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o ABSTRACT

F This report deals with the problem of detecting a known signal in
non-Gaussian or dependent noise. Although likelihood ratio (LR) detec-
tors are discussed, primary attention is paid to asymptotic detector per-

formance, and therefore to maximum efficacy or locally optimal (LO)
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detect:ors. In general, the detectors considered consist of a nonlinearity

followed by a filter and a threshold comparator.

The asymptotic performance of three common suboptimal detectors
is considered for several families of noise densities as the input signal-
to-noise ratio (SNR) varies. Contours of equal detector performance are

plotted allowing the relative utility of the detectors to be assessed.

A method of designing suboptimal detector nonlinearities is

presented. A suboptimal nonlinearity is chosen, and the family of densi-
ties for which it is locally optimal is found. A member of this family is
then fitted to the observed noise, and the corresponding detector is used.
When the nonlinearity is a rational function, the Pearson family of densi-
ties results. Not only does this family contain many common univariate
densities, but a member density can be fitted to an observed noise using

only the first four sample moments. Other possible nonlinearities are

ek eadal i S

LN TS S R WO

re

PRV Y UL

PEULT S SN W S

PR R

WS IR WP




..............

considered, including possible multivariate extensions.

A ten minute sample of Arctic under-ice ambient noise is subjected
to a moment analysis as suggested above. The noise is found to be non-
stationary and largely Gaussian or nearly Gaussian with sporadic bursts

of non-Gaussian noise.

The LR and LO detectors for several classes of multivariate densities
are given. These classes include closed form, differential equation, spher-
ically symmetric, series expansion, transformation and moving average
models. The transformation model, (noise generated by a memoryless,
nonlinear transformation of a correlat.edf Gaussian source) is discussed in
some detail. The performance and practical aspects of obtaining the sub-
systems of the transformation LO detector are considered. Applicability
of the noise models and tractability of the resulting detectors are dis-

cussed.

The problem of finding the minimum length matched filter in

discrete-time to achieve a desired level of performance (SNR) is con-

L sidered when there is some freedom in choosing a signal shape. Exact
-E and approximate upper and lower bounds on the SNR are given, and the
'. problems of optimal and suboptimal signal design are discussed.
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CHAPTER 1 - INTRODUCTION j
THE DETECTION PROBLEM | : ]

The detection problem considered here is basically a simple one. A i
detector must determine whether a signal or, to generalize slightly,
which of a number of possible signals, is present at its input. Were there
no noise contaminating the received signal the problem would be moot. 1
However, with thepresence of noise, often of an unknown or incompletely
known character, the choice of detector structure can be quite difficuit.
This problem occurs in many areas unrelated to communications, but ”
unlike many of those areas, decisions frequently must be made in "real

time" and with guaranteed bounds on the probability of error.

While there are many possible measures of detector performance,

asymptotic results are used throughout this dissertation, often without
much background or justification. While this makes each chapter more

readable (and less repetitious), a fuller development of asymptotic

theory can increase understanding. A more complete discussion of n

a4

asymptotic theory can be found several recent books. Pitman's [1] 3

[ &Y

E;
X
4 -
Y

development is fairly rigorous and complete. Of particular interest in the

¥ vl
3 framework of this dissertation, Pitman derives the eﬂicaéy as a measure "
E" of asymptotic detector performance, and discusses some of the proper-
:‘ ties of both efficacy and the locally optimal detector. Huber [2] uses -
"' asymptotic results to develop his theory of robustness for both detectors ";
E’ and estimators. A more general background, clearly placing asymptotic ‘
F; results within the broader area of statistical inference theory is given by 1
.:... Bikel and Doksum [3], and by Helstrom [4] who approaches the problem -;
% "1- :
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more from an engineering point of view.

In the sections which follow, some of the basic results of asymptotic
theory are presented, both to make the notation clear, and to give some
background for the following chapters. Fisher's Information is derived,
and shown to be a measure of the sensitivity of a density to differential
changes in a parameter 4. The efficacy is then shown to be related to
Fisher’'s Information through the Information Inequality. And finally the
efficacy is shown to be an indicator of the asymptotic behavior of a detec-
tor. The comments made here are not intended to form a rigorous
development of asymptotic theory; for that the reader is referred to any
of the References listed above.

Detection and estimation problems are generally concerned with a
set of probability measures {Py4|¥ € 8] indexed by a real parameter (or
parameters) ¥ contained in an interval ®. This set has a corresponding
set of densitics {f 4|0 € 8] and an associated o-finite measure x. In the
detection problem considered in this dissertation ¥ is generally taken to
be the signal level, and the detector is asked to decide whether ¥ = ¥4 or
9 > V.

1. Fisher's Information

The sensitivity of a detector or estimator to changes in the parame-
ter 9 is frequently of interest. This would give an indication of detector
or estimator performance for small signal level, ¥ ¥ 9, As shown below,
Fisher’'s Information can be viewed as the sensitivity of a density to

differential changes in 9.

o aa




As a measure of how two densities differ at a point x, consider the

likelihood ratio (LR):

A(x) = f¢(z)/ £ o(z)
or equivalently the log-likelihood ratio:

AMz) =In fo(z) — In f4,(z)
Both the LR and log-LR detectors are well known [1-4] to be Neyman-

Pearson optimal for deciding between f 4 and f 4, based on an observation

z. Because the LR and log-LR are optimal statistics for distinguishing

e

between two densities, either can also be viewed as a measure of the dis-
tinguishability of the two densities at a point . The derivation which fol-
lows would be essentially the same, and would, in fact, yield identical
results whether the LR or log-LR is used as a measure of distinguishabil-
ity. However, the log-LR is used since it has several appealing charac- 4
teristics. Without sacrificing the optimality of the LR, the log-LR equals

zero when two densities are indistinguishable at z, that is when §

J o(z) = f o,(z). It also has an appealing symmetry since )

In(fe/ S o) = —In(fg/ [9)
The sensitivity of f4 to a change in ¥ can be written as the ratio of
the distinguishability (i.e. log-LR) to the change in ¥: ‘
AMz) _ Infe(z) —In f4(z)

99, (9—9,)
As ¥ -+ ¥ the result is the rate of discrimination:

S(z) =

GRS B IATROAAOION P SRy

. Infe(z) ~In f4,z)
JB.S5E) = lm =%y
Assuming that ¥ is an element of a real interval, and that the ¥ derivative

.................

] ~n," ..........................




—-—

of f 4 exists at ¥y, then

. Y _ S, (=)
‘hjr;oS(z) = &Wmf‘(’) = Fol®)

where f4, denotes the ¥ derivative of f4 at ¥ = 9,. Denoting the log-
likelihood function at ¥4 as

Lg(z) = In f 4(z)

Then the rate of discrimination is the ¥ derivative of the log-likelihood

function:
Jim S(2) = Lo, (®) = £ 05(2)/ £ a2 o
The rate of discrimination Lg,\z) is a random variable with expected
value zero:

Eglsy = [fo,(z)du =0 (2)

As a measure of overall discrimination, consider the variance of Ly,"

Vole, = E(Le))2 = [(£9,)% fodu = Ig, (3)

which is seen to equal I(¥), Fisher’'s information at .
Fisher's information can be interpreted to measure the overall sensi-
tivity of a density to differential changes in a parameter ¥ at ¥g. In

another light, it can be viewed as the distinguishability of f4 and f 4, as
9> U
2. Efficacy and Information Inequality

Fisher's Information can be shown to have a corresponding measure
of asymptotic detector (or estimator) performance, the efficacy.

Further, the Information Inequality (or Cramer-Rao bound) states that

Fisher's Information is an upper bound on efficacy.

a . __a 4. _alls e




Let T'(z) a statistic of the observation z with density f,{z) with

expected value given by

EoT = [T(z)f o(z)dn :
The density f4 is assumed regular in Pitman's sense [1], allowing the 3

derivative of E4T to be brought inside the integral: p

2 EyT = Ey = [T@)f 4@)au 5

and using Eq (1): §
v
EyT = [T(z)Lg(x)f o(z)du (4)
t Since Ey4L4’ = 0 from Eq. (2), then an examination of Eq. (4) reveals that .
1 Ey'T is the covariance of T and Ly'. Thus by the correlation inequality: -
a .‘
; (Eg' TR < VyTVsly
with equality if and only if T = k& L' where k is a real constant. From Eq.
) 4
! (3), VyLy' = I(¥). The result is the Information Inequality:
-, ° 4
. Ey'T? .
< I (¥ R
: s 1(9) (5) |
g which can be slightly rearranged to yield the Cramer-Rao lower bound. ]
fi'_ The quantity on the left side of the inequality is defined as the efficacy of
the statistic T(z) at 9, and is denoted
= :
- J(T) = Eg'T%/ VoT
‘ It follows from the correlation inequality that the efficacy is maximized
; by the test statistic T}, = Ly'. This test statistic is referred to as the
4 )
-, - locally optimal test statistic, and has efficacy equal to Fisher's Informa-
* tion, J (T}, ) = I(9).
-
£ 4
-
‘_: :
F
L




3. Asymptotic Power of a Detector

The efficacy can be shown to measure the asymptotic behavior of a
detector for large n and small 9. A general but loose proof of this is
given below. This can, and indeed has been made more rigorous, and a
F more detailed development is given by Pitman [1].
L‘ | As stated above, the detection problem considered consists of testing
the hypothesis that ¥ = 9, against the alternative that ¥ > ¥, where v
f‘ and Yy are contained in the real interval 8. The detector consists of a
test statistic 7, which is compared to a threshold ¢, to decide for the
g hypothesis or alternative. Here n is the observation size, and T, has
- expected value E4T, = uy and finite variance V4T, = 03. Then if the Cen-
. tral Limit Theorem holds, as n -+, the random variable (T, — wugy)/ 04 is
asymptotically normal with distribution ¢ for all 3. The approximate

level a, of T, can thus be given, for large n, by:

I

an = PO,[Tn >ty,iw Q[(I-l-oo - u)/oio]
The threshold can be found in terms of a, :

ty ™ gy — U%Q—!(a,‘) (6}

In a similar fashion, the approximate power of a test is given by

Bn = P‘[Tn > tu] N O (uy —tn)/ Os) ("
Combining Egs. (8) and (7) yields the approximate power function:

4
aeteandieatiincinsio s

Mg t [y,
Oy

[
. Bla) = q%wa) -

Using the mean value theorem, we can write

Ho — g, = (B = Vo)ptye’
where prime indicates differentiation with respect to ¥, and ¥° lies
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between ¥ and 9¥y. The power function can be written as

[o X
Bla) = @lﬂé"(a) +(v- "o)&—]
Os Oy
For convenience, define d = u,+'/ 04. Then for large n, d dominates the

expression in brackets, and the power function is a monotone increasing
function of d. Since d = 0, maximizing d? is equivalent to maximizing the
power function. For ¥ M ¥, then ¥° ~ 3, and d? is very nearly equal to
the efficacy J(T,):

O,

2
d Im'noo‘ o2
) 09,

= J(T,)

Thus for large observation size n, and ¥ ~ 9,, maximizing the efficacy is
equivalent to maximizing the power function. It can also be shown that
maximizing the efficacy is equivalent to maximizing the slope of the

power function at ¥ = 9,

DISSERTATION OUTLINE

This dissertation deals with ihe problem of detecting a known signal
in additive noise. Several of the traditional assumptions are relaxed; the
noise is assumed to be non-Gaussian and/or dependent. In addition, the

statistical mode) is often assumed to be incompletely known.

In Chapter 2, the performance of several common detectors is con-
sidered for several families of noise densities as the input signal-to-noise
ratio (SNR) varies. The detector consists of a nonlinearity followed by a
filter and a threshold comparator. Three commonly used nonlinearities
are investigated: the linear amplifier, the sign detector and the amplifier

limiter. Contours of equal detector performance are plotted allowing the
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relative utility of the three detectors to be assessed for the noise models
considered. The investigation was motivated by the observation that the
locally optimal (or small signal) detector is designed for zero input SNR
and can perform rather poorly as the input SNR increases. While this
observation is born out, some additional conclusions can be drawn. In
particular, the performance of the sign detector falls off rather quickly

with increases in input SNR.

