation.

- g e

g

m

<23

2.2.1.3 Deriving the Synthesis Equations

Evcry synthesis cquation of the preliminary implementation is derived with the help
of two inference rules called the synthesis rules. The synthesis rules are designed for
generating theorems of PW that have the same left hand sides, but different right hand sides.
For deriving a synthesis cquation, the synthesis rules arc invoked repcatedly a finite number
of timcs to generate a scries of thcorems until the desired equation is generisted. F-or instance,
the synthesis cquation corresponding to the rule ENQUEUE(lascrt(c, i), j) — 2rhs, is derived
by gencrating a series of theorems thit have I(ENQU EUI':llnscﬂ(c. i), j)) as their I hand
side. The gencration continucs until a thcorem whose right hand side qualifics the theorem
to be a synthesis equation is cncountered.

The idea uscd for generating an cquation is 10 reverse the method of demonstrating
that such an cquation is a theorem of PV, The central notion used in the gencration is a
mechanism called expansion. Expunsions is the opposile of reduction. It is the act of
applying a rewrite rule to an expression from right to left.

For example. consider the rule J(ENQUEUE(c, f)) — Engucuc(Ic(c), 3(j)). a 1
the expression Add_at_hcad(Enqueun(36(Create), 36(1)). k). The subexpresiwr
Enqueue(36(Create). 30(i)) is an instance of the right hand side of the rule for the substitution
{c—~Create,j—~1}. The cormesponding instance of the left hand side is
H(ENQUEUE(Create, i)). Therefore. Add_sat_kead(Enquene(36(Create), 36(1)), k) expands to
Add_st_head(J6(ENQUEUE(Create. 1)). k) by the rule.

The first synthesis rule specifics a way of generating a theorem from an expression
with that expression as the left hand side. In the following e4 denotes the normal form of ¢
obtained using rw.$ (The nommal form of e is the result of reducing it using the rewrite rules
of PW until it becomes irreducible.) -

5. The definition of cxpansion will be revised later in chapter 4 to make it more general. According to
the definition given here. expansion is identical to the transformation technique folding used by
Darlington {7} for synthesis of recursive programs.

6. PW is a convergent system. Therefore, every expression is guaranteed to have a unique normal
form.

¢ is an expression
e=ed

The sccond synthesis rule specifics how to gencrate a thcorem from an existing one
so that the new thcorem has the same left hand side as the old one. In the following
cxpand(el) denotes any expression that is an expansion of ¢, using some rewrite rule of PW,

Rule 2: e eapande)

We investigate two mcthods in which the synthcsis rules can be used for deriving a
synthesis equation. The first method derives synthesis cquations that are in the equational
theory of PW. The sccond method derives equations that are in the inductive theory, The
second method is more general than the first one. A systcm that implecments the synthesis

procedure would. therefore, use only the second method. We discuss them separatcly for

pedagogic reasons.

2.2.1.3.1 Derivation in the Equational Theory

As an illustration, let us derive a synthesis cquation that is of the form
J(ENQUEUE(Insert(c, i), })) = J6(?rhs,). The cquation is derived by generating a scrics of
thecorems that have 3(ENQUEUE(Insert(c, i), J)) as their left hand side. The gencration is
begun by invoking synthesis rule(1) on the left hand side expression. The rest of the
thcorems in the series are gencrated by invoking synthesis rule (2) using the rewrite rules of
PW for expansion. The rewrite rules for expansion are choscn with the following ultimate
goal: Obtain a right hand side that has the form J6(7rhs,) so that
J(ENQUEUE(Insert(c, i),))) > %(7rhs,). and ?rhs, contains only the implementing
functions and the permitted operations of the implementing types. In the illustration given
below, the generation of every theorem in the series is considered as a step. At each step, the
expression expanded. and the rewrite rule used for expansion are indicated. The relevant

rewrite rules of PW that are going 10 be used for expansion are listed at the beginning.
Ruie (1) 1s the 36-rule coresponding to Eaqueue: rules(2) through (5) are obtained from the
association specification.

Relevant Rewrite Rules of the Perturbed World
(1) I(ENQUFUE(c,) — Enqueue(I6(c). 36())

(2) 36(Creatc) — Nullq
(3) J6{Insert(c, i)) — Add_at_head(36(c). I6(i))

(4) Add_at_head(Nullq, i) — Fngucue(Nullg, {)
(5) Add_at_head{ Fnqucuc{q, i),) — Enqucuc(Add_at_head(q,). i)

Fonm of the theorem o be gcnqmlcd: S6(ENQUEUE(Insert(c. i), j)) = :)G(?rhsx)
Normal form of J(ENQUEUF(lusert(c. i), [)): Fnqueuo(Add_at_head(I6(c). J6()). I6())
Rules used for the normal form: (1), (3)

Step (1) Invoke Synthesis Rule (1) on JG(ENQUEUF(Insert(c, i), §))
J(ENQUEUE(Insert(c, i), §)) = Enqueuc{Add_at_hcad(J6(c), JC()), J6G))

Step (2) Expand Expression: Enqueuc{ Add_at_head(36(c), I6()), I6())
Using Rule: (5)

JB(ENQUEUF(Insert(c, i),)) = Add_at_head(Enqueuc(J6(c), J6(), 36(i))

Step (3) Expai.d Expression: Enqueue{J6(c), M))
Using Rule: (1)

¥(ENQUEUE(Insert(c, i), j)) = Add_at_hcad(I(ENQUEUEF(c. j)), J6())

Step (4) Expand Expression: Add_at_head(JG(ENQUEUEK(c. §)). 36(i))
Using Rule: (3)

J(ENQUEUE(Insert(c, i), j)) = Jo(Insert(ENQUEUE(c, j). D))

The thcorem generated in step (4) qualifies to be a synthesis equation. Hence the desired rule of the
preliminary implementation is:

ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(c, j), i)

One can similarly gencerate a theorem of the form J6(ENQUEUF(Create, j)} = J(Insert(Create, j)),
which gives risc to the following rewrite rule to complete the preliminary implementation for

-26-

ENQUEUE:

ENQUEUF(Create, j) — Insert{Create, j)

2.2.1.3.2 Derivation in the Inductive Theory

The mcthod used for deriving a synthesis cquation in the inductive theory is based
on the following property that every thcorem of PW satisfics: If an cquation is a thcorem of
PW. then every instance of it is in the equational theory of PW. An instance of an cquation

e, =e, is an equation obtained by replacing every variable in e
7

, and e, by generator
constants.

We, therefore, take the following approach for deriving an equation in the inductive
theory. First derive an instance of the desired equation; the method of derivation described
earlicr can be used for this purpose. The instance of the equation derived should be such that
a generalization of it has the form of the desired synthesis equation, and is a thecorem of PW.
A generalization of e, = e, is an equation obtained by replacing assorted constants in e, and
e, by suitable variables. To check if the generalization is a theorem of PW, we use an
automatic procedure called is-an-inductive-thcorem-of. The procedure is an extension of the
method of using the Knuth-Bendix completion algorithm for proving inductive properties of
convergent rewriling systems [28, 38, 22). The procedure is described in chapter 4.

As an illustration let us derive a synthesis equation of the form
J(APPEND(c, Inscrt(d,i))) = :JG(?rhsz) which gives rise to one of rules in the preliminary
implementation of Append. We begin by deriving an instance determined by the replacement

of the variable d by the constant Create, and then apply generalization.

Relevant Rewrite Rules of the Perturbed World

(10) Append(q, Nullq) — q
(14) 26(Create) — Nullq

7. A generator constant is an expression formed out of gencrators, and does not contain any variables.

- R

-27-

(20) I(ENQUEUEK(c, i)) — Fnqueue(36(c). 16(i))
(22) I(APPENIXc, 4)) — Append(J6(c), 36(d))

Form of the theorem to be gencrated: J6(APPENINc, Insert{Create, i))) = 36(?¢)

Normal

form of I(APPENIXc, Insert(Create, i))): Faqueue(36(c), J6(i))

Rules used for the normal form:

Step (1)

Invoke Synthesis Rule (1) on 36(APPEN{c, Insert{Create,)))
J(APPENIXc, Insert(Create, i))) = Enquenc(36(c), J6(i)

Step (2)

Expand Expression: J6(APPENIXc, Insert(Create, i)))
Using Rule: (10)

JS(APPEND{c, Insert(Create, i))) = Append(Fngueuc({I6(c), J6(i)), Nullg)

Step (3)

Expand Expression; Nullq
Using Rule: (14)

J(APPENIXc, Insert{Create, i))) = Append(Fnqueuc{I6({c), 36(i)), J6(Create))

Step (4)

Fxpand Expression: Enqueuc(36(c), J6(1))
Using Rule: (20)

J(APPENIc, Insert(Create,))) = Append(St;(ENQUEU F(c, i)}, 36(Creatc))

Step (5)

Expand Expression: Append(36(ENQUEUF(c, i}), J6(Create))
Using Rule:

J6(APPENIXc, Insert(Create, i))) = I(APPEND(ENQUEUKc. i), Create))

Step (6)

Genceralize the thcorem in step (5) by replacing the constant
Create by the variable d to obtain the following equation:
J(APPFENIDAc, Inseri(d.i))) = I(APPENI{ENQUEUE(c, i), 4))

Apply is-an-inductive theorem-of on the above equation.
This yields True confimting that the equation is a theorem,.

e e

-28 -

Hence the desired rule (obtained by dropping 36 on both sides) is:
APPENDc, Insert(d.i)) — APPENID(ENQUEUK(c, i), d)

Onc can similarly generate a thcorem of the form IG(APPENIXCreate, d)) = 36(d) which gives rise to
the following rewrite rule to complete the preliminary implementation of APPEND,

APPEND(Create, d) — d

2.2.2 Stage2: Derivation of the Target Implementation

In the second stage of the synthesis procedure, the preliminary implementation is
transformed into a target implementation. It should be noted that the preliminary
implementation is ilsclf an executable implementation. 1t can be executed by an interpreter
that is capable of simplifying algcbraic expressions using the cquations in the specifications of
data types as rewrite rules. The data type verification system AFFIRM [39] provides such an
interpreter. Given the specifications of all the implementing types, the interpreter can
exccute the preliminary implementation on any given input. Our goal is to derive the target

implementation in a forin that can be compiled by a compiler for an applicative language.

There are two reasons why a target implementation is more efficient than a preliminary

implementation. The first one arises because of the freedom to use nongenerators of the
representation type in a target implementation. This makes it possible, in some instances, to
eliminate recursion from a preliminary implementation of an operation, and to transform into
one which is a composition of the operations of the implementing types. The second reason
is that an implementation that can be compiled by means of a conventional compiler is in
general more efficient than interpreting a set of rewrite rules. We investigate two methods of
transforming a preliminary implementation into a target implementation. We describe each

of them briefly below. The first method, although less efficient than the second, derives a

larger set of implementations.

e g = G gy g - —

e e =7 s Pa—— N ety

-29-

2.2.2.1 Recursion Eliminating Method

According to this method the problem of deriving a target implementation is viewed
as finding a composition f* of the opcrations of the implementing types and the
implementing functions (possibly including the if_then_else function) that has the same
functional bchavior as the implementing function F decfined by the prcliminary
implementation. For example, the composition Rotate(Insert(d, k)) has th: same behavior as
the function ENQUEUE defined by the rewrite rules of the following preliminary

implementation:

ENQUEUE(Create, j) — Insert(Create, j)
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(c, j), i)

So, the following can be a target implementation for it
ENQUEUE(d, k) ::= Rotate(Insert(d, k)). Note that the target implementation does not use
recursion.

Morc formally, the problem can be stated as follows: Find a coiaposition f* so that
the equations obtained by substituting f* for ENQUEUE in the rewrite rules are theorems of
the implementing types. The equations for ENQUEUE arc given below. Note that, in
obtaining the following equations, the two sides of the rewrite rules are interchanged after
replacing ENQUEUE by f*. The need for the interchange will be explained later.

1) Inscrt(Create, j) = f*(Create, j)
93} Insert(f*(c, j), i) = t*(Insert(c, i), J)

We use the following strategy to find a solution for f*. We generate a theorem of
the implementing types using one of the above equations as a template. For generating such
a theorem we use the synthesis rules mentioned earlier. However this time, since we are
interested in the theorems of the implementing types, the rewrite rules in the specification of
the implementing types are used for expansion. The theorem generated deicrmiines a
candidate for f*. The goal is to generate a theorem so that the candidate for f* determined by
the theorem also satisfies the other equation. For instance, the sequence of steps given below

generates a theorem that has the form of equation (1).

£ o

Rewrite Rules of Cire_List

(3) Rotate(Create) — Create
{4) Rotate{dnsert(Create,)) — lusert{Create, i)
(5) Rotate(Insert(Insert(c, il), i2)) — Insert(Rotate(Insert(c, i2)), il)

........

Form of the theorem to be gencrated: Insert(Create, §) = f*(Create, j)
Normal form of Insert(Create, j): Insert(Create, j)
Rules used for the nonmal form: None

Step (1) Invoke Synthesis Rule (1) on Insert{Create, j)
Insert(Create, j) = lascri(Create, j)

Step (2) Expand Expression: Insert(Create, j)
Using Rule: (4)

Insert(Create, j) = Rotate{Insert(Create, j)

The last theorem generated in th.e above series suggests that Rotate(Insert(d, k)) is a
candidate for f*(d. k). The candidate composition can be determined mechanically by
comparing the theorem generated with the template equation. The candidate we currently
have is such that the equation Rotate(Insert(Insert(c, i), j)) = Insert(Rotate(Insert(c, j)), i),
which is obtained by replacing f* by Rotate © Insert in equation (2), is a theorem of Circ_List.
Had the candidate obtained in the last stcp not satisfied equation (2), the theorem generation
would have continued further to generate another theorem that had the form of equation (1).
The reason that the first equation, rather than the second, was used as the template
equation is the following. The synthesis rules are formulated so that the unknown expression
in the equation to be searched for is on the right hand side. In equation (2) both sides are
unknown since f* occurs on both the sides. That is not the case with equation (1). This was
also the reason for interchanging the two sides of the rewrite rules while obtaining the
template equations. In the example illustrated the theorem desired was in the equational

theory. In general, we need to use the generalization technique described earlier since the

P ———

-31-

theorem may be in the inductive theory.
2.2.2.2 The Recursion Preserving Method

In this method the target implementation is derived with the help of a special set of
functions, called the inverting _/unctions.8 on the representation type. To understand what
inverting functions are, and why there are useful, let us consider an cxample. The

preliminary implementation of SIZE consists of lhc following rules:

SIZE(Create) — 0
StZE(lusert(c, i)) — SIZE(c) + 1

A target implementation for SIZE may take the following form:

SIZ.E(d) :: = if Fmpty(d) then 0
cise SIZE(Remove(d)) + 1

Note that in the prcliminary implementation the argument to SIZE on the left hand
side of a rule is permitted 10 be a generator expression. The argument indicates the pattern or
the structure of the expression that constructs the values for which the rewrite rule is
applicablc.’ This frecedom is used in a prclirﬁinary implementation to perform a case analysis
based on the structure of the argument, and to decompose the argument.

In a target implementation the argument to SIZE on the left hand side of the
definition must be a variable. This mcans that the expression on the right hand side of the
definition must have explicit subexpressions for determining the structure of the argument,
and to decompose the argument. Inverting functions of a data type can be used to build these
subexpressions.

Informally speaking. the inverting functions of a data type arc functions that can be

8. Inverting functions are closcly related to distinguished functions of a data type defined in [24]). In
[24] the distinguished functions are used to formalize the expressive power of a data type.

9. If we are interested in interpreting the preliminary implementation, it is. therefore, necessary for
the interpreter to have pattern matching capability to invoke the appropriate rewrite rule while
simplifying an expression.

-32-

used 10 algorithmically invert the process of constructing a valuc of the type from the
generators of the type. In other words, by applying one or more of the inverting functions a
finitc number of times on a value one can determing a generator expression that constructs
the value. For instance, for Circ_List the operations Rotate, Value, and Empty can scrve as a
set of inverting functions. The structure of any circular list valuc in tcrms of Create and
Inscrt can be determined using thesc operations. For instance, if v is a variable denoting the
value constructed by Insert(c, §), then Remove(v) extracts the component ¢: ~Empty(v) checks
if v is constructed by an expression of the form Insert(c,j). So, the rewritc rules can be
merged into the following conditional expressions;
if Empty(d) then 0 else SIZE(Remove(d)) + 1.

The target implementation is derived in two steps. The first step identifies a set of
invcrting. functions for the rcpresentation type. In the sccond step the rewrite rules
constituting the preliminary implementation of every operation are transformed into a target
implementation in terms of the inverting functions. The method is described in detail in

chapter 6.
2.2.3 Extending the Synthesis Procedure

Consider the association specification given in Fig. 6. It specifies a representation
scheme for implementing Queue_Int as a triple Array_lnt X Integer X Integer, which can
informally be described as follows. (Array_Int is specified in the next chapter which also

describes the association specification shown below in more detail.) Nullq can be represented

Fig. 6. Queue_Int in terms of Triple

Ay, i,) = Nullq
Al<Assign{v, ¢,), i, j+1>) = ifi = j+1 then Nullq
else Enqucue(A(<v, i,), e)

Iy, i, D) = True

I(CAssign(v, e, j), i, j+ 1) = if i = j+1 then True
elseif i < j+1then JKv, 1, J3)
elsc False

-33-

by any triple in which the two intcger components are equal. A nonempty qucuc can be
represcnted by a triple €v, §, >, wherc v is an array of arbitrary fength containing the elements
of the queue between the index values i and j-1, in order. In other words, i points to the front
end of the queuc, and j points to the next position available in the quceue for adding an
clement. Note that in this example, unlike the last one, not every value of the representation
type can legally represcnt a qucue. A triple <v, i, J> is a legal representation valuc if only if
i <. and v is guaranteed to be defincd on all index values between i and j-1. The invariant §
in Fig. 6 specifies this condition. '

The synthesis the presence of a nontrivial invariant 3 has to be performed differently
because the implementation must be such that every implementing function F defined
preserves 3: That is, (V v){3(v) = 3(F(v))].

The syathesis procedure for such a situation is similar to the one described carlier
except for the method employed in determining the right hand sides of the rules of a
preliminary implementation. The difference lies in the set of rewrite rules used for expansion
while generating the theorems. Earlier, the rewrite rules of PW were used, but now it is
necessary to use an additional set of rewrite rules. The additional rewrite rules describe
information pertaining to the invariant 3, and the assumption that the arguments to the
implementing function satisfy the invariant. The information pertaining to $ is maintained as
a separate entity called the Temporary World. Chapter S describes how the Temporary World

is constructed. maintained, and used in the synthesis of an implemenation.
2.3 The Scope of the Synthesis Procedure

The scope of the synthesis procedure is limited because of two reasons. Firstly, the
restrictions imposcd on the input specifications limit the range of data type specifications that
are acceptable as inputs to the procedure. Secondly, the synthesis procedure is capable of

deriving only a class of implementations that satisfy certain properties. We describe the two

forms of limitations below.

2.3.1 Restrictions on the Inputs

The input specifications must be such that the Initial World (IW), which is a

combination of all the specifications, forms a rewriting system that
(1) has the uniform termination property,
| (2) has the unique termination property, and
(3) is well-spanned.

The sccond and the third properties are not restrictive because they can be attained
by adding certaird additional rewrite rules to the system. There are automatic procedurcs [28,
38, 22] for determining the rules that need to be added. provided the system satisfies the
uniform tenmination property.

The uniform termination property can be restrictive. Jt is. in gencral, not possible to
express all the propertics one wishes to specify in a manner that preserves the uniform
termination property. For example, consider the data type Sct_of_Elements that has an
opcration Insert to inscrt an clement into a set. To express the property that the order of
insertion of ¢:zments into a set is immaterial, it is neccssary to have a rewrite rule of the form
Insert(Insert(s, i), j) — Insert(Insert(s, j), i) as a part of IW. A system containing this kind of
rule need not, in general, terminate because the rule does not strictly reduce an expression.

One way of getting around this problem is to exclude the concemed rule(s) from
IW. However, there are two reasons why one may not want to do this. Firstly, the rule might
be needed to attain the second and the third properties mentioned above. In such a situation
excluding the rule(s) makes the input unacceptable. The second rcason is that omitting the
rule may leave the spccification in<:omple(e.lo The method used by the synthesis procedure
does not require the specifications to be complete, so the input (cxcluding the concemed rule)
in this case is acceptable. But the procedure will not be able to derive an implementation that
is dependent on the property expressed by the rule.

10. We use the following notion of completeness: A specification is complcte if all the properties that
are valid for the data type arc provable from the specification.

-35-

2.3.2 The Class of Implementations Derived

There are three fiactors that are responsible fur limiting the class ot implementations
derived by the procedure. The first is related to lpc subsct of the proof theory of the input
specifications in which the synthesis procedure operates. The procedure can only derive
thosc implementitions whose correctness proof is within the opcrational pait of the theory.
The operational part of the theory comprises the subsct of the inductive theory that is decided
by the Musser/Knuth-Bendix method [38] of proving inductive propertics.

The second limiting ficctor is the ermination mdc;ing . The synthesis procedure
assumes that an effective ordering is implicitly available to be uscd in ensuring the
termination of the implementition. So. the procedure can only derive those implementations
whosc termiination can be proved using the ordering >-. The more gcncml" the ordcering >,
the larger is the class of implementations that can be derived.

The third reason is that the implementations derived may not involve arbitrary
helping functions. The synthesis procedure is not capable of automatically discovering a
helping function that might be neccssary in an implementation. The user has to furnish a
specification of the helping function as a part of the Initial World if he wishes an

implcmentation in terms of the helping function.
13.3 Effects of Using the Procedure Qutside its Scope

Using the procedure on a specification that does not satisfy the uniform termination
property may result in infinite looping. This is because, under such a cirumstance, there can
be expressions for which a normal form does nat exist. The effect of a violation of the unique
termination propcrty depends on how serious the violation is. If the violation implics that the
system is inconsistent, then the procedure may derive an incorrect implementation. However,
if the system is consistent despite the violation, the effect will only be a reduction in the class
of implementations that the procedure can derive. It should be noted that all three of the

11. An ordering > is considered to be more general [23] than >, if >, contains >,. That is, >,
relates a larger sct of expressions than >y

-36-

propertics required of the inputs can be checked automatically (assuming that a termination

ordering > is available).

-37-

3. Inputs to the Synthesis Procedure

This chapter has four sections. The first section defines data types and their
specification. The second section describes the association specification. The third section
characterizes the restrictions on the inputs. The last section describes proving properties of

data types from the specifications.
3.1 Data Types and their Specification
3.1.1 Preliminary Concepts

A data type consists of a sct (perhaps infinite) of values, callied the walue ser, and a
finitc sct of operations, called the operation set. The only way in which the values of a data
type can be constructed, manipulated or observed is through the opcrations of the data type.

The behavior of a data type is usually dependent on several other data types. These
data typcs appear as a part of the domain or as the range of the opcrations of the data type
under consideration. We call these other data types the defining types. the data type under
considcration is referred to as the type of interest (TOI). If the TOI is the onc that is being
implemented. we refer 1o it as the implemented type. The type that is used to represent the
implemented type is called the representation type. The defining types of the represcentation
type are called the ancillary types. The union of the representation type and the ancillary
types is called the set of implementing types. For cxample, the defining types of the data type
Queuc_Int spcecificd in Fig. 7 are Integer and Bool.

A data typ. has two kinds of operations. A constructor is an opcration that yields a
value of the TOLI, and an observer is an operation that yields a value of a defining type. For
Queue_Int, the operations Nullq, Enqueue. Dequeue, and Append are ail constructors; the rest
of the operations are observers,

We treat the exceptional behavior of a data type in a simplificd fashion. We assume
that every data type has a unique exceptional value that is constructed by the operation Esror
belonging to the type. The value Ervor() is treated like any other value of the type except
that it has the following unique property. Every operation is assumed to be strict with respect

_—-—-——-——————f

-38 -

1o Error(): Every opcration f is such that when applicd to Error() from any of its domain

types it yiclds the exceptional value of the range type of f. We assume that every operation
is a total function: That is, f is defined on cvery element of its domain yiclding cither an
exceptional valuc or a normal value from its range type.

The requirement on a data type that its values be manipulated only by its operations
translates (0 requiring that its values be constructed only by its constructors, possibly using
the valucs of its defining types. Furthermore, in a computer the values can be constructed
only by a finite sequence of operaiions. SO lhc- value set of a data type is the smallest set closed
under finitely many applications of its constructors. This property of a data type is called the
minimality property [25].

A subsct of constructors is said to be complete if cvery value of the TOI can be
constructed by some composition of the constructors in the subsct (possibly using valucs of
the defining types). A basis for a data type is a complete set of constructors that is minimal,
i.c., no subset of a basis is complete. A data type may have more than one basis. { Nullq,
Enqueue } is a basis for Queuc_Int since all queues can be gencrated using Nullq and
Enqueue, and no subset of it can do so.

An expression (or a lerm) is a sequence of operations and variables denoting an
application of the operations to the variables. The fype of an expression is the range type of
the operation symbol that appears at the outermost level of the expression. A constant is an
expression that docs not contain any variables. Fdr example. Dequeuc(Enqucuc(q, €)) is an
expression of type Queue_lat; it is not a constant since it contains variables.

Dequeue(Enqueue(Nullq, 0)) is a constant of type Queue_Int.
3.1.2 Definition of a Data Type

The only way in which the values of a data type can be manipulated is through the
operations of the type. We define a data type so as to capture the behavior of the type as
viewed through the operations of the type. This behavior is called the observable behavior of
the data type. This method of definition was advocated by Guttag [16], and later developed
by Kapur [25). According to this view, the values of a data type are distinguishable only by

means of the operations of the type.

Heterogeneous algebras provide a natural means of modeling the behavior of a data
type. A heterogencous algebra that can be used to model a data type is defined recursively in
terms of the algebra that is used to model each of its defining types. The basis of this
recursion is the type Bool which docs not have any dcfining types.

' A heterogencous algebra for a data type D, consists of (i) a domain corresponding to
D, which is called the principal domain, (i) a domain corresponding to cvery defining type of
D, (iii) a function corresponding to every operation of D. The elements of the principal
domain are uscd to denote the values of). The minimality property of a data type requires
that every elemént of the domains of the algebra be constructible by a finite number of
applications of the constructors of the appropriate type. Any heterogeneous algebra that has
the appropriate signature, and that ¢xhibits the desired observable behavior can be used to
model the data type. Hence, we define a data type as a set of heterogeneous algebras that
exhibit the same observablc behavior. Every algebra in the set is said to be a model of the
data type. The clements of the principal domain are called the walues (of D) in that model.
Below we formally characterize the observable behavior of a heterogeneous algebra,

The observable behavior of a model is characterized in terms of the
distinguishability relation on the values of the model. The distinguishability rclation is
defined inductively in terms of the distinguishability of the values of the defining types. That
is, we assume that the distinguishability relation is already defined the domain corresponding
to each of the defining types. (The basis of this induction is the data type Bool that does not
have any defining types; the only two values, True and False of Bool are assumed to be
distinguishable.) Two valucs of a model are distinguishable if and only if there is a sequence
of operations of D with an observer as the outermost opcration, that produces distinguishable
results when applied scparately on the values. If two values are not distinguishable, they are
observably equivalent. For instance, the Queuc_Int values constructed by Enqueuc(Nullg, 0)
and Append(Nullq, Enqueue(Nullq, 0)) are observably equivalent; but the ones constructed by
Enqueue(Nullg,0) and Dequeue({Enqueuc(Nullg, 0)) are distinguishable. Observable

equivalence is an equivalence relation.

-40-

Definition Two models are behaviorally equivalent if their quoticnt models induced by the

observable equivalence relations are isomorphic to each other.
Definition A data type is a set of behaviorally equivalent heterogencous algebras.
3.1.3 Specification of a Data Type

The specification of a data type is a piecc of text in a formal language. It describes a
sct of properties concerning the operations of the data type. The aim of writing a
specification is to characterize through the specification the observable eyuivalence relation
that defines the data type.

It has becn observed [17] that the construction of an algebraic specification for a
data type .is rendered easier and more reliable (in the sense that one has increased confidence
in the consistency and completeness of the specification) by using a basis of the data type as a
guide for constructing the specification. We assume that all our specifications are constructed
in this fashion. The operations belonging to the basis of a spccification are called the
generators of the specification. An operation that is not in the basis is called a non-generator.
Note that all generators are constructors; non-generators may be constructors or gbservers.

Throughout the development when we refer to the basis or the generators of a data
type involved in the synthesis. we actually mean the basis or the generators associated with
the spccification of the data type being used as an input (o0 the synthesis procedure.
Definition of a couple of new terms pertaining to the generators are in order at this point. A
generator expression (generator constant) of a data type is an expression (constant) that
consists of only the gencrators of the type. Taking Queue_Int with the specification given in

Fig.7 as an example: Engucue(Nullq,0) is a gencrator constant whereas,

Dequeuc(Enqueue(Nulig, 0)) is not a génerator constant, because Decqueue is a non-generator.

