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1. Introduction
Scientific discovery is a complex, ill-defined activity, and one of the most profitable ways to

study such phenomena is to construct intelligent programs that model them. In this paper we

* describe BACON.5, a program that discovers empirical laws for summarizing data. The core of this

* system is a set of general, data-driven heuristics for detecting numerical relations and proposing new

terms to express these relations. However, the program also incorporates expectation-driven rules

that let it take advantage of its earlier discoveries. Before moving on to describe the system in detail,

we should first review some of the earlier Artificial Intelligence research on discovery, and outline the

scope and limitations of the current project.

One of the earliest attempts to model scientific discovery was the simulation work of Gerwin [1].

Gerwin was interested in how humans could infer numerical laws or functions, given knowledge of "

specific data points. Of course, such descriptive discovery is only one part of the total scientific

process. In order to understand this process, he gave subjects several sets of data and asked them to

find the relationships which best summarized each data set. Using the verbal protocols collected from

this task, Gerwin built a working simulation of the subjects' behaviors. The model first attempted to r

identify a general pattern in the data, such as a periodic trend with increasing amplitudes, or a

monotonic decreasing trend. A class of functions was stored with each pattern the program could

recognize; once a class was hypothesized, the system attempted to determine the specific function

responsible for the data. If unexplained variance remained, the program treated the differences r

between the observed and predicted values as .a new set of data. This procedure was used to

elaborate the hypothesis until no pattern could be found in the residual data. The program also had

the ability to backtrack if the latest addition to the rule failed to improve predictions. One limitation of

Gerwin's simulation was that the program incorporated specific knowledge about the shapes of

functions within a specified range. Therefore, these functions could not have variable parameters

associated with them. Even though Gerwin's model could only solve a very restricted range of

problems, it was an important step in understanding the discovery process.

Another early discovery system was DENDRAL [2], a program that identified organic molecules

from mass spectrograms and nuclear magnetic resonances. The system identified chemical

structures in three main stages - planning, generating plausible structures, and testing those

structures. The first stage used patterns in the data to infer that certain familiar molecules were

present. Considering these molecules as units drastically reduced the number of structures

produced during the generation stage. This second phase used knowledge of valences, chemical

stability, and user-specified constraints to generate all plausible chemical structures. In the final

testing stage, the system predicted mass spectrograms for each of these structures, which were then

ranked according to their agreement with the data. DENDRAL relied on considerable domain-specific I
knowledge, which was laboriously acquired through interaction with human experts in organic --

chemistry.
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In order to reduce their dependence on human experts, the same researchers designed
META-DENDRAL [31, a system that acquired knowledge of mass spectroscopy which could then be

used by the DENDRAL program. META-DENDRAL was provided with known organic compounds and
* their associated mass spectrograms, from which it formulated rules to explain these data. Two types

of events were used to explain spectrograms - cleavages in the bonds of a molecule and
* migrations of atoms from one site to another. Although plausible actions were determined using

domain-specific chemical knowledge, the conditions on rules were found through a much more
general technique [4]. META-DENDRAL has successfully discovered new rules of mass spectroscopy

for three related families of organic molecules.

Lenat [5] has described AM, a system that has rediscovered important concepts from number
theory. The program began with some 100 basic concepts such as sets, lists, equality, and
operations, along with some 250 heuristics to direct the discovery process. These heuristics were

responsible for filling the facets of concepts, suggesting new tasks, and creating new concepts based

on existing ones. New tasks were ordered according to their interestingness, with tasks proposed

by a number of different heuristics tending to be more intersting than those proposed by a single rule.
Using this measure to direct its search through the space of mathematical concepts, AM defined

concepts for the integers, multiplication, divisors-of, prime numbers, and the unique factorization

theorem. Like META-DENDRAL, Lenat's system incorporated some very general strategies, as well as

some domain-specific knowledge about the field of mathematics.

In our work on BACON, we have attempted to develop a general purpose descriptive discovery
system. Rather than relying on domain-dependent heuristics, as many of the earlier discovery

systems have done, BACON incorporates weak yet general heuristics that can be applied to many
different domains. The current version addresses only the descriptive component of scientific

discovery. It does not attempt to construct explanations of phenomena, such as the atomic theory or

the kinetic theory of gasses, but we will have more to say on this in a later section. Neither is the

system meant to replicate the historical details of various scientific discoveries, though of course we

4 qfind those details interesting. Instead, it is intended as a model of how discoveries might occur in
these domains.

