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ABSTRACT
A new method for proving the existence of traveling wave solutions for
equations of the form
u, = u,, + F'(u)
I
is presented. It is assumed that F is sufficiently smooth, lim F(u) = ==,
' lu]+e
> F has only nondegenerate critical points, and if A and B are distinct

critical points of F then F(A) ¥ F(B). The results describe when, for a
given function F, there must exist zero, exactly one, a finite number, or an

infinite number of waves which connect two fixed, stable rest points.
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X SIGNIFICANCE AND EXPLANATION

~_ﬂ_¢»3}> The equation considered here has.been congsidered as a model for a variety
of physical phenomena including population genetics and nerve conduction. Of
primary interest is the eventual behavior of solutions of this equation. One
expects the solution eventually to look like a traveling wave solution; that
is, one which moves with constant shape and velocity. In this paper we

Qi determine all of the traveling wave solutions of the equation, showing there

are situations when there exist an infinite number of traveling wave

b solutions. {i?“““”“
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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TRAVELING WAVE SOLUTIONS OF MULTISTABLE
REACTION-DIFFUSION EQUATIONS

David Terman

§1. Introduction

Congider the equation

(1.1) u =u. + F'(u)
which arises in various branches of mathematical biology including population
genetics, ecology, and nerve conduction (see [1],[3]). We assume throughout

that F satisfies:

(a) Feclm,

(b) lim F(u) = -=,
la]+e

(1. 2) (c) every critical point of F is nondegenerate,
(d) if A and B are distinct critical points of F, then

F(A) # F(B).

We are interested in finding traveling wave golutions of (1.1). These
are nonconstant, bounded solutions of the form u(x,t) = U(z), z = x + 6¢t,
If U(z) 1is a traveling wave solution of (1.1) then U satisfies the first

order system of ordinary differential equations:

U' =V
(1.3)
V' = 0v - F'(U).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the National Science Foundation
under Grant No. MCS80-17158.




Por boundary conditions we take

: (1.4) lim U(z) = A and 1lim U(z) = B
.: . Al d z+e
i where A and B are stable rest points of equation (1.1). Note that the

stable rest points of equation (1.1) correspond to those values of U for

"

————
el

which P assumes a local maximum. If (U,U") is a solution of equations
(1.3) and (1.4) we shall sometimes say that "U connects A + B", We shall
also sometimes call a traveling wave solution a “"connection". In this paper
we develop a technique to determine, for a given function F and two stable
¥;5E points A and B, how many different waves connect A * B. We shall

see that there may exist zero, a finite number, or a countably infinite

VR ANge S SIADR XL

numbers of such waves.

The case vhen F(u) has exactly two local maxima has been considered by
a number of authors (see [1] for references). Some work on the multistable
case is in the paper of Fife and McLeod [3]. If F has just two local maxima

then P'(u) has the familiar cubic shape. In this case there exists a unique

wave with positive speed which connects the stable rest points.

B It follows from (1.3) that if U(z) is a traveling wave solution, then
a 1.2 2
[] . — - = °
(1.5) 2z GV * F(u)} = &

We assume throughout that the speed, 0, 1is positive. An immediate

consequence of this assumption and (1.5) is that if U connects A + B, then

P oh e s (S BaTeTEE T

P(A) < F(B). Note that if u(x,t) is a traveling wave solution moving to the
left with positive speed O, then u(-x,t) is a traveling wave solution
; moving to the right with negative speed, -0.
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The (U,V) phase plane is the natural place to study the solutions of
system (1.3). In the phase plane, stable rest points of equation (1.1)
correspond to saddles, while traveling wave solutions correspond to
trajectories which "connect®” the saddles. One can only expect saddle-saddle
connections to ek;splfo:_épecial values of the speed 0. The difficulty with
phase plane analysis is that the phase planes become much too complicated for
a general function F. For example, even when F has only three local maxima
there may exist an infinite number of traveling wave solutions.

To illustrate the approach we take, let F be as shown in Figure 1.

120

| v
/3|24

Figure 1. Notice that the local maxima of F are ordered according to
the height determined by F.