3.1.3.1 The Specification Language

The specification language we use is a restricted version of an cquational language
that permits conditionals and auxiliary functions. The language is similar to the ones used in
several other works on data type specification and verification such as [14, 18, 25} A
specification has two parts: the Operations part describes the functionality of every operation
of the TOI; we assume that the Operations part identifies the basis used for the specification.
The Axioms part consists of a set of axioms déscribing the propertics of the operations. Every
axiom has the form of an equation e, = e,, where e, and e, arc expressions of the same type.
The expressions may involve any of the operations of the TOI and the defining types. The
expressions may contain any of a finite number of auxiliary functions which are also specified
as part of the specification. The cquations may involve conditional expressions on their right
hand side, i.e., e, may contain the auxiliary function if_then_clse which behaves like a
conditional exprcssion.IZ For the sake of clarity, we use the following more conventional
syntax for an expression involving if_then_else. The expression if_then_clse(b. e . e,)) is
written as if b then e, else e,, _

We differ from the works cited above by assuming that cvery axiom in the
specification satisfies the following syntactic constraints. The constraints are not restrictive, in
the sense that they do not restrict the class of data types that can be specified. The first
constraint enables us to automatically partition the axiom set into two disjoint sets; One that
contains only the generator symbols; the other whose axioms may involve generators as well
as nongenerators. The partitioning of the axiom set facilitates the synthesis process by
reducing the inter-dependence of the synthesis of different operations. The second constraint
permits the axioms to be treated as left to right rewrite rules (to be described later) without

having to interchange the two sides of the axioms.

12. if_then_elsc can be specificd by the following two equations.
if_then_else :Bool X TXT>T

if_then_else(True, e, e)=e

-42-

Every axiom e, = e, of a specification satisfies the following conditions:
(1) Every data type specification explicitly identifies a basis, i.c., a set of generators.

i (2) The set of variables in e, is a subset of the set of variables in e.

Figures 7 and 8 show specifications of a (FIFO) qucue of integers (Qucue_Int) and a circular

list of integers (Cire_List). The spccifications meet the constraints specified above.
3.1.3.2 Semantics of a Specification

The specification of a data type characterizes the observable equivalence relation
that defines the éata type. The semantics of a specification is a set of heterogencous aigebras
that are behaviorally cquivalent based on the observable equivalence relation characterized
by the specification.

To determine the obscrvable cquivalence relation characterized by a specification,
the symbol *=" in the axioms of the specification should be read as ‘observably equivalent'.
For instance, the cquation Sizc(Enqueuc(q, c)) = Size(q) +1 in the spcecification of
Queuc_Int asserts that the two expressions yield observably cquivalent values for all
instantiations of the variables in them. The observable equivalence relation characterized by
the specification is the réﬂexive. symmeltric, transitive closure of =. Every algebra that
satisfies all the axioms in the specification is a model of the type being specified by

specification.
3.2 Association Specification

In addition to the specifications of the types involved in the synthesis, the synthesis
procedure expects the user to provide information about the representation scheme to be
used by the implementation that is to be derived. This section explains what exactly that

information is, and how it can be specified. We call the formal description of the information

the association specification of an implementation.

i -43-

Fig. 7. Specification of Qucue_int

Queue_Int is Nullq, Enqueue, Front, Degucue, Append, Size

Defining Types

Rool, Int

Operations

Nullq > Qucuc_Int

Fnqueue : Queue_Int X Int -> Queue_Int
Front “Quenc_Int-> Int U { KERROR }
Dequeune : Queue_Int -> Queune_lnt U { ERROR } A
Append : Queuce_int X Queuc_int -> Queuc_Int
Size : Queue_Int -> Int

Basis

{ Nully, Fnqueue }

Axioms

(1) Front(Nullg) = FRROR
(2) Front(knqueue(Nullg,¢)) = e
(3) Front(Fnqueue(Enqueue(q, cl), ¢2)) = Front(Faqueue(q, c1))

(4) Dequeue(Nullg) = KRROR
(S) Dequeve(Enquene(Nullg, ¢)) = Nullg
(6) Dequeve{Fnquenc{Enqueue(q, ¢l), ¢2)) = Fnqueuce(Dequeue(Fnguenc(q, c1)), e2)

(10) Append(q. Nullg) = q
: (11) Append(ql, Enqueuc{q2, ¢2)) = Faqueuc{Appcnd(ql, q2), ¢2)

A (12) Size(Nullg) = 0
' (13) Size(Enqueue(q. ¢)) = Size(g) + 1

: Fig. 8. Specification of Circ_List
! Circ_List is Create, Insert, Value, Remove, Rotate, Empty, Join

Defining Types
Integer, Boolean

Operations

~
ghl
e

Create ;<> Circ_List

Insert : Circ_List X Integer -> Circ_List
Value : Circ_List > luteger U { ERROR }
Remove : Cire_List -> Circ_List U { FRROR }
Rotate : Circ_List -> Circ_List

Empty : Circ_List -> Boolean

Join : Circ_list X Circ_list -> Circ_list

Comment
Circ_List i a list of integers with a front end and a rcar cnd. Create constructs an cmpty list; the front

and the rear ends of an empty list are the same. Insert inscrts an clement into a list at the rcar end.
Value returns the clement at the rear end of a list. Remove removes the clement at the rear end from a
list. Rotate moves cvery clement in a list by onc position towards the rear end in a cyclic fashion, i.c.,
the clement at the rear is moved to the front. Empty checks if a list is cmpty. Join joins two lists by
positioning the first argument in front of the second.

Basis
{Creatc, lnsert}

Axioms

(1) Vatue(Create) = ERROR
2) Valuc(lnsert(c,i)) = i

(3) Remove(Create) = LRROR
(4) Remove(Insert(c, i)) = ¢

(5) Rotate(Create) = Create
(6) Rotate(Insert(Create, i)) = Insert(Create, i)
(7) Rotate(Insert(insert(c, if), i2))) = Insert(Rotate{Insert{c, i2)), i1)

(8) Empty(Create) = true
(9) Empty(lnscrt(c, i)) = false

(10) Join(c, Create) = ¢
(11) Join(c, Insert(d, i)) = Insert(Join(c, d), i)

; -45-

3.2.1 What is an Association Specification ?

An association specification characterizes two pieces of information about a

representation scheme:

' (1) The set of valucs of the representation type that an implementation may use in i
representing the values of the implemented type. We call this sct the representing I "

domain (®). % is characterized by means of a predicate on the representation type :

calted the invariant(3): % is the set of values of the rcpresentation type for which 3

is True.

(2) A function, called the abstraction function, from the values of the representation type .

to the values of the implemented type. The function corresponds to the

representation function of a data type introduced by [21]. The abstraction function
maps a representation valtue to an abstract value that the former may represent in an
implementation. An abstraction function may be a many-to-one function. An
. abstraction does not have o be defined on every value of the representation type.

However, it has to be defined on every value in the representing domain.

The information characterized by the association specification is often the most
creative part of an implementation. The proof of correctness of an implementation also, in
general, needs to use information such as this. If the invariant part of an association

| specification is vacuous, then we assume that the invariant is true on all values of the
representation type. In such a case the representing domain includes all the values of the

representation type.
3.2.2 How Is It Expressed ?

We specify 3 and A using the same language that is used to specify the data types
| involved. 9 is specified as a set of equations, like any other predicate on the value set of the
representation type. A is specified as a set of equations relating expressions of the

representation type to expressions of the implemented type. We require that A be specified

as a well-defined function with a nonempty domain. -

Fig. 9. Two Association Specifications for Queue_Int

9(a) Queue_lnt in terms of Circ_List

A(Create) = Nullq
A(tnsert(c. i)) = add_at_head(A(c), i)

add_at_head(Nullg) = Enqueuc(Nullg, i)
add_at_hcad(Knqueue(q. i), if) = Fnqueve(add_at_head(q, il), i)

9(b) Qucue_int in terms of Array_Int X Int X Int

A(Ly, i, >} = Nullq
A(CAssign(v, ¢,). i, j+ 1>) = if i = j+1 then Nullq
clse Enqucuc(A(<v, i, j>). ¢)

(v, i, D) = True
I Assign(v, ¢, j), i, j+ 1) = ifi = j+1 then True
' clse i j+1< i then False
clse IKv, i,)

Fig. 9 gives a couple of example of an association specification. %a) specifies an
implementation of Qucue_Int in terms of Circ_List. The empty queue is represented by the
empty list; a nonempty queue is representcd by a list whose elements are identical to the ones
in the queue, but are arranged in the reverse order. The motivation for this representation

scheme is that reading and dcletion of clements from a queue can be performed efficiently.

Consider the association specification given in Fig. 6. It specifies a representation
scheme for implementing Queue_Int as a triple , which can informally -be described as
follows. (Array_Int is specified in the next chapter which also describes the association

specification shown below in more detail.)

Fig. 9(b) specifies an implementation in which a queue is implemented as a triple
Array_Int X Integer X Integer. (Array_Int is specified in Fig. 10.) The representation scheme
can be informally described as follows. Nullq can be represented by any triple in which the

two integer components are equal. A nonempty qucue can be represented by a triple <v, i, D,

"

41 -

Fig. 10. Specification of Array_Int
Array_Int is Nullarr, Assign, Read, Size, Empty

Defining Types
Integer, Boolean

Operations

Nullare :-> Array_Int

Assign : Array_Int X Integer X Integer -> Array_Int
Read : Array_Int X Integer -> Integer U { ERROR }
Size : Array_lnt -> Integer

Fmpty : Array_Int -> Boolean

Comment

Areay_Int is an array of intcgers. Every clement in the array is indexed by an integer; the indices are
not necessarily contiguous. Nullarr creates an cmpty array. Assign assigns a given value (the second
argument) to the clement at a given index (the third argument); if the array docs not have an clement
with the given index, then the value is added to the array. Read rcads the clement at the given index.
Empty checks if an array is empty.

Basis
{Nullarr, Assign}

Axioms

(1) Assign(Assign(v, cl, i1), €2, i2) = if il = i2 then Assign(y, ¢2, i2)
else Assign(Assign(y, €2, i2), el, il)

(2) Read(Nullarr, i) = ERROR
(3) Read(Assign(v, e, j). i) = ifi = jthene
clse Read(y, i)

(4) Empty(Nullarr) = true
(5) Empty(Assign(v, ¢, i)) = false

m

-48 -

where v is an array of arbitrary length containing the clements of the queue between the
index values i and j-1, in order. In other words, i points to the front end of the queue, and j
points to the next position available in the qucue for adding an element.

Note that in this example, unlike the last one, not every value of the representation
type can legally represent a queue. A triple <v, i, j> is a legal representation value if only if
i <j, and v is guaranteed 10 be defined on all index values between i and j-1. The invariant 3
in specifies this condition.

The abstraction furtction A is specified so that it is definced on all valucs for which $
is True. The specification uses an auxiliary function Add_at_head. Add_at_head is a function
on Queuc_Int that adds a given element at the front of a queue. A spccification of

Add_at_head is given as a part of the association specification.
3.2.3 Further Discussion on Association Specification

It is important to note that every association specification need not have an
implementation corresponding to it To understand this more clearly, let us look at the
rclationship between an association specification and an impicmentation that uses a
represcntation scheme consistent with the one characterized vy the association specification.

An implementation of a data type consists of
(i) a rcpresentation type being used as the representation for the implementation.

(ii) aprogram, i.e., a scgment of code, for every operation of the type in a language; this

program is called the implementation of the corresponding operation.

Note that both a preliminary implementation and a targct implementation (as introduced in
the previous chapter) of a data type are implementations of the data type. A preliminary
implementation uses one language to express the program, while the target implementation
uses another.

Formally, an implementation of a data type can be considered 1o be denoting a

heterogeneous algebra, called an implementation algebra, with

m

-49 -

(i) a principal domain that is a subset of the value sct of the representation type,

(ii) a domain corresponding to every defining type of the implemented type - this
domain is identical to the value sct of the corresponding dcfining type,

(iii) a function corresponding to the implementation of every opcration of the

implemented type so that the function mimics the behavior of the implementing

program.

An implemcntation of a type is correct if there exists a homomorphism, from the
implementation algebra to to the implemented type. The association specification should be
such that there exists an implcmentation algebra with computable functions that corresponds
to the representation scheme characterized by the association specification. More specifically,

the implc;ncnlalion algebra should satisfy the following conditions:

(i) The principal domain of the algebra is the representing domain characterized by the

association specification.

(ii) Therc is a computable function in the algebra with the appropriate functionality

corresponding to cvery operation of the implemented type.

(iii) The implemented data type is a homomorphic image of the implcmentation algebra

with respect to the abstraction function.

We do not intend 1o formally characterize the properties that the association specification
. ought to satisfy so that it meets the above requirement. Rather. we trust the intuition of the
user, and assume that there exists an implementation that is consistent with the association
specification furnished by him. If the association specification provided as an input to the
synthesis procedure is such that there is no implementation corresponding 1o it, then the
synthesis procedure will, in general, never terminate. The synthesis method, however, does

not produce an incorrect implementation in such a case.

e

3.3 Restrictions on the Inpuls

The method used by the synthesis procedure 1o derive an implementation is based
on treating cvery cquation in the specifications as a rewrite rule. The procedure combincs all
the input specifications, and trcats the union as a sct of rewrite rules called the /nitial World,
The restrictions imposed on the inputs are intended 1o ensure that the Initial World satisfics a

uscful property called the principle of definition.

The first subscction infonmally introduces the basic concepts about rewrite rules.
(See Appendin | for formal definitions) The second subsection defines principle of
definition, and develops a sufTicient set of conditior's for principle of definition (SCPD). The
input is expected to satisfy SCPD. The third subsection describes how to prove properties
from a specification that satisfies SCPD.

3.3.1 Rewrite Rules and Rewriting Systems

A rewrite rule is an ordered pair (left, right), written left — right, where left and
right are expressions containing variables so that the variables in right are among the
variables in left. A rule is used to reduce an expression by replacing any subexpression that is
maliched by left with a corresponding version of right, i.e., with the same substitutions for
variables that were made in matching feft. (More precisc definitions are given in Appendix [.)

For example, odnsider the rule
Append(q,, Encricue(qy, 1)) — Enqueuc(Append(q,, q,), i,). and the expression
a= chueue(AppM(qy Enquecuc{Nullq, 0))). « is reducible using the rule because it has a
subexpression a' = Append(q,, Enqueue(Nullq, 0)) that has the form of the left hand side of
the fule: That s, Append(q, Enqueue(qz. I,)) becomes identical o
Append(q,, Enqucuc(Nullq, 0)) when the variables in the former are substituted according to
the substitution o = (q, — q,,q, ~ Nullq, i, — 0]. The corresponding instance of the right
hand side of the rule (obtained by substituting the variables in Enqneuc(Append(q,, q,) 'z)
using the substitution o) is B' = Enqueve(Append(q,, Nullg), 0).
8 = Dequeue(Enqueve(Append(q,, Nullq), 0)) is the expression obtained by replacing a* by
B' in a. Then, we say thal a reduces tv B, written a — 8.

1——-—-—-———“

m

-51-

A rewriting system is a set of rewrite rules. Let R bc a rewriting system. An
expression a is reducible by R if it is reducible by some rule in R. If a is not reducible by any
rule in R, then « is irreducible by R.

If « — B by arule in R, then we say that a directly reduces to B using R, and once
again writc it as a — B (using R). Let —* be the smallcst relation on pairs of expressions
which is the rcflexive, transitive closu.c of —. Thus, a —* 8 if and only if there exist
expressions LI TP where n > 0, such that a = ay @ a fori=0,...,n-] and
a, = B. Weread a —* B as'a reduces 1o B.

Suppose a —* 8, and B is irreducible. Then we say that a simplifiesto 8; B is called
a normal form of '« (in R).

Rewriting systems are used to simplify expressions into their normal forms. Thus, a
uscful property of a system is uniform termination: R has the uniform termination property if
no infinite sequence of reductions, a, — a, — is possible in R. When R has the uniform
termination property every expression is guarantced to have a normal form. Another useful
property of a rewriting system is unique termination: R has the unique termination property if
any two terminating sequences of reductions starting from the same expression have identical
final expressions. When R has the unique termination property the normal form (if it exists)
of every expression is unique. A rewriting system that has both the uniform termination
property and the unique termination property is said to be convergent. When R is convergent
every expression a has exactly one normal form: we denote the unique normal form of a in a
convergent system by aié.

The rewriting systems corresponding to our input specifications are obtained by
simply replacing the symbol ‘=’ by the symbol '—' in each of the equations in the
specifications. For example, Fig. 11 gives the rewriting system corresponding to the
specification of Queue_Int in Fig. 7. Henceforth, we treat the input specifications as rewriting

systems obtained as explained above. When we refer to a specification, we actually mean the

rewriting system obtained from the specification.

r————-—-——-———————-—f

-52-

Fig. 11. The Qucue_Int Rewriting System

(1) Front(Nullg) = KRROR
(2) Front(Enqueuc(Nullg, €)) — ¢
(3) Front(Fnqueue(Fnqueue(q, ¢l), ¢2)) — Front(Enqueu(q, cl))

(4) Dequeuc(Nullg) — FRROR
(5) Bequeue(knqucuc{Nullq, ¢)) — Nullq
(6) Dequenc(Fnqueuc(Enquene(q. el), €2)) — Enqueue{Dequeuc(Fnqueuc(q, cl)), €2)

(10) \ppend(q, Nullg) - q
(11) Append(ql, Fngueue(q2, €2)) — Enqucue(Append(gl, q2), c2)°

{12) Size(Nullqg) —+ 0
(1Y) Sire{Fnqueue(q, ¢)) — Size(q) + 1

3.3.2 The Principle of Definition

The principle of definition is a property of a specification (or a group of
specifications). The property ensures the consistency of a specification. The property
rcinforces the two-tier characteristic inherent in our specifications: It ensures that the
gencrators are specified among themselves, and the nongenerators are specified as total
functions in terms of the generators. Finally, the property is useful in mechanically proving
properties of data types from their specifications. The property is similar 1o a property with

the same name defined in [22]. Our definition is more general than the one in [22],

Definition The Principle of Definition

A specification (or a group of specifications) S has the principle of definition property if every
constant t has exactly one normal form (in S), and the norma' form is a generator constant of

the appropriate type.

There will be situations in our development when it is necessary to use a restricted
version of the principle of definition. The notion is restricted in the sense that the principle

of definition need hold good only for a subset of terms. The restricted property is useful in

@i

stating that every nongenerator defined by a system be defined as a total function on a subset

-53-

of the value set of a type. We give a definition the property below.

Definition Principle of Definition With Respect T

Let T be a set of generator constants not necessarily including all possible constants. A
system S satisfics the principle of definition with respect to T if the following condition holds:
Every constant of the form F(g,,....8,). where F is a nongenerator function symbol and
8, -+, 8, are generator constants in T, has a unique normal form (in S) that is a generator

constant in T.

The principle of definition has two parts to it: It requires cvery constant to have a
unique normal form in S, and the normal form to be a generator constant. SCPD has to be
formulated so as to ensure the two parts. The first part can be ensured by requiring S to be
convergent (i.e., to satisfy the uniform termination property and the unique termination
property). The second part is ensurcd by requiring S to be well-spanned. We define what it
means for S to be well-spanned below, and then show how the two propertics cnsure the
principle of definition of S. .

Consider the rewriting system shown in Fig. 11. The system has three rules (1, 2,
and 3) in which the cxpression on the left hand side has Front as its outermost symbol. The
set, {Nullq, Enqueuc(Nullg, ¢), Enqueuc(Enqueue(q, cl), e2)}, of generator expressions that
appear as arguments to Front on the left hand side in the rules spans the entire set of
generator constants of Queue_Int; in other words, every gencrator constant of type
Queue_Int is an instance of onc of the expressions in the above sct. When a rewriting system
has enough rules corresponding to a nongenerator function f so that the set of generator
expressions appearing as arguments to f spans the set of all generator constants, we say that f
is well-spanned by the rewriting system. We say that a rewriting system is well-spanned if
every nongenerator function symbol of the system is well-spanned. We formalize this notion
below.

In general, since f can be multi-ary, the arguments to f arc k-tuples of expressions of

appropriate types, where k is the arity of f. In the following formalization, we first define the

notion of a set of k-tuple of generator expressions being well-spanned. informally, a set of

r———

-54-

k-tuples of generator expressions is well-spanned if it spans the set of all k-tuplcs of gencrator
constants of appropriate types. The property of a function being well-spanned is defined in
4 terms of the notion of a well-spanned set of k-tuple of generator expressions. In the

following, we assume that the k-tuples are homogceneous with regard to the types of their

components. The cxtension to the heterogeneous case is simple.

Definition A set A = {A,..., Ap} of k-tuples of generator expressions A, = <e,, ..., e is
well-spanned if the following condition holds: For every k-tuple, <tl, .., t >, of generator

constants there exist n, 1 < n < p, and a substitution o, such that for every j, 1 < j <k, we

have t,. = °(eni)“

Definition A nongenerator function f is well-spanned by a rewriting system R ifthereisinR a
set of rewrite rules whose left hand sides are of the form f(e,, ..., e,). 1 <i<p. and the set

{<e,p...,e,> 11 <i <p}iscomplete.

Definition A rewriting system R is well-spanned if every nongenerator function symbol in R is

well-spanned.

Definition A specification. S satisfies the s&ﬂicient condition for the principle of definition
(SCPD)if S satisfics the following conditions:

(i) Sisconvergent

(ii) S is well-spanned.

Lemma If S satisfies SCPD then S satisfies the principle of definition.

Proof Condition (i) guarantees that every constant has exactly one normal form. Condition
(ii) implies that every constant of the form Rg,,... ’3.)- where f is a nongenerator and
8,s---+ 8, are generator constants is reducible. Since S satisfies uniform termination
property, this means that no constant with a nongenerator can be a normal form. Hence the
normal form of every constant is a generator constant.

QED

- 55 -

3.3.3 Checking the Principle of Definition

The main reason for formulating SCPD is so that we might be able to develop
effective methods of checking if a specification satisfies the principle of definition. This
section sheds sorae light on this topic.

To check if a specification is well-spanned, we have to check if the: set of expressions
(or k-tuples of expressions) that appear as arguments to each of the implementing functions is
complete. Huet in [22] has demonstrated that it is possible to come up with an cffective set of
conditions that is sufficient to check if a set of expressions is‘oompletc.

Checking the convergence of a set of rules, which forms the remaining condition of
SCPD, has been investigated in [28, 22). The result in the cited works, which is due to Knuth
and Bendix, provides an algorithm (henceorth referred to as the K B-algorithm) to check the
convergence of a finite sct of rewrite rules that satisfies the uniform termination property.
Thus, if we can independently ensure the uniform termination property of a specification,
then we can use the KB-algorithm to show the unique termination property of the

specification.
3.3.3.1 Checking Unique Termination

Let R be a finite set of rewrite rules that has the uniform termination property. The
following theorem is the basis for the KB-algorithm for checking the unique termination
property. The theorem depends upon the concept of unification of expressions. We will first
define this concept.

Two expressions a and B with disjoint variable sets are said to be unifiable if there
exists a substitution 4 such that §(a) = 49([3).‘3 The most general unifier of two unifiable
expressions a and B is the unifier @, such that for any unifier ¢ of a and # there exists a
substitution p such that ¢ is the composition of p and 8. The unification algorithm of

Robinson [44] can be used to determine a most general unifier of two given expressions or

13. The symbol = stands for two expressions being identically equal.

-56.

decide that they arc not unifiable. In the discussion to follow we assume that the candidates
for unification have variablcs renamed if necessary to obtain disjoint variable sets.

Let y, — &, and y, — §, be two rules of R so that y, is unifiable with a nonvariable
subexpression of y,. More precisely, there exists an occurrence u in v, such thata = 1 U is
not a variable, and a is unifiable with y,. Let 8 be the most gencral unifier of a and y,.
Then, we say that 8(y,) is a superposition of y, on v,. (If 8 is either a superposition of y, on v,
or a superposition of y, on ¥,» then we say that B is a superposition between v, and y,.) To
each superposition there corrcspoﬁds a criricc;l pair <a,, a,> of expressions defined as follows.
a, and a, are the expressions obtained by applying to 8(y,) the above two rulcs, respectively.
More precisely,

ay = 6(r)lu — 0(8)]

a = 0(82)

For example, consider the following rules

Append(ql, Enqueue(q2, i2)) — Enqucue(Append(qt, q2), i2)

Append(Append(43, g4), 45)) — Append(q3, Append(g4, q5))

v, is unifiable with the entire expression y, by the most general unificr = [Append(q3, g4)
for g1, Enqueue(q2,i2) for qS]. yielding the superposition « and the critical pair a,, ay>
shown below:

a = Append(Append(q3, q4), Enqueue(q2, i2))

a, = Enqueuc(Append(Append(q3, ¢4), q2), i2)

a, = Append(q3, Append(qd, Enqueue(ql, i2)))

Theorem 1 The KB-Theorem

If R has the finite termination property, then it has the unique termination property if and
only if every critical pair <a,, a,> of R has the property that a, and a, have identical normal
form.

Proof For a proof see {28, 22].

If a finite rewriting system has nc supefpositions, and therefore, no critical pairs, it is said to

<

gt iawtarinte

-57-

be superposition-free. Thus, we trivially have:

Corollary If a finite rewriting system has thc uniform termination property, and is

superposition-free, then it has the unique termination property.

For example, the rewriting system in Fig. 11 corresponding to Quecue_Int is
superposition-free. In the next subsection we show that it satisfies the uniform termination

property. So the rewriting system is convergent.
3.3.3.2 Checking Finite Termination

A general technique for checking termination of a rcwriting system R is to
demonstrate that it is possible to define a well-founded partial ordering > on the set of all
constants (that can be constructed using the function symbols in R) so that t, — t, implies
t, > t,. A partial ordering is well-founded if there are no inﬁr{ite descending sequences such
as t, > t, >... for any constants. Hence, there cannot be any infinite sequence of rewrites
using R also. Appendix II goes into this topic in greater detail. It describes a thcorem that
provides a useful guideline to define a suitable partial ordering to check the uniform
termination property of a rewriting system. '

We assume that a well-founded partial ordering >~ on expressions is available as an
input to the synthesis procedure. The ordering > is used by the synthesis procedure not only
to ensure the uniform termination property of inputs, but also to ensure that the output
synthesized terminates. The orderings used in our examples belong to a class of orderings,
called the Jexicographic recursive path ordering {26, 10]. A formal dcfinition of the ordering is

given in Appendix I1.
3.4 Proving Properties of a Data Type

The properties of a data type we are interested in are always expressed as equations

of the form e, =e, where e, and e, are expressions, and = denotes the observable

1
equivalence relation (see sec. 3.1.2). For instance. the property

Append(Append(ql, q,) q,) = Append(q,, Append(q,, q,)) asserts that for every instantiation of

-58-

the variables by values the expressions on the two sides of the equation yield observably
equivalent values. Our objective is to prove a property as a theorem from a specification of
the type. This is crucial to our work because synthesis of implementations involves searching
for appropriate thcorems of the input specifications. In the following, we describe how to

mechanically prove theorems from a specification that satisfics the principle of definition.

Definition A Theorem of a Specification
Let S be a specification (or a group of specifications). Let ¢ be a subsiitution that maps
variables to generalor constants. An equation ¢, =, is a theorem of S if for every o the

constants a(el) and a(ez) have identical normal forms.

Note that the above definition of a theorem gurantecs that if e =e) is a thcorem of S tl'lcnel
and e, always yield observably equivalent values. This is because the principle of definition
ensures that for every instantiation of the variablcs (in ¢ and ez) by generator constants the
two expressions simplify to the same generator constant, This provides a basis for developing
a method for mechanically proving properties of data types from spccifications,

Note that the reverse of the above implication is not true. This is because we
require that the input specifications be only consistent (via the principle of definition), but
not complete [25]. A specification S of a data type D is complete if every equation e, = e,
such that e, and e, are observably equivalent for D is a theorem of S. The synthesis
procedure would be more productive if the input specifications are complete. This is because
it is possible to prove more properties from a complete specification, and hence the synthesis
procedure might be able to derive a larger class of implementations.

There are several ways in which the above result can be used to deduce that an
equation is a theorem of a specification. The methods differ in the reasoning or logic used for
the deduction. In our development we deal with two Kinds of logic: the equational logic, and

the inductive logic.

Equational Logic

In the equational logic e, = e, is deduced to be a theorem of S by checking if e, and

" ——

-§9 -

¢, have the same normal form in S. Note that if e 4 = e,i, then it is obvious that ¢, and e,
have identical normal forms for every substitution of the variables by generator constants. (e
denotes the normal form of ¢) An equation deduced to be a theorem of S in this fashion is
said to be a theorem in the equational theory of S. When S satisfies the principle of
definition every expression is guaranteed to have a unique normal forni. Therefore, it is
possible to develop a general procedure to decide the cntire equational theory of S. As an
illustration, we give a proof of
Appcnd(Appcml(ql, qz), Nullg) = /\ppend(ql, Appcnd(q » Nullg)) using the specification of
Queue_Int shown in Fig. 11

Fquation to be proved: Append(Append(q,, q,), Nullg) = Append(q,, Append(q,, Nullg))

Normal form of left hand side: Nomal form of right hand side:
Append(Append(q,. q,), Nullg) Append(y,. Append(q,, Nullg))
Rule (10) l l Rule(10)
Append(q,, q,) . Append(q,, q,)
Inductive Logic

A property @ is deduced to be a theorem in the inductive logic by using, besides the
reduces relation —*, some form of mathematical induction. A property that is deduced
using the inductive logic is called a theorem in the inductive logic. The sct of all properties
that can be deduced from a specification using the inductive logic is called the inductive
theory of the specification.

