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ABSTRACT

The use of residuals to test the assumption of normality of the errors in

a linear model is considered. Standard tests for normality typically require

an assumption of independence; however the residuals are correlated. An

investigation of the Shapiro-Wilk test shows that it is affected by these

correlations, but the problem can be overcome by a simple adjustment to the

test procedure.
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SIGNIFICANCE AND EXPLANATION

In a regression situation, the residuals provide (correlated and often

unequal variance) estimates of the errors in the postulated model. We anticipate

that, if the errors are normally distributed as is usually assumed, the residuals

will show a "similar" behaviour. Thus the departure from, or consonance with,

normality of the residuals is of interest. Standard tests for normality typically-

require an assumption of independence; even if the residuals are standardized to

be of equal variance, they will be correlated. We discuss various test possibili-

ties and then focus on the well-known Shapiro-Wilk test. Although it is affected

by the correlations, this difficulty can be overcome by a simple adjustment to

the test procedure.

The responsibility for the wording and views expressed in this descriptive sixw~y
lies with MRC, and not with the authors of this report.



TESTING THE NORMALITY OF RESIDUALS

N. R. Draper and J. A. John

I. INTRODUCTION

Consider the linear model

-x c (1.1)

where y is an n x I vector of observations, X is an n x p

matrix of specified predictor variables, 0 is a p x 1 vector

of parameters and e is an n x 1 vector of unknown errors

assumed to be N(9, o2I) . The vector of residuals obtained from

a least squares (LS) fit of (1.1) is given by

e - (I- R)y (1.2)

where R - X(X'X)-Ix . Examination of these residuals to check

the basic model assumptions is essential. With the advent of

large scale computing, a huge literature has grown up on ways to

examine and test the residuals. For basic references see, for

example Seber (1977), Barnett and Lewis (1978), Beisley, Kuh and

Welsch (1980), Draper and Smith (1981) and Hawkins (1980).

In this paper, the use of residuals to test the assump ion

of the normality of errors is exmined. There are several test for

normality in use, but typically they require the assumption of

independence. These tests are considered in the next section.

However, they may not be appropriate when applied to LS residuals

since these residuals are not independent. They are based on (n - p)

rather than n degrees of freedom and are correlated, their variance

Mathematics Department, University of Southampton, S09 - SNH, U.K.

Sponsored by the United States Army under Contract Nos. DAAG29-80-C-0041
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covariance marxbig-e I !o hslc of

independence raises a number of interesting questions. To

what extent are the standard normality tests affected by the

presence of correlations amngst the residuals? Can these

tests be amended or are new tests necessary? Alternatively,

can a subset of the (a - p) residuals or, sore generally,

(n - p) linearly and statistically independent linear functions

of the residuals be found to which the standard tests can be

applied?

A number of ways of transforming residuals to independ-

ence have been proposed and some of the methods are described in

section 3. For a number of reasons we feel that such transformed

residuals are not, in general, entirely suitable for testing

normality. Instead, an investigation into the use of one of the

standard tests, namely the Shapiro-Wilk test, on the LS residuals

(1.2) is reported in the remaining sections. our conclusion is

that this test, properly interpreted, gives a suitable basis for

testing the normality of residuals.

2. TESTS FOR NOIIALTY

A number of tests have been proposed to check for normality.

A popular one that has stood up well in various comparative investi-

gations is due to Shapiro and Wilk (1965, 1968); see formula (4.1).

Extensive comparisons of the Shapiro-Wilk statistic with competitors

were made by Shapiro, Wilk and Chen (1968). They concluded that it
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was a "generally superior omnibus measure of non-normality".

Similar conclusions transfer to a modification of the Shapiro-Wilk

test statistic for sample sizes exceeding 50, described by

Shapiro and Francia (1972). Other investigations favouring the

Shapiro-Wilk statistic are given in Dyer (1974) and Huang and

holch (1974).

For samples of size 50 or more, D'Agostino (1971)

suggests a statistic D which is "up to a constant the ratio of

Downton's linear unbiased estimator of the population standard

deviation to the sample standard deviation". The null distribution

of D can be approximated by Cornish-Fisher expansions.

D'Agostino and Rosman (1974) in an investigation of Geary's

computationally simple test based on the ratio of the mean deviation

to the standard deviation conclude that it is a possibly useful test

but that "there appears to be no specific situation where Geary's

test clearly and for practical purposes dominates all other tests...".

