
Bolt Beranek and Newman Inc. (2
ADVt~ 0

Report No. 4931

ARPANET Routing Algorithm Improvements
Volume 2

J.F. Haverty, B.L. Hitson, J. Mayersohn, P.J. Sevcik, and G.J. Williams

March 1982NO 2t~

H
Prepared for:
Defense Advanced Research Projects AgencyI

Defense Communications Agency

&~ 1112 012

UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE (an D Enfered)

REPORT DOCUMENTATION PAGE RED MSTLUCTIOS
I. REPONT NUMB0 2. GOVT ACEIION NO S. RIECIPIENT'S CATALOG NUMBER

4931
4. TITLE (mad Subitle) S. TYPE Of REPORT 6 PERIOD COVERED

ARPANET Routing Algorithm Improvements Technical Report

Volume II 9/1/80 - 4/15/82
S. PERFORMING ORG. REPORT NUMBER

4931
7. AUTHOR(s) 5. CONTRACT OR GRANT NUMBER(@)

J. Haverty, B. Hitson, J. Mayersohn, P. Sevcik MDA90-78-C-0129
[] and G. Williams

S. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMUERS

Bolt Beranek and Newman Inc.
50 Moulton Street, Cambridge, MA 02138 ARPA Order 3491

It. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE

Defense Advanced Research Projects March, 1982

ArlintonVA 229013. NUMBER Of PAGES1400 Wilson Blvd., Arlington, VA 22290 276
14. MONITORING AGENCY NAME & AOOReSS(II dilfeent Ifom Controlling Office) IS. SECURITY CLASS. (of thi. report)

Defense Supply Service - Washington UNCLASSIFIED

Room 10 245, The Pentagon
Washington, DC 20310 15.. ONCASSIICATON/OOWNGRADINGSCHEDULE.

I

16. DISTRIBUTION STATEMENT (o. this Report)

UNCLASSIFIED/UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Mock 20. It different bm Repo*"" I

NOV 1 2r
II. SUPPLEMENTARY NOTES

It. KEY WOROS (Continue on rever* ide II neceary, and Identify by block nmber)

computer networks, ARPANET, routing algorithms, network simulation, SIMULA,
adaptive routing, multi-path routing, gateway, internet, catenet, TCP

20. ABSTRACT (Continue on revere side If necoewy and Identify by block nmber)

This report covers work performed during the second year of the extension
to the ARPANET Routing Algorithm Improvements Contract. The ARPANET

simulator developed during the first year of the extension is used to

investigate the performance and behavior of a number of routing algorithms,
including the current ARPANET SPF algorithm. Results from the simulator

are compared to measurements of SPF running on a small test network, measure

ments of the line protocol on the operational ARPANET, and the predictions (ont'd)

DO ,3 1473 EDITION OF I Nov # Is OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whem Date Entered)

UNCLASSIFIED
SECURITY CLASSIICATION OF THIS PAGE (Imian Oa. Ent4eo

20. (Continued)

'- of a stability model developed during the original contract. The
simulation was run on a 14-node network using fixed single-path, fixed
multi-path, and SPF (adaptive) routing. The performance of each routing
method as a function of network load is compared to the predictions of a

* queueing model. As part of the deisgn of an Internet, this report discusse
design issues in the implementation of gateways, including the host
interface to the Internet, interoperability of autonoous gateway
systems, congestion control, and logical addressing.7--_.

°A

lT

b ~ ,C
NTIS . ." ". .

DTIC = '

+, Dl~Jst if / tl

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Uen Onto Enterod)

BBN Report No. 4931

ARPANET Routing Algorithm Improvements

Volume II

March 1982

SPONSORED BY
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY AND

DEFENSE COMMUNICATIONS AGENCY (DOD)
MONITORED BY DSSW UNDER CONTRACT NO. MDA903-78-C-0129

ARPA Order No. 3491

ISubmitted to:
Director
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Attention: Program Management

and to:

Defense Communications Engineering Center
1860 Wiehle Avenue
Reston, VA 22090

Attention: Capt. Wade Nielsen
Code R820

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

* '1

1'

-q 2
A

I

Report No. 4931 Bolt Beranek and Newman Inc.

Table of Contents

1 INTRODUCTION 1
2 COMPARATIVE TESTS ON THE SIMULATOR................. 4
2.1 Four Node Laboratory Network 4
2.2 Simulation of Transcontinental Trunk 16
2.3 Comparison with Stability Model 20
3 NETWORK PERFORMANCE AS A FUNCTION OF ROUTING 28
3.1 Topology of the Simulated Network................. 33
3.2 Defining Network Load 36
3.3 Comparison with Analytic Model 45
3.4 Simulation of Different Routing Schemes 47
3.5 Computer Resources and Limitations 50
4 SIMULATION NETWORK DESCRIPTION 55
4.1 Topology and Packet Flow 57
4.2 IMP 59
4.3 Line.... o 60
4.4 Host... .. 63
4.5 Priority Structure 66
4.6 Task 67
4.7 HostOut 71
4.8 HostIn--o 72
4. 9 ModemOut. oe 0 744.10 ModemIn.o. . . .o. . . .o . . . 77
4.11 Timeout Process 79
4.12 Background 81
4.13 Routing and Forwarding 83
4.14 Routing Update Protocol....................... ... 84
4.15 Delay Measurement 86
4.16 The Line Protocol o.o 89
4.17 The Line Up/Down Protocol 95
4.18 IMP Time 98
4.19 Buffer Management...................1............ 100
5 MULTI-PATH ROUTING: MODEL AND OPTIMIZER 103
5.1 Analytic Model. 103
5.2 Routing Optimizer108
6 SIMULATION OF THE CONGESTION CONTROL ALGORITHM 123
7 ISSUES IN INTERNET GATEWAY DESIGN 135
7.1 Internet Performance 135
7.2 Architectural Issues 136
7.2.1 Host Interface to the Internet................. 136
7.2.2 Interoperability of Gateway Systems 145
7.2.3 Congestion Control 148
7.2.4 Logical Addressing 152

Report No. 4931 Bolt Beranek and Newman Inc.

7.3 Gateway Design Issues 156
7.3.1 Software Organization: Process Structure 156
7.3.2 Inter-process Communication 163
7.3.3 Measurements 169
7.4 Measurements and Tools............................ 175
7.4.1 End-End Traffic Measurements 175
7.4.2 Internal Gateway Measurements 177
7.4.3 Tracing Facility 183
7.4.4 Cross-Network Delay 187
7.4.5 Message Generator.. .. 189

-ii

-:tl-

Report No. 4931 Bolt Beranek and Newman Inc.

Z FIGURES

UTopology of Test Network............ 5
Modified Test Network Topology 14
Simulated Network.. 17
Bertsekas 8-Node Ring... 20
Bertsekas 4-Node Ring.................*.................. 24
Simulator Test Network 36
A Single FD Iteration.................................... 114
Routing After Many FD Iterations..................... 117
N-dimensional Solution Space 118
Slow Convergence 120
Effects of Roundoff Error...................................... 121

Report No. 4931 Bolt Beranek and Newman Inc.

TABLES

[3] Appendix 3(a) vs. X30 6
[3] Appendix 3(b) vs. X31 8
[3] Appendix 3(c) vs. X32................................ 11
[3] Appendix 3(d) vs. X33 12
[3] Appendix 3(e) vs. X34 15
Results for 8-Node Ring 23
Results for 4-Node Ring.................................. 25
Results of 14-Node Simulation I 46
Results of 14-Node Simulation II 48

L

-iv-

Report No. 4931 Bolt Beranek and Newman Inc.

1 INTRODUCTION

This report covers work performed during the second year of

the extension of the ARPANET Routing Algorithm Improvements

contract. The bulk of the work concerned development,

validation, and use of a network simulator to investigate the

behavior and performance of the new ARPANET SPF routing

algorithm.

In Section 2 we present the results of a series of

experiments to compare the simulator to the ARPANET, a laboratory

test network running the ARPANET protocols, and a mathematical

Smodel of the stability of the SPF routing algorithm. The purpose

of these experiments was twofold: first, to increase our

confidence in the correctness and validity of the simulator; and

second, to use the simulator to increase our understanding of hc.

the SPF routing algorithm operates.

In Section 3 we describe our use of the network simulator to

compare the performance of the SPF routing algorithm with the two

other routing methods. We used a 14-node test network and ran

the simulator in different modes using the three routing methods.

The results from the simulator were compared with an analytic

model based on queueing theory. The results show, for example,

* that the SPF algorithm is more sensitive to heavy traffic loads

Report No. 4931 Bolt Beranek and Newman Inc.

than either of the other two methods.

In Section 4 we give a detailed description of the protocols

and processes modelled by the simulator. One observation we made

during the development of the simulator was that its behavior and

performance varied greatly with small changes in the protocols or

processing model. It is therefore important that the simulator

be described as exactly as possible if our results are to be

useful.

In Section 5 we describe a modelling tool used for

comparison with the simulator. This tool accepts a network

description and traffic load, much as the simulator does, but

uses a queueing model rather than simulation to generate a

performance estimate for the network. The tool can also be used

to generate an optimal fixed multi-path routing for the given

network and traffic. Using the queueing model to estimate

performance, the tool considers alternate routings until it finds

one with the best performance.

Section 6 describes our experience in implementing the

proposed ARPANET congestion control algorithm described in Volume

I of this report. We found that although the design is

adequately described, many details had to be resolved during the

implementation.

* -2

Report No. 4931 Bolt Beranek and Newman Inc.

As part of this contract, we have issued a number of

Internet Experiment Notes (IENs) discussing issues in the design

of internetwork gateways. Section 7 briefly describes this work.

The appendices contain documentation which is useful for

anyone attempting to use the simulator or modelling tool.

Appendix A is a manual for the use of the simulator, and Appendix

B is a manual for the use of the modelling tool (including

examples). Appendix C gives an example run of the simulator.

-3-

Report No. 4931 Bolt Beranek and Newman Inc.

2 COMPARATIVE TESTS ON THE SIMULATOR

In this chapter we will compare the behavior of the

simulation with measurements taken on a test network, with

measurements on the ARPANET, and with the predictions of a

mathematical model developed to predict the stability of the SPF

algorithm. When convenient, simulation experiments are referred

to by their internal designations which are of the form "X#"

(e.g., X32, X106).

2.1 Four Node Laboratory Network

During the development period, the SPF algorithm was tested

on a four-node laboratory network using a variety of traffic

patterns. The results of these tests were reported in "ARPANET

Routing Algorithm Improvements, Volume I" (32. The purpose of

these experiments was twofold: first, to validate the correct

operation of the simulator; second, to repeat the experiments

using our tools for producing statistically valid performance

estimates. Because of slight differences in the traffic and

protocols running on the network, quantitative comparison between

the simulation and the test network is not possible. The first

four tests were run on the topology shown in Figure 1. All lines

are 50KB and all nodes are H316 IMPs.

-4-

I"

Report No. 4931 Bolt Beranek and Newman Inc.

E

IMP 61 IMP 60

I I

4.-------------------
IMP 30 IMP 66

Figure 1 . Topology of Test Network

The four tests differed only in the traffic which was

running in the network. In all tests the complete ARPANET

protocols were running, except the end-to-end protocol, and

traffic consisted of 1192 bit packets (including 200 bits of

protocol and hardware framing) being sent from the message

generator on one IMP to the message sink on another. The

simulation attempted to duplicate these experiments exactly.

That is, the link, line up/down, and routing protocols were

running with the correct parameters. In the first experiment 10

packets per second were sent from IMPs 60, 61 and 66 to IMP 30.

For each flow, two routes are possible. Table 1 gives, for both

the simulation and the test network, the percentage of packets

taking each route, the delay in milliseconds for each route, and

the average delay for each flow. The results of the test network

are taken from Rosen et al. ([3)) Appendix 3(a). This simulation

-5-

Report No. 4931 Bolt Beranek and Newman Inc.

experiment has an internal designation, X30.

-SIMULATION- -TEST NETWORK-
ROUTE % delay % delay

(msec) (msec)

60-66-30 59.8 73 60.3 75

60-61-30 40.2 72 39.4 145

Total 60 -> 30 73 109

61-30 100 39 99.5 57

61-60-66-30 0 -- 0.5 1136

Total 61 -> 30 39 63

66-30 100 40 99.3 52

66-60-61-30 0 -- 0.7 599

Total 66 -> 30 40 56

Table 1. [3] Appendix 3(a) vs. X30

The simulation results were analyzed using our statistics

package, to produce confidence limits for our performance

estimates. We can be reasonably sure that the simulation was run

long enough to collect enough samples so that the averages given

accurately reflect the behavior of the simulator. Unfortunately

this is not true of the results from the test network.

-6-

Report No. 4931 Bolt Beranek and Newman Inc.

Looking at these results, it is obvious that the simulation

does not duplicate the results of the test network exactly.

First, the fraction of each route taken by each flow differs by

less than 2% in the simulation and test network. Second, the

delay along each route for the test network is always larger than

in the simulation. Third, the discrepancy is greater for the

longer (or slower) routes.

It is worthwhile repeating a point that was made in [3]. If

the network and traffic load is symmetrical, why does 60% (rather

than exactly half) of the traffic from IMP 60 to IMP 30 follow

the route 60-66-30? The reason is that the IMP numbers its lines

*internally, and line 1 has a higher priority than line 2, and so

on. The line from 60 to 66 has higher priority than the line

from 60 to 61, so it is serviced faster. Since it is serviced

£ faster, the routing algorithm tends to prefer it. As you can see

from the above results, this asymmetry is faithfully preserved in

the simulation.

The second experiment (X31) was the same as the first, but

with double the traffic: 20 packets per second were sent from

IMPs 60, 61 and 66 to IMP 30. In both the test network and the

simulation, a small fraction of the packets took looping paths.

These packets have been omitted from the results below. The

fraction of packets omitted can be deduced from the sum of the

-7-

Report No. 4931 Bolt Beranek and Newman Inc.

percentages shown. The results of the second experiment, in the

same format as before, are shown in Table 2.

-SIMULATION- -TEST NETWORK-
ROUTE % delay % delay

(msec) (msec)

60-66-30 52.2 430 65.3 1387

60-61-30 47.4 492 33.3 1841

Total 60 -> 30 464 1555

61-30 88.6 158 94.1 564

61-60-66-30 11.4 887 5.9 1924

Total 61 -> 30 242 644

66-30 86.4 177 99.7 437

66-60-61-30 13.5 1104 0.3 882

Total 66 -> 30 303 438

Table 2. [3] Appendix 3(b) vs. X31

Comparing theae results with the previous set, we see that

the discrepancy between the simulation and test networks is even

larger. The fractions of each flow along each route differ by up

to 15%. Again, the discrepancy in the delay figures is larger

than for the flow fractions. It is obvious that the network is

-

f -8-

Report No. 4931 Bolt Beranek and Newman Inc.

completely saturated for both the simulation and the test

network, since delays across the four-node network range from 158

milliseconds to nearly 2 seconds.

Note that the asymmetry in the flow from 60 to 30 which we

mentioned earlier has diminished in the simulation-results. This

is perhaps due to the fact that the importance of scheduling

effects is lessened as line loading (and hence queueing times)

increases. Unfortunately, we do not observe this effect in the

test network. It is possible that this is due to the fact that

the results from the test network are not statistically valid.

The results for the flows from 61 and 66 to 30 show that,£
most of the time, the routing algorithm selects the better (one-

hop) path, both in the simulation and the test network. The

(combined) percentage of packets taking a three-hop route is muchg
higher in this experiment than in the previous one where the

traffic was lower: 3.1% vs. 0.6% for the test network, and 12.5%

vs. 0% for the simulation. The difference between the test

network and the simulation may be due to statistical variation.

The increased use of the longer path reflects the fact that the

routing algorithm becomes less stable as the network approaches

saturation. A word is in order about the meaning of the term

"stable" as it applies to the routing algorithm. The routing

algorithm will no more choose e the same route each time it

-9-

.. - ..

Report No. 4931 Bolt Beranek and Newman Inc.

runs than an air conditioner will keep the temperature .xactl

constant. If the minimum-hop path from a node to a given

destination is not unique (i.e., if there is more than one path

with the minimum number of hops), then the routing algorithm may

switch between them depending on small fluctuations in traffic.

Switching between approximately equivalent routes is perfectly

acceptable, and we could call the routing algorithm stable. If,

however, the routing algorithm often chose routes longer than the

minimum-hop path, it would not be considered stable.

The results show that under heavy load the SPF algorithm

selects a route longer than the minimum-hop path a small

percentage of the time. This behavior, known as "probing," is a

necessary consequence of this form of adaptive routing. Under

load, SPF will switch to a longer route in order to determine if

a longer, less congested path would be faster than a shorter

path. The algorithm will quickly revert to the original path if

this is not the case.

The third experiment in this series (X32) applies an

asymmetric load to the network: 10 packets per second are sent

from IMPs 60 and 66 to IMP 30. The results are shown in Table 3.

Looking first at the flow from 66 to 30, we see that the

simulator is much less stable than the test network: nearly 30%

-10-

Report No. 4931 Bolt Beranek and Newman Inc.

-SIMULATION- -TEST NETWORK-
ROUTE % delay % delay

(msec) (msec)

60-66-30 44.1 72 49.0 52

60-61-30 55.8 68 51.0 49

Total 60 -> 30 70 51

66-30 72.1 40 100 25

66-60-61-30 27.9 100 0 --

Total 66 -> 30 57 25

Table 3. [3] Appendix 3(c) vs. X32
U

of this flow took the worst-case 3-hop route in the simulator,

while none did in the test network. In view of this discrepancy,

the results for the flow from 60 to 30 are understandable: the

percentages of the flow taking each route are similar for the

simulator and the test network, and (because of the instability)

the delay in the simulation is somewhat higher. Why did no

packet of 66 -> 30 flow take the longer route in the test

network? There are two possible explanations. First, if the

test network was run for a longer time, it is likely that some

packets would have taken the longer route; that is, we cannot

take 0% as meaning "never." On the other hand, this cannot

. reasonably explain the difference between 0% and 27.9%. Second,

-11-

0

Report No. 4931 Bolt Beranek and Newman Inc.

the stability of the network is highly dependent on the traffic

pattern, as opposed to its average level. The routing algorithm

is quite sensitive to surges in traffic. Since the traffic load

in both the simulator and the test network is being generated by

a process within the IMP, rather than by an independent source,

we cannot be sure that the simulator and test network see a

comparable traffic pattern.

The fourth experiment in this series (X33) is the same as

the third experiment, but with double the traffic load: 60 and

66 each send 20 packets per second to 30. The results are shown

in Table 4.

-SIMULATION- -TEST NETWORK-
ROUTE % delay % delay

(msec) (msec)

60-66-30 48.9 282 54.4 730

60-61-30 50.8 141 44.0 907

Total 60 -> 30 211 821

66-30 70.0 128 95.1 336

66-60-61-30 29.9 300 4.9 1050

Total 66 -> 30 181 371

Table 4. (3] Appendix 3(d) vs. X33

-12-

Report No. 4931 Bolt Beranek and Newman Inc.

These results are similar to those of the previous

experiment, except that the network is heavily congested so the

average delays are much higher. We see that this time, there is

a small flow in the test network along the 3-hop path from 66 to

30; in the simulation, this path is used a few percent more than

before. The most interesting thing about these results is that,

in the test network, the routing for 60 to 30 is somewhat

different from that used in the third experiment. In that

experiment, 51% of the flow used the route 60-61-30, which was 3

milliseconds faster than the route 60-66-30. In this experiment,

the second route is used by 54.4% of the flow, and it is 177

milliseconds faster. This emphasizes the fact that the results£
are only approximate, particularly in the test network.

For the next experiment, the network topology was changed

£ slightly: a link was added between 61 and 66. The new topology

is shown in Figure 2. The traffic load was the same as that for

the first experiment: nodes 60, 61 and 66 each sent 10 packets

* per second to node 30. The results of this experiment are shown

in Table 5.

The first thing to note about these results is that the test

network and the simulator are still comparable. Although there

are significant quantitative differences between the two sets of

.6 results, the behavior of the two networks is approximately the

* -13-

Report No. 4931 Bolt Beranek and Newman Inc.

IMP 61 IMP 60
+--------------

IM 30 IP6

Figure 2 .Modified Test Network Topology

same. For the flow from 60 to 30, 87% is sent on either of the

2-hop paths, and the remainder on a 3-hop path. A small number

of packets in the test network took looping paths, which we have

not shown. For the flow from 61 to 30, the fraction taking the

shortest, 1-hop path differs by about 4% between the simulation

and the test network. This difference is about 5% for the flow

from 66 to 30. For the routes which are longer than optimal, the

discrepancies between the test network and the simulator are

sometimes larger, but for each flow the order of route preference

is the same.

If it is possible to draw a conclusion from the results of

the five experiments it is this: the perfvrmance of the routing

algorithm depends on the details of the network on which it is

run, but the simulation nevertheless provides a p~ar.tiular

environment which is similar to the pgarticgula~r test network used.

-14-

Report No. 4931 Bolt Beranek and Newman Inc.

-SIMULATION- -TEST NETWORK-
ROUTE % delay % delay

(msec) (msec)

60-66-30 34.7 88 68.4 72

60-61-30 52.2 78 18.6 138

60-66-61-30 8.3 124 6.8 278

60-61-66-30 4.8 129 5.7 149

Total 60 -> 30 87 105

W 61-30 73.2 47 69.1 60

61-66-30 26.8 97 28.3 112

61-60-66-30 0 -- 2.5 157

Total 61 -> 30 61 77

66-30 78.7 47 83.6 44

Ly 66-61-30 21.3 95 12.7 273

66-60-61-30 0 -- 3.3 219

Total 66 -> 30 57 81

Table 5. [3) Appendix 3(e) vs. X34

The qualitative agreement for light loads is quite good; for

heavy loads the agreement is fair. This increases our confidence

that the simulator is useful for studying qualitative network

behavior.

a

-15-

01

Report No. 4931 Bolt Beranek and Newman Inc.

2.2 Simulation of Transcontinental Trunk

During our experimentation with the simulator, an

interesting incident occurred in the real ARPANET which prompted

us to perform an experiment on the simulator to see if it behaved

in a similar manner.

During a periodic reconfiguration of the ARPANET, a somewhat

longer transcontinental trunk was added. Because the throughput

achievable on a link depends on the speed at which packets can be

acknowledged, and because this is naturally bounded by the

round-trip propagation delay, an increase in propagation delay

will cause a decrease in the maximum achievable throughput on a

link. Observation of the ARPANET showed that the introduction of

a slightly longer trunk was causing congestion, but in the lines

feeding it rather than in the trunk itself. This is because an

IMP will reject an incoming packet if resources are not available

to transmit it out the next line in its path. A long trunk does

not congest, but rather runs out of logical channels, so packets

entering the IMP which would be leaving by the trunk are

rejected, and must be retransmitted. It is these retransmissions

which cause the lines feeding the trunk to congest. Note that

the trunk and the feeders are all identical 50 kb lines; it is

the topology which distinguishes them. We simulated this

situation using the network shown in Figure 3.

-16-

Report No. 4931 Bolt Beranek and Newman Inc.

V

1+ +11

2 -------. 9 ---------12

II
I

II I

3, +13
I II

i trunk
+-------+--- 14
4 6 7 8 10

Figure 3 . Simulated Network

I
For the experiment, 25 packets per second were sent from 1

to 11, 2 to 12, 3 to 13 and 4 to 14, and similarly in the

opposite direction. The packets consisted of 100 bits of data

and 200 bits of framing and protocol overhead. Without

retransmissions the utilization on the middle line (connecting 7

and 8) would be 60% in each direction. We found that the network

could not support this level of traffic, and that, averaged over

the measurement period, the network carried 24.7K in each

direction. The remainder of the 30K offered load simply queued

in the hosts. The percentage line utilizations (including

retransmissions) for representative lines is given below,

* together with the load due only to the 24.7K traffic (and not

-17-

.4.

Report No. 4931 Bolt Beranek and Newman Inc.

retransmissions and null packets). The load is given as a

percentage of the 50 Kbps line capacity; thus, 24.7 Kbps

represents 49.4% of a 50 Kbps line, as shown for line 7-8.

Line Utilization Load
(%) (%)

4-6 40.8 12.4

6-7 55.5 24.7

7-8 68.5 49.4

8-9 38.3 24.7

9-11 21.7 12.4

Before we discuss these results in detail, it is interesting

to note that the network throughput is >4'mited b) a line whose

utilization is only 68%. This compar .- 4ell 'L tests done on the

real network, where a limit of 76% was observed sending full

1208-bit packets from one IMP to a neighbor.

Now consider the table above. Line 4-6 is carrying a

quarter of the traffic in this direction, or 7.5Kbps. Line 6-7

is carrying 15Kbps, and line 7-8 is carrying 30Kbps. However,

the utilization on each line is not in these proportions. By

dividing the observed utilization by the load we can measure the

effect of retransmissions and null packets. This is shown below:

-18-

Report No. 4931 Bolt Beranek and Newman Inc.

Line Utilization/Load

4-6 3.30

6-7 2.25

7-8 1.39

8-9 1.55

9-11 1.76

This is identical to what was observed in the ARPANET: the

line protocol has the effect of causing retransmission, not in a

line which has reached capacity, but rather in the lines which

feed it. The small amount of congestion in lines 8-9 and 9-11 is

presumably due to the traffic going in the other direction on

those lines.

A final observation, for which we will not present the

supporting data, concerns the fraction of link-level

acknowledgments which are sent in null packets. Link-level

acknowledgments can be sent (from the data receiver to the data

sender) either in a data packet, or in an empty ("null") packet.

Measurements in the ARPANET revealed a surprising fact: that

even under heavy load, most acknowledgments are sent in null

packets, rather than being piggybacked on data packets travelling

in the right direction. Measurements of the simulation are in

agreement with this result.

-19-

Report No. 4931 Bolt Beranek and Newman Inc.

2.3 Comparison with Stability Model

The third series of experiments using the simulator compares

the behavior of the simulator to a mathematical model of

stability developed by Bertsekas [2]. Bertsekas analyzed the

behavior of the routing algorithm for ring topologies, of which

the 8-node ring shown in Figure 4 is an example.

7 8 1
.4---------------------

I I.

6+ +2
I I

5 4 3

Figure 4 . Bertsekas 8-Node Ring

The traffic pattern (specified in [2] Appendix 6) is for

nodes 1 to 3 and 5 to 7 to send equal traffic to node 8. The

optimal routing is for nodes I to 3 to send traffic

counterclockwise and nodes 5 to 7 to send traffic clockwise. The

worst routings are for all nodes to send traffic in the same

direction, either clockwise or counterclockwise. Bertsekas

investigates the use of 'bias' to ensure stability. Bias is

simply a network-wide constant which is added to the reported

-20-

b

Report No. 4931 Bolt Beranek and Newman Inc.

r
* delay on each link. A path of n hops will therefore have n times

the value of the bias added to its delay. This tends to bias the

algorithm towards choosing the minimum-hop routing. Bertsekas

predicts that, for a given bias level, the routing algorithm will

be stable (choosing the optimal route) up to a given traffic

level, after which it will be unstable (diverging, and switching

between the two worst routings). For zero bias, the algorithm

will always be unstable, and the higher the bias, the higher the

traffic level for which the algorithm is stable.

The ARPANET does not use an explicit bias in its routing

algorithm, but it is nevertheless quite stable at moderate

I traffic levels. In 1978, it was believed that this discrepancy

could be explained by a number of factors. First, the delay

computation never reports a zero delay on any link: the minimum

reported delay is therefore 1 (reporting unit). At the moment,

the reporting unit is 6.4 milliseconds. This rounding-up was

believed to have the same effect as adding a constant bias.

* Second, in the ARPANET the IMPs do not all run the routing

algorithm at the same time; Bertsekas's model predicts that this

asynchrony will increase the maximum traffic load before

instability occurs. In our experiments, we first used the 8-node

ring and traffic pattern described above to investigate the

effect of the choice of the delay reporting unit, IMP

-21-

Report No. 4931 Bolt Beranek and Newman Inc.

synchronization, and a third factor, the choice of initial

routing. The traffic from each source was either 1.0, 3.0 or 6.9

1200-bt packets per second; the initial routing was either

optimal or worst case; the delay reporting unit was either 6.4

milliseconds (its current value in the ARPANET) or 0.8

milliseconds, and in all but one case the IMPs were running

synchronously. Finally, this experiment represents a worst case

topology and traffic pattern. In the real network some traffic

is always flowing on a given link, so the delay estimate used by

the routing algorithm will not usually drop to its zero-traffic

value. The background traffic in the network thus provides

another form of bias which tends to increase the stability of the

SPF algorithm running in the real network. The result of each

run was the hop count averaged over all packets. If the routing

was always optimal, this figure would be 2.0; if the routing was

always worst case, the average hop count would be 4.0. [This can

be seen by inspection of the topology, given above.] The results

of 8 runs with different combinations of parameters are shown in

Table 6.

Consider the last four runs where the network is heavily

loaded. The worst performance is for experiment 82, which uses a

worst-case initial routing, a small delay reporting unit (0.8

msec), and synchronized routing updates. For each of these

-22-

I.

Report No. 4931 Bolt Beranek and Newman Inc.

1 Init 2 3 Mean Path
Exp # Traffic Routing AVGUNIT Synch Length

36 1.0 optimal 6.4 y~s 2.0

37 1.0 worst 6.4 yes 2.3

94 3.0 optimal 0.8 yes 2.3

95 3.0 worst 0.8 yes 2.4

80 6.9 worst 6.4 yes 2.5

82 6.9 worst 0.8 yes 2.9

83 6.9 worst 0.8 no 2.5

93 6.9 optimal 0.8 yes 2.5

* 1
pkt/sec per source, 1200-bit packets; 6 sources

2
average delay reporting unit

3
routing changes synchronized or not

Table 6. Results for 8-Node Ring

parameters, this choice of parameter value should give the worst

(i.e., least stable) performance. We see that for this parameter

choice the average hop count is 2.9, but a change in any sngle

parameter causes the average hop count to improve to 2.5. This

is a very striking result: the routing algorithm is fairly

stable at high traffic load unless three impossible conditions

* are metl

-23-

Report No. 4931 Bolt Beranek and Newman Inc.

The first four experiments show the behavior of the

simulator at lower traffic levels. In particular, experiment 95

uses the same parameter choices as experiment 82, and

demonstrates that the instability of the algorithm in that run is

much smaller at a lower traffic level. Experiment 36 shows that,

with a low traffic level and realistic choices for parameters,

the routing algorithm is cmpletely stable.

In order to verify that these results were not simply a

function of the topology chosen, a second series of runs used the

4-node ring shown in Figure 5. As before, all lines are 50 Kbps.

3 2
+------------------

+------------------
1 4

Figure 5 . Bertsekas 4-Node Ring

For this network, equal traffic (again consisting of 1200-

bit packets) was sent from nodes 3 and 4 to node 1. There are

only 3 possible routings: the optimal routing is for 3 and 4 to

send traffic directly to 1, and the two worst-case routings are

for traffic to be sent either clockwise (3-2-4-1) or
-

-24-

Report No. 4931 Bolt Beranek and Newman Inc.

* counterclockwise (4-2-3-1). Because this system is simpler than

the 8-node ring, results are reported as the fraction of time the

routing algorithm used the optimal routing. The results, again

Pfor a variety of traffic levels and parameter choices, are shown

in Table 7.

1 Init

Exp # Traffic Routing AVGUNIT Synch % Optimal

96 10 worst 6.4 yes 49

97 20 worst 6.4 yes 45

£ 98 10 optimal 6.4 yes 89

99 20 optimal 6.4 yes 58

106 10 worst 6.4 no 97

108 20 worst 6.4 no 48

105 10 optimal 6.4 no 100

107 20 optimal 6.4 no 93

pkt/sec per source; 1200-bit packets; 2 sources

Table 7. Results for 4-Node Ring

Notice that in this series of experiments, the delay

reporting unit was always 6.4 milliseconds. The 8 runs shown

represent the 8 possible combinations of traffic load (10 or 20

packets per-second per-source), initial routing (optimal or

worst-case), and synchronization (routing changes synchronized or

-25-

I

Report No. 4931 Bolt Beranek and Newman Inc.

not). An examination of these figures will show that an increase

in traffic, a worst-case initial routing, or synchronized routing

updates always causes a decrease in the fraction of time the

network routing was optimal. Regression analysis shows that the

effect of the three factors mentioned is approximately equal.

These results are roughly consistent with Bertsekas's

analysis. First Bertsekas analyzes asynchronous updating using a

continuous model ([2), Appendix A.4.2 algorithm 2, page A-6Off)

and concludes that asynchronous updating does significantly

increase stability. Second, Bertsekas recommends a high value of

"bias" to ensure stability. In our experiments, bias is modelled

by the grain of delay reporting, and the fact that a delay of

zero cannot be reported. Our results show that this form of bias

improves stability, and a large bias is n=t r i . Bertsekas

does not specifically address the question of the effect of the

initial routing. It is not surprising, however, that a network

started with the optimal routing will perform better than one

started with a worst-case routing.

We therefore differ with Bertsekas not in his explicit

results, but rather in his implication that a network using the

ARPANET routing algorithm is in a delicate state, in fact,
V

teetering on the brink of instability. While it is true that the

routing algorithm will become less and less stable at high

-26-

Report No. 4931 Bolt Beranek and Newman Inc.

traffic levels, and in particular as the network becomes

congested, in p, a number of factors contribute to making

the algorithm stable.

b

-27-

Report No. 4931 Bolt Beranek and Newman Inc.

3 NETWORK PERFORMANCE AS A FUNCTION OF ROUTING

The second series of experiments using the simulator forms

the core of the work reported here. The goal of this series of

experiments was to compare the performance of the SPF routing

algorithm with other plausible alternatives. Such a comparison

naturally depends on what SPF is compared to, and what standard

of comparison is used.

We will base our analysis on Gerla [5]. Gerla starts with a

general model of static routing, that is, routing which does not

change over time depending on network conditions. In his model,

each source and destination has associated with it a At of

alternate routes. For a given source and destination, each route

in the set is assigned a fraction between 0 and 1, representing

the fraction of the total traffic travelling between that source

and destination which is sent over that route. The model assumes

that the process of dividing the traffic between the routes is

perfect. If, for example, 20 kbps is travelling from X to Y over

one of two alternate routes, each with weight 0.5, then each

route sees exactly 10 kbps.

When a packet enters a node in the network, the node must

decide whether it should be delivered to a host attached to the

node or be transmitted to another node. In the latter case, the
-

-28-

I

Report No. 4931 Bolt Beranek and Newman Inc.

node must decide which neighboring node to send it to. This

*process, known as forwarding, is routing from the point of view

of a single node rather than the network as a whole. In Gerla's

general model, the node must know the source and destination of

the packet, and the assigned route of the packet. For each

source and destination, and fLr each route which qeaa through

.the node, the node must know the next node in the route. This

means that for each source and destination, a fixed proportion of

the traffic through that node will go to each neighbor, although

. the decision as to which packet goes to which neighbor will have

been made when the packet was assigned to a particular route.

Gerla's general model is not really feasible, since each

node must store a considerable amount of routing information.

However, he also proposes an alternate model which is

specifically designed to reduce the information required by each

node. In this model, a packet is not assigned to a permanent

route at the source; instead, it is forwarded by each node

depending only on its destination. Each node has a table that

specifies the fraction of the traffic for each destination that

should be forwarded to each of the node's neighbors.

We call Gerla's gener model "source-dependent routing,"

and the alternate model "source-independent routing."

-29-

Report No. 4931 Bolt Beranek and Newman Inc.

Finally, Gerla considers routing where only a single path is

specified from source to destination. We call this "single-path

routing," and the alternative "multi-path routing." Single-path

routing may be either source-dependent or source-independent. In

the case of source-independent single-path routing, packets

arriving at a node for a particular destination are always

forwarded to the same neighbor; in the case of source-dependent

single-path routing, the neighbor depends on the source as well

as the destination of the packet.

For each kind of routing, Gerla gives an algorithm for

generating the routing which minimizes a given objective

function. He considers measures of performance which are a

function of the flow on each link in the network; for example, a

typical measure of performance is the average delay caused by a

message crossing the network. Of course, a routing which is

optimal with respect to a particular objective function may not

be optimal with respect to another. Various functions suggested

by Gerla are discussed below.

A objective function is one kind of standard which can be

used to compare different routing schemes, but is by no means the

only kind. A comparison standard may not be a function at all.

We should resist the temptation to reduce every problem to

numbers! A certain routing may be preferable because it is more

-30-

l -0i i l l l hI l I k l

Report No. 4931 Bolt Beranek and Newman Inc.

robust and therefore functions well in the presence of node or

line failures. A good routing should perform well with traffic

flows which are different from those used to design it.

Throughput, an important measure of network performance, is

not a function of the flow on each link. Other things being

equal, a routing which allows the network to support a higher

throughput is preferable. Of course such a comparison is only

possible if other measures of performance, such as average delay,

are the same for all routings.

Delay is an important measure of performance since it is

amenable to analysis. The average time needed by all packets to

cross the network is a function of the total load on each link.

The total load on each link is a simple function of traffic and

routing. This means that it is simple to compute the effects

that even infinitesimal routing changes have on delay.

Simple average delay is not entirely satisfactory as a

standard for comparison. It has been shown by Meister et al. [6]

that a routing which minimizes average delay will cause some

packets to have relatively large delays, offset by other packets

with relatively small delays. The yarlanng of the delay is a

good measure of the extent to which the delays of individual

packets differ from the average. This can be used as a secondary

-31-

@

Report No. 4931 Bolt Beranek and Newman Inc.

standard of comparison between routings which have similar

average delays.