The induction used is carried over the set of all generator constants using one or
more of the variables in ® as parameters for the induction. The induction is based on any
well-founded partial ordering on the set of generator constants. Suppose G is the set of all
generator constants, and > is a well-founded partial ordering on G. Suppose we are using
the variable v of ®(v) as the parameter of induction. Then the induction rule may be stated as

follows:

Induction rule

-60 -

If for every t € G we can show that, for every t' €Gsuchthate>t', ¢[v/t'] => ¢{v/t], then

&(v) is thcorem.

To apply the induction rule, we have to define a partial ordering > on G. Since G
zan, in general, be infinite the definition of > is usually recursive. The step of showing
¢[v/t'] = ¢[v/t], for cvery t > t' is fragmented into several cascs. Each of these cases is
established using the relation —* as was done in the equational logic. Fig.12 gives an
example of an inductive proof. It proves the property
Append(Append(q,, qz), qj) = Append(ql, Appcnd(qz, q3)) from the specification of Quecue_lnt
given in Fig.1l. The proof uses an ordering generated by the following relation on the
gencrator expressions of Quecuc_Int: Enqueue(q, i)> Nullg, and Enqueue(q,i) >~ q. The
proof uses the variable g, as the parameter of induction.

It is not possible 10 develop a general procedure to decide the entire inductive

Fig. 12. Proof by Inductive Logic

‘Theorem to be proved: Append(Appead(q,. q,). 4,) = Append(q,, Append(a,, q,))
Basis: q,— Nullg

To prove: Append(Append(q,, q). Nullg) = Append(q,, Append(q,, Nullg))
Proof is demonstrated above.

Induction: q,— Enqueuc(q, si)

Hypothesis: Append(Append(q,. q,), a) — Append(q,, Append(q,, @)
To prove: Append(Append(q,, q,), Fnqueue(q, i)) = Append(q,, Append(q,, Enqueuc(q, i)

Normal form of left hand side: Normal form of right hand side:
Append(Append(q,, q,). Enqueue(q, i)) Append(g,. Append(q,, Enqueuc(q, i)))
Rule(11) l l Rule(11)
Enqueuc{Append(Append(g,, g,), @),) Append(q,, Enqueuc{Append(q,, q),))
Hyp. i : i Rule(11)

Enqueuc{Append(q,, Append(q,, Q). i) Enqueue(Append(q,, Append(q,. 9)), 1)

.61-

theory of S. This is because the inductive hypotheses necessary for the proof cannot be
generated automatically in all situations. However, when S satisfies the principle of
definition a significant number of intcresting properties in the inductive theory can be proved
automatically. The automatic method, first developed by Musser [38, 22), is based on the
' Knuth-Bendix algorithm (see sec 3.3.3.1) for checking convergence of a rewriting system, We
use this method for synthesizing implementations whose proofs of cotrectness need

induction. We will explain the method -in chapter 4 while describing synthesis in the

inductive theory.

-62 -

4. Stage 1: The Preliminary Implementation

This chapter discusses the preliminary implementation of a data type, and develops
a mcthod to derive it from the inputs to the synthesis procedure. A distinguishing
characteristic of the method outlined is that it is based on a method for proving the
correctness of a preliminary implementation. The chapter is organized into the following
sections. The first section defines precisely what constitutes a preliminary implementation,
The second section gives a mathematical formulation of the problem involved in the
derivation of a preliminary implementation for a data type from the given inputs. For
convenicnce, the problem is formulated, and solved here for a situation where the

representing domain is identical to the representation value set. In the next chapter, we

extend the derivation problem to the more general situation where the represcnting domain is
a subset of the representation value set. The last section describes a procedure to derive the

preliminary implementation from the input specifications.
4.1 A Preliminary Implementation

A preliminary implementation of a data type fis an implementation for the
implemented type in a rewrite rule language. The preliminary implementation uses a
representation scheme that is consistent with the one characterized by the association
specification supplied by the user. It consists of two parts: The Representation part, and the
Definitions part,

The Representation part gives the representation type used for the implementation
of the implemented type. We call the values of the representation type the representation
walues, and the set of representation values the representation value set. Only a subset of the
representation value set need be used to represent the values of the implemented type. This
subset is called the representing domain, and is characterized by the association specification.

The Definitions part contains definitions for a set of new functions on the

representation values. We call the new functions the implementing functions. There is an
implementing function corresponding to every operation of the imnlemented type; the

former implements the latter. The definition of an implementing function that implements

- - S e as e MR ”ﬁw

m

an operation is called the preliminary implementation of that operation. An implemcnting
function is not necessarily a total function on the representation value set. However, it has to
be defined on every value of the representing domain. We use the following convention
throughout the development to help associate an implementing function with the operation
of the implemented type it implements: The identifier that denotes an implementing function

is the capitalized version of the identifier that denotes the corresponding abstract operation.

For instance, NULLQ is the implementing function of the operation Nullq.

Rk The

rewrite rules in the Definitions part defining an implementing function F are the ones that

The Definitions part consists of a set of rewrite rules of the form e

have F as the outermost symbol on their left hand side. e, and e, are cxpressions that may
contain the implementing functions, the operations of the implementing types, and

il‘_thcn_cise with the following constraints:

(1) The only operations of the representation type that may appear in e, and ¢, are the

generators of the type.

(2) e, and e, may not contain any auxiliary (or helping) functions other than
if_then_else. '

There are two reasons for constraining the preliminary implementation. Firstly, we
would like to constrain the structure of the preliminary implementation so that the synthesis
procedure has (o perform less work in searching for the desired solution. Secondly, we want
to keep the language as simple as possible so that the principle behind the synthesis method is
brought out more clearly in our description.

The first constraint is imposed to kecp the preliminary implementation derivation
problem simple. This constraint permits us to ignore several axioms in the specifications of

" the implementing types during verification as well as synthesis of a preliminary
implementation. In particular, the only axioms in the spccification of the representation type
that we need to consider are the ones that involve only the generators of the type involved in
the specification. This is because only the generators of the representation type may appear

in the preliminary implementation. To this extent this constraint simplifies the synthesis

method. An implementation that also uses the rest of the operations is derived in the next

A

stage of the synthesis as a transformation of the preliminary implementation.

The sccond constraint, in general, restricts the logical power, i.e., the ability to
define any computablc function on the representation type, of the preliminary
impicmentation language because the constraint prohibits the use of any helping (or
auxiliary) functions (except if_then_else) in a preliminary implementation. Our synthesis
mcthod cannot automatically discover the helping functions that might be nccessary in the

preliminary implementation. We use two approaches to get around this problem; both the

approaches amount to refaxing the second constraint. They are eaplained here briefly, but
are illustrated morce clearly when we later consider examples involving them.

The first approach consists of sccking help from the user. We requirc the user to
furnish a specification of the helping function necded in the preliminary implementation.
We then relax the sccond constraint 1o permit the use of the helping function in the
preliminary implementation,

The second approach consists of introducing a new construct into the preliminary
implementation language. The construct, which is used primarily in conjunction with a tuple
type. helps climinate the need for helping functions while defining scveral functions on tuple
types. The motivation for paying special attention to tuple type is because a tuple type is a
commonly used representation type. The construct provides a way of accessing the
componcents of a tuple being returned by an expression of tuple type without explicitly using
the operations that select the components of a tuple. This construct may be used in
expressions that appear on the right hand side of an equation of a preliminary
implementation. The construct is expressed by means of an cxpression with the following
syntax:

e, where L TP Is ¢
In the above, v,,..., v, are variables; e,, is an expression of n-tuple type: ¢, is an expression

that may contain the variables Vpooos? The construct binds, in order, VeeenV 0 the

-
components retumed by e,,. The scope of the binding is limited to the expression e, For
example, consider the expression

<Assign(vl, e, j1),il, }1 + 1> where <v1, i1, j1> is DEQUEUE(y, i,). Assuming

DEQUEUE is a function from Triple to Triple, the variables v b and J, in the above

A~

-65-

expression are bound to the components of the triplc returned by DEQUEUE(Y, i, j3).
4.2 The Preliminary Imlementation Derivation Problem

Our intention is o study the problem of synthesis within the data type verification
framework. So we formulatc the problem of deriving a preliminary implementation as
roughly the inverse of the problem of proving the correctness of the prefliminary
implementation. -

First, we develop .the critcrion of correctness of a preliminary implementation.
Then, we formulate the problem of verifying if a prcliminary implementation meets the
correctness crite;ion. We define the derivation problem after that. For convenicnce, the
verification problem and the derivation problem are formulatcd here for a situation in which
the representing domain is identical to the rcpresentation value set. This situation
corresponds to the case where the abstraction function is total, and the invariant part of the
association specification is vacuous. We discuss the derivation problem for a situation where
the representing domain is a subset of the representation value later. It should be noted that

the formulation of the correctness criterion given below applics 1o both situations.
4.2.1 The Criterion of Correctness

Informally, for a preliminary implementation to be correct, the implementing
functions it defines should collectively exhibit a bchavior that is consistent with the
observable behavior characterized by the specification of the implemented type. Also, the
preliminary implementation should use a representation scheme that meets the requirements
of the association specification given as input. Let us formalize this intuitive notion.

The formal object that a preliminary implementation is dcnoting can be considcred
to be a heterogeneous algebra, called the implementation algebra, with the following

components:

(i) A principal domain that is a subsct of the representation value set. The principal
domain is defined as the set of all values of the representation type that are

"reachable” through the implementing functions corresponding to the constructors

S s

) -66 -

of the implemented type. In other words, the principal domain is the set of
representation values generated by the closure under functional composition of the

implementing functions corresponding to the constructors of the implemented type.

(ii) A domain corresponding to every defining type of the implemented type. We

assume that this domain is identical to the value set of the corrcsponding defining
type.

(iii) a function corresponding to every implementing function defined by the preliminary

implementation,

A preliminary implementation is correct if the implementation algebra it denotes is
a model of the implemented data type in a manncr constrained by the association
spcciﬁcalion. This means that there exists a homomorphism from the implementation
algebra to the the implemented type that behaves as an identity function on the values of the
defining types, and exactly like the abstraction function characterized by the association
specification on the values of the representation type,

Let ® denote the represcnting domain, and A denote the abstraction function

specified by the association specification. Let 36 be a function defined as below.

D: Implemented Type, %: Representing Domain, D, . .. D, :The defining types of D
%:%UD,U...UD > DUD,U...UD,
A% ->D

W(r) = A ifreEn

r otherwise

A preliminary implementation of a data type is correct with respect to the association

specification A , if the following two conditions hold.
(1) Touality Property.Every implementing function is total over %, .

(2) Homomorphism Property. The operation f of the implemented type and the ,
implementing function F are related by the property:
(V 1 € RYI(F(.er, T 1eee)) = Koy J(0) o)}]

| -61-

The correctness criterion formulated above is different from the formulation found

in the litcrature on data type verification [25, 14, 18] which is not formulated with respect to a
given homomorphism . According to the conventional formulation a prcliminary
implementation is correct if there exists a function 36 from the representation value set to the
value set of the implemented type so that: For all r€the principal domain,
36(F(..y 7 00.)) = (..., 36(1) ,...). Thus, according to this criterion the implementing functions
are not required to be total with respect to . Note that the principal domain can be a subset
of %. What distinguishes our formulation is 'the requirement that F be total over %, and also
satisfy the homomorphism property over %.

Our formulation is more useful in the context of synthesis. It enables us to
determine a principal domain of the implementation algcbra (which, in tum, determines the
set of representation values on which cvery implementing function should be defined)
directly from the association specification. This reduces the interdependence of the synthesis
of preliminary implementation for the various operations of the type. This is because in other
formulations the principal domain has to be determincd by computing the closure under
composition of the implementing functions of the constructors. Thus the domain of the
implementing function of cach of the constructors is, in general, dependent on the behavior
of the implementing function of every other constructor.

The totality requirement is also more interesting in the context of synthesis. In the
synthesis process the association specification initiatés the derivation of an implementation by
defining the representation scheme to be used. The association specification is expected to
express the intention of the user regarding the represcntation scheme he wants the
implementation (to be derived) to use. So it is logical to assume that the user wants the entire
representing domain characterized by the association specification to be uscd for representing

the values of the implemented type.

e

4.2.2 The Derivation Problem

The goal of the derivation problem is to derive a preliminary implementation from
the given inputs so that the preliminary implementation meets the correctness critcrion, The
inputs consist of the specification of the implemented type, the spccification of the
implementing types, and the homomorphism specification. The homomorphism specification
is a specification of the homomorphism 36 that the preliminary implementation ought to
obey. This specification is easily derived from the specification of the abstraction function A
(given as a part of the association specification). The Homomorphism Specification contains
two kinds of rewrite rules obtained as described below. The first set of rules specifies that %6
behaves exactly like the abstraction function on the representation values. The second set of
rules specifics that 36 behaves as an identity function on the values of all the ancillary types.
More precisely,

(1)if Ale,) = e, belongs to the abstraction function spcciﬁcatioﬁ
then J6(e,) = ¢, belongs to Homomorphism Specification
(2) if o is a generator of an ancillary type
then SG(o(vl, R ")) = a(th(vl), cees th(vn)) belongs to Homomorphism Specification

Let us call the combination of all the input specifications the Input World (IW). The
restrictions on the inputs (see sec 2.3.1 of the previous chapter) ensure that the Input World
satisfies the principle of definition. The strategy behind the method used in deriving the
preliminary implementation is based on the principle of definition property.

Suppose 1W is supplemented with a set of rewrite rules, called the J-rules, that
express the homomorphism property a preliminary implementation is expected to satisfy: For
every pair of an operation f of the implemented type, and its implementing function F there
exists an J6-rule of the form J6(F(v,..., vn)) — l(.’JG(vl)., ceey Jﬁ(vn)). Let us call the
supplemented system the Perturbed World (PW). Let us suppose that the addition of the
36-rules does not destroy the uniform termination property of IW. The reason we refer to the
supplemented system as the Perturbed World is because the addition of the J6-rules destroys
the principle of definition property. PW does not satisfy the principle of definition because

the implementing functions that are newly introduced into the system are as yet undefined.

B~ o e aree or- 9%, s -l D

r.
v
e N

-69-

A constant involving the implementing function symbols does not simplify to a generator
constant.

Recall that the principle of definition is a formal expression of the requircment that
every nongencrator function in a‘system be completely defined as a total function. If we can
generate a set of rewrite rules that can restore the principle of definition property of PW, then
the new set of rules can be considercd as a complete definition for the implementing
functions. Thus, preliminary implementation derivation is a problem of restoring the
principle of definition of a system that violates it.

More precisely, the problem involved in synthesizing a preliminary implementation
consists of deriving from the Perturbed World a set of rewrite rulcs, PI (the acronym stands

for preliminary implementation), so that
(1) PIU IW satisfies the principle of definition, as well as
(2) Pl U PW satisfies the principle of definition.
In the following, we give a formal proof that the above conditions guarantce the correctness
of the preliminary implementation.,
The Correctness Theorem
Let Pl be a set of rewrite rules derived so that the above two conditions hold. Then, Pl

satisfies the criterion of correctness of a preliminary implementation.

Proof The first condition asserts that P1 U IW satisfies the principle of definition. This
implies that every nongenerator function in the system, which includes every implementing

function, is defined as a total function. Hence, PI satisfies the Totality Property.

To show that PI satisfies the Homomorphism Property, we have to show that every
equation of the form ’JG(F(VI., ceey vn)) = f36(v)s . . . 3G(V.)) is a theorem of P1 U IW. The

argument to show that the second condition implies this is based on the following interesting

! -

result about any system that satisfies the principle of definition. The resul. ™ which is proved

as Theorem 6 in Appendix [l1, enunciates a sufficient condition for an equation to be a
theorem of a system that satisfies the principle of definition. Suppose S is a system that
satisfies the principle of dcfinition, and e, =e¢, is an equation so that e, and ¢, have at least

one nongenerator function symbol in them. Then, e, = e, is a theorem of Sif SU {e, — e,}

2
satisfies the principle of definition. The result is proved in the Lemma to follow.,

Because of the second condition PI U PW satisfies the principle of definition. Since
PW is IW U J6-rules, this impiies that (P1 U IW) U J6-rules satisfies the principle of
definition. Now, by the first condition PI U IW satisfies the principle of definition. By
applying the above result, each of the J6-rules (when treated as equations) is a theorem of
Pl U IW. Note that the result can be applied because the J6-rules have nongenerator
function symbols in them,

Q.E.D.
4.3 Decrivation of a Preliminary Implementation

In the previous section the'. problem of deriving a preliminary implementation was
formulated as deriving a set of rewrite rules, Pl, so as to restore the principle of definition
property to the Perturbed World PW. This section develops a procedure to derive a
preliminary implementation. The procedure makes. two assumptions about its input: (1) The
i initial World (IW) satisfies SCPD, a sufficient condition for the principle of definition, and
5 .. (2) a termination ordering > on expressions is available to the procedure to ensure the

uniform termination property of rewriting systems.

1 The obvious strategy for the procedure is to derive the rules of the preliminary
implementation so that Pl U IW and P1 U PW satisfy SCPD. But this limits the class of i

14. [22, 38)] contain results similar to the one proved in this iemma. The result here is different
because we have a different set of assumptions. The principle of definition property used in [22] is
more constrained than the one we have. The result in [38] assumes that S satisfies a completeness
property called fully specifiedness which is not assumed here. This is the rcason for the requirement
in the lemma that e,ande, should have at lcast one nongenerator function symbol in it.

-71-

implementations that can be derived by the procedure. So, we develop another set of
conditions, called the synthesis conditions, that is weaker than SCPD. PI is generawed so that
it satisfies the synthesis conditions. It can be shown that when Pl satisfies the synthesis
conditions, PI U IW and PI U PW satisfy the principle of definition. We first formulate the
synthesis conditions, and then devclop a procedure to derive a set of rules that satisfies the

synthesis conditions.
4.3.1 The Synthesis Conditions

The synthesis conditions for a set of rewrite rulcs Pl are the following:
(1) Totality Condition:

(a) Pl is well-spanned (for cvery implementing function) with cvery rule in it
being of the form F(g.....,g“)—ot.15 where F is an implementing

function symbol, and g, . . ., g, are gencrator expressions.

(b) Pl satisfies the ur:iiform termination property.

(2) Uniguencss Condition: P has the unique termination property.

(3) Homomorphism | Condition: For every rule F(gl, ceny gn) =t in PI,
%(F(g,...,8)) = J6(t) is a theorem of PW,

The following Synthesis Theorem shows that when Pl satisfies the synthesis conditions,
PIUIW and Pl U PW satisfy the principle of definition, and hence, by the Correctness
Theorem, P1 is correct. An informal motivation for the conditions can be given as follows.
The Totality Condition ensures that every implementing function is defined on all the values
of the representation type, and it terminates on each of them. The Uniqueness Condition
ensures that every implementing function is well-defined, in the sense that it yields a unique

value for every argument value. The Homomorphism Condition ensures that the preliminary

15. Note that the syntactic constraint on a preliminary implementation requires that ¢ may contain
neither the function symbol J6, nor any of the operations of the implemented type.

-1 -

implementation satisfies the Homomorphism Property,

The Synthesis Thcorem

If Pl satisfies the synthesis conditions, then P1 U IW and PlI U PW satisfy the principle of

definition, and hence P1 is a correct preliminary implementation,

Proof It is easy to see that Pl U 1W satisfies the principle of definition because the Totality
Condition and the Uniqueness Condition imply that preliminary implementation satisfies
SCPD, and 1W satisfies SCPD by our assumption about the .inputs.

Let NW denote Pl U PW, for convenience. We apply Theorem 8 (Appendix IfI) to
show that NW satisfies the principle of definition. According to that thcorem, a rewriting

systcm S satisfies the principle of definition if
(a) Sis well-spanned,
(b) S has the uniform termination property
(c) Every critical pair <a,, a,> of S is such that a, = a, is a theorem of S.

We show that NW satisfies all three premises of the above theorem. NW is well-spanned.
This is because 1W is well-spanned by our assumption, and Pl is weii-spanned by Totality
Condition (a). The only nongenerator function symbols of NW are the ones in IW and PI.
By Totality Condition (b) PI has the uniform termination property, so NW has the uniform
termination property also. The following lemma shows that NW satisfies premise (c).

Q.ED.

Lemma Every critical pair <e, e,> of NW is such that e, = e, is a theorem of NW.

Proof Note that PW is convergent. This is because IW is convergent by assumption, and the
J6-rules added to IW do not give rise to any new critical pairs.

NW is constructed from PW by adding PI to the former. Therefore, any new
critical pairs of NW would be generated as a result of a superposition of the rules of PI on the

rules of NW. Because of Totality Condition (a) on the form of the rules in Pl the only rules

e b

———

> oy £y

[pee——

AN
K

-13-

on which the rules of PI can have a superposition are the following:
() The rules of PI themselves, or
(11) the rules of the implementing types,
(111) the J6-rulcs.

Every critical pair <e,,e,> dctcrmined by a superposition on the rules in
category (1), and (I1) is such that e is identical to e,t. This is because, by the Uniqueness

Condition, P1 satisfics the unique termination property. Hence, e, = e, is a thcorem of NW.

2

Every critical pair determined by a supcrposition of the rules in category (111) is of
the form <I6(F(g,..., gn)). 36(t)>, where F(gl, e g) ot is a rule in Pl. By the
Homomorphism Condition, :IG(F(gl,...,gn))-:- 96(t) is a theorem of PV, and hence a
thcorem of NW.

Q.ED.
4.3.2 Derivation of the Rules of P1

The rewrite rules of PI are derived from the Perturbed World (PW). So the initial
task of the derivation procedure is to construct PW. PW is a rewriting system that includes
the Initial World (IW) and the %6-rules. IW is constructed by combining the specification of
the implemented type, the specifications of the implementing types. and the Homomorphism
Specification. Without any loss of generality, we assume that there is no conflict among the
names of the various function symbols in the specifications. PW is formed by then adding a
tule of the form %(F(vl,, ey V) = r(:l(;(vl).. ciey Js(vn)) for every implementing function F
to be defined. We assume that the termination ordering > being used by the synthesis
procedure is such that J6(F(v),,..., V) > f36(v,), ..., 36(v), for every implementing
function. This ensures that PW retains the uniform termination property as desired by the
derivation problem. Note that this is not a restriction because the implementing function
symbols (in the J6-rules) are fresh symbols being introduced into IW. Hence, an appropriate
ordering can always be found.

Although PW is defined to include the specification of every implementing type

I s o a2

| -

completely, it is not necessary to do so. Since the derivation method does not require the s

specifications to be complete, one may include only parts of the specifications of the
implementing types. The advantage of doing so is that the fewer rules in PW the more
efficient it is to derive the preliminary implementation. However, by not including certain
rewritc rules one might be excluding certain implementations.

Let us illustrate the construction of PW on an cxample. We consider the derivation
of an implementation for Queue_Int with Circ_List as the representation type using the

association spccification given in Fig. 9 in the previous chapter, Fig. 13 gives the rules of PW

et g+ Mg sl

for the example under consideration. The rules of the types Integer and Bool, which are also

among the implementing types are omittcd from the figure for convenience. The rules of the -

Fig. 13. The Perturbed World {

(1) Front(Nullg) = ERROR
(2) Front(Enqucuc(Nullg, ¢)) — e
(3) Front(Enquene(Enqueuc(q, ¢l), e2)) — Front(Fnqueue(q, cl))

(4) Dequeuc(Nullg) —+ FRROR
(5) Dequeuc(Enqueue(Nullg, €)) — Nullg
(6) Dequeue(knqueuc(Fnqueuc(g, el), €2)) — Enqueue(Dequene{Enqueuc(q, c1)), 2)

(10) Append(q, Nullg) — q ‘]
(11) Append(ql, Enquenc(q2, ¢2)) — Enqucuc{Append(gl, q2), e2) f

[(12) Empty(Nullg) — True
‘ (13) Empty(Enqueuc(q, ¢)) — False

.

’ (14) 36(Create) — Nulig
(15) J(Insert(c, i)) — add_at_hcad(36(c), J5(i))

(16) add_at_head(Nullq, i) = Enqucue(Nullg, i)
(17) add_at_head(Fnqueue(q, i), il) — Enqucuc(add_at_head(q, il), i)

e d

{19) J(NULLQ()) — Nuliq

(20) J(ENQUEUE(c, i)) — Enqueuc(36(c), J6(i))
(21) J(DEQUEUF(c)) — Dequene(36(c))

(22) J(APPENIXc], c2)) — Append(I6(e1), J6(c2))
(23) J(EMPTY(c)) — Empty(36(c))

_i
]

-75 -

representation type Circ_List are omitted because they are not going to be used in the
derivation of the preliminary implementation. This situation arises because a preliminary
implementation is permitted to use only the generators of the representation type. So, the
only rules of the representation type necded in verification, and hence also in the derivation
of a preliminary implementation, are the oncs that contain only the gencrators. Since
Circ_List does not have any rules of this kind. Circ_List does not contribute any rules to IW.
Rules (1) through (13) in the figure are rules of Quecue_Int; rules (14) through (17) are the
rules of Homomorphism Specification.

The next task is to derive the rewrite rulcs of Pl from PW, Strictly speaking, Pl
should be derived so that all the three synthesis conditions are satisfied. But, it is more
convenient to develop a procedure that derives the rewrite rules so that only the Totality
Condition and the Homomorphism Condition are met. The cffcct of ignoring the
Uniqueness Condition is not harmful in the sense that it can be fixed at a later stage by
post-processing the preliminary implementation, The Uniqueness Condition ensures that
every implementing function defined by Pl retumns a unique value on every representation
value. When the Uniqueness Condition is not satisfied, an implementing function F being
defined by P] may be nondeterministic: That is, F can be so that F(v) = 2 and F(v) = Vs

but v, # v,; however, both the values v, and v, will represent the same value of the

1
implemented type. The nondeterministic behavior, if any, in the preliminary implementation
will be climinated by our synthesis procedure in the second stage while deriving a target
implementation. The semantics of the target implementation language is such that it is
impossible to define nondeterministic functions.

The procedure derives the preliminary implementation for on2 operation at a time
by deriving a separate set of rewrite rules for every operation. The method used is the same
for every operation. The procedure first determines the left hand sides of all the rules of the

preliminary implementation. Then, it determines a suitable right hand side for each of the

rules from the already determined left hand side.

-76 -

4.3.2.1 Determining the Left Hand Side

The Totality Condition is used to determine the left hand side of the rules. The
Totality Condition has two parts: The first part requires Pl to be well-spanned, and the
sccond part requires Pl to have the uniform termination property. ‘The second part is
ensured while deriving the right hand side, which will be discussed later. The first part is
used here. _

The well-spannedness property (described formally in sec 2.3.1 of the previous
chapter) requires the left hand side expressions of the rules defining an implementing
function F to satisfy the following property: The set of generator expressions the appear as
arguments to F on the left hand side should span the set of all generator constants. More
preciscly, suppose the preliminary implementation of F consists of the following set of rules:
(in the following the question mark identifiers are used as place holders for expressions to be

determined later.)

Then, the set {g,...,8,} should be well-spanned (see scc2.3.1), i.e, span the set of all
generator constants of the appropriate implementing type. For instance, as a concrete
example, any pair of rules that have the form given below constitute a well-spanned set of
tules for ENQUEUE.

ENQUEUE(Create, j) — ?rhs,

ENQUEUKE(Insert(c,), }) — ?rhs,

Note that the left hand side of each of the above rules consists of ENQUEUE
applied to arguments that are generator expressions. The set of arguments, i.e., sequences of
generator expressions, to ENQUEUE on the left hand side of the rules is
ArgsSet = {<Create, p>, <Insert(c, i), j>}. ArgsSet spans the set of all ordered pairs of
gene-ator constants because every pair of generator constants (the first one of type Circ_List,
and the second of type Integer) is an instance of one of the arguments in ArgsSet.

It is easy to build a procedure that automatically generates a well-spanned ArgsSet,

-1 -

once the gencrators of the representation type are identified. In fact a slight modification to
the procedure referred in sec 3.3.3 (which checks if an ArgsSet is complete) can be used to
generate a complete sct of argument expressions. Thus, an appropriate set of left hand sides
for the rewrite rules to be derived can be determined automatically.

Fig. 14 gives a possible set of left hand side expressions for a preliminary
implementation for the example under consideration. Note that the right hand side of each
of the rules in the figure is denoted by a question mark identifier. So Fig. 14 can be

considered as a partial prelinvinary implementation of Queue_Int.
4.3.2.2 Determining the Right Hand Side

The right hand side of each of the rules is dctermincd using the already determined
left hand side so that the Homomorphism Condition and the second part of the Totality
Condition arc met. This where the Perturbed World (PW) conics into the picture,

PW is used to derive a set of equations, called the synthesis equations, one equation
for every rule in the preliminary implementation. The right hand side of a rule is determined

from the right hand side of the corresponding synthesis equation. The synthcsis equation

Fig. 14. A Partial Preliminary Implementation
(1) NULLQY) — ?rhs,

(2) ENQUEUF(Create, j) — ?rhs,
(3) ENQUEUF(!nsert(c, i). j) — ?rhs,

(4) FRONT(Create) — ?rhs,
(5) FRONT(Insert(c, i)) — ?l'hss

(6) DEQUEUF(Create) — ?rhs,
(7) DEQUEUF(Insert(c,i)) — ?rhs,

(8) APPENIXc, Create) — ?rhs,
(9) APPEND(c, Insert(d, i)) — ?rhs,

(10) SIZF(Create) — ?hs,,
(11) SIZE(Insert(c,) — ?rhs,,

corresponding to « rewrite rule F(g,) — 7, is an cquation of the form 36(1(g,) = 36(2t) that

satisfies the following conditions:
(1) 36(F(g,) = 36(2,) is a theorem of PW
(2) 36(F(g) = 36(2t), where > is the termination ordering on expressions.