It is well known that the locally optimal detector for known signal in
noise consists of a nonlinearity followed by a matched filter. In Chapter
3, suboptimal nonlinearities are investigated. It is assumed that either
the locally optimal nonlinearity is too complex to use or that the noise
density is not known precisely. A suboptimal nonlinearity can be chosen,
and the fainily of densities for which it is optimal is found. A member of
this family is then fitted to the observed noise, and the corresponding
detector is used. When a rational function is chosen for the nonlinearity,
the Pearson family is the set of solution densities. This is not only a gen-
eral family which ccnt.adns~ many common univariate densities, but for
nearly Gaussian noise the method of moments can be used efficiently to
fit a member density to the noise. The coefficients of a ZNL are
estimated for several (non-Pearson) densities using the first four noise
moments. Performance of the suboptimal detectors is investigated.
Other possible nonlinearities are considered, including multivariate

extensions.

In Chapter 4, 10 minutes of Arctic under-ice ambient noise is sub-

jected to a moment analysis similar to that suggested in chapter 3. The

aEhar o s e o
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noise is found to be nonstationary and largely Gaussian or nearly Gaus-
sian with sporadic bursts of non-Gaussian noise. Unfortunately,
insufficient data is available for more extensive moments analysis, but
the tentative conclusions drawn about the nature of the noise are
interesting.

Chapters 5 and 8 (excluding Appendix B of Chapter 5) were coau-

thored with P.F. Swaszek and also appear in his dissertation [5].

In solving problems in detection, it is often assumed that the under-
lying statistical description is independent or Gaussian. Not making
these assumptions leads to difficulties in detector design due to problems
usually encountered in specifying muiltivariate noise statistics. In
Chapters 5 and 8, several characterizations of multivariate densities are
considered within a detection framework. The discussions include

specific examples and also some general methods of density generation.

The particular detection problem considered in Chapter 5 is that of a
known signal with a vanishingly small amplitude in additive noise.
Efficacy is employed as a criterion of detector performance and the max-
imum eflficacy (locally optimal) detector is discussed. The class of mul-
tivariate densities generated by a memoryless, nonlinear transformation
of a correlated, Gaussian source is discussed in some detail. A member
of this class has the advantage of being completely characterized by its
marginal density and its covariance matrix. The locally optimal detector
structure is derived for this class and the practical aspects of obtaining
detector sub-systems are considered. Examples of this detector are

presented for noise sources with Laplace and Pearson Type VII marginal

-t

P
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densities, and Monte Carlo simulations are included to aid performance
enalysis. A second class of multivariate densities generated by a linear
transformation of an iid noise source is also considered, and its locally

optimal detector is described.

In Chapter 8 the likelihood ratio and locally optimal detectors for
several classes of multivariate densities are given. These classes include
closed form, differential equation, spherically symmetric, series expan-
sion, transformation and moving average models. Applicability of the
noise models and tractability of the resulting detectors are discussed.

The Matched Filter (MF) is well known to be the linear detecﬁor that
has the maximum output Signal-to-Noise Ratio (SNR). In Chapter 7, the
problem of finding the minimum filter length in discrete time to achieve

a certain level of performance is considered when there is some freedom

in choosing a signal shape. Upper and lower bounds on the SNR are given
in terms of the eigenvalues of the noise covariance matrix. Since these

bounds are rather difficult to compute, looser, but easier to compute,

bounds are given. Several examples are presented which illustrate the
exact and approximate bounds.
. In Chapter 8, the main results of this work are summerized, and

ideas for further research are given.
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CHAPTER 2 - ASYMPTOTIC PERFORMANCE OF DETECTORS
WITH NON-ZERO INPUT SNR.

INTRODUCTION

Frequently, the performance of locally optimal and suboptimal
detection schemes is evaluated using asymptotic measures such as the
Asymptotic Relative Efficiency (ARE). Unfortunately, the ARE requires
the assumption, not only of a large number of samples (for the central
limit theorem to hold), but of a vanishingly small input signal-to-noise
ratio (SNR). It follows that any optimal or suboptimal system designed by

maximizing ARE may perform poorly for a signal level greater than zero.

From a survey of the literature, it is evident that these assumptions
have concerned other researchers in the past. In particular, Miller and
Thomas [1] investigated the convergence of Relative Efficiency to ARE for
a signal in iid Laplace noise. They found the convergence to be relatively
slow, implying that the ARE may not be an accurate measure for small to
moderate sample size. Spaulding [2] found that, for small sample size
and large signal level, the hard limiter may well outperform the locally
optimal detector for a signal in Hall-distributed noise.

These results motivate a further investigation. In this chapter, the
asymptotic performance of several simple detector structures is con-
sidered when input SNR is not constrained to be zero. Originally, we
looked at the single case of Laplace noise and were interested in the rela-
tive performance of the locally optimal (sign), the Neyman-Pearson
(amplifier limiter), and linear detectors as the input SNR is increased.

Since these are frequently encountered suboptimal, robust or

-12-
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Fig. 1. Typical detector structure.
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nonparametric detectors, a comparison of their performance for other

families of densities might prove interesting.

The detector structure considered in this chapter consists of a zero
memory monlinearity (ZNL) followed by a summer and a threshold com-
parator as shown in Fig. 1. Both the likelihood ratio and locally optimal
detectors for iid noise and constant signal have this configuration, and for
this reason among others, this form has particular appeal not only in
optimal but in suboptimal detector design. In this chapter, three detec-
tor ZNL's are used: the linear amplifier, the sign detector and the
amplifier limiter. |

DETECTION PROBLEM
The problem of detecting a constant signal in additive noise, given a
sequence of observations, can be expressed as an hypothesis and an
alternative:
Hyp z; = n,
Hyz;=ny +9
Under the hypothesis Hy, the observation z; consists of noise only; under

the alternative H,.it consists of noise plus an additive signal 9. When the
noise is assumed to be independent and identically distributed (iid) with
density f (n;), both the likelihood ratio detector and the locally optimal
detector consist of a ZNL g(-) followed by a linear filter. If the number of

samples is m then the test statistic T, is given by

Tm = §9(=i)
im]

To simplify notation somewhat, let
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oF
m
~ o = EoTm 00° = EgTpn® — Eo?Tp,
oy and
to = EqTm 0g® = EgTpn® — E4°Tpn
- where Eg and Ey represent the expected value under Hy and H, respec-
B tively. .

If m is sufficiently large for the central limit theorem to be applied,

i o
BTN

then under Hy and H; the two random variables

N T = Ho Tm = b 3
m Og and \/7;0‘

are both approximately unit normal, and the approximate level a is

R A ORI

therefore .
a= f dd(z)=¢ Mo — ¢ :
t-mug 0o
m .
where & is the Gaussian N(0,1) cdf. The threshold ¢ can be found in terms “‘
of a: .
t = mpy — Vm opd~}(a) 5

Likewise the approximate power can be computed:

dé(z 6——-]
Lt t-{m =)= [ Vm o,

Using the expression for the threshold‘ yields the power function:

Bla) = ¢[394-1(a) + vmB ke
Og Og

W GrL.v.

The appfoximat.e power of a test for fixed level a and large sample size m
is a monotone increasing function of the square root of the detector out-

put SNR, where

FaeSioch BEEER 40 At Ay e are 2




- )2
SNRoyr = 9"’%%.

As Vm - =, the term containing the square root of the SNR will clearly
dominate the other term in the power function, and the SNR is an accu-
rate measure of detector performance. For moderate m, where the
Gaussian assumption may still be quite good, the term oy®~!(a)/ 04 can
become important. In this case, using the SNR to compare the perfor-
mance of two tests may not be enough; 0o/ 04 should ideally equal the
same constant for both tests. In the following examples o¢ = o4 for all
detectors considered. Asymptotically, the results are equivalent, but this
should yield more valid results for moderate m.

COMPARISON OF SEVERAL TESTS

In this section, three tests are considered: the linear detector, sign
detector and the amplifier limiter. Under Hy the observation x has distri-
bution F(z) and under H, distribution F(z —9). Obviously, the noise vari-
ance will have no effect on the gain in SNR of each detector (input to out-

put), and therefore it can be set equal to unity with no loss of generality.

1. The linear detector (LD) is simple and frequently used. It is usually
justified by making a Gaussian assumption about the noise, and is both
the Neyman Pearson and locally optimal detector for Gaussian noise. The
LD has the ZNL

gz)==
and so /

. jo=0 up="¥ and 0 = 0=
e and the output SNR of this detector is




SNRyp = 92 (1)
2. The sign detector (SD) is probably the simplest ZNL which may be

effective in an impulsive environment. It has been shown [4] that the SD

frequently performs reasonably well for small signals in impulsive noise.

The SD has the ZNL:
g(z) = sgn(z)
Thus
Mo =1—2F(0) Up=1-2F(-9) and op=0g=1
and the SNR of the SD is
SNRgsp = 4[F(0) = F(=9)]? (2

3. The form of the amplifier limiter (AL) used here is the Neyman-
Pearson .optimal test ZNL for Laplace noise, with breakpoints at the signal
level 9. While this is not necessarily the best breakpoint for all noise
environiments, it avoids the difficulties inherent in choosing optimal
breakpoints [4] while still preserving some of the robust characteristics
described by Martin and Schwartz [8].

The AL has the ZNL.

0 z<0
glz)={ =z Osz<y
v U<z

Thus
L}
Mo =B[1 - F(¥)] + {z dF(z)
0
pig = B[1 = F(=9)] + :['z dF(z)

)
oc% = _[ z2 dF (z) + 921 - F(—9)]—uo®

- d
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0 0
09 = [22dF(z) + 28 [z dF (z) + 93 [1-F(—9)] — su?
~ e

Denote the ith incomplete moment as 7;, where

4
L = [z dF(z)
0

Then if f is assumed symmetric:

po =0 —1o] + I
Mo =B[% + Io) -
00° = 092 = Ip + V3% + 1] — 201, — puy?
The AL has SNR

491y - I,

SNR,, =
A I+ 9%/4— 01, — 92 — 12 + 2014l,

RESULTS

A. GENERALIZED GAUSSIAN

The first distribution considered is the generalized Gaussian.

1(2) = G Svexp(-alz|°)

For a variance of unity

a¥° =T(3/¢c)/T(1/¢c)

(3)

In addition to including the Gaussian and Laplace as special cases, the

generalized Gaussian offers considerable control over the rate of tail

decay through decay parameter c. It has been suggested as a model of

impulsive atmospheric noise, particularly for 0.1 < ¢ < 0.8, and used to

demonstrate the locally optimal detector by Miller and Thomas [3], and

later by Lu and Eisenstein [5].

The incomplete moments /; (fori =0, 1, 2) are




-

bt o

-19-

Io= 2(1/ c,a¥)
’['(1/c)
- __2(2/c,a¥°)
2[T(1/c)r(3/c)*
Ip= 7(3/ c,a¥°)
I'(3/¢c)
where 7(.,.) is the incomplete ¥ function.

1,

Using the incomplete moments and Egs. (1-3), the output SNR's of
the LD, SD and AL detectors are computed and plotted in Figs. 2-6 for
several values of decay parameter ¢. Two values of c are of particular

interest.

When ¢ =1 (Fig. 3) the generalized Gaussian reduces to the Laplace
density. The SD is then locally optimal and the AL is Neyman-Pearson
optimal. As expected, the AL outperforms both the LD and SD for when
the input SNR is greater than zero. Perhaps surprisingly, the perfor-
mance of the locally optimal SD decays significantly as input SNR
increases. In fact, the LD outperforms the SD when SNR;y > 0.272.

The Gaussian density results when ¢ = 2 (Fig. 5.). In this case, the LD
is both locally and Neyman-Pearson optimal, and as expected, it outper-

forms both the AL and the SD.

The points of greatest interest in Figs. 2-6 are the crossover points at

which two tests have equal output SNR. In Fig. 7, the contours of

SNRsp = SNR;p and SNR,;, = SNR;;, are plotted in the c XxSNRy plane.
The two contours divide the portion of the plane considered into three
regions.

When SNR;y = 0, the SD and AL are equivalent; for all SNR;y > 0, the

AL outperforms the SD. As configured here, the AL requires the signal

-
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Fig. 2. SNR;y versus SNRyyr for generalized Gaussian, ¢ = 0.5.
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Fig. 3. SNR;y versus SNRyyr for generalized Gaussian, ¢ = 1.0.
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Fig. 4. SNRy versus SNRyyr for generalized Gaussian, ¢ = 1.5.
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level ¥ to be known, and when ¥ is known the AL would normally be used
over the SD. The LD is to be preferred over the AL only in the rightmost
region, right of the contour SNRy = SNR;p. When ¥ is not known, the
choice is between the LD and the SD. The LD outperforms the SD in all
but the region left of the contour SNRgp = SNR,p.

In Fig. 8, the the relative performance of the SD and the LD is shown
as contours of (SNRsp/ SNRyp)ep in the ¢ XSNRy plane. The 0dB line
corresponds to the line of equal performance in Fig. 7, and performance
of the SD relative to that of the LD can be seen to fall off quickly not only
with the transition from Laplace (¢ = 1) to Gaussian (¢ =2) but with
increases in SNR;y.