Since it is not possible to simultaneously minimize both

average delay and variance of delay, the objective function

chosen for Gerla's algorithms must be a compromise. A suitable

objective function is suggested in (6]. If the routing is chosen

to minimize the k-th root of the average over all packets of the

k-th power of delay, then for large k the optimal routing will be

one which tends to avoid wide variations in packet delays at the

expense of somewhat larger average delay.

The SPF routing algorithm used in the real network does not

attempt to achieve a global minimum for some objective function,

but instead tries to individually minimize the delay for each

Vpacket. In addition, the routing is not static, but varies with

the delay on each line. Indeed, the route a packet takes cannot

be predicted when it enters the network, since the route may

change as it crosses the network. Gerla considers an idealized

model of adaptive routing, and concludes that adaptive routing

can be modelled by static routing which is chosen to minimize a

* particular objective function. He calls this static routing

policy "idealized adaptive routing."

-32-

I.

Report No. 4931 Bolt Beranek and Newman Inc.

3.1 Topology of the Simulated Network

We have said that we will compare SPF routing to the routing

pgenerated by Gerla's algorithm for a given objective function and

(related, possibly identical) standard for comparison. We must

still decide on the network on which the comparison will be run.

This involves defining a network topology and a traffic matrix.

The topology includes the network nodes and the lines which

connect them, and the traffic matrix specifies the flow from each

source node to each destination node. For each source-

destination flow we must specify the rate and distribution of

message arrivals, and the distribution of message lengths.

Two approaches are possible in defining the topology of the

target network: 1) construct a target network as much like the

real ARPANET as possible; or 2) use an imaginary network

constructed so that it has particular properties (such as a

particular connectivity). Since the ARPANET is now quite large,

another possibility is to model the target network on the ARPANET

at an earlier point in its development. Our first validation

tests of the simulation used a 19-node network, taken from

Kleinrock (4] and based on the ARPANET.

Because of the modelling tools we are using, the network

must be a much smaller size than the present ARPANET. However,
-

-33-

I ___ _ _ _

Report No. 4931 Bolt Beranek and Newman Inc.

we want to model the performance of the SPF algorithm on the

present ARPANET, rather than the network at an earlier point in

its development. We are therefore forced to construct an

imaginary network which is as much like the present ARPANET as

possible, but considerably smaller. There are many ways to

specify network characteristics which are independent of size.

Connectivity (average number of lines per node) is perhaps the

most obvious.

The connectivity of the ARPANET, at the time of writing, was

about 2.4. It is not clear what effect this figure has on the

operation of the SPF algorithm, so it does not seem to be a very

good way of en that the model will correspond to the real

network. On the other hand, connectivity is clearly not

irrelevant to the operation of the SPF algorithm. It could be

argued, for example, that a low connectivity figure implies that

SPF has few alternate routes from which to choose, whereas a high

connectivity figure implies that there are many alternate routes.
I

Other characteristics which are independent of network size

are the size and number of small loops. A particular routing

scheme may be very sensitive to the existence of small loops.

For example, the original ARPANET routing scheme would generate

loops in the routing if the network contained loops of three

nodes. In the present ARPANET, the smallest loop is eight nodes.

-34-

Report No. 4931 Bolt Beranek and Newman Inc.

Average hop count is the average number of hops in the

minimum-hop path given by each source-to-destination pair. Each

source-destination pair can be either weighted equally or in
R

proportion to the traffic between them. Arguably, the average

hop count and connectivity together determine the number of

alternate routes between a given source and destination. That is

not to suggest that there is an arithmetical relationship between

hop count, connectivity, and number of alternate paths, but

rather that the larger the hop count and connectivity, the larger

the number of alternate paths will tend to be.

The SPF routing algorithm will switch from the minimum-hop

I path to another path when the total delay on an alternate path is

less than the total delay on the minimum-hop path. Since there

are more hops on the alternate path, the (average) delay on each

hop of the alternate path must be smaller. In fact, the delays

on each path must be inversely proportional to the ratio of the

number of hops. This suggests that an indication of the

stability of the SFP algorithm, running on a given topology, is

the ratio (averaged over all source-destination pairs) of the

minimum-hop path to the next best path.

Not all these network parameters are necessarily equally

useful in predicting the behavior of the SPF algorithm. We have

* designed a 14-node test network which is based on the ARPANET,

-35-

r I

Report No. 4931 Bolt Beranek and Newman Inc.

but it differs in a number of the parameters discussed above.

The connectivity of the test network is quite close to that of

the ARPANET, but because the test network is much smaller than

the ARPANET the average hop count is much smaller. The topology

of the test network is shown in Figure 6.

11 6 9

4.---------------------4------------------------- --
I I
II Ii
IIII

I Ii
8 1 I

II2+---+-----------+-------------------------10------- 1
II I
I! I
III

+7
! II

II I

II I

5+- ------------- ----------------- +13
12

3 4

Figure 6 . Simulator Test Network

3.2 Defining Network Load

Just as the network topology may be imaginary or based on a

real topology, the traffic matrix may be imaginary or based on

real traffic figures. In either case, we want to scale the

-36-

Report No. 4931 Bolt Beranek and Newman Inc.

traffic up and down to test network performance for both high and

low traffic levels. Gerla uses a test network where the topology

is taken from a 26-node 30-line ARPANET, and the flow from one

node to another is either 1 or 0. Note that because he scales

the traffic, the initial traffic matrix is effectively

dimensionless; it simply defines the ratio of the sizes of

different source-destination flows. Gerla's traffic matrix is

given by specifying the number of active node pairs, selecting

node pairs at random, and specifying the traffic scaling factor.

Suppose that the traffic scaling factor is chosen so that the

total traffic is equal to some predetermined level. The number

of active node pairs is then a measure of how balanced the

traffic is: if every node pair is active the traffic is quite

balanced; for small numbers of active node pairs the traffic is

more concentrated. Gerla generates traffic in this way since he

is interested in the effect of traffic balance on his algorithms.

* Similarly, we might use this procedure to examine the effect of

traffic balance on SPF routing.

Gerla does not address the question of the confidence

interval of the results with respect to the random selection of

node pairs, but gives results for different random selections

which differ by up to 15%.

-37-

Report No. 4931 Bolt Beranek and Newman Inc.

Gerla's algorithms generate the routing which minimizes a

given objective function. We will now discuss the assumptions

necessary to make this true for a real network. We will tacitly

assume that the objective function is average delay, but this is

just for convenience; what we have to say below does not depend

on the choice of objective function.I
Three things are required in order to use Gerla's algorithm

to generate the optimal routing for a real network. First, the

topology and traffic used in the experimental network must

accurately represent the real network. Second, the analytic

model used to estimate the value of the objective function must

be valid for the experimental network. Third, the algorithm must

find the true global minimum of the objective function. We have

already discussed various strategies we could use to generate the

test network topology and traffic matrix. Now suppose that we

are minimizing average delay. As we have said, the average

packet delay can be computed from the total load on each link,

but this is true only if you assume a certain model of the

network.

4 The standard network model was developed by Kleinrock [4).

It requires that traffic is generated and enters the network with

a negative-exponential inter-arrival time distribution, and

negative-exponential packet lengths. In order to calculate the

-38-

Report No. 4931 Bolt Beranek and Newman Inc.

r
delay on each link, Kleinrock assumes that, on each link, packet

arrivals are independent and have negative-exponential inter-

arrival times. Given these assumptions, the average delay on

each link can be calculated using an M/M/1 queueing model. The

average packet delay is the average of the delay on each link,

weighted to take into account traffic levels and hop count. We

are willing to assume that Kleinrock's assumptions are valid

since predictions based on them agree with simulation results Lor

networks which satisfy his preconditions.

In the ARPANET, on the other hand, messages have a maximum

length (around 8K bits), and a message may be divided into

iseveral packets, where a packet has a maximum length of around 1K

bits. Even if message arrivals were negative-exponential, the

fact that a message may be divided into several packets means

that packet arrivals cannot be.

If we want to use average packet delay as our objective

function for Gerla's algorithm, we must rely on Kleinrock's

model -- there is no alternative. This means that we must

justify the assumption that packet arrivals on each link are

independent and have negative-exponential inter-arrival time

distributions, even if packet lengths are not negative-

exponential, and do not enter the network with negative-

* exponential inter-arrival times. We can verify this assumption

-39-

Report No. 4931 Bolt Beranek and Newman Inc.

in the same way that Kleinrock verified his original assumption:

by comparing the predictions of the model with simulation

results.

We will define two different models of the network. One

will match the ARPANET as closely as possible, and the other will

match the assumptions of the analytic model as closely as

possible. We can run the analytic model on the latter network,

and can run the simulation on both. Ideally, we would expect

close agreement between the analytic model and the simulation for

the network on which both are run, and good agreement in the

other case. Although this procedure does not compare the results

of either the analytic model or the simulation to the behavior of

the real network, we can be more confident that the assumptions

underlying the analytic model are valid if the results of the

model agree with the results of the simulation (which does not

depend on the same assumptions).

To generate a small test network, we first looked at traffic

statistics on the real ARPANET. For the peak hour we used, the

total data traffic, including the 200-bit framing and protocol

overhead per packet, was 57.0 kbps. The traffic between the

highest 14 traffic sources was 22.2 kbps, or 39%. We used those

14 IMPs and the traffic between them as the basis for our test

network. We reduced each IMP-IMP flow to a flow consisting of

-40-

Report No. 4931 Bolt Beranek and Newman Inc.

r
messages of two lengths (using a process described below). The

lines in the reduced network, and the propagation delay on each

line, were taken from the real ARPANET: two IMPs in the reduced

network were connected if there was a short path between them in

the real ARPANET, and the propagation delay on the line was set

to the sum of the propagation delays along the corresponding path

in the real ARPANET.

This produced a network with 3 nodes in Southern California,

3 in Northern California, 3 Mid-Western nodes, 3 nodes in the

Boston area, and 2 in Washington, D.C. Considering the procedure

used to create this test network, we feel it represents as good a

imatch to the ARPANET as is possible with just 14 nodes.

Because of the way traffic is generated in the simulator, it

is necessary to keep the number of different IMP-IMP flows in the

network as small as possible. The simulator accepts a

description of the network traffic in the form of individual

traffic flows, specified by:

source (IMP and host)

destination (IMP and host)

average message length

average message rate

-41-

10

Report No. 4931 Bolt Beranek and Newman Inc.

The distribution of message lengths can be either constant

or negative-exponential. We will discuss how to approximate the

real message length distribution by several flows with constant

length. Message arrivals may be either deterministic or Poisson;

we used Poisson arrivals. Our goal is to construct a traffic

matrix consisting of individual source-destination flows that can

be used as input to the simulator.

Statistics gathered from the ARPANET over a particular

(i.e., peak) hour provide a source-destination traffic matrix

specifying the average traffic (in bits/second) between each pair

of IMPs. Summary statistics for each node specify various

parameters for messages entering and leaving the network at that

node: the distribution of packets/message, the message rate, and

the average packet length. There are two problems with the data:

the traffic matrix includes packet overhead (200 bits) and

control traffic (e.g., RFNM's), but the summary statistics do

not; and the summary statistics do not provide separate

statistics for each source-destination pair, but rather data for

each source averaged over all destinations. A third problem is

caused by the nature of the simulation: we need to approximate

the message length distribution for each source-destination flow

in the ARPANET by a number of flows with constant message length.

_42-

b

Report No. 4931 Bolt Beranek and Newman Inc.

We will discuss the third problem first. Examination of the

distribution of packets/message shows that almost all messages

are a single packet (94%). A disproportionate fraction of the

remainder (25%) are 8-packet messages. This corresponds to the

hypothesis that almost all traffic is Telnet character-by-

character, and that the remainder is mail or FTP. Therefore, we

chose to model the real message length distribution by two

constant message lengths: short packets and full (i.e., 8063-

bit) 8-packet messages. The length of the short packets is given

by the average length of the last (and hence probably not full)

packet of a message. The ratio of short packet traffic (in

bits/second) to long message traffic (in bits/second) in the

simulation is given by the ratio of 1-4 packet message traffic to

5-8 packet message traffic in the real network. In effect, this

means that network messages of 1-4 packets are simulated by

single-packet messages, and network messages of 5-8 packets are

simulated by 8-packet messages.

Now we will discuss how to correct the traffic matrix for

RFNM's and overhead and how to generate particular source-

destination flows. Since we have statistics (message length,

etc.) only for each source, we assume that the traffic to each

destination from a particular source has identical

characteristics. For example, if we suppose that the average

_

-43-

Report No. 4931 Bolt Beranek and Newman Inc.

packet length of all packets transmitted from a particular source

is 147 bits, we assume that the average packet length of packets

sent from that source to each particular destination is 147 bits.

For each source we know the message rate into and out of the

network, and the average number of packets per message (for

q messages in each direction). This statistic refers only to data

messages, but we know that a RFNM is generated by the source for

each message delivered to a host (i.e., for which it is the

destination). Thus the total number of messages generated by the

source is just the number of data messages entering the network

plus the number of data messages leaving the network at the

source. We assume that RFNM's are the only control messages

(this assumption is also made in constructing the traffic

matrix). Since we can calculate the number of packets/second, we

can adjust each element of the traffic matrix to remove the 200-

bit per-packet overhead.

We have now computed the traffic we wish to simulate between

each source-destination pair, and we must divide this traffic

between single-packet messages and full messages. The traffic

consists of data messages, for which we know the message length

distribution (by number of packets) and message rate, and RFNM's,

for which we know the rate and length. As we discussed above, we

have these statistics only for each source.

-44-

I

°02

Report No. 4931 Bolt Beranek and Newman Inc.

r From the message length distribution we compute the average

number of packets in a message, then correct the average packet

length by removing full packets (i.e., all but the last packet)

of multi-packet messages. This gives us the length for single-

packet messages.

Single-packet messages simulate both RFNM's and 1-4 packet

messages. The RFNM's have a fixed length and a known rate; the

traffic rate for 1-4 packet messages is computed from the message

rate, the message length distribution, and the average length of

a message with a given number of packets. The traffic rate for

RFNM's and 1-4 packet messages divided by the total traffic rate

I gives thie fraction of each source-destination flow from this

source which is to be simulated by single-packet messages.

We now have the traffic rate for each source-destination

pair, the proportion of traffic for short and long messages, and

the lengths of short and long messages. We simply compute the

message rate for short and long messages to each destination, and

we are done.

3.3 Comparison with Analytic Model

We ran the first series of experiments on our 14-node

network using the generated traffic matrix running the simulator

-45-

0

Report No. 4931 Bolt Beranek and Newman Inc.

in its "analytical model" mode, where some of the protocols are

disabled so that the simulator is simulating the same network

model that the analytic model is analyzing. The analytic model

was run using optimal single-path routing generated by using

Chou's algorithm [7) and optimal multi-path routing generated by

using Ge:-la's algorithm. The simulator was run using the ARPANET

SPF routing algorithm, with buffer limitations and the line

protocol disabled. Both the simulator and the model were run at

a number of traffic loads (or traffic factors): 1.0, 4.0, 8.0

and 12.0 times the traffic matrix genert.;ed from the real

ARPANET. Multiple packet message flows were converted to the

equivalent single packet flow. Packet arrivals were Poisson.

The average delay (in milliseconds) ac-oss the network was

measured. The results are shown in Table 8 below.

-Traffic Factor-

1.0 4.0 8.0 12.0

multi-path model 23 24 25 28

single-path model 23 24 26 34

SPF simulated 23 33 44 182
X40 series [22,23) [30,36) [39,50) (86,278)

Table 8. Results of 14-Node Simulation I

-46-

Report No. 4931 Bolt Beranek and Newman Inc.

For the results from the simulator, the 95% confidence

interval is shown in square brackets under the average delay.

Remember that, apart from the routing, the simulator and analysis

are based on the same model of the network. For traffic factor

1.0 we see that the results are identical, and as the traffic

level increases the results diverge. The average delay for

multiple-path routing is somewhat lower than for single-path

routing because at higher traffic levels multiple-path routing

allows the load to be spread more evenly. The results for SPF

routing are higher because at higher traffic levels the algorithm

becomes unstable and causes congestion by switching traffic from

one route to another.I

3.4 Simulation of Different Routing Schemes
U

The second series of experiments on the 14-node network

repeated the model analysis, but used a fixed delay through each

node to approximate processing delay. The simulator was run with

its protocols (in particular the line protocol) enabled. The

analytic model was run using optimal single-path routing or

optimal multiple-path routing. The simulator was run using

ARPANET SPF routing or the same routings used by the model. The

results for 1.0, 2.0 and 3.0 times the base traffic matrix are

shown in Table 9 below:

-47-

Report No. 4931 Bolt Beranek and Newman Inc.

-Traffic Factor-

1.0 2.0 3.0

multi-path model 28.9 29.2 29.6

single-path model 30.5 30.8 31.1

multi-path simulated 36.7 39.5 46.6
X60 series [35.8,37.6) [38.8,40.2] [45.7,47.4]

single-path simulated 38.5 -- 50.3
X50 series 137.6,39.4] [49.4,51.2)

SPF simulated 38.7 43.3 57.3
X70 series [37.9,39.5) [42.1,44.4] [52.9,61.6]

Table 9. Results of 14-Node Simulation II

As before, the results for the single-path model are

slightly higher than the results for the multi-path model. The

difference between this set of results for the model and the

previous set is explained by the inclusion of a fixed processing

delay in the latter set, and the fact that in the first set of

experiments the packet lengths did not include protocol overhead.

The average delay for the single-path model is higher than the

average delay for the multi-path model, not only because of the

load-spreading effect of multi-path routing, but also because the

average hop count (and hence aggregate processing delay) is lower

for multi-path routing than it is for single-path routing.

-48-

I

b

Report No. 4931 Bolt Beranek and Newman Inc.

The variance between the simulation and model results (i.e.,

for either single-path or multi-path routing) is caused by two

different effects: first, the model includes processing time but

not the effect of processes queueing for the processor, while the

simulator includes a detailed model of the process structure of a

node, taking into account each delay as a packet moves from

process to process through the node; second, the model assumes

that the limiting resource is transmission capacity on the line,

whereas in the simulator it was either buffer space or the number

of logical channels on a line. The simulator is more accurate

than the analytic model, since it is able to take into account

effects which are missing from the model. The difference betweenI
multi-path and single-path routing is almost certainly due to the

second effect, since the loading of the processor at the given

traffic levels is still quite low. This does not explain the

difference between (fixed) single-path routing and (adaptive) SPF

routing. At traffic factor 1.0 the results are almost identical,

indicating that SPF is choosing the same (or equivalent) routing

as the fixed single-path routing generated by Gerla's algorithm.

As the traffic level increases, SPF increases faster than fixed

routing. This is because SPF is intermittently choosing paths

which are longer than optimal.

_

-49-

Report No. 4931 Bolt Beranek and Newman Inc.

Perhaps the best way to understand the data presented in

Tables 8 and 9 above ip to look at each configuration's traffic

sensitivity level. An exact comparison is not possible, but the

reader may consider the difference between traffic factors 1.0

and 4.0 in T3ble 8 or 3.0 in Table 9.

The lowest change with an increase in traffic is given by

the model results, which change by a millisecond or less. All

the simulations have a higher sensitivity to traffic; as we

mentioned above, this is due to the fact that the limiting

resources for the simulator do not appear in the model. In both

cases, the delay for SPF routing increases slightly faster than

for either type of fixed routing. In other words, a fixed

routing which is tailored to the particular network and traffic

used is only slightly better than a routing algorithm capable of

adapting rapidly to changes in topology or traffic pattern.

3.5 Computer Resources and Limitations

An important issue which we have not mentioned before is

whether detailed simulation, such as we have performed for the

ARPANET, is really a feasible way of investigating the behavior

and performance of network protocols. During our investigation

of the SPF routing algorithm we found that the computer resources

-50-

4 ..

Report No. 4931 Bolt Beranek and Newman Inc.

required were formidable. In addition, our requirement for

statistically valid results meant that we had to generate a very

large amount of simulation output. In this section we will

discuss both the computer problems and the statistical

constraints.

There is no doubt that the simulation is not as efficient as

it could be. It is written in Simula, runs on a DEC TOPS-20

operating system, and emulates a TOPS-10 operating system. The

Simula compiler is very old and does not use modern techniques

for generating efficient code. The fact that a Simula program

interfaces with the TOPS-20 operating system via a TOPS-1O

emulation means that it incurs an extra time penalty. The

program itself was written with flexibility rather than

efficiency as its chief goal. These effects can be expressed by

considering the ratio of computer time to simulated time (for a

given network running on a given computer); this ratio depends on

the traffic level in the network, as well as the number of nodes.

For the 14-node network we used it is approximately 100; that is,

a minute of simulated time requires 100 minutes of computer time

(on a DEC 2060 system).

The computer system we used also imposes a limit of 256K on

the size of the program, including the Simula run-time system and

.6 the TOPS-10 emulation package. Again, because Simula does not

-51-

Report No. 4931 Bolt Beranek and Newman Inc.

have a very sophisticated compiler, it is not very efficient in

its use of space. We found that the largest network we could

simulate was about 20 nodes. This limit would grow almost in

proportion to an increase in the size of the network. No single

datum requires a lot of space, but the limit is so low because a

simulation is made up of numerous small pieces: nodes, lines,

hosts, traffic generators and so on.

It would be wrong, however, to conclude that the real limits

on the simulator are due to computer limitations. We believe

that these limits mask much more serious limits due to the nature

of simulation itself. As we explained in (3), special

statistical techniques are needed to analyze output from

simulation because of the way successive samples are correlated.

As network conditions fluctuate, successive packets may all see

relatively high or relatively low delay. Our technique for

removing this correlation consists of combining samples into

batches large enough to eliminate the effect of network

fluctuations. The size of batch required therefore depends on

the period of fluctuations in the network. In a network with

fixed routing, these fluctuations will be due to fluctuations in

the traffic load, and queueing effects. For an uncongested

network, they will have a relatively short period, and the batch

size required for our statistical analysis will therefore be

-52-

Report No. 4931 Bolt Beranek and Newman Inc.

Usmall.

The situation is quite different with adaptive routing. In

this case, fluctuations in network conditions will be caused by

changes in routing. The period of fluctuations in network

conditions will therefore be Al least as large as the period of

changes in routing. In the ARPANET, the minim period for

routing changes is 10 seconds; 10 seconds of simulated time might

require 1000 seconds (or 17 minutes) of computer time. For our

bexperiments with SPF routing, we typically had to simulate

hundreds of seconds in order to obtain acceptable confidence

limits for our performance estimates.

This problem will only be exacerbated with additional

protocols included in the simulator. For example, the congestion

control algorithm may operate, in each IMP, in synchrony with the

routing algorithm, but with a period several times longer (to

avoid resonance effects). In addition, it is possible that the

dynamic behavior of the combined routing and congestion control

protocols will be very complex. A priori, it is not possible to

bound the period of network fluctuations at all.

On the other hand, our experiments with the various 4-node

topologies and traffic pattern we have discussed in this section

shows that useful results can be obtained from very small

-53-

Report No. 4931 Bolt Beranek and Newman Inc.

networks. Indeed, the operation of the network protocols is

often clearer in a small network. Our goal, therefore, should be

to build simulations which yield useful data on the network

protocols, in particular their sensitivity to parameter choices,

rather than simulated networks which are comparable to real

networks in size. Finally, the necessity to run the simulation

as long as we did is a consequence of our goal of statistically

defensible results. It is possible that sophisticated variance

reduction techniques, which we have not had time to investigate

properly, might provide a way to produce valid results with

shorter simulation runs.

-54-

Report No. 4931 Bolt Beranek and Newman Inc.

r4 SIMULATION NETWORK DESCRIPTION

The simulation is divided into many modules. A module is

just a collection of data structures and routines to access or

modify them. For example, the line protocol, the protocol which

ensures that packets are reliably transmitted from IMP to IMP, is

implemented by a single module. This module contains a number of

tables, and some routines which perform the protocol. Some

modules contain code which can run independently; these modules

are called processes. IMPs, hosts and lines are all modules

which contain a number of processes for simulating the effects of

the real IMPs, hosts, and lines.

The structure of the IMP module closely mimics the real IMP

program. The module itself contains data structures and routines

for implementing routing and buffer allocation; subsidiary

modules implement the line protocol and line up/down protocol,

and the processes which make up the real IMP program. These

processes are: Task, HostIn, HostOut, ModemIn, ModemOut, TimeOut

and Background. HostIn is responsible for accepting messages

from a host; HostOut delivers messages to a host, ModemIn accepts

packets from a line (i.e., transmitted from a neighboring IMP);

ModemOut transmits packets onto a line (i.e., to a neighboring

IMP); Task hands packets from an input process to the correct

output process; TimeOut performs various periodic functions;

-55-

Report No. 4931 Bolt Beranek and Newman Inc.

Background contains the IMP functions which are run when there is

nothing else to do. There are also four processes which run

under the control of Background: BackgroundSource,

BackgroundSink, BackgroundDummy and BackgroundRerouting.

Each line is simulated by a module and two subsidiary

processes: LineInput and LineOutput. LineInput accepts packets

from a ModemOut process in the sending IMP; LineOutput delivers

them to a Modemln process in the receiving IMP. Two processes

are necessary since any number of packets may be in flight on the

line, and, in particular, one packet may still be being delivered

at the output while the next is arriving at the input end of the

line.

The host is responsible for generating and submitting

messages to the network, and accepting delivery from the network.

It is implemented by a host module and a number of subsidiary

processes: MessageGen generates messages according to a random

distribution; MessageOut submits messages one by one to the

network (i.e., local IMP); PacketSink accepts packets from the

network. Packets and messages are discussed in the next section.

The modules and processes mentioned above are described in

the following pages. The line and host are each described in a

single section, since they are quite straightforward; the IMP is

-56-

Report No. 4931 Bolt Beranek and Newman Inc.

Knot, so each process and protocol is described in a separate

section.

a

4.1 Topology and Packet Flow

The topology of the simulated network is defined by the

IMPs, hosts and lines in it, and by the connections between them.

Each host is connected to a single IMP; each IMP may have many

iL hosts. Each line is connected to two IMPs: one at the sending

end and the other at the receiving end; each IMP may be connected

to many lines. IMPs which are connected by a line are called

tneighbors.

The user defines the topology of the simulated network using

IMP, HOST and LINE commands. Each time one of these commands is

used, the simulator creates the corresponding module and connects

it to the other appropriately. When an IMP is created, the user

specifies the number of hosts and the number of lines it is

connected to. When a line is created, the user specifies which

IMPs it is connected to. The simulator connects each IMP to the

line, and vice versa. When a host is created, the user specifies

which IMP it is connected to. The simulator connects the IMP to

the host, and vice versa.

-57-

p

Report No. 4931 Bolt Beranek and Newman Inc.

In the ARPANET, messages flow from host to host. Each

message is broken up into a number of packets as it enters the

source IMP from the source host. This process is called

packetizing. The packets are transmitted through the network and

eventually all arrive at the destination IMP. There the message

is reconstructed before being delivered to the destination host.

This process i's called reassembly. In the current

implementation, the simulation does packetizing but not

reassembly.

In the simulation, each message is generated by a host and

passed to the IMP that the host is connected to, where it is

broken into packets. The maximum packet size is set by the IMP

parameter "PACKETLENGTH." Then the packets are passed from IMP

to IMP, via the lines that connect them, until they arrive,

packet by packet, at the destination IMP. There they are

delivered to the destination host. No attempt is made to deliver

them in the same order as they entered the network.

As a packet goes through each IMP, host, and line in its

path, it is handled by several processes. As an example, suppose

that the path from source host to destination host goes through

an IMP, a line, and another IMP. The message will be generated

by the host process MessageGen, which immediately passes it to

the host process MessageOut, for transmission to the IMP.

-58-

*1

II

Report No. 4931 Bolt Beranek and Newman Inc.

MessageOut passes it to the IMP Process HostIn, which breaks it

into packets and passes it to the IMP Process Task. Task decides

where each packet should go next, and passes it to the correct

ModemOut process. ModemOut passes each packet to the line

process LineInput, for transmission over the line to the next

IMP. LineInput accepts the packet from ModemOut, and passes it

to the line process LineOutput. LineOutput passes it to the

ModemIn process in the s IMP. That ModemIn process passes

it to Task, which passes it to HostOut. HostOut delivers the
I

packet to the PacketSink process in the destination host.

If there were store-and-forward IMPs in the path, each

jpacket would be passed from LineOutput, to ModemIn in the IMP, to

Task, and to ModemOut. ModemOut would pass each packet to the

LineInput process of the line to the next IMP.

4.2 IMP

Each IMP module is created by the command interpreter when

it encounters an "IMP" command. When an IMP module is created,

it initializes its data structures, then creates its subsidiary

modules and processes. The data structures, modules, and

processes are described below.

The following four parameters must be passed to the IMP when

-59-

Report No. 4931 Bolt Beranek and Newman Inc.

it is created: the number of IMPs in the simulated network; the

number of simplex lines in the simulated network; the number of

hosts connected to the IMP which is being created; and the number

of lines connected to the IMP. The first two are, of course, the

same for every IMP in the network; the second two are specified

by the user in the IMP command when the IMP is created. The

parameters are used to fix the size of various internal tables in

the IMP module.

The IMP has many other parameters that are set by the

various IMP subcommands. The IMP module and its subsidiary

processes and modules have many local variables which control the

way the modules behave. For example, each process has a variable

which specifies how long the process executes on the simulated

IMP for each packet processed. In general, each IMP subcommand

simply sets or changes the value of a particular variable, either

in the IMP module itself, or in one of the subsidiary processes

or modules. The commands are described in Appendix A.

4.3 Line

Each line module is created by the command interpreter when

it encounters a "LINE" command. When a line module is created,

it creates its subsidiary processes, LineInput and LineOutput.

r -60-

Report No. 4931 Bolt Beranek and Newman Inc.

LineInput is responsible for accepting packets from a ModemOut

process in the sending IMP; LineOutput is responsible for holding

packets in flight, then delivering them to a ModemIn process in

* the receiving IMP.

The line module has three parameters: the number of framing

bits per packet, and flags for'controlling tracing and debugging

output. They are set by the LINE subcommands "FRAMING,"

"PACKET," and "DEBUG."

The LineInput process has two parameters: the propagation

delay from one end of the line to the other, and the speed of the

line (expressed as its reciprocal, time per bit). They are set
by the LINE subcommands "LAG" and "SPEED." LineInput has a

single input queue; a packet is put onto the queue by the

ModemOut process which is driving this line, and the ModemOut

process then goes to sleep. LineInput immediately removes the

packet from the queue, computes the time the first bit will

arrive at the other end, then passes the packet to LineOutput.

It then waits for the last bit to arrive, and wakes up the

ModemOut process. Note that the ModemOut process is asleep while

the line is busy; it is impossible for it to put more than one

packet on LineInput's queue at a time.

The time it takes to read a packet onto the line is

-61-

... . . .9m l[nmma -mMmmR,

Report No. 4931 Bolt Beranek and Newman Inc.

calculated by multiplying the time per bit by the total packet

length. The total packet length is the sum of the packet length

(from the packet) and the framing (from the line). The packet

length is set when the packet is created (i.e., when the message

of which it is a part enters the network), and is set to the sum

of the number of data bits and the protocol overhead.

The LineOutput process is responsible for holding packets in

flight on the line, and delivering them to the receiving IMP's

ModemIn process at the proper time. It has two parameters: the

line error rate, and the line speed. They are set by the LINE

subcommands "ERROR" and "SPEED." It has one data structure: a

queue to hold the packets in flight. The LineInput process

passes each packet to the LineOutput process as soon as the first

bit arrives; the LineOutput process must pass the packet to the

receiving IMP as soon as the propagation delay has elapsed. This

time is stamped in the packet by LineInput before it puts the

packet on LineOutput's transit queue; when LineOutput has

finished with one packet, it removes the next packet from the

transit queue and examines its arrival time; then, it waits until

the arrival time and calls the routing ModemInterface in the

ModemIn process for this end of the line, passing the packet and

the length of the packet in seconds. ModemInterface reads the

packet into the IMP, waits for the last bit of the packet to

-62-

b

Report No. 4931 Bolt Beranek and Newman Inc.

Carrive, then returns. LineOutput then waits for the next packet.

LineOutput is also responsible for simulating line errors.

Before handing over the packet, LineOutput calls a random

variable routine which returns true or false. The probability of

a "true" or "error" result is set to the line error rate

multiplied by the total packet length. This approximates the

effect of bit errors occurring independently and at random

throughout the packet. If the random variable routine returns

true, a flag in the packet is set. This flag will cause the

receiving IMP's ModemIn process to discard the packet.

t4.4 Host

There may be many hosts per IMP. The number of hosts on an

U IMP is specified when the IMP is created. Each host is a module

which contains some data structures and some procedures. Each

host contains one packetSink process which is responsible for

accepting packets from the net, an array of messageGen processes

which generate messages for each destination, and a messageOut

process which transfers the messages to the IMP. A destination

is specified by a host and IMP. To send to an IMP's fake host,

specify host 0 on that IMP.

The host implements two procedures, Start and Close. Start

-63-

Report No. 4931 Bolt Beranek and Newman Inc.

takes a destination host and IMP number, the average message rate

(in messages per unit of simulated time), the average message

length and the priority, and starts up a messageGen process to

that destination sending at that rate. Repeated calls to Start

always produce separate processes and message flows. Close takes

the destination IMP number and stops all messageGen processes

which are sending to that destination IMP.

The messageGen process is a loop which waits for a randomly

determined period of time and then generates another message.

The distribution of messages can be either deterministic or

negative-exponential and is set by the HOST subcommand "RATE."

If the distribution is specified as deterministic, the time

between messages is constant; if the distribution is negative-

exponential, the time between messages is determined by calling

the library routine for a negative-exponential distribution,

whose only parameter is the average message rate. The average

message rate is specified in the call to Start (which created

this process) and is passed as a parameter. The message length

is selected from a particular distribution, set by the HOST

subcommand "LENGTH." If the distribution is deterministic, the

messages have constant length; if the distribution is negative-

exponential, the library routine is called. The message priority

is passed as a parameter when messageGen is created. When each

-64-

S

Report No. 4931 Bolt Beranek and Newman Inc.

1message is created, the source, destination, priority, and length

fields are filled in. The creationTime field is filled in with

the current time. Finally, the message is put on messageOut's

queue.

MessageOut pulls messages off its input queue, and for each

message, calls HostInterface in the IMP's HostIn process.

HostInterface puts the message on HostIn's input queue and waits.

HostIn copies the message into a packet and passes it to Task.

When Task has accepted the packet, Task wakes Hostln, and Hostln

wakes HostInterface, which returns to MessageOut.

Because a message is accepted by the IMP packet by packet,

Cthe whole message may not have been accepted. HostIn adjusts the

message length by subtracting off the number of bits that have

been accepted. MessageOut calls HostInterface repeatedly until

the message length has been set to zero.

The packetSink process is started by the host when the host

is started. The packetSink process has one parameter, the

execution time per packet. It is set by the HOST subcommand

"SINK." The effect of this parameter is to set the minimum time

between successive packets, and hence the maximum rate at which

packets can be accepted.

The packetSink process has an input queue. It waits until a
-

-65-

S

S.

Report No. 4931 Bolt Beranek and Newman Inc.

packet arrives on the queue, then removes the packet. The total

net delay is computed by subtracting the time the packet entered

the net (which is given in the packet) from the current time.

Note that the delay imposed by the parameter SINK will not affect

the network delay, unless the arriving packet must wait behind

the previous packet. Then the process waits for its execution

time, returns the packet to the Simula garbage collector, and

loops to wait for another packet.

4.5 Priority Structure

Every process in the IMP has a separate priority, including

each separate modem and host process. The order of priorities,

highest first, is: ModemIn, ModemOut, HostIn, HostOut, Timeout,

Task, Background. Within ModemIn and ModemOut, modem 1 has the

highest priority, followed by modem 2 and so on. Similarly for

Hostln and HostOut. Note that the fake host, host 0, is extra.

All IMPs have such a host. Thus, for an IMP with two modems and

two hosts the priority structure would be:

ModemIn(1) 1
ModemIn(2) 2

ModemOut(1) 3
ModemOut(2) 4

-66-

L-

Report No. 4931 Bolt Beranek and Newman Inc.

HostIn(O) 5
HostIn(1) 6
Hostln(2) 7

HostOut(0) 8
HostOut(1) 9
HostOut(2) 10

Timeout 11

Task 12

Background 13

The process scheduling is preemptive. That is, if a lower

priority process is running when a higher priority process

starts, then the lower priority process is suspended until the

higher priority process has finished. Therefore, the "execution

time" of a particular process does not mean that the process

takes exactly that much simulated time, but rather that it must

be scheduled for that much CPU time. For low priority processes

such as Task, the elapsed time may be much greater than the

amount of CPU time used by the process.

4.6 Task

There is one task process per IMP. When Task is started by

the IMP, the IMP sets its priority; the priority is set lower

than TimeOut and higher than Background (see Section 4.5 for

details.) The execution time per packet is set by the parameter

-67-

Report No. 4931 Bolt Beranek and Newman Inc.

"TASK."

The interface to Task is a single procedure, Add. Add takes

as parameters the packet to be submitted to Task, and a flag

which indicates whether the caller wants to wait for the result.

In the simulation, Add is called from ModemIn, HostIn, and

Background (rerouting from a down line). HostIn waits for Task

to complete, ModemIn does not; Background does not wait for Task

to complete, but returns and goes to the next Background process.

Each time around the Background loop the rerouting process checks

to see if Task has finished. Add puts the packet on one of

Task's queues. If the call specifies wait, Add goes to sleep.

This affects the caller of Add, not Task.