Descriptive discovery may take either of two basic forms: one may start from the data and use
,. very general strategies to uncover regularities in those data; or one may bring certain expectations to

4 the task and examine the data to see if they match those expectations. Earlier versions of BACON [6, 7,

8] relied entirely on data-driven discovery methods. The current version takes advantage of these

heuristics, but also incorporates a number of expectation-driven discovery techniques. The latter
take advantage of discoveries that have already been made to direct and simplify the search process

in new situations. We have chosen to organize the paper around the system's discovery methods.
Since the expectation-driven heuristics work with the results of the data-driven approaches, we will

begin by focusing on the data-driven components and then move on tO their expectation-driven

Iq



DATA-DRIVEN AND EX PECTA TION-DRIVEN DISCOVERY PAGE 3

counterparts. Both types of heuristics are implemented as condition-action rules in Forgy's [9] OPS4

*. production system formalism.

* 2. Discovering Numeric Relations
"- BACON.S'S most basic heuristic attempts to discover polynomial relations between two variables

that take on numeric values. This rule computes the successive derivatives of one term with respect

to the other, until it arrives at a set of constant values. The level of the constant derivative tells BACON

the highest power necessary in the polynomial it seeks, while the constant determines the coefficient

. of this term. As in Gerwin's system, this component is subtracted out, and the technique is repeated

on residual values. This process continues until all of the variance has been accounted for, and the

program has determined the complete functional relation between the two variables.

X Y Y' Y1

1 6
14

3 34 3
29

6 121 3
50

10 321 3
77

15 706 

Table 1. Determining the coefficient of a quadratic term.

As an example, let us consider BACON.5'S use of this heuristic to discover the law y = 3x2 +
2x + 1. The program begins by examining values of the dependent term y for different values of the

independent term x, as shown in Table 1. Since y is not constant, the system computes the values of

y'. the first derivative with respect to x. In the table, the first value of y' is (34- 6)/(3 - 1) = 14, while

the second value is (121 - 34)/(6 - 3) = 29. Since these values are not constant either, BACON

examines the second derivative y", basing its computation on the values of y' and x. Thus, the first V
value of y" is (29 - 14)/(6 - 1) - 3, while the second is (50. 29)/(10 - 3) = 3. In this case, the

program finds the constant value it seeks; this tells BACON that an x2 term is present in the final law,

and that its coefficient is 3.

However, more remains to be done before the discovery is complete. After subtracting out the

3x2 term, BACON attempts to relate the values of y - 3x2 to the independent term x, as shown in Table

2. This time the first derivative is the constant 2, implying that an x term with a coefficient of 2 is also

present in the final law. Subtracting this new component out as well, the constant value 1

immediately results, as we see in Table 3. BACON.5 includes this value as the final term in the law it

has discovered, y = 3x2 + 2x + 1, which completely summarizes the original set of observed data.
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X Y-3X2  (Y - 3X2)'

1 3
2

3 7
2

6 13
2

10 21 t
2

15 31

Table 2. Determining the coefficient of a linear term.

This method lets BACON.5 discover any of a large class of functions that can be expressed as

polynomials with integer powers and real coefficients. In cases where no polynomial can be found,

', the system considers various powers of the dependent term, so that an even larger set of relations

can be discovered. Thus, BACON can uncover relations such as y2 = 6.71x 3 + 4.23x and y =

3.5x2 . The system entertains only one hypothesis at a time, and since simpler relations are

considered before more complex ones, they are preferred if they are found to hold.

X Y - 3X2 - 2X

1 1
s 1

6 1
10 1
15 1

Table 3. Determining the constant term in an equation.

3. Recursing to Higher Levels of Description
By itself, the above differencing heuristic can discover numeric relations between two

variables, but more complex relations lie beyond its scope. In order to find laws relating many terms,

BACON.5 invokes a second data-driven heuristic that lets it summarize regularities at different levels

of description. Upon discovering a law at one level, this method stores the coefficients from that

law at the next higher level. Once enough of these higher level values have been gathered, BACON

attempts to relate them to the independent term that was varied in each of the experiments. The

system employs the same differencing technique to find the second level law as it did at lower levels.