In practice, one might use single or (especially in nonstationary noise
environments) multiple estimates of ¢ and SNR;y and Fig. 7 to choose a
detector structure. To simplify the process, since c is rather difficult to
estimate, the two contours SNRgsp = SNR;p and SNR, = SNR,p are
giv'en in the ,xSNR;y plane in Fig. 9. Here 8, is the normalized fourth
moment, or kurtosis of the noise, frequently used as a measure of density
"peakedness”. The kurtosis is defined to be:

Bz = wa/ U8
where u, and u, are the second and fourth noise moments about the
mean. Not only is the kurtosis 8, easier to estimate, but it is a more gen-

eral measure than ¢ and can be applied to many other densities.
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3 B. PEARSON VII
‘g The next model considered is the Pearson VII density: ~

Fz)=K(1 + azz)"" 1
where

E K = —o(m) a= B3 m = P29 4
: rprim-% Rz 2(Bz — 3) ‘
Rather than exponentially decaying tails as in the previous example, the

J —

d’ Pearson VII density has tails which decay algebraically. In the limit as
B2 -+ 3 the density approaches the Gaussian density.

In this case the incomplete moments /; (for + = 0, 1, 2) are computed
numerically. Using these incomplete moments and Egs. (1-3), the output
» SNR's of the LD, SD and AL were found for several values of kurtosis, £,
and plotted in Figs. (10-13). '.:
! At B2 = 3, the Gaussian density results, and the performance of the j
three detectors is described in the last section, and shown in Fig. 5. As 8,

increases, the density becomes heavier tailed and the performance of

both the AL and the SD improves relative to that of the LD. As before, the

AL consistently outperforms the SD.

. In Fig. 14, the contour of equal performance of the SD and LD,

SNRgp = SNRyp. is shown in the BxSNR;y plane. Considering the

results of the last section, it is interesting how poorly the SD performs in

this particular noise environment. Comparing Figs. 9 and 14, not only is
the SD for Pearson VII noise much more sensitive to increases in SNR;y R
but the kurtosis must be nearly three times as great (at SNR;y = 0) for :

the SD to outperform the LD.
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Fig. 10. SNR;y versus SNRyyr for Pearson VI, B, = 3.1.
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SNRy

Fig. 11. SNRy versus SNRyr for Pearson V!, 8, = 4.0.
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C. MIXTURE MODEL
The next noise model considered is a mixture model. Under certain
conditions [4,6,7] a noise process may be well-described by a mixture of
the form
J(z)=(1-¢e)fp(z) +efi(z)
where fp describes a background noise process contaminated by bursts
of impulsive f; distributed noise. In the examples which follow, the back-

ground noise is assumed Gaussian:

z?

o= o 2

The impulsive contaminant is assumed to be Laplace or Gaussian.
1. Gauss-Laplace mixture

The Gauss-LAplace mixture assumes the contaminating impulsive

noise to be Laplace:

f1(z) = Zexp(-alz|)

The ratio of the variances y = 2/ a®0® proves to be an important constant.

The incomplete moments, I; can be computed numerically, and the
resulting SNR’'s can be found from Egs (1-3). The contours of equal SNR
for the linear and sign detector are plotted for several values of 7 in Fig.
15. The SD outperforms the LD below the contours, and the LD is superior
above. Typically ¥ will be large and ¢ small corresponding to infrequent
large energy bursts. In this case, the sign detector may be of use as

shown by the ¥ = 100 contour.
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2. Gauss-Gauss Mixture

In this case the contaminant is assumed also to be Gaussian, with
variance s2. The ratio of the variances again proves useful, where
v=s5%o2

The contours of SNRgp = SNRyp are plotted in Fig. 18 for several
values of 7. The SD outperforms the LD below the contours as in the last
example. It is interesting to note that while the LD is optimal at &€ = 0 or
€ = 1 since f is then purely Gaussian, the performance of the SD may in
fact surpass that of the LD for 0 < £ < 1. As stated above, y will fre-
quently be large and ¢ small; in this case the SD would appear to perform

quite well.
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Fig. 16. Contours of SNRsp = SNR,p in exSNR;y for Gauss-Gauss mixture.
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CONCLUSIONS

Care should be taken in applying locally optimal results, since the
locally optimal detector is designed for zero input SNR. As shown in the
Laplace example, the performance can deteriorate rather quickly as
SNK;y increases, so quickly in fact that the linear detector may well out-

perform the locally optimal detector for SNRIN" fairly small.

The comparison of generalized Gaussian and Pearson VII reéult.s indi-
cates the importance of correctly choosing a noise model. The sign
detector performs considerably less well, particularly in sensitivity to
increases in SNK;y, for Pearson VII distributed noise. From these
results, we can conclude that even two densities which have equal
moments up to fourth order can yield decidedly different performance

from the same detectors.

In general the performance of the amplifier limiter is quite good for
the noise models used. The sign detector on the other hand is at times
disappointing. One case in which it does appear to work well was for the
mixture model with infrequent but high energy impulsive bursts (y large,
¢ small). Not only does the sign detector outperform the linear detector,
but it is relatively insensitive to the form of the contaminant; similar per-

formance is seen for both Laplace and Gaussian contaminant.
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CHAPTER 3 - DETECTOR DESIGN USING A DENSITY FIT
TO NON-GAUSSIAN NOISE

INTRODUCTION

The locally optimal detector has been suggested for the detection of
small known signals in noise. The detector consists of a nonlinearity fol-
lowed by a linear filter and a threshold comparator (Fig. 1). In this
chapter, we consider the selection of suitable nonlinearities when a com-

plete statistical description of the noise is not available.

In practice, the realization of the locally optimal nonlinearity may
present some difficulties. The functional form may be unwieldy to imple-
ment. Especially fof dependent noise, a multivariate density may not be
known with precision and it may be difficult to estimmate. The noise may
not be stationary, making it desirable for the nonlinearity to adapt to

changing noise statistics.

For independent, identically distributed (iid) noise, the nonlinearity
is memoryless, and suboptimal approximations to this zero memory non-
linearity (ZNL) have received some attention. Kassam and Lim [4] have
addressed the problem of finding an optimal quantized version of the
ZNL. Miller and Thomas [2,3] use hard limiters, amplifier limiters, mul-
tilevel, and piecewise linear suboptimal nonlinearities in place of the
optimal ZNL. Frequently these approximations have parameters which
are chosen to maximize the detector eflicacy. Unfortunately, this usually
proves to be a numerical problem involving considerable computations.

It is not always clear how to choose or optimize these nonlinearities when

-41 -




Fig. 1. Typical detector structure.
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the noise density is not known exactly.

A second approach is used in this chapter. An approximate non-
linearity with a desirable functional form and one or more free parame-
ters is chosen. A family of noise densities with the same free parameters
can then be found for which the nonlinearity is optimal. The parameters

are evaluated by fitting a member of this family of densities to the noise.

LOCALLY OPTIMAL DETECTOR

The problem of detecting a known signal s in noise n can be
expressed as an hypothesis Hqy and an alternative H;:
Hyx=n

H;yx=n+ vUs 9>0
Under H,, the observation vector x consists of noise n with density f (a),

and under -H,; the observation consists of noise plus known signal s with
amplitude ¥. The detector can be written as a real-valued functional 7T'(x)
on the observation, followed by a threshold comparator to decide for Hyp
or H,.

When the magnitude ¥ of the signal is unknown, but assumed to be

nearly zero, the efficacy

[%-E.;T]2 _ [fr_f 'uz:z]2 _
VoT [ T?taz - [fodz]

is frequently used as a measure of detector performance [1-8]. It is well

(1

ki =
known [14] that the statistic T;, which maximizes the efficacy is the ¥

derivation of the log likelihood function at 9=0:

To(x) = lim il (x9)]
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known as the locally optimal detector. For a signal in additive noise with
amplitude ¥, the statistic consists of a nonlinearity

9 (x) = =Vf (x)/ f (x)

followed by a correlator

T (x) = - 1}%%’4 910 (3)-s

where "V" is the gredient and "-" is the vector dot product. The statistic

reduces for iid noise to a zero memory nonlinearity (ZNL)

4
9 (x) = =f'(z)/ f (z) (2) I
followed by a correlator: ]
N , N R
Tp(x) = .Zl‘sif (z;)7 f () = zlsigto (z:) )
= i=
with efficacy .
J(Te)= [ 2 f)az 1
Suppose a ZNL g is chosen with free parameters ¥. Then Eq.(2) can 5
be viewed as a differential equation which can be solved under certain ]
regularity conditions. The differential equation is written as §
g(z)=-f'(z)/f(z) 4
Thus 1
So(z)dz = - [dIn(f @) = —in(f (=) + C :
and so
f(z)=K exp{—fg (Z)dx]
A suitable suboptimal ZNL can now be selected, and the correspond- R
ing family of solution densities found for which the ZNL is optimal. Not
only should the ZNL have a relatively simple form, but it must lead to a
1
1
1
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reasonable set of densities. Since a member of the solution family is to
be fitted to the observed noise, it should be general enough to provide a
relatively good fit, and the densities should have parameters that are not

too difficult to estimate.

PEARSON APPROXIMATION TO THE ZNL

As an approximate ZNL consider a rational function:

g(z) = -N(z)/ D(z) (3)
where N and D are polynomials in z of degree n and d respectively. This

is a general form of the Pearson differential equation.
Choosing n=1 and d=2 yields the classical Pearson family as solu-

tions of the differential equation:

f'(x) _ at+z
F(z) ~ botb,z+box? (4)

The classical Pearson family includes as special cases the Gaussian,
Cauchy, L, F, %, uniform, gamma, exponential and beta densities. Origi-
nally proposed by Karl Pearson [11] as a tool for fitting densities to data,

it has continued to attract considerable attention.

Solutions of the differential Eq.(4) depend on the roots of the denomi-

nator D. There are three possibilities:

1. real roots, same sign
2. real roots, different sign

3. complex conjugate roots

These correspond to the three main Pearson types VI, I and IV respec-
tively. Transition types result when parameters in the main types

approach a particular set of limiting values. The Pearson types and
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associated common densities are summarized in Table 1.

Maximum likelihood (ML) estimators of the parameters in the Pear-
son femily depend on the density type which is the best fitted to the
observations. A simpler approach is to use the method of moments (MM)
which requires estimates of the first four noise moments. For nearly
Gaussian noise (£, < 0.1 and 2.62 < §, < 3.42), the ratio of the variance of

MM to ML estiniates exceeds 80% [12,13].

The coefficients of the Pearson system can be found in terms of the
first four moments (or skewness and kurtosis)if they exist [9,10,Appen-
dix]. Define variance, skewness and Kkurtosis:

P =pp . B = us e L B2 =/ W
In terms of these quantities the coefficients are:

-a = b, = of (B,+3)/ D
bo = —0%(46,-36,)/ D
bz = (282-38,~6)/ D
with the denominator D given by
D = 108,-128,-18
As an aid to selecting a Pearson type density given the sample values

of 81 and B, Pearson constructed a chart showing the regions occupied
by each of the Pearson types in the 8,%8; plane (Fig. 2).

Although the Pearson family consists of both skewed and symmetric
densities, only the symmetric (8,=0) are considered below. The sym-
metric solutions can be seen from Fig. 2 to include the Pearson types I,

VII and normal densities. These can be written in a single function form:

f (z) = K(1-az®)™
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The constant K can be written in terms of the incomplete beta function
B(.,.):

_[e®BBm+1) m>-1 I
~ o%B (%, -m —Y) m <1 VIl

When the first four moments exist:

K

a = (3-8,)/ 208, (5)
m = (58;—-9)/ 2(3—8;)
Note that for 82<3, f (z) has finite support, |z |<a™®. For 223, f(z) has

infinite support, and at f,=3, the density is normal. Fig. 3 shows f(z)
for several values of 8,, and properties of f (z) are summarized in Table

2.

Restricting the density to be symmetric simplifies the ZNL since,
from Eq.(11), when §,=0, then a=b,=0 and the resulting ZNL is odd sym-
metric. The locally optirnal ZNL is found from Eq.(2) to be:

9w (Z) = l_zzz (6)

with range —=<z <~ for a<0 and |z |<a™* for a>0. The parameter a in

this nonlinearity can be estirnated from the variance and kurtosis of the
observed noise using the expression in Eq.(5). The II/VIlI ZNL, shown in
Fig. 4 for several values of B85, can take three important forms: expander
(B2<3), linear (82=3), and contractor (82>3). A fourth type, the limiter, is
not included, causing some problems when fitting to a density with

exponential tails, for which a limiter is optimal.