When Task has processed a packet, it can either accept or

reject it. This does not imply anything about whether the packet

will eventually be forwarded or delivered out of the IMP. In the

present simulation, Task will accept a packet if it can be placed

on a queue for HostOut or ModemOut, or if its destination IMP is

inaccessible. (This is explained in more detail below.) In the

latter case, Task immediately discards the packet. Thus, in just

this case, Task accepts and discards the packet. When Task

accepts a packet, it checks to see if it entered the IMP from a

modem. If it did, and if it is a data packet, Task acknowledges

the packet by calling a routine in the line protocol module for

-68-

1

F

Report No. 4931 Bolt Beranek and Newman Inc.

the line the packet arrived on. A packet will be acknowledged

even it is accepted and discarded because if its destination is

inaccessible, it should be cleared from the network. In order to

U clear a packet from the network, it must be accepted by Task,

since otherwise it would not be acknowledged, and would therefore

be retransmitted by the previous IMP.

If a packet is rejected, and the process that submitted it

is waiting (in Add), the packet is flagged "rejected" and the

process is woken up. It is then the responsibility of that

process to handle the packet. HostIn holds the packet and goes

to sleep -- it will be woken by FastTimeout and will immediately

E resubmit the packet; in the case of Background, the packet is put

back on the reroute queue and is eventually resubmitted. If a

packet is rejected and the process that submitted it is not

O] waiting, the packet is discarded.

Task has two queues: a queue for data packets, and a queue

for routing update and line up/down protocol packets. The line

up/down protocol packets are processed first. If there is a line

up/down protocol packet on the queue, Task removes it and calls

the routine Proceo-LineUpDown in the line protocol module for the

line the packet arrived on. Line up/down protocol packets are

always accepted. If there is a routing update on the queue, Task

removes it and calls the IMP routine ProcessUpdate. Routing

p

-69-

p

Report No. 4931 Bolt Beranek and Newman Inc.

updates are always accepted. If there are no routing updates,

Task checks its queue of data packets. If there is a packet on

the queue, Task removes it and attempts to pass it either to one

of the HostOut processes or to one of the ModemOut processes. If

it entered the IMP via a modem (rather than a local host), Task

calls a routine in the line protocol module to check if the

packet is a duplicate; if it is a duplicate it is discarded. If

the packet's destination is a host on this IMP, Task attempts to

allocate a reassembly buffer. If it can allocate a buffer, it

passes the packet to the hostOut process to be output to the

host, otherwise the packet is rejected.

If the packet's destination is some other IMP, Task attempts

to allocate a store-and-forward buffer. If it cannot allocate a

buffer, the packet is rejected. If it can allocate a buffer, it

looks up the destination in its IMP's routing table where the

output lines are specified. If the output line is specified as

zero, the destination IMP is inaccessible; the packet is accepted

then discarded. If the output line is not zero, Task attempts to

allocate a logical channel on that line. If a channel cannot be

allocated, the packet is rejected. If a channel is allocated,

the packet is put on the queue of the correct output process. If

a data packet is passed to HostOut or ModemOut, or if it is

discarded because the destination IMP is inaccessible, these

-70-

7
SI

Report No. 4931 Bolt Beranek and Newman Inc.

iactions must be acknowledged. Task calls the routine AckPacket

in the line protocol module for the line on which the packet

arrived; this routine flips the receive flag for the channel and

calls the ModemOut routine Ack which sets a flag indicating that

an acknowledgment should be sent, and wakes up ModemOut if it is

asleep. If the packet was a duplicate, Task calls the Ack

routine in ModemOut to send a duplicate acknowledgment. Task

then loops back to check its queues.

4.7 HostOut

There is one HostOut process for each host on the IMP. When

the IMP creates a HostOut process, the IMP sets its priority.

Each HostOut process is given a different priority, lower than

HostIn and higher than Timeout (see Section 4.5 for details).

The execution time per packet is set by the parameter "HOSTOUT."

Each HostOut Process has an input queue and a pointer to a

local host. Task puts packets on the input queue. HostOut waits

for a packet to be put on the queue, removes it, executes HOSTOUT

units of simulated time on the simulated CPU, adds the packet to

the local host's input queue, and waits. When the local host's

packetSink process has removed the packet, the HostOut process

wakes up, returns the packet to the Simula runtime system, and

-71-

Report No. 4931 Bolt Beranek and Newman Inc.

loops back to wait for another packet.

4.8 Hostln

There is one HostIn process for each host on the IMP.

Hostln has two responsibilities: it inputs messages from the

host, and it breaks messages into packets. When the IMP creates

a Hostln process, the IMP sets its priority. Each HostIn process

is given a different priority, lower than ModemOut and higher

than HostOut (see Section 4.5 for details). The execution time

per packet is set by the parameter "HOSTIN."

To transfer a message to the IMP, the host calls the routine

HostInterface which is implemented as part of HostIn.

HostInterface waits until there is an available buffer into which

a packet can copy the message, and until Task has accepted the

packet. It does this by putting the message on HostIn's input

queue, then going to sleep. It will be woken by HostIn.

HostIn does not necessarily process the whole message at

once. Data messages may be longer than a packet, and if so, are

accepted packet by packet. The maximum length of a packet is a

parameter to Hostln, which is set by the IMP subcommand

"PACKETLENGTH." Hostln reads the message length from the

message, and when it has finished processing a packet, sets the

-72-

Report No. 4931 Bolt Beranek and Newman Inc.

message length to the number of bits r_ i. Callers of

HostInterface, therefore, call HostInterface repeatedly until the

message length is set to zero, indicating that the entire message

U has been accepted.

HostIn takes the message off its input queue and attempts to

allocate a buffer. If no buffer is available, it goes to sleep.

The next time FastTimeout runs, it will notice this and wake up

HostIn. HostIn will then check again. This process is repeated

until a buffer is available. When a buffer is allocated, the

message is copied into the packet and the input line field is

cleared so that Task knows this packet came from a local host and

does not have to be acknowledged. Then HostIn gives the packet

to Task and waits. When Task has processed the packet, it wakes

Hostln. If Task rejected the packet, HostIn goes to sleep. It

will be woken by FastTimeout and will immediately resubmit the

packet to Task. When Task accepts the packet, HostIn wakes

HostInterface.

If it takes HostIn 15 seconds to process a packet, it

-73-

Report No. 4931 Bolt Beranek and Newman Inc.

aborts, and reads in and discards the entire message.

4.9 ModemOut

There is a ModemOut process for each output line in the IMP.

When the IMP creates a ModemOut process, the IMP sets its

priority. Each ModemOut. process is given a different priority,

lower than ModemIn and higher than HostIn (see Section 4.5 for

details). The execution time per packet is set by the parameter

"MODEMOUT."

The ModemOut code is in two parts: the first checks to see

if there is a packet to be transmitted; the second actually

transmits the packet. When ModemOut first starts, it goes

sleep; it returns to this state whenever it has nothing to do.

Whenever ModemOut is woken, it checks for a packet to be

transmitted. It checks for a line up/down packet, then a routing

update, then a retransmission, then a data packet, then an

acknowledgment (or null packet). As soon as it finds a packet to

be transmitted, it goes to the second section and transmits the

packet; if there is nothing to do, it goes back to sleep. When

it has finished transmitting a packet, ModemOut again checks to

see if there is another packet to be sent, starting over again

with line up/down packets. Thus all line up/down packets will be

-74-

a

Report No. 4931 Bolt Beranek and Newman Inc.

sent before any routing updates, all routing updates before a

retransmission, and so on.

When ModemOut goes to sleep, it can be woken by calling the

transmit routine to send a packet, by a wakeup to send an

acknowledgment, or by a periodic wakeup from the fast timeout

routine (to check for retransmissions).

When ModemOut wakes up, it checks for a line up/down packet

first. Thus, line up/down protocol packets have the highest

priority. There is a single pointer which either points to a

line up/down protocol packet or to nothing. If the pointer does

point to a packet, the packet is sent and the pointer cleared

(i.e., set to nothing). Routing update packets have the next

highest priority and they have a separate queue. If there is n3

line up/down protocol packet waiting to be sent, ModemOut checks

the routing update queue. If there is a packet in the queue, it

is sent. Line up/down protocol packets and routing update

packets are sent even if the line is down (but not in reset

state, see Section 4.17, The Line Up/Down Protocol); other

packets are not.

If there are no line up/down protocol packets or routing

update packets to be sent, and the line is up, ModemOut calls the

routine GetRetransmit in the line protocol module for this line

-

-75-

6

Report No. 4931 Bolt Beranek and Newman Inc.

and passes as a parameter the retransmission threshold,

retransmitWait. This parameter is set by the IMP subcommand

"RETRANSMITWAIT." This routine checks to see if there is a

packet which was sent more than retransmitWait seconds ago that

has not yet been acknowledged. It checks a different logical

channel each time it is called. It will only be called if thereI
are no line up/down packets or routing updates to be sent, and

then only for a single logical channel. If there is a packet to

be retransmitted, it is sent. If not, ModemOut checks its queue

of data packets; if there is a packet in the queue it is sent.

If not, it checks a flag to see if an acknowledgment should be

sent; if so, a null packet is sent. If there is nothing to send,

it goes to sleep, otherwise, it goes on to the second section.

When there is a packet to be sent, ModemOut executes

MODEMOUT units of simulated CPU time. In the case of a data

packet, it copies the receive flags from the corresponding input

line into the packet (see "line protocol"), and clears the flag

which indicates that there are acknowledgments to be sent. Then

it adds the packet to the line's input queue, and waits. When

the line has transmitted the packet, it wakes up ModemOut, which

then checks to see if the (data) packet was acknowledged while it

was being transmitted. If it was, the channel is freed and the

flag is cleared. Then the output process loops back to the first

-76-

I

b

Report No. 4931 Bolt Beranek and Newman Inc.

section to check for more packets.

4.10 ModemIn

There is one Modemln process for each input line in the IMP.

ModemIn contains an input queue and implements a routine,

ModemInterface, which is called by the line to pass a packet to

the process.

When the IMP creates a ModemIn process, the IMP sets its

priority. The Modemln processes have the highest priority, above

the ModemOut processes (see Section 4.5 for details). Each

K Modemln process is given a different priority. The execution

time per packet is set by the parameter "MODEMIN."

Whea the line calls ModemInterface, it passes a pointer toa
the packet from the sending IMP. First, Modemln checks the line

protocol state to see if the line is in "reset" state (see

Section 4.17, The Line Up/Down Protocol). No packets are

accepted from the line if it is in reset state; ModemInterface

simply returns, without copying the packet into the IMP, and the

packet is lost. Next, ModemInterface checks a flag to see if the

modem is ready to receive another packet. If not, ModemInterface

again returns without copying the packet into the IMP. Last,

ModemInterface checks to see if there is a buffer ready for the

-77-

Report No. 4931 Bolt Beranek and Newman Inc.

packet. If there is not, the packet is discarded and an attempt

is made to allocate a buffer for the next packet; otherwise,

ModemInterface copies the packet into the buffer and puts it onto

ModemIn's input queue.

Immediately after (the last bit of) a packet has arrived,

Modemln cannot accept another packet until a short interval has

passed. This is because the hardware must be reset, not because

of any processing on the first packet. The length of this

interval is a parameter to Modemln, set by the IMP subcommand

"LATENCY."

When Modemln removes a packet from its input queue, it first

executes some time on the simulated CPU (equal to the hardware

latency), then it clears a flag to indicate that it is ready to

receive another packet. Next, Modemln checks to see if the

packet suffered a line error; if so, the packet is discarded.

Otherwise, ModemIn attempts to allocate a buffer ready for the

next packet. There is one exception: if the packet is a "Hello"

or "IHY" (explained in Section 4.17, The Line Up/Down Protocol),

the packet does not require a buffer, and the current buffer is

immediately recycled for the next packet. If the packet is a

routing update it can take the buffer even if a buffer cannot be

allocated for Lhe next packet (which will therefore be lost). If

the packet is a null data packet it can use the last buffer since d

-78-

1

b

Report No. 4931 Bolt Beranek and Newman Inc.

Kit will immediately be processed by ModemIn and discarded;

otherwise, if no buffer is available, the packet is discarded and

the current buffer is recycled for the next input. If another

O buffer is available, or not required, the packet will be

processed and handed to Task. If the packet is a data packet, it

will have a line protocol header; Modemln calls a routine in the

* LineModule for this line to process the acknowledgments in the

header (for more details see Section 4.16, The Line Protocol).

If a data packet has its discard bit set, it is discarded and

acknowledged (this is explained in Section 4.9, ModemOut). If

the packet is a null packet (i.e., a zero length data packet), it

is discarded; if not, it is submitted to Task and the process

loops.

a4.11 Timeout Process

Each IMP has one Timeout process. Timeout runs at regular

intervals, and is responsible for calling various routines which

need to run at regular intervals.

When the IMP creates the Timeout process, the IMP sets its

priority between Hostln and Task (see Section 4.5 for details).

The interval between runs of Timeout is set by the parameter

"TIMEOUT." In the actual network, this is always 25.6 msec. The

-79-

Report No. 4931 Bolt Beranek and Newman Inc.

exact time of each wake-up is controlled by the parameters "RATE"

and "FASTOFFSET," which are described in Section 4.18, IMP Time.

Timeout has a counter which counts up to 25 and is then

reset to 0. Normally when the process wakes up it calls the

routine FastTimeout. On every 25th execution, it calls

SlowTimeout and then FastTimeout. The execution time of

FastTimeout and SlowTimeout are set by the parameters

"FASTCPUTIME" and "SLOWCPUTIME," respectively.

FastTimeout calls the line up/down protocol routine "Tick"

every "LINEUDPERIOD" ticks. The parameter LINEUDPERIOD may be

set differently for each line. Tick is described in Section

4.17, The Line Up/Down Protocol.

FastTimeout calls the IMP routine "AverageDelay" every

"DELAYAVGPERIOD" ticks, after an initial quiescent period of

"DELAYOFFSET" seconds. AverageDelay is described in Section

4.14, Routing Update Protocol.

Each time FastTimeout runs, it checks each line to see if it

is idle (i.e., if the corresponding ModemOut process is asleep)

and, if so, wakes the line to check whether a retransmission or a

null packet should be sent. It also checks to see if any Hostln

process is asleep (waiting for a buffer) and, if so, wakes it up.

-80-

Report No. 4931 Bolt Beranek and Newman Inc.

SlowTimeout calls the IMP routine "AgeTick" every

"UPDATEAGINGPERIOD" ticks. AgeTick is described in Section 4.14,

Routing Update Protocol.

The IMP routine TimerTick decrements the update timers on

each line. TimerTick is described in Section 4.14, Routing

Update Protocol. It is called by FastTimeout for lines that are

up, and SlowTimeout for lines that are down, each time either

timeout routine runs.

4.12 Background

There is one background process per IMP. When the IMP

creates the background process, the IMP sets its priority.

Background has the lowest priority, below Task.

The Background process is a simple loop, with a number of

subsidiary processes, also running at Background priority. Only

one of these processes (or Background itself) is running at a

time. Background transfers control to one of its subsidiaries,

then goes to sleep. The subsidiary does some processing (or

finds it has nothing to do) then wakes Background, which wakes

the next subsidiary and goes back to sleep.

The subsidiary processes are: Source, for generating fake

-81-

*6

Report No. 4931 Bolt Beranek and Newman Inc.

host traffic; Sink, for accepting fake host traffic; Dummy, for

using up time at Background level; and Reroute, for rerouting

packets from down lines.

The parameters of Source are the destination IMP and

destination host for the mcssage traffic, the message length and

priority, the number of fast ticks between messages, and the

execution time per packet. They are set by the IMP subcommands

"DESTIMP," "DESTHOST," "LENGTH," "PRIORITY," "MSGRATE," and

"SOURCE." If the destination IMP is specified as zero, the

generator is turned off; otherwise, Source counts fast ticks

until another message should be sent. Then the message is

constructed and HostInterface is called. HostInterface

immediately returns to Source, which returns to Background. Each

time Source is woken it checks to see if the message has been

processed. When it has been accepted by HostIn, Source then goes

back to counting fast ticks until the next message is due to be

sent.

When Sink is woken by Background, it checks to see if

HostOut has put a packet on its input queue; if so, the packet is

removed. The execution time per packet is given by the IMP

subcommand "SINK." Then Sink returns to Background.

Dummy is merely used to represent parts of the "real"

-82-

Report No. 4931 jolt Beranek and Newman Inc.

IBackground loop, such as the end-to-end protocol, which have not

yet been implemented. It executes some CPU time and returns to

Background. The execution time per invocation is given by the

* IMP subcommand "DUMMY."

When a line goes down, data packets which are queued for

output on the line, or which have been sent but not acknowledged,

*are placed on a special queue in the IMP, the reroute queue.

Reroute waits for a packet to be placed on the queue, then

bremoves it. It executes some time on the simulated CPU, then

submits the packet to Task (which will reroute it on a different

line, or if the destination IMP is now inaccessible, discard it).

The execution time per packet is given by the IMP subcommand

"REROUTE." If Task rejects the packet, it is put back on the end

of the reroute queue; then Reroute returns to Background.

4.13 Routing and Forwarding

Forwarding in the present simulation is simple. The

forwarding table found in the IMP tells Task which output line to

use to send a packet to a given destination. If an IMP is

inaccessible, its entry will be zero. Routing is the method used

to build that table.

Each IMP has a table which gives the delay out every

-83-

p

L -.

I

Report No. 4931 Bolt Beranek and Newman Inc.

(accessible) line in the network. The table is kept up-to-date

by the routing update protocol (see Section 4.14). Packets

called routing updates are used by the routing update protocol to

distribute information on line delays from each IMP to every

other IMP. When an update arrives at an IMP, Task passes the

update to the IMP routine ProcessUpdate. If the update has not

been seen before, its information is copied into the IMP's delay

tables and the routine UpdateRouting is called. This routine

uses the shortest path first (SPF) algorithm to compute the

shortest (minimum delay) path to every other IMP, and at the same

time fills in the forwarding table.

4.14 Routing Update Protocol

The routing update protocol ensures that the delay table in

every IMP is kept up-to-date, and that duplicate, old, or out-

of-date information is ignored. Delay information is carried in

routing updates. Every update contains a serial number, an age,

and a retry bit. The serial number is a mod 64 number which is

unique for each new update. The age is a 3-bit number which is

set to 7 when the update is created, and counted down at regular

intervals. When the age fielu reaches zero the update is neither

discarded nor broadcast to other IMPs.

-84-

Report No. 4931 Bolt Beranek and Newman Inc.

KThe protocol guarantees that the update will be successfully

transmitted from IMP to IMP. When a new update is received by an

IMP, it is echoed (or retransmitted) back to the IMP that sent

it. That IMP then knows that the other IMP received it. Each

IMP has a set of timers for each line. Each timer measures the

time since an update for a particular IMP was transmitted out the

line. When the update is echoed by the neighboring IMP, the

timer is cleared. Each timer is decremented at regular

intervals. If a timer expires, the update for that IMP is sent

out on that line with the retry bit set. The retry bit is simply

a request fP- an echo. It forces the IMP that receives the

update to retransmit it to the IMP that sent it, whether or not

the receiving IMP has seen the update before.

Each IMP must keep the age and serial number of the latest

update from each other IMP. When a new update arrives it

supersedes the current update if the current update has an age of

zero, or if the new update has a later serial number (mod 64)

than the current update. If it does, the age, serial number, and

delay information are copied from the new update into the IMP's

tables. If the current update has a serial number of C, and the

new update has a serial number of N, then the new update is later

if:

-85-

Report No. 4931 Bolt Beranek and Newman Inc.

N-C < 32 (mod 64)

The IMP routine TimerTick decrements all non-zero timers;

should the timer for any IMP and line be decremented to zero and

the update for that IMP has non-zero age, it is transmitted over

that line with the retry bit set and the timer reset to 3.

TimerTick is called every Fast Timeout for lines that are up, and

every Slow Timeout for lines that are down.

The IMP routine AgeTick decrements the age of every update.

No action is taken when the age is decremented to zero, but

updates whose age is zero are never retransmitted by TimerTick.

This ensures that after a certain period of time, an update will

stop circulating through the network. AgeTick is called by Slow

Timeout after a certain number of slow ticks; the number of ticks

between calls is set by the IMP parameter "UPDATEAGINGPERIOD."

4.15 Delay Measurement

Ther'e are two separate measurements of the time it takes a

packet to go through a node: one for tracing, the other for the

delay used in the routing computation. For trace purposes, the

delay is the length of time expended since the last bit entered

the IMP (from a modem or local host) until the last bit leaves

-86-

Report No. 4931 Bolt Beranek and Newman Inc.

the IMP (to a modem or local host). For routing, the delay is

the length of time expended since the last bit entered a modem =r

the last (i.e., and successful) time HostIn passed the packet to

Task, until the time the last bit arrives at a neighboring IMP.

Packets which leave the IMP to go to a local host are not counted

in the delay for routing purposes.

Here we will consider only the second kind of delay

measurement. The entry time for a packet is put by Modemln or

HostIn into the delayStamp field in the packet. When the line

protocol (q.v.) gets an acknowledgment for the packet, the delay

is computed from the information in the packet, and the routine

TallyDel is called. This routine increments the packet counter

totalPackets, and adds the delay into the delay accumulator

totalDel.

Periodically, the fast timeout routine calls the IMP

routine, AverageDelay, which is responsible for maintaining the

delay threshold, calling the ModemOut routine which averages

delay, and deciding whether to send out an update. The number of

fast ticks between calls is set by the IMP parameter

"DELAYAVGPERIOD."

First, AverageDelay reduces the delay threshold by a fixed

amount (set by the IMP subcommand "DECAY"); then, for each line,

-87-

Report No. 4931 Bolt Beranek and Newman Inc.

it calls the ModemOut routine AverageDelay which computes the

average delay, stores the result in avgDel, and returns the

difference between avgDel and the current delay del. If no

packets have been transmitted out the line during the last

period, the "average delay" is taken to be the propagation delay

of the line. If the difference is less than the threshold for

any line, an update must be sent out. First, the threshold is

reset to its initial value; then, the just computed average delay

is copied into the current delay variable in each output process,

and into the IMP's delay table. Finally, the update serial

number is incremented, the update age is reset, and the update is

sent out on each line.

In order to model the fact that that IMP has a finite word

size, and hence a finite precision, the simulation rounds the

results of delay averaging in three ways. The delays themselves

are rounded to units specified by the parameter "DELAYUNITS"; the

average delay is rounded to units specified by the parameter

"AVGUNITS"; and the computation of the average is limited to the

number of bits specified by the parameter "WORDSIZE." In order

to gauge the effect of these roundings, the simulation does the

calculation in parallel, producing both rounded and unrounded

results. Only the rounded result is distributed in routing

updates, both are available in debugging output.

-88-

... _. _.- - -S , •' . . : . .

• Report No. 4931 Bolt Beranek and Newman Inc.

3There is a slight discrepancy between the way the simulation

works, described above, and the way the IMP actually computes

average line delays. In the IMP, separate lines are averaged on

successive fast ticks. Suppose the IMP has n lines, and is doing

delay averaging every 10 seconds, or K fast ticks, the first line

* is averaged on tick K-n, and the n'th line is averaged on tick

K-1. The decision of whether to send an update is made on the

K'th tick, at the 10-second mark.

4.16 The Line Protocol

There is one line protocol module for each line in the IMP;

it is created when the line is created. The line protocol module

" * consists of a set of functions which share a common data

structure, it is not a separate process. The purpose of the

protocol is to ensure that one and only ,ne copy of a data packet

is passed from IMP to IMP. The routing update protocol and the

* line up/down protocol do not use this mechanism.

The line protocol is based on having a number of separate

* channels for transmitting and acknowledging packets. The number

of channels is a parameter to the line protocol module. This

parameter can be set by the LINE subcommand "NUMCH." Packets are

identified with a channel number, and succeeding packets on a

-89-

Report No. 4931 Bolt Beranek and Newman Inc.

given channel are distinguished by having different values of a

one-bit flag, called the channel bit. Only one packet at a time

can be sent on each channel. In the sender, the line protocol

module keeps track of the value of the channel bit last sent on

each channel in a set of flags called send flags; in the

receiver, the module keeps track of the channel bit last received

on each channel in a set of flagi called receive flags.

To acknowledge a packet, the receiving IMP reports to the

sending IMP the values of its receive flags. When the receive

flag in the receiver equals the send flag in the sender, the

packet on that channel has been received as well as sent; it is

thus acknowledged. For efficiency, the receive flags are carried

from receiver to sender in the header of data packets travelling

in that direction. If a packet has been sent but not

acknowledged after 125 msec, it may be retransmitted. Duplicate

packets will be detected since their channel bit will be the same

as the receive flag for their channel in the receiving IMP. When

a packet has been acknowledged, the channel is then available for

another packet; when it is allocated to the channel it is given

the opposite value of the channel bit (stored in the send flags)

so that it will be clear that it is the next packet and not a

retransmission.

For example, suppose the receiving IMP receives a packet on

-90-

• . . . , , . .

,' Report No. 4931 Bolt Beranek and Newman Inc.

* a particular channel with the channel bit equal to 0. It sets

its receive flag to 0, and sends this off to the sender in the

header of a packet going in that direction. There are two cases

to consider: either the sender gets the acknowledgment, flips

its send flag, and sends the next packet on that channel; or the

acknowledgment does not arrive and the sender retransmits a

duplicate of the first packet. The receiver can distinguish

between these two cases since a duplicate will have a channel bit

of 0 (equal to the channel bit of the original packet, and hence

the receive flag), while the next packet will have a channel bit

of 1 (different from the receive flag).

The line protocol module uses 3 data structures to implement

the line protocol: the send flags, the receive flags, and an

array containing packets which have been sent but not

Lacknowledged. The packet contains a copy of the sender's receive

flags, the channel number, and the channel bit, which is a copy

of the send flag for the channel used by the packet.

The line protocol module implements 8 separate routines to

perform various protocol functions: ProcessLPH, for processing

acknowledgments in an incoming packet; FreeChannel used by

ProcessLPH to free acknowledged packets; Duplicate, which tests

whether a packet is a duplicate (i.e., retransmission) or not;

AcceptPacket, used when Task accepts a packet; SelectChannel,

k ., -91 -

Report No. 4931 Bolt Beranek and Newman Inc.

which finds a free channel, if any, for an outgoing packet;

GrabChannel, which allocates the channel found by SelectChannel;

PiggyBackAcks, which copies the receive flags into an outgoing

packet; and GetRetransmit, which checks whether a given channel

has an unacknowledged packet which should be retransmitted.

These functions are discussed in more detail below.

ProcessLPH is called by ModemIn when a data packet is

accepted by ModemIn. Every data packet has a header, the line

protocol header, or LPH, which carries a copy of the sender's

receive flags. ProcessLPH takes these receive flags and compares

them with its send flags. Any matches indicate that the packet

sent on that channel has been received and accepted by the other

IMP. For each channel where there is a match, ProcessLPH calls

FreeChannel which clears the entry in the unacknowledged packet

array, and flips the send flag so that the next packet sent on

that channel gets the opposite value to the last one.

When a data packet is being processed by Task, it first

checks to see if the packet is a duplicate, by calling Duplicate.

This routine compares the packet's channel bit to the receive

flag for the packet's channel, if they are the same, a packet

with that value of the channel bit was accepted last (on that

channel) and the packet is a duplicate. Task calls AcceptPacket

when it accepts a data packet. This routine sets the receive

-92-

Report No. 4931 Bolt Beranek and Newman Inc.

* flag on the packet's channel to equal the packet's channel bit

(so, for example, a retransmission of the same packet will be

detected as a duplicate), and signals ModemOut on this line that

3an acknowledgment should be sent. When a packet in the opposite

direction carries the receive flags from this IMP to the other

* IMP, ProcessLPH will recognize that this packet has been received

*l and accepted.

SelectChannel simply searches the array of unacknowledged

-. packets. An empty entry indicates that the corresponding channel

is free, and can be used for an outgoing packet. GrabChannel

takes a packet, and the channel number returned by SelectChannel,

sets the entry in the array of unacknowledged packets to point to

this packet (even though it has not yet been sent) to indicate

*" that the channel is now taken; sets the channel number in the

packet; and copies the send flag for this channel into the

packet's channel bit. Of course, it is possible that there will

be no channel available. In this case, SelectChannel returns

* zero (not a legal channel number) and Task rejects the packet.

Just before a data packet is put on the line by ModemOut, it

calls PiggyBackAcks. This routine copies the receive flags into

the line protocol header of the outgoing packet, thus

acknowledging all the packets which have been received and

accepted up to that point. ModemOut will also call PiggyBackAcks

-93-

. , . . .

Report No. 4931 Bolt Beranek and Newman Inc.

to fill in the header of a null packet; this is sent if there is

no other traffic to carry the acknowledgments.

Before ModemOut sends ordinary data traffic, it checks one

channel to see if there is a packet on this channel which should

be retransmitted. It does this by calling GetRetransmit, which

must distinguish between four cases: the channel is free (the

entry in the array of unacknowledged packets is empty); the

channel is in use but the packet has not yet been sent (the

packet has not been stamped with its exit time); the packet has

been sent but not long enough ago; and the packet has been sent

more than a certain length of time ago (a parameter in ModemOut

which can be set by the IMP subcommand "RETRANSMITWAIT"). Only

in the last case is a packet returned for retransmission. In

order to avoid clogging the line with retransmissions, ModemOut

calls GetRetransmit at most once each time it runs, and

GetRetransmit only checks a single channel.

In order to limit the number of retransmissions which are

sent, ModemOut keeps track of the number of times it has sent a

packet. When it is about to retransmit a packet after 32 or more

unsuccessful attempts, it sets a bit (called the discard bit) in

the packet. If the Modemln routine at the other end of the line

successfully receives the packet, it must discard an.d acknowledge

the packet. This is a way of verifying that the line and line

-914-

."

,~~~~~.L-.:--::.. . :... .. -......- .".".- .

Report No. 4931 Bolt Beranek and Newman Inc.

~i protocol are working even though the receiving IMP may be too

congested to accept (and acknowledge the packet). If ModemOut is

about to retransmit a packet after 64 unsuccessful attempts, it

* concludes that the line is bad and brings the line down. This

packet and any others queued for the line are rerouted.

* 4.17 The Line Up/Down Protocol

* The line up/down protocol is a protocol which tests a line

by sending special packets on the line from one IMP to the other,

-. bringing the line down if too many of these packets are missed,

and bringing the line up again if enough are received correctly.
U

The motivation for the protocol, and the details of the protocol

"" itself, are described in BBN Reports 3803 and 3940.

In the simulation, the protocol is implemented by a special

module, LineUpDownProtocol. There is an instance of this module

for each line in the IMP. It contains variables for the protocol

state, and implements two routines: Tick, and ProcessLineUpDown.

Tick is called by SlowTimeout; the number of slow ticks between

calls is set by the IMP parameter "LINEUDPERIOD." Tick performs

the various periodic protocol functions described below.

ProcessLineUpDown is called by Task when it gets a line up/down

packet. Protocol actions (changes of state, sending a packet,

-95-

Report No. 4931 Bolt Beranek and Newman Inc.

bringing the line up or down) can thus be triggered either by an

external event (the arrival of a line up/down packet) or by an

internal event (a call to Tick from SlowTimeout).

There is a requirement, imposed by the routing update

protocol, that a line should take at least 60 seconds to come up.

Therefore, the line is not brought up when the line protocol

enters Master-Up state, but at every tick the routine MyTick

checks to see if the protocol is in Master-Up state and 60

seconds have elapsed since the line went into Reset state; if so,

the line is brought up. It is only then that the Master starts

sending Hello-Up's to bring the slave from Slave-Down to Slave-

Up.

The protocol has five states: Reset, Slave Down, Slave Up,

Master Down, and Master Up. Up and down refer to the state of

*the line as well as the protocol state, although the state of the

line is also stored in the variable lineState in ModemOut, and

can be deduced from the delay tables in the IMP. Master and

Slave refer to the fact that the protocol is asymmetric, the

higher numbered IMP on the line being the Master and the lower

numbered the Slave. The Reset state is used simply to reset the

protocol and ensure that both IMPs declare the line down. Since

the line is down during the Reset state, it might be more

correctly called Reset Down.

-96-

q! : : . : : -: . 2. . - -' - ' . i . .

- .g

Report No. 4931 Bolt Beranek and Newman Inc.

The protocol modules on each end of the line exchange

packets called Hello's and IHY's (from "I Heard You"). These

packets have three fields: the (sending) IMP number, the state

of the line, and whether the packet is a Hello or an IHY. They

may be named from the last two fields: Hello-Down, Hello-Up,

IHY-Down or IHY-Up. In either of the slave states, the IMP only

sends IHY's; in either of the master states the IMP only sends

Hello's; in Reset state the IMP only sends Hello-Down's.

The protocol actions and events which cause state changes

are given below. "Tick" refers to a call to Tick from

SlowTimeout; "Receive" refers to processing a packet by

ProcessLineUpDown; "Miss" refers to Tick noticing that a certain

sort of packet has not been received since the last call to Tick.

The parameters K, N and NUP are set simultaneously by the LINE

subcommand "LUD."

Prtoo Actions
RESET: Send a Hello-Down each tick

Ignore input for K+1 ticks

SLAVE: Send IHY for every hello

MASTER: Send Hello every tick

State Changesa

RESET -- > MASTER DOWN: Automatic transition after
K+1 ticks

-97-

Report No. 4931 Bolt Beranek and Newman Inc.

MASTER DQWN -- > SLAVE DOWN: Receive Hello with larger
IMP number than self

SLAVE DOWN -- > RESET: Miss K consecutive Hello's

MASTER DOWN -- > RESET: Miss K consecutive IHY's

SLAVE DOWN -- > SLAVE UP: Receive He~lo-up

MASTER DOWN -- > MASTER UP: Receive NUP consecutire IHY's

SLAVE UP --> RESET: Receive Hello-Down or
Miss K consecutive Hello's

MASTER UP -- > RESET: Receive Hello-Down gr
Miss K out of N IHY's

The line may also be brought down (from either Slave-Up or

Master-Up to Reset) if ModemOut discovers that a packet has been

unsuccessfully transmitted 64 times.

4.18 IMP Time

Processes in the IMP take up time in one of two ways: they

run on the simulated CPU, or they wait for a specified interval

to elapse. The latter is used to simulate the ticking of the

clock which is used to wake up Timeout. Of course, a process may

also go to sleep some other way, such as wait.ng for a packet to

arrive on a queue, in which case it may be later when it is

woken.

We must simulate the situation where the IMP clock runs

-98-

I°

Report No. 4931 Bolt Beranek and Newman Inc.

either fast or slow, and may not be synchronized with either

"real" simulated time, or the clocks of other IMPs.

*First, the ratio of IMP time to simulated time is set by the

parameter "RATE." If this parameter is R, and Timeout is set to

* run every T seconds, then Timeout will in fact run every R * T

seconds, and a process whose execution time is S seconds will

execute for R * S seconds on the simulated CPU.

Second, each IMP starts its clock at a different time,

specified by the parameter "FASTOFFSET." Suppose this parameter

is set to 0, and assume the simple case where R 1 1 (the IMP

clock is neither fast nor slow). Then Timeout will run at 0 + T,
IN

0 + 2*T, 0 + 3*T, and so on. FASTOFFSET should be set to a value

between 0.0 and T.

Third, each IMP does not start its first delay averaging

interval until a particular time, specified by the parameter

"DELAYOFFSET." Since delay averaging is controlled by Timeout,

DELAYOFFSET is effectively rounded up to the next multiple of R *

T. It should be set to a value between 0.0 and R T * (the

value of the parameter "DELAYAVGPERIOD").

This allows us to control the relationship between events in

different IMPs. If we want all routing updates to happen at the

same time, we can set RATE to 1.0 and DELAYOFFSET to 0.0. If we

-99-

Report No. 4931 Bolt Beranek and Newman Inc.

want updates to happen at different times but in a synchronized

way, we can set RATE to 1.0 and DELAYOFFSET to particular values

for each IMP. Finally, if we want to approximate the

asynchronous behavior of real IMPs, we can set both RATE and

DELAYOFFSET to particular values for each IMP.

4.19 Buffer Management

In the IMP, allocated buffers are divided into 3 classes:

reassembly, store-and-forward, and uncounted. Packets entering

from the host are allocated as reassembly. Packets entering from

a modem are allocated as uncounted. Task reallocates (or

discards) packets on the basis of their destination: packets for

the local host are reallocated as reassembly; packets to be

forwarded to another IMP are reallocated as store-and-forward.

For each buffer type, the IMP maintains a counter of the number

of buffers, and a maximum count. A buffer can be allocated from

a given type if the counter is less than maximum, and if certain

other restrictions are met. A store-and-forward buffer can be

allocated as long as there are more than three free (i.e.,

unallocated) buffers left. When a reassembly buffer is

allocated, the request specifies a count parameter. If there are

count reassembly buffers available, and if, after allocating that

many buffers, there will be more than three free buffers left,

-100-

Report No. 4931 Bolt Beranek and Newman Inc.

then a reassembly buffer can be allocated. An uncounted buffer

can be allocated as long as there is a free buffer available.

There are no other constraints. It is also legal to allocate a

store-and-forward buffer for an output line which has no other

buffer allocated, even if this would cause the count to exceed

the nominal maximum.

The buffer limits are set as a function of the total number

of buffers available and the number of lines in the IMP. If the

number of lines is just one, then the calculation is done as

though the IMP had two lines. Let the (adjusted) number of lines

be M, and the total number of buffers be NUMBUFFERS. Then the

maximum number of store-and-forward buffers (SFMAX) is set to 6 +

2 * M, and the minimum number of store-and-forward buffers

(SFMIN) is set to 3 M M. If SFMIN is divisible by 8, it is

decreased by 1. Next, the maximum number of reassembly buffers

(MAXR) is set to NUMBUFFERS - SFMIN. Finally, the maximum number

of uncounted buffers is set to NUMBUFFERS.

fe
There is an interesting feature of the scheme as described.