After a law at the second level has been found, the program recurses to still higher levels, until all of

the data have been summarized.

BACON.S's discovery of the ideal gas law provides a useful example of this strategy. This law
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may be stated as PV = 8.32N(T - 273), where P is the pressure on a quantity of gas, the dependent

term V is the volume of the gas, T is the temperature of the gas in degrees Celsius, and N is the

quantity of gas in moles. In uncovering this law, BACON first finds the relation V"1 = aP, where a is a

parameter that varies with different values of T and N. Upon comparing the values of a and T, the

system finds the law a- 1 = bT + c, where b and c represent second level parameters that potentially

vary with N. Finally, the program finds that b = dN, and that c = eN. Substituting these relations into

the first law, we arrive at the equation V" = P(dNT + eN) " . BACON.5 calculates the value of d to be

8.32, and e to be -2271.36. When the factor 8.32 is divided out, e becomes -273, or the absolute

zero point expressed in the Celsius scale. Thus, the equation is equivalent to the standard form of the

ideal gas law. Table 4 summarizes the steps taken in this discovery, comparing BACON'S version of

the law with the standard version, and showing the independent terms held constant at each level of

description.

BACON'S VERSION STANDARD VERSION CONSTANT TERMS

1/V = aP PV =k N,T
1/V = P/(bT+c) PV = k(T-273) N
1/V = P/(dNT + eN) PV = 8.32N(T-273)

Table 4. Summary of ideal das law discovery.

Taken together, the heuristics for relating numeric terms and recursing to higher levels give

BACON.5 considerable power. Using these two strategies, the system has successfully rediscovered

versions of Coulomb's law of electrical attraction, Kepler's third law of planetary motion, and Ohm's

law for electrical circuits. Table 5 presents the forms of these laws, along with that for the ideal gas

law. Variables are shown in upper case, while coefficients are given in lower case. Superficially, the

equations in the table have quite different forms, yet all can be expressed as combinations of the

polynomial relations for which BACON searches.

Ideal gas law PV = rNT

Coulomb's law F = aQOQ 2 /D 2

Kepler's third law D3 /p 2 = k

Ohm's law v = rl + IL

Table 5. Numeric laws discovered by BACON.S.

4. Postulating Intrinsic Properties
The heuristics we have discussed so far are fine for relating numeric terms, but they are of little

use when an independent term takes on nominal or symbolic values. In such cases, BACON.5 draws

on a third data.driven heuristic that postulates intrinsic properties. This rule associates the values
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of the numeric dependent term with the nominal independent values, and retrieves them in later

situations. In this context, BACON moves beyond the relatively simple process of curve fitting, and

takes on some features of explanatory discovery.

For example, consider a version of Ohm's experiment in which the jatteries and wires take on

nominal values, so that one can distinguish between them but measure none of their characteristics.

Ohm's law may be stated as I = V/R, where I is the current flowing through a circuit, Vis the voltage

associated with a wire, and R is the resistance of the wire. (We assume here that the internal

resistance is negligible.). "able 6 presents data that might be gathered in an experiment with three

batteries (A, B, and C) and three wires (X, Y, and Z). The values of the current were calculated on the

assumption that VA = 4.613, VB = 5.279, VC = 7.382, Rx = 1.327, Ry = 0.946, and Vz =

1.508.

BATTERY WIRE CURRENT CONDUCTANCE SLOPE

A X 3.4763 3.4763 1.0

A Y 4.8763 4.8763 1.0

A Z 3.0590 3.0590 1.0

B X 3.9781 3.4763 1.1444

B Y 5.5803 4.8763 1.1444

B Z 3.5007 3.0590 1.1444

C X 5.5629 3.4763 1.6003

C Y 7.8034 4.8763 1.6003

C Z 4.8952 3.0590 1.6003

Table 6. Postulating the property of conductance.

Focusing on the first three rows of this table, BACON.5 finds that with the battery set to A and

varying the wire, the current of the circuit varies as well. Since it cannot apply its numeric heuristic in

this situation, the program proposes conductance as an intrinsic property of the wire, and bases the

values of this new term on those of the current. Having done this, BACON can apply its differencing

heuristic, and finds a linear relation between the current and the new property, with a slope of one. Of

course, this is hardly surprising, since the conductance was defined so that this relation would hold.