(3) ?t, contains the implementing function symbols and the permitted operations of the

implcmenting types.

it is easy to sec the justification for the above ‘conditions. 'Ihe first condition
contributes towards ensuring the Homomorphism Condition. The second condition ensures
the uniform termination property. The third condition is just a syntactic onstraint that any
rule in a preliminary implementation ought to satisfy. The next section describes in detail a

proccdure to derive the synthesis equations.
4.4 Deriving the Synthesis Equitions

Every synthesis equation of the preliminary implementation is derived with the help
of two inference rules called the synthesis rules. The synthesis rules are desighed for
generating theorems of PW that have the same left hand sides, but different right hand sides.
For deriving a synthesis equation, the synthesis rules are invoked repcatedly a finite number
of times to generate a series of theorems until the desired cquation is generated. For instance,
the synthesis equation corresponding to the rule ENQUEUE(Insert(c, i), j) — ?rhs, (in the
partially derived preliminary implementation given in Fig. 14) is derived by generating a
series of theorems that have J6(ENQUEUE(Insert(c, i), })) as their left ﬁand side. The
generation continucs until a theorem whose right hand side qualifies the theorem to be a
synthesis equation is encountered.

We investigate two ways in which the synthesis rules can be used for deriving a
synthesis equation. The first one derives synthesis equations that are in the equational theory
of PW. The second one derives equations that are in the inductive theory. The second
method is more general than the first one. A system that implements the synthesis procedure

would, therefore, use only the sccond method. We discuss them separately for pedagogic

-19.

reasons. First, we formulate the synthesis rules. The subsequent subsections describe the use

of the synthesis rules in deriving the synthcsis equations.
4.4.1 The Synthesis Rules

The idea used for generating an equation is to reverse the method of demonstrating
that the equation is a theorem of PW. The central notion used in the generation is
expansion. Expansion is the onposite of reduction. It is the act of applying a rewrite rule to

an expression from right to left.
4.4.1.1 Informal Explanation

The basis for the synthesis rules is the result given in the KB-Theorem (scc 3.3.3.1).
The theorem gives risc to the following principle for generating equations that are theorems
of a convergent system. Suppose e, is an expression that we wish to have as the left hand side
of the cquation. Then, an expression ?e, that may appear on the right hand side of any
equation that has e, as its left hand side should be such that e} = ?e,i. One way of
ensuring that ?e, simplifics to e,{ is to obtain ?e, by applying to el the rewrite rules of the
system from gight to left a finite number of times. We call the mechanism of applying a rule
to an expression from right to left expand.

We will give a formal definition of expand, and discuss its properties later. Here, we
will give an approximate description of what expand does so that we may develop a first
version of the synthesis rule, and illustrate them on the example.I6 Like reduce, performing
expand consists of several steps. Suppose we wish to expand
Add_at_head(Enqueue(36(c), 36(j)), J6(1)) using the rule
3(ENQUEUE(c, j)) — Enqueue(36(c), 36G)). One way of doing this is to look for a
subexpression (inside the expression to be expanded) that has the form of the right hand side

16. We will gencralize the definition of expand later. A* that point one of the synthesis nules needs to
revised slightly as well. According to the dcfinition given here, expansion is identical to tue
transformation technique folding used by Darlington [7} for synthesis of recursive programs.

-80-

of the rule. Then replace the subexpression by the corresponding instance of the left hand
side of the rule. In the present case, the subexpression that appears as the first argument to
Add_at_head in the given expression matches the right hand side of the rule for the identity
substitution. The result of expanding the expression is then
Add_at_head(J6(ENQUEUE(c, j), 56¢i)). The result of expanding an expression e in the
occurrence u by a rule y — & is denoted by expand e in u by y — 8. We use expand(c) to
denote any expression that is obtained by expanding e in some occurrence u by some rule
y — & in the rewriting system under consideration,

We are now in a position to give the synthesis rules. The first rule specifics how to
start the generation of a series of theorems; it generates a theorem from a given expression
without the necd for any existing theorem,

¢ is an expression
e=el

Rule 1:

The second rule specifies a way of generating a new theorem from an existing one using

expand.

e =e

. —_— 2
Rule 2: ¢, = expand(e,)

To famikarize the reader with the synthesis rules fet us invoke each of the synthesis rules to
generate a couple of theorems that have J((ENQUEUE(Insert(c, i), j)) as their left hand. We
use the rewrite rules of PW given in Fig.pwl for expansion and reduction. The normal form
of J(ENQUEUE(Insert(c,i),j)) is Enqueue(Add_at_hcad(36(c), 36(i)), 76()), which is
obtained by using the rewrite rule (20) and then (15) for simplification. By invoking synthesis
rule (1) with e = J(ENQUEUE(Insert(c, i), j)), we generate the following theorem of PW:

J(ENQUEUE(Insert(c, i), j) = Enqueue{Add_at_head(36(c), 76(1)), J6(}))

Let us now invoke synthesis rule (2) on the above equation. Using the rewrite rule (17) to
expand the entire expression on the right hand side of the above theorem, we can generate

the following theorem of PW:

J(ENQUEUE(Insert(c, i), j) = Add_at_head(36(ENQUEUE(c,), 36(i))

et =

o

v e R PRI Y T P S g et e vt et ottt ” et et~ " et et "

e ———— -

m

[

-81-

4.4.1.2 Formal Definition of Expand

Expansion is roughly the reverse of the process of reduction. The relation that
characterizes a single step of expansion is called expand. Expanding an expression using a
rule is close to applying the rule to the expression from right to left.

The motivation for introducing the mechanism of expansion is t solve a common
problem encountered during synthesis: This is to find an expression (a desired expression)
that simplifics to given expression (the starting expression). For instance. in the derivation
shown carlier, the starting cxpression was Enqueuc(Add_at._hcad('JG(c), 36(1)), 76(3)), and the
desired cxpression was J6(Insert(ENQUEUE(c, j), i)).

The definition of expand uses the concept of unification, and the most general
unifier (sce Appendix I). Let t be an expression, and y — & be a rule. We assume that t and
v have disjoint variable sets. If there are common variables then they have o be renamed
suitably. Let u be an occurrence in t such that t/u is unifiable with §; let be the most
general unificr. Let t' be the expression t{u — 6(y)]. Then, we say that t expands to ¢! by
vy — & in u. we denote this relation by t — t'. Notice that expanding t by y — § in u is not
equivalent to reducing t by § — y in u. Expand checks if t/u is unifiable with 8, whereas
reduce checks if t/u has the form of 8. Therefore, there are situations where an expression is
expandable by y — 8, but not reducible by § — y.

The following question arises immediately: Why was expand not defined exactly as
applying a rule in the reverse direction ? The reason is that a rule y — § may be such that
varset(y) D varset(8). Applying such a rule from right to left will result in an expression that
contains "new" variables, i.e., variables that did not exist in the original expfcssion. The use
of such variable dropping rule during reduction represents a situation where the reduction
step caused a "loss” of information: A new variable introduced in an expansion step might
have had in its place an arbitrary expression during the corresponding reduction step. Our
goal is to reconstruct, if possible, this lost information at a later stage in the cxpansion process.
During expansion, therefore, a variable in an expression has to be treated, in general, as
though an arbitrary expression might be in its place. Using the predicate unifiable to

determine if an expression is expandable enables us to do this.

-82-

For instance, consider the expansion of Append(q, Nullg) by the rule
Dequcuc{Enqueuc(Nullg, ¢)) — Nullq. ‘The resulting expression is
Append(g, Dequeuc(Enqucue(Nullg, €))). The variable e is a new variable introduced because
of expansion. Every instance of the latter expression in which e is replaced by any other
expression reduces to the former expression. It might be possible to detemiine the expression
that has to take the place of e in future expansion steps.

It should be pointed out, however, that not all variables in an expression need be
given such a special treatment during exp:m'sion. The variables that appear in the starting
expression must appear as they are in the desired expression we are shooting for. Therefore,
while expanding an expression, it is necessary to distinguish between the variables in the
expression that were introduced by a rule (presumably during earlicr steps of expansion) and
the ones that were transferred to the expression from the starting expression. We classify the

variables involved in expansion into the following two kinds:
(1) The variables appearing in the rewrite rules; we continue to call these variables.

(2) The variables appearing in the expressions on the left hand sides of the rewrite rules
in the partially generated preliminary implementation (Fig. 14). We call these
variables terminals. Henceforth, we denote tcrminals by identificrs that are in
italics.

The definition of an expression remains as before except that it may also contain
terminals in it. The definition of a substitution also remains as before; it is a function from
variables to expressions. Thus, when a substitution is cxtended to be applicable on an
expression, the terminals in the expression are not substituted for, as we desired.

In the wake of the formal definition of expand, and the preceding discussion about

the introduction of variables into expressions due to expansion, we should reconsider the

formulation of the synthesis rules. The first synthesis rule remains unchanged because it does
not use the relation expand. The second synthesis rule was formulated as below:

Rule 2: e, = expand(e,)

-83-

This formulation is not general enough because it does not account for all the theorems that

can be derived from e =¢,

every instance of it can potentially be the right hand side of a theorem. Hence, we

in one expansion step. If expand(e,) has variables in it, then

re-formulate the rule as follows:

e=¢.0 is a subtitution
e = o(cxpand(ez))

Rule 2:
4.4.2 Derivation in the Equational Theory

As an illustration, let us derive a synthesis equation that is of the form
(ENQUEUE(Iasert(c, i),))) = 5&(?rhs_.‘) in the partial prefiminary impicmentation shown in
Fig. 14. The cquation is derived by generating a series of thecorems that have
®(ENQUEUE(Insert(c, i), j)) as thcir left hand side. The gencration is begun by invoking
synthesis rule (1) on the left hand side expression. The rest of the theorems in the series are
generated by invoking synthesis rule (2) using the rewrite rules of PW for expansion. The
rewrite rules for expansion arc chosen with the following ultimate goal: Obtain a right hand
side that has the form 36(2rhs,) so that J6(ENQUEUE(Insert(c, i), j)) >- %(2rhs,), and 7rhs,
contains only the permitted operations of the implementing types. In the illustration given
below, the generation of every thcorem in the series is considcred as a step. At each step, the

expression expanded, and the rewrite rule used for expansion are indicated.

Relevant Rewrite Rules of the Perturbed World
(1) I(ENQUEUE(c. j)) — Enqueue(36(c), 36())

(2) I6(Create) — Nullg
(3) 36(Insert(c. i)) — Add_at_hcad(36(c), i)

(4) Add_at_hcad(Nullg. i) — Fnqucue(Nulig, i)
(5) Add_at_hcad(Fnqueue(q. i), j) — Enqucuc(Add_at_head(q. j), i)

Form of the theorem to be generated: J(ENQUEUE(Insert(c, i), j)) = JG(?rhsl)
Normal form of J6(ENQUEUF{Insert(c. i), j)): Enqueuc(Add_at_hcad(36(c), i), 36(}))
Rules used for the normal form: (1), (3)

Step (1) Invoke Synthesis Rule (1) on J6(EMQUEUE(Insert(c, i), j))
J(ENQUEUE(Insert{(c, i), §)) = Enqueue(Add_at_hcad(36(c), i), J6(j))

m

Step (2) Expand Expression: Fnqueuc{Add_at_head(J6(c), i), J6(i))
Using Rule: (§)

J(ENQUEUF(Insert(c, i), j)) = Add_at_hcad(Knquene(36(c), I6()). i)

Step (3) Expand Expression: Faquene(36(c), J6())
Using Rule: (1)

JS(ENQUEUIK(Insert(c, i), j)) = Add_at_hcad(f)B(I'INQl.Jl-lUE(c,)]

Step (4) Expand Expression: Add_at_ticad(J6(ENQUFU¥Ac, i), i)
Using Rule: (3)

J6(FNQUEUK(Insert(c, i), j)) = J6(Insert(ENQUFUE(c, j). i))

‘The theorem gencrated in step (4) qualifics to be a synthesis equation.
Hence the desired rule of the preliminary implementation is:
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUKE(c, j), i)

4.4.3 Derivation in the Inductive Theory
4.4.3.1 The General Strategy

The method used for deriving a synthesis equation in the inductive theory is based

on the following property that every theorem of PW satisfies: If an equation is a theorem of

PW, then every instance of it is in the equational theory of PW. An instance of an equation

e, =e, is an equition obtained by replacing every variable in e, and e, by generator
constants,
We, therefore, take the following approach. Suppose the synthesis equation we

-85-

wish to derive is of the form 3B(F(el l)) = :lc(?eu)." We first derive an instance of the desired
cquation: This is done by selecting an instance of the left hand side, say a('JB(F(eI 1)»' for
some substitution ¢ of the terminals in e,, 10 gencrator constants. Then, an instance of the
equation o(JG(F(c"))) = o(th(eu)) is derived; the method of derivation for the cquational
theory described carlier can be uscd for this purpose. The instance of the equation derived
should be such that a gencralization of it TlG(F(el l)) = th(cn). which is obtained by replacing
assorted constants by suitable terminals in lhe_ instance, is a thcorem of PW,

To check if the gcncraliiation is a th-orem of PW, we use an automatic procedure
called Is-an-inductive-thcorem-of. This procedure is capable of deciding a significant number
of theorems in the inductive theory of a system. The procedure will be described in a
subsequent subsection. Another topic that will be deferred until later is determining a
suitable o. Any substitution that maps all the terminals in the left hand side of the synthesis
cquation to arbitrary gencrator constants will serve our purpose. However, the derivation
would be more cfficient if we instantiated as few terminals as possible. A later subscction will
discuss a method of determining a more judicious way of choosing o.

In the rest of this subsection, we formalize the notion of the generalization of an
equation, and then illustrate the general strategy by deriving a synthesis equation
corresponding to the rewrite rule APPEND(c, Insert(d,i)) — ?rhsy in the partial preliminary
implementation of APPEND given in Fig. 14,

The Generalization of an Equation

The generalization of an equation e, = e, with respect to a substitution o is the set of
equations such that e, = e, is an instance of using ¢. When the substitution with respect to
which the equation is being generalized is obvious from the context, we denote the
generalization by Genle, = e,]. Formally, every equation el=e}€ Gen[el = e,] is such that
o(e;) =e, and a(e;) = e,. Note that if e, =e has a finite number of function symbols

Genle, = e,] is always finite. For instance, suppose o is {d— Create}.

17. Recall that the left hand side of the synthesis cquation is already known.

-86 -

Then, Gen[J6(Append(c, Insert(Create, i))) = 3({APPEND(ENQUEUE(c,), Create))})D
contains the following equations:
36(Append(c, Insert(Create, i))) = I({APPEND(ENQUEUE(c, /), Creatc))}))
J6(Append(c, Insert(d, i))) = (APPEND(ENQUEUE(, i), 4))

As an illustration let wus derive an equation of the form
H(APPEND(c, Insert(d,i))) = 36(7rhs9) which gives rise to one of rules in the preliminary
implementation of Append. The derivation begins with the choice of the left hand side of the
instance of the equation to be derived: This has to be an instance of
I6(APPEND(c, Inscrt(d,i))). Let us suppose o is {d+— Create}.

Relevant Rewrite Rules of the Perturbed World

(10) Append(g, Nullq) — g

(14) 36(Create) — Nullg

(20) 36(ENQUEUK(c, i)) — FEnqucuc(I6(c), 36())})
(22) JG(APPENIXc. d)) — Append(36(c), I6(d))

Form of the theorem to be gencrated: JIG(APPENI (¢, Insert(Create, 1)) = 36(?¢)
Normal form of 36(APPENIX(c, Insert(Create,))): Fnqueue(36(c), 36()))

Rules used for the normal form:

Step (1) Invoke Synthesis Rule (1) on J6(APPEND(c, Insert(Create, 1))
JS(APPEND ¢, Insert(Create,))) = Enqueuc(36(c), 36())

Step (2) Expand Expression: Enqueuc(36(c), 36(1)
Using Rule: (10)

JS(APPENIX¢, Insert(Create,))) = Append(Enqueuc{I&(c), 36(/)), Nullg)

Step (3) Expand Expression: Nullq
Using Rule: (14)

JG(APPENIDXc, Insert(Create,))) = Append(Enqueuc(36(c), 36(/)), J6(Create))

-87 -

Step (4) Expand Expression: Enqueue(36(c), 76(:))
Using Rule: (20)

J6(APPENI(c, Insert{Create,))) = Append(J6(ENQUEUE(c, 3), 36(Create))

Step (5) Expand Expressiont: Append(J6(ENQUEU¥(c,), I6(Create))
Using Rule; (22)

JS(APPEND(c, Insert(Create,) = J6(APPENINENQUEUF(c,), Create))

Step (6) Generalize the theorem in step (5) by replacing the constant
Create by the variable d 10 obtain the following cquation:
J(APPEND(c, Inseri(d.i))) = JIGAPPENIYFNQUEUK(c, 1), d))

Apply Is-an-inductive theorem-of on the above cquation.
This yields T'tue confinning that the equation is a theorem.

Hence the desired rule (obtained by dropping 36 on both sides) is;
APPENI(c, Inscrt(d.i)) — APPENIXENQUEUF(, 1), d)

4.4.3.2 The Predicate Is-an-inductive-theorem-of

Is-an-inductive-thcorem-of is a proccdure that is used for checking if an equation

e, = e, is a thcorem of a convergent rewriting system S. The procedure is designed so that if

1

it yields trueon ¢, = e, then e =e)isa theorem of S; if it yields false, then nothing can be

2

said about e, =e. While deriving a synthesis equation in the inductive theory, the

-
procedure is used to check if a generalization of an equation is a thecorem of PW. The
procedure is described here.

The procedure is based on a method of using the KB-algorithm (see sec.3.3.3.1) for
checking the convergence for proving inductive properties of a rewriting system. Suppose S

is a convergent rewriting system. To check if e, =e, isatheorem of S, perform the following

steps:

-88-

() FormS, =SuU{e, —e,(ore,— e)}.

(2) Check if S, is convergent. The KB-algorithm of checking convergence (which
consists of checking if every critical pair <a, a,> of S, is such that a b = a,i) is

used for this.

If the result of step (2) is affirmative, thene, = e, isa theorem; otherwise nothing can be said
about it, in general. Let us assume that there exists a procedure, called

Can-be-made-convergent, that implements this method.

We will first briefly summarize the method, and then describe how
ls-an-inductivc-tl;corcm-of is built on top of it.

The result that provides a basis for the above method is proved in Theorem 7 in
Appendix 111 which gives a few useful results about convergent systems. The result is similar
to the one that was first developed by Musser [38), and that has also been investigated in [22].
Our result is different because the cited works assume that S satisfies a notion of
completeness (similar to the principie of definition) besides convergence.

In the present situation PW, whose thcorems we are interested in, is convergent but
does not satisfy the principle of definition. - Because of this the above method is applicable
only when e, (or e, is sucﬁ that for every instantiation of the variables by generator constants,
(X simplifies to a generator constant. The left hand side of every equation we wish to check is
of the form J6(F(g,, ... »8,)) where F is an implementing function symbol, and g,...,8,
are generator expressions. Note that %(F(gl, veer @ n)) reduces to {36(g,, .. .»8,) by the
36-rule corresponding to F. The latter expression satisfies the desired condition since f and %
are well-spanned'8 by PW. '

There are several situations when the method described above is not applicable ‘or

proving an equation ¢, = e,. But there exists another equation e{ = e{ such that

18. Note that if a function f is well-spanned by PW, then every term of the form f(tl, «+ sy 4y), where
tpoees ti are gencrator terms, can be simplified :o a generator term using PW.

-89 -

(1) e} = e} can be proved using the above method,

! is a theorem, and

2 ¢, =e,isa theorem ife; =e}

(3) e! = e! can be dcrived automatically from e, = e.,
2 1= %2

in other words, ej=e} is serving as a lemma for the theorem e =e, The
procedure Is-an-inductive-theorem-of consists of transforming e =e¢, o ¢} =ej, and then
applying Can-be-made-convergent on e} = e}. The transformation of e, =e,l0c;=ejis
performed by a function £, called the lemma deriving function. The lemma deriving function

used by Is-an_inductive-theorem-of is defined below:

The Lemma Deriving Function (L)
L is a function on cxpressions. £ can be used to derive for a given equation e, =e,alemma
that the proof of the former is dependent on. The two sides of the lemma are obtained by

applying L toe, and e,

L: expression -> expression
Usage: L(“l)

Pre: a is of the form :lc(az), where a, does not contain the symbol J6.

Returns: An expression g that is obtained by replacing in a ¢ every subexpression of

the form 36(d), where dis any terminal, by a new terminal d,

We will now illustrate the procedure Is-an-inductive-thcorem-of to check if the
equation JG(APPEND{c, Insert(d,i))) = 36(APPEND(ENQUEUE(c, /), d)) is a theorem of
PW being used in our example. The equation was obtained in step (6) while deriving a

synthesis equation in the previous section.

Equation to bechecked: J6(APPEND(c, Insert(d,))) = J6(APPENINENQUEUF/c,), &).

Step (1) Derive Lemma by applying L:
(a) Simplify both sides,
{b) Replace J6(c) by g, 36(d) by R, J6() by i

J(APPENIc, Insert(d, 1)) J(APPEND(ENQUEUFK(c,), &)

Append(J6(c), Add_at_head(J6(d), J6())) Append(¥nqueuc(I6(c). J6(1), ()
Lemma to be checked: Append(q. Add_at_head(R, i)) = Append(Enquene(q, i), R)

Step(2) Check if critical pairs are convergent:
(a) Critical pair dctermined by Rule (16):

Append(q, add_at_hcad(Nullg, j))

o

RS
Append(Enqueuc(q, j), Nullg) Append(q, Enqucuc(Nullq, j))

.

Fnqueue(q. j) Enqueuc(q, j)
(b) Critical pair detcrmined by Rule (17):
Append(q, add_at_hcad(Fnqueue(r,. j,). j))
Append(q. Frqueuc(add_at_head(r,. j). j,)) Append(Enqueuedy. j). Enqueve(r,, j,))

NE

Enqueuc(Aggend(Enqueue(.). r,). j,) Fnqueue(Append(Enqueue(q. j), 1)), J,)

4.4.3.3 An Instantiation for the Synthesis Equation

Here, we describe a method of finding a substitution ¢ that determines the left hand
side of the instance of the theorem we wish to generate. Note that the left hand side of the
theorem is already known to us which in the current example is J6(APPEND(c, Insert(d, 9)).
o maps the terminals in the left hand side expression to suitable expressions. ¢ should be
chosen so that the equation o(3%(APPEND(c, Insert(d,)))) = o(36(?,)) is in the equational
theory of PW. This implies that ¢ should be such that o(36(APPEND{c, Insert(d,)))) and
c(:ls(?ez)) have the same normal form. Note that 36(?e2) is unavailable to us at the moment.
So, ¢ has to be determined from the left hand side expression alone. Since the theorem
J(APPEND(c, Inseri(d,))) = %(?e,) is not necessarily in the equational theory of PW, an
arbitrary substitution that maps tc minals to generator terms cannot be used.

The following fact about our proof method (for inductive properties) serves as the

-9]-

basis for the mcthod of finding 0. The basis step of the inductive proof can always be carried

out using the cquational logic. So, we choose the o that corresponds to a basis step of the
proof of the lemma. The instantiation corresponding to the basis stcp can be determined
automatically starting from the left hand side of the theorem alone.

Finding such a o involves two stages because the proof of the thecorem, as you may
recall, involves two stages: Converting the theorem to the lemma, and then proving the
lemma itself. We first determine a substitution o that corresponds to a basis step of the proof
of the lemma. ¢ is determined from w using the mcthod used by the lemma Aefining

function L to convert the theorem to the lemma. We describe the two steps below.

Step (1) Determination of w

(a) Find the left hand side of the lemma.
This is obtained by applying £, the lemma defining function, to the left hand side of
the theorem, For our example: Left hand side of the theorem is
J{APPEND(c, Insert(d,))). To obtain the left hand side of the lemma, we simplify
the expression, and replace every subexpression that has 36 at the root by a new
terminal: 36(APPENIXc, Insert(d, 7)) —* Append(36(c), Add_at_head(I6(c), J6())).
So the left hand side of the lemma is Append(q, Add_at_hcad(R, i)).

(b) Find a basis step in the proof of the lemma
For this, compute all the superpositions between the left hand sides of the rules of
PW and the ieft hand side of the lemma. Simplify the superpositions. A sufficient
condition for a superposition to correspond to a basis step is that its normal form is a
generator expression. The most general unifier that determincs such a superposition
is a candidate 6. The following table gives the result of performing the above steps
on the current example. The columns, in order, give the rewrite rule in PW
responsible for the superposition, the superposition, and the normal form of the

superposition. The first superposition in the list simplifies to a generator expression.

Therefore, w is the most general unifier corresponding to the first superposition,
which is {R — Nuliq}.

_— -

-92-
Rule Superposition (Superposition)¥
(16) Append(q. Add_at_head(Nullq, i)) Enqueue(q,)
(17 Append(q. Add_at_hcad(Fnqueue(Append(q,
Fnqueue(r,. j,), 9) Add_at_hcad(r,, D), j;)

Step (2) Determine ¢ from o

w provides instantiations for the terminals in the lcft hanu side of the lemma. ¢ instantiates
the terminals in the left hand side of the theorem. Our objcctive is to find a ¢ so that when
the left hand sides (of the lemma and the thcorem) are instantiated by ¢ and o, respectively,
they simplify to the same expression,

For instance, in the current example, the left hand side of the theorem is
I(APPENIX(c, Insert(d, i))), whose normal form is
Apbcnd('JB(c). Add_at_hcad(J6(d), 36())). The left hand side of the lemma is
e, = Append(q, Add_at_head(R, i)). which was obtained by replacing 36(d) by r, and 36(c) by

®
i

e
|

¢. w maps r to Nullg, and leaves the rest of the tenminals unchanged. Thercfore, o stiould
map d to an expression such that Nullq = J6(d) is a theorem in the equational theory of PW,
Therefore, the instantiation for 4 can be determined using the first two synthesis rules by
generating a theorem that has Nullg on the left hand side. and an expression of the form
¥(?e) on the right hand side. The generation sequence is shown below. The first theorem is
obtained by invoking Synthesis Rule (1) for the expression Nullg. The second theorem is
obtaincd by using Synthesis Rule (2): rewrite rule (14) of PW is used for expand. The right

hand side, J6(Create), of the theorem generated determines o as {d ~ Create}.

Nulig = Nullq
= ¥%(Create)

4.5 An Abstract Implementation of the Derivation Procedure

Below, we give an implementation for a procedure Generate-a-rule. The procedure
determines a suitable right hand side expression for a rewrite rule in a partial preliminary

implementation given the left hand side expression. The procedure also expects a Perturbed

World and a termination ordering as inputs. The procedure is implemented in a high level

AD-A121 520 AUTOMATIC SYNTHESIS OF ,IMPLEMENTATIONS FOR -ABSTRACT *_J/*
) MASSACHMUSETTS INST OF TECH

OATA TYPES FROM ALGEB. .U
CAMBRIDGE LAB FOR COMPUTER SCIENCE. .
MIT/LCS/TR-276 NOOO14-75-C-0861

M K SRIVAS JUN 82
/G 8/2 NL

UNCLASSIFIED

a2
|l|||—=——|'—o— : m mzZ
= b g W=

It
™

E
bo

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-93-

algorithmic language whose semantics is scif-explanatory.

The implementation assumes that there exist two procedures
Is-an-inductive-thcorem-of and A-suitable-instantiation-for-lhs. The latter finds a suitable
substitution that determines the instance of synthesis equation to be generated.

The procedure performs essentially the thcorem generation illustrated before in a
systematic fashion. Roughly, it operates as follows. It finds the instance of the left hand side
of the synthesis cquation by applying A-suitable-instantiation-for-Jhs to J6(lhs). [t simplifies
this expression to its normal form. The n(;mml form is then expanded repeatedly using
appropriate rcwrite rulcs of PW until a suitable right hand side is cncountered.

The nontrivial aspect of the procedure concems performing expansion in an
effective fashion. There are two problem areas. Firstly, expansion is not uniformly
terminating. That is, expansion is a potentially nonterminating activity. The procedure uses
the termination ordering > to circumvent this problem. The right hand side has to be an
expression that is less than the given left hand side. But, expanding an expression always
gives rise to a bigger expression in the ordering >. Thus, the proccdure can be terminated
the moment we cncounter an cxpression that is not less than the left hand side. (Note that the
> is such that there can only be a finite number of expressions less than any given
expression.)

Secondly, expansion is not uniquely terminating. That is, an expression can be
expanded in several different (but finitely many, bec.ause there are only finite number of rules
in PW) ways using the rules in PW. All of them do not necessarily lead to the same final
expression. Some of them may not cven lead to a suitable right hand side expression. In the
examples illustrated earlier, the rules of PW were carefully chosen so that they resulted in the
desired right hand side. A working implementation, however, is forced to keep track of all
possible expansions since any one of them can result in the desired right hand side. In the
implementation given below the variable S is used for this purpose.