The Asymptotic Relative Efficiency (ARE) is defined, under certain

regularity conditions, to be the ratio of the efficacies of two detectors:

ARE, 2 = J(T1)/ J(T2)

-
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and is a frequently used measure of relative performance of the detec-
tors. A linear detector for any density is easily seen from Eq.(1) to have
the efficacy:

J(T) = 1/ pe
The eflicacy of the locally optimal detector of the Pearson I1/VIl density
is
5(82-3)(282~3)

MB2(7B2—15)
The ARE, 4 is plotted in Fig. 5. The ARE, ;4 is a minimum of unity at

J(Ty) =

B2 = 3 corresponding to the Gaussian density. As 8, decreases, resulting
in densities with increasingly lighter tails, the ARE increases asymptoti-
cally to infinity at 82 = 15/7. For heavier tailed densities, the improve-
ment is less marked. As 8, + « the ARE approaches the limiting value

10/ 7.
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EXAMPLES

In the last section, a method of finding a suboptimal ZNL using the
first four sample moments was developed. In practice we would use only
these moments to fit our suboptimal ZNL. The problem of estimating
these moments efficiently for an unknown density will not be considered
here. Instead, in our examples, we assume two classes of non-Pearson
noise densities and use analytically derived moments to fit the Pearson
ZNL. Then the efficacies of the suboptimal and optimal detectors are
compared as a measure of detector performance. The two classes of den-
sities chosen are the generalized Gaussian and a Gauss-Laplace mixture

density.

A Gauss-laplace Mixture Noise

The Gauss-Laplace density is given by:

J(z)= exp[EOT] ——exp(-d|z|)

where O<e<1 and 0<a"’,1$. One justification of this density is to assume a
Gaussian noise with bursts of Laplace (impulsive) noise 100¢% of the time
[2]. An additional quantity which proves useful is the ratio of the vari-
ances:

v = (90)%/2
Typically ¢ and y are assumed small. The moments are:

M1=u3=0
Mo = (1—€)0® + e(2/ 9%
My = (1-€)0% + £(2/97)
with skewness and kurtosis:

P




e ————y

+

=
. 4

v

r,_f -— -
:, .
o

r(1—6)72 + 2¢ ]
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f1=0 B2=3
The Pearson ZNL is given by Eq.(8):

g(z) =z/(1-az?
where a can be found from Eq.(5):

a = (B2—3)/ (2ueBz2)

Notice that the Pearson ZNL is designed using estimates of the noise
moments, and not estimates of the quantities £ or y which are more
difficult to compute. Since the moments are relatively simple to esimate,
this nonlinearity is by nature adaptive.

AREg 4 is computed numerically and shown with ARE}, 44 in Figs. 6-
10, for several values of 7. Reasonable performance is seen for ¢ small
(nearly Gaussian noise) even though the Gaussian noise is contaminated
with a non-Pearson density. In addition the performance in all cases

equals or exceeds that of the linear detector, ARE, ;3=>1.
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B. Generalized Gaussian Noise
The Gaussian density can be generalized by providing for a variable
rate of exponential decay [1]:

f (z) = Kexp(—|¢z |°)
where

_§3/c =
{= 1021., (1/¢) and K =c¢/2I(1/¢c)

This class of densities is of interest because it contains both the Gaussian

(c =2) and Laplace (c =1) densities as special cases, and it allows consid-

erable control over the rate of tail decay.

The moments are zero for n odd and for n even:

n_
sy = o"I((n+1)/c)(1/c)?
I‘(a/n)n/c
with skewness and kurtosis:
_ _I5/c)(1/¢c)
=0 d =
Pr=0 and B2= "rasoy

The Pearson ZNL is given in Eq (6) and a in (5). Once again, the moments
are estimated, and not the decay parameter ¢, which is rather difficult to
estimate. Since a is easily estimated, the Pearson ZNL is potentially
adaptive.

ARE, 14 is computed numerically and shown in Fig. 11. AREj ;4 and
AREy 14 are also shown for comparison. AREy ;4 is the ARE of the sign
detector (hard limiter) vs the linear detector. The sign detector is
optimal for Laplace noise (c =1) and nearly optimal for c~1. However, for
nearly Gaussian noise c~2, the Pearson detector is better. This suggests

that a system including both the sign detector and the Pearson detector
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might well surpass the performance of either one alone.

MORE COMPLEX ZNL'’s

Values of n and d can be chosen other than n=1 and d=2 of the clas-
sical family. The resulting families may contain multimodal curves (for
instance n=2, d=3 results in a family including bimodal curves). Higher
values of 8; and B, may also be admitted. The major disadvantage of
increasing n and d is that high order moments are required. Since the
number of parameters to be found is n+d+1, using the method of
moments requires n+d+1 moments. As the moments become increas-
ingly difficult to estimate with increasing order, increasing n and d

significantly may not be possible or desirable.
A single or multiple discontinuities can be allowed in the nonlinear-

ity. The result is a family of curves which consist of segments of Pearson

curves between the points of discontinuity. For a single discontinuity at

z=0:
L(z) _ (x+a)(1-c+du(z))
S (z) bo+b,z+b,z? .
where
0 <0
u(z) = :eo

Solving this differential equation yields a family of Pearson curves con-
sisting of two half curves for z=0 and £<0. Each of the two halves are of
the same Pearson type but with different parameters. Among the possi-
ble solutions, two of particular interest are the Laplace or double

exponential and the double Gaussian densities.

PSP




)

TTVYTY Yy

.-,h

vrl Ladat)

i

,wvv—vwl-rv-—v 0

a

—py

' :L" .

-85-

As an example where this method of curve fitting fails, consider the

nonlinearity on the open interval (z;,z2):

g(z) = asgn(z)|z |°
Then for c #1 and z;<z <z3:

= . c+1
1@ = kel 2 121441
This density is commonly called the generalized Gaussian with Laplace
(c=0) and Gaussian (c=1) as special cases. Unfortunately there is no

good method for estimating the exponential parameter ¢, and thus the

ZNL cannot be fitted in the manner used above.

Several multivariate extensions to the Pearson family have been con-
sidered [10,15]. Following the same line of reasoning which led to the
univariate Pearson family, K. Pearson wrote the difference equations

describing the bivariate hypergeometric density as a pair of differential

equations:
of(zy) _ cubicinzy .
oz - quartic in z.y (z.y) (?)
and
af (z, _ another cubic in z,
dy quartic in z.yJ_f (z.y) 8)

Other nonlinearities are possible, but all suffer from the same drawbacks.
It is extremely tedious to solve the simultaneous equations if the method
of moments is used, and the number of coeflicients needed for a com-
plete fit increases extremely rapidly. In the bivariate case alone, there
are 15 moments up to fourth order [15]:

1. 1-total mass.

2. 2-position of mean.
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3. 2-variate standard deviations.

4. 1-coefficient of correlation.

5. 4-marginal £'s (8, Bz, B1', B2)-

6. 2-third order product mqment coeflicients.

7. 3-fourth order product moment coefficients.
Thus a complete fit up to fourth order moments requires 15 coefficients
in the nonlinearities. Since there are fewer than 15 in Eqs.(7-8), and in
fact in most reasonable nonlinearities, some relationship among the
higher moments must be tolerated.to reduce the number of coefficients

required. It then becomes less clear that the fit will be a good one.

CONCLUSION

The optimal ZNL in a locally optimal detector may be cumbersome to
implement or even impossible to find when noise statistics are not known
exactly. It is possible to choose a practical form for the nonlinearity, and
solve the locally optimal differential equation yielding a family of solution
densities for which the nonlinearity is optimal. One of these densities can
then be fitted to the noise, and the corresponding detector used. If the
family of densities can provide a good fit to the noise, it is likely that the

detector so derived will have nearly optimal performance.

Choosing a rational function for the ZNL in a locally optimal detector
results in a particularly useful family of solution densities, the Pearson
family. Not only does the Pearson family contain many common densi-
ties, including the Gaussian, but for nearly Gaussian noise the method of
moments can be used efficiently to compute the coeflicients of the ZNL.

This method produces a detector which performs at least as well as the

TORANE S

i




-67 -

linear detector for the two classes of densities considered, and nearly as

well as the optimal detectors for nearly Gaussian noise.
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APPENDIX - Method of Moments for Pearson Family

The coefticients of the Pearson system can be found in terms of the
first four moments if they exist [9,10]. Cross multiply the Pearson
differential equation, £q.(12), multiply both sides by z™ and integrate to

obtain

f:z"(b°+blz+bzzz)f'(z)dx = f:"(a+z)_f (z)dz

The left side can be integrated by parts:

z"(b°+b,z+bzzz)ff'(z)dz -
f(nboz"“+(n+1)b,z"+(n+2)ba‘:’“”)f (z)dx

=afz"f(z)dr + fz’”"f (z)dz
but f J'(z)dr =0, and ' is the i—th moment about zero. This gives

four equations (for n=0, 1, 2, 3):

—n ey = Qpn 0N iy 140 1 (N + 1)y "+ 2(R +2)pitp 4
Shift the moments to moments about the mean by setting u; =0 and

' =y fori =2, 3, 4. Thus

b+a=0
bo + 3uzbz = —u2
Sunb | + duaby + usa = —ug
Sugbg + 4usby + Sugbs + Uze = —uy
Solving gives:

-2 = b; = ua(ug+3u%)/ D
bo = ua(3ua—4uprts)/ D
by = (~2ugmiyt Sus®+6usS)/ D
D = 10upt,—18us°~12u4®
Define variance, skewness and kurtosis:
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0® =g\ Br = ua/ 12 . Bz = e/ He®
In terms of these quantities the coeflicients are:

~a = b, = of ¥(8,+3)/ D
bo = —0%(482-34,)/ D
be = (28;~38,~8)/ D

D = 108,-128,~18
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CHAPTER 4 - AN EXAUPLE OF MOMENT ANALYSIS
ON ARCTIC UNDER-CE DATA

INTRODUCTION

As an example of data subjected to moment analysis, we consider
samples of under-ice ambient noise. The data were collected on April 23,
1930 under Arctic pack ice at 86°N latitude and 25°W longitude by a
multi-institutional experimental group. The raw samples were gathered
using an omnidirectional hydrophone suspended 91 meters below the ice,
and they represent approximately 10 minutes of noise. The noise fvas
prefiltered with a low-pass filter, cutoff frequency at 2600Hz and
96dB/octave roll-off. The result was sampled at 10kHz and stored as 6006
records of 1024 samples, each record representing about 0.1 seconds.

For further information, the reader is referred to References (1 and 2].

COMPUTATION OF SAMPLE MOMENTS

In this chapter, as in (1], the Arctic undér-ice samples are assumed
independent and stationary. The first four sample moments are com-
puted for each record of 1024 samples (® 0.1 seconds). As an estimator
of the kih ceniral inoment, ;. , consider the kth central sample moment,

My

__1__" z, - 2)
my N? z)

where Z is the sample mean:

IN
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In the previous chapter, the skewness 8, and kurtosis 8, were defined
in terms of the variance o® and the third and fourth central moments M3
and sy

Br=uy/d® and Bz= /o
As estimators of 0%, 8, and B;, the sample variance s? skewness b, and
kurtosis b, can be used, where
s®=m, by=mg/s3 ba=my/s*

The sample variance, skewness and kurtosis are plotted versus
record number in Figs. 1-3 for the Arctic under-ice ambient noise data.
These plots are essentially the same as those in [1], except that here the
moments are centered on the sample mean of each record, rather than
on the mean of the entire 8006 records. From these figures it can be
seen that the noise under study is not only nonstationary, but, at times,
non-Gaussian.

Both sample skewness and kurtosis have been suggested [2,4] as
measures of Gaussianness. The 1% and 5% confidence intervals for b, and
b, given a sample size 1000 are given in Table 1. as computed in [4..
Applying either of these bounds to Fig. 2 or 3 gives a clear indication that
the data consist of Gaussian or nearly Gaussian noise with sporadic,
highly non-Gaussian bursts.

If skewness and kurtosis are taken to be measures of Gaussianness, a
convenient tool for viewing these statistics is the 8,xg; plot. Originally
suggested by K. Pearson [5,8] as a tool for curve fitting, it is discussed at
length in the last chapter. Its most useful property is that each density

or family of densities corresponds to a specific region of the §,%f> plane.
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Confidence Interval

5% 1%

b, +0.127 +0.180

bo | (2.76,3.26) | (2.68,3.41)

Table 1. 1% and 5% Confidence intervals on b; and b,
for 1000 Gaussian samples.
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For example the Gaussian density corresponds to a single point,
(B1.82) = (0,3). While a (8,.82) pair does not uniquely specify a density,
two densities at the same point can be made to have equal moments up
to fourth order. The Pearson and Johnson families are of particular
interesl since they both cover the entire possible region of the g,xf>

plane.