However, upon varying the values of the battery, BACON retrieves the same values of the

conductance in the new situations, as shown in the fourth through ninth rows. When these are

compared to the currents, the system discovers other linear relations with different slopes. After

recursing to a higher level of description, BACON uses these new parameters to postulate an intrinsic

property associated with the battery, which we would call the voltage. The retrieval technique is

actually stated as a separate heuristic, and shows more similarity to the expectation-driven heuristics

we shall discuss later than to the data-driven ones. We have mentioned it here because the data-

dri en process of postulating an intrinsic property has little purpose without the ability to retrieve the

A,,ociated values at later times.
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Ohm's law v = rl

Archimedes' law of displacement d = W/v

The law of definite proportions k = We/c

Table 7. Laws discovered with intrinsic properties.

Unfortunately, the discovery of intrinsic properties is more complex than we have made it

appear. Some properties exist which are associated not with one, but with many, nominal terms. An

obvious example is the coefficient of friction, which is a function of pairs of surfaces. To avoid

difficulties in such cases, BACON.5 takes a conservative path by comparing different sets of intrinsic

values. If a linear relation is found, the system generalizes and retrieves values as in the Ohm's law

example. However, if no relation is found, it retains the additional conditions. Table 7 lists some of

the laws rediscovered by BACON.5 that incorporate intrinsic properties. These include a version of

Archimedes' law of displacement, in which the system computes the volumes of irregular solids as

well as their density, and Proust's law of definite proportions, in which a constant weight ratio is

associated with an element-compound pair.

5. Finding Common Divisors
The history of chemistry from 1800 to 1860 provides somhe additional examples of the discovery

of intrinsic properties, with an interesting complication. In 1808, John Dalton set forth the law of

simple proportions, which stated that when* two elements could combine to form ,1,fferent

compounds, the weights contributed by one element for a constant weight of the other always

occurred in small integer proportions to each other. In 1809, Joseph Gay-Lussac found evidence

for his law of combining volumes, which stated that a similar relation held for the relative volumes

contributed by gaseous elements in chemical reactions. Again, in 1815, William Prout noted that the

atomic weights of the known elements were all very nearly divisible by the weight of hydrogen. And

finally, in 1860, Stanislao Cannizzaro pointed out that when a given element took part in different

reactions, the ratios of the element's weight and the volume of the resulting compound always

occurred in small integer proportions.

BACON.5 incorporates a fourth data-driven heuristic that enables it to discover these regularities

in the chemical data. When the system is about to postulate a new intrinsic property, this rule

examines the dependent values to see if they have a common divisor. If none can be found, then the

process continues as described in the last section. However, if the numbers can be evenly divided,

then the resulting integers are used as the intrinsic values instead of the original numbers. Also, the

common divisor is associated with the terms that were held constant, instead of the 1.0 that would

normally be used. This means that even in cases where BACON.5 cannot generalize and so retrieve a

set of intrinsic values in a new situation, the common divisors let the system break out of the

tautological circle and make further interesting discoveries.
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ELEMENT COMPOUND WIE/VC INTEGER DIVISOR

HYDROGEN WATER 0.0892 2.0 0.0446

HYDROGEN AMMONIA 0.1338 3.0 0.0446
HYDROGEN ETHYLENE 0.0892 2.0 0.0446

OXYGEN N20 0.715 1.0 0.715
OXYGEPt SO2  1.430 2.0 0.715
OXYGEN CO2  1.430 2.0 0.715

NITROGEN N20 1.250 2.0 0.625

NITROGEN AMMONIA 0.625 1.0 0.625
NITROGEN NO2  0.625 1.0 0.625

Table 8. BACON.5's rediscovery of Cannizzaro's law.

Table 8 summarizes BACON.5's reformulation of Cannizzaro's discovery. The system is given

control over two independent nominal terms - one of the elements entering into a reaction, and the

resulting compound. The dependent variable is We/V c , or the weight of the element used in the

reaction, divided by the volume of the compound that results. For the element hydrogen, different

compounds lead to different values of we/v c , so the system postulates an intrinsic property.