As the number of buffers in the IMP gets larger and larger, the

number of buffers allowed for store-and-forward does not change.

It is a function only of the number of lines in the IMP. In

order to allow simulation of an IMP with an unlimited number of

buffers, the command "NOBUFFERLIMIT" is provided. This command

-101-

Report No. 4I931 Bolt Beranek arnd Newman Inc.

sets~.U buffer limits to a very large number.

-10 2-

-- W

Report No. 4931 Bolt Beranek and Newman Inc.

5 MULTI-PATH ROUTING: MODEL AND OPTIMIZER

The multipath routing analytic model and optimizer

* (hereafter referred to as MRMAIN) is a computer program that can

be used to study the behavior of packet switched networks that

employ multi-path routing in their internal operation. It is

capable of modelling multiple priorities of traffic, and can

estimate network performance for different line parameters, node

* parameters, and packet length distributions. It has a

straightforward user interface which allows the experimenter to

modify the network and then test it for improved performance.

MRMAIN can predict end-to-end delay if given traffic and routing

Uinformation. It can also create feasible routings if none is

specified, or find globally optimal routes starting from any

feasible initial routing. MRMAIN is implemented as a collection

of Simula (see Simula Language Handbook, [8]) subroutines and

procedures.

5.1 Analytic Model

MRMAIN uses an analytic model based on an M/G/1 n-priority

non-preemptive queueing system (Kleinrock [4]) to predict network

behavior. The average end-to-end network delay is computed from

the delay of packets in each flow. This is the average delay

-103-

Report No. 4931 Bolt Beranek and Newman Inc.

seen by packets from the time they are accepted at the first IMP

in the path to the time they are ready to be forwarded from the

last IMP in the path to the destination device (host, TAC, etc.).

Network delay is reported separately for each priority level.

Average hop count and combined network delay (weighted average of

all priority levels) are also reported.

As part of its input, MRMAIN accepts traffic data for the

network being analyzed. Packet length distributions for flows in

the network can be either exponential or deterministic. If an

exponential distribution is chosen, the length of each packet in

all network flows is drawn from an exponential distribution with

a mean that is specified by the user. If a deterministic

distribution is chosen, each flow must specify both the rate and

the length of packets in that flow. These two types of packet

length distributions allow us to study a wide range of

interesting traffic patterns.

Multi-path routing is used in distributing flows throughout

the network. MRMAIN routes traffic only on the basis of its

destination (commodity based routing). Unlike single-path

routing where individual flows are constrained to follow only one

path at a time from the source to the destination, multi-path

routing allows multiple paths. This makes it possible to route

traffic in ways that make better use of the available system

-104-

Report No. 4931 Bolt Beranek and Newman Inc.

I resources.

In some cases, it may not be possible to route traffic

according to A single-path routing; for example, if a flow to

be routed was larger than the largest capacity path connecting

two nodes. Consider the following example:

-m 10
X -- > A ------------- Bg

; .I I

10 1 10

C-------------- -> X
10

* The nodes are labelled A, B, C, D, and the lines connecting them

*are AB, BD, CD and AC. The capacity of each line is 10, while

the flow to be sent from node A to node D is X. If X >= 10, then

.E single-path routing could not handle this flow. However, if X

9.5, then single-path routing could handle this flow by sending

traffic along a route such as ABD. In this case, we would expect

-w lines AB and BD to have large queueing delays because they would

be heavily loaded. It would be difficult or impossible to send

.. additional traffic from B to D. If multi-path routing had been

used, we could send half along ABD and the other half along ACD.

*. The load on all lines in the network would then be uniform at

4.75, and queueing on all lines would be substantially reduced.

-105-

. ~.u i .. ~..1.1,j IIi I I i) i i, , ,

Report No. 4931 Bolt Beranek and Newman Inc.

Note that additional flow from B to D could now be routed without

difficulty. MRMAIN can handle all these cases: if any line is

overloaded (utilization >= 1.0) it will report an "infinite"

network delay. When the delay is not infinite, it can report the

delay for each priority of packet (currently only 2 priorities

are supported) in addition to line utilizations, bit rates, and

packet rates. Routing can be analyzed by printing the routing

tables for any node, or by printing a route summary for each

source-destination flow showing all routes taken by packets in

each flow, the percent of packets taking each path, and the delay

along each path. This is particularly useful when used in

conjunction with the routing analysis produced by the simulator.

Nodes in MRMAIN are modelled as Simula objects. Each node

in the network keeps track of the percentage of the flow it

should send on each of its lines for each destination. This

means that multi-path routing tables require (at least) N times

as much memory as single-path routing tables, where N is the

4 average connectivity of the network. In addition to routing

tables, statistics are kept separately for high'priority and low

priority packets on each line. Packet rates through the nodes

are also stored separately so that the rates through each part of

the IMP (ModemIn, ModemOut, HostIn, HostOut, Fakeln, FakeOut,

Task) can be reported. The delay model for the node consists of

-106-

I

Jj

Report No. 4931 Bolt Beranek and Newman Inc.

I summing the delays through each process of the node as

* appropriate; queueing for resources in the node is not explicitly

modelled (but can be taken into account by increasing the average

Utime for each subtask in the IMP as appropriate). As an example,

store and forward delay in a node is just the sum of a Modemln,

Task, and ModemOut delay. Similarly, host input delay is the sum

of a HostIn, Task, and either a ModemOut or HostOut delay

(depending on whether the packet is destined for a local host or

*a host on a remote IMP).

MRMAIN can simultaneously model traffic for many different

"times of day." Facilities exist to select the peak time of day,

* and to run analysis only on the peak data. In addition, it is

* possible to analyze the data for any time of day separately and

conveniently without having to constantly stop, restart, and

reload MRMAIN with the new data each time. This "multiple time

of day" feature can be disabled (i.e., we set the parameters of

MRMAIN so that only a single time of day can be modelled) to

-leave more memory available for modelling large networks.

There are a number of other MRMAIN features that make it

useful as a tool for modelling network behavior. Routing tables

can be modified interactively and checked for validity either

automatically or manually. It is easy to dump the state of the

MRMAIN program and resume it again at a later time. This is

-107-

Report No. 4931 Bolt Beranek and Newman Inc.

useful for large or complex network models that have taken large

amounts of CPU or elapsed time to produce. Extensive facilities

exist to trace and debug the operation of the internal

algorithms. In addition, the user can enable or disable switches

which cause warning messages to be printed or suppressed. These

messages inform the user of conditions that may be important in

the correct operation of the internal algorithms. Appendix B

contains a detailed description of MRMAIN commands and sample

output.

5.2 Routing Optimizer

In addition to modelling a network to estimate its

performance, MRMAIN can create a feasible multi-path routing when

none exists, or can modify an existing routing to find optimal

multi-path routes for a given topology and traffic load. The

performance metric chosen is the k-th power average end-to-end

network delay. The delay for each link flow in the network is

raised to the k-th power, weighted according to the magnitude of

the total network flow, and summed over all links in the network.

The k-th power average network delay is reported as the k-th root

of this weighted sum. The formula describing the average network

delay (T) is:

-108-

Report No. 4931 Bolt Beranek and Newman Inc.

II ~~T= .- (,

Lambda is the average traffic rate on each link, and gamma is the

"- total source-destination traffic rate. We use the k-th power

.*- function rather than the simpler case where k=1 so that we can

better investigate performance of the delay metric. Values of k

!. > 1 cause the performance metric to be more sensitive to variance

in the delay between individual network flows. This may prove

useful as we will show when we discuss convergence criteria. The

Simula implementation of the k-th power performance metric has

been made more efficient for the common case k=1 so that the

*runtime cost of this extra complexity is minimized.

£1JM Deviation

The Flow Deviation (FD) algorithm described by Kleinrock [4)

and Gerla [5) is used to generate optimal multi-path routes. The

*: FD algorithm can be described briefly as follows. Starting from

an initially feasible flow, the FD algorithm first calculates a

"shortest-path flow" based on the k-th power performance function

described earlier. This represents the cheapest or best way to

add new traffic to the network. Using the initial flow and the

*: shortest-path flow, FD computes a new flow which is guaranteed to

improve overall network performance as defined by the k-th power

-109-

::::::"::-:-:::::::":... ::::::: .:: :::- :.--.i.: .i:.,i-:- .- i: ::i--: .

4m

Report No. 4931 Bolt Beranek and Newman Inc.

function. This new flow then becomes the initial flow for the

next iteration, and the process is repeated until the flow

converges to an optimum for the given topology and traffic. The

problem of finding an initial feasible flow is also described by

Kleinrock [4] and Gerla [5], and implemented in our code. For a

detailed discussion of how this algorithm works, why FD is

guaranteed to converge to a solution, and why the solution will

be globally optimal, refer to [4] and [5].

Note that we have used the k-th power function to evaluate

network performance. For the case k=1, this reduces to the

weighted average network delay described by Kleinrock and Gerla.

Values of k > 1 cause flows with a large difference from the mean

delay (as computed for k = 1) to have a larger impact on the

performance function T. If our objective is reducing the

variance of delay between the flows in a network, values of k > 1

will cause the FD algorithm to take this into account

"- automatically. In some cases this may also help FD to converge

more quickly to the optimal flow. Although we have not yet had

the chance to make extensive use of k > 1 values, this capability

is included in MRMAIN.

The FD algorithm produces a set of flows that will minimize

the network performance function for a given network topology and

traffic load. From this optimal flow, we can construct the

-110-

" -"".. _- .. *. "" - ". i . " . i ". . •i

Report No. 4931 Bolt Beranek and Newman Inc.

Sc corresponding optimal rQ.tng. In order to construct the optimal

routing tables when the FD algorithm has completed, we must store

a great deal of information about the flows in the network. The

* easiest way of computing the optimal routing involves storing

individual network flows on each link. Thus, for each link, we

separately store the amount of flow destined for each node in the

- network. For an N node network, this requires that we store N

values for each link. This would not be terribly inefficient

except that we are also storing information for each of two

different priority levels and many different times of day!

Limiting ourselves to modelling only one time of day helps this

problem, but the size of the tables needed for each link is still

quite large. This limits us somewhat in the size of networks we

can model.

As an alternative to storing flows for each destination on

each link, we attempted to implement an algorithm that recomputes

a new routing at each iteration of the flow deviation algorithm.

Although this has the disadvantage of requiring more CPU time for

" computing routes at each iteration, it allowed us to model larger

networks than we could model using the simpler (and more memory

intensive) method described above.

Unfortunately, recomputing routes at each iteration created

significant problems with numerical roundoff errors. For large

: ' -1 11 -

Report No. 4931 Bolt Beranek and Newman Inc.

numbers of iterations and with highly loaded networks, it was not

possible to create a routing table that resulted in exactly the

same flows as produced by the flow deviation algorithm. A very

slight difference in flow on a heavily loaded link results in

dramatic differences in queueing delay on the line in question.

This can significantly affect the network performance function.

Thus, after a number of iterations, the flow produced by

redistributing traffic into the network based on the calculated

routing table would be significantly different from the flow

calculated by the FD algorithm!

To reduce the severity of this problem, we modified the

algorithm in the following way. Each iteration of FD produces a

new flow which can then be used to produce a new routing (as in

the published algorithm). Instead of proceeding immediately to

the next iteration of FD, we first recompute the flow based on

the new roi. Note that the new flow that results will be

only slightly different from that created by FD originally; it is

exactly this small difference that we are interested in because

it brings the new flow and the new routing into agreement once

more. Thus, the numerical error is corrected on each iteration

* rather than accumulating over many iterations. This approach

solves the problem of flow and routing mismatch, but introduces

another problem that is even more serious.

-112-

• .. ,. .°. -

" Report No. 4931 Bolt Beranek and Newman Inc.

I The FD algorithm is guaranteed to converge (possibly after

* many iterations) to within an arbitrary tolerance of the true

global optimum. The rate of convergence, however, can in many

*cases be quite slow. This problem is described in'some detail by

Gerla [5]. The problem arises when we combine this slow rate of

convergence with recomputing the flow based on the derived

-m routing at each iteration. We have observed cases where the flow

produced by the new routing was significantly different from the

- flow produced by the FD algorithm directly. The perturbation we

have introduced, though very small, has caused one of the

requirements of the algorithm to become invalid; the performance

.- has not improved with each iteration of FD. This invalidates the

convergence guarantees for the FD algorithm. Much to our dismay,

we discovered that this situation was not infrequent. As a

result, we abandoned this method of recomputing routing after

each iteration in favor of the memory intensive method of storing

- flows internally on each link for each destination.

Routing Loops

The routing tables produced by MRMAIN occasionally result in

*looping paths for some packet flows. A sample iteration from

- MRMAIN as it attempts to optimize routing for a simple 6-node

network demonstrates how this may occur (see Figure 7). The

nodes are connected in a "figure 8" topology; the flow to be
11

• -113-

;p.

1- - P *---7- - -

Report No. 4931 Bolt Beranek and Newman Inc.

routed is input to the network at node 2 and output from the

network at node 5.

input input input
1.0 1 .43 1

V <--- V <--- V
1------2 1 ------2 1------2I I I I I I I I I

1.0 o: 1.0 1.0 : 1.0 I 1.1 o .57 1 1 .57
<--- I v V I ---> V v <--- V

4 ----- 3 4 ------ 3 4 ------3I I I I I I I -- -> I

1.0I 1 1.0 .57 1 .43 11.43
VI I IV Vl V

S------ 6 5 ------...---- ----6

V V 1.0 V 1.0
output output output

Initial Shortest Path MRMAIN-produced
Routing Routing Routing
(A) (B) (C)

Figure 7 • A Single FD Iteration

The initial routing (before any iterations of FD) is shown

in (A). The arrows (and numbers) next to some links indicate the

*i path taken by the flow (and the fraction of the total flow)

destined to node 5 at each node in the network. Stated in

another way, we have shown only the node 5 entry of the routing

table for each node in the network. Thus, we see that at node 2,

all (1.0 or 100%) of the flow destined for node 5 is routed via

node 3. Similarly, all the traffic that reaches node 3 and is

-114-

Report No. 4931 Bolt Beranek and Newman Inc.

destined towards node 5 is routed via node 4.

The FD algorithm calculates a shortest path routing based on

the k-th power performance metric. This represents the best

single-path routing for an incremental increase in traffic. This

routing is shown in (B). By combining the initial routing and

the shortest-path routing, the FD algorithm produces a new flow

and routing which improves the network performance metric. The

FD algorithm terminates if it is not possible to improve the

initial routing (i.e., the initial routing is optimal or very

close to optimal).

The new routing that is produced by MRMAIN after the first

iteration of FD is shown in (C). The average network delay for

(C) is less than the delay for either (A) or (B). For 50KB links

and a 47.5KB/sec flow from node 2 to node 5, the average network

*delays for cases (A), (B), and (C) are 600ms, 1000ms, and 74ms

respectively. Note, however, that even though the network delay

has improved, packets are looping on the link between nodes 3 and

41 We see that node 3 sends 57% of the traffic destined to node

5 via node 4. At the same time, node 4 sends 43% of the traffic

destined to node 5 via node 3. Since these numbers are less than

100%, a decreasing fraction of the packets loop between nodes 3

and 4 until they are eventually routed via alternative paths and

-arrive at node 5.

-115-

Report No. 4931 Bolt Beranek and Newman Inc.

The sequence (A), (B), (C) .above shows only the first

iteration of the FD algorithm. The routing is not yet optimal,

so the algorithm continues to run, improving the routing a little

with each iteration. The network delay, however, does not

improve dramatically with each subsequent iteration as it did for

the first iteration. After 100 iterations, the FD algorithm had

not yet converged to the optimal routing. After 360 iterations,

the FD algorithm aborted because the network performance metric

improved less than 0.O01ms between iterations. The routings

after 100 and 360 iterations are shown in (D) and (E) of Figure

8.

We note that the fraction of packets routed on the link from

4I to 3 is slowly decreasing with increasing numbers of FD

iterations. If we look a little closer at a sequence of 6 or 8

iterations of MRMAIN, we notice a pattern. First, the split of

traffic at node 2 will approach 50-50 for a few iterations.

Then, the fraction sent in each direction on the link between

nodes 4 and 3 will decrease slightly for a few cycles while the

split at node 2 drifts slightly away from 50-50. This process is

repeated as FD iterates, with the splitting fraction at node 2

remaining near 50-50 while the amount of traffic sent on the line

between nodes 4 and 3 gradually decreases. The flow and the

routing are improving, but at a painfully slow rate.

-116-

I

Report No. 4931 Bolt Beranek and Newman Inc.

I

input input
.471 1 .468
< --- V < --- V

1- 2 1 ----- 2I I I I I

I B

1.0 B .254 1 1 .529 1.0 1 .182 1 .532
V 1< IV V <---IV

4 ----- 3 4 ------3!- ,3 i
, , --- > I I I I --- > I I

.845 1 1 .155 1 1 .746 .933 1 I .067 1 .818
- vV IV vv

5----- 6 5 ------ 6
I <_-- - 1 <--
V 1.0 V 1.0

output output

MRMAIN-produced MRMAIN-produced
Routing Routing

(100 iterations) (360 iterations)
(D) (E)

U

Figure 8 . Routing After Many FD Iterations

Even after 360 iterations, node 3 still sends .182 of its

*- packets destined for node 5 via node 4. For a 47.5KB/sec flow,

" and including the small amount of looping that still remains,

there are still 47.5 * .532 * .182 (1 + .067 * .182 + smaller

terms) = 4.6KB/sec on the line from node 3 to node 41 The

occurrence of looping paths in routings produced by MRMAIN was

(unfortunately) quite common. In many cases, this contributed to

- the slow convergence of the multi-path routing optimizer.

-117-

Report No. 4931 Bolt Beranek and Newman Inc.

Many of the difficulties we encountered with the FD

algorithm can be explained in terms of the way in which FD

"navigates" through the solution space as it searches for the

optimal multi-path flow and routing. The solution space is

defined by the performance metric, and is a concave surface in an

n-dimensional space defined by the network variables. For ease

of visualization, we can think of the analogous case in only 3

dimensions (see Figure 9), where the z-axis represents the

network performance metric, and the x and y-axis represent all

other variables in the n-dimensional space.

INITIAL IMPROVED SHORTEST

Z PERFORMANCE

METRIC

NETWORK

4 AR tAES

Figure 9 .N-dimensional Solution Space

-t- ---

-11 8-

Report No. L931 Bolt Beranek and Newman Inc.

The solution space is guaranteed to be concave by the

' mathematical properties of the performance function chosen. Once

we find a feasible initial routing (a point on the 3-dimensional

U solution surface), the FD algorithm will bring us closer to the

optimal solution with each iteration. As described earlier, the

FD algorithm calculates a shortest path solution (a second point

on the solution surface). The method of generating the shortest

path solution guarantees that the line connecting it to the

initial flow solution will be in the direction of maximum flow

improvement (for incremental flows). What this means in terms of

our 3-dimensional analogy is that the line connecting the initial

and the shortest path flows will pass over a portion of theam
solution space that is convex (i.e., lower or better performance

metric). The projection of the line connecting the initial flow

and shortest path flow is shown as a dashed curve in Figure 9.

We can find this point of improved performance by taking a linear

combination of the initial flow and the shortest path flow; we

are minimizing the performance function over the function defined

by the dashed curve. The improved flow that is produced is shown

at the minimum point of this curve.

We can now visualize cases where the convergence of the FD

algorithm is quite slow. If the shape of the solution space is

*relatively flat, we may wander leisurely down a mild slope

-119-

Report No. 4931 Bolt Beranek and Newman Inc.

towards the optimum flow for many iterations of the FD algorithm.

This is shown in Figure 10.

INITIAL -INTERMEDIATE
FLOW FLOWS

FLOW

Figure 10 . Slow Convergence

To attempt a speedup in the rate of convergence, we could try

using different performance metrics. In particular, we could try

different values of k in our k-th power performance function.
4

Values of k > 1 will cause the shape of the solution space to

change. In addition, the slope of the solution space may also be

steeper; however, it is not clear how this will affect

convergence of the FD algorithm. Preliminary work along these

lines was inconclusive. More work is needed to investigate ways

of improving convergence via modifications to the performance

-120-

q

- ,, , --i --_ -- -_ -

Report No. 4931 Bolt Beranek and Newman Inc.

I metric.

We can also visualize why very small numerical errors can

* destroy the ability of FD to converge to a solution. If we are

in a relatively flat portion of the solution space, small

* roundoff errors can cause the assumptions of the FD algorithm to

be violated. In Figure 11 we have an initial flow and shortest
U

* path flow as before.

• V DESIRED
" INTIAL FLOWINTA COMPUTED

FLWFLOW -SHORTEST

* Figure 11 *Effects of Roundoff Error

The "desired flow" is the value that would be calculated if no

roundoff error was involved in the FD algorithm. It improves the

network performance slightly (i.e., it is "below" the initial and

-121-

Report No. 4931 Bolt Beranek and Newman Inc.

shortest path flows). The value we a compute (includes

roundoff error) is labelled "computed flow." It degrades network

performance slightly (i.e., it is not below both the initial and

shortest path flows). The two values are numerically close,

differing only by a small roundoff error. Since the "actual

flow" is what the algorithm uses, we see that the FD has not

improved the performance of the network even though the flow is

not yet optimal! This violates the assumptions on which FD is

based. At the same time, we gain insight as to why the FD

algorithm failed in some of the modified algorithms we described

in previous paragraphs.

We have verified the operation of the FD algorithm as

implemented in MRMAIN by comparison to numerous test cases and by

comparison to results published by Schwartz (9]. MRKAIN was used

to create optimal multi-path routings for a number of experiments

that were also run using the ARPANET simulator. It was also used

to model optimal single-path routing (i.e., optimal single-path

routing was input to MRMAIN rather than generated by MRMAIN).

These results are described in other sections of this report.

_

-122-

Report No. 4931 Bolt Beranek and Newman Inc.

6 SIMULATION OF THE CONGESTION CONTROL ALGORITHM

In this chapter we will discuss our experience implementing

congestion control in the simulator. The congestion control

algorithm proposed by Eric Rosen in [3], will soon be implemented

in the ARPANET.

pImplementing a protocol is a considerably easier task in the

simulator than it is in the real network. This is true for any

* number of reasons: use of a high-level language; sophisticated

trace and debugging facilities; and the ability to ignore details

* such as interrupt handling, storage allocation, and mutual

*. exclusion among cooperating processes. On the other hand, the

protocol itself must be implemented completely: the action for

. any combination of events and protocol states must be defined.

Therefore, implementation on the simulator provided an efficient

* way to examine the algorithm proposed in [3]. Not surprisingly,

we found that, although the basic design was sound, many details

had to be resolved. In the majority of cases, this could be done

by appealing to the rationale underlying the initial design. The

rest of this chapter will go through the design and discuss

decisions made during the simulator implementation.

The design indicates that a line is classified into one of

three congestion levels (unloaded, fully loaded, and congested)

-123-

Report No. 4931 Bolt Beranek and Newman Inc.

on the basis of three counters: a counter which is incremented

each time the addition of a packet to the Task queue causes the

length of the queue to be greater than a given threshold; a

counter which is incremented each time Task refuses a packet

because no logical channel is available; and a counter which is

incremented by M21 each time it discards a packet because no

buffer is available, and by Task each time it refuses a packet

because no store-and-forward buffer is available. An outstanding

question is whether the number of packets queued for Task

includes routing updates and Hello/IHY's.

The design does not specify how to use the three counters to

classify a line. In the present implementation a congestion

averaging routine is run every n fast ticks (where n is a

parameter). The routine adds the counters together and compares

the total to two thresholds (for fully loaded and congested).

The congestion level is stored in a table, and the counters are

cleared. The design also mentions the possibility of further

* averaging, which is not included in this implementation.

• :The congestion level of each outgoing line in an IMP is

reported to all other IMPs simply by adding the information to

the routing update. A routing update is generated if it would

have been before (i.e., based on the change in delay and the

current delay threshold), or if the congestion level changes on

-124-

. - .* I

Report No. 4931 Bolt Beranek and Newman Inc.

U any line.

Only the source IMP throttles the flow from a source IMP to

a destination IMP. The throttling algorithm varies the limit on

the number of packets for each destination which can be queued by

* Task for transmission by M21. That is, there is a table giving

the limit on the number of packets which can be queued for each

S.destination. Task will refuse a packet from a local host which

is to be forwarded to another IMP if the limit on the number of

packets queued for its destination has already been reached. In

the implementation, only packets queued for the same modem as the

packet being checked are counted, and packets waiting for

acknowledgment are included in the count.

The SPF routing algorithm will maintain the congestion level

of the path to each destination, as well as the path itself. The

congestion level of a path means the congestion level of the most

." congested link in the path. Note that this requires each IMP to

remember the congestion level of each line in the network, as
w

well as the delay.

For each destination there is a path to that destination, a

modem (for the first hop in the path), the most congested link

(or possibly more than one), the congestion level of that link,

and a current limit on the number of packets which can be queued

-125-

ii

Report No. 4931 Bolt Beranek and Newman Inc.

for the destination. For each destination, the limit on the

number of queued packets must be less than or equal to the number

of logical channels on the first line. There may also be

separate upper and lower limits on the limits, for each outgoing

line in each IMP, for each IMP, or for the network as a whole.

This is not to say that the IMP must keep track of every one of

these pieces of information -- we will discuss this below.

The design specifies that if the path to some destination

becomes congested the limit will be decreased, and if the path

becomes unloaded the limit will be increased. Periodically, the

limit will be decreased if the path is still congested, or

increased if the path is still unloaded. The limit is not

changed while the path is fully loaded. Thus, the limit to each

destination can be changed either periodically, or by the arrival

of an update. We will discuss each in turn.

Every m fast ticks (where m is a parameter) fast timeout

calls a routine which looks at the congestion level on the path

to each destination. For each destination, if the path is

congested the queue limit is decreased, and if the path is

unloaded the limit is increased. The design discusses various

ways to increase and decrease the limit; we will assume that the

change is constant (i.e., a settable global parameter). There

will also be upper and lower limits on the range over which the

-126-

Report No. 4931 Bolt Beranek and Newman Inc.

queue limit can vary. These will be parameters, but it is not

clear what they will depend on. For example, they could be set

for each outgoing line in each IMP, or for each IMP, or for the

Rnetwork as a whole.

When an update arrives, it may change any of the following

(to each destination): the path, the congestion level on the

path, or the set of most congested lines on the path. Note that

* any of the three can change independently of the others. We have

to specify how the limit on queued packets changes in each case.

The congestion control algorithm specifically ignores the delay

along the path.

If the path changes, but the set of most congested lines and

:- their congestion level stays the same, one consideration is that

the outgoing line may (not must) change, possibly changing the

number of logical channels, and hence the limit on queued

packets.

Note that the SPF algorithm may not be able to detect the

case where the path changes but the set of most congested lines

• .and their congestion level does not. If so, any path change will

have to be handled as though the set of most congested lines

changed. This is discussed below.

-127-

t.o

Report No. 4931 Bolt Beranek and Newman Inc.

If the limit on queued packets is larger than the (new)

number of logical channels, then the limit can simply be reduced

to the number of logical channels (or to the upper limit on the

queue limit, if that is smaller). If the number of logical

channels on the outgoing line increases, but the most congested

lines and their congestion level do not, we want to maintain the

effect of the current level of control. In the case where the

path is unloaded and the queue limit is as large as possible, it

may be that the correct strategy is to increase the queue limit,

perhaps up to whatever limit is imposed by the (new) outgoing

line. The conservative strategy is to leave the queue limit the

same. In the case of a congested or fully loaded path, the queue

limit should stay exactly the same. This is discussed cgain when

we discuss updates which change the set of congested nodes.

If the path stays the same, but the set of congested lines

or the congestion level changes, we should adjust the queue

limit. This is the easy case: if the path becomes congested,

the limit should be decreased; if the path becomes unloaded, the

limit should be increased. There is a question of what to do

about updates which report congestion at different lines along

the path. The first will cause the congestion level of the path

to change, so the queue limit will be decreased. Subsequent

updates which report congestion along the path will not cause the

-

I -128-

f,

Report No. 4931 Bolt Beranek and Newman Inc.

congestior level of the path to change. Indeed, the SPF

. algorithm may not even report the change. In some sense,

congestion is worse if more than one line is congested, but we

will assume that extra controls do not need to be applied. If

the congestion persists, the periodic process will increase

control.

U

If the path changes, and the set of congested lines changes

(or we cannot rule out the possibility that it has changed), the

correct action depends on whether the flow under consideration is

causing congestion or not. In general, we only know that

congestion is occurring somewhere along the path from source to

0 destination, not which flows are responsible. However, in theory

we need to make a prediction about the effect of changing from

one path to another. The change may or may not make congestion

worse on the new path, and the congestion on the new path may or

may not be the same as the congestion on the old path. The new

' queue limit on the new path should be based on the queue limit on

the old path, or the congestion level on the old path, or the

congestion level on the new path. In practice, we will be making

a guess as to the strategy which will work best in most cases.

This analysis does not pretend to take account of all possible

* pathological cases, but is suggested as a basis for simulation

experiments.

-129-Ui

Report No. 4931 Bolt Beranek and Newman Inc.

If we do not adjust the queue limit when an update does not

change the congestion level along a path which does not change,

we can do the same thing when the congestion level on the new

path is the same as the congestion level on the old path. Note,

however, that this assumes that the old queue limit (from the

previous path) is approximately correct. The periodic process

will change the queue limit if appropriate.

It is quite unlikely that an update would cause the path to

switch from an uncongested path to one which was congested. In

this case, however, it seems prudent to apply more control and

decrease the queue limit. Again, this assumes that the old queue

limit is approximately correct.

Presumably, the most common case is when an update switches

the path to one which is less congested. The problem is that we

really have no information about the effect of the increased flow

along the new path. The design makes the point that if the

offered load is more than the capacity of any path, then the

routing will oscillate, and the congestion control scheme should

lower the queue limit until the load has been throttled to the

capacity of the path, stopping oscillation. It is possible that

the oscillations in flow caused by the oscillations in routing

will also cause the congestion measurements to oscillate, so that

just as the SPF scheme sees a shorter delay on the currently

-130-

Report No. 4931 Bolt Beranek and Newman Inc.

unused path, it will also see less congestion. This would stop

any decrease in the queue limit. The congestion measurements

must therefore be more damped than the delay measurements and

routing changes. Assuming that this is so, under conditions of

overload both paths will appear congested, and so the queue limit

will gradually be decreased until the load is adequately

throttled.

If no path is loaded, routing will be stable relative to the

updating period. Therefore, if routing switches to an unloaded

path, the correct strategy might be to relax congestion controls

and reset the queue limit to its upper limit. On the other hand,

since there is no way of ruling out the possibility that the

change in route will cause congestion on the new path, the

conservative strategy is to simply treat the update as it would

be treated if the path had not changed, and increase the queue

limit in the standard way. The cost of this strategy is that

flow might be restricted unnecessarily. This would of course be

temporary.

There is a problem concerning initializing the queue limit

when a destination becomes accessible. When an update arrives,

some destinations which were inaccessible may become accessible

because the update may report one or more lines up which were

down. A line which goes down will stay down for at least a

-131-

Report No. 4931 Bolt Beranek and Newman Inc.

minute, so the queue limit to an inaccessible destination will

surely be out of date by the time the destination once again

becomes accessible. We have to decide how to set the queue

limit.

We believe that the congestion level on the line which comes

up is irrelevant, except insofar as it determines the congestion

level of the whole path. If the path is unloaded, we can safely

set the queue limit to its maximum value (e.g., the number of

logical channels on the outgoing line). If the path is fully

loaded or congested, the conservative strategy would be to set

the queue limit to its minimum value. However, this could be

unfair, since the queue limit to the same destination at other

competing sources could be much larger. Although the queue

limits at these competing sources would be gradually dropping

towards their equilibrium (i.e., fully loaded) values, the

equilibrium value would in general be above the minimum. In this

IMP, however, the queue limit would stay at the minimum.

We suggest that the solution is to set the queue limit to

some intermediate value which is computed as a simple function of

the minimum (and possibly maximum) value. It seems as though

this is not very critical for 8 channel lines (there seems to be

nothing to choose between 3, 4 and 5) but could be more difficult

with more channels.

-132-

4

Report No. 4931 Bolt Beranek and Newman Inc.

t We will now summarize the conservative design. Changes in

queue limit to any destination are caused by the periodic process

if it finds the path to any destination either congested or

Uunloaded, and by the arrival of any update which changes the

congestion level of the path to the destination. Updates which

change the path to the destination, or the set of congested

nodes, but which do not change the congestion level of the path,

have no effect on .the queue limit.

- When the IMP comes up, queue limits are initialized to the

• upper limit. The count of packets to compare against the queue

limit includes packets waiting for retransmission, but not

Bpackets which are queued for other modems. The count of packets

on the Task queue includes routing updates and Hello/IHY's as

well as data packets.

This design requires that each' IMP keep track of the

.. congestion level of each line in the network (from the latest

update), the congestion level on the path to each destination,

and the queue limit to each destination.

Finally, there is an issue with satellite lines. The simple

scheme outlined here depends on controlling a flow by controlling

the number of queued packets. However, the number of packets

which should be queued to sustain a particular flow level depends

-133-

P

Report No. 4931 Bolt Beranek and Newman Inc.

on the time needed to return a line protocol acknowledgment.

Obviously this is much larger for satellite lines than it is for

land lines, so this scheme may not work in situations where

routing is switching between a satellite line and a land line.

This problem could be solved by Rosen's design, which includes a

scheme for directly controlling flows to a destination.

..134-

1.

Report No. 4931 Bolt Beranek and Newman Inc.

7 ISSUES IN INTERNET GATEWAY DESIGN

7.1 Internet Performance

N The major activities in the work involving the Internet have

centered on analysis of the design issues, and development of

initial design ideas and approaches to be used as a basis for the

,- next implementation cycle of gateways. The goal of this Internet

effort has been to develop an environment which supports

operational use and permits experimentation.

The results of the analysis work have been presented in a

series of Internet Experimental Notes ([10), [11], [12], and

[(13]) and will not be replicated here. In this section, we

present some elements of the specific design for a new

implementation which applies the general model presented in the

IENs. This design is being developed further as part of the

Internet activities under a separate contract.

This section addresses three major issues. First, some

specific architectural choices are discussed. Second, issues

involved in the internal design of gateway process structure are

presented. Third, tools and mechanisms for operational support

and maintenance of a gateway system are detailed.

-135-

.-}o - ... , .: 2 *. . .

Report No. 4931 Bolt Beranek and Newman Inc.

7.2 Architectural Issues

The basic architecture of an Internet system were presented

in the IENs. In this section, we discuss four specific issues:

- host interface to the Internet,

- interoperability of autonomous gateway systems,

- congestion control, and

- logical addressing.

The following discussion presents current thoughts and

outstanding questions concerning the design of modifications to

the current gateway architecture.

7.2.1 Host Interface to the Internet

In AUTODIN II, the source nodes maintain structures called

"Bookkeeping Blocks (BKBs). • Each source node has one

bookkeeping block for each host-host "connection." The main

-d purpose of these blocks is to maintain the information needed to

enforce flow control on a host-host basis. These structures are

also useful for accounting and instrumentation purposes. The

source gateways will need to have similar structures -- we will

call them "connection blocks" in this discussion. These blocks

define the granularity of flow on which we do flow control. If

-136-

4 , " _, _ ., . ,.,_ , .b .,,*. v l * •

Report No. 4931 Bolt Beranek and Newman Inc.

there is one block per source/destination host pair, then we will

be able to control the flow between each host pair without any

interaction with flows from the same source host to other

£destination hosts. We could instead keep one block per source

host, but then we would be unable to throttle any one host-host

flow without also throttling all other flows from the same source

host.

The tradeoff here is the amount of fine grain we have in

throttling flows versus the amount of overhead (memory, and to

some degree, cycles) we need to maintain the additional

information needed to make the grain finer. The flow control

i with the finest grain might be based on the notion of a flow

,. between a source/destination pair of PROCESSES; however, it is

not clear that we will be able to make such fine distinctions in

our flow control algorithms, and the overhead might be very

large. The coarsest grain might come from using the notion of a

V. source/destination pair of gateways. That results in much less

overhead, but provides no fairness among different flows between

the same pair of gateways. Applying flow controls on a host-host

basis is probably the best compromise.

Il Host-to-host in this context can mean logical-address-to-

logical-address, physical-address-to-physical-address, or some

combination (such as defining a "host" to be a particular

-137-
S:

Report No. 4931 Bolt Beranek and Newman Inc.

logical/physical address pair). Logical-address-to-logical-

address might be the best way of identifying flows for the

purposes of flow control, but that might give an advantage to

hosts which happen to have a lot of logical addresses. Rather

than precisely setting flow control based on purely a priori

considerations, we propose to make the system flexible enough so

that we can at any time (by altering the setting of a parameter

and then restarting) change the way we set up the connection

blocks (and hence the way we individuate flows for flow control

purposes).

The most familiar type of flow control is based on a

windowing scheme, as in TCP. Windowing schemes attempt to use a

single mechanism, that of sequence numbers, for three different

purposes: flow control, error control, and sequentiality. The

use of a single mechanism for three disparate purposes is prone

to introduce strange interactions in the inevitable cases in

which no single action can serve each of the three separate

purposes. In the Internet, we need to have flow control, we

would like to have error control, and we do not want

sequentiality (at least, not always), so windowing based on

sequence numbers would be particularly inappropriate. We suggest

the following tentative scheme for enforcing flow control. Each

connection block should contain a number of packets P and a

1

:: -13 8-

,..

