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ABSTRACT

A new method for proving the existence of traveling wave solutions for

equations of the form

Ut Uxx + F'(u)

is presented. It is assumed that F is sufficiently smooth, lim F(u) -

F has only nondegenerate critical points, and if A and B are distinct r

critical points of F then F(A) 0 F(B). The results describe when, for a

given function F, there must exist zero, exactly one, a finite number, or an

infinite number of waves which connect two fixed, stable rest points.
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SIGNIFICANCE AND EXPLANATION

1?

___ The equation considered here has been considered as a model for a variety

of physical phenomena including population genetics and nerve conduction. Of

primary interest is the eventual behavior of solutions of this equation. One

expects the solution eventually to look like a traveling wave solution that

is, one which moves with constant shape and velocity. In this paper we

determine all of the traveling wave solutions of the equation, showing there

are situations when there exist an infinite number of traveling wave

solutions.
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• . TRAVELING WAVE SOLUTIONS OF IULTISTABLE

REACTION-DIFFUSION EQUATIONS

David Terman

, J1. Introduction

Consider the equation

1.1 ut Uxx + F'lu)

which arises in various branches of mathematical biology including population

genetics, ecology, and nerve conduction (see [1], [3] ). We assume throughout

that F satisfies:

(a) F e C1a),

(b) lim F(u) .

(1.2) (c) every critical point of F is nondegenerate,

(d) if A and B are distinct critical points of F, then

F(A) 0 F(B)o

We are interested in finding traveling wave solutions of (1.1). These

are nonconstant, bounded solutions of the form u(x,t) - U(z), z - x + et.

if U(z) is a traveling wave solution of (1.1) then U satisfies the first

order system of ordinary differential equations:

U' "V
(1.3)

V' 8V - F'(U).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the National Science Foundation
under Grant No. MCS80-17158.



For boundary conditions we take

(1.4) lim Uz) - A and li U(z) 8

where A and B are stable rest points of equation (1.1). Note that the

stable rest points of equation (1.1) correspond to those values of U for

" which F assumes a local maximum. If (U,U) is a solution of equations

(1.3) and (1.4) we shall sometimes say that *U connects A + B. We shall

* also sometimes call a traveling wave solution a "connection". In this paper

*: we develop a technique to determine, for a given function F and two stable

rest points A and B, how many different waves connect k + B. we shall

see that there may exist zero, a finite number, or a countably infinite

numbers of such waves.

The case when F(u) has exactly two local maxima has been considered by

a number of authors (see [1] for references). Some work on the multistable

- case is in the paper of Fife and McLeod [3]. If F has just two local maxima

'-' then F'(u) has the familiar cubic shape. In this case there exists a unique

wave with positive speed which connects the stable rest points.

It follows from (1.3) that if U(z) is a traveling wave solution, then

1 V2 2

el(1.5) d{1 ,. + F(u))
dz 2

We assume throughout that the speed, 0, is positive. An immediate

consequence of this assumption and (1.5) is that if U connects A + B, then

F(A) < F(B). Note that if u(x,t) is a traveling wave solution moving to the

left with positive speed 0, then u(-x,t) is a traveling wave solution

moving to the right with negative speed, -8.
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The (UV) phase plane is the natural place to study the solutions of

system (1.3). In the phase plane, stable rest points of equation (1.1)I

correspond to saddles, while traveling wave solutions correspond to

trajectories which *connect" the saddles. One can only expect saddle-saddle

connections to exist for special values of the speed 8. The difficulty with

phase plane analysis is that the phase planes become much too complicated for

a general function F. For example, even when F has only three local maxima

there may exist an infinite number of traveling wave solutions.

To illustrate the approach we take, let F be as shown in Figure 1.

FC(U)

44

Figure 1. Notice that the local maxima of F are ordered according to

the height determined by F.