We suppose that there are four values of U, say A, B, C, and D, where F
assumes a local maximum. Assume that A < B < C < D and F(D) > F(A) >
F(C) > F(B). Notice that in Figure 1 we ordered the four critical points
according to the height determined by F. That is, we set A = 3, B = 1,
C= 2, and D = 4, Unless stated otherwise we shall always order the stable
rest points, or iocal marima of F, in this manner. Our description of how

many traveling waves exist shall be in terms of this ordering. Two functions

-3
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which satisfy the conditions (1.2) are said to be in the same equivalence
class if they have the same ordering of their local maxima. Hence, given a

positive integer n, each permutation of the integers 1,2,...,n determines

"

. a unique equivalence class of functions.
- For a given function F there exists a speed 60 such that no saddle-
!’ saddle connections exist for 6 > eo « It is not very hard to determine what

the phase plane must look like for 0 > 60 « If F is as shown in Figure 1

then the phase plane for 0 sufficiently large looks, qualitatively, like

what is illustrated in Figure 2A.
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Figure 2. Phase planes for System 1.2 where F is as shown in Figure
1. In (A) the speed, 9, 1is very large, and in (B), ©6 = 0.

Doy

As 0 approaches + ® the unstable manifolds (trajectories which approach

e Ty

i the saddles in backwards time) become more and more vertical while the stable
manifolds (trajectories which approach the saddles in forward time) become

3 more horizontal. 1In Figure 2B we show the phase plane for 6 = 0.

-
i
-t .

The basic approach is to begin at 6 = 60 and then start decreasing 6.

By comparing the phase plane for 0 = 00 with that for © = 0 one is able to

PSRN {
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determine all the possibilities for the fastest wave. Por the function F
shown in Figure 1 these possibilites are the 1 + 3, 1 + 2, and 2 + 4

v connections. Of course, which one of these is the fastest wave depends on the
specific function F. Let us suppose that for a particular F the fastest
wave connects 1 + 3. Then the qualitative features of the phase planes

change after the 1 + 3 connection (see Figure 3). We can then decrease 0

further and determine, by comparing the new phase plane with the phase plane

r at 0 = 0, all the possibilites for the next fastest connection. These

; possibilities are the 2+ 3, 1+ 2, and 2 + 4 connections. A similar

C‘ analysis can be done if the fastest wave was either the 1 + 2 or the 2 + 4
connection. In this manner we can construct a directed graph as shown in
Figure 3. This graph illustrates all the possible orderings of which

. connections can take place. To each equivalence class of functions there

corresponds such a directed graph. To each specific function there

corresponds a path in the directed graph determined by its equivalence
class. This path first shows the fastest wave, then the second fastest wave,

etC... Our immediate goal is to be able to construct, and understand, these

graphs.
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Figure 3. The directed graph for the equivalence class of functions
shown in Figure 1.

One approach to constructing these graphs would be to draw a lot of phase

planes. This would be very tedious, if not impossible, since the phase planes

become very complicated. What is needed is a way to quantify the essential

-f=
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information contained int each phase plane. That is, we need a way to
transglate each phase plane into an array of numbers. Then, by just looking at
the array of numbers, we can hopefully determine what the possibilities are
for the next fastest wave. After a connection takes place the qualitative, or
topological, features of the phase planes change. This impl.es that the array
of numbers also changes. Hence, we need an algorithm which tells us how to
change the array of numbers after a particular connection has occurred.

In section 2 we describe how to

(a) assign an array of numbers to each phase plane,
(1.6) {b) determine what the possibilities are for the next fastest
wave by just looking at the array,

(c) change the array after a connection has taken place.

With these three operations we will be able to construct all of the directed
graphs. In section 3 we present some applications of the technique just
described. 1In section 4 we present further applications and give a complete
description of the tristable equation. A complete proof éf all the results

presented in this paper may be found in [4].