However, the dependent values are all divisible by 0.0446, so the integers 2, 3, and 2 are used as

the intrinsic values instead of the originals. This process is repeated with the elements oxygen and

nitrogen, but in these cases the divisors 0.715 and 0.625 are found instead. The integers in the

table correspond to the coefficients on the given elements in the balanced equations for each

reaction, while the divisors correspond to the relative atomic weights of the elements. When these

divisors are carried along to the next level of description, BACON.5 also notes that they can all be

divided by the value associated with hydrogen; this statement is a variant on Prout's hypothesis. By

searching for common divisors, BACON has replicated some of the major empirical discoveries of

nineteenth century chemistry.

6. Expecting Similar Relations
We have now completed our survey of BACON.5's data-driven heuristics. The remainder of the

system's strategies draw upon information gathered in this bottom-up manner to reduce search at

later stages. Thus, when we speak of expectation-driven heuristics, we do not mean to imply that

BACON starts with knowledge of a particular domain. Rather, we mean that the program is capable of

taking advantage of discoveries it has made at early stages to simplify this process at later points.

The simplest of these heuristics proposes that if BACON.5 has found a law in one context (i.e.,

when certain variables are held constant), it should expect a similar form of law to hold in a new

context (i.e., when those terms take on different values). For example, this similar relations

heuristic could be used after the system has discovered Kepler's third law for the planets orbiting the
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sun, to predict an analogous law to hold for the moons of Jupiter. Specifically, if the law D3 = 1.0P2

*: were found in the first situation, BACON.5 expects that a law of the form D3 = kP2 would hold in the

new case, though it would not yet know the value of the parameter k. Such a prediction allows BACON

to replace its search through the space of possible relationships between two variables with a simple

, calculation designed to test the expected relationship. If this relationship holds, BACON calculates the

.- values of the unknown parameters and moves on to further discoveries.

Previous versions of BACON always utilized the same number of observations to find

*i relationships between variables in its experiments. However, once the system expects a particular

form of a law to hold, it can determine the number of observations necessary to estimate the desired

parameters. Using this data reduction heuristic, BACON only collects the minimum number of

observations necessary to complete its description of the current law. If D were being expressed as a

* function of P in the above example, BACON.5 would need only three data points to determine the value

of k for the Jovian moons.1

Taken together, these two heuristics significantly reduce the program's search through both

the space of data and the space of rules. The actual amount of savings depends on the number of

superfluous data points. In order to evaluate the impact of the new heuristics, BACON was given six

values of each independent variable in four separate discovery tasks. Performance of the purely

data-driven system was compared to systems incorporating the expectation-driven heuristics, and is

shown in Table 9. From this table, it can be seen that the similar relation heuristic only resulted in a

small amount of savings. This result is somewhat misleading, because the amount of search required

by the differencing technique was significantly reduced; however, the OPS4 interpreter was slowed by

the inclusion of an additional condition-action rule, so the effect was masked. For more complex

forms of laws, the computational savings would be greater.

DD DD+SR DD.SR.DR

IDEAL GAS LAW 35 34 21

COULOMB'S LAW 35 35 23

OHM'S LAW 3 3 3

KEPLER'S THIRD LAW 3 3 3

Table 9. Time to discover numeric laws in CPU seconds.2

The present system employs a few simple heuristics for dealing with noise. In executing the

differencing technique, BACON.5 checks the current derivative term to see if its values are constant.

Of course, more would be required if significant noise were present, but the principle of reduced data would remain.

2M data-driven heuristics. DO + SR = data-driven and similar relation heuristics, DO + SR + DR = data-driven, similar

relation, and data reduction heuristics.
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All values which fall within a small interval of one another are accepted as equivalent. The program

also calculates the number of outliers, or exceptions to the current relationship. If the number of

exceptions is a small proportion of the total number of data points, BACON.5 decides the current term

is constant, and updates its functional description. Although these methods allow BACON.5 to cope

with modest amounts of noise, more sophisticated techniques might be required to deal with very

noisy data.