Spiegelhalter (1977, 1980) investigates an omibus test

for normality "based on the posterior probability of the normal shape"

under various assumptions about the sampled population. Power

comparisons with other tests for n - 20 and 50 show "good overall

performance when n - 20" with a drop in power "against moderately

asymmetric alternatives for n - 50".

Lin and Mudholkar (1980) offer a test statistic Z which

makes use of the fact that it is only for the normal distribution

that the mean and variance are distributed independently. This test,

against symetric alternatives, is sum~arized by Nelson (1981) who

also provides a table of critical values.

-3-
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Martinez and Inglewica (1981) suggest a test statistic

which is the ratio of two estimators of variance and make a power

comparison in which the "proposed test outperforms all considered

competitors for long-tailed symetric alternatives and performs

vell for all other cases considered". However, it is not univer-

sally superior to all other tests.

3. UNCORULATED TRASFORMED RESIDUALS

The residuals • - (I - R)Z are linear combinations of

the observations and are based on n - p degrees of freedom.

Since I - R is of rank n - p it is possible to find an (n - p) x n

matrix A of rank n-p such that

! -Ae (3.1)

is Nn(O , 021). The vector ea thus consists of (n - p)

uncorrelated homoscedastic residuals. The matrix A necessarily

satisfies AX - 0 and AA' - I.

There are, however, many possible choices for A . The

overall aim is to make a "good" choice which will facilitate some

stated objective. The following choices have been suggested:

(a) Theil (1965) proposed the use of Best Linear Unbiased Scaled

(BLUS) residuals. Let the vector Je contain (n - p)

selected components of e ; J is a submatrix of I . Then
- -n

BLUS residuals are obtained by choosing A, so that the

expected sun of squares of the discrepancies in the vector

!a - J is mininised, that is, so that

-4-
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{( A( - Je)' (A - Je))

is minimised. For a succinct, excellent account, see

Grossman and Styan (1972); alternatively see Dent and Styan

(1978). For a program which computes BLUS residuals, see

Farebrother (1976). For related work, see Koerts (1967) and

Abrahamse and Koerts (1971)

(b) Tiao and Guttman (1967) suggested auginting ea in (3.1) by

p independent random variables Z 1, z2 ,... ,z which are

uncorrelated with c and such that E(Z) - 0 q V(z)= u oI

If (K , J) and G are n x n permutation and orthogonal

matrices respectively, then a general form of such residuals

can be written (see Dent and Styan, 1978) as

S-(Je a +K)

Following ltildreth (1971), the choice of G to minimise the

trace of the variance covariance matrix of e - c leads to
-9

the so-called Best Augmented Unbiased Scaled (BAUS) residuals.

7 The e residual vector is said to be "unaugmented", the e
-a -9

is "augmented". For additional details see Dent and Styan (1978).

For properties of uncorrelated transformed residuals, see

also Godolphin and Tullio (1978).

Other alternative approaches are as follows:

(c) Hedayat and Robson (1970) and Brown, Durbin and Evans (1975) have

suggested the use of "stepwise" (or reeursive) residuals; see also

Farebrother (1978). The uth (u > p) such residual is calculated

--



as the deviation of the uth observation from its predicted

value based on a LS fit to only the first u observations,

normalized to have variance a2 . The n1 - p stepwise

residuals are not only mutually independent and homoscedastic

but are also independent of all the calculated regression functions.

They are not, of course, a transformed set of overall LS

residuals and their vector is not restricted to the same space

as the vector e but they are clearly linear combinations of

the observations. Moreover, each stepwise residual has a clear

identification with one point of the design. However, the aet

of stepwise residuals obtained is entirely dependent on the order

selected for the entry of the observation. Hedayst and Robson

argue that the ordered fitted values might be used to specify

the ordering. Brown et. al. suggest the use of such residuals

in time series where there is a natural ordering.

(d) Gentleman and Wilk (1975) and John and Draper (1978) have

suggested the use of "adjusted" residuals as an aid to the

detection of outliers. The procedure is as follows. Obtain

the residuals from a LS analysis of all data points and choose

one of them, normalized to have variance c2 , as the first

adjusted residual. Then the point corresponding to this residual

is deleted and the procedure repeated on the reduced date set to

give a second adjusted residual; again normalized to have

variance 02 .A second point is then deleted from the data

set, and so on. This procedure is repeated until n - p

-6-



* adjusted residuals have been obtained; the remaining p

residuals will then be zero. John and Draper have shown

that a missing value procedure can be used as an alternative

to deleting observations. The resulting adjusted residuals

are homoscedastic and uncorrelated. Observations can be

selected for deletion in any order; the order used in outlier

detection is in terms of a decreasing modulus size of

residuals obtained when the observation for the largest

residual at the previous stage is deleted.