Report No. 4931 Bolt Beranek and Newman Inc.

number of bits B so that no more than P packets per unit time or

B bits per unit time could be accepted by the gateway on that

particular host-host flow. If a source host tries to exceed this

rate, any packets it sends in excess of the rate will be

explicitly NAKed. The NAK will contain enough information to

uniquely identify the NAKed packet, and the host will be advised

of its maximum send rates. NAKed packets will be discarded by

the gateway. (Of course we retain the option of not sending NAKs

if we are out of resources; that is, if necessary, we can just

drop packets with no notice, but, when possible. NAKing is

better.)

Hosts should always be able to find out what flow control

limits are being imposed. We need to have a control message

which a host can send to a gateway to ascertain these limits; the

gateway will reply if Possible. One possible implementation is

to let the host set a bit in the internet header of a data packet

to ask the source gateway to explicitly acknowledge its receipt

* of the packet. The ACK can contain any flow control

restrictions, and hosts can set this bit occasionally to see

whether the source gateway is really taking packets. The source

gateway might want to refrain from sending these ACKs until it

forwards this packet on its next hop. This delays the sending of

the ack, but gives it somewhat more meaning.

-139-

Report No. 4931 Bolt Beranek and Newman Inc.

This flow control mechanism gives us a means for enforcing

flow control which is independent of any particular flow control

algorithm used within the Internet. Information from the routing

algorithm, from specific congestion control techniques, and from

monitoring of local resource utilization (e.g., buffer space in

this gateway itself), can all be mapped into the rate limitations

coded within the connection blocks, and we can experiment with

the mapping functions without any need to modify host software.

Since we will have only a finite number of connection

blocks, we will have to recycle them. We can recycle a block if

its connection has been idle for a certain amount of time. If a

packet comes in from source logical address S for destination

logical address D, and there is no S-D block currently in use,

one must be allocated. If no S-D block is free and available for

allocation, we will have to NAK the packet. This is a

consequence of the need to have flow control, and hence to

maintain information about flows. Note that since we are keeping

flow control information in these blocks, we do not want to be

too free about recycling them or we lose important information.

We also suggest having error control on the host access

protocol. One approach is to require the host to put in a
software checksum; we could discard the packet if the checksum is

incorrect. Experience in the ARPANET indicates that an access
I

• . -140-

Report No. 4931 Bolt Beranek and Newman Inc.

DPathway checksum is really needed, and should be more powerful

than the current additive checksum.

At any rate, we will need an end-end checksum (purely within

the internet system, i.e., between the source and destination

gateways), which we should probably make more powerful.

We will have to keep measurements of the utilization of the

connection block resource. One approach is the following: when

a request for a new connection block is made, increment by one a

counter of requests, find out how many blocks are free and

available, and add that number to another counter. Dividing the

*second counter by the first yields the average number of blocks

available per request, which is a good measure of whether the

utilization is high. We will also keep track of the rate at

which blocks get recycled. There are some measurements which we

• could keep in the blocks themselves: packet and bit rates on the

"connection," packet size histograms, number cf packets for each

protocol number, number of packets in each service class, etc.
V

In the current Internet, the protocol used among gateways is

the same as that used among hosts and at the gateway-host

interface. In the ARPAYET, the protocol used at the host-IMP

interface is all contained in the 1822 leader, and the protocol

used between IMPs is contained in the packet headers. The actual

-141-

L. " ;','' ;. i -. ""

Report No. 4931 Bolt Beranek and Newman Inc.

leader is never carried across the network, but the header (which

does not resemble the leader in format) contains enough

information so that the leader can be reconstructed before the

packet is passed to the destination host. Packet headers contain

somewhat more information than the leaders do, but hosts never

* see the headers. We propose to introduce this distinction in the

Internet where the IP header which exists between a host and

gateway might differ from that which exists during transit

between gateways. The information fields listed below do not

have to be in the host-generated header, but are necessary in

transit:

- Physical address of the source gateway. This will be the

node number of the source gateway within the numberinS

scheme of the Internet. We need this for returning end-

end control messages, such as DNA messages. It is also

good to have such a field for debugging purposes. Yet

this number may not even be known at the host level.

I
- Physical address of the destination gateway (needed for

routing).

'q - Packet type. Is this a control message (routing, DNA,

etc.) or a user-supplied data message. By "control

message" I refer only to messages which are used for

-142-

I

Report No. 4931 Bolt Beranek and Newman Inc.

internal Internet control purposes.

- The "ACK this packet, neighbor" flag. The delay

measurement procedure proposed for the routing algorithm

requires that we be able to select certain packets for

hop-hop acknowledgments.

- Compatibility/version flags, so that we can distinguish

among different versions.

- Spare bits.

- If WWVB radio clocks are available, words for timing

purposes (which can be optional).

- End-end checksum.

The following information is needed in the host specified

header as well as in transit:

- Source host logical address. This should be verified by

the gateway; if a certain logical address is not

recognized by a gateway as that of a local host (i.e., a

host that it knows how to reach "directly" without using

the Internet), the packet should be discarded.

- Destination host logical address.

-143-

Report No. 4931 Bolt Beranek and Newman Inc.

- Checksum for access Pathway only.

-Service class (including priority, precedence, etc.).

- Packet identifier.

- Protocol number.

- Information needed to enable fragmentation/reassembly.

- Instrumentation flags. This would include mechanisms like

the trace bit in the ARPANET 1822 leader, which, when set,

causes a packet to be traced on its path through the

network. Issues in designing a trace package for the

Internet similar to the one we have in the ARPANET are

discussed later. Another possible instrumentation bit

might correspond to the "tagged packet" bit of the

ARPANET. which causes a packet (with no data) to have its

data part filled with the identifier of each Switch it

passes through, as well as the delay from that Switch to

4] the next. Another sort of instrumentation might be a

selective acknowledgment bit. which would cause an ack to

be sent to the source gateway from either the destination

4 gateway or from every intermediate gateway. This might be

useful for timing.

-. A flag which asks the source gateway to ack this packet

-144-

U

Report No. 4931 Bolt Beranek and Newman Inc.

Iand also furnish flow control information.

We also need a special host-gateway control message that

will enable a host to ask the source gateway for its delay (in

ms.) to the destination gateway which will be used for a

particular specified destination host, as well as a reply for the

source gateway to send back to the host.

7.2.2 Interoperability of Gateway Systems

As a general goal, the Internet should be capable of

supporting a large number (possibly thousands) of networks

* interconnected via gateways. The traditional approach to routing

and network management in general is likely to prove intractable

in this environment. The approach we have been investigating

involves creation of a number of autonomous gateway systems (each

containing possibly 50 or 100 gateways) that interoperate to

create an effective Internet which will be seen by the hosts as

the union of all the gateways. This flexibility will allow

configuration of networks and gateways into autonomous systems

based on traffic patterns, without requiring hosts to be aware of

the internal structure.

This section discusses some of the issues in gateway design

and describes the gateway's interaction with hosts, other

-145-

S

Report No. 4931 Bolt Beranek and Newman Inc.

gateways in its own system, and gateways in other systems.

Consider the case where a host on Internet system A needs to

communicate with a host on Internet system B. There must be some

network C so that a gateway GA of internet A and a gateway GB of

system B are both hosts on network C. Now GA can be regarded as

the destination gateway of system A, since as far as GA

is concerned, system B is a Pathway (no internal structure) to

the destination host. Similarly, gateway GB can be regarded as

the source gateway for system B, since it regards system A as a

Pathway to the source host. When gateway GA gets some data for

the destination host it only needs to strip off the network

access protocol of system A, replace it with the network access

protocol of system B, wrap it in the access protocol for network

C (which is GA's Pathway to gateway GB, hence to system B),

and then send it to gateway GB via network C. That is, GA

accesses system B just as if it is an ordinary host on

system B. However, instead of giving its own name as the source

address in the internet protocol, it gives the name of the

original source host. Of course, some simplification is possible

if both systems use the same access protocol and the same

logical addressing scheme, since then it is not necessary

to remove one protocol envelope and replace it with another.

Gateway GA will also have to have some way of knowing that

-146-

Report No. 4931 Bolt Beranek and Newman Inc.

certain addresses can only be reached through the other

system; that information is properly stored in the

logical-to-physical translation tables.

There are likely to be subtle problems with mechanisms such

as flow control. If gateway GB wants to send flow control

messages back to the source host, GA might want to let those

:. messages go right back to the actual source host, or it might

want to intercept them, and use them as input to its own flow

- control mechanism. From any particular gateway's perspective, it

has to decide what to do when it receives flow control messages

from another system which are destined for a host on its own

system. One approach is to intercept these messages and feed

them into the local congestion control system.

One other area of concern in this approach is fault0
isolation. One technique is to routinely keep track of the

rate at which we receive data on each "connection" in

order to be able to say whether someone's data has arrived at our

system, or whether it must have gotten lost before reaching our

system. Within any single system of gateways, we can use

some of the instrumentation bits in the packet headers for

similar purposes. If some particular source host claims

that his data is not getting through, we can set an

instrumentation bit in each packet that we see from him. Each of

-14T7-

i

Report No. 4931 Bolt Beranek and Newman Inc.

the gateways that sees a packet with this bit set can increment a

count. This would help us to understand whether all packets

entering a system are also leaving it, i.e., whether they are

getting lost within some individual network. Keeping such counts

- in the intermediate gateways too would enable us to determine

which individual network is at fault.

This suggests another feature to be included in the

gateways. If particular networks in their own access

protocols have bits which can be used for instrumentation

within that particular network, we need to be able to turn them

on selectively when sending packets into that network. For

example, the gateways ought to be able to select certain packets

going into the ARPANET (for example, every nth packet from a

certain source to a certain destination) and turn on the

ARPANET's trace bit in those packets. This could be very

valuable for fault isolation.

7.2.3 Congestion Control

This section addresses some of the issues in an initial

approach to congestion control. Basically, each gateway will

- determine, for each of its Pathways to neighboring

gateways, whether that Pathway is "overloaded," "underloaded," or

-1 8

.- 148-

,,,,,,U N u . - ' -

Report No. 4931 Bolt Beranek and Newman Inc.

*"fully loaded." Given this determination, it is not difficult to

modify the SPF algorithm so that it determines, for every route

between a source and destination gateway (where a route is just

an ordered sequence of Pathways), whether that route is

"overloaded" (i.e., has at least one overloaded Pathway"),

"underloaded" (i.e., consists exclusively of underloaded

Pathways), or "maximally loaded" (i.e., consists of at least one

maximally loaded Pathway but no overloaded Pathways). That is,

at a given gateway G, the routing algorithm would tell it that

the route from itself to another gateway G' was in one of these

three states. Throughput limits on hosts will vary

dynamically, as follows:

a) If a host-host connection goes to a gateway along an

overloaded route, the throughput limits for that

connection should be reduced periodically by a certain

(small) amount, until a minimum is reached, or until the

route to that gateway is no longer overloaded.

b) If a host-host connection goes to a gateway along an

underloaded route, the throughput limits should be

increased periodically by a certain (small) amount,

until the limits reach infinity or the route ceases to be

underloaded.

-149-

Report No. 4931 Bolt Beranek and Newman Inc.

c) Host-host connections using "maximally loaded" routes

should have their throughput limits remain the same.

The basic notion is to have a disciplined and enforced

throttling of input into the Internet, and in particular, to

throttle all that traffic (but only that traffic) which would

travel a congested route. Throttling limits would

increase and decrease slowly until an appropriate level of load

is reached. Note that controls are applied not merely to

hosts which happen to get their packets dropped due to

congestion, but rather to all hosts which are using

congested Pathways.

By routinely keeping throughput statistics in the connection

blocks, we can introduce mechanisms to increase fairness.

When lowering the throughput limits, for example. we can decrease

the maximum allowable throughput by a percentage of the

actual measured throughput, so that the heaviest users get

throttled the most. This might tend to lead to an equalization

of flows when the internet is congested, which is an

important fairness consideration.

4 One important issue is how a gateway can determine the

congestion status of its outgoing Pathways. We will have to

investigate this issue experimentally. Congestion in the

-150-

Report No. 4931 Bolt Beranek and Newman Inc.

individual networks will tend to cause certain symptoms (such as

queuep getting longer than a threshold and staying longer for a

certain amount of time. or an excessively high loss rate) and we

will have to determine experimentally what these symptoms

actually are. There will also be internal gateway congestion to

worry about, which would show up as buffer shortage or high CPU

utilization or something similar. When the congestion is

internal to the gateway, all Pathways leaving that gateway

should be declared congested, since the congestion affects them

. all equally.

Note that in order to determine whether to change the

U throughput limitations applied to a certain connection, we must

know the destination gateway of that connection. This means

that connection blocks must be individuated not only by source

and destination host, but also by destination gateway. (That

is, if we are load splitting by alternating the traffic for a

certain destination host to different destination gateways,

7 then we need separate connection blocks.) Also, if different

classes of service cause traffic for the same destination gateway

to take two different routes, we will need a different connection

block for each type of service that requires a different route.

-151-

S

Report No. 4931 Bolt Beranek and Newman Inc.

7.2.4 Logical Addressing

This section addresses issues about the application of

logical addressing to the Internet. We have defined in the IENA

the notions of a logical address being "authorized" and

"effective." In the ARPANET. when an IMP first comes up,

the logical addresses of all directly connected hosts would be

"ineffective" by default. When the connection between the

IMP and the directly attached host first comes up, the host must

send in LAD messages to indicate which of its logical addresses

should become effective, and the IMP, if these logical

addresses are authorized, will make them effective and will

acknowledge this fact to the host. This works out nicely

because host and IMP can easily tell when the other has gone

down (or more precisely, when the connection between them has

gone down).

This procedure would be too strict to apply to the Internet.

That is, the gateways will not be able to keep track of all the

host up/downs as a matter of course; rather, they will only

be able to get this information on an exception basis, as needed.

Certainly it is not possible to require every host to redeclare

its logical addresses after every gateway crash. Therefore we

will probably have to make all logical addresses be effective by

i* default.

-152-

I-

. - . - • . -E. - . _ . . .

Report No. 4931 Bolt Beranek and Newman Inc.

We can give the hosts the ability to declare certain

logical addresses to be ineffective, or to declare that it

only wants certain of its logical addresses to be effective and

the others to be ineffective. That is, we can allow the

hosts to use LAD messages as an option. The gateways receiving

LAD messages would acknowledge them (possibly

negatively, if a host asks to be addressed with an "unauthorized"

name). A LAD message would retain its effect until superseded by

another LAD message from the same host, or until the gateway

restarts, in which case all logical addresses would become

effective again, by default. This does mean that hosts may

sometimes receive messages that are not intended for them (i.e.,

misdelivery of data). This can happen if two hosts share a port

in some network but have different logical addresses. Since both

logical addresses are effective by default, the Internet has no

way of knowing automatically when one host is disconnected and

the other one is connected in its place. If one of these

hosts receives data intended for another, it must be

* willing to inform the Internet of the logical addresses effective

* at that time. This is not such a problem if the network itself

" has logical addressing, since then we can rely on the

"* network to tell us which host is really there, and to prevent

misdelivery.

-153-

iS

,.. -. .. . " - . " . i . " ' . " *

Report No. 4931 Bolt Beranek and Newman Inc.

It is interesting to consider the particular case of a

gateway on a local net. In this case. because of the extremely

high bandwidth and low delay of the network, it might indeed be

feasible to have the gateway perform real-time monitoring of

the up/down status of each host, and of the effectiveness of

each authorized logical address for the local net. When a

gateway comes up, all the logical addresses can be marked

ineffective by default, and the gateway can query each host to

see what logical addresses it is to be known by at that time.

This suggests that we define a protocol by which a

gateway could demand this information from the hosts on its

network, and the hosts would be required to respond if they

want to be able to receive Internet communications. (If a host

sends a packet to the Internet with a particular source logical

address, we might want to regard that as an implicit

declaration that it is willing to receive data at that address.)

Gateways on local nets would be expected to strictly monitor

hosts on the local net, but gateways on lower bandwidth nets

would not. The protocols need to be general enough to handle

both cases.

* These considerations suggest a possible way of connecting

* local nets to long haul nets like the ARPANET. We could have one

gateway be a host on both the ARPANET and the local net. From

1

.- -154-

.

* * *

" Report No. 4931 Bolt Beranek and Newman Inc.

r the perspective of the ARPANET, the gateway would appear to be

a single host with many logical addresses. That is, the

*ARPANET logical addresses of all hosts on the local net would map

Bto the gateway's physical address. The gateway could keep track

of which hosts on the local net are up or down, and keep the

ARPANET informed of this. The gateway could handle all protocol

- needed to interface between the ARPANET and the local net. In

this way, hosts on the local net could be treated as ordinary

ARPANET hosts.

- Another useful mechanism is some analogue of the ARPANET's

"host going down" and "imp going down" messages. That is,

hosts on a network should be able to inform all the gateways on

that network that they are going to be down for a while,

indicating a reason and a duration of the outage. Any time a

host on some other network tries to communicate with a host

that has declared itself to be down in this way, the

destination gateway can send the source gateway a control packet

with the reason for and duration of the outage. and the source

-gateway can feed this back to the source host. Once a host has

declared itself down by sending a "host going down" message to a

particular gateway, that gateway should consider the host to be

down until it hears otherwise from the host.

-155-

Report No. 4931 Bolt Beranek and Newman Inc.

7.3 Gateway Design Issues

This section represents an initial attempt to block out the

process organization of the gateway, and to look at some of the

problems of inter-process communications and resource management

that arise. These considerations are only preliminary, to be

used as a guide for further work.

7.3.1 Software Organization: Process Structure

Each network interface or access line will have one process

associated with it (call this a "Pathway Access Process" or

PAP), or maybe two, PAP Input and PAP Output. These processes

will implement the access protocols of the individual networks

to which the gateways are connected. In fact, we should think of

four processes per network interface: PAP Input Level 2, PAP

Input Level 3, PAP Output Level 2, and PAP Output Level 3. It is

open for the present as to what the word "process" will

actually mean in the implementation. Modules and interfaces

should be clean enough so that we can freely intermix the

possibly different Level 2 and Level 3 options of a given access

protocol.

The PAP Input Level 3 module will pass each packet to a

"Gateway Input" (GI) process for the particular access line

-156-

Report No. 4931 Bolt Beranek and Newman Inc.

(port) over which the packet was received. The GI process will

have to decide, for each packet, which of four categories it

falls into, and dispose of the packet on that basis.

The four categories are:

a) Transit packets. These are packets for which this

gateway is neither the source gateway nor the

destination gateway. Such packets will be passed to a

process which we might call "Dispatch" (see below).

b) Internet Control packets. These will be things like

routing updates which need special processing by the

gateway system. Such packets should be passed

directly to whichever process or processes handle

them. Thus routing updates might be passed to a process

which manages the topological database and performs

the SPF computation, while being simultaneously passed

to all GO processes (see below) for flooding to other

gateways. In some cases, where control packets

need especially rapid processing (such as line up/down),

GI might process the packets directly.

c) Internet Entry packets. These are packets from hosts
I.-

which are entering the internet system at this point (or

more accurately, those which are entering the

-157-

,rg

Report No. 4931 Bolt Beranek and Newman Inc.

PARTICULAR internet system at this point). These should

be passed to a process which we might call "Internet

Arrival Process" (IAP).

d) Internet Departure packets. These are packets from

hosts which will depart our internet system at this

point. These should be passed to a process which

we might call "Internet Departure Process" (IDP).

The GI process will tend to be responsible for actions at

the level of the gateway-gateway packet headers, such as

delay measurements, processing received piggybacked

acknowledgments, etc. Similarly, there needs to be a Gateway

Output process (GO) "above" every PAP Level 3 Output process,

to set bits in the gateway-gateway header, etc. This allows

the PAP modules to avoid doing things which are specific to

gateway protocols, and hence preserves protocol layering.

This mental organization of the gateway software might or

might not map directly to an actual implementation.

Internal Pathway up/down considerations (i.e., which

neighboring gateways are reachable over which access lines) will

be handled by an interaction between GO and GI. Access Pathway

up/down considerations (i.e., which hosts are reachable directly

over which access lines) will be handled by IDP.

-158-

1

Report No. 4931 Bolt Beranek and Newman Inc.

I If a gateway is multi-homed to some network so that it has

several access lines to that network, there are some subtleties.

Each access line needs its own PAP Input and Output processes.

We should take separate measures of delay to each

neighboring gateway over each access line, as well as running a

separate instance of the internal Pathway up/down protocol for

each neighboring gateway over each access line. However. one

possible approach is to have only one GO process and one GI

process for each individual network to which the gateway

is connected. The processes above GO and GI would not know

whether or not a particular Pathway consisted of several

access lines to the same network. The delay, congestion, and

up/down information used by the routing algorithm would be

reported by the GO or GI process for the composite set of access

lines, and would be computed by these processes based on

information passed up from the PAP processes. Dispatch (in

the case of packets going further in the Internet) or IDP (in the

case of packets leaving the Internet) would route packets to a

particular GO process, leaving it up to the GO process to use

its local knowledge to further route the packet to the most

"* appropriate PAP Output process. The way in which GO computes

routing information based on delays for each access line, and

the way In which GO chooses from among several access lines to

the same network, is something which needs further research.

-159-

Report No. 4931 Bolt Beranek and Newman Inc.

There may be may be cases in which there are Pathways to a

neighboring gateway through several distinct networks. This

also requires further investigation.

The IAP process will look at the internet leader supplied by

the source host, and use it to construct the internet header

(there is a distinction between external leaders, used for

protocol between host and gateway, and internet headers, used for

protocol among gateways). IAP will also handle the flow control

and connection block mechanisms. IAP may decide not to accept a

packet, in which case it may create an error message or NAK and

pass it to the GO process for the network from which

the rejected packet was received. Such messages need not go out

the same port or access line from which the rejected message

was received. They should probably be returned by using the

addressing information which can be gathered from the

Pathway Access Protocol envelope, rather than by using

the addressing information which can be gathered from the

Internet Protocol envelope; hence the former information must be

passed to IAP from PAP Input Level 3 (via the GI process). If

IAP accepts the packet, it should be passed to the

dispatch process.

The purpose of the Dispatch process is to decide what the

packet's next hop is. That is, Dispatch looks up the next hop

-160-

Report No. 4931 Bolt Beranek and Newman Inc.

for this packet in the routing tables, which will be indexed by

destination gateway and type of service, both of which can be

found in the packet header. When the next hop is chosen,

Dispatch must pass the packet to PAP Output Level 3 for

transmission to the next gateway.

It is possible that Dispatch will find that the destination

gateway is not reachable (this would be indicated in the

routing tables). In this case, Dispatch should attempt a

-- retranslation of the destination host address, to see if there is

another destination gateway to which this packet can be sent.

(This is possible if the destination host is multi-homed to a

a inumber of gateways.) If so, the header must be altered, and the

packet passed to the appropriate PAP Output Level 3. If not, the

* packet can be discarded. It is not necessary to return any error

message or NAK to the source host in this case.

We will also have some number of "internal hosts" ("fake

hosts" in IMP parlance). These internal hosts will submit

• packets and receive packets to the gateway proper using

the usual Internet Access Protocol, but no additional

Fathway Access Protocol is needed. Hence the internal hosts

* can submit directly to IAP and receive directly from IDP. At

least some of the internal hosts will implement higher level

protocols for monitoring and control purposes. Others may deal
W

-161-

*a*** ~ ~~ , g p rn p * * u jI W E I | .

Report No. 4931 Bolt Beranek and Newman Inc.

in "raw messages" and not implement any higher level protocol.

Certain internal hosts may require particular options that are

not generally available to users, such as freedom from any

congestion control constraints.

Some of our internal hosts will be used as "test nodes."

That is, one way to test out the implementation of particular

Pathway Access Protocols would be to implement both the host side

(the PAP processes) and the network side (which would be in

the test node). At its simplest. the test host could serve as a

sort of software loopback facility. (Many network access

protocols, unlike 1822, are non-symmetric, so they cannot be

tested by simple hardware loopbacks.) If we are dealing in a

connection-oriented network access protocol, the test host

could participate in setting up connections. We could program

the test host to send the gateway all of the strange control

messages that networks are likely to send hosts during general

operation, but which they never send when one is trying to test

out host software.

In addition to these "event-oriented" processes, there might

be any number of timer-based processes to handle various
I

periodic or housekeeping functions, as well as lower priority

background processes. The processes mentioned so far are not

meant to be an exhaustive list.

1
.., -162-

- I 2 _ i _ . . .

U

Report No. 4931 Bolt Beranek and Newman Inc.

U This model of the gateway software architecture is based

on the way the IMP is organized.

7.3.2 Inter-process Communication

The discussion has mentioned the act of one process

"passing" a packet to another. To do this, the former process

executes a system call which (a) places the packet on a queue

for the latter process, and (b) causes the latter process to be

scheduled (according to its assigned priority). This

call should accommodate priority queuing. Sometimes processes

may need to pass information to each other. This can either be

done through commonly accessible data locations, or through

- the sending of messages.

With data moving among all these processes, we have a number

of resource management problems, particularly buffer management.

It is possible to provide some general principles of buffer

management, but each new combination of protocols that we might

* have to deal with has to be considered individually, and its

'* buffer management implications understood.

It is too early to produce a detailed buffer management

specification at this time. but we expect the buffer management

system to be very similar to that now being developed for the

-163-

. . . i

Report No. 4931 Bolt Beranek and Newman Inc.

IMP. That is, we might have a transit pool to hold those

packets which move directly from GI to GO. and an end-end pool

to hold those packets which move from GI to IAP or IDP. The

buffers should also be organized into sub-pools to assure that

each output device (GO process) can always obtain a certain

number of buffers. Each input device (GI process) should also

have a certain number of buffers assigned to it, to allow input

with minimum latency. (We also have to save some buffers for

internal host input, which bypasses the GI processes.) Since

host input and output is much less tightly coupled in the gateway

than in the IMP, we might want to separate the lAP and IDP pools

* entirely.

As packets move from process to process, we must make

sure that no receiving process ever "blocks" the sending

process; that is, all packet movement should be non-blocking.

The receiving process should be ready to accept

responsibility for a packet as soon as the sending process is

ready to give it up. The receiving process can discard the

packet, or queue it, or process it, or transmit it, as it sees

fit, as long as this doPs not cause the sending process to

back up. This sort of scheme is necessary to minimize

interactions among processes. By extension, the gateways

should not block the individual networks by refusing to take

-164-

Report No. 4931 Bolt Beranek and Newman Inc.

packets from those networks.

Of course any rule may have exceptions, but there should be

a presumption in favor of the above principles. Such principlesI
are difficult to adhere to unless each process that needs a

pool of buffers is capable of getting a large enough pool to

suit its needs most of the time; this assumes that the

gateway will not be chronically buffer-short.

It is important to guarantee that all buffer

management information is "globally" available. Buffer

* management should not be done invisibly by the system calls

that move buffers from queue to queue; rather, the application

aneeds full access to all information about the status of the

buffer system. In particular, any process should be able to

"charge" a buffer to any pool. For example. suppose a

particular packet must move from process A to process B to

*. process C, and that at the time process A sees the packet,

" it is already known that it will eventually get to process C.

Process A should make sure that the buffer gets charged

immediately to whatever buffer pool is associated with process

C, and when process C finally receives the packet, it

must have a way of knowing that the packet is already charged

to its buffer pool, so that it does not get charged a second

time (as in the IMP's "double counting" bugs). The need to make

-165-

• .:~ . .. - : S

Report No. 4931 Bolt Beranek and Newman Inc.

all this information accessible to all processes may be

significant in the design of the system calls or subroutines that

we use to move packets around; it certainly will be

significant in the design of the buffer header formats. Concrete

examples of the applications of these rules for completeness are

described below.

The gateways should never block the networks by refusing to

take packets from them. We can investigate how this applies

in the case of the ARPANET. Each 1822 interface should have a

buffer dedicated to it which is long enough to take an 8-packet

message from the IMP. When a message is received over

the 1822 interface, the PAP Input process should try to get a

free buffer (of maximum message size) to put up immediately for

the next input. If such a buffer cannot be obtained, then

we should process the message ONLY if it is an internet control

message (routing, up/down). If there are any piggybacked acks,

or anything of that nature, we should process them. Then

we should discard the message. and reuse its buffer for input.

While this causes some loss of data, it is necessary so

that we can still receive and process internet control

messages, even when we are out of buffers for handling data

messages. It is also necessary to prevent being declared

tardy.

-'66-

Report No. 1931 Bolt Beranek and Newman Inc.

Since we do process internet control messages, there may be

times when we cannot get enough buffer space to read in a full

8-packet message, but we can get enough buffer space to read

5 in smaller messages. In this case we should still accept input

from the ARPANET. If the input is too long, we should pull it

through and discard it. This will at least enable us to

receive control messages (which are likely to be relatively

short). If this situation persists for any amount of time, the

gateway which is sending to us over the ARPANET will end up

thinking that the delays to us over the ARPANET are very long,

and also that the Pathway to us is congested. This allows the

routing and congestion control procedures to take effect and

reduce the amount of traffic sent to us.

Another example: suppose that lAP sees a packet, and

decides, by looking into the appropriate connection block, that

it cannot send that packet yet because of congestion control

restrictions. It makes sense for lAP to maintain a pool of

7. buffers to use for holding such packets internally, until the

congestion control procedure allows the packets to be sent

through the Internet. However, when this lAP pool is filled, IAP

must discard any further packets which it cannot send

immediately. Any such packets must not be allowed to back up

into the buffering needed to handle 1822 input.

-167-

Report No. 4931 Bolt Beranek and Newman Inc.

Another example: we will want to limit the number of

packets that can be queued to a single access line, so that

one slow network does not utilize all the gateway's

buffers, thereby preventing I/O from/to other networks.

Further packets that arrive at the GO process will have to be

thrown on the floor. If the packets are transit packets

(from a neighboring gateway), this should cause the neighboring

gateway to see a high delay to this gateway. This gateway

should also reflect these discards in its determination of the
1

congestion status of this access line. In the case where

the discarded packet is an IAP packet, we should send a NAK to

the host, IF we can get a buffer to do so.

A number of neighboring gateways may be reachable over a

single network access line. That is, a gateway on the ARPANET

may reach each of many neighbors over a single 1822 access

line. In this case, we may want to reserve a certain amount

of the buffering reserved for that access line for each

neighboring gateway. Since the number of neighboring gateways

may vary dynamically, this must be carefully implemented.

It is interesting to consider the extent to which this nodal

software architecture can be considered to be "layered." This

design attempts to make it possible to "mix and match" protocols

at different layers more or less arbitrarily. That is, a process

-168-

Report No. 4931 Bolt Beranek and Newman Inc.

that handles a particular protocol should not need to know

what protocols are in effect either above or below it.

However, all processes must be cognizant of certain global or

system-wide requirements and goals. In particular, every process

may have buffer management responsibilities which accrue to it

through its role in the system, and which therefore cannot be

specified for that process when considered in isolation from

other processes. Further, higher level protocol processes may

need to know information (such as the source address of a packet

in the local network) which is contained in the envelopes of

* lower level protocols. If we can produce an implementation

following these guidelines, we have a chance of producing a

system which preserves protocol layering but which does not

introduce the inefficiencies and insularities that many

excessively layered systems seem to have. However. producing

this sort of implementation will be quite a challenge.

i 7.3.3 Measurements

The hierarchy of processes discussed above has implications

for the way delay measurements are done and reported to

the routing algorithm, and for the way up/down determinations are

made.

-169-

a

* Report No. 4931 Bolt Beranek and Newman Inc.

The process structure relates to delay measurements as

follows. Each GI/GO pair of processes "controls" the I/O to a

*. particular network. The delay to EACH other gateway on that

network must be computed separately for each access line to that

network. This means, of course, that the GI/GO processes must be

able to tell which access line a packet came from. A single

value of delay to each neighbor must be computed from the delays

*on the various access lines. (For example. the single value of

delay might just be the minimum over all access lines, or it

might be a weighted average.) This generates a value of delay to

each neighbor over the network "controlled" by that pair of GO/GI

processes. This information must be fed up to some higher

level process which computes a single value of delay to each

*: neighbor, based on the delay values to that neighbor over the

individual networks that can be used to reach it. It is this

final value that will be put into the routing updates.

If a packet must be sent to a neighboring gateway and there

are several different networks, or if several different access

lines can be used to the same network, how do we decide which one

to choose? This is not obvious and will require experimentation

with a number of different algorithms. Possible selection

criteria are:

1. Choose the network or access line which provides the

-170-

5-

Report No. 4931 Bolt Beranek and Newman Inc.

Ileast delay. If we use this criterion, we will probably

* :want to report the minimum delay of all the lines and

networks as the Pathway delay to that neighbor. (Even

Sthough we will be sending all data on one access line to

one network, we can use test traffic to measure delays

on other access lines or networks.)

2. Round-robin the traffic among the access lines which

have roughly the same delays (assuming that several

lines have comparable delays, but several others have

larger delays).

3. Split the traffic in proportion to the delays.

4. Use the shortest-delay access line or network until its

queues -Yceed a cer-tain threshold, then use the next

shortest-delay line. etc. A variant: use the

shorkast-delay access line until the number of

outstanding packets on it passes a threshold. This

variant might be useful if we are dealing with HDLC

lines, or in general with lines controlled by a

low-level protocol which limits the number of

unacknowledged packets that can be sent.

5. Base the decision on the type of service requested by

the user.
1

-171l-

Report No. 4931 Bolt Beranek and Newman Inc.

Note that these criteria are by no means mutually exclusive;

rather, we will probably use some combination depending on

the circumstances or the configuration. Furthermore.

some of these criteria require the higher level processes to

be aware of the resource utilization of the lower level

processes.

On occasion, a destination gateway may have to choose among

several access lines or even several networks in deciding how to

send a packet to a destination host. We would like to use the

same sort of criteria we use in deciding how to send a packet to

a neighboring gateway, except that we do not know the delay to

the hosts. In some instances, the network will tell us its

delay to a given host and we can use that as a guide. However.

in such a case, we might want to plan for the

contingency of the network giving us incorrect information.

Just as delay information needs to be passed up the levels

of protocol and consolidated into a single quantity (or at least,

fewer quantities than we had to begin with), the same is true of

up/down information. First, the PAP Level 2 processes must make

their up/down determinations for the individual access lines.

PAP Ls-vel 2 up/down information is generally restricted to saying

whether the access line itself is up or down. That is, PAP Level

2 might be able to tell us that NO host or gateway at all is

-172-

.

,E IE~I , w l ,~ , I . , .•..._•

5

Report No. 4931 Bolt Beranek and Newman Inc.

reachable over that access line, but will not be able to tell us

that any particular host or gateway is reachable over that access

line. Examples of PAP Level 2 up/down might be checking the

Ready Line (1822) or performing the VDH line up/down protocol.

PAP Level 3 up/down might also tell us that no node at all

can be reached over the access line. For example. SATNET host

access protocol has a line up/down determination at level

3 in addition to the VDH line up/down determination at level 2,

and experience indicates that it is not at all unheard of for

level 3 to declare the line down while level 2 declares it up.

. PAP Level 3 might also be able to say that particular

destinations are not reachable over this access line. For

example, an 1822 "destination dead" message might be received.

Both the Level 2 and Level 3 up/down determinations would

correspond to what are called "low level up/down protocols"

in the IENs. The "high level up/down protocols" would

* be at the level of the internet protocol, and would be executed

by GI/GO and by IDP (for neighboring gateways or hosts,

respectively). Note that Pathway down determinations have to

percolate up to higher level processes, so that the processes

do not select networks or access lines which cannot reach a given

destination. The processes must also AND together the down

determinations of the processes "beneath" to determine

whether a particular destination is completely unreachable.

-173-

0

Report No. 4931 Bolt Beranek and Newman Inc.

When this determination is made, it must be reflected in a

routing update (if there is no longer a Pathway to a particular

neighboring gateway) or in the address translation tables

(so that DNA messages can be returned for messages that cannot

be delivered).

-1714-

. U I . . .WE .~ -. •r .- - . - •. . ..

Report No. 4931 Bolt Beranek and Newman Inc.

7.4 Measurements and Tools

7.4.1 End-End Traffic Measurements

PIn order to be able to configure the internet based on

traffic requirements we will need to obtain some sort of end-end

traffic matrix. In this section we like to consider what sort of

-- measurements we need to get the best possible traffic matrix.

We plan to be able to count the traffic in units of internet

- datagrams, as well as in units of 16-bit words. For proper

, configuration of the system it is important to know the

throughput requirement in both packets per second and bits per

1 second, since these two measures are somewhat independent and

encounter different bottlenecks throughout the system.

We would also like to know. for each source host, how much

traffic it sends to each destination host, and what the

• !requirements of that traffic are. That is, if there is a way for

a host to request a particular type of service, we would like to

measure how much of each type of traffic it sends to each

destination host.

A more feasible (though less "precise") sort of end-end

matrix could be computed on a "net-net" basis, rather than on a

.. host-host basis. Each gateway can distinguish between ENTRY

-17 5-

Report No. 4931 Bolt Beranek and Newman Inc.

traffic (entering the Internet here, i.e., not being forwarded by

any neighboring gateway), TRANSIT traffic (traffic coming from a

neighboring gateway and going to a neighboring gateway), and EXIT

traffic (traffic not going to a neighboring gateway). This

distinction is possible since each gateway knows the local

address of each of its neighbors, and can make the distinction by

looking in the local leader as It comes off the input interface.