One such technique might be to check the dependent term for systematic trends. The values of

y in Table 1 are monotonically increasing, for example, which suggests a higher order derivative

should be calculated. If no such trends were found, BACON.5 could accept the current relationship,

even though the number of outliers was large. A second technique would be to allow the program to

store several possible relationships between the current independent and dependent terms. Beam

searching techniques could be used to limit the number of competing hypotheses BACON entertained

at any given time, and the program could design critical experiments to determine the best

description of the data. Finally, if the system discovered promising relationships in parts of the data,

the expectation-driven heuristics discussed above could help BACON to develop a consistent

interpretation of the data, even in the presence of substantial noise. Combining these techniques

should allow BACON to deal with realistic amounts of noise in data in a robust manner.

7. Discovering Symmetrical Laws
The assumption of symmetry has been a powerful aid in the discovery of physical laws. Table

10 presents three well-known laws that exhibit symmetry. Although BACON.5 could discover these

laws without any heuristics other than those we have already described, the inclusion of a new

component that postulates symmetry significantly reduces the search required to find these laws.

This new heuristic waits until all the terms associated with an object have been related, and then

assumes that the same relation will hold for a second set of terms that are associated with an

analogous object. The resulting complex terms are then combined into a symmetrical law.

Snell's law of refraction sine 9 1 /n I = sine 02 M 2

Conservation of momentum m 1 (V1 - U1) -m 2 (V2 - U 2 )

Black's specific heat law c MI(T - F1 ) =c 2 M2 (T2 - F2 )

Table 10. Symmetrical laws discovered by BACON.5.

As an example, consider BACON.5's discovery of Snell's law of refraction, as summarized in

Table 11. The program starts with two objects and two variables associated with each object - the

medium through which light passes, and the sine of the angle the light takes. Varying medium2

and holding medium, and sine8 1 constant, the system postulates an intrinsic property, n 2 , whose

values are associated with different media. Of course, the ratio sine 9 2 /n 2 has the constant value
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1.0. At this point, BACON.5 relates the terms associated with the second object, and decides that it

should examine the values of sine 911n1 and relate them to the former ratio. Upon gathering

additional data, the program discovers that the two ratios are identical, or that sine 8,/n, = sine

a 2 /n 2 , which is one statement of Snell's law.

MEDIUM 1  SIN B1 MEDIUM 2  SIN 01 N2  SIN 0 /N 2

VACUUM 0.25 WATER 0.33 0.33 1.0

VACUUM 0.25 OIL 0.37 0.37 1.0

VACUUM 0.25 GLASS 0.42 0.42 1.0

Table 11. Discovering Snell's law of refraction.

The BACON.s system has discovered two other symmetrical laws - conservation of momentum

and Black's specific heat law - following very similar paths. Table 10 presents the full form of the

laws; directly observable terms are shown in upper case, while intrinsic properties are shown in lower

case. The program has also discovered two different versions of Joule's law of energy conservation,

using a simple form of reasoning by analogy. This strategy states that if the same set of terms occurs

in more than one experiment, one should consider combining them in the same fashion as proved

useful before. For a more complete description of this heuristic and its application to Joule's law, the

reader is directed to an earlier article on BACON (10].

In summary, we have seen that BACON's expectation-driven heuristics - expecting similar

relations, reducing the data that is gathered, and postulating symmetrical laws - allow it to discover

empirical laws with considerable reduction in search. Actual computational savings for three

symmetric laws are shown in Table 12. From this table, it can be seen that, when combined,

BACON.5"S expectation-driven heuristics result in major savings. Moreover, these heuristics

accomplish this with little loss in generality, since relations such as symmetry can be found in a wide

variety of scientific domains.

DD DD+SR+DR DD+SR' DR.SY

MOMENTUM 515 212 8
SNELL'S LAW 40 40 5

BLACK'S LAW 8433 2200 23

Table 12. Time to discover symmetric laws in CPU seconds.3

3 D0 = data-driven heuristics. DD + SR + DR = data-driven. similar relation, and data reduction heuristics, DD + SR + DR
+ SY = data-driven. similar relation, data reduction, and symmetry heuristics.
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8. The Importance of Structure
In the previous sections, we have described the empirical discovery system BACON.5. Given a

set of numeric or nominal variables, this system employs a number of heuristics to determine the

relation between those terms.. Yet it is worth noting that the most interesting of BACON'S heuristics

* address aspects of discovery that lie beyond the simple relation of variables. For example, when an

intrinsic property is postulated, it is always associated with some object or class of objects. Similarly,

the symmetry and analogy heuristics apply only in situations where the same terms are associated

with different objects. (In-the symmetry case, identical terms are attached to different objects within

an experiment, while in the analogy case the identity falls across experiments.)