Acknowledgement: The author would like to thank Professor Charles Conley for

many enlightening discussions of the problem.
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§2. Directed Graphs

We illustrate how to do the three operations described in (1.6) with an
example. Suppose we are given a function F which is in the equivalance
class of functions illustrated in Figure 1. Furthermore, suppose we know that )
at 6 = 60 the phase plane is as shown in Figure 4. We wish to determine
what the possibilities are for the next fastest wave. Only the unstable
manifolds are shown in Figure 4 because, in order to determine what the

possibilities are for next fastest wave, that is all we need to know.

s/ /

7

oy

ot

¥ oY/

Figure 4. The array of numbers assocliated with this phase plane is
314
32214 .

The first steé in assigning an array of numbers to the phase plane is to
draw a big rectangle, R, around the rest points. Since the set of bounded
trajectories is compact (see Conley [2]), R can be chosen so that all the

connections, for all values of 6, 1lie inside of it.
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The next step is to locate those points on the boundary of R which lie
on one of the unstable manifolds. By analyzing system (1.3) one finds
that R can be chosen so that these points either lie on the top side or the
bottom side of R. To each one of these points there corresponds a number;
that number being the saddle on whose unstable manifold the point lies. We
now have two lists of numbers; one corresponding to the top side of R, and
the other to the bottom side. For the example shown in Figure 4 we have the

two lists {3,1,4} and {3,2,2,1,4)}. Combining the two lists we obtain:

314
(2.1) 32214 °

This is the desired array of numbers!
We claim that the array shown in (2.1) determines all the possibilities
for the next fastest traveling wave solution. We explain how these

possibilities are realized with the following proposition.

Propositior 1: Suppose that for a given function F we have, at some speed

T T LN ] T
2 m
e = eo, the ordering E:—E;—TT:—E— . If, for some k, Tx < Tre1 then there
n
exists a connection Tk > Tk+1 for some 0 € (0,00). I1f, for some k, Bk >
By4q then there exists a connection Bk+1 *> Bk for some 6O e (0,80). These

give all the possibilities for the next fastest wave. That is, if the next
fastest wave corresponds to an A * B connection then there exists an
integer k such that either A = Tk and B = Tk+1' or A = Bk+1 and

B=Bk‘

Let us apply this proposition to the phase plane shown in Figure 4.

Looking at the array (2.1) and applying Proposition 1 we find that the
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possibilities for the next fastest wave are the 1 + 4, 2 + 3, and 1 *+ 2

connections. Note that the 1 + 3 connection may or may not exist for some
oe (0,60), but it cannot be the next fastest connection. Furthermore, the
1+ 4, 2+ 3, and 1 * 2 connections must all exist for some speeds less
than 00.

We now need an algorithm which tells us how the array changes after a
connection has taken place. This algorii:hm is described in the following
proposition. For this proposition we assume that the array is known for some
value of the speed, say 0 = Oo. We also assume that the next fastest
connection is an A + B connection. Note that there must be two B's in the
array since to each saddle there corresponds two unstable directions. Of
courge, there are two A's also, but the ‘other A' will play no role. 1In

the proposition we consider two cases depending on whether the ‘other B' is

. on the top or the bottom of the array.

Proposition 2. If the other B is on the top then after the A + B

connection everything in the array remains exactly the same except the A is
moved to the immediate right of the other B. If the other B is on the bot-
tom the:r after the A + B connection everything in the array remains exacﬁly

the same except the A is moved to the immediate left of the other B.

Here are two examples of what may happen:

..ABUOB.. A’B' ..BUOBA..

(a)

(b) —_—

-10~
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Applying this proposition to the phase plane shown in Figure 4 we have the

following portion of the graph:

314
3224
1»4 1+2
2*3
34 3214 314
322114 3244 31224

In order to complete the description of how to construct the directed
graph it is necessary to explain how one starts the graph when the speed is
very large. It is not hard to show that if the ordering of the saddles is
Ags Ay seey A then the graph begins with the array.

A1 Az cese An

A1 Az soe An

This is because when 0 is very large, then in the phase plane the unstable
trajectories are nearly verticle. For example, if F is in the equivalence

clags of functions shown in Figure 1 then the graph starts with the array

3124

3124 ° The rest of the directed graph is shown in Figure S.

-11=




Figure 5. The complete directed graph associated with the equivalence

class of functions shown in Figure 1.
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§3. Applications

Suppose that F 1is in the equivalence class of functions illustrated by

FigurQ 6.