We suppose that there are four values of U, say A, B, C, and D, where F

assumes a local maximum. Assume that A < B < C < D and F(D) > F(A) >

F(C) > F(B). Notice that in Figure 1 we ordered the four critical points

according to the height determined by F. That is, we set A - 3, B - 1,

C - 2, and D - 4. Unless stated otherwise we shall always order the stable

rest points, or local mayima of F, in this manner. Our description of how

many traveling waves exist shall be in terms of this ordering. Two functions

-3-



which satisfy the conditions (1.2) are said to be in the same equivalence

class if they have the same ordering of their local maxima. Hence, given a

positive integer n, each permutation of the integers 1,2,...,n determines

a unique equivalence class of functions.

For a given function F there exists a speed 0  such that no saddle-

saddle connections exist for, 0 > 80 * It is not very hard to determine what

the phase plane must look like for 0 > 80 . If F is as shown in Figure 1

then the phase plane for 8 sufficiently large looks, qualitatively, like

what is illustrated in Figure 2A.

. A) vB) _ j-U

Figure 2. Phase planes for System 1.2 where F is as shown in Figure
1. In (A) the speed, 6, is very large, and in (B), e - 0.

As 8 approaches + m the unstable manifolds (trajectories which approach

the saddles in backwards time) become more and more vertical while the stable

manifolds (trajectories which approach the saddles in forward time) become

more horizontal. In Figure 28 we show the phase plane for 8 - 0.

The basic approach is to begin at e - e0 and then start decreasing 8.

By comparing the phase plane for 8 80  with that for 0 0 one is able to
0

-4-
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determine all the possibilities for the fastest wave. For the function F

shown in Figure 1 these possibilites are the 1 + 3, 1 + 2, and 2 + 4

connections. Of course, which one of these is the fastest wave depends on the

specific function F. Let us suppose that for a particular F the fastest

wave connects I + 3. Then the qualitative features of the phase planes

change after the I + 3 connection (see Figure 3). We can then decrease 0

further and determine, by comparing the new phase plane with the phase plane

at 0 - 0, all the possibilites for the next fastest connection. These

possibilities are the 2 + 3, 1 + 2, and 2 + 4 connections. A similar

analysis can be done if the fastest wave was either the 1 + 2 or the 2 • 4

connection. In this manner we can construct a directed graph as shown in

Figure 3. This graph illustrates all the possible orderings of which

connections can take place. To each equivalence class of functions there

corresponds such a directed graph. To each specific function there

corresponds a path in the directed graph determined by its equivalence

class. This path first shows the fastest wave, then the second fastest wave,

etc... Our immediate goal is to be able to construct, and understand, these

graphs.

-5-
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Figure 3. The directed graph for the equivalence class of functions

shown in Figure 1.

One approach to constructing these graphs would be to draw a lot of phase

planes. This would be very tedious, if not impossible, since the phase planes

become very complicated. What is needed is a way to quantify the essential

-6-
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information contained in each phase plane. That is, we need a way to

translate each phase plane into an array of numbers. Then, by just looking at

the array of numbers, we can hopefully determine what the possibilities are

for the next fastest wave. After a connection takes place the qualitative, or

topological, features of the phase planes change. This impl.es that the array

of numbers also changes. Hence, we need an algorithm which tells us how to

change the array of numbers after a particular connection has occurred.

In section 2 we describe how to

(a) assign an array of numbers to each phase plane,

(1.6) (b) determine what the possibilities are for the next fastest

wave by just looking at the array,

(c) change the array after a connection has taken place.

With these three operations we will be able to construct all of the directed

graphs. In section 3 we present some applications of the technique just

described. In section 4 we present further applications and give a complete

description of the tristable equation. A complete proof of all the results

presented in this paper may be found in [4].

Acknowledgement: The author would like to thank Professor Charles Conley for

many enlightening discussions of the problem.
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12. Directed Graphs

We illustrate how to do the three operations described in (1.6) with an

example. Suppose we are given a function F which is in the equivalance

class of functions illustrated in Figure 1. Furthermore, suppose we know that

at 8 - 0 the phase plane is as shown in Figure 4. We wish to determine

what the possibilities are for the next fastest wave. Only the unstable

manifolds are shown in Figure 4 because, in order to determine what the

Spossibilities are for next fastest wave, that is all we need to know.