This chore, in fact, happens to be the main source of inefficiency in the synthesis
procedure. We use the following obvious ways of getting rid of unproductive expansion
paths, Firstly, type information is used to climinate some of the candidate rewrite rules for

expansion. Secondly, expansions that result in an expression that is not less than the left hand

-94-

side arc not going to be fruitful. Finally, we make a distinction between the variables that
appear in the rewrite rules of PW, and the ones in the given left hand side. The latter, which
are terminals, are treated as constants. This eliminatcs several rewrite rules for cxpansion that
are candidates otherwise.

It should be noted that the procedure given below is only a part of a complete
implementation of the synthesis procedure. The other part is expected to determine the left
hand side of the rules. We have assumed that there exists a procedure to determine the left
hand sides. If the following procedurc docs not succeed in finding a suitable right h>nd side
for a given left hand side, then another set of left hand sides have to be generated, and the
following procedure reexecuted.

Generatc-a-rule = proc (PW: Perturbed World. Ihs: F(g,, ..., 8).]
> ordering) returns (Rewrite Rule) 1

%nitialization

o: Substitution — A-suitable-instantiation-for-ls
ilhs — ot(ihs)

S « {J6(ilhs)4}

repeat

% Test {f expansion can be stopped

if There-cxists-a-suitable-candidate-in(S)
‘ then rhs — Fetch-a-suitable-candidate-from(S)
! return(ths — rhs)
! endif

' %if a candidate has not been generated yet, expand by one more step
| S1—@
| forevery t € S do
S1 — S1 U sct-of-all-expansions-of t by PW
endfor
S ~8S1

% Drop from S unproductive expressions
forevery t €S, do
if ~(lhs > t) then S] — S - {t}

forever

BSubprocedure description
There-exists-a-suitable-cundidate-in: subproc (S: Sct|Fxpression]) returas (Boolean)

¥ 31 € Ssuchthat
IWAF(g,.....0,) = H(Whs) € Genlilhs = ¢] such that
(1) rhs docs et contain 36 or operations of the implemenicd type,
(D Fg......)> Whs.and
(3) Is-ua-inductive-theorem-of- PW(X(F(g,. g) m 3(Prhs))
then return(True) clse retum(False)

«od subgroc

KX Subprocedure description
Fetohea-suitable-c indidate-from: subproc (S: Sct]Fapression]) reteras (Fapression)

31 €S suchthat
INWAF(R,.....8) @ K(Mrhs) € Genliths =] such that
(1) vl docs not contain 36 or uperations of the snplemented type,
(DF@g,.....p)> Whs. and
(3) Isan-inductive-theorem-of- PW(R(F(g,. 8) = J(7vhs))
then retum(t)
cnd subprec

ond Generate-a-rule

sct-of-alkexpansions-of_by: Expression X Rule -> Sct{Fapression]
Usage: set-ofall-expunsions-oft by y — §
Returns: Returns the st of all pomsibic cxpansions of a given term via a given rule.

set-of all-expansions-of_by: Expression X Set{Ruie] -> Set|Expression]
Usoge: set-of-alt-expansionsof t iy R
Returns: The sct of afl terms s such that

s = U set-of-all-expansions-of t iy R, for sl RER

expand_in_by: Expression X Occurrence X Rele <> Expression
Usage: expamdt imubyy — 8

Pre: Varselt,) N Varey) = @ S¥-or comvenicace
/u o enifiablewith §

Returns umil.bnhy—lythhamgmmummummuw1-8)
10 an imstance of 1, will be an instance of (. 1a ather wurds ¢, is the ment goncral instance of
all the icrms that reduce (18 » by y — §) 10 an istance of 1. Noie that the rosult the
function returns i usique uplo permutations of the variablcs. This is bocause @, which is
the most general unificr of teo orms, & always unique when rotnciod W the vaniables in
the two lcras 8, and 8.

expunde-to_in_by: Frprewion X Fipremiss X Occurvence X Rule -> Bool

Usage: 1 expanis-tot inabyy—§

Pre: Varscdy) N Varet(t) = @

Returns: A predicate that wcuts if 3 iorm cxpands (o another gives iorm.
(/u) srunifisbie-nh S AL = expond L in sy y — 8

-9-

S. Extending the Derivation Problem

The derivalion problem and the derivation procedure described in the tast chapior
apply 10 2 siuation in which the reprcsenting domain () for the dasired preliminary
implemcntation is uarestricied. That i D includes all the values of the . prescntation type.
This section extends the problem ©© the more goncral situation where B is a subsct of the
value sct of the representation type.

‘S contains the sct of valucs that are pormitiod 10 be wied by a pecliminary
implementation ¢ represcnting the values of the implementod ype. K & charaorirod by
the asoriation specification sepplicd by the user. Seppose A4 and 9 zre the abstraction
function and the invariant specified by the asocition pecification respotively. Thoa v is
the sct of all salues for ahich $ 5 rue. The present stuation is one @ whikh § & true on oty
a wbnct of the representation value set

For instance. consides the assoxiation specification given i Fig. 19, This crample
will bc uwwd W0 inirste O procedere daxribod @ e chapler Bt apocifis an
implemestation of Quese_lat ierms of Asvay_lat X lateger X lateger. The abstraction
function 4 can be described informally a follows Nafly can be roprosented by any Uiple in
which buth the integer components are egual A suncmpty Quowe can be representod by
triple Co. L P. v is an armay of asbitrary length contsining the clements of e Quewe, in onder,
between the indet values § and |- 1. o other worda, | points 10 the fomt end of e quese, and
} points 1© the next svalabe poaition in v for adding & new clement im0 the quene. The
nvarient 3 is trwe on ol Uples such that § S | ad e arvay b pusrastond 1 be dcfined on ol

Fig. 1S Quewe_lat in termms of Trigh

Ao, L, D) = Nally
ACAwigatv.e.p.Lj+1D)n Bi= |+) we Nally
e Engrene(AKv. L PL O

N L D)= Towe

NCAmigntv.e.p.Lj+ D) Ti= o1 then Tree
e W1 < J4 1 then Mo, L D)
ol Fale

ndex values betneen land)
&1 Charactevization of the Mroblem

The criserion of comectaews (dated in the previows chapicr in Soc 4.2.1) hat was
wied 10 charxierue the problem carfier is applicable i the curvont situation & woll. For
convenience, ue fepeat the critenion boiow” A prelinieary implemontation of 2 data Ype s
correct with /pext 10 a0 associaton specification (thal characiornias an stwtraction Renction
A. and 3 mprocating domain) if the following propertses hold,

(1) Tomiuy Froperty: Every mmplementing function i Wil over B

() Homomerphivn Preperty The implementing function F and e aperstion § of the
impicmcsicd type ae schined by the follos tng Bomamorphiem propenty:
(VeCAPRUT 1 D) = R. UM)} ohere N & 2 fenction defined as:

AU = HNI1ED
¢ othereise

Saed on the sbove cTRETION, he dertvtion of & prefisninary Implementation was
viewed aurfter @ 2 prcdlem of fnding ¢ st of seeriee rles M 50 St P U IW d P U PW
wtsfy Ge principle of definlion. We il view the problem (he mme way. But. sow the
mplementing functions need be defined oaly on e wives in 4. and e homomorphism
property aeed only be vertfied on e vilom I 9 This memns that M1 U IW and M U PW
need swify e prisciple of defiaiion Only il et © & b’ of G st of W
generater comtants of the mpreentalion hpe. This subast is the repreventing domain of
comtants 7 churacrertend by the snoctetion pecificetion & fllows: T = (1| N0 = Twe). A
prool of tee claim that f M UITW and PTU PW gty Gie principle of defniion with
repext © 1. then P s correct con Oe carvied ot along Gie same s & e proof of he
Comvectonss Theorem (3ex. 4223 The proof for the prasent cuse can be obuained by

19 A syvem S ssisfies e privciphe of definlion with rapu 00 T Ff G every connent of e form
Ray....0) where F b o songrovae Aactios yubel snll g, §, S/ GEREIRSR CORRMAS i
T. b0 o unique soveval (in §) ¢hst & 2 gemeviner comaant in T

-9

sysiematically seplacing i the earficr proof the phrase e principic of definition”™ by the
phrase “the principie of defiaition with ropect © T°.

$2 Derhhation of 3 Preliminary lmplementation

Fient we formulng the yathenn amditions thiat ¢ wedd 2 2 guidc W B¢ dortvarion

of a peciwinary mplemesiation, avd hee dexride 3 paxcodere 0 dome & wt of rcerie
roles P1 at weinfies e wyeliowe condtions. The sysshown condition are swificiont ©
winre hat P U 1N aad I U PW wenfy e pragipie of defialion wah coppos © 1

421 The Synthesh Conditions

e wethevis conditions b 3 praumnery gpicomontsion N wry the Glloving.
(1) Tetaliny Conditton:

) P o ypunand wab Pt ©0 T (ke every implomensing funciion)
mm&uu&dumm“,.gatmihu
plementing fomcins wmbol sd g . - . . §, ST SORCIEN! SHPIORIOM

O "I e Yee wilioNe TRngion pruperty

() Ushpeary Confittox: ™ ha Gie snigee v inalion PIOpeRy

) Yomenurpbhs (oalition: Forevery e Hg,.....0) ~tn L
ng) A . ARG = RHg,.....a 0 = WD s S of PW.

) vartenee Conlititox Pwmutlﬁr....qalbﬂ.mumpdv
» the presemaion ype. fig) A . A g) = K0 = Tre & s Geomem

N s ineerenting W now e ofiixt of G prvesce of G inveriant § on the ywihersh

B Neve. se soume St cnrh of St ogresiom §,. . - . . §, 8 of G reyeMdion Ype. W no. e
averedent owoll cowint of 3 cononSun of) plied & oy Dow cuprmion g §,. - - .8,
A oo of Be repreevuieon ypr The same qualificains apylies te condision () o ool

e

- 100 -

conditions. I1he Tutality Condition and the Usiguencis Condition remain 25 bofore. and
wne the ome pwpose: The Totality Cosdition onewes tha 2n implemonting funcaion s
Jefinod and icrmmaies 08 cvery et @ the Rprciontmg domaim. The Uniquonoss
Condinion emuscs that an wpleacming fasction yioldi 2 enigue value 08 CVOry Mpwment.
The Homomorpham Conditnm, shich ensres dhal cvony inplomomtng function cativlas e
mm.mmnm....w;mu.mm
wadc? I vempuon e e pwnenss i F samnfy 1 The tavanance Condition Wgous o8
aidistony cwiitnt o8 e CvpITwon Al wry JPPSH o8 B¢ mgi hand wde of 2 nle: &
evonses a8 very implomcnting fuscuns praierees 3 The Soushesls Theorom © faflow
Pons hat shice P sumfies Al B yedews condmon P U IW and PN U PW ey G
principh of definition with sapect 1o ¥

e Sgathushs Yieorem

Tohwesem 2 Lot M Dw 4 wot of sewrioe s Bhat st o8 e Yot condivions. Then,
MU N od PIU PS ity B prncaple of dohniion vtk spoc @ | whowe T & Se
PG domwie of camEasts htaierend by dhe Wvaran §

Poost Appendts

422 Derising e woies of M

The devivasion M3 Rolioss Ghe s goaerel pate @ befoe The O wnlk b ©

j cmatrecs Be P hich & dune @ Defse by canbining dhe Peciouion of tre ivplomened
ope. Be howsworphion puifation. and any duted s of Ge Puifiossions of te
wphwewing yps The homamonpttus paficmion & dovved Som Ge BRARNEON
foxtive puifenion @ Wtwe e 422 For sman. PO & G cxaple under

‘ amidention d ghen » Fyg 16 Now G PW dem ot consis e Dvarian SaIolon.

' The infmation peasining © the irvertost o be waiusined o o Silferem owslty This o8l
e ovplatned honly.

The el of I ase devieadl st every sywlhevs condiiion oxonp Ghe Unigusnen

Fig 16 The Perturbed Werld

19) SramNallg) + FRROR
2} b sandd sguenciNully. of) ~ ¢
19 Yronel) ngeovel? aperasty. ¢} ¢33 —~ Foanl¥ squrasiy. ¢3)

5 Dvp{Naiiy) - EREOR
659 Doamene(t mpwuet™ulin, of) - Nufly
) Dnprennt? spwusi? s, ¢9) €23 —= ¢t ngeaslthguen(t spucaste. ¢ 1. cB)

00 \opendin. ol —~ ¢
111 vopundivgl. V ognenalnl. ¢« 20 — ¥ opsunt \ewnniinl. oF). ¢l

O Fmpnyiuity) —~ Tree
119 Empevtd ngenedn o) ~ Fale

(N4t & D) - iy
000 Ret vongetn o, A A Jo 129 =80 = o) hen Tullly
e § oopuued B, 4). sl

00 BN LIQIN = Yaily

U R b RN N BERL. 0 ¢ 1%
R MIEQLELIRD - DupwaedRe N

€ RPN L c 3D - \ueni R 1) R 2N
R B gD L))

A1) N8 va el o, o) = & fen, oot 200) N B

Condivion s et The prasendire doriees de pruliinvingry ingiompntion Bt ane Aperelies
& 2 W by dyriving & WPusU WS off sriie Rl Gt ety pkasion The wwthad el b
e e e every cpuenion The pooneduse B deveonings G IR hand Adies of o G
Al 0 derive o punil preinanery nploneisfion Then & dewwinn 3 ssilide Agn
avd vt o el of die edes 3 e il prelinsingry Wplomeiiaivn

\
)
]

S2.21 Determining the Lof tiond Side

The wehwigne wied for determining the TR Yand wdes & e e & bofse
becawse the Tanlity Condivion, which is wisd for Gic purpois. is e same 35 bolovs. The loft
and sdes are krved © Bl Bie @t of CPRAIOES PRCING B FPWROMS 1D VOry
mplemanimg functon & sell-qgassad 3 Fig 17 ghas 3 powsibie st of foll hand wides G o
pesiwunary weplementation for Be evample wder coniidarstion. As bofre, e wes the
aton madk. kicnsfien a phace boiders oy evpraioes © be datreined yot.

¥y 57, A Pastiel Poviiminery Snphmentetios

Woup b0 A eteger \ g

Ofoiaves)
MALIGH > e, '
ENQUBLRNA L P) = W,

PROATI L OF - N,
FRONTI gt o 4 o 39 ~ iy,

FEQUBLSItY L 99 - N,
BEQUBLINt valgts & L)¢ DY ~ Nin,

WPPENSItA B 3. 6oL 8. D9 = Wi,
VPSRt B I gl o L I B8 & £ - Wi,

SMPTY L DY = W,

N et ¥ o v b ol Pemnd ven ¥ B el panl il PRt @ ey 9 of gENTIE
cmant

.m’

$22.2 Determining the Right tiond Side

e general draicyy wicd © dome the nght hand ados b the sanae a5 befare. Thoy
ae derned w that the Homosuwphwem Conditnns, the favanaage Conditiun, and the sooond
punt of e Totality * omditna (wiugh % IR vacoeurcd sl detonumng the (ot hand wide)
e commsed The nght hand ade of 3 ik % doscreancd by donvieg 3 Yashesis aguation
correnpending o i neie. A aethain apuathn cropndng 0 s vle Rg,.....¢) ~ N8
» ption of e Gom WUNE,. - . @0 = Niat) Bt wnrifics e laliows g conditions.

() NgPA . A Ng) = WG, ... 80 % TN N « thexom of PW.

) o de toge s of § i e wpsromton typr, BOR
Ng)A . A Ng) = A= Taer b s hovom of PW

(D Mg, . 8) > N > sl KMIREOR oRiGHng o CXBIWION,

) N vy oy comtatn bl e MOIWIRRT CpOtsian wyiivile of Bhe IPIomORtIng
PR, el e et ving farmg o sy ewiholly

Note at iy wosliunih epu i g sl coniitgi hoie hocsee of 3 S0,

e durhation of dne WA et B EoRng B gong 00 g 0 B portomad Jightly
dfrendly Thin s e wpic of e St wBion

43 Duviving e Sputhens [qguation

The gl wvanegy wad K derving & sy olhevis Ogeuid i Ghe wne o hefore
s & e gerere 9 Wwies of hasens of P il ae e abe tha guities 0 be o
Wbk agarian We wee tre sume fuie of syedhesih fudies fist generusing the Gwxwenn of
P The onle SiRsence Ren @ Ve u of Sewrie Al wned oo expramion wislie goneraiing
e ewenns Fiotes. e woste ds iv PO vow wnd Bot 90w & & aREmeny © we o
sbiitioneet of nwrie i

Moe s« we wows & O Fimlly. ¢+ oubel cgusion
WG, ..o = R0 © e dehul & o Soum of PO i o ciel comest A aomsent
deermived ¥y Ge fnt Gt g, ... g, WOy G et 3 Iy derving Ghe yynthers

- 104 -

equastiong, une has 10 use rewrite nules describing this conteat besides the rewrite rules in PW,
Sevondly, 2 has 10 be determined so that 3(t) & True is a theorem. For this, it is nocessary
W use the rewrite rules in the specification of 5. These additional rewrite rules, which
describe mformation pertaining 10 the invariant, are maintained as a scparate cntity calied the
Temponsey World (TW)L We will discus more about TW -its composition, and its
constnuton - later. s sufficient 10 wy the following at this point: TW consists of rules that
oy). and rules that awen that g,, g, Sathfy the invariant The rules in TW are used
for evponsion s well an 10 ensure that ‘nww S

It shoukd be nuted that part of the Temporary World used in the derivation of a
pechmnary mphkmentation could be different fur different rules in the preliminary
mpikmentation. Thin b because the argument expressions appeanng on the ket hand side
R . .8) ¥ waualhy different for different rules Consoquently, the pant of TW that
chunges ke o br cominaied afrcsh o the beginning of the derivation of every rule. (The
empuraty M time of 3 part of TW b what prompied us o name TW a Temporary World.)

SN A Nimple [Beviration

In th hoikre g oc shon the derivation of a synthests equation corresponding 0
e tewriee tolke ENQUELE(Cr i .) — s, i the panial preliminary implementation
Moan e Fig 17 The dorivation provides an ifhustration of how the gencration of theorems
s influcnccd By TW R aho Mlusrates for the first time performing eapansion using rewrite
roles st Puse comditional exprosions s them,

e TW used for the derivation s shoen below. For ease of reference. also given
belre e rulrs excerpied flom PW (Fig 16) that are relevant in the present derivation.
Rudes wombered (¥) and (10) in TW are the specification of 3. The rule numbercd (11) amerts
Yt the wyament <». i p w ENQUELE smtisfies 5. The fourth rule is a property of the
variant. Asy triphe (v, i 5 that stisfies 518 yoch that i < j. This can be proved as a theorem
Pom the pecification of 3. We will see how this is obisined in 8 subsequent section where we
Jiscuss muve sbowt the Tesmporary World

The Rehreast Reles of PO

T o . T

T P o= v g W E s

i
}
!
1
;
?
.{

- 105 -

(1) %<y, i, D) — Nullg ‘
2) X< Assign(y, ¢, §), i, j+ 1>) — if i = j+ 1 then Nullg
cise Enqueuc(36(<y, i, i), J6(e))

) XENQUEUF(x, ¢)) — Enqueuc(J6(x), J6(e))

(8) i_then_elsc(False, v1, v2) — v2
t9) i_then_clse('ruc, v1, v2) — vi
#8) N{if_then_cisc(b, v1, v2)) — il_then_clse(b, J6(v1), 16(v2))

My=ny+) —not{x <y)
8) not(True) — False

The Temporary World

%) %<y, &, D) — True
(00 NCAssign(r. .). i j+ 1) = i <j+T A i = j+1 V IKv, i, P)]

(1) X<, ¢, D) — True
WD < s~ True

Shown below is a generation of a series of theorems by invoking the synthesis rules
waing the rewrite rules shown above for expansion. The generation results in the derivation
of a synthesis cquation of the form we desire. The first thcorem in the series is obtained by
mvoking Synthesis Rule (1) for the expression J6(ENQUEUE(Ly, i, 2, €)); the normal form
of (his cxpression is Eaqueue(J6(<v, i,), J6(e)). The rest of the theorems in the series are
obsincr M invoking Synthesis Rule (2) using different rules in PW and TW for expansion.

An explanation about our choice of the rewrite rules for expansion in the following
dorivation i in order. Recall that the ultimate objective of expansion is to drive the symbol
% in the right hand side of the equation in Step (1) to the outermost level of the expression.
Wnspection of the rules of PW reveals two possible sets of rules which could be used for this
purpose. The first one is the X-rules, in particular, Rule (3) of PW: however, applying this
rele in Seep (1) will yield an expression identical to the one on the left hand side which is not
sceptable. The other possibility is applying the rules of the homomorphism specification,
ie.. vither Rule(1) or (2) of PW. Rule(l) is clearly not applicable. Rule (2) is also not
applxabdle. A closcr look, however, reveals that Enqueue(36(<v, , /), 36(e)) has the form of
e expression i the ese-arm of the conditional expression on the right hand side of

- 106 -

Rule (2). Hence, we make an attempt to expand Enqueuc(36(<v, i,), 36(e)) to an expression
of the form if_then_else(..., ..., Enqueue(36(<v, i, D), J6(¢))). The manipulations performed in
Steps (2) through (4) are precisely aimed at this.

Form of synthesis equation to be derived: J6(ENQUEUEK v, i, D, @)
Normal form of 36(ENQUEUEKy, i, 2, ¢)): Enqueuc(36(<yv, i,), 36(e))
Rules used for simplification:

Step (1) Invoke Synthesis Rule (1) on J6(ENQUEUE(Cy, 4 D, €))
JG(ENQUEUEK Y, i, 2, ¢)) = Knqueue(36(<v, i,), J6(e))

Step (2) Expand Expression: Fnqueue(36{(<v, i, 2), J6(e))
Using Rule: (4)

IG(ENQUEUEK Y, i, 3, &) = if Falsc then vl else Fnqueue(I6(<y, J,), J6(e))

Step (3) Expand Expression: False
Using Rule: (8)

J(FNQUEUEK Y, i, P, €)) = if ~(True) then v1 else Enqueuc(I6(<v, § D), 36(e))

Step (4) Fxpand Expression: True
Using Rule: (12)

JS(ENQUEUEKY, i, 2, €)) = if not(/ <) then v1 clse Enqueuc(I6(<y, & D), I6(e))

Step (5) Expand Expression: ~(i < J)
Using Rule: (7)

JS(ENQUEUEK Y, i, 5, e)) = il i = j+ 1 then v1 cise Enqueue(J6{<v, £), J6(e))

Step (6) Expand Expression: if i = j+1 then vl else Enqueue(J6(<v, i, D), J6(¢))
Using Rule: (2)

I(ENQUEUEKY, i, D,)) = J6(<Assign(v, ¢,), i, j+17)

B N s e maes e ey

St W ¢ et M gmtt b R

-

A g K b gl ot - o

Note that the right hand side of the last thcorem in the above serics is
such that

ENQUEUFKY, i, 2, o) > <Assign{v, e.), i, j+ 1>

< Assigalv, e,)), i, j+12) —* True

Hence, we have the following preliminary implementation for ENQUEUE:
ENQUEUEK v, i, 2, e} — LAssiga{y, ¢,), i, j+1>

Let us, for a moment, dr:aw the attention of the reader back to steps (2) through (4)
in the above derivation. Their aim was merciy to expand Enquecue(36(<v, i,), 36(e)) to a
conditional expression that had the former expression as its else-arm. The purpose of such a
transformation was to make it possible to apply (for expanding) a rewrite rule that had a
conditional cxpression on the right hand side. A situation such as this is encountered
commonly during the generation of theorems, This is especially so when the rules of the
input specifications have conditional expressions in them. Hence it is uscful to exiend the
definition of the mechanism expand so that rewrite rules with conditional expressions on their
right hand side can be applied directly to an expression that is not a conditional expression.
We describe the extension below. In future illustrations of the derivation of synthesis
equations, we will be 1:sing the extended version of expand.

Suppose e, — if_then_cise(b, e,,. e,,) is a rewrite rule, and a is an expression that is

w
being expanded by using the former rule. According to the existing definition of expand, the
following protocol is used for expanding a:

Protocol 1:

(1) Check if a (or a subexpression in it) is unifiable with if_then_else(b. e en); if so,

let @ be the most general unifier.
(2) Replace 8(a) (or the subexpression in it) by 0(el)

Note that according to the above protocol a is expandible only if a (or a subexpression in it)
is of the form if_then_else(...). Now, we introduce two additional ways in which the rule can

be used for expansion.
Protocol 2:

- 108 -

(1) Check if a (or a subexpression in it) is unifiable with e, ; if 50, let @ be the most

general unifier.

(2) Check if (b) —* True, or ~(6(b)) —* False,

(3) If so, replace 8(a) (or a subexpression in it) by 8(el).

Protocol 3:

: if so, let @ be the most

(1) Check if a (or a subexpression in it) is unifiable with e,,:

general unifier.
(2) Check if 8(b) —* False, or ~(8(b)) —* True.
(3) Ifso, replace 8(a) (or a subexpression in it) by o(e‘).

Using Protocol 3, the preliminary implementation of Enqueue derived earlier can be
obtained in just two steps as shown below. The theorem in step (1) is obtained as before. The
theorem in the second step is obtained by using Rule(2) of PW for expansion under
protocol (3). Note that the boolean expression under consideration is i=j+1;
i = j+1 —* False by Rules(7), (12) and (8).,

Form of synthesis equation to be derived: J6(FNQUFUE(Ky, i, D, €))
Normal form of J(ENQUEUKKy, i D, ¢)): Enquenc(36(<v, §), J36(e))
Rules used for simplification:

Step (1) Invoke Synthesis Rule (1) on I(ENQUEUEK Y, 4, 2, ¢))
J(ENQUEUEK Y, i, >,) = Enquene(36(<v, i, D), J6(e))

Step (2) Expand: Occurrence: A .
Expression: Enqueuc(36(<y, i), J6(e))
Using Rulc: (2), Protocol 3

J(ENQUEUEKY, i, >, o)) = J6(CAssign(v, e,). i, j+ 1)

1t should be pointed that the addition of protocols (2) and (3) does not enhance the

generality of the original definition of expand. In other words, we can show the following:

~-109 -

Suppose B can be obtained from a in a finitc number of expansion stcps using a rewriting
system R under protocols (1), (2) and (3). Then, 8 can also be obtined from a in a finite
number of expansion steps using only protocol (1), provided R contains the following rules
that specify if_then_clse:

if_then_clse(True, v, v)) — v,

il_then_clse(False, v, v,) — v,

The reason for introducing protocols (2) and (3) is to reduce the number of
expansion steps nceded in the generation of theorems. The two rules of if_then_clse given
above make cxpansion uneconomical because the right hand side of cach of them is a
variable. This makes cach of them a candidate for being used for expansion at every step of
the thcorem generation process. Use of protocols (2) and (3) in cffect limits the use of the
above two rules to cases where there is a rewrite rule with an if_then_ekse in its right hand

side. and which could be used for further expansion.
5.3.2 More on the Temporary World
5.3.2.1 The Purpose of TW

The Temporary World (I'W) serves two purposes: Firstly, it holds information
about the invariant 3. Secondly, it provides a means of keeping a log of certain assertions that
are needed for temporary stretches during the course of the derivation of an preliminary
implementation. Some of these assertions are gencrated automatically by the procedure;
others are supplied by the user.

The information about 3 and the assertions are entered into TW as rewrite rules.
(The derivation procedure may use the rules in TW for expansion like the rules of PW, the
Perturbed World.) The assertions needed may change during the course of the derivation of a
preliminary implementation. Some of the assertions needed can only be detcrmined during
the course of the derivation. Because of these reasons, TW is treated as a dynamic world, i.e.,
a world that changes during the course of the derivation of a preliminary implementation. In
contrast, PW keeps a log of the facts needed through the derivation of the entire preliminary

implementation.

t
\
{
t
!
{
|

-110 -

There are three reasons why temporary assertions might be necded during the
derivation. Firstly, the equation 3(K(g,. 8,)) 3 3%(?1) being scarched for is 3 thoorem of
P only under the hypothesis that the argumments 1o F satisly 3. The sconnd rcason ariscs in
checking if 7vhs satisfies 3, i.e.. if (whs) m True is a theorem. This check has 10 be
pesformed under the hypothcsis that the arguments 0 F satisfy 5. Aho, performing this
check may necd the use of the inductive logic. In such a case, it is necessary to sct up
appropriate hy potheses for the induction,

The third reason for the need for asse-tions ariscs whil one is attempting (o capand
a subexpression of u conditional expression W_thea_clse(b. e,.¢,). Under such a situation, we
may assume that b is False whilc eapanding a subexpression in the cise-arm, or that b is Tree
while cxpanding a subexpression in the thea-arm. For instance, consider the eapression
H_then_clise(i:7 + 1. ¢ Emquenc(X(<v. £, 2). %(e,))). In this case, the subcapression
Enquenc(I6(<v. i. D). %d(e,)) is capandible by the rewrite rule
¥(<Assign(v. €.). 1. j+ 1D) — i = J+] them Nully clse Enquewe(X6(<v. L). Je(e))
only if we make the hypothesis that / = j+ | —* False.

5.3.2.2 Construction of TW

TW consists of two parts: A static part, and a dynamic pari. The static part remains
unchanged for the entire duration of the derivation of the preliminary implementation. The
dynamic pant may change during the derivation.

53.2.2.1 The Static Part

The static part consists of information about the invariant 3. 1t consists of

(1) A set of rewrite rules that constitute the specification of 3. The specification of §
involves other data types which are among the implementing types. We assume that
the static part contains their specifications also. In the examples we discuss, only the
refevant rules from these specifications are displayed.

© e e e .