+V

F(U)

%—U'

| |
=21 3\

Figure 6. For the equivalence class of functions shown here there exists
an infinite number of 1 + 2 connections, a finite number of
1 + 3 connections and precisely one, 2 + 3 connection.

It follows from a simple shooting argument that there exists a unique wave
connecting 2 + 3. We use this fact and the ideas described in the previous
section to demonstrate that there exists a finite number of waves connecting
1+ 3 and an infinite number of waves connecting 1 + 2.
To prove these results we consider the graph associated with this
equivalence class of functions. The graph begins when 06 is very large with
213

the array 313 ° Then, using Propositions 1 and 2 we find that the desired

graph can be represented as simply:

-13-
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Figure 7. The directed graph associated with the equivalence class of
functions shown in Figure 6.

Each function in the equivalence class shown in Figure 6 determines a path in
the above directed graph. This path represents the order, starting with the
fastest, in which the various connections take place. Until now all we know
about this path is that it must obey the arrows in the directed graph, and
eventually a 2 + 3 connection must take place. However, there is only one

2 + 3 connection in the graph. After the 2 + 3 connection we have the
array 35%35 « Proposition 1 implies that the next connection has to be a

1+ 2 connection. This, however, leaves the array unchanged, and is,
therefore, represented by the loop in Figure 7. The phase plane, of course,
changes after the 1 + 2 connection, but not the array. Therefore, after the

2 + 3 connection we are forced to go around this loop an infinite number of
times, proving that there must exist an infinite number of 1 + 2

n

connections.
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A separate argument shows that there can be at most a finite number of

1 + 3 connections with speeds greater than the speed of the 1 * 2

connection. There cannot be any 1 + 3 connections with slower speeds since

then we're caught up in the 1 + 2 1loop. The directed graph shows, however,

that there must be at least one 1 + 3 connection, so this completes the

proof.

Our second application is a generalization of the first one. Here it is

assumed that A = (A,0) and B = (B,0) are saddles in the (U,V) phase

plane with A < B and F(A) < F(B). Furthermore, if C = (C,0) is any other

saddle such that A < C < B, then F(C) < F(A). Let 61,52,...,1':'“ be the

saddles which satisfy A < Dy < B for each k. Here E# H (ok,o). We assume
that F(D’) > P(Dz) > see > P(Dn). Then,
Theorem 1: a) There exists an infinite number of waves connecting D1 +A .
b) There exists an infinite number of waves connecting D2 + A.

+ A for

It is natural to ask how many connections there must be from Dk
k » 3. We conjecture there may exist zero, a finite number, or an infinite.

number of such connections. While we do not know of a rigorous proof of this

result, we shall indicate why we believe it is true after we outline the proof

of Theorem 1.

Theorem l1a is proved using a shooting argument. The basic idea of the

shooting argument was suggested to the author by Professor John Mallet-Paret.

To set up the shooting argument we must first introduce some notation. Let

P be the critical point of F immediatly to the right of A. Note that

the F assumes a local minimum at U = P. Let £ be the ray, in the phase

plane,

-15=
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U=P, V<O, For a given value of 0, let Ae (z) be the trajectory which

SE
i satisfies:

b o _

nj. z"".

I {b) Ao {z) ‘approaches' A from the quadrant U > A, V <€ 0.

: Let Dsw(z) be the trajectory that satisfies

A () 1lm pl(z) =D

-: P sw 1

N (b) Dgw(z) 'leaves’ 51 into the quadrant U < Dy, V < 0.
g

- 0

- Note that Asg(z) must intergsect £ at some point. We denote the V

coordinate of this point by Yo+ Hence, for 6 sufficiently small, A;;

intersects £ at least once. Let YA(B) be the V coordinate of the first

(z)

place where A:E(z) intergects L as Ao (z) is followed backwards starting

AL vﬂ. wee et ol

at A . Clearly, lim Y,(8) = v .
6+0

Let N be a fixed positive integer. If © ig sufficiently small then

D;w(z) must intersect £ at least N times. Let Yg(O) be the V

ey
FEY S S s a2

coordinate of the point where D:"(z) intersects £ for the NP time. 1In

¢l {4) is proved that there exists positive constants 01 and 62 such that
; 61 < 92 and:

.

g (a) YA(G) and vg(e) are continuous functions of 6 for
-

. 9(82,

L.