SVi

/ I/

Figure 4. The array of numbers associated with this phase plane is
314

32214

The first step in assigning an array of numbers to the phase plane is to

draw a big rectangle, R , around the rest points. Since the set of bounded

trajectories is compact (see Conley [21), R can be chosen so that all the

connections, for all values of 6, lie inside of it.



The next step is to locate those points on the boundary of R which lie

on one of the unstable manifolds. By analysing system (1.3) one finds

that R can be chosen so that these points either lie on the top side or the

bottom side of R. To each one of these points there corresponds a number,

that number being the saddle on whose unstable manifold the point lies. We

now have two lists of numbers; one corresponding to the top side of R, and

the other to the bottom side. For the example shown in Figure 4 we have the

two lists {3,1,4) and {3,2,2,1,41. Combining the two lists we obtain:

(2.1) 
314
32214

This is the desired array of numbers!

We claim that the array shown in (2.1) determines all the possibilities

for the next fastest traveling wave solution. We explain how these

possibilities are realized with the following proposition.

Propositior 1: Suppose that for a given function F we have, at some speedST1 T2-..
e = 0, the orderin 1 2  m . If, for some k, Tk < Tk+ I then there. thoreig B 1 B 2 B. Tk"nk

exists a connection Tk + T k+ for some 0 e (0,0 ). If, for some k, Bk >

Bk+1 then there exists a connection Bk+1 + Bk for some e e (0,0). These

give all the possibilities for the next fastest wave. That is, if the next

fastest wave corresponds to an A + B connection then there exists an

integer k such that either A = Tk and B Tk+l, or A Bk+, andr B = Bk.

Let us apply this proposition to the phase plane shown in Figure 4.

Looking at the array (2.1) and applying Proposition 1 we find that the

-9-



* possibilities for the next fastest wave are the I + 4, 2 + 3, and I + 2

connections. Note that the 1 + 3 connection may or may not exist for someit
0 ( 10,0), but it cannot be the next fastest connection. Furthermore, the

1 + 4, 2 + 3, and 1 + 2 connections must all exist for some speeds less

than 0 .I0

We now need an algorithm which tells us how the array changes after a

connection has taken place. This algorithm is described in the following

proposition. For this proposition we assume that the array is known for some

value of the speed, say 8 - 00. We also assume that the next fastest

* connection is an A + B connection. Note that there must be two B's in the

* array since to each saddle there corresponds two unstable directions. Of

*course, there are two A's also, but the 'other A' will play no role. In

* the proposition we consider two cases depending on whether the 'other B' is

on the top or the bottom of the array.

Proposition 2. If the other B is on the top then after the A 4 B

connection everything in the array remains exactly the same except the A is

moved to the immediate right of the other B. If the other B is on the bot-

tom tht:, after the A + B connection everything in the array remains exactly

* I  the same except the A is moved to the immediate left of the other B.

Here are two examples of what may happen:

(a) . .AB..B.* *A+B .B..BA..

(b) . .AB... A *B+ ..B.

.B .... AB.

-10-



Applying this proposition to the phase plane shown in Figure 4 we have the

following portion of the graph:

314
32214

1+4 1+2

SI 2+3

34 3214 314

322114 3214 31224

In order to complete the description of how to construct the directed

graph it is necessary to explain how one starts the graph when the speed is

very large. It is not hard to show that if the ordering of the saddles is

A1, A2, .., An then the graph begins with the array.

A 1 A 2 ... An

A 1 A2 o.o An

This is because when 8 is very large, then in the phase plane the unstable

trajectories are nearly verticle. For example, if F is in the equivalence

class of functions shown in Figure 1 then the graph starts with the array

3124
3124 " The rest of the directed graph is shown in Figure 5.

-11-
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13. Applications

Suppose that F is in the equivalence class of functions illustrated by

Figure 6.

F(U)

Figure 6. For the equivalence class of functions shown here there exists
an infinite number of 1 + 2 connections, a finite number of
1 + 3 connections and precisely one, 2 + 3 connection.