Note that the same datagram can be both ENTRY and EXIT traffic at

the same time. but something cannot be TRANSIT traffic at the

same time as it is ENTRY or EXIT traffic. Each gateway can

maintain sets of counters for each input interface. Each set of

counters would correspond to the amount of traffic destined for

some particular destination net which arrived over that input

interface. Each set of counters should contain three words -- a

single precision count of datagrams, and a double precision count

of words. Periodically, each gateway should send all its

counters to the collection point, zero the counters. and keep

counting. When we collect and process all this data, we can

produce a net-net traffic matrix. (Actually we get a somewhat

more precise matrix, of "gateway interface"-to-"destination

net".) This will be very interesting and will aid in

understanding what is happening in the Internet.

As an extra source of information we could perform the dual

-)76-

Report No. 4931 Bolt Beranek and Newman Inc.

measurement, i.e., count EXIT traffic at each output interface.

by source net.

7.4.2 Internal Gateway Measurements

This section deals with what we might call "profile"

- measurements, i.e., measurements which provide a regular profile

of gateway activity, performance. and resource utilization. The

measurements described below are intended to be those that might

be kept as a matter of course, and run continuously as part of

the normal gateway code.

U .QuLOJL Lenugth Measurements

A measurement should be kept for EVERY queue in the gateway.

For each queue. there should be the following three counters:

a) Total queue items -- each time an item is added to the

queue. bump this counter by 1.

b) Accumulated queue length -- before adding an item to the

queue, find the queue's current length, and add this to a

counter.

c) Maximum queue length -- self-explanatory.

Dividing counter b by counter a gives a useful measure of

-177-

2 -, -:'.. .. : -i .---...- - : . ..

Report No. 4931 Bolt Beranek and Newman Inc.

average queue length. This is not the "average over time" (which

in normal situations almost always turns out to be zero), but

rather "the average number of items which a given item must wait

for", or, more figuratively, "the number of items queued ahead of

* the average item." Counter c gives a rough and ready indication

of the variance.

"Waitin Ime" Measurements

This is similar to the queue length measurement, but is

* given in units of time. rather than queue items. When a packet

enters the gateway, stamp it with its arrival time. When it

reaches the front of its output queue. AND the gateway begins to

transmit it to the network, compute the difference between the

*current time and the arrival time. and add this to a counter.

*Dividing this by the value of counter a above gives the average

waiting time (time between arrival and transmission) of a packet.

This count should be kept in double precision. A maximum

value should also be kept.

"Transmission me" Measurement

This measurement indicates whether the gateway, when

* transmitting messages to the network, is being held off by the

network. When the gateway begins to transmit a message out a

-178-

* , + + . . -a.

Report No. 4931 Bolt Beranek and Newman Inc.

network interface, take a time-stamp. When transmission

* completes, compute the total time spent in transmission.

This count should be kept in double precision. A single

precision maximum value should also be maintained.

Routing Measurements

These measurements incrude:

a) a count of the number of routing updates generated by

this gateway.

b) a count of the number of routing updates received from

each "neighboring" gateway. (That is, keep a separate

count for each neighbor.)

c) For each gateway in the Internet, a count of the number

of times this gateway sees the Internet go down.

d) For each gateway in the Internet, total amount of time

this gateway sees the Internet as down.

interface UIDA= Statistics

These measurements include:

a) a count of the number of times each interface goes down.

-179-

Report No. 4931 Bolt Beranek and Newman Inc.

It remains to be defined what "interface goes down" means

for each network that might be connected to the gateway.

For the ARPANET, probably we mean to count IMP ready line

flaps.

b) an accumulated count of the total amount of time each

interface is down.

Whenever a request for a buffer of a particular kind is

made, a counter is incremented. At the same time, the number of

free buffers of that kind is added to a second counter. Dividing

the second by the first gives the average number of available

buffers of that kind per request. This provides a good

indication of whether buffers are a scarce resource, on average.

Traffle Measurements

Messages sent out a particular network interface can be

addressed either to another gateway on that network, or to some

destination host on that network. Each of the following counters

should be kept separately for each neighboring gateway reachable

over an interface, and there should be a set of counters lumping

in all the traffic going over an interface which will terminate

at that network.

-180-

. p * .* . / - - --l i l- i -" - "- I . . .I . . .

Report No. 4931 Bolt Beranek and Newman Inc.

Ia) Number of data packets sent.

b) Number of data words sent.

Pc) Number of control (ICMP, GGP) packets sent.

d) Number of words in control packets sent.

e) Number of packets discarded because there was no room on

the output queue.

f) Number of packets discarded because fragmentation was

unsuccessful.

* g) Number of packets discarded due to RFNM counting

restrictions or similar network-specific flow control.

A similar set of measurements should be kept for each input

S interface, or rather, for each inpit interface there should be a

set of counters for traffic from each neighboring gateway. as

*well as for traffic originating from the connection net:

a) Number of data packets received.

b) Number of data words received.

c) Number of control packets received.

d) Number of words in received control packets.

-181-

Report No. 4931 Bolt Beranek and Newman Inc.

e) Number of packets discarded because there was no free

buffer for the next input.

f) Number of RFNMs (or equivalent, e.g., SATNET ACCEPTs)

received.

g) Number of DEADs received (or equivalent)

h) Number of INCa (or equivalent, e.g., SATNET REJECTs)

received.

i) Count of packets dropped because of "net unreachable."

j) Count of packets dropped because of "host unreachable."

k) Count of packets dropped because of the time-to-live.

1) Count of packet dropped because of "parameter problem."

Generatio f ontoesae

This measurement simply counts the number of each kind of

ICtP message (including echo replies) generated.

Co±ne ia Data

This sort of data should be collected continuously under

control of a NU monitoring system. We would specify a time-

interval for each collection message. At the end of that

-182-

Report No. 4931 Bolt Beranek and Newman Inc.

Einterval, the counters would be packaged up and sent to NU in

response to an HMP poll. When the counters are packaged up, they

are then zeroed, and counting continues for the next interval.

2Note that every collection message will contain the data for a

fixed time interval (which itself should be recorded in the

message), so that no special initialization procedure is needed.

7.4.3 Tracing Facility

The ARPANET trace package is a means of gathering data about

individual packets, as opposed to mere averages or totals. In

considering the design of a trace package for gateways, there are

three basic issues of concern: (a) what information should be

gathered about each traced packet? (b) how should a particular

class of packets be selected to gather this data? and (c) howU
should the data be collected?

Infomation q Gather

For each traced packet, we would probably like to know all

of the following:

a) Everything about its IP leader.

b) Which interface it came in on.

-183-

I

Report No. 4931 Bolt Beranek and Newman Inc.

c) Everything about its local leader on that interface.

d) Which interface it went out on.

e) Everything about its local leader on that interface.

f) Time packet was received at gateway.

g) Time gateway began transmission to network over output

interface.

h) Time transmission was completed.

i) Time packet was "acked" by local network. In the ARPANET

context, this means the time a RFNM, INC, or DEAD was

received. In the SATNET context, this means the time an

ACCEPT or REJECT was received.

Note that if a packet is discarded, we still want to collect its

trace data; however, instead of output time stamps we need an

indication that it was discarded and why.

Basically, this information tells us how the trip through a

single gateway looks to a particular packet. It allows us to

correlate the performance of each packet with almost anything

about the packet that may be of any relevance, since we have all

the relevant data about the packet.

-18L-

71

Report No. 4931 Bolt Beranek and Newman Inc.

Seeta Criteria

a) Mask on any set of bits in the IP leader. That is, on a

packet selected for tracing, we should be able to specify

anything that might possibly appear in the IP leader,

such as source host, destination host, type of service, a

trace bit that we might define and make host-settable. or

type of message (ICMP type, data, etc.).

b) Select all packets arriving over a particular input

interface and leaving over a particular output interface

(of course, we would have to specify a "don't care"

value, so we could, for example, get all packets arriving

over a certain interface but departing over any

interface).

c) Mask on any set of bits in the input local leader and

output local leader.

d) Gather information on discarded packets -- in this case

the transmission time stamp should be replaced by a code

indicating the reason for discard, and the ack time-stamp

is unused.

We would probably generate too much trace traffic if we got

a trace message for every packet satisfying certain criteria. We

.-. -1 85-

Report No. 4931 Bolt Beranek and Newman Inc.

have to define a parameter N so that we get trace data about

every Nth packet satisfying those criteria. We also want to make

sure that we do not end up tracing the traces of trace data,

which means we should probably mark trace data distinctively, in

order to avoid tracing it.

Collectin Procetef

In the ARPANET. each IMP has a fixed number of trace blocks

allocated. When the decision is made to select a particular

packet for tracing, a free trace block is obtained and associated

with that packet. (If no free trace block is available, an

overflow counter is bumped and that packet is not traced.) The

appropriate fields in the trace block are filled in as the

information becomes available, and the packet itself is marked to

indicate that it is being traced. When the ack for the packet is

received, the trace block is marked as finished. (This could be

a little trickier to implement in the gateway than in the IMP,

since the gateway does not hold the packets until acked.)

Periodically, a scan is made of all the trace blocks to see

whether any are finished. If so, the finished ones are sent

(along with the overflow count, which is then zeroed) in a single

message to the collection point. Presumably, the sending would

be under the control of the HMP, which could poll for finished

trace blocks, or else the finished trace blocks could be sent

-186-

Report No. 4931 Bolt Beranek and Newman Inc.

Ilike traps.

Originally, the ARPANET trace package was intended to be

able to trace a packet along its entire path, getting a trace

block for the packet from each node that it traversed. In fact.

it is hard to actually get all the trace data back, and difficult

to collate all the traces of a single packet. Some traces always

- seem to be missing. The trace facility can be used to

* investigate the characteristics of intra-node delay on a per-

packet basis. Tracing often reveals the large dynamic range and

variability of the delay in a way which could not be revealed by

averaging. It is also used to investigate long delay problems,

by trying to see if the long delays in an IMP would correlate

with some aspect of the packets experiencing the long delays.

7.4.4 Cross-Network Delay

One important facility will be the measurement of cross-

network delays from one gateway to a neighboring gateway. To

introduce delay-oriented routing into the Internet. we will first

have to study the delay characteristics on a "gateway-to-

neighboring-gateway" basis, and a measurement facility is an

important first step.

We need some sort of "round-trip" measurement, which would

-18T-

Report No. 4931 Bolt Beranek and Newman Inc.

enable us, insofar as is possible. to separate intra-gateway

delays from delays experienced in the networks themselves. One

approach is to mark certain packets as "special." and cause

gateways receiving special packets to return replies for them to

the gateway that sent them (i.e., to the gateway that was the

previous hop, not the the "source gateway"). These replies

would contain three pieces of data: (1) the time the the special

packet to which this is a reply was received, (2) the time the

transmission of this reply on its output interface was begun, and

4(3) an identifier for the special packet. Note that subtracting

time (1) from time (2) gives the intra-gateway delay experienced

by the reply.

A gateway which sends a special packet would keep a block of

data for that packet. This block of data would contain the

packet id, the time transmission out the output interface was

begun, the time it was completed, the time a reply from the

network (RFNM, DEAD, INC, SATNET REJECT or ACCEPT) was received,

the time the reply from the neighboring gateway was received, and

the intra-gateway delay of the reply (obtained by subtracting the

two time-stamps contained in the reply). This data supplies good

information about the cross-network round-trip time. and allows

us to distinguish true network delays from intra-gateway delays.

No synchronized clocks are needed.

-188-

J.:

Report No. 4931 Bolt Beranek and Newman Inc.

I - When all the information is gathered, the block can be sent

to some collection point. This is a slightly different sort of

trace package than the one described previously, so the same

Scollection mechanism or block allocation mechanism can be used.

In studying delay characteristics, it is important to be

able to get samples of real user traffic, rather than just

getting data about artificially-generated test traffic. In order

to mark arbitrary packets as "special." we plan to steal a bit

from the IP leader which we Can set in any user packet (we might

set it in every 10th packet, for example. though it is preferable

to be able to get a random sample). This enables collection of

round-trip data from real user packets. One issue is whether or

r not the gateway that receives a special packet turns off the

"special" bit. We also want to be able to generate packets which

already have the special bit turned on, either with message

generators internal to the gateways or with message generators in

ordinary hosts.

7.4.5 Message Generator

The ideal message generator would allow one to generate

messages with an inter-message interval which varies at random,

according to some probabilistic distribution. It would also

-189-

Report No. 4931 Bolt Beranek and Newman Inc.

allow one to vary the lengths of the generated messages according

to some probabilistic distribution. Such generators should be

included in the gateways, or in stand-alone or host-based traffic

generators.

The message generators will be remotely controlled from the

m onitoring center. We include the ability to specify all fields

of the IP leader that is to be carried in the generated message.

but the message generator has to have built-in defaults for

those fields which we do not specify during a particular run. In

particular, we have to be able to set up the message generator to

send any kind of ICMP message we choose.

The same is true of the "local" leader. We need to be able

to specify all fields of the "local" leader which the generated

message will carry. but defaults are also needed.

We need to choose a protocol number to indicate the "message

generator" function of a gateway. Messages sent by the message

generator will carry this number in the "protocol number" field

of the IP leader, UNLESS we specify something else to go there.

That is, this protocol number should just be a default.

Anything which arrives at a gateway and whose IP destination

address is that gateway itself, but whose protocol number is the

message generator number, will be discarded. This allows the

-190-

"o

Report No. 4931 Bolt Beranek and Newman Inc.

message generator "fake host" (in IMP parlance) to double as a

"discard fake host," and in particular ensures proper handling of

echo packets sent by the message generator.

The message generator should keep a count of the number of

IP datagrams it generates and the number it receives (when

doubling as discard).

The message generator should NOT be turned on with a simple

on/off flag, but rather with a timer. There should be NO way to

turn the message generator on forever. It should always go off

automatically after a certain time elapses; however, we do need

flexibility in the amount of time specified. This is important

for two reasons: first, it prevents a generator from running

accidentally for weeks at a time. causing needless traffic;

second, if we ever generate so much traffic that we cause severe

congestion (which is a test we will probably want to do), we can

be sure that the traffic will eventually stop even if we cannot

get a "turn it off" message through because of the congestion.

Another issue is the inter-relation of the message generator

with the buffer management. We must make sure that the message

generator does not take the last buffer that is available for

* -input from any real network interface; that is, we must continue

* to serve all the input interfaces. It would be interesting to

-191-

Report No. 4931 Bolt Beranek and Newman Inc.

know how many generated packets would not be sent because of lack

of buffers. This suggests that the message generator should have

two counters: one for "messages generated," and one for

"messages actually queued for output." Suppose that a packet

arriving over some input interface for the "discard fake host" is

in the last available buffer for that interface. If the packet

were really destined for some output interface. it would be

discarded so that we could keep on doing input on all interfaces.

If the packet were destined for this gateway's "discard," it

would be discarded anyway of course, but perhaps we should not

count it as a packet received by "discard." If it were a real

packet, it would get lost here, so by not counting it we would

get a more representative count of what real traffic would see.

We should have two counts: one for the total number of packets

arriving for "discard fake host," and one for the subset of those

packets which would be discarded for buffer management reasons,

even if they had not been destined for the discard fake host.

1

-192-

. o.

* Report No. 4931 Bolt Beranek and Newman Inc.

APPENDIX A. THE SIMULATION COMMAND LANGUAGE

*This appendix describes how to run the simulator. It refers

to version 1.0 (May 1, 1981) of the simulator. There are

sections on creating a network, specifying traffic and routing

matrices, producing simulation output. and actually running a

simulation.

When you start up the simulator, it will type out a line

* giving the version number, then a prompt:

Arpanet Simulator Version 1.0. May 1. 1981

Command:

and then you can type commands. Commands are identified by their

first word. A number of arguments follow the first word; these

arguments may be numbers, words or filenames. For example:

Command: TRACEFILE MYFILE.TRA

Command: QUEUE 0 0 1 0 0

Command: IMP 12 TIMEOUT 0.001

The three commands shown are the TRACEFILE command, the QUEUE

command, and the IMP command. Note that you do not type in

"Command: "; it is printed out by the simulator. From now on,

the examples will show only what you type. Most commands must

* fit on a single line; assume that this restriction holds except

-193-

....... i*

Report No. 4931 Bolt Beranek and Newman Inc.

where you are told otherwise. Under certain circumstances, the

IMP, HOST. LINE and MODEL commands can continue over several

lines. This will be explained below.

The simulator ignores the distinction between upper and

lower case; all input is first converted to upper case. Simula

imposes the restriction that numbers should not end with a

period. Use 01.0" instead of "l.". Simula also imposes the

restriction that file names must be no more than 6 characters,

with an extension no more than 3 characters.

A.1 Creating a Network

The simulation provides a number of commands for describing

the network that you would like to simulate. The simulator

allows you to set up a network consisting of a number of nodes,

called IMPs, connected together by lines. Each IMP may have a

number of hosts connected to it. Any host in the network can

generate traffic for any other host in the network.

The simulation provides a way to specify, create, and

modify IMPs, lines, and hosts. It also allows defaults to be set

up in a convenient manner.

The first thing you must do when describing the network is

to tell the simulator how large the network is. The INIT command

-194-~

.--........ ;"
." - . .

w

Report No. 4931 Bolt Beranek and Newman Inc.

r specifies the number of IMPs and the number of lines:

INIT 64 162

This says that the network contains 64 IMPs and 162 lines. A

line is a one-directional (or simplex) connection from one IMP to

another. The maximum number of IMPs in the simulation is 100.

This restriction is quite arbitrary. and can be changed fairly

easily. There is only one other such restriction in the

simulation; it has nothing to do with the size of the simulation.

It will be described in the next section.

The general format of commands for defining and creating

IMPs, hosts and lines is:

<command> <object-specification> <arguments>

The argument list is always optional. Objects are created when

they are mentioned for the first time. The next time they are

* mentioned the argument list simply specifies changes in

attributes (such as the error rate on a line). Unless otherwise

indicated, you can change the attributes of a host, IMP or line

at any time in the simulation.

For IMPs, you must give the IMP number:

IMP 53 <arguments>

-195-

Report No. 4931 Bolt Beranek and Newman Inc.

except that when you mention the IMP for the first time you must

specify the number of lines and number of hosts attached to the

IMP:

IMP 53 3 5 <arguments>

which creates IMP 53 and specifies that it has 3 lines and 5

local hosts. For hosts, the host and IMP number must be

specified:

HOST 2/53 <arguments>

which refers to host 2 on IMP 53. To connect two IMPs together

one simply gives their numbers:

LINE 53 60 <arguments>

which refers to the line from IMP 53 to IMP 60. The line in the

other direction, from IMP 60 to IMP 53, must be created and

referred to separately.

4i Since the IMP has dozens of attributes, and many of them are

the same for all IMPs, it makes no sense to force you to repeat

every attribute for each IMP you create. You can set up default

o values for attributes of IMPs, hosts and lines by using models.

You can think of a model in the sense of "model 316 IMP," but a

model is really Just a set of defaults. A model is created in

-196-

* . *.

w

Report No. 4931 Bolt Beranek and Newman Inc.

Imuch the same way as an IMP, host, or line:

MODEL <object> <number> <arguments>

where object is "IMP," "HOST." or "LINE," number is the model

number, and the arguments specify the model defaults. For

- example:

MODEL IMP 0 <arguments>

MODEL HOST 3 <arguments>

MODEL LINE 2 <arguments>

Model IMPs are quite separate from model hosts and model lines.

There can be up to 11 of each, numbered from 0 through 10. This

is one of two arbitrary restrictions in the simulation. (The

*other is the maximum number of IMPs in the network, namely 100.)

Since the attributes of a model IMP are exactly the same as

those of a particular IMP, the arguments you can give in a model

IMP command are exactly the same as the arguments you give for a

particular IMP. This is also true of model hosts and model

lines. The attributes and arguments are described below.

Every IMP, host and line in the simulation has a model. The

model can be specified explicitly when the IMP, host, or line is

created:

-197-

Report No. 4931 Bolt Beranek and Newman Inc.

IMP 53 2 5 MODEL 2 <arguments>

HOST 2/53 MODEL 1 <arguments>

LINE 53 60 MODEL 2 <arguments>

As shown, the model must be specified first. before any other

arguments. The model should be specified when the IMP (or host

or line) is created, and not otherwise. If it is not specified,

model 0 is assumed. The effect of the model is to copy ALL the

attributes from the model to the IMP, host, or line.

Every model also has a model. It can be specified

explicitly:

MODEL IMP 2 MODEL 1 <arguments>

or it will default to model 0. The effect of the above example

is to make model 2 exactly like model 1, except for the

attributes of model 2 which are given in the argument list.

* Since any unspecified attributes always default to those

given in model 0, it makes sense to define model 0 immediately

after the INIT command:

INIT 64 162

MODEL IMP 0 <arguments>

MODEL HOST 0 <arguments>

MODEL LINE 0 <arguments>

-198-

Report No. 4931 Bolt Beranek and Newman Inc.

Then you should create any other models, then the IMPs, then the

hosts and lines.

A.2 An Example Network

Suppose we want to create the following network:
7- ,

(2 local hosts) (1 local host)

IMP 1 ------------------ IMP 2

* I\
"I \I

IMP 3 ------------- IMP 4

(1 local host) (2 local hosts)

Note that the connections between IMPs represent a line in each

direction. This network has 4 IMPs and 8 lines:

INIT 4 8

Assume that the IMPs all have the same attributes, which have

been given in a model statement; this is similar for hosts and

lines:

MODEL IMP 0 ...

MODEL HOST 0 ...

" MODEL LINE 0 ...

* Then we can specify the topology with a series of IMP, host, and

-199-

Report No. 4931 Bolt Beranek and Newman Inc.

line commands which do not have to give any attributes. There

are four IMPs; we must specify the number of lines and number of

hosts for each:

IMP 1 3 2
IMP 2 2 1
IMP 3 1 1
IMP 4 2 2

Here all attributes will take the model 0 defaults. It is

similar for the hosts, we Just have to create them without any

special attributes:

HOST 1/1
HOST 2/1
HOST 1/2
HOST 1/3
HOST 1/4

HOST 2/4

For the lines, we have to give the IMP on each end:

LINE 1 2
LINE 1 3
LINE 1 41
LINE 2 1
LINE 2 4
LINE 3 1
LINE 4 1
LINE LI 2

This completes the description of the topology.

2

i -200-

I

Report No. 4931 Bolt Beranek and Newman Inc.

A.3 Format of IMP, Host. and Line Arguments

The <arguments> section of the command is used to specify or

change attributes of the IMP, host or line. There are dozens of

attributes for the IMP, and a few each for the hosts and lines.

The argument list is made up of a sequence of subcommands:

Oki IMP 53 <subcommand> <subcommand> ...

Each subcommand has the general form:

<subcommand name> <subcommand arguments>

With a few exceptions, each subcommand has a single argument.

Typically, they will refer to timing parameters, error rates, or

output flags:

DEBUG ON

TIMEOUT 0.025

TASK 0.001

LUD 3 20 60

In the case of attributes of input or output processes,

which may be different for different lines or hosts, an alternate

command form can be used:

<subcommand name>/<index> <subcommand arguments>

* .2.

.. --

Report No. 4931 Bolt Beranek and Newman Inc.

where index is the neighboring IMP number that specifies which

input or output process is to be affected. For example:

RETRANSMIT/60 1.6

The retransmit command sets the interval between retransmissions

of an unacknowledged packet. The example above sets this time to

1.6 (seconds), but only for the output line (and process) which

connects this IMP to IMP 60. The "/<index>" may be omitted, in

which case the subcommand refers to every instance of the

attribute in the specified IMP.

A.4 IMP Attributes

TASK t task processing time

MODEMIN t modemin processing time

MODEOUT t modeout processing time

TIMEOUT t timeout period

RETRANSMIT t retransmission period

HOSTIN t Host.n processing time

HOSTOUT t HostOut processing time

RATE r IMP clock runs at r times real time

FASTOFFSET t IMP clock will start running at time t

DELAYOFFSET t routing will start at time t

THRESHOLD t initial threshold for delay is t seconds

-202-

Report No. 4931 Bolt Beranek and Newman Inc.

DECAY t threshold will decay t seconds each period

PACKET ON/OFF turn packet tracing on or off

DEBUG ON/OFF turn debugging output on or off

NODE ON/OFF turn CPU utilization tracing on or off

QUEUE ON/OFF turn queue length tracing on or off

LATENCY t NodemIn latency (between packets)

SLOWTIMEOUT t SlowTimeout processing time

FASTTIMEOUT t FastTimeout processing time

DELAYAVGPERIOD fast ticks between delay computations

LINEUDPERIOD fast ticks between line up/down ticks

UPDATEAGINGPERIOD slow ticks between updating aging

REROUTE t rerouting processing time

SINK t fake host input processing time

SOURCE t fake host Output processing time

DUMMY t dummy background process processing time

MSGRATE r message generator message rate: slow ticks/msg

PRIORITY p message generator message priority

LENGTH 1 message generator message length

DESTIMP i message generator destination IMP

DESTHOST h message generator destination host

DELUNITS x units for quantized delay

AVGDELMAX x maximum reportable average delay

AVGUNITS x units for quantized average delay

WORDSIZE w number of bits in average delay computation

-203-

Report No. 4931 Bolt Beranek and Newman Inc.

PACKETLENGTH maximum length b packets in bits

NUMBUFFERS n number of buffers in IMP

HOSTDISCARD ON/OFF vestigial: do not use

A.5 Host Attributes

SINK t PacketSink processing time

PACKET ON/OFF turn packet tracing on or off

QUEUE ONIOFF turn queue tracing on or off

DEBUG ON/OFF turn debugging output on or off

RATE d message rate distribution

LENGTH d message length distribution

A.6 Line Attributes

ERROR r bit error rate is r

LAG t propagation delay is t seconds

SPEED s line speed is s bits/second

PACKET ON/OFF turn packet tracing on or off

DEBUG ON/OFF turn debugging output on or off

NUMCH n number of channels in line protocol

LUD k n nup line up/down protocol parameters

FRAMING b hardware framing in bits

All times t, the error rate r, and the line speed s must be

positive. Where ON/OFF is shown, the command must have ON or

I

-2011-

Report No. 4931 Bolt Beranek and Newman Inc.

E OFF. The message rate and message length distributions can be

either NEGEXPONENTIAL or DETERMINISTIC.

A.7 Global Network Parameters

1
In this section we will describe network parameters which

are set with their own commands, rather than being set separately

for each IMP, host, or line in a subcommand. Some commands have

-L already been described; some are described in this section; some

are described in the following sections on routing, files, and

tracing and debugging.

SEED i

Set the value of the random number seed to i. Except in

exceptional circumstances, this command only makes sense before

any other commands (e.g., immediately before the INIT command).

Do not use this command AT ALL unless you are SURE you know what

you are doing. The default value is 314159.

UPDATE 1

LINEUPDOWN 1

* MULL 1

Set the length of routing updates, line up/down protocol or

null packets to 1 (bits). This does not include protocol

overhead or hardware framing. This may be set or changed at any

-205-

a~', ~ -- i .:i -".. : i " --' . . . ',

Report No. 4931 Bolt Beranek and Newman Inc.

time during the simulation. The default value is 0.

OVERHEAD n

Protocol overhead is n bits per packet. This is the same

*' for the whole network. The other sort of overhead is hardware

framing, which is set individually for each line by the FRAMING

command. When the simulation reports the length of a packet, the

protocol overhead is included. The only thing in the simulation

which is affected by packet length is the transmission time on

the lines. For this purpose, the packet lenfth (including

overhead) is taken from the packet and the framing from the line,

and the two are added together to give the total length.

A.8 Routing

Routing is the procedure used to determine the path which a

packet takes from its source to its destination. The simulation

allows three possibilities: fixed, random, and shortest path

first (or SPF). SPF routing, the algorithm used in the ARPANET,

is the default for the simulation; it is described in Sections

4.13 through 4.15.

The SPF routing protocols can be run in either of two modes:

enabled or disabled. The simulator starts with SPF routing

running disabled; it may be enabled using:

-206-
,U

Report No. 4931 Bolt Beranek and Newman Inc.

SPFROUTING ON

When the protocol is running disabled, the average delay out each

line is still computed, and updates are still flooded through the

network, but IMPs do not recompute their forwarding tables when

.- an update arrives (or is generated). Thus, although delay

information in each IMP is kept current, the routing is fixed.

This is useful at the beginning of the simulation because,

otherwise, the algorithm will use the minimum hop route. In the

case of traffic loads near saturation, this choice of routes may

overload one or more lines, probably causing the routing

": algorithm to oscillate, a condition from which it may never

recover. The solution is to initialize the IMPs' forwarding

tables to some set of routes which do not cause a line to

overload (using the "ROUTE" command, described below), run

traffic through the network for one or more delay averaging

periods with SPF routing running disabled, then enable the

protocol. Running traffic through the network with the protocol

running disabled allows accurate average delay information to be

accumulated without the danger that routing will be affected by

incomplete or transient data.

There are two sorts of fixed routing: single-path and

multiple-path. Single-path routing means that all packets at a

given IMP for a given destination are routed the same way. Note

-207-

• - ::..' -- i~ d",-:i'j ,, -,, ,,,m, i '.h/ , ,...,.. "

Report No. 4931 Bolt Beranek and Newman Inc.

that this applies to all IMPs in the path, not just the source.

You must indicate that you want fixed routing, and also specify

the routing matrix, which for each IMP gives the next IMP in the

path to a given destination. The routing specified in our

example network is shown below:

FIXEDROUTING
ROUTE 1 0 2 3 4
ROUTE 2 1 0 1 4
ROUTE 3 1 1 0 1
ROUTE 4 1 2 1 0

The command "SROUTE" is synonymous to "ROUTE." Note that the

diagonal of the matrix is all zeroes. The simulator is clever

enough to realize that once a packet IMP i gets to IMP i, routing

is no longer needed. It does not matter what you put in those

entries of the matrix, by convention they are set to zero.

Consider the line which reads:

ROUTE 4 1 2 1 0

and refer back to the diagram of the network. This says that

when a packet reaches IMP 4, it can be forwarded as follows:

-208-

Report No. 4931 Bolt Beranek and Newman Inc.

destination forwarded

1 directly to 1

2 directly to 2

U3 vial1

4 - doesn't matter -

Multiple-path routing means that a fraction of the packets

at a given IMP for a given destination are routed to each of that

IMP's neighbors. This means that for a given source-destination

flow, each of a number of different routes will carry a fraction

of the flow. A single entry in the routing table specifies the

fraction going to each neighbor for a particular IMP and

destination. For example:

MROUTE 4 1 (1 0.5) (2 0.5)

in our example network means that of the packets at IMP 4 which

are destined for IMP 1. half should be routed directly to 1. and

half routed via IMP 2. Note that to complete IMP 4's routing

table, we would also have to specify the splitting fraction for

packets to IMP 2 and IMP 3. In practice. not all flows will

split at every node. so it is possible to define the network

routing by giving a single-path routing matrix for flows which do

not split, then giving MROUTE commands for those that do. It is

legal to combine SROUTE and MROUTE commands in any order, and the

-209-

Report No. 931 Bolt Beranek and Newman Inc.

last one mentioned overwrites any preceding definitions for each

IMP and destination. (That is, an MROUTE command defining the

routes for a particular IMP and destination will not affect the

routes for that IMP and other destinations.)

Random routing simply means that when a packet arrives at an

IMP, if that IMP is not its destination, it is forwarded to a

"! neighbor of that IMP chosen at random, possibly back where it

came from. To set random routing, simply give the command:

RANDOMROUTING

and probability will take it from there. This form of routing is

easier to analyze.

If you use SPF routing, it is useful to be able to find out

what routing is being used in the network. The command:

PRINTROUTING

causes the routing tables in every IMP to be printed out on the

debugging file. This table is in the same format as you would

use to input the routing for fixed routing using ROUTE commands.

The PRINTROUTING command may be given at any time. If single-

path routing is in use, you will get back exactly what you put

in; if random routing or multiple-path routing is in use, the

output will make no sense at all.

-210-

'I , - --- -"

Report No. 4931 Bolt Beranek and Newman Inc.

rIf you want the routing table in just one IMP, give an

argument to PRINTROUTING. For example:

PRINTROUTING 10

will print out only the routing table in IMP 10.

A.9 Disabling Protocols and Buffer Limits

In Section A.8 we described various options for the routing

protocol. In this section we describe how to disable the IMP-IMP

reliable transmission protocol and buffer management limits. The

intention is that the simulator have two different operating

modes: realistic, and analytic. In the analytic operating mode,

the above protocols are disabled, making the simulator roughly

comparable to analytic models, which cannot handle adaptive

routing, or buffer and line protocol limits.

It is a feature of the present buffer scheme that the number

of buffers allocated to the store-and-forward function depends

only on the number of lines attached to the IMP, not on the total

number of buffers available. Thus, the number of store-and-

forward buffers will be limited even if the number of buffers in

an IMP is set to a very large number. The command:

NOBUFFERLIMIT

-211-

r •

Report No. 4931 Bolt Beranek and Newman Inc.

sets the buffer limit for each function in every IMP to a very

large number.

The reliable transmission protocol which runs between each

pair of (connected) IMPs imposes a limijt on the number of packets

which can be waiting for acknowledgment in the sending IMP. It

also includes acknowledgment of packets which have been accepted

by the receiving IMP, and retransmission by the sending IMP if a

packet is not acknowledged within a certain time. To effectively

remove the limit on the number of unacknowledged packets, the

limit can be set to a large number:

LINE 1 3 NUMCH 100

However, 100 is too small a number to rule out the possibility

that the limit will occasionally be reached, but too big to allow

every line in the simulation to use this limit without running

out of space for the necessary data structures. In addition,

this approach does not eliminate the processing and line

bandwidth caused by acknowledgments and retransmissions. A line

subcommand is therefore provided to disable the protocol

completely:

LINE 1 3 LINEPROTOCOL OFF

This has the effect of stopping acknowledgments and

-212-

I 1. ...

Report No. 4931 Bolt Beranek and Newman Inc.

retransmissions, and removing the limit on the number of

unacknowledged packets. In order to save space, the number of

channels on the line should be set to 1:

LINE 1 3 LINEPROTOCOL OFF NUMCH 1

This command must be given separately for each direction on each

line (or the MODEL default mechanism must be used when the line

is created).

A.1O Network Traffic

Traffic is generated in the hosts in the form of messages.

A message is simply a given number of bits of data, from a

particular host and IMP, to be sent to a particular host and IMP

at a specified priority level. When the host that generates a

message gives the message to its IMP, the message is broken up

into a number of data packets. Each packet is sent through the

network independently and delivered to the destination IMP and

* host. A message may be any length; the maximum length of the

packet is an attribute of the IMP. It can be set separately for

-. each host.

A message flow is simply a sequence of messages from a

single IMP and host, to a single IMP and host, with a specified

-21 3-

U

Report No. 4931 Bolt Beranek and Newman Inc.

priority. There is no limit on the number of message flows which

you can start. You must specify the source and destination, the

rate at which messages are to be generated, and the average

message length. The priority is optional; it is defaulted to 4.

Unless you are a sophisticated user, you should only use

priorities numerically greater than or equal to 3. Note that

priority 3 is higher than priority 4.

Message flows are initiated by using the START command. For

example:

START 2/1 1/4 1.5 2000 5

starts a flow from host 2 on IMP 1 to host 1 on IMP 4, at an

average rate of 1.5 messages per second, and an average length of

2000 bits, at priority 5. The time between messages may be

either fixed or random. Similarly, message lengths may be either

fixed or random. The only random distribution which is

implemented by the simulator is the negative-exponential

distribution. The choices are specified using host subcommands:

RATE for message rate, and LENGTH for message length. The two

possible values are DETERMINISTIC and NEGEXPONENTIAL. For

*I example, to specify messages arriving at fixed time intervals

with randomly chosen lengths, you type:

HOST 2/1 RATE DETERMINISTIC LENGTH NEGEXPONENTIAL
2

-21 LI.-

1

Report No. 4931 Bolt Beranek and Newman Inc.

E Although you can have many message flows from the same host, with

different average values, the distribution must be the same.

For certain analytic models, or to test the network, it isK
convenient to generate uniform traffic from each IMP to every

other IMP. The command:

-,UNISTART r 1 p

starts equal message flows from each IMP to every other IMP, at a

total rate of r messages/second, with an average length of 1

bits. The argument p specifies the message priority: it is

optional -- the default is 4.

* Each flow from IMP i to IMP j is from host 1 on IMP i to

" host 1 on IMP j. A subsequent UNISTART or START command will

start a flow or flows separate from these flows.

It is not possible to change message flows once they have

* been started. To get that effect, you should stop the message

flows and restart them with the new values. To stop a message

flow, use the STOP command:

STOP s d

!- which stops all message flows from IMP s to IMP d. Both s and d

are optional: if d is omitted all flows from IMP s are stopped;

1.i-. -21 5-

Report No. 4931 Bolt Beranek and Newman Inc.

if both s and d are omitted all flows in the simulation are

stopped. Note that you cannot specify individual hosts; this

command stops the message flows to or from all hosts on the

specified IMPs.

A.11 Files, Input and Output

The simulation uses standard Simula input/output facilities,

which are very bad. This section will describe how to fight the

system and not lose.

The simulation uses three output files: a file for echoing

input, and files for tracing and debugging output. The echo file

is simply a file to which the simulator echoes all input; tracing

and debugging are described in the following sections. The files

can be changed using the commands:

ECHOFILE test.ech

DEBUGFILE test.deb

TRACEFILE test.tra

Filenames must be less than six characters with three-character

extensions. The default for each output file is "NUL:". which

discards all output.

At any particular time. the simulator is reading commands

from a single input file. but input files may be nested. If you

-216-

Report No. 4931 Bolt Beranek and Newman Inc.

1C give the command:

READ test.dat

the simulator leaves the current input file and begins reading

commands from "test.dat." If test.dat contained another READ

command, the simulator would switch input files again. When the

simulator gets to the end of an input file. it finishes the READ

command and continues with the next command.