The Pearson family is described in the last chapter and in (5,6]. It
contains the Cauchy, t, F, x%, uniform, gamma, exponential and beta den-
sities as special cases. Fig. 4 is a 8,;%f2 plot with the regions correspond-
ing to the Pearson types on it. Superimposed on this figure is a scatter-

plot of the (b,,b,) pairs generated for each of the 6006 records.

The Johnson family is described in [5,6] and consists of three types.

In the Johnson system, the transformation of a non-Gaussian variate is

assumed to be unit normal. In the most common of the Johnson types,

the lognormal, S;, the transforrnation is

gu(z) =c +log[(z —a)/b]
Thus if x is lognormal, g;(z) 1s unit normal. In a similar fashion, Sy and
Sp are defined by the transformations:

gy(z)=c +dsinh7[(z —a)/b]

and
gp(z) =c +dlog[(z —a)/ (b —z)]
In Fig. 5 the sample (b,,b;) pairs are plotted on the ;xS plane for the
Johnson family.
In both plots, the vast majority of the points are clustered about the

point (0,3) corresponding to the Gaussian density in both families. While

R
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confidence regions are extremely difficult to compute, nevertheless these
figures show more clearly than Fig. 2 and 3 the essential Gaussian nature

of the data.

CONCLUSIONS

The results in Figs. 1-5 indicate that the Arctic under-ice noise is
non-stationary and although Gaussian or nearly Gaussian, it is contam-
inated by sporadic bursts of a highly non-Gaussian nature. Further
moment analysis of the non-Gaussian component is of questionable value,
due to the small number of aighly non-Gaussian records. Perhaps with a

larger data set, stronger conclusions could be drawn.

Two assumptions are made earlier in this chapter should be exam-
ined further. The data are assumed stationary, but the results obtained
do not bear this out. Some investigation of the degree of nonstationarity,
perhaps the rate at which the moments change would be of interest. The
data are clearly not independent, since, among other sources of depen-
dence, they were prefiltered before being recorded. However, the
assumption of independence is made, and the sample moment estimators
are perhaps not the best that could be used. For example, consider the

sample variance:

N
sz - 1— (zt - 1)2 - 1_ L .
N z‘gx N oy N? S

Taking the expected value yields

N
Esz = Moz - _1_ 0'.2.
N N? ;‘§1jz-:i d

where the 0% are the covariance terms. When the noise is uncorrelated,

[P U A
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the cross terms vanish, but for non-white noise, the cross terms can
affect the estimates. For higher order central moment estimates, higher
order cross terms result. Several possible moment estimators for depen-
dent data are discussed in [3], but in general, they require knowing or

estiinating the cross terms.
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APPENDIX - Moments Estimators for Dependent Noise.

The following is an example of moment estimators which have been
corrected for second order dependence. The prewhitening technique
used requires that the correlation either be known or estimated. Note
that this corrects only to second order, and the expected value of higher
order moment estimates still may contain non-zero cross-moment
coeflicients of order greater than two.

A data record can be written as a length N vector x. with NxN
covariance matrix £. Computing the moments about zero requires that

the vector x be centered; this can be written [4] in terms of the centering

[
x—i:ll—l-}VL]HCx

where I is the identity matrix and 1 is a vector of 1's.

matrix C:

The centered vector may still be correlated, but it can be prewhi-
tened if it is assumed that the correlation matrix R = T/ 0® is known.

Assuming R is Toeplitz, it can be factored into an upper and lower tri-

.

angular matrix:

R=LU and RI!=Uu-IL™
where L= UT and L™! = (U™)7. The matrix L™! can be used to prewhiten
the centered matrix with the result that L™!Cx is uncorrelated. An esti-
mate of the ith moment about the mean is given by:

my = -l—fl (v: )
/ thl T

where y = L™!Cx is the centered and prewhitened observation vector. The

three parameters of interest in the last chapter are the variance,

-d
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skewness and kurtosis. The variance 02 has estimate s2

§2 = %Ju-lcrlx

The estimates of skewness and kurtosis are

by=mys3 and by=myst

N L
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CHAPTER 5 - LOCALLY OPTIMAL DETECTION IN MULTIVARIATE
NON-GAUSSIAN NOISEf

INTRODUCTION

In problems of detection and estimation in discrete time, the
observed noise sequence is often assumed to be independent. Under this
assumption, various detection schemes have been found and analyzed
[1,2,3,4]. Often, however, a strong dependence structure exists suggest-
ing that designs based on the assumption of independence are less than
optimum. Previous research on detection in dependent noise is often
limited to simple detector structures such as a linear (matched) filter or
a ZNL followed by a linear filter [5]. In this chapter, a noise observation
consists of a length m vector which is assumed to be no more than m-
dependent. Under this model the noise statistics are contained in an m-
dimensional multivariate distribution and optimal detectors often con-
tain nonlinearities with memory. Finding a suitable multivariate noise
distribution for dependent, non-Gaussian noise is a problem with no sin-
gle best solution. Instead we discuss several known forms of multivariate
densities and draw att.ent.ion to a characterization entitled fransforma-

tion noise which has several useful properties.

There exist a number of well known, closed form, multivariate densi-
ties [8,7] including the Gaussian, Wishart, multivariate Pearson family
and multivariate forms of many common univariate densities. The mul-

tivariate Gaussian is often employed not oniy because of its tractability

tThis chapter (excluding Appendix B) was co-authored with Peter F. Swaszek, and
also appears in his PhD dissertation Robust Quantization, Vector Quantization
end Detection, Princeton University, October 1982.
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but because a preponderance of evidence suggests that it is the natural
multivariate density with Gaussian marginals. Unfortunately central
limit arguments do not always hold and this approximation can be poor.
Additional closed form multivariate densities can be generated by replac-
ing the argument of a univariate density with the square root of a qua-
dratic form [8]. This extends each univariate to an elliptically symmetric
density in m-space. These densities all have closed functional forms and
the advantage of tractability, but the dependence structure may not be

well represented by any of these densities.

A second approach is to use a multivariate series expansion of the
Gram-Charlier type [9]). This has a certain theoretical elegance and can
be used to derive general properties of densities. For independent data,
useful detection procedures have resulted from this method since the
nonlinearity is a function of the moments of the noise process [10]. There
is still the problem of choosing a proper weighting density on which to
base the series. By careful selection, it is often possible to minimize

truncation and tail errors.

In a multivariate setting however, it is less clear how well series will
work. For one thing, the number of coeflicients in a series increases
exponentially in m and the expansion requires estimates of the cross
moments of the process. It is necessary to truncate the series which may
result in a poor representation or in negative values in the tail regions of
the pdf. The number of high order, cross moment estimates requird for

good representation may be prohibitive.

A third class of densities which are often considered are those gen-

Py
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erated by transformations from other densities [11]. Common univariate
examples are the log-normal and the Johnson family. In a multivariate
setting, this method involves a nonlinearity (possibly with memory)
operating on a noise sequence with a known density. The intractability of
this general class of transformations suggests constraining interest to
those invertible transformations with zero memory (ZNL). A block
diagram of the system generating this type of noise is given in Fig. 1.
Given an identically distributed, m-dependent background noise process
v with a known density ¢(v) and marginals ¢,(v;), a ZNL g can be selected
to produce a noise n with the desired marginals f(n;). If ¢, and g are
fixed, the dependence structure of n is completely determined by the
background noise dependency. This lack of fi-+ibility in choosing a
dependence structure may be a disadvantage in some cases. Noise gen-

erated by this method will be called ¢{ransformation noise.

If the input v has a multivariate Gaussian distribution, this transfor-
mation can be modeled as shown in Fig. 2 where z is an iid N(0,1) random
vector, and L is a linear operator. It is well known that any symmetric
matrix R can be factored by Crout resolution [12] to give the form:

R=LL7
where L is an unique lower triangular (hence causal) matrix. This
corresponds to spectral factorization in continuous time which is used to
solve the Weiner-Hopf equation. The linear filter L in Fig. 2 can be there-
fore chosen to produce a desired covariance in v:

EwT = Ei(lz)(L2)T} = L F{zzT{ LT =LLT = R
This transformation model allows selection of the noise marginals but

-4




- 88 -
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9‘1(.).-——. n

Fig. 1. General transformation noise.

g-l(.) TENEE ¢

Fig. 2. Transformation noise from a Gaussian background.
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increases the complexity of calculating the output dependency. The
advantages of the model alluded to above are that the only knowledge of
the source needed for its complete statistical specification are the non-

Gaussian marginal density and the m xm covariance matrix.

DETECTION PROBLEM

The detection problem considered is formulated as a hypothesis Hy
and an alternative H;:
Ho: X=n

H: x=n+73s

Under H,, the length m observation vector x consists of m-dependent
noise n only and under H, it consists of signal s with unknown amplitude
¥ plus noise. It is assumed that the signal is known and that the noise
has an m-dimensional density f (n). A detector is represented as a func-
tional ¥(x) operating on the observation x and this scalar valued test

statistic is compared to a threshold to decide for Hg or H, (see Fig.3).

As the signal amplitude approaches zero, a frequently used measure

of detector performance is its efficacy:

This is a measure of the asymptotic performar.ce of the detector and is
maximized to produce the locally optimal test.
Throughout this discussion we assume that both the family of dens:-

ties f(x.9) and the test statistic ¥(x) satisfy certain regularity cond.

tions. Let the test statistic have expected value
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Eg¥(x) = [¥(x)f (x8)du _
To be able to move the derivative inside the expectation operator the _j
statistic ¥(x) is required to be regular at ¥g; that is for all ¥ in an open

neighborhood of 9,

Ey ¥(@) = 2-fUx)f (xd)du = [¥@)f (xB)du
We also desire that ¥(x)=1 be regular:

P |

21 x8)du= [ (x0)du=0 :
To satisfy these conditions restrictions must be made on the test statistic
¥(x) or on the family of densities f(x,9). Rather than overly limit the
class of test statistics, restrictions are applied primarily to the family of R
densities. It can be shown [13] that all real-valued test statistics with ]
finite second moment are regular in the neighborhood of ¥ if the family
of densities f are smooth (in Pitman's sense) at ¥p. For family of densi- .

ties to be smooth at 9,

(i) f has a ¥ derivative f' at almost every x for each value of ¥ in an t
o
open neighborhood of 9. ' -

P

A

(i) (£"%/f is integrable and f (f)%/f du < = (finite Fisher’'s Informa-

tion).

i wy s
pRdy iy

ol

It is well known [13] that under the above regularity conditions the

Al

3

E_‘;Z function that maximizes efficacy, the locally optimal test statistic ¥, (x), ]
- ]
e is the 9 derivative of the log likelihood function at ¥ = O: ]
= lim 92— :
s ¥y (x) = lim 2 o-loglf (x9)]

f':ff In particular, for this detection problem (a shift in mean):

£
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where Vf is the gradient of f. The efficacy of this test is given by
J(¥yo) = Eo(¥§)
In the independent and identically distributed (iid) case, the mul-
tivariate density is the m-fold product of the noise marginal f,(n;). Eq.
(1) reduces to a ZNL followed by a correlator, a form considered exten-

sively in the literature:

f,(:l:.)
V() =-Bs Fio

i=]
The ZNL g,, is the locally optimal nonlinearity for iid noise, given by

§ SiGu (%)

i=]
- f 1. (2)
9o (%) = F(zs)
Given a specific, closed form multivariate density of the type con-

sidered in Section I, the locally optimal detector can be found from Eq.

(1). In the case of the multivariate Gaussian density:

s(@)= (2"),,3%,,, exp(~ n"R "'/ 2)

where R is the covariance matrix, the resulting detector is the matched
filter:

¥, (x) = sTR™'x
As a non-Gaussian example, consider a bivariate, elliptically symmetric

density with Laplace marginals [8]):

f@)= "—I-;—ITKO(\/ZnTR‘Tn)

The resulting detector is
2 1, K(Vax'Rlx)

= s’R!
@ ] W aEw

....................................
...................

.

L
1
1
sl A_j_l._‘_‘_‘_“

. B2

el

) PPaA

* N

WP svbe AL U PG 1N g\ P

L

SRRDDREEN WS A

RPN |
Ad g




-------

-83-

where K, and K, are modified Bessel functions. The test statistic is the
product of the outputs of a matched fllter and a nonlinearity with
memory.