It follows from a simple shooting argument that there exists a unique wave

connecting 2 + 3. We use this fact and the ideas described in the previous

section to demonstrate that there exists a finite number of waves connecting

1 + 3 and an infinite number of waves connecting 1 + 2.

To prove these results we consider the graph associated with this

equivalence class of functions. The graph begins when 0 is very large with

t213the array 2 . Then, using Propositions 1 and 2 we find that the desired

graph can be represented as simply:

-13-
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213

2113 23
23 21

3
21123

U I-2

Figure 7. The directed graph associated with the equivalence class of
functions shown in Figure 6.

Each function in the equivalence class shown in Figure 6 determines a path in

the above directed graph. This path represents the order, starting with the

fastest, in which the various connections take place. Until now all we know

* about this path is that it must obey the arrows in the directed graph, and

eventually a 2 + 3 connection must take place. However, there is only one

2 + 3 connection in the graph. After the 2 + 3 connection we have the

3array - , Proposition I implies that the next connection has to be a21123

I 2 connection. This, however, leaves the array unchanged, and is,

therefore, represented by the loop in Figure 7. The phase plane, of course,

changes after the I + 2 connection, but not the array. Therefore, after the

* 2 + 3 connection we are forced to go around this loop an infinite number of

1 times, proving that there must exist an infinite number of I + 2

connections.

-14-
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A separate argument shows that there can be at most a finite number of

1 + 3 connections with speeds greater than the speed of the 1 + 2

connection. There cannot be any I + 3 connections with slower speeds since

then we're caught up in the I + 2 loop. The directed graph shows, however,

that there must be at least one 1 4 3 connection, so this completes the

proof.

Our second application is a generalization of the first one. Here it is

assumed that A - (A,O) and 5 - (8,0) are saddles in the (U,V) phase

plane with A < B and F(A) < F(B), Furthermore, if C - (C,0) is any other

saddle such that A < C < B, then 1(C) < F(A). Let D11iD2 , o•.,D be the

saddles which satisfy A < Dk < B for each k. Here Dk (Dk,O). We assume

that F(DI) > F(D2 ) > ... > F(Dn). Then,

Theorem Is a) There exists an infinite number of waves connecting D1  A

b) There exists an infinite number of waves connecting D2 + A.

It is natural to ask how many connections there must be from Dk + A for

k ) 3. We conjecture there may exist zero, a finite number, or an infinite

number of such connections. While we do not know of a rigorous proof of this

result, we shall indicate why we believe it is true after we outline the proof

of Theorem 1.

Theorem la is proved using a shooting argument. The basic idea of the

shooting argument was suggested to the author by Professor John Mallet-Paret.

I To set up the shooting argument we must first introduce some notation. Let

P be the critical point of F immediatly to the right of A. Note that

the F assumes a local minimum at U - P. Let I be the ray, in the phase

plane,

-15-
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U - P, V 9 0. For a given value of 8, let A SE) be the trajectory which

satisfies:
!8

(a) 11m A ) A,
SE

Z8+

(b) A (z) 'approaches' A from the quadrant V > A, V < 0.

SE

Let D (z) be the trajectory that satisfies
SW

(a) lim V(z) - D

(b) D (z) 'leaves' into the quadrant U < D1 , V < 0.
SWUD 1 V.

0Note that A (z) must intersect I at some point. We denote the V
SE

0coordinate of this point by yO . Hence, for 0 sufficiently small, A sz)

intersects L at least once. Let A(B) be the V coordinate of the first
8 0

place where AS (z) intersects I as A0 (z) is followed backwards starting
SE SE

at A. Clearly, lm yA() - Yoe
e+ o

Let N be a fixed positive integer. If 0 is sufficiently small then

D (z) must intersect I at least N times. Let tD(O) be the V

SW Ntcoordinate of the point where DCz) intersects I for the N time. In

(4] is proved that there exists positive constants 8 and 8 such that
1 2

8 < 6 and:
1 2

(a) yA(8) and y1D(8) are continuous functions of 8 for
D

2

(3.1) (b) -A(81) < y (e1) o

(c) Y (82) > (e

SYD -16-
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The reason that (3.1b) is true is because F(A) > F(DI). To prove (3.1c) one

uses the fact that lin YA(0) - 0.