L: Simula allows ordinary file input/output to and from the

terminal, but with some restrictions. It does not seem possible

to close the terminal and save the program so that it can be

restarted later. Simula will not allow several output streams

(e.g., both tracing and debugging output) to be directed to the

terminal. For these reasons, the simulator does all terminal

input/output via a file called "ME:". For the simulator to work

at all, you must define this file to be the terminal (which is

called "TTY:"):

@DEFINE ME: TTY:

" This is a command to TOPS-20, not to the simulator. You must

give this command to TOPS-20 before running the simulator.

Having done that, you can now use "ME:" whenever you want to

refer to the terminal. It is possible to have more than one

2

" -tb V17---

Report No. 4931 Bolt Beranek and Newman Inc.

input stream, or more than one output stream refer to the

terminal in this way.

When you direct output to a particular file. using

TRACEFILE, DEBUGFILE or ECHOFILE. a new version of the file is

created. When you specify a particular file for input, using

READ, the current version of the file is used.

The output files specified in TRACEFILE. DEBUGFILE and

ECHOFILE must all be different, except that more than one of them
I
,, can be "NUL:" or "ME:".

A.12 Controlling Tracing and Debugging

Tracing output. usually just a string of numbers, is

generated by the simulation for analysis by the statistics

package. This package reads a file of numbers and computes such

things as means and confidence limits. The tracing output is

designed to be easy to process rather than easy to read. A

typical piece of trace output might be generated when a packet is

delivered to its destination host* and contains information on

the route taken by the packet and the time taken to cross the

network. A list of the tracing output currently implemented is

given below.

Debugging output. on the other hand, is designed to be

-21 8-

4°% "• ° -° .. . , .

Report No. 4931 Bolt Beranek and Newman Inc.

easily readable. It contains English text as well as numbers.

It can be used to produce a step-by-step account of the progress

* of every packet through the simulator, or to check on the correct

3operation of the protocols. Debugging output is provided for

every process, and is generated both when the process wakes up

and discovers something to do, and when it has done it and is

about to go to sleep. A list of the debugging output currently

implemented is given below.

Tracing and debugging output are generated by identical.

parallel mechanisms. There is a file for tracing output.

specified by the TRACEFILE statement, and a file for debugging

* output, specified by the DEBUGFILE statement. Each IMP, host,

and line has 4 flags which turn tracing on and off (controlled by

the PACKET, BUFFER, QUEUE and NODE subcommands), and also a flag

*which turns debugging on and off (controlled by the DEBUG

subcommand). There are global flags for each sort of packet and

queue tracing; these are specified by the PACKET and QUEUE

commands. If an event occurs in an IMP, host, or line which has

its local tracing flag set. tracing output is generated; however,

this will occur only if the global tracing flag for that event is

set. That is, output is generated only when both the local flag

and the global flag are set. The exception to this is tracing of

buffer allocation and node CPU utilization: these two traces

21

. -219-

I o

Report No. 4931 Bolt Beranek and Newman Inc.

have local flags in each IMP but no global flag(s) -- in that

sense they are always "on." There is a similar set of global

flags for debugging output; this set is controlled by the DEBUG

command. A list of flags is given below.

The default file for both tracing output and debugging

output is the device "NUL:". which discards all output. The

initial value of all flags is off. Thus, in order to get any

tracing output at all, one must specify an output file by using

the TRACEFILE command, set the global flags for the events one is

interested in tracing by using the PACKET or QUEUE command, and

set the local flags in some number of IMPs, hosts, or lines.

Note that one can use the model statement to change the default

value of the local flags from off to on. In order to get

debugging output, one must use the corresponding commands,

DEBUGFILE and DEBUG.

The file for output. the global flags, and the local flag in

each IMP, host, or line, may all be set or changed in the middle

of a simulation run. The new setting will take effect

immediately (i.e., at the simulation time at which the simulation

returned to command level).

Note: In the tracing and debugging output it is neccessary to
be able to refer unambiguously to IMPs and hosts.
Unfortunately, IMPs are numbered consecutively from 1,

-220-

Report No. 4931 Bolt Beranek and Newman Inc.

and t st3 are numbered consecutively from 0 (host 0
refers to the so-called fake host, which is simulated
by the IMP itself). Therefore, when host numbers are
output as part of tracing or debugging, they are output
as negative numbers* The fake bost, host 0, is still
0. Thus 1 refers to IMP 1, 0 to the fake host, and -1

*to host 1 (on some IMP).
I .

N A.13 Tracing and Debugging Flags

In each IMP, debugging can either be on or off. It is

controlled by the DEBUG subcommand. For example:

P 1

IMP 1 DEBUG OFF

will turn debugging off in IMP 1 and on in IMP 2. Similarly for

hosts and lines:

HOST 1/2 DEBUG ON'

LINE 5 3 DEBUG ON

Tracing in the IMP is controlled by 4 separate flags: packet

tracing, node tracing (for CPU utilization), queue tracing and

buffer tracing. The corresponding subcommands are PACKET, NODE.

QUEUE and BUFFER. For example:

IMP 1 PACKET ON

IMP 2 NODE ON

IMP 3 QUEUE ON BUFFER OFF

-

~-221-

Report No. 4931 Bolt Beranek and Newman Inc.

Lines have packet tracing only, and hosts have packet and

queue tracing. For example:

HOST 1/2 PACKET ON QUEUE OFF

LINE 5 3 PACKET OFF

As usual, the MODEL command can be used to set default

values for these flags before the IMPs, hosts or lines are

created.

Each piece of debugging output also has a global flag, which

indicates whether that particular piece of output will be

generated. These flags are set all at once by the DEBUG command

(not subcommand). The flags are specified by index:

1 Task process (IMP)
2 Modem input process (IMP)
3 Modem output process (IMP)
4 Host input process (IMP)
5 Host output process (IMP)
6 Timeout process (IMP)

7 Input process (line)
8 Output process (line)

9 Delay measurements (IMP)
10 Routing updates (IMP)
11 Routing table (IMP)

12 Message output process (host)
4 13 Packet input process (host)

14 IMP-to-IMP link protocol (IMP)
15 Line up/down protocol (IMP)
16 Buffer Management (IMP)

-

:: -222-

4

Report No. 1931 Bolt Beranek and Newman Inc.

17 Background (IMP)

18 Routing changes (IMP)
19 Congestion control (IMP)

For example. the command:

DFRUG 0 0 0 1 1 0 0 0 0 0 0 1 1

would set flags 4, 5, 12 and 13 so that debugging output would be

generated for host input and host output in any IMP or host whose

local debugging flag was on.

Packet and queue tracing (but not node or buffer tracing)

are also controlled by global flags, set by the PACKET and QUEUE

commands. The packet flags are:

1 end-end delay, route etc. (host)
2 node delay
3 null packets
4 discarded packets
5 line utilization (line)
6 changes in line protocol state.

For example. the command:

PACKET 0 1 0 1

would turn on tracing of node delays and discarded packets.

The queue flags control which IMP and host queues are

traced.

-223-

• .I- . " " " % ". ."

Report No. 4931 Bolt Beranek and Newman Inc.

Details of tracing and debugging output are given in the

following sections.

A.14 Debugging Output

Most of the debugging output is in a standard form:

prccess i [J time n [m I event [other]

Square brackets mean that the field is optional. Process is a

tag for the debugging record. The tags are as follows:

TASK MODEMIN MODEMOUT HOSTIN HOSTOUT
TIMEOUT LINEIN LINEOUT DELAY UPDATE
FORWDING TO IMP FROM IMP LINE PR. LINE U/D
BUFF.MGT BACKGRND ROUT. CHG CONG CTL

The next two fields give the IMP number, and either another IMP

number, or the host number. Time is the current simulation time.

The next two fields describe the packet being processed. If

there is no such packet, the field contains "(1". For data

packets, n is the packet number and m is omitted; for update

packets, n is the originating IMP and m is the serial number; for

hello's and IHY's, n is either "HELLO" or "IHY" and m is either

"UP" or "DN." Event is a descriptive field; a packet may be

logged as it is taken off a queue. or forwarded to another

process, or dropped. In each case the event field describes

exactly what happened. The final fields, if present, give such

-224-

I°

p J

Report No. 4931 Bolt Beranek and Newman Inc.

Einformation as network delay or logical channel number.

The exceptions to the above format are delay (9), routing

table (11), routing changes (18), and congestion control (19).

The fields up to the time are as described, and the trailing

fields are as follows:

delay the exact and rounded delay

out each line

routing table the routing table

routing changes the number of the previous
and current next hop IMP

congestion control the previous and current path
congestion levels and queue
limits

A.15 Tracing Output

There are four separate types of trace output: packet,

node, buffer, and queue tracing. They are controlled by separate

trace flags, both globally and in each host. IMP, and line. All

output goes to the file given in the most recent TRACEFILE

command.

Packet tracing traces the progress of a packet through a

node or the network. It is turned on and off by the global

command PACKET, and the host or IMP suboommand PACKET. Packet

-225-

I.

A . i l m - i i i a n - m i i - i i.. ..

Report No. 4931 Bolt Beranek and Newman Inc.

flag 1 controls tracing of network delay. If it and the host

packet tracing flag are set when a packet is accepted by the

destination host, the following will be output (the numbers in

brackets are column numbers):

(1) the trace type (i.e., 1)
(6.9) the destination IMP and host numbers
(13) the current time
(25,28) the source IMP and host numbers
(31) the priority
(34) the time the message was created
(46) the time the message entered the network
(58) the total delay
(66) the network delay
(75) the packet length
(81) the total number of retransmissions of the

packet
(86) the number of IMPs in the route taken
(89) the route taken by the packet

Note that the times given for delay are slightly different when

delivering to real and fake hosts. For a real host, the times do

not include processing by the host; for fake hosts, processing by

the fake host background routine is included.

Packet flag 2 controls the tracing of individual node

delays. If it and the IMP packet tracing flag are set when a

packet is acknowledged or accepted by a host, then the following

will be output:

(1) the trace type (i.e., 2)
(6) the IMP number
(9) the neighboring IMP number or local host number
(13) the time (of acknowledgment by neighboring IMP

-226-

• - , •

Report No. 4931 Bolt Beranek and Newman Inc.

or delivery to local host)
(25,28) the source IMP and host numbers
(32,35) the destination IMP and host numbers
(39 42) priority and packet number
(50 the time at which the packet entered the node
(62) the node delay (includes transmission time and3 propagation delay, but only for packets sent to

neighboring IMPs, not local hosts)
(74) the number of transmissions before

acknowledgment (NOT the number of transmissions
before successful receipt)

The last field is only given for packets sent to a neighboring

IMP, not packets delivered to a local host.

Packet flag 3 controls the tracing of null packets. If it

i and the IMP packet tracing flag are set when a null packet is

sent, the following is output:

(1) the trace type (i.e., 3)
(6) the IMP number
(9) the neighboring IMP number
(13) the time

Packet flag 4 controls the tracing of discarded packets. If

* it and the IMP packet tracing flag are set when a packet is

discarded, the following will be output:

(1) the trace type (i.e., 4)
(6) the IMP number
(9) the host or other IMP number or 0
(13) the time
(25) the packet number or 0
(33) the reason for discarding the packet

The third field woulr' be 0 if, for example. the packet was

-227-

Report No. 4931 Bolt Beranek and Newman Inc.

discarded by TASK. The packet number would be 0 if an incoming

message is dropped before being given a packet number, or if the

packet is not a data packet, and hence has a packet number of 0.

The possible values of the reason field are:

1 Unacceptable update (ProcessUpdate)
2 Duplicatepacket (TASK)
3 No reassembly buffer (TASK)
4 No line availabe (TASK - random routing)
5 No store-and-forward buffer (TASK)
6 Inaccessible destination (TASK or HostIN)
7 No channel (TASK)
8 Not ready (ModemIn)
9 Line error (ModemIn)

10 Discard bit set (ModemIn)
11 No buffer (ModemIn)
12 Timeout (HostIn)
13 Congestion control (Task)
14 Reset state (ModemInterface)

Packetflag 5 controls the tracing of line utilization. If

it and the line packet tracing flag are set when a packet starts

or finishes being transmitted on the line, the following will be

output:

(1) the trace type (i.e., 5)
(6) the source IMP number
(9) the destination IMP number
(13) the time
(25) 1 (for start), or 0 (for finish)
(30) the packet length

6

Packet flag 6 controls the tracing of changes in the line

protocol state. If it and the IMP packet tracing flag are set

-228-

6

Report No. 4931 Bolt Beranek and Newman Inc.

when the line protocol for one of the IMP's lines changes state,

the following will be output:

(1) the trace type (i.e., 6)
(6) the IMP number
(9) the neighboring IMP number
(13) the time
(25) 0 (down) or 1 (up)
(28) the protocol state (0-4)

Node tracing traces which process is executing on a given

CPU. It is controlled only by a local flag in each IMP, set

* using the NODE subcommand. If it is set, every time a process

starts executing on the CPU, the following will be output:

(1) the trace type
(6) the IMP number
(9) the time

The trace type is 2000 plus the priority level of the process.

In general, each process has its own priority level. An idle CPU

is indicated by a priority of 999.

Buffer tracing traces buffer allocation in a given IMP. It

is controlled only by a local flag in each IMP, which is set by

using the BUFFER subcommand. If it is set, every time an attempt

is made to allocate a buffer, or when a buffer is freed, the

v following is output:

(1) the trace type
(6) the IMP number

-229-

U,

Report No. 4931 Bolt Beranek and Newman Inc.

(9) the change in allocation
(13) the time
(25) the number of free buffers
(30,36,40,...)

the number and maximum number of buffers
allocated in each buffer type,

The trace type is 3000 plus the buffer type. The possible buffer

types are:

1 Reassembly
2 Store and Forward
3 Uncounted.

The change in allocation field is not entirely accurate,

since it is given as +1 for a successful allocation, 0 for an

unsuccessful allocation, and -1 for a buffer being freed. Since

no account is taken of the 2r.ev±ou buffer type of a buffer. a

successful allocation need not increase the allocation.

Queue tracing traces the length of queues in the IMP and

host. It is controlled in each IMP and host by a local flag

4 which is set by the QUEUE subcommand, and by an array of global

flags which are set by the QUEUE command. Six queues are traced:

1 task ordinary queue
* 2 task special queue

3 modemOut ordinary queue
4 modemOut special queue
5 hostOut ordinary queue
6 messageOut queue (host)

i

-230-

Report No. 4931 Bolt Beranek and Newman Inc.

The ordinary queues contain data packets or messages; the

special queues contain routing update packets and line up/down
-

protocol packets. The messageOut queue in the host contains

messages waiting to be submitted to the network. If the local

IMP or host flag and the appropriate global flag is set when a

packet arrives at or is removed from a queue. the following is

routput:

(1) the trace type
(6) the IMP number
(9) the host or other IMP number or 0
(13) the time
(25) arrival/removal flag
(29) the queue length

The tracetype is 1000 plus the flag index given above. The

*arrival/removal flag is +1 for arrivals and -1 for removals. The

queue length is measured afte the packet has been added or

removed.

A.16 Tracing Average Line Utilization

If you are interested in tracing line utilization, you can

use trace flag 5, which reports the beginning and end of each

packet on each line. However. this generates a very large amount

of output. Usually, you would not be interested in the timing of

every single packet on a line. but rather would want to observe

-231-

Report No. 4931 Bolt Beranek and Newman Inc.

how the "average" line utilization changes over time. For this

purpose, the simulation provides a way to trace line utilizations

averaged over a specified interval:

AVERAGELINEUTILIZATION p

This command causes the utilization of every line to be averaged

and reported every p simulated seconds. The information is

written to the current trace file in the following format:

(1) the trace type (i.e., 7)
(6) the sending IMP number
(9) the receiving IMP number

(13) the current time
(25) the average line utilization

Note that a single packet may be split between averaging

intervals. The choice of averaging interval p is not

particularly critical. Too long an interval will tend to

increase confidence limits, but less output will be generated.

Because the data is highly correlated, a shorter interval will

increase the amount of output generated without necessarily

decreasing confidence limits. We have found that an averaging

* interval of 1 second produces reasonable results.

A.17 Running the Simulation

Almost all the commands in the simulator simply describe the

-232-

1'- - - - - -. - i :

Report No. 4931 Bolt Beranek and Newman Inc.

network which is to be simulated, or the traffic which is to be

generated. They do not actually DO anything. In particular, in

the simulated network, time does not pass. To make time pass in

the simulation, use the RUN command:

RUN t w

which runs the simulation for t seconds of simulated time. The

argument w is optional; if it is present, a message is printed

L every w seconds of simulated time to indicate that the simulation

is progressing.

You can repeat the RUN command as many times as you like.

The simulation will proceed each time. For example:

RUN 10.0

is the same as:

RUN 5.0
RUN 5.0

You can change IMP, host. or line attributes, or traffic

patterns, at any time:

RUN 1 .0
LINE 53 60 ERROR 5.OE-4
RUN 2.0
STOP 1 2
START 1/1 1/2 5.0 100
RUN 7.0

-233-

S

Report No. 4931 Bolt Beranek and Newman Inc.

This sequence of commands will also cause 10.0 seconds of

simulated time to elapse, but of course the result will be

different.

To stop the simulation, and exit the simulator, give the

QUIT command:

QUIT

This command closes all files and returns to TOPS-20. You can

give this command in a command file. even a nested command file.

in which case ALL input files are closed and any subsequent

commands are ignored.

The simulator provides a command to save the state of the

simulation in a file. If you give the command:

DUMP f

the simulation will be saved in the file f. All current input

files are closed, and commands in command files after the DUMP

command are ignored. When the DUMP command has completed, the

next command will be read from the terminal. All current output

files are closed and reopened, and the simulator continues as

though nothing had happened. Here. f is NI restricted to 6

characters with a 3-character extension. Since the file produced

is very large. only two versions of f are kept. and the directory

-234-

Report No. 4931 Bolt Beranek and Newman Inc.

is expunged each time.

The simulator can be continued from the file by typing:

* RUNf

*to TOPS-20 (not the simulation). Since the debugging, tracing,

and echo files are closed before the program is saved, and

reopened in append mode. if you continue the simulation from f

they will Dmjy be correct if either:
Li

a) you QUIT the simulator immediately after the DUMP
command, or

b) the system or simulation crashes before the next DUMP
command.

That is, you can always continue from the last DUMP file after a

system crash. but if you want to continue after a QUIT, you

should DUMP immediately beforehand.

If you are running the simulator for a long time. it is

advisable to save the state of the simulation regularly. The

sequence of commands:

RUN t
DUMP f

RUN t
DUMP f

RUN t

-235-

Report No. 4931 Bolt Beranek and Newman Inc.

DUMP f
QUIT

will ensure that the saved program is no more than t. seconds of

simulated time out of date. The simulator can be restarted from

f if the system crashes, or if the simulator completes

successfully but you discover you need a longer simulation run.

Because of a problem in closing and reopening the terminal.

the SIMULA debugger may not work on a program saved by DUMP.

This means that if you are running a program saved by DUMP and

the simulator encounters an error, it will print an error message

and then may die trying to enter the debugger. You will be

deposited back at TOPS-20. There is no problem with using the

terminal from the simulator itself -- see Section A.11, Files,

Input and Output.

A.18 Examples

This section simply contains examples of the complete input

for some runs of the simulator. Suppose we have put the

following model definitions in a file "model.dat":

g MODEL IMP 0 (
MODEMIN 0.00030 MODEMOUT 0.00031
HOSTIN 0.00053 HOSTOUT 0.00035

9 TASK 0.00084 FASTTIMEOUT 0.001
SLOWTIMEOUT 0.001 REROUTE 0.001
DUMMY 0.007 SOURCE 0.001

-236-

Report No. 4931 Bolt Beranek and Newman Inc.

SINK 0.001

TIMEOUT 0.0256 DELAYAVGPERIOD 400
LINEUDPERIOD 25 UPDATEAGINGPERIOD 12

RETRANSMIT 0.125 WORDSIZE 16
THRESHOLD 0.064 DECAY 0.0128
DELUNITS 0.0064 AVGUNITS 0.0064
PACKETLENGTH 1008 NUMBUFFERS 40
FASTOFFSET 0.0 DELAYOFFSET 0.0
RATE 1.0 AVGDELMAX 1.6384

PACKET OFF BUFFER OFF QUEUE OFF
NODE OFF DEBUG OFF

*%-)

MODEL LINE 0 (
ERROR 0.0 SPEED 5OE3 LAG 1.OE-3

f.. PACKET OFF DEBUG OFF FRAMING 72
LINEPROTOCOL ON

NUMCH 8 LUD 3 20 60•)
MODEL HOST 0 (

SINK 0.0 PACKET OFF DEBUG OFF
LENGTH NEGEXPONENTIAL RATE NEGEXPONENTIAL)

If we wish to debug the line protocol. we only need a network

with two nodes:

INIT 2 2
V: READ model.dat

IMP 1 1 1
IMP 2 1 1
LINE 1 2
LINE 2 1
HOST 1/1
HOST 1/2
FIXEDROUTING
ROUTE 1 0 2
ROUTE 2 1 0
START 1/1 1/2 20.0 1000
DEBUG 1 1 1 0 0 0 0 0 0 0 0 0 0 1
DEBUGFILE lnprot.deb
RUN 10

-237-

Report No. 4931 Bolt Beranek and Newman Inc.

LINE 1 2 ERROR 1.OE-4
RUN 10
QUIT

Now we will put together the fragments of the four-node

network given in Section A.2. An Example Network. Suppose we put

the network description in a file "square.dat":

IMP 1 3 2
IMP 2 2 1
IMP 3 1 1
IMP 4 2 2
HOST 1/1
HOST 2/1
HOST 1/2
HOST 1/3
HOST 1/4
HOST 2/4
LINE 1 2
LINE 1 3
LINE 1 4
LINE 2 1
LINE 2 4
LINE 3 1
LINE 4 1
LINE 4 2

We can set up a simulation run to measure delays across this

network as follows:

INIT 4 8
READ model.dat
MODEL IMP 0 LINEUDPERIOD 9999999 PACKET ON
MODEL HOST 0 PACKET ON
READ square.dat
FIXEDROUTING
ROUTE 1 0234
ROUTE2 1014
ROUTE 3 1 10 1

-238-

U

Report No. 4931 Bolt Beranek and Newman Inc.

ROUTE4 1 2 1 0
OVERHEAD 128
PACKET 1 1
TRACEFILE delay.tra
UNISTART 100.0 1000 4
RUN 100
QUIT

We have switched off the line up/down protocol by specifying:

MODEL IMP 0 LINEUDPERIOD 9999999

and fixed routing has been chosen. The tracing chosen just

traces node and network delays. If we want to investigate the

operation of the SPF routing algorithm and the line up/down

protocol, we can use the same network with slightly different

parameters:

SINIT 4 8
READ model.dat
MODEL IMP .0 TRACE ON DEBUG ON
READ square.dat
LINEUPDOWN 16
UPDATE 80
OVERHEAD 128
PACKET 0 1 0 0 0 1
TRACEFILE route.tra
DEBUG 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
DEBUGFILE route.deb
START 1/2 1/3 10.0 1000 4
RUN 25
PRINTROUTING
START 1/2 1/1 20.0 1000 3
DUMP exampl.dmp
RUN 25
PRINTROUTING
LINE 1 2 ERROR 1.OE-4
DUMP exampl.dmp
RUN 25

-239-

Report No. 4931 Bolt Beranek and Newman Inc.

.'PRINTROUTING
DUMP exampl.dmp
QUIT

Note that the error rate was increased on a line which was not

carrying any traffic at all (at least not in that direction). but

the line protocol will still bring the line down.

1

:1

-240-

il;' - : ' . -...- i i..' -"" "MA-N

Report No. 4931 Bolt Beranek and Newman Inc.

3 APPENDIX B. ANALYTIC MODEL USER MANUAL

This apppendix describes the procedures and commands that

are necessary to run the multi-path routing analytic model

(MRMAIN). The commands are grouped into sections based on their

function and on the order in which the user will be mo..t likely

to encounter them when first becoming familiar with MRMAIN.

Experienced users should consult the Alphabetical List of

Commands (Section B.1O) which gives brief descriptions of each

command's function. It may also be useful to study the examples

shown in Section B.9.

B.1 Operating System Considerations

As it is currently defined, MRMAIN runs on systems

supporting Simula version 4A (Aug 1978) under the TOPS-20

operating system. To invoke MRMAIN, give the monitor command:

RUN MRMAIN

This will start the program running, and cause it to print a

header message with the MRMAIN version number and general

information about that version. When this has finished, the

following prompt will appear:

Command:

-241-

- Ij, _ -l l I 4 l , _

Report No. 4931 Bolt Beranek and Newman Inc.

At this point, you are ready to start entering commands to

MRMAIN. These commands are described in the following sections.

For more detailed information about the peculiarities of

MRMAIN's Simula language interface to the TOPS-20 operating

system. refer to [8] and [14J.

B.2 Input Data

Information about ,the traffic of the network to be modelled

must be provided before MRMAIN can predict delays or optimize

routing. The traffic is read from a file which contains one or

more records in the following format:

<src> <dst> <rate> <length> <time> <prio>

The source and destination nodes of this particular flow are

specified by <src> and <dst>. The rate packets are sent from

<src> to <dst> is <rate> packets/second. Each packet in this

flow is <length> bits long (including any protocol or other

overhead). One exception: line protocol overhead is modelled

separately for each line and is defined at the time each line is

created. The <time> field is an integer value which can be used

to simultaneously model network flows that occur at independent

"times of day." If we have one flow with <time>-3 and a second

flow with <time>-12, the two will not interfere with each other

-242-

i.

Report No. 4931 Bolt Beranek and Newman Inc.

(we think of them as occurring at different times of the

day...perhaps 3am and 12pm). The allowable range of <time> is

1:24 (for each hour of the day); if more internal table space is

3needed to model large networks, we can reduce the number of

different times (of day) that can be modelled simultaneously.

The first time the traffic file is read, it is parsed and

stored internally to HHMAIN. This permits faster operation of

any command that causes the traffic file to be read. Note that

the OPTIMIZE command causes the traffic file to be read at least

three times per iteration; thus, parsed internal representation

of the traffic file permits a significant saving in CPU time. If

the traffic file is large. Lis feature can be disabled so that

more room will remain for storing the node and line data

structures in large networks.

3

B.3 Defining Topology, Traffic, and Routes

, The topology and traffic of the network to be studied must

be specified before modelling or optimization can take place.

The topology is defined by entering commands to specify nodes and

lines of the network. The traffic is defined by entering the

name of a file that contains the formatted traffic rates. The

commands that are used to define topology, traffic, and routes

i2

"... -2-43-...> . ..

!I I~ * h1.... .h. . I.. " J uu. . !. i i i a I , ,

Report No. 4931 Bolt Beranek and Newman Inc.

are: INIT, IMPS, IMPTIMES, LINE. SLINE, MROUTE, SROUTE.

TRAFFICFILE. TRAFFICFACTOR, DISTRIBUTION, DROP, and EDIT. These

are described in detail below.

INIT <# nodes>

Initialize the number of nodes to be modelled to <# nodes>.
This is used to allocate space for the internal data
structures of MRMAIN. If a previous INIT command has been
given, all previously allocated nodes are garbage collected.

IMPS <#imps> <ln> [<task> <M21> <12M> <H21> <12H> <F21> <I2F]

Define <#imps> different IMPs each having a maximum of <ln>
lines connected to them. The maximum # of lines is needed
so that the internal data structures of each IMP can be
allocated efficiently. IMPs are numbered sequentially
starting from 1 as they are defined by one or more IMPS
commands. The IMP processing times are (optionally)
specified by the parameters <M21>..<F2I>. See the IMPTIMES
command for a description of each of these parameters.

IMPTIMES <imp#> [<task> <M21> <12M> <H21> <12H> <F21> <12F]

Set the internal processing times for each part of IMP
number <imp#> to the indicated values. If fewer than the 7
parameters are specified, the remainder are set to zero. If
"0" is specified instead of an IMP number, the processing
times are changed for all IMPs. Each parameter corresponds
to the delay in a separate process of the IMP: <task>:task
process, M21=modem input. 12M=modem output. H21=host input.
12H host output. F21=fake host input (source), and 12F=fake
host output (sink).

LINE <imp1> <imp2> [<cap>[<mult>[<framing>[<propDelay>J)]]

Define a fluU-gg -D line connecting IMPs <imp1> and <imp2>.
A number of parameters can optionally be specified. The
line has a capacity of <cap> bits/second in each direction
(defaulti50000). There are <mult> lines each of capacity
<cap> in this line (defaultzl). Thus, the command "LINE 3 7
50000 2" creates a full duplex line between nodes 3 and 7
that has a total capacity of 100KB/sec (implemented as 2

-244-

L • o i' . , ."

Report No. 4931 Bolt Beranek and Newman Inc.

50KB/seC lines in parallel). The number of bits of framing
added on this line by the line protocol is <framing>
(default=O). The propagation delay of this line is
<propDelay> seconds (default=O). Related commands: SLINE.

SLINE <impi> <imp2> [<cap>[<mult>[<framing>[<propDelay>1]]]

Define a hal -dulex line Sr.au IMP <imp1> to IMP <imp2>. A
number of parameters can optionally be specified. The line
has a capacity of <cap> bits/second in each direction
(default=50000). There are <mult> lines each of capacity
<cap> in this line (default=l). The number of bits of
framing added on this line by the line protocol is <framing>
(default=0). The propagation delay of this line is
<propDelay> seconds (default=O). Related commands: LINE.

MROUTE <src> <dst> (<vial> <fract1>) ... (<viaN> <fractN>)

Specify routing in multi-path format. The fraction <fract1>
of the traffic from <src> to <dst> is sent via node <vial>.
Similarly, fraction <fractN> of the traffic from <src> to
<dst> is sent via node <viaN>. Nodes <vial>..<viaN> must
all be neighbors of <src>. The sum of all the
<fractl>..<fractN> values must be 1.0 for routing to be
valid. The VERIFY command can be used to check this
automatically. Fractions for neighbors which are not
explicitly described by (<via> <fract>) pairs are set to
zero. Related commands: SROUTE. VERIFY.

SROUTE <src> <vial> <via2> ... <viaN>

Specify routing for node <src> in single-path format.
Traffic destined for node 1 is sent via node <vial>. while

K:l traffic destined for node N is sent via node <viaN>. A zero
entry for any <via> parameter signifies that no value is to
be specified at the current time. Typically, the entry for
routing to itself at each node is set to zero. Each <via>
node must be a neighbor of <src>. Related commands:
MROUTE. VERIFY.

TRAFFICFILE <filename>

Traffic for the network to be modelled can be found in file
<filename>. The format of the trafficfile is described in
Section B.2.

-245-

l

Report No. 4931 Bolt Beranek and Newman Inc.

TRAFFICFACTOR <real#>

Multiply the packet rates of all flows in the trafficfile by
<real#> before they are used. This provides a convenient
method of uniformly scaling traffic up or down without
changing the trafficfile itself. The default trafficfactor
is 1.0 (i.e., use the traffic exactly as it appears in the
trafficfile).

DISTRIBUTION [DETERMINISTIC. EXPONENTIAL <parameter>]

Specify the type of packet length distribution to use for
all flows. If DETERMINISTIC is selected, the packet lengths
given in the traffic file for each flow are used. If
EXPONENTIAL is selected, the length of each packet in each
flow is selected from an exponential distribution with mean
packet length of <parameter> bits. The values specified in
the traffic file for packet lengths are ignored if
EXPONENTIAL distribution is used. Default DISTRIBUTION
DETERMINISTIC.

DROP <nodel> <node2>

Remove all lines connecting <nodel> and <node2>. Related
commands: LINE, SLINE.

EDIT <node> <z>

Edit the routing table of node <node> in routing table <z>.
The value of <z> is one of "ZC," "ZS." or "ZA" corresponding
to the "current," "shortest path," or "alternate" routing
tables respectively. When this command is given, the prompt
changes to "Edit: " and subcommands can be given to change
and inspect the routing table. The subcommands are:

CH <dst> <via> <fract>

Change the fraction of traffic this node sends to node
<dst> via node <via> from its current value to <fract>.

SHOW [<dst>]

Display the routing table entry for destination node
<dst>. If <dst> is absent or .", show routing table
entries for all destinations.

°

-246-

.Y .,. - ., _ ,, " " "

U

Report No. 4931 Bolt Beranek and Newman Inc.

DONE

Leave "Edit: " subcommand mode and return to normal
* command level. The VERIFY command can now be used to

insure that the routing tables are (still) consistent.

I

B.4 Computing Flows and Delays

Once the network topology, traffic, and routing have been

defined, it is possible to read the traffic file. distribute the

flows through the links in the network, and compute parameters

for the entire network. In particular, we can compute node and

line loadings, average hopcount. average network delay and

statistics for each source-destination pair; these are computed

for each priority of traffic and for each time of day that is

being modelled. The commands COMPUTE and MODEL are used to

*: invoke these functions.

COMPUTE [<which flow>[<which routes>]]

Read the traffic in file TRAFFICFILE and distribute it
throughout the flow tables <which flow> according to the

* - routing in tables <which routes>. This also updates all the
internal counters and partial statistics that are used in
computing the network delay. Default values for <which
flow> and <which routing> are the current routing ("ZC").

• .MODEL [<which flow>[<which routes>]]

Model the network performance by summing node and line
delays over all lines in the network. Performance is
computed using the flow in tables <which flow> and routing
tables <which routes>. Default values for both of these are
the current routing ("ZC"). The format of the output is:

~-24T-

I2I7

Report No. 4931 Bolt Beranek and Newman Inc.

time high(o) low(o) high(b) low(b) combined hopcount
T HO LO HB LB C N

Where:

T = time of day
HO = delay for High priority packets if they were the

.Only ones in the network.
LO z delay for Low priority packets if they were the

fnly ones in the network.
HB = delay for High priority packets when the effect of

Both high and low priority packets is taken into
account.

LB delay for Low priority packets when the effect of
Both high and low priority packets is taken into
account.

C = combined delay. This is the weighted average of
*| the HB and LB delays according to the total amount

of high and low priority traffic.
N : network average hopcount; the average number of

lines a packet must traverse before it reaches its
destination.

Normally. the MODEL command is immediately preceded by a

COMPUTE command to insure that the currently specified network

variables are accurately represented in the internal data

structures of the analytic model. Related commands: COMPUTE,

PRINT PARAMETERS.

B.5 Reporting Results

A wide variety of information is available about all aspects

I of the network model. Node and line parameters can be printed in

a variety of formats. Output suitable for use by the ARPANET

simulator can be produced and stored in a file. Data can be

I-

i-i-:- ... '.: - 2 8-

4 .-L''-'m i iml-~ 1i ~ i.~

Report No. 4931 Bolt Beranek and Newman Inc.

printed on the user's terminal or redirected to a file for long-

term storage. The commands in this section describe how to

invoke the appropriate functions: PRINT. LIST, SIMULATION.

PRINT [<type> <which> <node range> <time range>]

Prints information about the current state of the model on
the user's terminal. The data structures to use are
specified by <which> to be one of current (ZC). shortest
path (ZS), or alternate (ZA). The <node range> and <time
range> parameters specify an optional range of nodes and
times of day for which data is to be reported. Default
values are "all nodes" and "all times of day". The <type>
field specifies the information to be printed. Values of
the <type> field and the information that each prints is
shown below. If all the optional parameters are not
relevant for all <type> options, they are ignored.

ALL

This is the equivalent of a series of different PRINT
commands with the following options: PARAMETERS,
TOPOLOGY, ROUTES, PEAK-RATE, PEAK-LOAD, PEAK-UTIL,
PEAK-PROC, and ROUTESUMMARY.

PEAK

This is equivalent to a series of PRINT commands with
the options PEAK-RATE and PEAK-UTIL.

PEAK-RATE, PEAK-LOAD, PEAK-UTIL, PEAK-PROC

Report information about the peak hour packet rate
(pkt/sec), line load (bits/sec), line utilization, or
processor statistics. Notation of the form "[2]"
indicates that data is sent to node 2, while "@t" means
that "t" is the peak time of day. A "CC]". "(S]". or
"A]" notation indicates the ZC, ZS or ZA data tables
respectively. Thus, the line:

Node 1[C]: bits 2.250E+04[2]@12 2.250E+04[4]@12

-249-

I

Report No. 4931 Bolt Beranek and Newman Inc.

means that for the ZC data structures, node 1 sends
22500 bits/sec to node 2 at time 12 and 22500 bits/sec
to node 4 at time 12.

ALPHA

Report the value of the internal parameter ALPHA that
is used when optimizing network performance. ALPHA is
the fraction of the ZC and ZS routing that is used to
produce a new and improved routing at each iteration
(ZA). This command is useful only when running the
OPTIMIZE command in manual (incremental) mode. Related
commands: TRACE with the option for tracing ALPHA
turned on.

ROUTES

Print the current state of the multi-path routing
tables.

ROUTESUMMARY
4.

Print a summary for each source-destination pair
showing the average packet delay along each path from
source to destination and the fraction of the flow that
takes each path. Also reports statistics for the
entire network. This is especially useful when
compared to the routesummary output of the simulator.

PARAMETERS

Reports the current values of all parameters that may
affect the operation of the model or the optimizer.
This includes values such as node processing delays for
each process, trace flags set, etc.

TOPOLOGY

Describes the topology of the network. This consists
of a list of each node and its neighbors.

* LIST <filename> <type> <which> <node range> <time range>

Identical to the PRINT command except that output is sent to
file <filename> rather than to the user's terminal. All
other fields are exactly the same as for the PRINT command.
Stated in another way. the PRINT command is really Just a

-250-

I

Report No. 4931 Bolt Beranek and Newman Inc.

K"LIST TTY: <other fields>" command.