Note the reciprocity between stepwise and adjusted

residuals; they are based on forward and backward selection

procedures respectively.

The standard tests of normality, discussed in the previous

section, could be applied to any of the uncorrelated transformed

residuals given above. For a number of reasons it was decided that

such procedures would not, in general, be particularly appropriate.

The arbitrariness of transformed residuals is one of the

main drawbacks. For testing normality, there appears to be no reason

in general why one particular A matrix in (3.1) should be preferred

to any other matrix. If the order of observations is predetermined,

as in time series, then the use of stepwise or adjusted residuals may

be appropriate. However, in other cases the use of such residuals is

dubious especially as the resulting residuals may not be normally

distributed even when the error distribution is normal. This is

certainly the case, for example, when adjusted residuals are used

with an ordering based on a decreasing modulus size of residuals.

-7-
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Further, the fact that the residuals are uncorrelated

does not imply that they are independent in general. Huang and

Bolch (1974) point this out for BLUS residuals and add that

"... the lack of independence among BLUS residuals when the

disturbances [errors] are not normal may be as least as great

as the lack of independence among Eordinary3 LS residuals". In

other related work, Ramsey (1969) and Ransey and Gilbert (1972)

investigate tests for detection of regression specification errors

such as omitted variables, incorrect functional forms, simultaneous

equation problems and heteroscedasticity. Ramsey and Gilbert note

that "... there does not seem to be any universal simple solution

to the problem of choosing between [BLUS] and [ordinary] LS

residuals".

Another disadvantage of the transformed residuals is

the computational burden involved in calculating them. Tests

for normality based on such residuals would have to enjoy consid-

erable benefits over tests using the LS residuals for this

disadvantage to be overcome.

Hence, in this paper, we have investigated the possib-

ility of applying a standard test, namely the Shapiro-Wilk test,

to the LS residuals. As is shown in the next section, such a

test appears to be appropriate if the test percentage points are

modified by making a simple adjustment. The virtues of this

procedure are that it is easy to carry out, needs no additional

tables, and its accuracy seems adequate for the situations we have

investigated.

"--
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4. SIMLATION RESULTS FROM SELECTED EXPERIMENTAL SITUATIONS

A simulation study was carried out on a number of

selected experimental situations to assess the appropriateness

of using the Shapiro-Wilk test to examine the normality of LS

residuals. Table 1 shows results obtained using two-way r x c

tables. N - rc standard normal variates were generated and

residuals e.i(i - 1, ... , N) evaluated assuming the usual

additive model. The Shapiro-Wilk statistic

w aa t . i e)j}/1 ei2  (4.1)

was then calculated, where the a's are constants given by Shapiro

and Wilk (1965). For each r x c table, this procedure was

repeated 3,000 times. Note that, in general, standardized

residuals should be used in (4.1) to give uniform variances, but

this is not necessary here since all residuals are estimated with

equal precision. As -A check on the procedure and calculations,

the Shapiro-Wilk statistic was also calculated for the errors E.
2.

themselves. The 5% and 10% percentage points of the W statistic

for N observations, given in Shapiro and Wilk (1965), were then

used to obtain the proportion of sampled W values falling in the

corresponding tail area. For the errors e.i these proportions

should be exactly 5% and 10%; any discrepancies reflecting sampling

error. It can be seen from Table 1 that these results are satisfactory.

For the residuals e.i on the other hand the proportions are clearly

too small. The tables of percentage points can, however, be
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examined to determine what value of N should have been used

in order to produce the correct tail areas. In table 1, these

values of N which lead to the correct 5Z and 101 points are

denoted by N 5  and N 10  respectively. This means that for

the 3 x 5 two-way table, for example, if the Shapiro-Wilk test

had been applied at the 5% level with N 5m. 18, instead of N - 15,

an appropriate test would have been made. Similarly, N 10 - 17.5

would have been appropriate for a 101 level. Note that N >N Nand
5

N10 > N for all cases in Table 1.

Table 2 shows a parallel set of figures for the residuals

e.i from main effect models for various types of factorial designs

as indicated by the f irst column. Again N >. N and N - ji N i most
5. 1

but (perhaps surpicisingly) not all cases. Table 3 examines the

case where two factor interactions are estimated as well, thus

further reducing the residual degrees of freedom. The results are

in line with the previous tables except for thes cases 22 x 4.

22 x 5 and 22 x 6 which were found to be completely anomalous;

the 3,000 simulations produced many more small W values than

did neighbouring cases. Close examination of these anomalous cases

revealed no assignable cause for this puzzling and atypical behaviour.