We conclude from (3.1) that there exists some speed, say 0 - 00, for

N0which y (60 ) Y "V (80). This corresponds to a connection, D1 + A, which
Sw Ao DOe

winds around the phase plane N times. Since N is arbitrary there must

exist an infinite number of D1 + A connections.

We indicate why Theorem Ib is true with a specific example. Suppose

that F is in the equivalence class of functions shown in Figure 1.

Theorem la implies that there exists an infinite number of waves which connect

2 + 3. A simple shooting argument shows that there must exist a 3 + 4

connection. Using these facts we show that there exists an infinite number of

I + 3 connections.

Consider the graph associated with this equivalence class of functions.
3124

It begins when 8 is very large with the array 3- Using Proposition

and the fact that there exists a 3 + 4 connection, we conclude that

eventually a '3' must be next to the '4' on the top side of the array.

For example, we may have the sequence of connections:

(3.2) 3124 2+4 314 14 34 4
3124 31224 312214 3122134

Of course, other sequences of connections are possible, but we do know that,

since there exists a 3 + 4 connection, the array must eventually be of the

4
form .34 . The four dots represent some permutation of the numbers 1,

1, 2, and 2.

We now wish to use the fact that there exists an infinite number of

2 + 3 connections. To illustrate what has to happen suppose we start where

4
we left off in (3.2) with the array 3122134 The only way a 2 + 3

-17-

m I m aSJ a, ,,., ,.,,.d ~,.., ,,.. ., r. '. . , -" -,..... . , ", "," . . • _ . . • _" . .. .



connection can take place in if a two is eventually next to the left-handed

* three on bottom side of the array. This cannot happen immediately because of

the one separating the two and the left handed three. Therefore, there must

eventually be a 1 * 3 connection. For example, we may have the sequence of

connections:

143 2+3 2+3
4 4 4 4

3122134 3221134 3211234 3112234

it is not hard to show that, because there exists an infinite number of

2 + 3 connections, the array must equal 3112234 an infinite number of

times. But we know that there always has to be another 2 + 3 connection.

Hence, a two has to be next to the left-handed three again, and there must be

another 1 + 3 connection. Repeating this argument we conclude that there

must exist an infinite number of I + 3 connections.

Recall that after the statement of Theorem 1 we conjectured that there

exist functions for which there do not exist any waves which connect D3 + A.

To understand why we believe this to be true consider the equivalence class of

functions illustrated in Figure 8.

., 4 21 3 5

Figure 8

-18-
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We claim that there does not have to exist any 1 + 4 connection. In (3.3)

we show a path in the directed graph which does not contain any 1 + 4

connection. It does, however, contain an infinite number of 3 + 4, 2 + 4,

2 + 3, 1 + 3, and 1 + 2 connections which we know, from the previous

results, must exist.

3+5
2+5 1+2

42135 1+3 4235 4455 1 5
42135 421135 421133245 423311245

(3.3) 2+4 1+3 2+3 1+3
3+4 1+3 2+3 1+3

431122345 432211345 431122345 432211345

3+4 2+4 5

5 -- + 5-+ 0006
422113345 421133245

Note that the array 5 appears twice in (3.3). We have labelled~421133245"

these two arrays with the symbol '*. Hence, we can just keep repeating the

connections between the two *'s to obtain the desired path.

This, of course, is not a rigorous proof that a 1 + 4 connection may

not exist, since there may not exist a specific function F(U) which realizes

the path shown in (3.3).

It is also possible (in fact, easier) to construct paths for which there

exists an infinite number of 1 + 4 connections.