-

(2) A setof rewrite rules that express additional propestics shout 4.

The rewrite rules mentioncd in (1), above. can be construcied astomatically from
the asuciation wpecification. The information in (2) is somcthing the uwer has the uption of
supplying addiionally ke deriving 3 prcliminary implementation in the presence of a
nontrivial invanant This mformation is needed for the following reason: There are several
preliminary implementations whose denvation s dependent on lemmas that eapress
interesting propertics about the imariant. Although # might be pomibic 10 prove these
kmmas rmdnmimaﬁnds.mcduimm procedure cannot astomatically discover
the desired lemma. The rewrite nales in (2) spectfy those lemmas.

The static part of TW used for the cusrent cxample i given below. Rules (1) and (2)
are constructed from the specification of 3 given 2 pan of the msociation specification in
Fig. 15. Notice that the right hand side of ruke (2) & a umplificd version of the right hand
side of the currespunding oquation of the specification of 3. The rulcs usod in the
simplification are (10). (11). (8). and (4). Rule (3) spcifics a property of 5. It aserts that if &
triple <v. L > satisfics 3. then 1 S} The property can be proved from the spocification of §
using the KB-method. Rules (4) through (11) belong 10 the specification lateger and Bool.
These rules will be used in the cxamiples that: follow.

(1) 4<r. L D) — Tree
(1) H<Awvigalv. €. D.LJ+ 1) = 1 S J+ 1A R = J+1 V XCr. L P)

NN . LP)we i) — Trwe

WrmyVegy—18gy

$) Troe Vi — True

{6) ~x V 1 ~ Trae
M~sAg)—~xV ~y
VA=~ VIIA(V)
MxAy)=y— Tree
!W)'of.M.MTm.c,)-abVQ.
(1) if_then_ciscth. ¢, False) = DA e,

.‘u.

S$32.22 The (ymamic pant

This w the pan that may change dunng the cosrwe of the dorvation of & prolinwmary
mpkmestainvn It say vary from the dervasios of one rule of e prolminary
mplcmeatatnn 1 anather, withm the dornvatine of 3 wagle reic. # may vary from one
theofem goncration wep 0 e sl By 2 thoorem goacration dap, w¢ oar the fllowing:
Recall that the derrvation of 4 rule invohves generating a wries of thoeoroms. The gonoration
of cvery thevrcm i the series s comidored & 2 theofom goncration wicp a the dortvation of
the rule |

The dymamic part 8 ompty & the beginning of the donvation of every rule of the
mplcmentation desfiation Amertions (in the frm of senrie rulor) are addod 0 and
remoned flom the dymamic pant &t pocific tants dwiing the dortvation of & ele. Fvery
wecTron that & added during the derivation of ¢ fele is romoved by the ond of the dortvation.
Every time an aucrtion s added © TW. 18 Sportent 10 acortain that the addition doss sot
render TW inconsient To emere consiiency. we fun the prodioste
t-se-inductre-thesrem-ofid (sce sec. 4 4.3.2) on TW cvery time an awertion i added © TW.
(Note tat TW is convergemt 10 begin with. This & because the static part, which consiss of
the specification of 3, & gearantcod W be convergent) The ascrtion s addod only if the
v am-inducthe-thvoremel wareds 0 wome cases the h-sa-inducthve-theorem-of may
wxceed by genetating a finite aumber of nee anertions. In sevoral stastions it & wsefel ©
add these new amaertions alo W0 TW. If these amertions ere. indoad. added o TW, then they
shouid aho be removed along with the original amertion.

The msertions in the dynamiic part can be clanified into tvo catcgories based on e
Kife time of their cxistence. We dexcride the construction of e two cstegories below.

Argamests-Anertions
These amertions are added at the beginning of the derfvation of 8 rule. They remain

12. We ssume that the preduate lran-infuctive-theorem-of s run icratively a fived number of
tienes that is fwite.

m

-1y

m W ol i oad of e drrvason of B2 nie We Gl thowr aordans
Atgumrcniy Aweriions Do ey ¢ depessiont on Bhe PRI SPIROd 85 SDWNORS
10 thy mplemnting functaan v sl e ke » Boang domead For masc, ¥ the Ni¢
m&m»dnmu.,n.ganmumnwu
By o R,

Argnevcrts Awertions Gan b of teo Aands. The An bind anon St g, 8,
windy ! Thow wx ooscrad 0 TW o the spwng rolos g) - Trwe, ... NQ) - Tome B
Gy 0 wx 18 ges st Dy ¢ omelfon ol wescuanicnlily

The wxumd himd cooming of oo thet ¢ sppliol By the st Thow aie wend
fof camuting 1t cvery el of e prciiminary WRplOMORLOR Pfownves S venant §. ie.
NEJA ANg) = NHE, ...a)0 The amomom ospron She Wduction Inpahows that
mvight Br mcxvkd Bort ciuhimg e e property The seauon thal Ghe sxt Saght Rave ©
wpph e aacrtivon b the following Rocll that out Saiod onueice he Bvariance
property by derivimg every fulr g, ...0) = Nt AN = Towe s 3 Ghoorom of TW
(Nowe hat TW alseucly schodes srwtite fules aneniom faat g 8, Wity 1) M e
prefimmionnry wplormontation dovived i sach Gut XN = True con e proved sstomstionlly
from TW wimg e conutional lagic of e KB wmethod for proving ndecive (oportion. Sien
a0 shdtuna) asertions e serded Hoseser i Ghe proiiminety nplomontation Scved b
wxh thas e prood of AVI8) & Tree aends indection ypoteeses that canion be gonersied
sstomatically by the K B-method. then aertion expreming the indaction hypatheses hove ©0
be sddvd 0 TW.

The amevtions wsed s indection Rypaaheses in ol owr esampley are comstrucsed by
invoking e infereme rule given bedow The inforonce Ale evprenes ¢ goneral indection
principle Yeat wors the lerminssion ordering > @ e well-founded partisl ordertng for the
induction. Informally. e inference role can be steted @ follons Suppore Rg.....8) —
N s e rele bring derived. Then, in ying 10 omere ARG,¢ 0 we may asmume
AWv.....o 0 for vy spument Cv,....0) Gt suvfies 5. aad Ghst & “lem than”

i (Qy--- .0 W e ondering >
(&......)f»(v R A

L
NJA AR)= KR 7D

An g Tnisaniom, Kt we comifust 3 wi of Atpusaots Auciom b the dovvatian of o Aule
K APPEND Wi will by wiitg une s iuoms bsst aiom s ettt ate B dortviman of the
Preiiunmy Pk Rcakinms b APPEND Su@onr at ot A MARg o doftve & Aulc of She
Kothowing e
APPLNENC s i 1D, Conighlin, 0. j) iy 5, 0 1) - Yl
Ihem e Agumcnty Avcmiionn sy Wcinly B floning et duks The G teo
TR Wt s WS wEev s wedpind 1o AFPEND cay 1 Thi thiid amcrion & swod
w1 ek B ey Jrotinin

Ré», i 120 - Toue

NeAmmigate, v jh & 4y = 1) = Tome

Néw, i,) RAPPENNC, &, 2D €3y iy 90 - Toew

Comiittonsd § sguevions Anevtion
e wmomd cwupey o aswvtom W Ge ek pot © Be
Condiionad Foproione Asgrtionn A sewd fiet Sunr ascfiam stury whils cpanding o
whEIpsewion of § comitiomyd evpsenion i The goncraion of thanenn Thew sapion ov
aled TW 0 the Depnng of 5 apsens gresation dcy. snd fomowed o the ond of the
wep e Condiiomd §rgurnicms Aaerioom sendnd 3 5 wp aw daowined &) G
ostnttence of Wie wherpreaiss Gt & dusws 10 e evpandnd & gonoruing the haorem in
tut sep For iskunce. wpgnns We Kilowing & G Thaowom goneied W e B sy
during the derivaren of 2 rele fe APPEND
RAPPENDICs, i, 4. Chmtgate,. &). &y, OB

= 0.0 elnl, = j, ¢ | CapeanfR(APPENDKC . i,)). Cvy. 4. PR)
Suppose we deside generare Bie Bieen I AP (D) By CPpending Ge wbexprenion
WAPPENDICs i, /). $op iy s PN OB e bt hnd side of e Grecvem i siep (1) Then,
we gy 50d 10 TW e anertion i, @ j,+ 1 - Palie The ramsoning betind the sddision of
B amevtion sl be sppevent by aow The ssbevpremion camen (0f cxpansion appean
in e be-vm of 2 comdiionsl xpremion Hence, while ecpanding e svbespremsion ee
way (if we wish) seume that the coreyponding boclem egrewmion & Sahe In gonend, we

- 488

My g 10 whl e B o e TN R 3 JEp R e Sulispioaion aild
sl wee Sue NN O ERIIRARE ORISR SRR @ B Te BIRCLPIORIN
homsn © 0 oxpanicd Them, s Condinand £ sguumions Auntiom fon B Rp aw
determvined » lfows
6 For evary comlitomd osprswion _1hen bt 4.) of wioes B A o 0 9
M oMl - fee

06) For every MMWLMZM, v) o g diur oo e B B
M‘ﬂl,«m

S0 Preftminaey inglyneatstion of \pprad

Thwte Wi tiom deriven & oo off Guuiie cigpeiiRonn compupendiing 1o dle o SPwig
nelen it i A ey AR W i APYRE MDD I e i @ e
nurenring wiiluution of e Wnieee F et W o W dhe dotuain of dhe mle G
ENQLELE. The durvasinn Jhe drmwsnitistes on 5 SBNe somibiet i b dnvoadiuind o
& Poalioninry bR ntufom wnd wiyy ¥ & weefiel © do

Recalt e suipwie for Nwcalscing Ghe vl comibiae: W e Piomingty
mplenution Weguage To Jireate the Rnkafon of Whe oy Thae 3 PrUWRSrY
PR AINEN W SOF KR gy Dapiping SutiRonn o oo off dhe SPNORLENON
wee The comvaing Ao pvticwisr. mules & Wnponiiie 1 Wit B componons of 8 duvle
werned By o Cprenivs st SPEEN o the Aghn hund Gide of 8 A

For ohane. wppane we oiih 1o condiaxt 3 wighe wing dhe cmyemons of e
wiple rerormed by APPENDIC, i 5 0. Cop ip 300 A oluve compnucy purmsis o ©0 do s
by rrwriing dhe dbeve eogrenion i die folloning taldon

Co i P shwve (o (P B APPENDIC, i j). Cv, iy j D)
Then e frst svgusvent con be favliver wamionmed ® conevuy dhe dvied wrigle. For
e

Canigie e, b i j» 1 shese €0, i P & APPENINC o, i 0. Cv,. Ly, j)

The sew woninels ¢ i) woudeed dhondd be duing S de wonings Ghat

.‘“.

Wgly oIl I s et g W g wandiommad & Jhold B aciod Bhe 3 ahew
CMmIrng (an dbwiye B sheanied BOW 30 CHIBNRR Mg #¢ 4T ol 0 e $he
Wit epeanonn of B gl e Thw dhanaiom an de Sy poriemnad autemationlly.
Fur hnioncs, 06 SASNE Mt 1 (NG IN0E MR SR By Chanm/ by Syemancally
P Mg Faory oo of o i a0 /W B NS Wpenon I Bhe Whe avmimac By e
iowmg Ovpremion:. FRAPPENDNIC.,. 4. 40, €y o, 4 0. SeemalAPPRNDNK . 4. 40,
€y o PR IMBAPFIND ., 4, i) Cop 4 PN ina Sevond. o0 Thind o
opuraemn e wived e B wannd ol et compmnevis off 3 nple)

Qeiow. we glee hao Aolm ety » abose animut T autee aun e wund & a0y
TP derivg iy JEReANR of BT W Waswiionm G OHPURASR on dhe Mg hand Bife of &
Wwore The G mulds o iien s o Sy seamien? Gov e WARREWIN WO 45 SHPRISHON
he weend wls Gucithn how e aioon of sheoe Gon S Sved 40000 90 CHPIWIASH
without Mutvg B ewene. Seppme

(D ¢ » o mphameniing Aautos s ange b 2 U YPe.

@ g sy Yoo

M oo, .. .o we sty opunton

¢ iy i Bt do 0t PP I e QUIBN @ & B M.0) o)

A e ronalis st i oy @ G petn ugEniing epanding o cupnsion thal
PN & ¢ WATPIEsiun of o sheve et Fisvlly. o0 nstance of 0 ShEe consifat &
oued ¢ Soani PUPD. & & PPt of ¢ Rmtion D b ith Swee sipument
For immme. CAmigate. ¢, A &7+ 0D shume Cu, & B & APPENDIC,, §. j 0. €0y 4) B

B . T = T

R - e W

“

el o e Orpiomion e mCA DL e B 478 1) Co L A APPENING, 0. 4,
Cuy by BB Waomilly e wxowel Wt o WASEE_ K Me) Bt B crpandod. anly. the
Konk wned i el Ay D coprdind (8 B dhone onaiapls, fof tance.. €4, & D My Aot e
oxgunied Then i Dutinns the W WEwme & Biens A B &0 B « tagilc <of sofwnnak (of
AP I o Ml e IR & e @ MORADR CAPITR o it of W axind
APIRERY, ©0gnieon il WMGUE » MONRCINAREE DRI

The s nmail conuumme I PoNiltwiily off IilARg RONGNta) seitions while
svgunlivg wlsipronionn o o SlE oapwRon Comdior B avale gvon siiove
\umummm;mmmm(w;nr‘,uou The wimineh . 4,
~M'RM'WM4~«M~&¢¢¢“’»«Wanm:‘mnwW'NI(%J‘.
A, €y iy 290 B APPENERCY, 4 KD, €4y 5y SN MAINOM e B wch e AP NINC,,
o A €ny ny 1 B e Foum et we tum vt Wix WEa 4 DY b o T i bong wr e
evpunling e Kook Hpenens & iy olosy eupuvavicom TR snnpion ey W gonord.
hunes e iy B oo Thun copmmion of o wdepromion of 3 ehew
SVPBENRIcIh WVt e i ok ipadiatg off Wiee Tumagpront wry Wl (BW) #ont Inaiteins, W0 the afiaove
cvmple. F we WAPPENENCs, 5,) 0. €y i 00 = Touw & o theowom of T dhon we may
winkabe Tl e onetiom € L DY - Toaw Thon in wnedl 0 e JOrvation 1 fofliow

wipltet - § gt €& o, 4Y (\\,yw
gl 4,) Ceigle, o)y g 800V)

Telreant §rervgin of B Prvtesting Warld

D Retw § DY -+ Vil
D et voRgts ¢ i & js T > i i ot = = 1 Ny F gt RaCa L PPy Naeth

) Wy WPPY e 9 - gl ey Ry
10 AT e et v, o b - & den_ehath Koo) e j

Dusbestion of e ik corrguniing t» Ay

Fumn o B Gerrem © e et RAVPPERCS, ¢, (D G, . O 2 KM} |
RAPPYSINC:, 1 .G, W R, i k
s wedt for wirphifeation: '

!

Indtiial Skate of the §emparary Werld

L TON W T 1%
NG g, e AL e 1) =i S jr A= jelV NG LPY

N A=) Trae

Ml., e I Sres

WP 1) avols Synchrun Rube (1) om RASPEENING S 4. 40, Cop . O
RAVPTENING, .10, € i O WCr 1 1))

\lag b} TPEN 124 e urn.)’u(l..".[‘)

Invivation of ihe relr cornvengonding (o Agl

P orm of e Waosiue b B gewerancd umm«‘. 4 4. CAwigals,. "r‘t" WLt Dhm I(Ms,)
KENPTINING: - 2. ¢ Wnr (A YR [} 1
0. hww ool 2 5 00 M, 1 ON
) aqmerd \pPral{ A< . ¢ 100 Tl vy 1 N Tle DD
Rrlge weed for wmpibficstion

Initial State of the §emporary Werld

Sy Prs

NG D) = T

MR igr. e RijsD) - ijr I AR = o]V NOLP)Y
YNG i Pre iR~ Tre

Srpuenwniy- Sewrnens
MR - Trew
M'(ancrﬂs’,;'QU”-' Toue
" The following 8 8 s coequence of Rule (9)7)
Moty 3o TAL =51V e (N~ Tree
(10 NG, o, 00 =8 NAPPENIRG . 1. 0. Cvp iy O ~ Towe

-119 -

Sep t1) Iavoke Synthesis Rule (1) on the expression J6(APPENIXK Vo b J 2 vy i, 2)
WAAVPPENINGy, . 12, <, ipid) =

‘_'“‘..fk"(i, = jl+ lv x(< vl' il' jl>)'
Enqueuc(Append(36(<,, i, j), 6(< vy iy, j,2)), J6(e,)))

Sep D raped: Oicunrence: 3.)
1 apscwon: Append(36(< Yy i j,)). (K Vo e jz)))
Umng Rule: (3) .

Tecrere

WLAPPY NINC el)2, CAssign(A jz). iy h+ D)=

l.lhtl_cht(l, =+ 1 26Cv, L
: Fquene(6APPENDC v, i,), <vy iy,), J6(e)))

A)

et Fraasiore (xcutrence: 310
Yaprosvaun APPENIXC (A RN TN B0
Uwng Ruk: where-ruke (1)
ROy NI et ;'). < Awipn(v 0 j’), i’. j’+ D)=
e ohet: = o0 W4Cr 0. g 00 Faqueuc(6(<y, D), ¥le))
where Cv, i > is APPEND(Cy, i) €v,, 7))

f A)

YWep #> Fapnd (Ncurrence:)
Feprcsuon Faguene(X{<r, &), Jole,))
Lving Role:
™ Ve
R Srer ¢ eporIen § e wopr of elee-arm
v = \.rm
VEARTA M D)~ Tree
W, 3, 40 — Free
NPy, i i 2. € i D) -+ Tree
KR Novcaae ¢ vavexviun & iy supe of whete
My D = T
X 92L,

REWPPE IR, i). C\nigalv, e) i+ D) =
& v el = 5 o0 RlCv o O) R Amsigalr, e, A & j4+1)

& -120-

where <v, i, > is APPEND(Mo b AR S jz)))

Step (5) Transform: Occurrence:
Using Rule: where-rule (2)

J(APPENDK Voo bie i <Assign(Vp O jl). injy+ D)=
il_then_else(i, = j,+1, 36(Ve b jl>). I6(<Assign(v, e, M i j+13))

where <v, i, /> is APPENI(Cv, i, >, <V 6 i)

Step(6) Expand: Occurrence: A
Using Rule: (4)

J(APPENIXS v, iy, j, >, CAssign(v,, e,), i jz+l>)) =

1 4

I6GE_then_clse(i, = j,+1.<v,, i, j,2. CAssign(v, e,,), i j+ 1))

where <v, i, 2 is APPENIXK Vool s <y 6y, j1>)

APPENDK x, s j>, CAssign(v,, e, i i j+ 1) -
if = j1+1 then <"1' il’jl>
clse <Assign(v, e,, j), i, j+ 1> where <v, i 2 is APPENDK v, i 20 vy j1>)

Definition of APPEND

APPEND(v, i, j >, <,

2 By i,)) — <"|' iy j:>

APPENIXK Vo by (Assign(vz. ey jz). W+ D)—
if i, = j,+1 then<v, i, j>
else <Assign(v, e, j), i, j+1> where <v, i, > is APPENIXCv, i, i3, <v,, i3, J3)

| -121-

6. Stage 2: The Target Inibleni'én"tatidn

The second stage of the synthesis procedure transforms the preliminary
implementation of the implemented type into a target implementation. For instance, in the
example implementing Queue_Int in terms of Circ_List, the prcliminary implementation
derived in the last chapter (shown Fig. 5 of chapter2) is transformed into a target
implementation such as the one shown in Fig. 0.

There are two differences between a preliminary implementation and a target
implementation. The first one is that in a preliminary implementation the only operations of
the representation type allowed to appear are the generators of the type. The target
implementation may also contain nongenerators of the type. The sccond difference is in the
function definition methods used by the two forms of implementation. In a preliminary
implementation a function is defined by means of a set of rewrite rules. For example the

preliminary implementation of ENQUEUE (Fig. 5) is:

ENQUFEUE(Create, j) — Inscrt(Create, j)
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(c, j), i)

In a target implementation a function is defined by means of a single expression. For
example, ENQUEUE is defined as: ENQUEUE(d. k) :: = Rotate(insert(d, k)). The
transformation performed takes into consideration both of these differences.

It should be noted that a preliminary implementation is an executable

Fig. 18. An Implementation
NULLQ() :: = Create()

. ENQUEUE(c, j) :: = Rotate(lnsert(c, }))
FRONT(c) :: = Valuelc)
DEQUEUE(c) :: = Remove(c)

APPENDIc, d) :: = Joinld, ¢)

SIZE(c) :: = it Empty(c) then O
else SIZE(Removelc)) + 1

implementation. [t can be executed by an interpreter that simplifies algebraic expressions

using the rcwrite rules in the preliminary implementation and the specifications of the
implementing types. The interpreter must have a pattern matching capability to invoke the
appropriate rewrite rule while simplifying an expression. The program verification system
AFFIRM [39], and the programming system PROLOG [??] provide such an interpreter.
Given the specifications of all the implementing types, the interpreter can exccute the
preliminary implementation on any given input. For example, the value returncd by the
operation (of Queue_Int) Front on the queue constructed by Enqueuc(Nuliq, 1) is nbtained
by finding the normal form of FRONT(ENQUEUE(NULLQ(), 1)) using the preliminary
implementation:"The normal form is 1. Depending on the range type of the operation, the
normal form can, in general, be a generator constant of any of the implementing types. The
normal form can then be evaluated assuming there exist implementations for the
implementing types.

Our goal is to derive the target implementation in a form that can be compiled by a
compiler for an applicative language. The motivation for this is primarily one of efficiency.
There are two reasons why a target implementation is more efficient than a preliminary
implementation. The first one ariscs because of the freedom to use nongenerators of the
representation type in a farget implementation. This endbles one, in some instances, to
eliminate recursion from the preliminary implementation of an operation, and to transform it
into a target implementation which is merely a composition of the operations of the
implementing types. The implementation of ENQUEUE shown above is an instance of such
a situation. The use of the operation Rotate in the target implementation eliminates the
recursion which was essential in the preliminary implementation. The second reason is that
an implementation that can be compiled by means of a conventional compiler is in general
more efficient than interpreting a set of rewrite rules.

We develop two methods of deriving a target implementation from a preliminary
implementation: The Recursion Preserving Method, and the Recursion Eliminating Method.
Both the methods are based upon expansion using rewrite rules. The target implementations

derived by the first method preserve any recursion that may exist in the corresponding

preliminary implementations. The second method can eliminate recursion from a

-123-

preliminary implementation of an operation if there cxists a nonrecursive implcmentation for
the opcration. The sccond method is more general because it can also derive the
implementations derived by the first mcthod. The advantage of the first method is that it is,
in general, faster than the second in situations where the two methods derive the same target

implementation.
6.1 The Recursion Preserving Method

‘This method uses a special set of functions, called the inverting functions, on the
implementing types for transforming a preliminary implcmentaticn into a target
implementation. To understand what inverting functions arc and how they are useful in
deriving a target implementation, let us take a closer look at the difference in the function
definition methods used by the two forms of implementation. The preliminary

implcmentation for SIZE is

SIZF(Create) - 0
SIZE(Inscrt(c, i)) — SIZE(c) + 1,

and a possible target implcmentation for it is

SIZE(d) :: = if Empty(d) then 0
else SIZE(Remove(d)) + 1.

In the preliminary implementation, the argument (o SIZE on the left hand side of a
rule may be a generator expression. The argument indicates the structure of the expression
that constructs the values for which the rewrite rule is applicable. This freédom serves two
purposes in a preliminary implementation. Firstly, it is used for performing a case analysis
based on the structure of the argument. Sccondly, the explicit indication of the structure of
the arguments on the left hand side makes the decomposition of the arguments trivial. For
instance, in the second rewrite rule for SIZE the variable ¢ used on the right hand side is
actually a component of the argument to SIZE. We were able to access this component
without actually having to generate code to decompose the argument.

In a target implementation, the argument to SIZE on the left hand side of the

-124-

definition is a variable. This means that the cxpression on the right hand side of the
definition must have explicit picces of “code” to perform the casc analysis bascd on the
structure of the argument, and to decompose the argument. For instance, in the target
implementation of SIZE given above, the subexpression Remove(d) cxtracts the component
of the argument d that is denoted by the variable c in the preliminary implemientation, The
subexpression Empty(d) checks if d is a value constructed by Creatc; the if_then_else
expression performs the desired case analysis. Let us call the subexpressions that perform
these functions mentinned above inrer:ing ex;:ressions.

A preliminary implementation can be systematically transformed into a target
implementation if the inverting expressions can be gencrated automatically. The inverting
functions of the implementing types serve precisely this purpose. For instance, in the above
example Remove and Empty are two of the inverting functions for Circ_List. The inverting
expressions can be automatically derived in terms of the inverting functions. Thus, the
transformation of a preliminary implementation into a target implementation according o
this method consists of two steps: First, determine the inverting expressions in terms of the
inverting functions; second, derive implementations for the inverting functions in terms of
the operations of the implementing types. The two subsections to follow describe the two

steps.
6.1.1 Inverting Functions and Inverting Expressions

Inverting functions® of a data type are a family of functions on the type that are
inter-related in a special way. Inverting functions are defined with respect to a basis of the
type. The relationship among the inverting functions of a family is such that the functions
can be used to algorithmically invert the process of constructing a value from the generators
of the type. In other words, it is possible to construct algorithmically the inverting

23. Inverting functions are related to distinguished functions defined in [24). A family of inverting
functions for a data type can also serve as a family of distinguished functions. The reverse implication
is not true in general. In {24] distinguished functions are used to formalize the expressive power of a
data type.

m

-125 -

cxpressions as a composition of appropriate inverting functions. The inverting expressions

perform the following functions:

(1) Given a variable v and a gencrator expression t, check if the value denoted by v can
be constructed by a generator cxpression that has the form of t. Since an inverting
cxpression that performs this function is normally a boolcan expression, we call it a

boolean inverting expression.

(2) Assuming that a given variable v denotes a value that is constructed by an cxpression
that has the form of a given gencrator expression t, determine the various
components of t from v. We call an inverting expression that performs this function
a component inverting expression since it extracts a component of a generator

expression.

For example, the operations Remove, Value. and ~(Empty) can serve as a family of
inverting functions for Circ_List. This is because the inverting cxpressions for any generator
expression of Circ_List can be automatically constructed from thesc operations. For instance,
suppose v is a variable of type Circ_List, and t = Insert(lnsert(c, i), j) is the generator

expression under consideration. The following are some of the inverting expressions for t:

(3] Nol(Empty(Reudve(v))) is a boolean inverting expression for t. It checks if v
denotes a value constructed by a generator expression that has the form of t.

(2) Some of the component inverting expressions of t are Value(v) which extracts J,
Remove{Remove(v)) which extracts ¢. and Valuc{Remove(v)) which extracts L

Let us now formalize the properties that characterize a family of inverting functions
for an arbitrary data type. We express the properties in the form of rewrite rules. The
properties are such that they do not necessarily characterize a unique set of functions. This is
| done deliberately to offer flexibility in choosing an implementation for the inverting
‘ functions. Inverting functions are always defined with respect to a basis for the data type.
Let the basis for the data type be B = {o,| DO}. Inverting functions can be classified into
two categories: the component inverting functions and the bdoolean inverting functions.

(1))

)

"

- 126-

There is o set of 8 component inverting functions (d,, ,d,) associated with cvery
gencralor o, in the basis whose arity is . They arc charxterized by the following
propenty:

ol lo(v.... .M. ... 0 ofv...., I —olv.....v)

A generator whose arity s 2cro does not have any associated component inverung
functions. The component inverting functions associated with o, factor a value
constructed by o, They retum the arguments used by o, in conutructing the value.
AL the outset it may appear more natural o characterize the component inverting
functions as follows: d’(ci(v......v.))- \/ The problem with such a
characierization is that it may result in ill-defined component inverting functions in
situations where the generators can be used in more than one way (0 construct the
same value. For instance. consider the basis 3 = {0, 1, +} for Natural Nembers.
If d, associated with + is defined as d(x+y) — x. then we have a situation where
4(0+1) =0and d(1+0) = I. This will conflict with the rest of the specification
of type Natwral_ Numbers which should allow us 10 prove that (04 1) = (1 +0).

There is a boolean inverting function associated with every gencrator in the basis.
The boulcan inverting function, p,, associaled with a gencrator e, retums Tewe on
values that can be constructed by a gencrator capression that has the form
o(Vieea W) So, p.ischmeﬁtedbyp.(v)-o,(d.(v).....d.(v))-v.whett -
is the cquality operation on the type. Thus, the recursion prescrving method in
general applies only when each of the implementing types has the equal operation
defined on it A simpler characterization, which applies only when the basis is such
that every value of the type can be constructed uniquely using the generators is as
follows:

p,(c,(v'.....v'))—‘ Tree.
"“i('l"' v) — False (1 & f)

The basis for Circ_List is 3 = {Creste, Insert}. it has two component inverting

functions (4, and d,) both of which are amocisted with insert, and characterized by
Insert(d (insers(v, 1)), 4,(Imseri(y, 1)) — Insert(v, i). It has two boolean inverting functions. p,

-127 -

w;,mmwmmmumwmmnmn
charactenscd as follows. (Note that the gencrators of Cle_Lint are wch that every circular it
can be construcicd uniguely i terms of the peneralon)

9,(Create) — True
p,(lmners(c. 1)) — Fake

’,(lmnc.) ~ Tree
"‘Cll'ﬂt) — False

Notic that p, and p,. in this cane. are complement of cach ather. So. shile doriving
implcmcntations for the inverting functions. we implement only p. 9, ® oblained as 3
negation of p,.