As in the example above, closed form multivariate densities typically
yield detectors which include nonlinearities with memory, making these
detectors difficult to implement. Employing the transformation noise
model (with Gaussian background) simplifies the resulting detector to a

combination of ZNL's and a linear filter.

TRANSFORMATION NOISE DETECTOR

As described in the Introduction, the m-dimensional noise n is gen-
erated by passing an identically distributed noise sequence v with a
known multivariate density ¢(v) and marginals ¢,(v;) through an inverti-
ble ZNL as shown in Fig. 1. The output noise n has a multivariate density
J (n) with a dependency structure and marginals f,(n;) determined by ¢
and g. It is assumed that g is twice differentiable almost everywhere ahd
that both n; and y; have invertible cdf's. The density of n is found with a

change of variables:

£ (n) = ¢lg “”].ﬁ, 19’ (ny)|

where

gn) =[g(n,), g(na), .... g(nm)17
The locally optimal detector is found from Eq. (1) to be

' T 4
¥y (x) = = Z}Iy (]9 + L) 8

A block diagram of ¥, is given in Fig. 4 where the symbol ® is an element
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Fig. 4. Transformation noise detector.
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by element vector multiplication and ©® is a vector dot product. The sys-
tem consists of the locally optimal nonlinearity with memory (for signal
in @ distributed noise), three ZNL's and a correlator followed by a thres-

hold comparator.

The transformation ZNL g can be found by equating the marginal
cdf's of n and v (F,(n;) and &,(v;) respectively):

g(z;) = o7 [Fy(z;)] (3)

The nonlinearity g’ is found by differentiating Eq. (3)
() = f l(zl) -
g (;,) v1lg ()] (4)

and likewise

- Lz = - L) + By )) g(w)
g 1 #1
At values where the denominator of these expressions equals zero,
the quantity is assumed to equal infinity. This is acceptable since an
observation in a region of zero probability of the noise process indicates

the sure presence of the signal.

When v is a multivariate Gaussian random vector with unit variance

and covariance matrix R, this third nonlinearity becomes

- =) = - j}—’l-(zs) +9'(z)9(z)
The locally optimal nonlinearity, with memory, is a linear filter
- -vf-(x) =R!x
Therefore, the system can be reconfigured as shown in Fig. 5. The third
ZNL gy, is the locally optimal nonlinearity for signal in iid, f, distributed

noise as given in Eq. (2). Thus, under the assumption of transformed unit

g - o
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variance Gaussian noise (Fig. 2), the system consists of one linear filter
and three ZNL's, one of which is the nonlinearity occurring in the iid
locally optimal detector.

Under the assumed noise model, the detector design requires
knowledge of g, the nonlinear transformation, and R,, the covariance
matrix of the background Gaussian vector v. In practice, however, the
available information is often the noise marginal density and the noise
covariance matrix R,. The transformation nonlinearity g is found from
the marginal cdf with Eq.(3). Computing R, from R, in general requires

numerical integration (Appendix A).

TRANSFORMATION EXAMPLES

Two examples of the proposed detector are considered in this sec-
tion. The first example employs the Laplace density as the noise marginal
and the second example has Pearson Type VII marginals. For both of
these examples, Eqs. (3),(4) and (2) yield the ZNL's g, g’ and g;, respec-
tively. Covariance mapping described in Appendix A relates the back-

ground and noise covariance matrices, R, and R, .

The Asymptotic Reletive Efficiency (ARé) is often used to compare
the performance of two detectors. It is defined as the ratio of the
number of samples needed to achieve the same level and power of the
two detectors as the number of samples goes fo infinity. With the above
regularity conditions and the Pitman-Noether theorem, the ARE is equal

to the ratio of the efficacies

J l‘l’(x)

ARE\2= T3

4

0.
4
-

- An'l_l‘ L :
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An analytic evaluation of the efficacy of these detectors is generally
intractable and depends on the signal s. As a result, the operation of the
optimal and several suboptimal detectors was simulated to evaluate the
performance in two multivariate transformation noise environments. The

simulated structures are numbered as follows:

1. Locally optimal system (Fig. 5)

2. Locally optimal test for iid noise (g, )

3. Matched fliter paralleled by g,, and the values summed .

4. Matched filter .

Detector 3 is included to determine the effects of removing the vector

multiplication in the optimal detector, significantly simplifying its struc-

ture. A Monte Carlo simulation was employed to compute the eflicacy of
the four detectors above. These results were then used to compute the

ARE for each scheme as compared to the matched filter.

The matched filter has efficacy s”TR™!s. In a bivariate noise environ-
ment, with correlation coeflicient p, the efficacy of the matched filter is

maximized by s; = —=sz when p 2 0 and by s, = sz when p < 0. Conversely,

A it is minimized by sy = s, for p2 0 and by s; = —s, for p < 0. Since all
four systems are symmetric in s, and s, the condition s; = s, maximizes
* while s, = —s, minimizes efficacy for p < 0 (the extrema are reversed for

p20). A constant signal with unit power is used in the evaluation of
bivariate detectors in this chapter, and therefore, the simulation yields

minimum and maximum efficacies for p = 0 and p < O respectively.

The bivariate simulation shows ARE for -1 < p < 1. However, for m-
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dependent noise, this entire range may not be of importance. Since all
terms of the m-dependent autocorrelation sequence beyond the first m
vanish ami the covariance matrix must be positive definite, bounds can
be placed on the correlation sequence [14]. For the bivariate case
(m = 2), the bounds on p are |p| <% with the result that the values of
ARE where |p| <% are perhaps of the most interest. Although the
efficacies are maximized or minimized by the selection of the signal, this
does not appear in the plots of ARE. This results because the matched

filter is more sensitive than many other detectors to signal selection.

For multivariate simulations of length m, a triangular correlation

function sampled at equal intervals is assumed:

N_1=li/m]| |i|lsm
Pa(i) =1 lij >m

This triangular function approximates the type of correlation often seen
in highly correlated noise sequences. For these examples, the signal to
maximize the efficacies is no longer obvious due to the nonlinearities
present in the detectors. Rather than find the signal to maximize the
efficacy, simulations are presented with a constant (s; = k) and an oscil-
lating (8= fk,—%.k, - -} ) signal. These were chosen because they yield
nearly the worst and best performance from the matched filter respec-

tively for the correlation sequence above.
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1. Laplace Results

Impulsive noise environments are often modeled by densities whose
tails are heavier than the Gaussian [15,18]. The Laplace density is chosen
as a first example since it is a frequently used model of non-Gaussian,

impulsive noise [17]. For the marginal density

1 1(n) = Z-exp(—alny|)
Egs. (3), (4) and (2) yield the three detector ZNL's

g(z;) = ¢! %{1 + sgn(z;) [1-exp(—a|z; I)]]]

7(z) = S exp(g®(z)/ 2 - alz )

910 (%) = a sgn(x;)
where $~! is the inverse normal cdf. For unit power noise a = V2 and

correlation coefficient mapping shows that p & p;. Figs. 8, 7 and 8 con-
tain the three nonlinearities g, g' and g, . The resulting ARE's for the

bivariate case are shown in Fig. 9, and for the multivariate case in Figs.

10 and 11.
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2. Pearson Type VII Results

The Pearson VII density is selected as a second example because it
car. be made arbitrarily close to Gaussian by changing one of its parame-

ters [11]. Here the marginal is

Sim) =K [t + (ne/a)]
As a-=, the density approaches the Gaussian. For this example, let a = 7.
This results in a density with a nearly Gaussian body and algebraically
decaying tails. The three nonlinearities in the detector are found from

Egs. (3), (4) and (2) to be

(=) = 97 [Fy(z;)]
9'(z) = K VET [1+(@/ )] explg¥(=)/ 2)

910 (%) = 142/ (a? + z)
where F; is the Pearson VII cdf. These ZNL's are depicted in Figs. 12, 13

and 14. In Fig. 15, the ARE’s generated by simulation for bivariate noise
are plotted. The multivariate simulation results are depicted in Figs. 16

and 17 for constant and alternating signals respectively.
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Fig. 12. Pearson VII ZNL1, g ().
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Fig. 14. Pearson VII ZNL3, g, (¥).
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1. loc. opt. det. m;
2. iid loc. opt. det. 3.4
3. parsllel scheme
4. matched filter

e -y Il A 'y

1 2 3 4 5 o, 10 20

Fig. 16. ARE of Pearson VII detectors vs. detector length m for triangular

ARE

0.1 ‘ a— .

correlation and a constant signal.

1. loc. opt. det. .
2. 114 loc. opt. det. 2.4
3. parallel scheme
4. matched filter

1 2 3 4 10 20

m

Fig. 17. ARE of Pearson VII detectors vs. detector length m for triangular

correlation and an alternating signal.
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MOVING AVERAGE (MA) NOISE DETECTOR

Modeling the noise process as in Fig. 2 suggests the reversed model
shown in Fig. 18. The input 2, iid N(0,1), is passed through the ZNL g~! to
produce the iid vector 7 with non-Gaussian marginals ¢; and variance ol
Passing 7 through a linear filter L of length m produces the sequence n
with a dependence structure generated by L This model is typically
called a moving average process (MA) of order m -1 [14].

As in the Introduction, Crout factorization can be used to solve for an
unique lower triangular matrix L, given R, since the covariance matrix of
n is given by

R, = EfnnT} = E{(Ly)(LY T3 = LElyyT} LT = LT
where o? is the variance of the 7;. This MA model has a more straightfor-
ward dependence structure than the transformation noise, but solving for

the marginals is more difficult. Note that these two schemes are

equivalent only when g~} is linear (n is multivariate Gaussian).

Denoting the y marginal as ¢;(7;). the density of the MA noise n is

found to be

f(m) = L7 'I':Ilrm[(L"n)i]

where g; is assumed continuously differentiable and strictly positive. The

locally optimal detector ¥, (x) is found from Eq. (1) to be

¥, (x) = (L7'8) gy, (L7'x)
where gy, is the ZNL in the iid locally optimal detector for the ¢, margi-

nal:

Pio(2y) = —7""—(%)
1
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Fig. 18. Moving average noise model.
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Fig. 19. Moving average noise detector.
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A block diagram of this detector is given in Fig. 19. The system is a ZNL
embedded in a matched filter. Note that for m iid, L is an identity matrix, J
and the resulting detector is the iid locally optimal detector 87g,, (x). For

Lhe Gaussian case [g~3(z) = z] the result is the matched filter sTR™x

The eflicacy of the locally optimal test statistic is -

J (%) = Eof ¥ (x)}
where E, is the expectation under Ho. This can be calculated for the

moving average model:

J(¥) = (L'8)7 Elgy, (L7'x)gd (L7'x)} (L7's) §
where g, is the ZNL embedded in the detector. The outer product under ‘
. g
T“ the expectation can be simplified since L™!x = 7 is an iid random vector. v

The nonlinearity g,, has expected value zero for any locally optimal

detector since

Elgy} = -_f Vf(x)dx=0

The outer product reduces to a diagonal matrix with diagonal elements:

; Eolgd(z)} = Io
& where ]y is Fisher's information for the marginal density f,. The efficacy

E'ﬁ' of the system becomes

J(¥,) = ézg‘ s’R!s
and the ARE as compared to the matched filter is
- ARE‘,.N =7 o/ 0‘2
Fisher's information is known to have a minimum of o0 for the Gaussian
density; hence, the ARE is always greater than or equal to unity and the

locally optimal detector performs at least as well as the matched filter.

2 e 8 e



v ity
e .

g V‘F‘PI

-113-

CONCLUSIONS

Given a completely specified multivariate density, methods of finding
optimal detectors are well known. If the noiée is non-iid or non-Gaussian,
the complete statistical description, the m-dimensional density, may be
an unreasonable amount of information to expect in practice. The
transformation and moving average density models, however, are charac-
terized solely Ly the marginal densities and the covariance matrices.
Also, the use of moving average and transformation noise models as
structures for a non-Gaussian noise environment simplifies the locally
optimal detector structure since no nonlinearities with memory are
required.

Three of the four detector structures considered in the simulations
are of particular importance. The matched filter uses the covariance
matrix only and is opiimal when the density is Gaussian. The iid locally
optimal detector employs the marginal density of the noise and is
optimal if the noise is independent. The multivariate transformation
noise detector uses both the correlation and the marginals, and is
optimal or nearly optimal when the noise is described well by the

transformation noise model.