N TR () v,(8,) < Y (8,)

H A1 D' 1!

F

()  v,(8,) > yg(ez) .

. e e L e e s LA gt N -,
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The reason that (3.1b) is true is because F(A) > F(Dy). To prove (3.1c) one
uses the fact that 1lim Ya(e) = 0,
f>+e
We conclude from (3.1) that there exists some speed, say 0= Oo, for

which Yh(eo) = yg(oo). Thiz corresponds to a connection, D, + A, which

1
winds around the phase plane N times. Since N is arbitrary there must

exist an infinite number of D1 + A connections.

We indicate why Theorem 1b is true with a specific example. Suppose
that F 1is in the equivalence class of functions shown in Figure 1.
Theorem 1a implies that there exists an infinite number of waves which connect
2 + 3. A simple shooting argument shows that there must exist a 3 + 4
connection. Using these facts we show that there exists an infinite number of
1 + 3 connections.

Consider the graph associated with this equivalence class of functions.

3124
3124°

and the fact that there exists a 3 + 4 connection, we conclude that

It beging when 0 1is very large with the array Using Proposition 1

eventually a '3' must be next to the '4' on the top side of the array.

For example, we may have the sequence of connections:

2+4 1+4 3+4

(3.2) 3124 , 314 , 34 . 4
3124 T 31224 T 312214 T 3122134 °

Of course, other sequences of connections are possible, but we do know that,
since there exists a 3 + 4 connection, the array must eventually be of the
form 377%752 « The four dots represent some permutation of the numbers 1,
1, 2, and 2.

We now wish to use the fact that there exists an infinite number of

2 * 3 connections. To illustrate what has to happen suppose we start where

we left ofif in (3.2) with the array 3?5%732. The only way a 2 + 3
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connection can take place is if a two is eventually next to the left-handed

three on bottom side of the array. This cannot happen immediately because of
the one separating the two and the left handed three. Therefore, there must
eventually be a 1 + 3 connection. For example, we may have the sequence of
connections:

4 103‘ 4 2+3 4 2+3 4

re &>
g v

3122134 3221134 3211234 T3112234 °

It is not hard to show that, because there exists an infinite number of

2 + 3 connections, the array must equal 3??%55: an infinite number of

times. But we know that there always has to be another 2 + 3 connection.

Hence, a two has to be next to the left-handed three again, and there must be

- another 1 + 3 connection. Repeating this argument we conclude that there

must exist an infinite number of 1 + 3 connections.

Recall that after the statement of Theorem 1 we conjectured that there
exist functions for which there do not exist any waves which connect D3 + A.
To understand why we believe this to be true consider the equivalence class of

functions illustrated in PFigure 8.

\4

}

Figure 8

=18
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We claim that there does not have to exist any 1 + 4 connection. In (3.3)

we show a path in the directed graph which does not contain any 1 + 4

connection. It does, however, contain an infinite number of 3 + 4, 2 + 4,
2+ 3, 1+ 3, and 1+ 2 connections which we know, from the previous

results, must exist.

3+5
2+5 1+2
*
42135 3 4xs 45 5 12 5
42135 T 421135 421133245 T 423311245
(3.3) 2+4 1+3 2+3 1+3
3+4 ‘ 5 1’3- 5 243 . 5 1+3 ) 5
431122345 T 432211345 T 431122345 T 432211345
*
3-’4‘ 5 M: 5 > ooeoe
422113345 421133245 .

Note that the array 237723315 appears twice in (3.3). We have labelled
these two arrays with the symbol '*'. Hence, we can just keep repeating the
connections between the two *'s to obtain the desired path.

This, of course, is not a rigorous proof that a 1 + 4 connection may
not exist, since there may not exist a specific function F(U) which realizes
the path shown in (3.3).