It s not hard 10 sce how a peeliminary smplemcntation can be tranvfonncd nto a
target implementation in terms of the invening functions. Fig. 19 gives a goneral procodure
that docs it for an arbtrany prelimimary implementation. In the following. we llusirate G
procedure on the proliminary implementation of SIZE. The proliminary implcmentation
SIZE comists of the following rewerite rules.

SIZE(Create; < 0
SIZE(mer¥c, §)) —~ SIZE(c) + |

Suppose the Iefl hand side of the target implementation s SIZFlv). The expremion on the
right hand side s a ncssed i_then_ehe cxpression that performs » case anslysis There 18 ¢
case correspunding 10 every frewrite fule in the preliminary implomentation. In the present
case Whe right hand side would have the following form:

lb'thu'
ehe ifD, thene,

The expressions b, and ¢, are determined from the it rewriee rule wing the inverting
expressions associated with the generator exprewion that appears @ the srgumoent 10 SIZE on
the left hand side of the rewrite rule. The expressions b, and e, are determined similarly from
the second rewrite rule. We will -Jescribe how 8, and ¢, are determined since they are more

Fig 19. The Pracedwe RPM

Suppone e preimssary mapicmentition of F commis of B Sflonseg ndes
He) -,
e -4

L]
L4

LR
Then, ihe Krget mpkwestaos e F &
Fie) = 0 emy
sha f b hen s,
)
chtl;.tu.
where
1) N s Ox bowius ireriing eoprewins of g which & cirgincd by Sx procnduic IIE dowrivod
eiow

() & B O cepucnion obtancd by feplaing cvory TRl 30 | By G0 CRMPaRORL Iveriing
eprewcn of g B otz w8 wrminal This & obtamcd by S proccden (18 dowribed
below

FOf comvemeEnce. w¢ snatnt Taat e gremrstors Rase 20 2Ty Gug B &
MO one.

CIE & peot (a: greevster exprewion,. « Orvereracy)
RS (rompenel ivevting ewgreniow)

Seppene ¢ b ole)
¢ & e ¢-fonction amecisied ol o

o = A due retami)
ehe § o = Ly s rvterndd * CTlle,,)

ol (N

L = gror (@ greerster exgresaion) reterns Bocius imerting caprenion)

7 @ & 2 voriubie then reevaf))
dele =oa)
ew nournlp © A * NENe, 8
wheee 9 & the bochen invertiag metion anecisied vl ¢

4 % he comgaent Wwrsting lentios suminnd Wi ¢
WE) = s (o e cogaowian,. & grting tovties guebel)
sxtmas { havicnd AeEnng Cepreavineg

o » 3 surubls un setemid)
e ife = oln)
Hen wtsn iy * ¢ » Wkl D
whese p b e doulrun werng Gusen snerutsd ot o

_l..

intsrenmy i e deicomawen of §, ad ¢, bguwumu&m(c
demeten ¢ viskes siomitecind Bovn a0 APIONOS Bt R the o of ieuslic. 3§ w &, & pfY)
6, idemical b SIZB0) ¢ § o v g Eoliowang s dificattion The vt ¢ and L,
wiigh dencte e commpomsmie off iy CHASOR APPEATNg B wPuwmond 0 SIZE an the R
el sisls of e e, e PR By IR CIPNPORINNE WNOTIRG CMPR IR Pt X
Moy compumeim om ¢ This I« b ptand By ¢ 40) and 8 gl by €f0) %o ¢, %
SIZEGO D o 1 B, oo, con By deservmnd wilarly So fhe Lpnl IPAOWORAtE . for
SEZE s e of Wiy srsx g Aomg Bome i elow

N5t - Spje)ve
ehe 9 so) vn NI ¢ |

& 1.2 (mplymentation fes the (osevting Funrtiom

Mphomunniionn G e Weeming fonmom or dothal wing G RXWMAON
ellomenceiing meitod drne il W e Ent WX Tm Niowg' U T PIOPRNEADS (R Ipnsing the
ireartiony e Rons we OVERed By Naem of & wit of sy Moy bgllomentasions G She
Wweeriog Ramuionn we Jevermined By wmpkBing Kot ppriae cnpowsion of dhe
opurarions of the IPROREnCine typus B wiivly dhe et fdes (ot ionsing the Wvoring
Romcionn W e Gifowing se Sos Gu G guensiol sguonas the derflee

WpRre st for e of e Wreening funciRom ined shove
Ourivation for 4 snd ¢,

Melvant Rroste Moty wad fov § wpamminn

......

112 VaheetC reute) — FRROW
D Yalaethomente. i —

£3) RemesetCreme) —~ FRNOR
M) Remwsefuenie. i) -= ¢

..... as

Form of de drrvrem 1 Wt goversed Dewvie. 8 & busrvl® Soneite. 31 © Sosenge. #9)
Normal o of Weviie. § S §

Trales e for e werwad fovenc Nigme

SR 45D Mniatis Sy riibein Roks 11) o0 @
Owiergs, B = hnowie.

Wep (D Lagund Figrewiam »
Uning Wuie ¢8)

NevevwTTErOTTY] CTAETIY T T Y N T YT YT O TV ORI T VR TR T Y

Dopsign) & dmenglivmeetbments. 3} O

WP L gk ¥ ogranaions

Uning v (D

Pmenigs. 3 2 SmaniivmmgBmengs i § slasfBongnge. P9
Wit ve BbeRru N AW m«nmwﬁmn" Sy ned Lol Thacvotone,
we e i Refow iy Wi nininnn o d ond &,

&~ Remenls)
”‘l ~ Voluers)

a — = -cwem

Owvtsatien br o,

eirvane Rewsity Balier wead A § oguaniion

......

.......

Form of e e v be geevced Toue = I vounel)
Normt R of Toner Tage
Rules wied e B vrmmal A Ve

WP (1) it Seniienis Rale (1) o Toae
Toe = faee

W 1D Faped Fgveniun: Thae
Uling Ruie @Y

Tewe =) mptyi(rede)

Ihe kit iotem dewcrmmes the lloemg wilutue b ® Faply. Nowe that this function also satisfics
he uher wwie rale (haiaruing p,. asmch p Uissenit ci)) — False. Iterctore, p, can be
waplemenwd e oilows

Ris) - Dmgtyts)
6.2 The Recunios Fliminating Methed

let we wppom: sc s doriving a2 Larget implementation for an implementing
funspon § wiong prel.ninagy mplcracniation consists of the sct of rewrite rules given below.

Hg,) - ¢,

'W“"'.
We anome that F « 3 vagie vartabie function for aonvemence. The geacral description of
he method gren dedow can be eviended casily 10 8 multivanriable function. In 8 target
wnpicresttem the hunction F is defined s Hv) - = e, where v is a vaniable, and e is an
ErprcRinn comtaning v and am of te following function symbols:

{H Operatirs of U implementing types
() The mpicwunting fenctions
(N The fenction _then_che

Let us denote ¢ @ I*(r). where ® s some composition of the function symbols listed
sbove The derivation of s trget wnplementation consists of finding 8 suitable f*. The
componition * shoeld be such tht the fonction defined by F(v) :: = f(v) has the same
Makmh&dhkuduﬁkmbmm

To charxterize the prodlem formally. we define the following concept. A
compuosition 1* meiyfies 2 reeriee rale of F if the equation obtained by substituting f® for F on
both the sides of e rewrite rale s a teorem of the rewriting system consisting of the

-t o)

:—--—---————‘

_—r

-133-

DrsRaNFy i mantition wd the specifications of the implementing types. For example,
. e Retate(laceri(d. L)) satisfies the rule
RNGR R Ridwmevatr.). P -~ Denend{ V" NQUE UK (e,) 1) if the cquation
Rutstvifmensimenids. il) = Sonert(Retate(imnerec.). i) is 3 theorem.

The wamrgnonition I 0o by devined should be such that 1* satisfics cach of the rewrite
wiee i e prefinemeny Smphowomiation of F That & the following equations should be
Hensome (e wonmon § 8 <] domotos the expromon oblained by replacing F by f* in
8

o) =2 - M

o CERY By

Mo grrmone of e dione Nommmedation (of the condition that a solution for (® is
AR 14r Sl W e 4 Wilow it N it 3 Wingoargws gOReYalion Mralcyy smilar to the one used
Wt v el onesen We gonere 2 thoorom wing one of the above
atione @ ¢ wpine W ssining I @ o plce Iolder o Oe oquation. Lot us call this
MR NI eioe upiionm A dlucieee s e O fors of the womplate oquation
e ¢ <t or P 0 Gagle ihaongnn sy drvereine more than ane candidaic for
P e iy e e Tevawe e emniom vy we dosling with have finite sire. The
liiiielic) ut o Jemied sinnaicaliy By cunperteg the Giootem with the tempisie
kN e gk & geene 5 Huveom Sull s only hus e form of the template
AR Tt 'k e it e die condidiae o ® ainfees e sent of Gee equations in the
Meninary mipemenmion o §

Me genverninn o dewions & cwied et » Gie sme fmibion & i derfving the
Weiininere ORibmengaion By yp die ene oy of wmeshy rles developed esrfier. The
Hondeeme it we F IO = o I die Py Susian Wudive only She aporstions of e
Mpitmeming vaer ol We Ingtmening tunciun Thentae. the reaviting sysiem that s
0 o gueleening sgunenn Folislle gewernting Ghe therunn) consiss of the prelisninary
MPRmRmptien o e guerivsinn F Gu npiosiing wpes I conra. the rewriting
ot ool n fe e of de pulindngny Jeglomenation consised of e

-134-

specifications of the implemented type and the association specification. Note that the
preliminary implementation did not exist at that time. Checking if a candidate for f* satisfies
L the rewrite rules essentially involves checking if an cquation is a theorem.

Let us illustrate the method on the derivation of the target implementation for

ENQUEUE shown carlier. ‘The preliminary implementation of ENQUEUE is repeated

below for case of reference.

ENQUEUE(Create, j) — lnscrt(Crcate,'j)
ENQUEUE(Insert(c, i), j) — Insert(ENQUEUE(, j), i)

The * w be derived should be such that the following equations are theorems. (Note that the
equations are obtained by replacing FNQUEUE by f* in the rewrite rules, and then

interchanging the two sides. The reason for interchanging the sides will be explained shortly.)

1) Insert(Create, j) = f*(Create, j)
2 Insert(f*(c, j), i) = M(Insert(c, i), j)

We use cquation (1) as the template equation. The nature of our synthesis rulcs imposes
certain restrictions on the eguations that can be used as template. The synthesis rules are
formulated to generatc theorems with a known left hand side, but an unknown right hand
side. So. the template eqﬁation should be such that the unknown entity f* appears only on
the right hand side. In equation (2) both sides are unknown since f* occurs on both the sides.
This was also the reason behind interchanging the two sides of the rewrite rules while
obtaining the above equations. Note that there always exists at least one cquation with a
known right hand side. This corresponds to the rewrite rule in the preliminary
implementation of F that represents the basis case.

Shown below is a sequence of steps that generates a theorem that gives rise t0 a
target implementation,

Relevant Rewrite Rules used foc Expansion

oo

(3) Rotate(Create) — Create
l (4) Rotste(insert{Create,)) — InseriCreate,)
| (5) Retate(lnsert(inser(c, 1), i2)) — Invert(Rotate(Insert(c, i2)) it)

Form of the thcorem to be generated: Insert(Create, j) == f*(Create, j)
Normal form of Insert(Create, §): Insert(Create, j)
Rules used for the normal form: None

Step (1) Invoke Synthesis Rule (1) on Insert{Create, j)
Insert{Create, j) = Insert(Create, j)

Step (2) "xpand Expression: Insert(Create, j)
Using Rule: (4)

Inscrt(Create, j) = Rotate(lnsert(Create, j)

The right hand side of the last theorem generated in the above series has the form of
f*(Create, j), and hence can be used to generate a set of candidate compositions. A candidate

composition is determined from three expressions:
(1) theleft hand side of the target implementation, say F(vl, cees ".)
(2) the night hand side of the theorem generated, say a, and
(3) the right hand side of the template equation, say f*(g,, ..., g).

It is obtained by replacing zero or more occurrences of g, foreveryl <i<n inabya
variable % 1< j<n The replacement of g, by Y is made so that type consistency is
preserved.

For the current example, the left hand side of the target implementation is
ENQUEUE(, k) :: = ?; the right hand side of the theorem generated is Rotate(Insert(Create,
J); the right hand side of the template equation is f*(Create, j). So, there are two candidates
for f*(d. k): (1) Rotate(Insert(d, k)) and (2) Rotate(Insert(Create, k).

The second candidate does not satisfy cquation(2). The equation obtained by
replacing i in the equation by the candidate is
Insert(Rotate(Insert(Create, j)), i) = Rotate(insert(Create, j)). This is not a theorem of
Circ_List because (for every i and j) both the sides of the equation remain simplified, but will
not be identical. (This can be checked by Is-an-inductive-theorem-of.)

-136 -

Let us consider the first candidate. The equation obtained by substituting it for f* in
equation (2) is Rotate(insert(Insert(c, i), j)) = Inscrt(Rotate(Insert(c, j)), i), and this is a
theorem of Circ_List. (The left hand side of the equation reduces to the right hand side by
the rewrite rule (5).) Hence Rotate(insert(d, k)) satisfies equation (2). The second candidate

does not satisfy cquation (2). Hence the target implementation is:

ENQUEUEC(, k) ::= Rotate(Insert(d, k))
6.3 An Hlustration of a Complete Synthesis

In the following, we illustrate the complete synthesis, i.e., an illustration of both the
stages, of two examples. The first one derives a target implementation for the operation
Append of Queuc_Int using the association specification that specifies the Circ_List
representation. The second example derives a target implementation for the Kront using the
association specification that specifies the <Array_IntX lntégeerntcger) representation
(see chapter 5).

Tilustratfon 1
Stage 1:

Partial Preliminary Implementation of Append at Hand
APPENDYc, Create) — ?rhs.

APPENIX(c, Insert(d,)) — ?rhs,

Relevant Rewrite Rules of the Perturbed World

(10) Append(q, Nulig) ~ q

(14) J6(Create) — Nullq

(20) I(ENQUEUE(c, 1)) = Enqueue(36(c), 36(i))})
(22) I(APPENI{c, d)) — Append(36(c), 36(d))

Derivation of the first rewrite rule

Form of the thcorem to be gencrated: JI6(APPEND(c, Create)) m J6(?rhs,)
Normal form of J6(APPEND(c, Create)): J6(c)
Rules used for the normal form: (22), (14), (10)

Step (1) Invoke Synthesis Rule(1) on J6(APPEND{c, Create))

IG(APPENIDc, Create)) = 36(c)

‘The above theorem is such that APPENDc, Create) > ¢. Therefore the desired rewrite rule is:
APPENIXc, Create) — ¢

Derivation of the second rewrite rule

Form of the thecorem to be generated: JG(APPENIXc, Insert(Create, 1)) = JG(?shs,)
Normal form of J6(APPENIX¢, Insert(Create,))): Enqucuc(:l(;(q). J6())
Rules used for the normal form:

Step (1) Invoke Synthesis Rule (1) on J6(APPENID{c, Insert(Create, 1))
JG(APPENIXc, Insert(Create,))) = Fnqueuc(36{c), J6(J))

Step (2) Expand Expression: Engueue(J6(c), J6())
Using Rule: (10)

J(APPENIXc, Insert{Create, 1)) = Append(Faqueuc(36(c), J6()), Nullg)

Step (3) Expand Expression: Nullg
Using Rule: (14)

JG(APPENIXc, Insert(Create, 1)) = Append(Enqucue(36(c), 36(/)), J6(Create))

Step (4) Fxpand Expression: Enqueue(J6(c), 36(/))
Using Rule: (20)

JG(APPENDAc, Insert(Create,))) = Append(J6(ENQUEUE(c, J), J6(Create))

Step (5) Expand Expression: Append(J6(ENQUEUE(c,), J6(Create))
Using Rule: (22)

JG(APPENIXc, Insert(Create,)))) = J(APPEND(ENQUEUF(c,), Create))

-138 -

Step (6) Generalize the theorem in step (5) by replacing the constant
Create by the variable d to obtain the following cquation:
IG(APPEND(c, lusert(d,i))) = ICAPPENIENQUEUK(c.), &)

Apply Is-an-inductive theorem-of on the above cquation.
This yiclds True confirming that the equation is a theorem.

Hence the desired rule (ubtained by dropping 36 on both sides) is:
APPENIX(c, Insert(d,i)) — APPENIENQUEUF(c,), &)

Stage 2:

Preliminary Implementation at Hand

APPENIX¢, Create) — ¢

APPENIc, Inscrt(d.i)) = APPEND{ENQUEUKc, i), d)
Desircd Form of Target lmplemcentation

APPENIv, v):i=7?

Relevant Rules of Circ_list

(10) Join(c, Create) — ¢
(11) Join{c, Insert(d, i)) — Insert(Join{c, d), i)

Template Equation Chosen: ¢ = APPENIX(c, Create)
Form of the thecorem to be generated: ¢ == M(c, Create)
Normal form of ¢ ¢

Rulcs used for the normal form: None

Step (1) Invoke Synthesis Rule (1) on ¢
c=c

Step (2) Expand Expression: ¢
Using Rule: (10)

¢ = Join(c, Create)

Step (3) Find a suitable candidate composition.

— e A um

-139 -

The right hand side of the above thcorem has the form of (¢, Create). So, find a suitable candidate
composition. There arc two possibilitics: (1) Join{v,, v,). and (2) Join{v,, v))}. The sccond candidate
satisfics the sccond rule of the preliminary implementation, but the first docs not. So, a possible target
implementation is:

API’I'INI)(V|. vz) u= Join(vz. \z,)

m——

i 'l‘O’

| iilustration 2
| Stage I
Partial Preliminary Implementation of Append
FRONT(v, i, D) — ?rhs,

FRONT(C Assign(v, e. 3, i, i+ 1) — rhs,
FRONT(CAssip{ Assign{r.e,, A, ey, j4+ 1), & j+2D) — Trhs,
Relevant Rewrite Rules of the Perturbed World

(1) 36(<v. i, D) — Nullq
(2) J6(< Assign(v. ¢,) i, j+ 1>) — il_then_clse(i = j+ 1, Nullq, Enquenc(36(<v, 1,). 3(e)))

(3) J6{FRONT(x)) — Front(J6(x))
(4) Jo(ERROR) — Error
(5) J6(l_then_else(b. v,. v.)) — €_then_clse(b, J6(v,). X(v,))

Derivation of the fisst rewrite rule

Form of the theorem to be gencrated: J6(FRONT(Cr, & D)) m 26(?rhs,)
AFRONT(Cr, i, D)) Error
Rules uscd for simplification:

Step (1) Invoke Synthesis Rule (1) on JI(FRONT(K v, i, D))
J(FRONT(Cy, i, D)) = Frror

Step (2) Expand Expression: Ervor
Using Rule: (4)

JAFRONT(Lv, i 7)) m I(ERROR)

: FRONT(v, i, D) — ERROR

Derivation of the second rewrite rule

Form of the theorem to be gencrated: JG(FRONT(CAssign(v, ¢,), i, i+ 1>)) m %(Mhs,)
JA(FRON1(<Assign{v, e,) L i+ 1. (e
Rules used for simplification:

e

- 4] - i

Step (1) Ilavoke Synthess Rule (1) on JYFRONT(CAssiga(v, ¢, . & 14+ D))
X(FRONT(CAssiga(r, . A & 1+ D) = X(e)

FRON((CAssign(v. e, A i (#17) ~ ¢

Derivation of the third rewtite rule

Form of the theutem 1o be generaied: X(FRONT(CAssign{Awiga{r.r. A ¢, 74 1) L+) m W)
J(FRONT(C Avsipl Amign(r.e,, A LY 1L+ DN
_then_clse(r =)4 2, Frror, {_then_chieli = 41, ﬂc).
Fromt(¥ aqueac(26(<r. ¢ p). o))
Rulkes uscd for umplification:

Step (1) Invoke Synthesis Rule (1)
XAFRON (< \asign(Awvign{rr, A o 4 1 0 ¢ D=
i then_cise(: = 14 2 Krver, U_thea_chels = 541, Xdr)
Front(Faqueac(X(<. ¢ AL o)

Step (2) Fapand Faprewion: Fromt(Enquene(3(<r. L p).)
Using Rule: (). Protocol)

TW Updmte:
1= j+) ~ False
1= j+1 -~ Folse

XAFRON T(C Assiga{Assign(vr. A ¢, /4 1) L f+ D) m
W_then_clae(i = j4+ 2, Errer, W_them_chse(i = ;4 1, Xde)
From(X(CAssign(v. ¢, A i J4 1D

L Step(3) Fapand Expression: X(CAssiga(v. e A & j+ 1))
Using Rule: (3)

MFRONTAssiga{Assiga(n, A ¢, /4 1 & 1+ DN =

; . then_che(i = ;4 2 Erver, M_then_clse(/ = j+ 1. Xle)
| FUFRONTIC Assigal, e A & j¢ DIP

- 142 -

Swp (4) Fapaad Faprcwon: Esrer
Using Rule: (4)

XA RONTC A\wignt \signlsr. A o), 1+ 1L L 1+ DR &
_shen_chals = 4 2, WUKRROR) ¥ _shuw_chel! = p¢ 1, Bfe)
WLFRONTICAwigaL s . A L 24 DN

Sarp (3) Fapusd Faprewion I then_ciud: ¢ 2 X4V RRORL & thea_chud: = ;¢), We,),
FUVRONTIC Aenigals. ¢, A& ¢ 19NN
Uning Rule ($)

R4F RONT(C Awignl \wignl+.s, A, it NieDha
XGLshen chal = ;o 2 FRROR. L thea_chels = j+ L. ¢,
FRONTIC Avignd . r.,A e M

FRONTIC \wignt \wignl s, A 7, j# 1L 4 0 D) ~
Liben_chefi = ;¢ L IRROR € then ehali = jo 10,
FRONTIC \wignlc. 2. A ¢ /¢ DM

Stage
Preliminery implrmratation st | isnd

FRONTC . i O) — FRBOR

FRONTAigals. . R i 7¢ 1)) = ¢

FRONTIC \nigad Awignfe.r. b ¢,)4 1) i j4 D) ~ & = j+) chen ERAOR
ehelizjelthene,
chw FRONTICAmigat . ¢ A, L j¢ 19)

Let FRONT{Care. pml. pat2)) be e left hand side of Urwe trprt implomcstsion We wee a sightly
aiffcrent method thn the owe sorwally uacd e derfving the wrpn implenensmion for Froat. We e
combinstion of he recwyon presenving sxthod and dee recunvion clninsing methed. Fit, »
COMPOntion et setisfics the firse rewriee rale i devermincd separmely . it b essy ©0 sre Gt Ovis can be
ERROR. Then. s compmition St sstisfies e swxond snd e Giind rewrise ndes b devermined. The
WO COMPONitions are thes combined with Ghe help of o boolean Inverting expression 0 arvtve ot Ghe
wryet anplewmestation. Note st Gie boolean inverting exprenion et characserizes e spnem
srecture cortesponding 10 the first reetiee role b pat! = pat2. Thevelore, ¢ desired form of Ghe
trget implewmentation 8 & below. The exprewion St Wles Be place of e else cloamse & © be

- |4)-

WS w0 ik i wiond and e Bwid wenee mice v saaniod

Devived Form of the Taryst implracstatiog
IRON s, puol. pu D) - = Sgml = poid tive RO
chs ™
Relerant Bewvite ltulrs of Arvny ot 2nd Arvay_dut X hutegyv Xianrger

1he Band rwer fnler spun iy i Blrad opvs wiom of Areag Ief @as winde an Clomont o st witey e g
pewrite sl o e I oPu a0 of 5 il g g i Tand conmaiatwt

40) Beadl wllsran. B - F BROS
(Y MeuliVvigede ¢ A &) =)deme
g Nualle.

(D Piwetidn, A, D) =0

Tomphaw cgnsbn shongw + = S INTIC Awigle. v, 4. . +# I

P o of By Pncunon b B gectaned ¢ £ P Vaigede. 2. 3. 4 8 1))
Neovmd oo of 7 ¢

Rudes weicd v smpibficagion Some

WePp 1) v s Synehwnn Rude (1) am ¢

(& X4

g ¢} Fepud Faprewmion ¢
L wng Rade () Pronel

v 2 Mol Veigats. ¢. . &

W 1N Frpawd Foprewmion Awigals. e §
Uving Rele' ()

e ReoliFinslC Wnigats. . 4. DL §

ep) Replme sariablies in dhe Yeerwem by spprwpriate weramils:

vos g jous gy hos g Joajal

A —— . e e e e e

.‘“.

o = Nunll? ot Voongdn, «. J. 4 o0 104 §

Fhe sighs Boned sl ot e il W gonatmod e @ fomm of (9 Aaigels. v §. 1o 1)) &
WTRu Wy . avdedits «omgnition Senlwgton. el gl peet) vk Can I sngitifiod
Beadlans, gnel) Filsn commpuonitnad & Sa® W SAKD & & felew B gl of ™ a0 he partidl Lngol
ARG R o M Wil Cuvenion aateifun S B dovaier B 3B TWe ol
WP I i B, T .0 Ponnilbis etk Ao aReh S $BIEONT &

PRON I ms, meh. gt D) . = dpul = el duw $REOR
o oplas. e f)

= k=3

_m.

7. Conaclusions and Future Research

Mgt pekilication T i HRos R ook il wund © o
propertice of ke typee el 80 snhobiin g (i s of aspictiotations of dits Hpos 8
s ot we Mg AEWRGIU B N of melontusecuilly waiceRring Voo ations fof
W S by pue diang Tioms Wiyt wigeit sl JPex i ions B0 B (ARl WE SIS
M a0t oM iratowee off Kng g, dions KD W MO N ¢ ot Saiomte e Atwcaie R lond
W 100, e o il Wy o Row ettt Agriic

Owg of e todth ek Rionm RS we Wi condtonnid with o e st of B rouran®
Wit CRODRING 0 Mg g Pt o T sstiingein Proxidiets Bt B astINg O
SOPULE M e Wb PR i off i PROWMOMd Bapn. g B Pl tiom of ol the
pime iy tiper. Thy sowsity of owt wesiond s 3 fing weg off tavor ol Sgputs Ghe
Mot rp i medorommion sl W Ao oidgiang T advuertagus of Rpsing Shom
e P ieve wvoi evidign we W gt i puogrened

P Reosacnnconpiivime salontmgion suidhes G PlcMigm Smony L w ity y wabosng
e Wree 10 By anched v Gndiog an opionuntaion Suca ¥ donce sddationd
COMIEINS O i etiheun AP fwe hapeer) B b olmaive 0 s AWK ©0
COMPUIE oio? Myl Wil i of 0oy «) The wnotiand Seeetogsd wn |80 con slleo be
R Rrmuied 2 o IR QEREKITION Ny WBIN ot Rgnraot 18 mofhad. however.
® N generd ond e offcient Bhas cwn Puximent e dowe o e Tt Romomaryrisen
Rormaron B ordey 1 comgumate o die Rk of dinis Womution e & Swcad S0 wvordy
resivict e oo of b Qus il aicems

The mermvmnuiion crdermg & vl cwenial bt » sty for sasomusng e aihevh
procedwe. The Dunic sverined of scpvipaliaitoon wand By G svethesh prlonedeie & CRPansion
tere sexhon 8.0) god 4 5% Fopumicon anilite sedlexiih. & oot wslionnly sevemingting - oven
when e QUCieanene o cmveryon foee secian 130 Tise snlkey dhe syvathenhs provedere
potenvinly aunwersvingting e emninaior andioring oo Goh prodiom B oo
oweres e fermaunce of de ingloomesion dorved The syniesh medvd weed by
Durfovgion [7] dows 2ot evplicitty andicane Ghe wne of vy wrawingtion ardering Theis b owe of
e muwes Bt de e of ermingion (B of die yvihews praondure. of G of

- 146 -

mpkmcntuan dnved) n ot adreaad in [7)

An mporunt coninbution of the thesis b the development of a formal basis for the
method wacd M the synthows procedure. Ehe development i influenced significantly by the
icchnigues uscd for senfying the asrecines of implementations of algcbraically specified
dats types. Ehe symthoss axthod hos teo dntingunhing features. The (inst is that it is based
on the gencral prngiple of reverung the tochniques of program verification. The second is
the devompuonition of the prxcdute o Iwo sages.

The rovene program wenficaton prncipic iead s 10 view the synthesis problem
(e chapiet 9) a one of goacratmg a wt of theoren that watisfy the synthesis conditions.
The wwmiboun comditiom characierize the situations tn which a sct of thoorems of the input
W ificmions » gearasiccd © yrcid a cosroct implementation. The synthesis rules provide a
meuns of gostatimg theotoms from & pcifcation This appraach 0 syathesis has two
advantages ity 1 mokos the formal jantificastion of the cormectness of the synthesis
method senphs Docwne the 9y nthesis conditions are based an a criterion of correctness for
duse typen Secomdly | i affows us 10 build on the rovcarch in the area of program verification -
pust o well @ fotese. Thie ssturally seggoys an arca i whch I0 punsue future rescarch. It
o criending e thoory 8 which the yynthosn procedure operates. Currently it
operates i the purt of mductine ooy of the spocification that is docided by the Musser/KB
mwthod (e chapeer 4) of peoving equational and nductive properties of rewriting systems.
This cvemion wosld mvobse developing Aew synthosis rules, and new ways of using the
wethesio rels kv pomersting theotess. One might. for exampie. look into ways of
amsionilating the prood lxchaagues wsed by various verificrs |3, 27) into our framework.