In the bivariate case the effects of dependence upon performance as
indicated in the simulations are minimal (particularly for |p|=<}). The iid
locally optimal detector performed nearly as well as the multivariate
locally optimal detector. Both detectors performed better than the
linear detector indicating that in fact the form of the marginal is more

important than the dependence structure.
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For longer correlation sequences (m>2), the dependence structure
becomes increasingly more important. In the simulations, the ARE of the
iid locally optimal detector falls well below that of the optimal detector.
VWhen the signal is chosen to nearly optimize the matched filter perfor-
mance, even the matched filter performs better than the iid locally
optimal detector. In this case, the dependence structure and the margi-
nals are both important and a detector structure should exploit both

when possible.

The moving average model was introduced as a permutation of the
transformation formulation. Simulations were not attempted because of
the need to factor the marginal characteristic function to arrive at a ¥
process. However, the detector structure itself is simple and suggests its
use as a éeneral suboptimal structure which can be optimized numeri-

cally.
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APPENDIX A - Computation of 7,

Implementation of thé transformation noise detector requires
knowledge of the covariance matrix of the background Gaussian process.
Assuming that the input and output processes have unit power, this prot-
lem reduces to finding a mapping between the noise correlation
coeflicient p, and the background process correlation p, [18]. The out-
put correlation coefTicient is given by

pr(i) = Efnymid = Eig~v;)g "M (vj44)}
where g~ is defined to be

g7l (v;) = Fe(;))

Since the v; and v;,; are unit normal random variables, with correlation
coeflicient p = p,(1), the expression for p, (i) becomes

pn(i) = ffg ‘(z)y"(y) — 22Zomy 4t | gy gy (1)

" uiP SR> mvV —pz 2(1“p2)

Solution of this integral expression, usually numerically, provides the
required mapping of p, to p, .

In [19], Wise and Thomas express the joint normal density as a series

expansion, Mehler’s formula:

p* H(z)H (y)
k!

where H, is the k-th Hermite polynomial. The nonlinearity g~! can be

N(0,0,1,1,0) = —exp{ —(z24+y%/ 2} 2

represented by its Hermite expansion:

- _ & b H(z)
g7\ (=z) —*‘éo——\/k—!

with coeflicients b, given by

b = [o7(z) -exp(-2%/2) i) g,

"

-
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Employing the orthogonality relationship of the Hermite polynomials:

21r~/1k IR _-/,:H"(’)Hj(ﬂexp(- z%/2) dz = 6z

the integral in Eq.(A1) reduces to

pn(i) = Z bkz [pv(i)]k
k=0
In the noise examples in this chapter, the marginal density is
assumed to be symmetric; hence, both g and g~! are odd symmetric.
The even Hermite expansion coefficients (bg., k=0,1,...) are zero and
pn (i) is an increasing, odd symmetric function of g, (i}. Therefore in
practice, the values of p, can be irterpolated from a table of p, versus p, .
Also, as an added note, the Gaussian process has a correlation coefficient

that is always larger in modulus than the output correlation:

oyl = |pp |
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APPENDIX B - Estimation of Transformation Nonlinearity.

Suppose a particular multivariate non-Gaussian noise process is well
described by the transformation model with Gaussian pre-transformation
noise. Then it is assumed that the length m non-Gaussian noise vector n
with multivariate density f,,(n) can be produced by passing Gaussian
noise v with denity g,, (v) through an invertible zero memory nonlinearity
(ZNL) as shown in Fig B1. It is assumed that both ¢,, (v) and f,,(n) each

have identical marginals (¢(v;) and f (n;) respectively).

If the marginals ¢ and f are both known, then g can be found by
equating marginal cdf's and the problem is solved. Frequently in prac-
tice, f may not be known exactly, and an approximation to this ZNL with
easily estimated parameters may be desired. For instance, the locally
optimal detector for transformation noise derived in this chapter
requires g given only the observed post-transformation, non-Gaussian
noise n. Under certain regularity conditions on the f, the Cornish-Fisher
expansion can be used to generate an approximate transformation of the
form [11,20]:

v=g(n)=agp+am +am?+ -
Certain regularity conditions on f are requi;‘gd. The Edgeworth

expansion (and therefore the cumulants) of f should exist:

ke - 09)D?  kaD® | K D*
£ 0) = expl-ey - wpp + ST BT B )

where ¢(z) is N(u,0%), D is the differential operator and «, is the r#
cumulant of f. The r** cumulant is required to be of order O( 317 ),

where ¥ is chosen so that f approaches Gaussian as ¥-+«; for example, ¥
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might be sample size. In general these conditions are not too sévere. and
are satisfied by most common densities.

Having met these conditions, the Cornish-Fisher expansion can be
used to estimate the transformation. Using terms up to order O( v72),

the approximate transformation is [20]:

vNg(n)=ag+an +an?+aand +ant + agn® (B1)

where

K3 _ ks | Skame 13xg3

2= % 20 ' "8 162
¥ 2 2 473K
o =14 M _Te ke | Ok 17aye 19657k | 2470k
8 36 48 384 120 36 7778
a,= -3 4,5 _ Trsks |, 187k5°
278 T 20 24 648
Qa = -£L+ ﬂ’i_.'_ fe__ IC42 - 2’“‘3'65 547IC32K4 _ 90'7'IC34
837724 " g "7 12 15 864 1944
g, = K5, llegks 23k3°
4 120 144 216
oo Ko 5KZ Ty 111k, | 79kt
5T 7%20 384 = 360 864 648
EXAMPLES

The two densities used in the examples earlier in this chapter are
considered here. To simplify the examples without loss of generality,

assume that both f and ¢ have zero mean and unit variance.

The first density considered is the Laplace:

s (2) = Jzexp(-V2z )

The odd cumulants are zero, and the even cumulants are given by

- (Bn)

Ken = na"
Thus

PIRLY N RS P
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Ky=Kk3=Kk5=0 and «xz=1 «x,=3 =30
From Eq.(B1) the approximate transformation is

_201_ _ 11,3, 29 6
g(n)= 2™ ~ 24 * 384

The exact transformation is

v=gn) = 471 = Yexp(~Van)

where ¢ is the unit normal cdf. The exact and approximate transforma-

tions are plotted in Fig B1.

The second example is the Pearson VII:

Jf(z)=K(1 - (z/a)®)™

As in the examples earlier in this chapter, let m = 7. Then a?= -11 and

the curnulants are

Ky=Kk3=Kk5=0 and k=1 «x,=2/3 «5=13
Then from Eq. Bl the approximate transformation is:
737 25 .3 53 .5

g(n) + g5a™ * 216™ ~ 3320

The exact and approximate transformation is plotted in Fig. B2.
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g(x) and &(x)

Fig. B1 Exact and approximate transformation for n ~ Laplace.
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Fig. B2 Exact and approximate transformation for n ~ Pearson VII.
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CHAPTER 6 - NOISE MODELS FOR DETECTIONt

INTRODUCTION 1

. 'l‘v"'.rdrr'-“‘."“" y
1

Problems in binary detection involve choosing between two statistical

environments, described as an hypothesis Hg and an alternative H;: 4

Hy Po(x) ‘
H 1: P l(X) J
This decision is based on a statistic of an observation sequence x of
length m. Various functionals of the vector x are traditionally employed 4
- to reduce the data to a scalar statistic easing the resulting detection pro- 9
-
- cess. This test statistic is compared to a threshold T to decide for H, or g
s H, (Fig. 1). For the criteria of detector optimality often considered [1] }
i! (Neyman-Pearson, Bayes, probability of error) the Likelihood Ratio (LR) B
- is known to be the optimnal statistic of the observation x A second detec- )
. tor structure often used is the Locally Optimal or small signal detector -]
g (LO). Both the LR and LO detectors are considered here for several mul- ,
‘ tivariate noise models.
The class of problems considered heré is that of a deterministic sig-
'® nal in additive noise. Hyand H, become
-
=
[ Hyx=n
% Hy:x=n+7vs 9>0
o Under Hy the observation consists of noise m with density f(n), and
E'-.'V under H, the observation consists of a signal s with amplitude 9 plus
. . noise n.
‘. This chapter was co-authored with Peter F. Swaszek, and also appears in his PhD
r— dissertation Robust Quantization, Vector Quantization and Detection, Princeton
g University, Octcber 1982.
E;'.: -124 -
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X —tm statistic
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Fig. 1 - General detector structure. -
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The likelihood ratio is given by

_ Iz - J(x—vs)
LR = 5= 1@ M

When the amplitude constant ¥ is small and unknown, the locally optimal

test statistic

=@
LO(x) 1™ s (2)

is frequently employed [2].

Throughout this chapter a monotone function of LR or LO may be
used in place of LR or LO when it simplifies a detector structure. This
can be done without loss of generalily since taking a monotonic function
of both the test statistic and the threshold value does not effect the per-
formance of the test. The log function is often used since the test statis-
tic for an independent noise process reduces to a sum of zero memory

nonlinear functions of the observations.

MULTIVARIATE DENSITIES

In this section several methods of generating families of multivariate
noise densities are considered. Methods that produce large families of
densities are of particular interast since they are more variable and may
provide a closer fit to the actual noise. For each family of densities, LR
and LO detectors are derived and discussed. It should be noted that
some noise models produce structures which are more practical than

others, and the practicality of each structure is considered.

CLOSED FORMS

There are a number of well known closed form multivariate densities

| A
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[3]. In general these are named for their marginals, which are often com-
mon univariate densities. Unfortunately, the marginal densities do not
uniquely determine a multivariate density, and in many cases it is not
even possible to make the conditional densities have the same form as
the marginals. Although closed form multivariate densities may result
from a particular model, more often they are the result of extending a
characteristic of the univariate density. While they havé the advantage of
tractability, there is usually very little control over the dependency
structure. LR and LO detectors as a rule contain nonlinearities with

memory which may prove difficult to implement.

In the case of the multivariate Gaussian density

S(n)= exp[—-l—nT R"n]

1
(2m™ | RI* 2
where R is the m xm covariance matrix, the resulting detectors (L0 and

LR) are both the matched filter:

LR(x) = LO(x) = s’R™'x
The multivariate Cauchy density [4]:

/()= K
[c2 +n’R” 1n]
yields the test statistics:
LR(x) = c?+ x'R!x

c? + (x—Us)TR~!(x-vs)
and

s’R!x
c®+ xR x
Both contain non-linearities with memory.

LO(x) =

=

A el ek,




8

,,.‘_‘,_.v
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DIFFERENTIAL EQUATIONS

One class of noise models is of particular interest in LO detection.
The detector nonlinearity g;,(x,a) parameterized by a is chosen for trac-
tability. Eq.(2) can be viewed as a vector differential equation and solved
to give a family of solution densities f;(x,a). A member density of this
family can then be fitted to the noise by choosing a. This estimate of a

can be inserted in g, and the result is a fitted LO nonlinearity.

This method has been applied when g;,, is assumed to be a rational
function [5! The resulting family of densities is the Pearson family which
is particularly well adapted to using the method of moments to estimate

a

This approach has the advantage of producing an adaptive detection
system, but there is no guarantee that any member of the family of solu-
tion densities will be a good fit for a given noise process. The detector

structure is pictured in Fig. 2.
ELLIPTICALLY SYMMETRIC

Another way to characterize multivariate densities is to require that
the pdf have contours of constant height which are ellipsoids in m-space.
These elliptically symmetric densities can be generated by replacing the
independent variable of a univariate density, say f,(n), with a quadratic

form n”R~!n. The resulting density has the form:

/(@ =K £,(VaTR7n)

where K is a scaling constant and R is similar to a correlation matrix.

However, the resulting multivariate density does not in general have as
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X estimator

—~ 9(xa) — LO(x)

Fig. 2 - Differential equation LO detector
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its marginals the univariate density f(n).

There is a method of generating elliptically symmetric densities with
a specific marginal f;(n). Assume the marginal has characteristic func-

tion ¢,(u), and let the m-dimensional characteristic function be

¢m(u)=¢1[\/ll’ R ‘u]
Taking the inverse transform yields the m-dimensional density f (m).
Care must be taken to ensure that f (n) integrates to unity and is posi-
tive for all n. Thus the marginals can be controlled but the dependency

structure of n is not related to R in a simple or obvious way.

Since the argument of f is a quadratic form, the detector structures

can be written as

I [V(x%sY"R' l(x—ﬂs)]

LR(x) =
(x 71{(VTRx)

and

LO(x) = %—(in R x) sTR 'x
1
Block diagrams of these systems appear in Fig. 3.