Additional computions were made for the 22 x 7 and 22 x 8 cases

and these confirmed the anomaly, as shown in Table 3. These cases

are excluded from the discussion in the next section.

Table 4 provides parallel results and a broadly similar

pattern for a series of rotatable response surface designs. These

k k-i
consist of a 2 factorial (k -3, 4) or a 2 fractional

-10-



Table 1. Generations for selected r x c two-way tables showing

the results of applying the Shapiro-Wilk normality test

to errors, and to residuals from an additive main effects

model without interactions.

5% POINTS 10% POINTS

% less than % less than 2 less than % less than
DESIGN N 5% 5% N 510% 10% W 1

.1ERRORS RESIDUALS ERRORS RESIDUALS 1

3 x5 15 .052 .023 18 .107 .059 17.5

4 x 4 i16 .056 .028 19 .108 .064 18

3 x 6 18 .055 .021 22 .100 .059 21

4 x 5 20 .055 .03 22 .104 .076 22

3 x 7 21 .049 .020 26 .096 .054 25.5

3 x 8 24 .058 .028 29 .111 .068 27

4xb6 24 .032 27 .078 26

5 x5 25 .050 .028 29 .0%.066 28

3 x9 127 .059 .019 33 .109 .063 i32

4 2 .061 .035 32 .110 .072 32

3 x 10 30 .051 .023 36 .104 .073 3

5 0.035 33 .089 3

4 2 .059 .036 35 .114 .083 34

5 x7 35 .048 .038 38 .095 1.086 37

4 x9 36 .043 .034 38 .094 .087 38

6 x6 136 .037 39 .088 .38

4 x 10 40 .045 .025 45 .093 .078 44

5 x8 40 .046 41 .094 41

6 x 7 42 .047 .048 43 .094 .099 j43
5 x 9 45 .043 .042 47 .096 .096 146

6 x 8 48 .048 .043 >50 .102 .087 )150

7 x 7 49 .037 >50 .082 >50



Table 2. Generations for selected factorial designs showing the

results of applying the Shapiro-Wilk normality test to

the residuals from an additive main effects model without

interactions.

_______ -51 POINTS 101 POINTS

DESIGN N Proportion less N 5  Proportion less N 1
than 51 than 101 1

24 16 .040 17 .087 17
22 x 4 16 .027 i8 .077 17.5
2 x 32  18 .039 19 .087 19
2 2 x5 20 .037 22 .081 21
2 3 x3 24 .046 25 .092 25

2 x3 x4 24 .04 26 .095 25

22 x6 24 .033 27 .084 26

33 27 .050 27 .108 1 6.5

2 x 3x5 30 .037 33 .084 32

2 3 x4 32 .039 35 .088 3

2 x 42 32 .042 34 .084 3

2 2 x3 2  36 .036 38 .083 38

3 2 x4 36 .038 39 .083 38
2 x3 x6 36 .039 38 .086 38

2 3 x5 40 .049 41 .095 41

2 x 4x5 40 .046 41 .095 40

3 2 x5 45 .044 47 .098 45

2 2 x 3 x4 48 .058 47 .106 46

3 x 42  48 .052 48 .109 46
2 x4 x6 48 .051 48 .096 48

2 3 x6 148 1 .042 > 50 J 0092 49

-12-
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Table 3. Generation* tor selected kactorial designs shoin the

results of applying the Shapiro-Wilk normality test to

the residuals from an additive main effects model with

first order interactions.

Residual 5Z POINTS 1OZ POINTS

DESIGN N d.f. Proportion less N Proportion less N
V than 5Z than IOZ 10

24 16 5 .033 19 .061 20

22 x 4 16 3 .289 6 .399 6

2 x 32  18 4 .024 22 .054 22

22 x 5 20 4 .294 9 .412 8

23 x 3 24 9 .025 29 .058 30

2 x 3 x 4 24 6 .026 29 .064 28

22 x 6 24 5 .289 12 .439 12

33 27 8 .029 34 .057 35

22 x 7 28 6 .322 13 .459 13

2 x 3 x 5 30 8 .038 33 .084 33

23 x 4 32 13 .027 38 .061 38

2 x 44  32 9 .051 32 .089 35

22 x 8 32 7 .331 15 .449 15

22 x 32 36 16 .022 44 .056 43

32 x 4 36 12 .027 44 .055 44

2 x 3 x 6 36 10 .045 37 .088 37

23 x 5 40 17 .037 43 .079 44

2 x 4 x 5 40 12 .054 39 .097 41

32 x 5 45 16 .032 '>50 .069 '>50

2 x 3 x 4 48 23 .036 ',50 .079 >50

3 x 42 48 18 .028 3o50 .069 *50

2 x 4 x 61 48 15 .062 46 .100 48

23 x 6 48 21 .044 so .089 50

-13-



Table 4. Generations for selected second order rotatable coosite

designs shoving the results of applying the Shapiro-Wilk

normality test to residuals from a full second order

model fit.