-19-
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14. Further Applications and the Tristable Equation in Detail

In this section we treat, in detail, the case when equation 1.1) has

three stable rest states. We assume, throughout, that F assumes a local

maximum precisely when U is equal to either A, B, or C, where

A < B ( C. In the previous section we showed that if F(B) < F(A) < F(C),

then there exists an infinite number of waves which connect B + A. If

F(B) < FCC) < F(A) then, by symmetry, there exists an infinite number of

waves which connect B C. There are essentually two other cases to

consider. These are:

(a) F(A) < FlC) < F(B)

(3.1)

(b) F(A) < F(B) < FCC)

If (3.1a) is satisfied then there exists a unique wave connecting A B 3

and another connecting C + B. There are no waves connecting A + C or

C + A. These facts are proved by considering the directed graph

corresponding to the equivalence class of functions satisfying (3.1a). The

"* directed graph is shown in Figure 9A. In Figure 9A we used the required

: ordering A 1, B -3, and C- 2.

4 -20-
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*! A) 132 B)

8) 123

132 2323 1223

113
3213223 !93

1133 -

1122 - 3 1123 11-_3

3/I-.2
11223

Figure 9. Directed graphs for functions with three local maxima. If
these critical points are at U equal to A, B, and C,
then in (A), F(A) < F(C) < F(B). In (B), F(A) < F(B)
< F(C).

. If (3.1b) is satisfied then there exists a unique wave connecting A + B

and a unique wave connecting B + C. There is a unique wave connecting

A * C if and only if the wave connecting A + B is slower than the wave

connecting B + C. The directed graph for this equivalence class of functions

is shown in Figure 9B. In Figure 9B we set A - 1, B - 2, and C - 3. This

result is also proved in the paper of Fife and Mcleod [3].

Throughout the remainder of this section we assume that F(B) < F(C). We

wish to think of the number F(A) as a bifurcation parameter. We have shown

that if F(A) > F(C) then there exists an infinite number of waves which

connect B + C, if F(A) e (F(B), F(C)) then there exists an infinite number

of waves which connect B + A, and if F(A) < F(B) then there exists only a

finite number of waves. These waves are all illustrated in Figure 10. Figure

10 gives a qualitative description of which waves exist for a given value of

the speed, 0, and another parameter, A, which is related to the value of

-21-
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F(A). Let us denote the function F(U) at a particular value of X by

F (U). As A is increased, Fx(A) decreases. If A < A1 then

F (A) > FX(C), if x e (xI, 2 then FA(A) e (F,(B), FA(C)), and if

i-i A> A2 then F (A) < F (B). in Figure 10, the B + A connections are

represented by solid curves, the B + C connections by dashed curves, the

IA connections by the solid curve with small circles, the A +

connections by the solid curve with small triangles, and the A + B

connections by the solid curves with small squares. Note that there should be

an infinite number of dashed curves, or A + B connections, and an infinite

number of solid curves, or B + A connections. These two sets of curves are

nested about the axis 0 = 0.

Figure 10 was drawn by considering how various phase planes change as the

parameter F(A) changes. Of course, the precise quantitative features of each

curve in Figure 10 depends on exactly how the functions FA(U) are chosen to

vary with A. Figure 10 does, however, illustrate the qualitative

relationships described below between the various curves.

For each set of curves (B + A connections, B + C connections,

etc...), the top, or fastest, curve corresponds to monotone traveling waves.

These waves are asymptotically stable with respect to the partial differential

equation (1.1). This was proved by Fife and McLeod [3]. The other curves in

Figure 10 correspond to nonmonotone waves. For the dashed and solid curves

( B + C and B + A connections) the nth curve from the top, or the nth

fastest wave, corresponds to a connection which winds around n-i times in

the phase plane.

The most interesting points in Figure 10 are when (A, e) is equal to

A 0 and (X2 0). When X = X, then F(A) = F(C), and there exists

waves with zero speed which connect A + C and C + A. Note that when
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A-A there exists an infinite number of B + A and B + C connections.

*When A A 2, F(A) - F(B), and there exist waves with zero speed vhich

connect A + and B +A. As I is decreased from A -AI, so that2

* 7(B) < F(A), the infinite branches of B + A connections bifurcate from the

point (A, 0) -(1 2 , 0).
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