In summary, these heuristics appear to incorporate some notion of structure which extends

beyond the simple variable-value representation used in BACON.5. Given this view, one drawback of

BACON is that it represents this structure implicitly rather than explicitly. Thus, in replicating

Ohm's experiment, the program is told about the battery, the length of the wire, and the current, but it

does not unerstand that the wire must be connected to the battery to generate the current. Similarly,

in the conservation of momentum experiment, BACON is given variables for the objects along with

their initial and final velocities; however, it is unaware that the initial velocities are transformed into

the final velocities by a collision, and that if no collision occurs, the velocities will remain unchanged.

In other words, BACON.5 attempts to discover quantitative laws before it has mastered the qualitative

laws of structure [111. This feat can be accomplished, but only if the system is presented with a set

of variables that have been carefully selected to contain those qualitative relationships.

Future versions of BACON should represent structural relations explicitly, and should attempt to

discover the qualitative laws of a situation (e.g., that objects collide and change direction, or that

some chemicals combine to form new chemicals) before moving on to considering quantitative laws.

*Such an approach would be much more consistent with historical developments in science than the

current implementation. Moreover, once the system has arrived at a structural model for a situation,

this model may find another use as an explanation for a quantitative law found in some other

situation. This is an important point, since many explanatory theories - including the atomic theory,

the kinetic theory of gasses, and the germ theory of disease - are primarily structural models. Thus,

by exploring the role of structure in a descriptive discovery system like BACON, we may come to a

fuller understanding of explanatory science as well.

4For instance, consider the kinetic theory of gasses, which can be used to explain the ideal gas

law. Central to the kinetic theory is the notion of colliding molecules that obey conservation of

momentum. The hypothesis that a gas is composed of microscopic objects (similar to their

macroscopic counterparts in the momentum experiment) provides an explanation of the macroscopic

* relation between temperature, volume, and pressure. We do not claim to fully understand the process

by which such explanations are constructed, though some form of reasoning by analogy seems a

p-
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likely candidate. In any case, the relation between qualitative laws of structure and explanation is a

promising direction for future research.

It is interesting to note that one of BACON'S current heuristics - searching for common divisors

- could play an important role in such an explanatory discovery system. This results from the fact

that the existence of a common divisor for a set of data suggests an important structural aspect of

those data, namely that the objects involved in the experiment consist of quanta. Thus, one can

imagine an extended version of BACON that, upon finding common divisors in chemical reactions,

would invoke a prototype atomic theory to explain this fact.

Finally, we should note that an emphasis on qualitative laws of structure may provide a new

approach to the dual problems of noise and irrelevant variables. Given an understanding of the-

structure of some situation, it may be possible to eliminate some relationships and some variables

even before any quantitative data are gathered. For example, given the principle "no action at a

distance" and an experimental context in which two objects never touch or even approach each

other, one can immediately predict that the variables associated with these objects will be unrelated.

Again, this is an area in which our ideas remain vague, but it is also an area that deserves further

attention.

9. Conclusions
In this paper we have described BACON.5, an empirical discovery system that draws on data-

driven heuristics for finding numeric relations between two variables, recursing to higher levels of

description, postulating intrinsic properties, and finding common divisors. In addition to its data-

driven techniques, BACON also incorporates expectation-driven heuristics for expecting similar

relations, reducing the amount of data that must be gathered, assuming symmetrical laws, and

reasoning by a simple type of analogy. These latter rules take advantage of discoveries BACON has

made itself instead of drawing on knowledge about some particular domain. Thus, the program

retains considerable generality, as evidenced by the broad range of laws it has been able to discover.
In addition, the expectation-driven methods reduce the overall search that BACON must perform in

discovering a law.

We have also seen that some of BACON'S heuristics incorporate a notion of structure, but that

this knowledge is represented implicitly. Future versions of the system should represent structural

information explicitly, and attempt to discover qualitative laws before moving on to quantitative ones.

This approach should provide new methods for handling noise and determining relevant variables,

but it may do more than simply improve BACON'S techniques for discovering descriptive laws. We

hope that a concern with qualitative laws of structure will shed light on the process of explanatory

discovery as well.
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