Anciver advamtage of decon Jsing the procodure Into (wo sages is that it makes
e prosedure mrve modeler W solates the pant that is dcpendent on the target language. So
modificstion w0 te trget nguage can be made without drastically affecting the synthesis
prxedere. A posidie exiension 10 the thesis thet could be considered is 10 incorporate more
equivalence preserving Tassformstions into the seoond stage. The transformations can be
ekher of an efficiency improving ature. or laaguage developing nature such as applicative o
imperaive Gusformmtions.

n sddision 0 charscterizing the mpets. an important contribution of the thesis is

—-—-———

”l

B Adpbtsticabiton o8 No oo o Be avliens Bl etk formall)
Pabupbbdlsng: o Jagnted © whi - H D Hu AWFRERRE ok B N, aRd e AR

Woolgs 20BN b apentl B Thelgg @ HUPEAN. 1T 2 Puaitihe PRIROFG or 8 Pl
o N rudbpiaint 8 W Limal S Bib Ne aviihial el

Lot by el 0ot SHIRINNIL 60 1 il Mie GO TRt R Wl i FRCAETM
Arobliaett Wl 6 v odtnib B Tor ek e el g oG Hidh i B PO iU (alb
R © e gl willie F o bl B et avibiial oot iarmil ty
wolierbiing Mo EiBmviely apteen b W vt pepelinn O oF il syt
#eiek N Sony b Ne DU Mesupttndis it IR vl 0B T can oD Wil i TRt oNs

e waits it o ey B e aviiied JHeWlHE atone T e
wol W)Y Sl Madieit b sqpenaiei THE Furan (@0 Soowt W aaiion MY e
Genanllopt 4 N bnplh oF JF el soypernabin giite THe Higpeatilor of Te
Branallors Prvn B oribn B S gt i N e vt s W RN cgttelicsive (helie
e B Pnmeh My e gerind avivet Gip Tirtiins apnued W B e O ek
Wit B e B wpiame ettt NN pion B oliiiog B il 1t
Vo domtiniihy ¢ o eldie W w8 B Mt IHGHIER Ayl e Ne
S aeaniandR SR BN D o L B R L R R R
1R 00 Sramiverite W W egradiig gritiiy B 0ol Willivatitn oF b Wil I 4
W W Beeaewn gaeadiDn ity T e aaiit S e updlll § & oo
Lo UL L i o L R T B S T L
Ry SOt Ben e @Iy B SRE: T wnii N S wevit ¢ BRI
WEIIR R e e I Wity Bvprom ewmese il & e G st H6 Gl
AMPwntior Frew 0 ittty SINPRe & -t wmilt @ Ieoritng ¢ omsiily Slie
Pup F GPv-T gy - SRS - i il - N0 SN

W SN ST ottt Bon B dihe W06 - AoNEeraiber Ne WS of
WGP & STty 0 RNt - errar 0 Igitenenptibun: Hed ¥ 3 aINRE
¢ Wov iy B A tnaily SN F YNl (e e F Be NEAlee A Sulnelien SUPN
GO N vl F B Dpieugeggtiions: i S5 W Soppivee S0 Wi Chglly o0 G
¥ g et F ATy GINTINENT YIRIAIN o GRIAINIR: oF o Wene NN O
Ay Sgaprre® Qi - N Vool Ne G F B8 o woll ¢ NIl

m

- 148 -

asomatx petformance analysis of the implementations. There is some recent work being
June m this arca m [50] that is compatible with algebraic theory of data types. It would be
microNmg 10 maoigaic the intcraction betwoen our work and that of {50}

he mum remon for choosing an cquational language to eapress the inputs was
deximme of e Denefls 8 offen from a prool theorctical point of view, Fquational
wesficatoms hane generally boen found hard 10 write. This s onc of the fuctors that reduces
e prawgal sadue of e procedure. 1t would be uscful 1o eatend the synthesis proocdure o
wsaPt Pecific domm | 3 kngnage that » eaver 10 write

We bclirve Bt e gl of the rescarch in program synthesis (and program
vanficaton) Sould sct and canaot b 10 relieve the programmer compicicly of the burden of
prograwwing Raher. & Yvauid he © Relp @ gain a betier insight into the science of
progravwning Thy imigin grmed con bo utilved @ weveral ways that are practicalty relevant,
b 2 » e deige of are pryseming nguipes. and W the develupment of program
mumsemng snd prograw deeclopment [19. 8, 2 3] esicam We bolieve that ouwr work can
e purtnderi weafted 0 Gae Witter R

- S T T e e SeNEe T PPN gttt e e

-149 -

REFERENCES |

1. Balzer, R., Automatic Programming, Technical Memo 1, 1S, Sept. 1972.

2. Balzer, R., Goldman, N., Wile, D., On the Transformational Implementation
Approach to Programming. Second Internationul Sofiware Engineering
Conference, Oct. 1976, SanFrancisco, CA, PP. 337.

3. Baucr, F.L.. Parisch, H., Pepper, P., Wossner, H., Notes On The oject CIP:
Outlinc of a Transformation System, Technische Universitat Munchen,
TUM-INFO-7729, July 1977,

4. Bosyj. M., A Program for the Design of Procurement Systems, TR-160, Lab.
for Computer Science, M.1T., May 1976,

S. Boyer. R.S.. Moore, J.S.. A Computatinal Logic, ACM Monograph Serics,
Academic Press, Inc., 1979

6. On Automating the construction of Programs, Al-236, Stanford Al Project,
Stanford. CA. (March 1974).

7. Burstall. R.M. and Darlington, J.. A Transformation System for Developing
Recursive Programs, Journal of the Association for Computing Machinery, Vol. 24,
No. 1.Jan. 1977, pp. 44-61. '

8. Darlington, J.. A semantic approach to automatic program improvement,
Ph.D. Th., Antif. Indl., V. of Edinburgh. Edinburgh, 1972.

9. Darlington. J.. Application of program transformation to program synthesis,
Proc. IRIA Symp. Proving and Improving Programs, Arc-ct-Scnans, France,
pp.133-144.

10. Dershowitz, N.. Orderings for term-rewriting Sytems, Department of
Computer Science, U. of lllinois at Urbana-Champaign, Urbana, Iilinois,
UIUCDCS-R-79-987, Aug. 1979.

I5. Dijkstra, EW., Notes on SMM Programming. In Structured
Programming (Dahl, O.)., Dijksira, EW., Hoare, C.A.R.), Academic Press,
London and New York, 1972, PP. 1-81.

1. Dijksira, EW., 4 Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ., 1976.

13 Floyd. R.W., Assigning Meanings to Programs. Proceedings of a Symposium

-150 -

in Applicd Mathematics, Vol. 19 as Mathematical Aspects of Computer Science
(Ed Schwartz, J.T.), American Mathematical Society, Providence. R.1., 1967, PP.
1-32.

14. Goguen, J.A,, Thatcher, J.W., Wagner, E.G., "Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types,”
Current Trends in Programming Methodology, Vol. 1V, Data Structuring, (Ed.
Yeh, R.T.), Prentice Hall (Automatic Computation Serics), Englewocd Cliffs,
New lJersey, 1978.

15. Good, D,, London, R., and Blesoe, W., An Interactive Program Verification
System, Proceedings of 1975 Internationai Conference on Reliable Software, April
1975.

16. Guttag, J.V., The specification and Application to Programming of Abstract
Data Types. Ph. D. Thesis, University of Toronto, CSRG-59, 1975.

17. Guttag, 1.V., Horowitz, E., and Musser, D.R., The Design of Data Type
Specifications, 1S1, USC, Marina del Rey, CA, ISI’RR-76-49, Nov. 1976.

18. Guttag, J.V., Horning, J.J., The Algebraic Specification of Abstract Data
Types., Acta Informatica Vol. 10, No. 1, 1978, pp.27-52

19. Hewitt, C.E. and Smith, B., Towards a Programming Apprentice, /[EEE
Transactions on Software Engg., Vol. SE-1, No.1, March 1975, PP. 26-45.

20. Hoare, C.A.R.. Procedures and Parameters: An Axiomatic Approach, In
Symposium on Semantics of Algorithmic Languages (ed. Engeler, E.) as Lecture
Notes in Mathematics, No. 188, Springer Verlag, 1971, PP, 102-115.

21. Hoare, C.A.R., Proof of Correctness of Data Representations, Acta
Informatica Vol. 1, No. 4, pp 271-281, 1972,

22. Huet, G., Hullot, JM., Proofs by induction in equational theories with
constructors, in 21st IEEE Symposium on Foundations of Computer Science
(1980), 11, pp. 96-107.

23. Jouannaud J-P., Lescanne P., and Reinig F., Recursive Decomposition
Ordering, Conference on Formal Description of Programming Concepts,
Garmisch, (1982).

24. Kapur, D., Srivas, M.K., Expressiveness of the Operation Set of A Data
Abstraction, Computation Structures Group Memo 179-1, Lab. for Computer
Science, M.L.T., Cambridge, MA, June, 1979, Revised Nov., 1979.

-151-

25. Kapur, D., Towards a Theory for Abstract Data Types, TR-237, Lab. for
Computer Science, M.I.T, Camb., MA 02139.

26. Kamin, S. An Informal Note on Extensions to recursive path Orderings
INRIA. (Obtained Via Personal Communication with Pierre Lescanne.)

27. King. A Program Verifier, Ph.D. Thesis, Carnegie-Melon University, 1969.

28. Knuth, D.E., Bendix, P.B., Simple Word Problems in Universal Algebras, In
Computational Algebra (Ed. Leach, J). Pergamon Press, 1970, pp. 263-297.

29. Lampson, BW., Hc.)rning. {.J, London, R.1.., Mitchell, J.G.. Popek, G.L.,
Report on the Programming Language Euclid, SIGPLAN Notices, Vol. 12, No. 2,
Feb. 1977..

30. Feather M.S., A System for Assisting Program Transformation, Transactions
on Programming Languagces and Systems, Vol. 4, No. 1, January 1982,

31. Liskov, B.H., A Design Methodology for Reliable Software Systems, Fall
Joint Computer Conference, 1972,

32. Liskov, B.H,, Snyder, A., Akinson. R,, Schaffert, C., Abstraction
Mechanisms in CLU, CACAM Vol. 20 No. 8, pp. 564-576, 1977.

33. Liskov, B.L.. Snyder, A.S., Exception Handling In CLU. Computation
Structures Group Memo 155-2, Lab. for Computer Science, M.L.T., Cambridge,
MA, Dec., 1977, Revised March 1979, To appear in /EEE Trans. on Software
Engineering.

34. Liskov, B.H,, et. al., CLU Reference Manual, CSG Memo 160-1, Lab. for
Computer Science, M.1.T, Oct. 1979.

35. Manna, Z., Ness, S., On the Termination of Markov Algorithms, Proceedings
of The Conference on Theoritical Computer Science, Univ. of Waterloo, Waterloo,
Ontario, pp.43-46. |

36. Manna, Z. and Waldinger, R., A Deductive Approach to Program Synthesis,
TOPLAS, Vol. 2, No. 1, Jan. 1980. PP. 90-121.

37. McCarthy, J., Recursive Functions of Symbolic Expressions and their
Computation by Mahine, Part I, CACM, Vol. 3, No. 4, April 1960

38. Musser, D.R., On Proving Inductive Properties of Abstract Data Types,
Conference Record of the Seventh Annual ACM Symposium on Principles of

-152 -

Programming Languages, Las Vegas, Nevada, Jan. 28-30., pp.154-162.

39. Musser, D.R., Abstract Data Type Spccification in the AFFIRM System,
Proceedings of the Specification of Reliable Software Conference, Boston, April
3-5, 1979, pp.47-51.

ot e e —— —— —— =

40. Okrent, H.F., Synthesis of Data Structures from Their Algebraic
Descriptions, Ph.D. Thesis, Dept. of Electrical Fngg. and Computer Science,
M.LT., Cambridge, MA 02139, Feb. 1977,

41. Parnas, D.L., Information Distribution Aspects of Design Methodology,
Teciinical Report, Dept. of Computer Science, Carnnégie-Melon University,
1977.

42. Clark. K.L., McCabe, F.G.. The Control Facilities of IC-PROLOG,
Published in Expert Systems in the Micro Electronic Age, Ed. Michie, D.,
Edinburgh University Press, 1979.

43. Proceedings of ACM Conference on Language Design for Reliable Sofiware,
SIGPLAN Notices 12, 3.

44, Robinson, J.A., A machine-oriented logic based on the resolution principle,
JACAM 12, 1 (Jan. 1965), pp.23-41

45. Rogers, H., Jr.. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Series in Higher Mathematics, McGraw-Hill, Inc., 1967.

46. Rovner, P., Automatic Representation Selection for Associative Data
Structures, Computer Science Department, University of Rochester, Tech.Rep.
10, Sept. 1976.

47. Rowe, L.A. and Tonge, F.M., Automating the Selection of implementation
Structures, |IEEE Transactions on Software Engg., Vol. SE-4, No. 6, Nov. 1978

48. standish. T., Kibler, D., Neighbors, J., Improving and Refining Programs by
Program Manipulation, Proceedings of the 1976 ACM National Conference,
Houston, Texas, Oct. 1976, PP. 509-516.

49. Standish, T., Harriman, D., Kibler, D, and Neighbors, J., The Irvine Program
Transformation Catalogue, Computer Science Department, U.C. Irvine, lrvine,
CA Jan. 1976.

50. Subrahmanyam, P.A. An Automatic/Interactive Software Development ‘
System, Department of Computer Science, University Utah, Salt Lake City, Utah :

Y
! .
.

-153-

84112

51. Tompa, F. and Gotlieb, C., Choosing a Storage Schema, University of
Toronto, Computer Scicnce Report No. 54, May 1973

52. Wulf, W., London, R.L., and Shaw, M., Abstraction and Verification in
ALPHARD: Introduction to Language and Mcthodology. Carncgic-Mellon
University Technical Report, also USC Information Sciences Institute Research
Report, 1976.

- 154 -
Appendix I - Equations as Rewrite Rules

Automatic verification of data tynes that are specificd cquationally is ofien based on treating the
cquations in the specifications as rules for rewriting cxpressions that have certain patiems. ‘The
automation of our synthesis method atso relics on such a treatment of the specifications. This appendix
describes the basic concepts about rewrite rules, and some useful propertics of sets of rewrite rules.

We assume a deaumerable sct (W) of clements called wariables, and a finite sct 2 of function symbols.
We define expressions and constants over X as follows. (Ihe formal definition is similar to the
infonnal one given back in sec.3.3.1.)

Expressions

An expression is cither (1) a variable, or (2) a function symbol f followed by a scquence of n 2 0
CXPICSSIONS €5y« .0, €. [is called the (main) function of this cxpression, and €, , €, arc called the
arguments. Such an cxpression is written f{e,,. .., €,). An cxpression with no arguments is writicn
as K). We denote the set of expressions defined over £ as E(Z).

We assume it is possible to test variables and function symbols for cquality. Two expressions a and 8
are regarded as identically equal (written @ = B8) if and only if they are buth the same variable or they
have the sume main function symbol and the same number of identically cqual arguments, in the same
ordcr.

‘The wariable set of an expression a is {a) if a is a variable, otherwise is the union of the variable scts
of the arguments of a.

The subexpressions of an cxpression arce (1) the entire cxpression, and (2) the subexpressions of the
arguments (if any) of the cxpression. Expressions which are variables have no expressions other than
themsclves.

Constants

A constant is an expression that docs not contain any variables. We denotce the sct of constants over £
as T(Z). The subconstants of a constant are (1) the entirc constant, and (2) the subconstants of the
arguments (if any) of the constant.

Occurrences

An expression can be represcnted naturally ss a tree structure: The main function symbol of the
expression is the root of the tree; the argumens of the expression arc the branches of the tree. This
analogy can be used to devise a notation to identify unambiguously the subexpressions of an

expression.

An occurrence in an expression is a sequence (possibly empty) of positive integers that denotes the
path inside the tree corresponding to the cxpression that runs from the root of the tree to the root of
the tree corresponding to one of the subexpressions. We denote the set of all oocurrences in an
expression € by 0(e). We usc the following notation for denoting an occusrence: A is the empty

- 158 -

occurrence, and if ¥ is an occurrence and § is an integer, then Lus is the ccvurrence that has | at i head
and u as us wil.

‘The subcxpression of an capression € at the occurrence i, denoted by €/u, & defined as follows:

| Ifu=Athene/A =¢

‘ u=lwid Signlande = Re,....e) thene/u = e/w

i For cxample. suppuose ¢ = Engquenc(Dequene(Nulig()).§). hen e/1 = Doquenc{Nullq 0).
f e/2 =1 e/).] ~ Nulig()

Suppose ¥ is an occurience of €. Then, we use the mtaton ¢ir - €] W denote the caprossion
oblaincd by replining in @ the subcapression €/u by €' For instance, suppine € 6 the Sunc cxpression
as in the cxample ginen above, and €7 = Nullg(). then ¢f1 —) n Enguonc{Nutigf), §).

Substitutions

1 ct ¢ be a mapping from variables to espressions, such that o(v) = v s all but 3 finne number of
vanablcs v. Extend the doman of o @ the set of all cxprowsons by defining elRe,, ..., €,) 10 be

Rote,) ..., ofe,)). Sixh a mapping o 1 called a substitution (W crprewsons for vanahics). The
nottion o = (v, s @0, ¥ €] will be used to denaie the witntitution ¢ sxch that ofv) = e,
for) S I < nandolv) = v,

We say that an capression 8 Aas the form of an caprewson @ i there oxiuts a subsinution ¢ sch that
ola)m B For cumpk. Append(Nolig(). Eaguenc(q.f)) has the (om of
Appendiql, Enquenc{ql, 12)) by the substituthm 0 = g — Nulig(), §2 — ¢. 12 — §. Notice that
has the form of s nidt 2 symmctne relation.

Rewrite Rules

A rewrite rule n an ordered pair of cxprossions (1. R). such that the vartsbic sct of R i contsined in
the variable set of L. Usually (1, R) will be writicn [. ~ R. A finnc sct of rewrite rulces over o st of
function symbobs X i calied a rewriting system over I Lot R be such a rewriting sysom.

An cxpresion a is rediucible with rospect o R if there is a rule 1. — R in R, and an accurrence » of
axh hat a/u has the form of 1. let ¢ be o subsitution such that o(l.) = a/u. and
B = alu~— o(R)]. Then we say tha a directly reduces w B (using R). snd wtitc &t 23 @ — § (using
R). Where the particular R in usc is clear from the comezt. this sl be eniicn simph ssa — 8. Ifa
is not reducible with respect 1o R, thes we say a & irredhecidle with respect o R

1.t —* be the smalicyt relation on pairs of expressions which is the reflexive, transitive closure of —.
Thus, @ = §if and only if there cxist Expresions @@y, &, where # 2 0, such that « = a,,
a—a, foriz0....n-1l;nda = Wercada ~*fasareducesio §.

Suppose @ —° B, and f s irrcducibie. Thea we say that @ simpiffies 10 8. 8 i calicd a normel form
of a. We denote the nonnal form of @ as 3. A rewriting symem R has the unigue termination
property (UTP) if ihe simplifies scistion defincd by R i & function; that i, every expression hes &t
most one normal form ia R.

A rewriting system R has the finite sermination property (FTP) i tere is no infinite sequence

og—~a,— . uingR

A renrsting sysiom R s converpont of it has FIP a5 well a5 UTP. In such 2 case. cvery esprossion w
e sysiem has caactly one sommal form.

ﬂ

e

-187 -

Appendix Il - Checking Finite Termination

A geweral rxiwinger v proving aeom of o werewg wwm B v At I8 @
demonets 4 Bt & & puaibhe b deee o vl Sndod pamid ovdioiing > o o0 D) vt @ = 4y

wphics b, = 0, A gl ondiinmg i wcil fowsnd if B ot o MERRE douREing sOQuOnios sl
aty g b for amy connionts Hewe, BSt Comat g g B Wguonee of Fowinos ewng B
ahvs I follow ing iirouems PNLaswall Newl pronndion 3 wanbd geadeiin & Jofae o waitisie partisl
onieting b peone F TP

Theesem 3 A sowrinnng s B witlh an Apiainge X s ¥ TP o Savar oo # sl Saundod pareisl

osieting o o TUID with e ploperiics ghon Iciow W Gl p weil donndng portid endoring Shal

sinfies e Rollowing PROgTIES 4 FABIRINIE axictimg St B wiom B G i ordonng can be
wneud tar o e s emvisnation of B

(1) Reduction For gvary tols § =0 B ond G cuavy witiiiion @ of aitvics
:Moﬂ)».nﬂ

LYY IS TR SN WRTN WART PR A RN WY W !
» NIy

The fedution comdhiem Maois ity uihying avy tadle Adaits B0 woltmonm ao wlis i dhe e & appind
e weld ondied ondetiong. lkmm*mnqmmmu
o Ryl comung e dioo sdiaced Thowe B Reilloens s § <= § m|>.l

Fig, 20 preen & ok o of 5 cRoen of vt il G Mrtkwprapibic Acanier sl onlorings (-)
- Pt mERrved Wil AT N b ondietiong (D0 o B gl iney off 8 RPUYRIE MR S SESIEoN
W W PR PRty Sl 3y B SDune dhaem > nmnmm'g

B 2 Wb of §, wples B £, > 0 Suxh a0 coforing & ssalhy wteived o o o WepijRoarion

Fig I The Leniropapbic Revarsive Path Ovlering

TetD e oo cvdering an s slpilbet £ Then >
L) & defiand n Sllous

9= § il sne of e Mllpoing comiiionn & e

MidgAs>¢ 1<1e
ME2gAQ,....80%» Q... DAs»LI1Lige
MIYN =tve>»§

>3 e 8 8 it 0 R Reticagrapivic evdering bused o0 > kb dcfined @ Rillows.

0'....!)>>‘ﬂ'....l‘>ﬂ
ﬂlsisup,:-ghwi(jsap,.g

l‘.

uaerng BTl LS o Bk = B 8 NPAIR. TR aBORNg cab tr fouid B])
Aiemalow ks ok w4 n em® G Solflenamg Facummom

RS0S4 N Nvnogr oy fus v Pl ol ig K= | & il Sandnd 3 aind awly & S aninfying
Apinitnt v tisg 1) » welt Al 4

One cam ® Jnetal W s MY sl Sl WP NANE AR SWNRAR WR @
RONERELAING biising el NG A0 o B 40 ¢ ROWIRAROR RN B 0 RWRRG ROM
Pigwien J1 vl 12 gve twie AP wdetiuggn TR g ok I g o ws st ATy SMe WpC
WesHc. tiem il Wy wrnd ot ob Bhumaty AN WU TR Aol W it e dheaw
IR A W VBNl PR wiliitings Bf o Bt R ARTER MR A & T MR
WS R, ek e (I RS oy Bl o & SRR R o i NI oo G TN
OF 0 ke e v NG Aol el 0 TR PR (s B AN Dt el GROTE 0 Re RV W
W e oo v Setlineook o e Spgun, B <oh B canilly ek et Ba wndud el ovEongs
e Wil Renielerl i ing,

VNG CRE I oty e olrnig el el b i odiniong: ot Biag D1 Lok Wt B 9
WAt g Ror Wby s tiemg we e somenavndog v Quaae 008 sl Cle, IME We pw
A 0 e ¥ Ko N e i g 3 weies By ok I ity e O ol P e L

g 2% e Mundasd Alptubet Oviving for 2 Data Type Brastiing Nyvion

Nottom

B v e rewsiimg ey cumesgemiing w TOO
3 e et d S

0 » B wprrion wy of TCN

By, e ot of grnersm of §

By ® Ve wt of nongenetnn of §
Sipne ™ 00 wmriens of die sipiiuecis of B pweiting wuemn o S Srfing Yoo
YW swive W e sipiuliets s Maaaullly @xlmive)

J & o porial wrleving o0 U il §

t-0,UB U,
2:0,Uul,

> 5 defised & Bitoes K b svsned G o ity defund eniening oins fur e of Gir diphaben
» Zue O 0 anund w comusin enh of drewe odeing.

n’amdummbn
MEGE N, A oty ofg = @ sty o 10
DI AR,

MiceAges,,

.‘”.

big 22 Iy Seandund Alphubet Oudeving S §lomamephine Npecification

Noxonn

Y e W AR o i oot AR e e
i el e ey ming o Ko

Dy fiion

§3,, 8 b ndy & une off i Belliuang comifenmm Suids

SER B iy eyt 1. sl i b bl Rasnu ook et he K,
RO 0 o ity oot 160 v ool el [e # SO ont Ratdar Wier Spnfinell

FmmrrTe—

g U e we e Kih R 3 e R N AR Ag o TR andloming ¢ s,
Bowovar By ol Aor NOUEH DN s ntion Wi ollonng con e amed St o e of e
o e itein N o el I R I e NI i R e il B TN NG Sk
R i Mol o i i i wilicig il Bag 2P con e el Wl of e savie
Pessbeatrtes PRI vl oo G 21 e g Nl ¢ Tpat

Lok ounreve guilh woiliesimge i W el a0 e Samng Semannion sklonng Gt o swriting
el o R Mgt et A of NG APRHINE WUt Bt s sppnerwag pindh onditings divoudly
W o s e e s W B R Pt e ioogs eI WA TP e B
wolt Ronded et wdermge D, wdl D, weewnats Sepeome B, wndl B, w1 vee srwonn Sor
wiv.ﬂ",cmmommm Piom By moning elh aslieving tha » howd
D UD, e e el o mmomanon sl R By weow B, U R, predid D, UD,) »
wolt Aol Ve dudiwal dRteli winlowing o ancth U die wirion off sy Saves o o ddoRnnd o
Mool eurRvove Tatiieind Provenee e well- faundidnew ooty o ¥ b wfll 9 e
IR off ittty LUK off I Wrlling WARIRN

§ |
[

“—7

- 160 -

Appendix Il - Proofs of Theorems

Iesrmé
1et S Ba 3 aveimm U st the priagipic of defloatson lete, u ¢, be an oquation sa thate, and e,

B 08 Nt owe mowgoaciasod fuscbuon syibol an thom. hen. e, me, is & thoorcm of S if
SU e, -+ €, o stmties B proapic of definnion.

Prool Ihe proos w By comsnditon | et w amume that SU fe, — ¢,] waunfics the principle of
Kfnion, Dut €, = €, » mt s toem of §.

e =e,nmtsmeormof S thon daere cants 3 wibstitation ¢ that maps vanabks ©
ENTr comimte wo I ofe,) g ofe,) hane drstingt ponms) forms 10 S Since S atsfics the
prowipk of O fmencn ofe,) wd ofe,) hune smigue aonnal fiom that ate gencrator constants; bt the
wormnal Sormm by 1, and £, sovpextingdy 1f) 8 1)) Nate s ofey) and sic? arc distinct from ¢, and ¢,
rerEively D e K Lot rw ¢ oacTator comtants winke the former two are not. Thercfore, in
e waron S U o, -« 0,] wc e e following stuation
o)) -ole) Tty ele)Ct it AL
e SU o, - €,) veolsars i primciple of defimtion. Contradiction.

QFED.

Feovem?
P w2 Fevtaeded Wrld Suppone

(1 €, 6 ceprrwion w that for every wititution @ of sariablcs W generator constants o (¢,)
» tecdebie wning PW. ond

M PW U (e, - ¢,] convergent. f
Then €, = €, n .« theowm of PW

Prool PW is comverpemt. Theretore, 10 show that ¢, 2 ¢, B8 2 fvvrem of PW., we have 10 show that
MmMoﬂn-m.o,adc,hmmorwmlmcu') i
and 40 Tarve Wive savne nurmmad forms.

The proof s by comradiction 1.ct us suppose that PW U (e, ~ ¢,] is convergent, but i
€, 2 €, 8 2t 2 trereem of PW. This mesm. there exiss 2 @ such that £, = ofe, and 8, = o(e,N
e datinct. By dve srcond promise of the heoremn, therefore, we have the following situation in PW U
o, —~ &)

e St

o) 't mdl, 8 ¢,

Therefore. PW U (e, —« ¢,) & aot convergeat. Notice the aeed for the second premise. If
we dvd ot have this premiine ofe,) cosld be identical © £, i which case PW U (¢, —~ ¢,) is sill
COmeeTgER.

* S =

asend

SR MY Yateiy D rtattien e ompe il ST IGARRTINY § % Sty L WD NSy < tendiNN
T SR E X

4 Prom s A

(4 IR VAT il o B Ouv"“ A e oy -y ‘m'%-‘ﬂ."“

RGP M e we iR it W s bey oungnt & MR e b G b asand e i BN
by ek MM o gatss asHE saibeiieh b SN it BHUW- N o e ceiii G o
ISP 513 obesh | HEAOM

TR Qi r A ke ol T M sl AR e 4w S W i) ey
Bat pv o tollE v e PV Mt WS SN o S b s N . ¢ Bl e [L TSRV pSTIeY TT
PRTY TRITIENY TV RY 21 UV R T Y

[N