No of No of No of Residual At Shapiro-Wilk

variables Centre Pt8. Observ. d.f.

5Z point 1OZ point

k n N v Observed Z N5  Observed Z N10no5

3 2 16 6 .041 171 .070 18

4 18 8 .042 19 .078 21

6 20 10 .047 204 .081 22

8 22 12 .047 221 .082 24

10 24 14 .043 25 .081 26

4 3 27 12 .026 34 .061 33

4 28 13 .025 35 .060 35

6 30 15 .032 34 .075 34

8 32 17 .029 38 .064 38

10 34 19 .032 38 .071 38

5 2 28 7 .026 36 .052 40

4 30 9 .032 37 .058 40

6 32 11 .032 40 .055 42

8 34 13 .028 42 .054 42

6 1 45 17 .042 49 .083 49

2 46 18 .038 > 50 .082 50

4 48 20 .036 > 50 .082 >'50

-14-
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factorial (k - 5, 6) with points coded as ( 1, +1,..., ±1)

plus 2k axial points at a distance 2 (k-p) / 4 from the centre,

where p = 0 for k - 3,4 and p - I for k - 5,6 , plus n
0

centre points (as tabulated). Again the results in tables

2 - 4 are based on 3,000 simulations.

5. APPROXIMATIONS TO N5 AND N10 AND RECGSENqDATIONS

The calculations in Section 4 indicate that the Shapiro-

Wilk test for normality is incorrect when applied in the usual

fashion to correlated residuals but that the effects can be adjusted

for by using the Shapiro-Wilk percentage points with values N5 and

N10  rather than with N . These alternative values are somewhat

higher than N so that, with no adjustment to N 9 the presence of

correlations among the residuals mans that the assumption for normality

will be rejected less often for independent samples of N observations.

That is, use of the Shapiro-Wilk test without adjustment will usually

result in a more conservative test.

An important but difficult question is whether there is an

attributable pattern to results of this type, in general. For an

approximation it seems sensible to seek an adjustment to N which

decreases to zero as the residual degrees of freedom v tends to

N , so that no adjustment would be made in the limiting (but impractical)

case where the model contained no parameters and so the residuals were

independent. For that reason formulas of the type

-15-
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were examined (amongst others). It turned out that the (rather

appealing) use of e - 5 for 15 and 8 1 10 for NIO provided

an adequate approximation considering the sampling error that

occurs naturally in the generations. Table 5 shows the probability

levels that would have been obtained, for the generations of Table 1,

had the A 5 and 10 values of (5.1) been employed. The agreement

is excellent for N10 , less so (but couservative)for f5

Similarly conclusions are obtained from the generations in Tables 2 - 4

As an overall practical recommndation for this work, we

thus give the following rule of thumb:

To check the normality of a set of N standardized

residuals from a rearession model, apply the Shapiro-Wilk test but

use the percentae point for N. - N + 8(l - v/N) , where v is

the residual degrees of freedom and a - /100 is the desired

significance level.

-16-
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Table 5. Actual tail proportion found (for the generations of

Table 1) lying below the Shapiro-Wilk a percentage

points when values N. a N + 0(1 - V/N) are used

instead of N in the Shapiro-Wilk tables for the

a e/l0 cases, 0 a 5 and 10. (Ideally the values in

the last two colusmn should be 0.050 and 0.100

respectively).

Tail areas achieved by
using

Design N5  io

3 x 5 .043 .092

4 x 4 .045 .100

3 x 6 .034 .082

4 x 5 .049 .104

3 x 7 .030 .078

3 x 8 .035 .083

4 x 6 .042 .094

5 x 5 .041 .091

3 x 9 .027 .072

4 x 7 .040 .086

3 x 10 .032 .084

5 x 6 .046 .101

4 x 8 .045 .098

5 x 7 .045 .100

4 x 9 .048 .099

6 x 6 .045 .097

4 x 10 .035 .096

5 x 8 .052 .107

6 x 7 .051 .101

5 x 9 .046 .103

6 x 8 .043 .095

7 x 7 .041 .094

-17-
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