It is also possible (in fact, easier) to construct paths for which there

exists an infinite number of 1 + 4 connections.
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4. Purther lications and the Tristable tion in Detail
In this section we treat, in detail, the case when equation (1.1) has
three stable rest states. We assume, throughout, that P assumes a local
maximum precisely when U is equal to either A, B, or C, where
A < B <C. In the previous gsection we showed that if F(B) < F(A) < F(C),

then there exists an infinite number of waves which connect B + A. If

FP(B) < F(C) < F(A) then, by symmetry, there exists an infinite number of
:.'5 waves which connect B + C. There are essentually two other cases to

E consider. These are:

(a) F(A) < FP(C) < F(B)

(3.1)
P.
- (b) F(A) < F(B) < F(C)
B If (3.1a) is satisfied then there exists a unique wave connecting A + B
{; and another connecting C + B. There are no waves connecting A + C or
'~ C * A. These facts are proved by considering the directed graph
b corresponding to the equivalence clasgs of functions satisfying (3.1a). The

§ directed graph is shown in Pigure 9A. 1In Pigure 9A we used the required

ordering A =1, B=3, and C = 2,
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Figqure 9. Directed graphs for functions with three local maxima. If
these critical points are at U equal to A, B, and C,
then in (a), PF(A) < F(C) < F(B). In (B), F(A) < F(B)
< F(C).

If (3.1b) is satisfied then there exists a unique wave connecting A + B

and a unique wave connecting B + C. There is a unique wave connecting

A+ C if and only if the wave connecting A + B is slower than the wave
connecting B + C. The directed graph for this equivalence class of functions
is shown in Figure 9B. In Figure 9B we set A = 1, B =2, and C = 3. This
result is also proved in the paper of Fife and Mcleod (3].

Throughout the remainder of this section we assume that F(B) < F(C). We
wish to think of the number F(A) as a bifurcation parameter. We have shown
that if F(A) > F(C) then there exists an infinite number of waves which
connect B + C, if F(A) e (F(B), F(C)) then there exists an infinite number
of waves which connect B + A, and if F(A) < F(B) then there exists only a
finite number of waves. These waves are all illustrated in Figure 10. Pigure
10tgives a qualitative description of which waves exist for a given value of

the speed, 6, and another parameter, A, which is related to the value of
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F(A). Let us denote the function F(U) at a particular value of A by
FA(U)' As A is increased, FA(A) decreases. If A< A1 then

F,(A) > F,(C), if A e (A, A,) then F,(a) e (F,(B), F,(C)), and if

A Xz then FA(A) < FA(B). In Figure 10, the B + A connections are
represented by solid curves, the B * C connections by dashed curves, the

C + A connections by the solid curve with small circles, the A + C
connections by the solid curve with small triangles, and the A + B
connections by the solid curves with small squares. Note that there should be
an infinite number of dashed curves, or A + B connections, and an infinite
number of solid curves, or B *+ A connections. These two sets of curves are
nested about the axis 0 = 0.

Figure 10 was drawn by considering how various phase planes change as the
parameter F(A) changes. Of course, the precise quantitative features of each
curve in Fiqure 10 depends on exactly how the functions FA(U) are chosen to
vary with A. Figure 10 does, however, illustrate the qualitative
relationships described below between the various curves.

For each set of curves (B + A connections, B + C connections,
etc..+), the top, or fastest, curve corresponds to monotone traveling waves.
These waves are asymptotically stable with respect to the partial differential
equation (1.1). This was proved by Fife and McLeod (3). The other curves in

Figure 10 correspond to nonmonotone waves. For the dashed and solid curves

th th

( B+ C and B *+ A connections) the n curve from the top, or the n

fastest wave, corresponds to a connection which winds around n-1 times in
the phase plane.

The most interesting points in Figure 10 are when (A, 0) is equal to

(A

. 0) and (A_, 0). When A = A, then F(A) = F(C), and there exists

1 2

waves with zero speed which connect A + C and C + A. Note that when

-23=
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A= X1 there exists an infinite number of B + A and B *+ C connections.
when A = Az, F(A) = F(B), and there exist waves with zero speed which
connect A+ B and B+ A. As A is decreased from A= Az, so that
F(B) < P(A), the infinite branches of B + A connections bifurcate from the

point (A, 0) = (12, 0).
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