SIMULATION [FILE <filename>, OUTPUT ROUTES]

Affects the way output is produced for input to the ARPANET
Simulator. The "SIMULATION FILE <filename>" command
specifies that output for the simulator is to be written to
file <filename>. The "SIMULATION OUTPUT ROUTES" command
causes the current routing tables to be written to a file
specified by a previous "SIMULATION FILE <filename>"
command. The file that is written is in the same format as
that used as input for MRMAIN (MROUTE command); this format
is also accepted by the simulator.

B.6 Performing Optimizations

7. MRMAIN can create optimal multi-path routing for a given

topology and traffic. The Flow Deviation (FD) algorithm

described by Kleinrock [4] and Gerla (5] is implemented. In

order to find a feasible routing where none exists, or where the

existing routing is not feasible for the current network, the

initial feasible flow (IFF) algorithm described by Gerla [5] is

also implemented. The commands in this section describe how IFF

1; and FD can be used in MRMAIN to create optimal multi-path

routings.

To perform routing optimization using MRMAIN, the user

should first specify the topology and traffic of the network with

commands described in Section B.3. In particular, the IMPS.

LINEs and TRAFFICFILE of the network should be specified. If the

routing is also known, it can be specified at this time (using

-251-

Report No. 4931 Bolt Beranek and Newman Inc.

MROUTE or SROUTE commands). The COMPUTE and MODEL commands can

be used to get an initial estimate of the network performance.

If the reported delay is INFINITE, the traffic is currently too

large for some line in the network. The PRINT PEAK-UTIL command

can be used to discover which lines are overloaded. If the

reported delay is not INFINITE, then we can use the OPTIMIZE

command without any arguments to improve the network performance.

If the initial routing is not known, or if the initial flow

is not feasible. the OPTIMIZE 1FF command should be used to force

MRMAIN to compute an initial feasible flow (and routing). After

it has created such a flow. it will proceed as if an OPTIMIZE

command had been given. The commands relating to network

optimization are described below. It will be helpful to study

the examples shown in Section B.9 while referring to this

section.

MRMAIN uses three completely separate sets of tables

internally for storing the node and line data structures. These

are used by the FD algorithm to produce improved flow and routing

from the initial and shortest path flows. The tables are all

accessible by the MRMAIN user; they can be referred to as "ZC"
I

(the current routing tables and flow). "ZS" (the shortest path

routing tables and flow), and "ZA" (the alternate routing tables

and flow). In general. the user will only be interested in ZC

-252-

I

.

Report No. 4931 Bolt Beranek and Newman Inc.

iunless the OPTIMIZE command is being run in incremental mode with

the BREAK flags set (see Section B.8). ZC is the default for all

commands that require one of the three sets of data structures to

be specified.

A number of commands are also available to control the

progress of the OPTIMIZE algorithm; these should be set before

F the OPTIMIZE command is given. In some cases, it also makes

sense to change the values of the OPTIMIZE parameters during a

simulation run (e.g., we may want to reduce the tolerances of

convergence as we get closer to the optimal solution). The

default values of the OPTIMIZE parameters have been set so that

the OPTIMIZE command works adequately over a wide range of

network conditions. A detailed understanding of how the

algorithms are implemented is needed in order to make intelligent

changes to most parameters -- you have been warnedl

MAXFLOW

Compute the maximum TRAFFICFACTOR that the network can
support with the current topology and routing. This command
is not particularly related to the other optimization
commands except that it allows the user to scale up traffic
automatically until the network is near saturation. The
TRAFFICFACTOR is reset to the new value that is computed by
the MAXFLOW command.

-

[!! -253-

Report No. 4931 Bolt Beranek and Newman Inc.

ITERATIONS [<opt> [<iff>]]

Set the maximum number of iterations of the FD algorithm to
<opt> (Default 15), and the maximum number of iterations
of the IFF algorithm to <iff> (Default 15). If the
optimal routing or initial feasible flow is not reached
after this many iterations, the algorithm is aborted. Note
that OPTIMIZE will effectively run in incremental mode if
ITERATIONS 1 1 is used.

K-POWER <k>

Set the value of "k" in the performance function to the
(integer) value <k>. Default = 1.

OPTIMIZE [IFF]

Run the FD algorithm for the number of iterations specified
by the ITERATIONS command. If IFF is specified, run the IFF
algorithm first to create an initial feasible flow. To run
the IFF algorithm only in incremental mode (stops after each
iteration), use ITERATIONS 0 1; to run both IFF and OPT in
incremental mode. use ITERATIONS 1 1. The TRACE command can
be used to produce detailed information about the internal
workings of the IFF and FD algorithms. Related commands:
ITERATIONS, K-POWER, TOLERANCE. and TRACE.

B.7 General Function Commands

There are a number of commands that provide general

functions not specifically related to analyzing or optimizing

networks. The HELP command, for example. prints a summary of

legal commands. The general function commands are: COMMENT.

PUSH, TYPE. HELP, READ, WARNINGS, EXIT, POP, QUIT, and DUMP.

-254-

.. - i -- . - -- , ,... ..

Report No. 4931 Bolt Beranek and Newman Inc.

COMMENT <anything>

This command is printed, but otherwise ignored. It is
iT useful for inserting comments and documentation into files

that are to be read (using the READ command) by MRMAIN.
Lines starting with ";" are also interpreted as comments for
compatibility with other programs.

PUSH

Suspend the current operation of MRMAIN and enter an
inferior fork running the standard operating system monitor.
Any regular operating system command can be given; when
done, type "POP" to return to MRMAIN at the point you left
off. If you want to save the state of MRMAIN in a file
without creating an inferior fork, use the DUMP command.

TYPE <filename>

Print the contents of the file <filename> on the user's
terminal. This is the same as giving a "type" command to
the operating system, except that it saves the trouble of
giving the PUSH, TYPE <filename>, POP sequence of commands.

HELP

Prints a list of valid commands. Typing "?" will also cause
the HELP command to be invoked.

READ <filename>

The contents of <filename> are read and interpreted as
commands to MRMAIN. When end-of-file is reached, control
returns to the user at the Command level. Nested READ
commands (i.e., READ commands appearing in <filename>) are
allowed.

* WARNINGS [ONOFF]

Causes warning messages to be turned ON or OFF. Warning
messages indicate possible problems in algorithms or data
structures (e.g., warnings are produced when the routing
tables result in damped oscillations of packets, or when the
optimizer finds that the function to be minimized is not
concave).

-255-

"-tu.., ;

Report No. 4931 Bolt Beranek and Newman Inc.

[EXIT, POP. QUIT]

All these commands cause MRMAIN to exit without saving the
current state of the model. To exit and save the current
state, see the DUMP command. Related commands: ABORT.
CONTINUE (for debugging).

DUMP <filename>

The current state of MRMAIN is saved in a file called
<filename>. Now. if you EXIT. POP, or QUIT from MRMAIN, you
can resume execution from the point of the DUMP command by
giving the system-level command "RUN <filename>" (instead of
the usual "RUN MRMAIN"). Note that the Simula debugger may
not work properly when running a DUMPed file -- this is due
to a bug in the Simula debugger!

B.8 Tracing and Internal Validity Checking

Features are provided for tracing the internal operation of

the algorithms in MRMAIN. In addition, utility commands allow

the user to manually verify the consistency of the internal data

structures. This is particularly useful for checking data

initially, or for rechecking data after it has been changed at

some point during the operation of the program. The commands

described are: VERIFY, ABORT, CONTINUE. TRACE. BREAK, and TEST.

1

VERIFY [ON, OFF. SINGLE. MULTI [ZC,ZS.ZA]]

Check to see that the routing tables are valid. VERIFY ON
causes the routing to be checked automatically at each stage
of the OPTIMIZE loop in which they are modified. VERIFY OFF
switches off this checking and causes the algorithms to run
much more quickly. Default is VERIFY ON. The VERIFY
command can also be invoked manually to check the routing
tables (e.g., after you have used the EDIT command). VERIFY
MULTI is used to insure the consistency of the multi-path

-

J.-. -256-

o,,

Report No. 4931 Bolt Beranek and Newman Inc.

routing tables. The data structures to be checked can be
specified explicitly; the default is VERIFY MULTI ZC.
VERIFY SINGLE is used to check the single-path routing
tables. The single-path routing tables are used for the
shortest path computation of the FD algorithm. The user is
normally concerned only with the ZC multi-path routing
tables. Note that both the SROUTE command and the MROUTE
command use the ZC multi-path routing tables!

ABORT

Leave the current (recursive) command level and return to
the previous one. If you are at the basic command level
("Command:" prompt), this command has the same effect as
QUIT, EXIT, or POP. If you are in a recursive command level

such as "breakpoint" or "error," it causes you to
immediately return to the basic "Command:" level, aborting
any debug or breakpoint operation in progress. To continue
with the current debugging, use the CONTINUE command.

CONTINUE

Leave the current (recursive) command level and return to
the program at the point where it was interrupted. To exit
from the tracing (recursive) command level. use the ABORT
command.

TRACE <fl> <f2> <f3> <f4> <f5> <f6> <f(> <f8> <f9> <fl0>

Turn one or more trace flags ON or OFF. To turn a trace
flag ON, the value of the corresponding flag should be set
to "1"; to turn it OFF, the value of the flag should be set
to "0". Each of the flags <f#> controls a different value
to be traced as described below.

<fi> IFF tracing. Prints progress of the 1FF algorithm as
it searches for an initial feasible flow. Default -

1.

<f2> OPTIMIZE tracing. Prints progress of the FD algorithm
as it completes each iteration. Default = 1.

<f3> FLOW tracing. Print flow (bits/sec) in addition to
routing information at each stage of the OPT or IFF
iterations. Default z 1.

-257-

Report No. 931 Bolt Beranek and Newman Inc.

<f4> ADDFLOW tracing. Displays the lines each flow is sent
over as the traffic file is read and packets are
distributed throughout the network. Default = 0.

<f5> COST tracing. Print the cost information (from
performance metric) that is used to construct the
shortest path routing for each FD iteration. Default

<f6> SHORTEST PATH ROUTING tracing. Print information
about the routine that produces the shortest path
routing for each iteration of the FD algorithm.
Default = 0.

<f7> LINEAR split tracing. Trace the function that
calculates the linear combination of ZC and ZS
routings (producing new routing in ZA) that is then

4 passed to the minimizer function. Default = 0.

<f8> ALPHA tracing. Print the fraction that is finally
returned after minimizing over the linear combination
of ZC and ZS routings. The value returned is ALPHA:
ALPHA*(ZC flow) + (I1-ALPHA)*(ZS flow) = (ZA flow)
which then becomes the new ZC flow for subsequent
iterations of the FD algorithm. Default = 1.

<f9> SINGLE-PATH ROUTING tracing. Print the single-path
routing that is created by each iteration of the FD
algorithm. Default = 1.

<f10> MULTI-PATH ROUTING tracing. Print the multi-path
routing that is created by each iteration of the FD
algorithm. Default = 1.

* BREAK [+,-] [IFF,OPT.COST.SHORTFD]

Breakpoint tracing for the indicated option is turned ON
(when "+" is specified) or OFF (when "-" is specified). If
breakpoint tracing is turned on. the program will stop after
the specified option has completed (e.g., stop after costs
for each line in the network have been computed if the COST
breakpoint has been set by a BREAK +COST command). At this
point, a recursive command level is entered so that data
structures can be inspected and other commands can be given.
When ready to proceed, give the CONTINUE command;
alternatively, type ABORT to exit from the breakpoint
tracing. The possible stopping points are:

-258-

°o

-i I- - .EI ! -i --.- , ,-

Report No. 4931 Bolt Beranek and Newman Inc.

IFF - initial feasible flow algorithm has completed
OPT - optimize loop of FD has completed
COST - line cost performance calc 'tion is done

"i SHORT - shortest paths based on co-. is complete
FD - flow deviation iteration is c.omplete

Default values for all breakpoints are OFF C"-"). When each
breakpoint is encountered, the recursive command level will
replace the normal "Command:" prompt with a prompt that
indicates which breakpoint was encountered.

TEST <options>

.. Direct testing of individual subroutines from "Command:"
level is possible using this command. This command is used
only for initial development or debugging; its proper use
requires a good understanding of the source code and
hardcopy listing of the MRNAIN program and subroutines.

B.9 Examples of MRMAIN Use

In this section. we present two examplis of how MEMAIN can

be used to model network behavior and optimize performance. Both

examples are based on the simple 4-node network shown below:

45KB/sec ==> 1 --------- 2

-I
4 -------- 3 ==> 45KB/sec

We will send traffic from node 1 to node 3 at a rate of 45KB/sec

(or more precisely, we will send 1000-bit packets at 45 pkt/sec).

Initially, we will specify the routing to be via the path 1-2-3.

The results shown are from an actual run of MRMAIN. Lines are

-

" -259-

-4

Report No. 4931 Bolt Beranek and Newman Inc.

numbered at the left so that they can be referred to conveniently

in the text that follows each section of code.

EXAMLE 1.

In the first example we load the network, estimate its end-

to-end delay. and print information about the nodes and lines.

First, we must define the network topology and traffic.

1 TOPS-20 Command processor 4(546)
2 Friday. October 9, 1981 22:37:52
3 @run n:mrmain
4
5 ** Multipath Routing Analytic Model...Version of 08-Oct-81 *
6 (Priority queueing fixed; Non-bifurcated OPTIMIZE)
7
8 Command: read exampl.dat
9 >INIT 4

10)IMPS 4 3
11 >LINE 1 2 50E3
12 >LINE 2 3 50E3
13 >LINE 3 4 50E3
14 >LINE 1 4 50E3
15 >DISTRIBUTION DETERMINISTIC
16 >SROUTE 1 1 2 2 4
17 >SROUTE 2 1 2 3 3
19 >SROUTE 3 4 2 3 4
19 >SROUTE 4 1 1 3 4
20 >TRAFFICFILE EXAMPL.TRF
21 Command: type exampl.trf
22 1 3 45.0 1000 12 0
23 I'

Lines 1-7 show how we start MRMAIN running on the system. On

line 8 we tell MRMAIN to read a file we have previously created

that defines the network we would line to study. The lines in

-260-

-

Report No. 4931 Bolt Beranek and Newman Inc.

file exampl.dat are read and echoed on lines 9-20. Line 15

specifies that the distribution of all packet lengths will be

deterministic with the values specified in the traffic file (this

command is redundant since the default distribution is

DETERMINISTIC). On line 21 we give the "type" command so that we

can quickly look at the contents of the traffic file that is

specified on line 20; the contents are displayed on line 22,

while line 23 shows the end of the file mark.

24 Command: print parameters
25 **********0*********0*0*0.**000000***0***0*0**00*00
26 000 Tolerance Settings 000
27 Stop IFF/OPT Rel 1.OOOE-02 Minimizer Accuracy 1.OOOE-03
28 Stop IFF/OPT Model 1.OOOE-07 Flow-Rte Mismatch 1.OOOE-03
29 IFF Epsilon Multi 5.000E-02 IFF Cost Infeas 1.OOOE-05
30 IFF Ratio Infeas 1.OOOE-03 Rounding Error 1.OOOE-06
31 MinBitRate 1.OOOE-03 % to stop flow 1.OOOE-02
32 *00 Kleinrock Kth power model with K 1
33 000 Distribution Type: DETERMINISTIC
34 000 Iteration maximums: OPT.IFF = 15 15 ,
35 000 Trace Flags ***
36 IFF,OPT.FLOWADDFLOW,COST.SHORTLINEARALPHA.PRTS.PRTM
37 1 1 0 1 0 0 1 1 1* ~ 38 *0000100

39 Command: compute
40 Command: model
41 time high(o) low(o) high(b) low(b) combined hopcount

' 142
43 12 0.22000 0.00000 0.22000 0.00000 0.22000 2.000
44 Command: print bit-rate
45 Node 1[C]: bits 4.500E+04[2]@12 O.OOOE+O0[41]12
46 Node 2[C]: bits X.OOOE+O0[1]@12 4.500E+04[3]@12
47 Node 3[C]: bits O.OOOE+O0[2]@12 O.OOOE+O0[41@12
118 Node 4[C]: bits O.O00E+O0[3]@12 O.OOOE+0O0[1@12

The PRINT PARAMETERS command on line 24 causes MRMAIN to print

the value of all parameters that it Uses in modelling the network

-261-q"

. ..~ -- -~~.. --.

L

Report No. 4931 Bolt Beranek and Newman Inc.

and optimizing flows. These values are shown on lines 25-38.

The compute command on line 39 causes the traffic file to be read

and flows distributed throughout the network. On line 40 we ask

MRMAIN to model the network performance; the results are

reported on lines 41-43. Note that we have only high priority

packets at "time of day" = 12. All other times of day have no

traffic. On lines 44-48 we see that the traffic has indeed been

distributed in the network. Line 45 reports the values for "Node

1[C]." where the "C" means the current or "ZC" routing tables

(the default); "bits 4.500E+04[2]@12" indicates that there are

45000 bits/sec on the line going to node 2 at time 12. Time 12

is shown as the default because this is the time of peak traffic

(or in this particular example. the only traffic).

EXAMPL~E 2

In the second example we continue from where we left off in

the first example. The object now it to optimize the routing in

II out sample 4-node network that is currently using a simple

single-path routing along the path 1-2-3. We can do this quite

simply (in spite of the fact that MRMAIN produces a lot of output

with the default parameter settings).

1 Command: o ptimize
2

-262-

Report No. 4931 Bolt Beranek and Newman Inc.

3 *** Tolerance Settings m
4 Stop IFF/OPT Rel 1.OOOE-02 Minimizer Accuracy 1.OOOE-03
5 Stop IFF/OPT Model 1.OOOE-07 Flow-Rte Mismatch 1.OOOE-03
6 IFF Epsilon Multi 5.OOOE-02 IFF Cost Infeas 1.OOOE-05
7 IFF Ratio Infeas 1.OOOE-03 Rounding Error 1.OOOE-06
8 MinBitRate 1.OOOE-03 % to stop flow 1.OOOE-02
9 *' Kleinrock Kth power model with K 1

10 *'m Distribution Type: DETERMINISTIC
11 **' Iteration maximums: OPT.IFF 15 15 m
12 * Trace Flags ***
13 IFF,OPT.FLOWADDFLOWCOST.SHORT.LINEAR,ALPHA.PRTS,PRTM
14 1 1 1 0 1 0 0 1 1 1

-- 15 t11t111tltt1111111111111111t111**1t11111t11111t1111111111

16 Node 1[C3: bits 4.500E+04[2]@12 O.OOOE+00[41@12
17 Node 2[C]: bits O.OOOE+O0[1]@12 4.500E+04[3]@12
18 Node 3C]: bits O.O00E+O0[23@12 O.OOOE+O0[4112
19 Node 4[C]: bits O.OOOE+O0[3]@12 O.OOOE+00[1]@12
20 ** OPT: Starting...
21 1 ...
22 *' Model(Current Flow) 2.2000000E-01
23 0 Costs "for t.prio = 12 O...Kleinrock model; k=
24 ' ComputeCost: Multiplier 0.0222222223
25 Node 1: 2.2444E-05[2]..4.4444E-07[4]..
26 Node 2: 4.4444E-07[1]..2.2444E-05(3]..
27 Node 3: 4.444E-07[2J..4.4444E-07[4]..
28 Node 4: 4.4444E-07[3]..4.4444E-07(1)..
29 ** Single Path Routing Matrix 0
30 Node 1: 1 4 4 4
31 Node 2: 1 2 1 1
32 Node 3: 2 2 3 4
33 Node 4: 1 3 3 4
34 Node 1(S): bits O.OOOE+O0[2]@12 4.500E+04[4)@12

" 35 Node 2[3]: bits O.OOOE+O0[1]@12 O.O00E+O0[3)@12
36 Node 3[(S: bits O.OOOE+00[23@12 O.OOOE+O0[4112
37 Node 4[S): bits 4.500E+04[3)@12 O.OOOE+O0[1)@12
38 * Model(Shortest Path) = 2.2000000E-01
39 DONE OPTIMIZING: relative stoppingTolerance = 1.OOOE-02
40 0*0 Absolute stopping (theta) = 1.9800000E+00
41 0* Relative stopping (Gerla) = 8.9999591E+00
42 * alpha is 5.OOOOOOOE-01
43 * New Routing is:
41 1' Node 1[A] Routing Table:
45 Dst node: 1 2 3 4
46 via node: 2 0.000 1.000 0.500 0.000
4T7 via node: 4 0.000 0.000 0.500 1.000
48 *** Node 2(A] Routing Table:
49 Dat node: 1 2 3 4

-263-

. i-i i i'.-. .2-. '

Report No. 4931 Bolt Beranek and Newman Inc.

50 via node: 1 1.000 0.000 0.000 0.000
51 via node: 3 0.000 0.000 1.000 1.000
52 *** Node 3[A] Routing Table:
53 Dst node: 1 2 3 4
54 via node: 2 0.000 1.000 0.000 0.000
55 via node: 4 1.000 0.000 0.000 1.000
56 ** Node 4[A] Routing Table:
57 Dst node: 1 2 3 4
58 via node: 3 0.000 0.000 1.000 0.000
59 via node: -1 1.000 1.000 0.000 0.000
60 Node l[A): bits 2.250E+04[2]@12 2.250E+04[4]@12
61 Node 2[A]: bits O.OOOE+00[1]112 2.250E+04[3]@12
62 Node 3[A]: bits O.O00E+00[2]@12 O.OOOE+00[4]@12
63 Node 4[AJ: bits 2.250E 04[3]@12 O.OOOE+00[1)@12
64 Model based on flow (in ZC) = 5.6363636E-02
65 Model based on routing (in ZA) = -1.OOOOOOOE+00
66 *** Model improvement from last iteration 1.2345679E+10
67 2...*IIII*I** je*O***********0**********#*********E*O*** j*
68 *" Model(Current Flow) 5.6363636E-02
69 *'* Costs for tprio = 12 O...Kleinrock model; k=
70 ComputeCost: Multiplier 0.0222222223
71 Node 1: 9.5684E-07[2]..9.5684E-07[4]..
72 Node 2: 4.4444E-07[1j..9.5684E-07[3)..
73 Node 3: 4.4444E-07[2]..4.4444E-07[4]..
74 Node 4: 9.5684E-07[3]..4.4444E-07[1]..
75 *** Single Path Routing Matrix i
76 Node 1: 1 2 2 4
77 Node 2: 1 2 3 1
78 Node 3: 2 2 3 4
79 Node 4: 1 1 3 4
80 Node 1[S]: bits 4.500E+04[21@12 0.OOOE+00[4@12
81 Node 2[S]: bits O.OOOE+O0[1@12 4.500E+04[3]@12
82 Node 3[31: bits O.OOOE00E[23@12 0.OOE+00E 41@12
83 Node 4e(S: bits t.OOOE.00) 33212 0.OOOE+00 1112
84 *** Model(Shortest Path) 2.2000000E-01
85 06* DONE OPTIMIZING: relative stoppingTolerance = 1.OOOE-02
86 *00 Absolute stopping (theta) = O.OOOOOOOE+00
87 '** Relative stopping (Gerla) = O.OOOOOOOE+00
88
89 IIII0tlllllillllllllllll.lllltl*llllllll*lll* tlllll*lt** ltll
90 tll OPT Done: number of iterations 1
91 *0I Delay using optimal flow = 5.6363636E-02
92 *', Delay using optimal routes 5.6363636E-02
93 New Routing is:
94 *** Node 1[C] Routing Table:
95 Dst node: 1 2 3 4
96 via node: 2 0.000 1.000 0.500 0.000

-264-

Report No. 4931 Bolt Beranek and Newman Inc.

97 via node: 4 0.000 0.000 0.500 1.000
98 *** Node 2CC] Routing Table:
99 Dst node: 1 2 3 4

. 100 via node: 1 1.000 0.000 O.Cro 0.000
101 via node: 3 0.000 0.000 1.000 1.000
102 *** Node 3[C] Routing Table:
103 Dst node: 1 2 3 4
104 via node: 2 0.000 1.000 0.000 0.000
105 via node: 4 1.000 0.000 0.000 1.000
106 *** Node 4[C] Routing Table:
107 Dst node: 1 2 3 4
108 via node: 3 0.0 J 0.000 1.000 0.000
109 via node: 1 1.000 1.000 0.000 0.000
110 Node 1CC]: bits 2.250E+04[2]@12 2.250E+04[4]@12
111 Node 2[C]: bits 0.OOOE+00[1]@12 2.250E+04[3]@12112 Node 3[C]: bits 0.00E+O0[2]112 0.OOOE+O0[4)@12

L 113 Node 4[C]: bits 2.250E+04[3)@12 O.OOOE+O0[1]@12

115 Command: compute
116 Command: model
117 time high(o) low(o) high(b) low(b) combined hopcount
118
119 12 0.05636 0.00000 0.05636 0.00000 0.05636 2.000
120 Command:

The OPTIMIZE command on line 1 is used to cause the current

routing and flow to be optimized using the FD algorithm. Lines

2-114 show the result of the FD iterations using the default

TRACE flags. Although this output is rather long, it gives

detailed information about the internal workings of the FD

, algorithm. The parameters used in the optimization are shown on

lines 2-15. The initial bit rates are shown on lines 16-19. The

*i first iteration of the FD algorithm starts on line 21 ("1..."

indicates first iteration). The delay for the initial flow is

reported on line 22 as 220ms. Lines 23-28 show the costs that

are computed for each line using the performance metric. These

-

. -265-

Report No. 4931 Bolt Beranek and Newman Inc.

values are used to construct the single-path routing tables that

are shown on lines 29-33. The bit rates in the shortest-path

flow are shown next on lines 34-37. Note that the shortest-path

flow routes the 45KB/sec along the path 1-4-3. The delay of this

shortest-path flow is also 220ms (see line 38). Lines 39-41

report tolerances which are used to determine whether the FD

algorithm has come close enough to the optimal routing to stop.

The splitting fraction between the current flow (ZC) and the

shortest-path flow (ZS) is shown to be 0.5 (line 42). The new

routing which has been computed from the ZC and ZS flows is

stored in the alternate (ZA) set of tables (indicated by the

"Node 1[A]" designation) and is displayed on lines 43-59. The

.bit rates for this new routing are shown on lines 60-63, and the

network delay based on the new flow (which is now adopted as the

ZC flow for the next iteration) is shown on line 64. Lines 65-66

are not meaningful in this context and should be ignored. The

second iteration of FD starts on line 67. Note that the initial

network delay is now 56.4ms. On lines 67-89 FD tries once more4
to improve network performance. This time the performance does

not improve (because we are already at the optimal routing). FD

signals that is done on line 90, and prints the final value of4
the network delay. routing tables, and bit rates. Note that the

routing table for node 1 shows that .5 of the traffic destined to

node 3 is sent via node 2, anG .5 of the traffic is seni via node

-266-

I

Report No. 4931 Bolt Beranek and Newman Inc.

4. Finally in lines 115-119, we repeat the COMPUTE and MODEL

sequence we used earl.er to confirm that the network delay has

indeed improved (56.4ms now vs 220ms before optimization). At

last, we are donel Note that 90% of the lines described above

can be eliminated by turning off most of the trace flags

(especially the flags that cause routing tables to be printed);

*give the command "TRACE 0 0 0 0 0 0 0 0 O" to turn off all

tracing flags.

-

-267-

Report No. 4931 Bolt Beranek and Newman Inc.

B.1O Alphabetical List of Commands

ABORT - leave breakpoint or error tracing command level
BREAK - set a breakpoint
COMMENT - add comment line
COMPUTE - read traffic and load network nodes and lines
CONTINUE - continue debugging or tracing after breakpoint
DISTRIBUTION - define packet length distribution
DROP - remove lines between nodes
DUMP - save the state of MRMAIN for later resumption
EDIT - change a routing table
EXIT - leave the MRMAIN program
HELP - print list of available commands
IMPS - define network nodes
IMPTIMES - specify node processing times
INIT - initialize number of nodes
ITERATIONS -specify maximum number of IFF and OPT iterations
K-POWER - define value for "k" in performance metric
LINE - create a line between two nodes
LIST - send information about the model to a file
MAXFLOW - compute maximum network TRAFFICFACTOR
MODEL - report average network delays and hopcount
MROUTE - specify part of a multi-path routing table
OPTIMIZE - optimize flow and routing of current network
POP - leave the MRMAIN program
PRINT - send information about the model to user's terminal
PUSH - push to inferior exec running system monitor (EXEC)
QUIT - leave the MRMAIN program
READ - take input from a file
ROUTING - specify routing to use (single-path or multi-path)
SIMULATION - produce output for ARPANET simulator
SLINE - define a single duplex line between two nodes
SROUTE - define routing in single-path format
TEST - MRMAIN interface for testing and debugging

q TOLERANCE - specify convergence tolerances for FD algorithm
TRACE - trace internal operation of FD and IFF algorithms
TRAFFICFACTOR - scale traffic up or down
TRAFFICFILE - specify file where traffic information resides
TYPE - print contents of a file on user's terminal
VERIFY - check that routing tables are valid
WARNINGS - enable or suppress warning messages

-268-

Report No. 4931 Bolt Beranek and Newman Inc.

APPENDIX C. SAMPLE RUN OF SIMULATOR

This appendix shows a sample set of input and output for the

simulator. The example we use is experiment 106. which was one

of the experiments on a four-node ring described in Section 2.

The input to the simulator consists of commands which describe

the network topology, the protocols and the traffic to be

simulated, and the commands which control simulator execution and

output. This input is in the form of a single command file which

contains references to other command files. To run the

experiment, the following commands are given to the simulator:

echofile me:
read modelO.dat
model imp 0 (debug on

lineUDperiod 99999999)
read x30.top
read x106.off
seed 21784653525
spfrouting off
route 1 1 3 3 4
route 2 3 2 3 4
route 3 1 2 3 2
route 4 2 2 2 4

- start 1/3 1/1 10.0 1000
start 1/4 1/1 10.0 1000
run 10 1
debug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
debugfile xl06.deb
spfrouting on
run 300 10
quit

The first command specifies that echoing of input should be

directed to the terminal (or batch log file). The second command

-269-

Ul"

Report No. 4931 Bolt Beranek and Newman Inc.

reads in a set of defaults for the IMP. host, and line from the

file shown below. The next two lines turn on debugging output

and switch off the line up/down protocol. X30.TOP contains the

description of the network topology; X106.OFF contains commands

for desynchronizing the IMP clocks. The SEED command sets the

simulator random number seed. The SPFROUTING and ROUTE commands

specify SPF routing, disable routing changes, and initialize each

IMP's forwarding table. The START commands specify the traffic

on the network. The ,RUN command directs the simulator to run for

10 seconds of simulated time. After 10 seconds, debugging flag

18 is switched on and debugging output is directed to the file

X106.DEB. Routing changes are enabled, and the simulator is run

for 300 seconds, then stops.

The file MODELO.DAT specifies the default values of

parameters for the IMP. host, and line. Since this simulation is

quite simple. these parameters are used unchanged for the 4 IMPs

in the network. The commands in MODELO.DAT are:

I

model imp 0 (
modemin 0.00052 modemout 0.00044
hostin 0.00087 hostout 0.00053
task 0.00170 fasttimeout 0.0032
slowtimeout 0.0036 reroute 0.001
source 0.001 sink 0.001
dummy 0.007

delayAvgPeriod 400 lineUDperiod 25
updateAgingPeriod 12 timeout 0.0256

-270-

Report No. 4931 Bolt Beranek and Newman Inc.

retransmit 0.125 rate 1.0
avgdelmax 1.6 threshold 0.064
decay 0.0128 avgunits 0.0064
delunits 0.0008 wordsize 16
delayoffset 0.0 fastoffset 0.0

packetlength 1008 numbuffers 35

packet off buffer off
node off debug off
queue off)

model line 0 (
error 0.0 speed 50e3
lag 1.0e-3 packet off
debug off framing 72
numch 8 lud 3 20 60
lineprotocol on
)

model host 0 (
sink 0.0
packet off debug off
length deterministic rate negexponential

lineupdown 16
update 80
null 80
overhead 128

The first set of parameters specifies the execution speed of

each IMP process, the next set specifies the rate of various

periodic events in the IMP, and the next set specifies parameters

for the link and routing protocols. PACKETLENGTH gives the

maximum length of a packet. and NUMBUFFERS gives the number of

buffers in an IMP. The remainder of the IMP parameters turn off

tracing and debugging output. The remainder of the file

specifies default values for line parameters. default values for

host parameters. and sizes for control packets and protocol

-271-

Report No. 4931 Bolt Beranek and Newman Inc.

framing overhead.

The file X30.TOP, shown below, describes the topology of the

network. It is as follows:

": INIT 4 8

IMP 1 2 1
IMP 2 2 1
IMP 3 2 1
IMP 4 2 1
HOST 1/1
HOST 1/2
HOST 1/3
HOST 1/4
LINE 1 3
LINE 1 4
LINE 2 3
LINE 2 4
LINE 3 1
LINE 3 2
LINE 4 1
LINE 4 2

The first command specifies a network with 4 IMPs and 8

(simplex) lines. The IMP commands create 4 IMPs, each with 2

lines and 1 local host. The HOST commands create those hosts.

The LINE commands connect the IMPs with 4 bi-directional lines.

The file X106.OFF. shown below, gives random offsets to the

clocks in each IMP, so they are effectively desynchronized.

imp 1 delayOffset 9.6512 fastOffset 0.0190
imp 2 delayOffset 1.2800 fastOffset 0.0188
imp 3 delayOffset 2.6624 fastOffset 0.0213
imp 4 delayOffset 9.1904 fastOffset 0.0110

-272-

Report No. 4931 Bolt Beranek and Newman Inc.

For each IMP, the parameters DELAYOFFSET and FASTOFFSET are

set to random values. These parameters set the relative time at

which delay averaging takes place in each IMP.

The output of the simulation is directed to file X106.DEB,

shown below:

Rout.Chg 4 1 11.52354 2 1FRout.Chg 3 1 53.86344 1 2
Rout.Chg 2 1 53.86800 3 4
Rout.Chg 2 1 60.38890 4 3
Rout.Chg 3 1 60.39560 2 1
Rout.Chg 2 1 217.70844 3 4
Rout.Chg 2 1 268.90844 4 3

This is the entire output of the simulation runt Each line

describes a routing change in a particular IMP. The first number

is the IMP number, and the second is the destination to which

this routing change refers. The third number gives the

simulation time. The last two numbers give the IMP number of the

neighbor for the old and new choice.

The initial routing is the worst-case routing. The output

* shows that the routing changes to the optimal routing at 11.5

seconds (i.e., 1.5 seconds after routing changes were enabled)

and switches back to worst-case between 53.9 and 60.4 seconds.

*i For the purposes of this experiment, the routing changes in IMP 2

are irrelevant. The routing is therefore optimal for all but 8

-* seconds of the 300 second run. or 97%.

-273-

Report No. 41931 Bolt Beranek and Newman Inc.

-274-

Report No. 4931 Bolt Beranek and Newman Inc.

References

[1] J.M. McQuillan. I. Richer, E.C. Rosen, %.P. Bertsekas.
AgpANEI RoalIn Algrithm Jnm ptoymenU. S.caund Urnmiannual
Tecnial Jelrt. BBN Report No. 3940, October 1978.

[2] E.C. Rosen. J.G. Herman. I. Richer, J.M. McQuillan. A.RPAMET
Rouing Alaori improvements. Ihind ,emianmjl I2c~hnrcal
Rtor . BBN Report 4088, March 1979.

(3] E.C. Rosen. J. Mayersohn. P.J. Sevcik, G.J. Williams, R.
Attar, ARPiEI Roi. In Alg.Qri-tbm .Improjtment. YJm I.
BBN Report No. 4473. August 1980.

[4) L. Kleinrock, Qugeu ing lys tm. VA1M 2: mpJ1ftmr
7 JApl.ation, John Wiley & Sons. 1976.

[5] M. Gerla. 1h2 D sign gnf B5tjoe-anrd-Fgrd (2/F) NeY..oJrks

f= _p Comunteations, Report No. UCLA-ENG-7319,
School of Engineering and Applied Science. University of
California. Los Angeles. January 1973.

[6] B. Meister, H.R. Mueller. and H.R. Rudin. Jr., "On the
Optimization of Message-Switching Networks." IZU
Transactions an _ommuniAjtipn. COM-20(1): 8-14, February
1972.

[73 W. Chou and H. Frank, "Routing strategies for computer
network design." presented at Symp. Computer-Communications
Networks and Teletraffic, Polytechnic Inst. of Brooklyn,
Brooklyn, NY, April 4-5. 1972.

[8] G. Birtwistle. L. Enderin. M. Ohlin. J. Palme. DECMTME-10
ZIMUL Languae Handbook, Swedish National Defense
Institute and the Norwegian Computing Center, NTIS # PB-
243-06 4.

[9] M. Schwartz. Qmpjt= Cmmuna.t on Network JD.eign and
Analysis. Prentice-Hall. Inc. 1977.

[10] E.C. Rosen. Issues In Internetting Part 1: Modelling The
Internet, Internet Experimental Note Number 184, May 1981.

[11] E.C. Rosen. Issues in Internetting Part 2: Accessing The
Internet. Internet Expnrimental Note Number 187. June 1981.

[121 E.C. Rosen. Issues in Internetting Part 3: Addressing.

-275-

Report No. 4931 Bolt Beranek and Newman Inc.

Internet Experimental Note Number 188, June. 1981.

[13] E.C. Rosen. Issues in Internetting Part 4: Routing.
Internet Experimental Note Number 189, June 1981.

E14] "Simula and TOPS-20 Notes." On line documentation of bugs
and features in file [BBNG]PS1:<BHITSON>SIMULA.NOTES.
Available from the authors of this report.

1

.4

-26

* ,