As a non-Gaussian example, consider an elliptically symmetric den-

sity with Laplace marginals [6]:

- f(n) = -ﬁa-i-ﬂ-xo[\/an%-ln]

The resulting detectors are

Lr(xy = el ZEI TR )
5 K [VaTR )
bl and




ZNL
| 1,(VY) .
A \_ .
A/B LR(x) :
B /
£1(V9)
ZNL g
(2) 1
ZNL
Iy vy .(T)_‘ LO(x)
I
3 60'5
F,j
F R.ls (b)
a
’.'
r Fig. 3 - Elliptically symmetric LR (a) and LO (b) detectors.
B
.
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2 I*, K,[\/ZxTR“x‘
R'x| Rl g atiix

where Kp and K, are modified Bessel functions. The test statistics both

(sTR™'x)

LO(x) = [

involve nonlinearities with memory.

SERIES

It is well known that under certain regularity conditions a density
J (n) with marginals f;(n;) can be expanded in series form [7]:

f(my= [‘_fllfi(m)] S0 L G [ 9eatme)

3,=0 Im=

where the ¥, ; are sequences of orthonormal functions with generating

functions f;. The coefficients are given by:

Groim = S 1 @) T 90, (m) am

Series forms have a certain theoretical elegance and can be used to
derive general properties of densities. However, in practice, it is usually
necessary to truncate the series, resulting in a poor representation and
possibly even negative values in the tail regions of the pdf [8]. Even if
this difficulty is over-looked, detector nonlinearities for truncated series
are rational forms that are poorly behaved for observations falling in the
tail regions.

TRANSFORMATION NOISE

Another class of multivariate densities are those generated by
transformations from other densities [8]. Common univariate examples
are the log-normal and the Johnson family. In a multivariate setting, this

method involves a nonlinearity (possibly with memory) operating on a
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ZNL

v— g7) |—n

Fig. 4 - Transformation noise generation. .
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noise sequence with a known density. The intractability of this general
class of transformations suggests constraining interest to those inverti-
ble transformations with zero memory (ZNL). A block diagram of the sys- 4

tem generating this type of noise is given in Fig. 4. Given an identically

Lot

distributed, m-dependent background noise process v with a known den-

sity ¢(v) and marginals ¢,(v;), a ZNL g can be selected to produce a noise

n with the desired marginals f,(n;). If ¢; and g are fixed, the depen-

dence structure of n is completely determined by the background noise

dependency. This lack of flexibility in choosing a dependence structure

may be a disadvantage in some cases.

The density of n is found with a change of variables:

S (n) = (g (n)] ﬁ lg'(ny))

i=1

where

gm) =[gn,). g(ny), ....g(ny) 17

The transformation ZNL g can be found by equating the marginal

cdf's of n and v (F,(n;) and &,(v;) respectively):

g (ny) = &71[Fy(ny)] (3)
o The LR detector is found from Eq.(1):
° ( )
- - —Us &, g'(z—vs;
1 LR(x) =lo X + Y log L0700
8 (x) = log vly (x)] ,-;1 R
which is the g-noise LR detector added to 2 sum of the observations
d through a zero memory non-linearity. The nonlinearity g‘is found by
" differentiating Eq.(3)
2 9'(z) = £1(%) 7 ¢ilg(=)]
;__'_ The block diagram of this detector appears in Fig. 5a.
=
-
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The locally optimal detector LO(x) is found from Eq.(2) to be

LO(x) = - Z:;{y(xn 9'(x) + g'—,'h) 8
A block diagram of LO(x) is also given to Fig. 5b where the symbol @ is an
element by element vector multiplication and ® is a vector dot product.
The system consists of the locally optimal nonlinearity with memory (for
signal in ¢ distributed noise), three ZNL's and a correlator followed by a

threshold comparator.

It can be seen that if the background process, ¢ is chosen to be Gaus-

sian with correlation matrix R,, the LR system reduces to

- LR(x) =xTR; s + i'z::llog %:’);')*’ %'gllgz(zi —9s;)—g%(z;)]

which consists of a matched filter and zero memory nonlinearities (Fig.
6a). This can be considerably easier to realize than the nonlinearities

with memory required by other schemes.

For the LO detector, the third nonlinearity is

-%','-(z,-) = —fT’L(z,-) +9'(z)g (=)
1

The locally optimal nonlinearity, with memory, is a linear filter

—Z;—(x) =Ry'x
Therefore, the LO system can be reconfigured as shown in Fig. 6b. The
third ZNL g,, is the locally optimal nonlinearity for signal in iid, f, distri-
buted noise as given in Eq.(2). Thus, under the assumption of
transformed unit variance Gaussian noise, the system consists of one
linear filter and three ZNL's, one of which is the nonlinearity occurring in

the iid locally optimal detector.
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Fig. 5 - Transformation noise LR (a) and LO (b) detectozs.
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~log () = 3-9%)

Q;f)—- log £,(-) + 2-9%(-)

~vs (a)

g + LR (x)

ZNL
— 9() —={ R;! -1

ZNL

g'() R~@~0 LO(x)

ZNL

9o (*)

(b)

Fig. 6 - Transformed Gaussian LR (a) and LO (b) detectors.
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Under the assuméd noise model, the detector designs require
knowledge of the nonlinear transformation g and R,, the covariance
matrix of the background Gaussian vector v. In practice, however, the
available information is often the noise marginal density and the noise
covariance matrix R,. The transformation nonlinearity g is found from
the marginal cdf with Eq.(3). Computing R, from R, in general requires a

numerical integration solution [9,10].

If the input v has a multivariate Gaussian distribution, this transfor-
mation can be modeled as shown in Fig.7 where 2z is an iid N(0,1) random
vector, and L is a linear operator. It is well known that any symmetric
matrix R, can be factored by Crout resolution [11] the give the form:

R, = LLT
where L is an unique lower triangular (hence causal) matrix. The linear
filter L in Fig.7 can be therefore chosen to produce a desired covariance
in v
E[wT] = E[(Lz)(12)T) = LE[zzT] LT = LLT =R,

Modeling noise in this way suggests the second model shown in Fig. 8.
The input z, iid N(0,1), is passed through the ZNL g~! t. produce the iid
vector w with non-Gaussian marginals and variance o?. Passing wthrough
a linear filter L of length m produces the sequence n with a dependence
structure generated by L. This model is typically called a Moving Average
process (MA) of order m—1 [12]. As above, Crout factorization can be
used to solve for an unique lower triangular matrix L, given R,, since the

covariance matrix of n is given by

R, = E[nn’] = E[(Lw)(Lw)7] = L E[ww”] L = o®LLT

- 4

- -
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ZNL

z — L g7'() —=n

Fig. 7 - Gaussian background model.

ZNL

z— g7y f—= L |—=n

Fig. 8 - Moving everage noise model.
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The major difficulty in using this model] is selecting the marginal density
of wwhich yields the desired marginal for n. Denoting the w marginal as
¢1(wy), the density of the MA noise n is

7@ = (LY T oy[(L7'n);]

i=]

The LR detector is

m [LY(x—5s)); |
LR(x) = ¥ log | & — :
i= ei[L7'x; ]
The locally optimal detector LO(x) is found from Eq.(2) to be

LO(x) = (L™'8)T gy (L™'x)
where g;, is the ZNL in the iid locally optimal detector for ¢, marginal:

Jio (%) = - %(zi)
Block diagrams ol these detectors are given in Fig. 9. The LO system is a
ZNL embedded in a matched filter. Note that for m iid, L is an identity
matrix, and the resulting LO detector is the iid locally optimal detector
879, (x). For the Gaussian case (g~!(z)=z) the result is the matched

filter (linear detector) s”TR;'x.

Paree
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b ZNL . ,;
|
) L1 -log ¢,()

; | (&)—1ro
) .

ZNL

- é?—-* L™ —=1 log ,(-) | ]

5 -Us (a)

ZNL v s

X ——— L7 —= g1 (") LO(x)

Ls

200~ Ravanay

(b)

Fig. 9 - Moving average LR (a) and LO (b) detectors.
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CONCLUSIONS

This chapter presents several multivariate noise densities and their

associated LO and LR detector structures.

1-

Closed form densities are tractable but are not general in any sense,

and there is little or no control over the dependency structure.

The differential equation method applies only in the LO case. There
is a great deal of control over the functional form of the detector
nonlinearity, but there is no guarantee that the corresponding family

of solution densities provides a good fit to a given noise process.

The elliptically symmetric densities, although yielding cetectors con-
taining nonlinearities with memory, are not difficult to implement.
However, the meaning of the matrix R in the quadratic form is

unclear and the dependence is difficult to control.

The series forms have difficulties in implementation due to the
necessity of truncation. The generally slow convergence of series,
and the poor tail behavior usually noted when the series is truncated
result in very poor behavior of the detector nonlinearity in the tail
region.

The transformation model allows selection of the noise marginals but
increases the complexity of calculating the output dependency. The
MA model has a more straightforward dependence structure but solv-
ing for the marginals is more difficult. Note that these two schemes

are equivalent only when g~! 15 linear (n is multivariate Gaussian).

) I
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CHAPTER 7 - FINITE LENGTH DISCRETE MATCHED FILTERS

INTRODUCTION

The design and implementation of the Matched Filter (MF) has
received considerable attention [4-A8]. As a detector it has the advantage
of linearity, and since it is based only on easily estimated 2nd order noise
statistics, the MF is simple to optimize. The performance criterion, the
Signal-to-Noise Ratio (SNR) is tractable, and intuitively appealing.

For a fixed signal in discrete time, Levinson [8] has presented a sim-
ple and efficient algorithm to solve the MF equation. Since the MF
impulse response and the SNR are computed iteratively, the algorithm
can be terminated when a filter with desired performance is found.
Unfortunately, when there is some freedom in choosing a signal, the
choice of signal plays an important part in opiimizing the detector.
Because the optimal signal of length M is a truncated version of the
optimal length #+1 signal under only very special conditions, the Levin-
son algorithm must be repeated N times, and thus loses its computa-
tional advantage. In this chapter, easily computed bounds on the perfor-
mance of the MF as a function of length are found. Then, before any
attempt is made to solve the MF equation, an estimate of the filter length

can be found from these bounds.

DETECTION PROBLEM

The detection problem considered in this chapter is one of finding a

linear detector that discriminates between an hypothesis Hyo and an

- 144 -
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alternative H,. The decision is based on a discrete length N observation
vector x composed under Hj of noise n with density f and under H,; of a
known signal s in noise:

Hyx=n

H 11X=n+
The detector consists of a real scalar test statistic T(x), a functional of

the observation x, which is compared to a scalar threshold to decide for

Ho or Hl-
The criterion of detector optimality used in this chapter is a SNR
measure often called the deflection:

- 2
LE(T) = BT "

where Ep and E, are the expectation under Ho and H,, and Verj is the

SNR =

variance under Hg

It is well known that the log likelihood ratio detector for Gaussian
noise is linear, the matched filter. Since the detector power is a mono-
tone increasing function of the SNR of T, the SNR is frequently used as a
measure of detector performance. The SNR, outside of its intuitive
appeal, is often justified by making a Gaussian assumption about n or

applying the central limit theoremto T.

Using the MF as a detector for non-Gaussian noise is more difficult to
justily. In general, the likelihood ratio detector maximizes the SNR [1],
and by a simple calculus of variations argument, maximizing the SNR (as
defined above) with no restriction on the linearity of the detector can be

shown to yield a linear function of the likelihood ratio. The MF is the
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linear filter which maximizes output SNR, but the likelihood ratio is gen-
erally nonlinear. Therefore in making a restriction of linearity on T, it is
tacitly assumed that the noise is Gaussian or nearly Gaussian in the sense
that the MF performs reasonably well and that any loss of optimality is

compensated for by the simplicity and linearity of the MF.

Under the assumption of linearity, the test statistic T(x) is equal to
the output at time N of & linear filter with impulse response h. As a con-
venience, the pseudo-signal is defined to be a length N vector with ele-
ments w; = hy,,-;, the filter impulse response in reverse order. The out-

put SNR of the linear detector is found from Eq. (1) to be

SNR, = _<_“_|L>2_s;‘

<u{Ru>
where <|> is standard inner product notation, R is the noise covariance

matrix, and A is the maximum value of SNR for the optimal pseudo-signal.
Cross-multiplication yields
L(u) = <ui{s>?® -A<u|/Ru>=<0
This can be maximized in the usual way by setting its gradient equal to
zero:
Vi(u) = 2<u|s>s - 2ARu =0

Rearranging and noting that A/ <u|s> is a constant and can be set equal
to unity with no loss of generality, the result is the well known MF equa-
tion:

8 = (\/ <u|s>)Ru = Ru (@)
The solution of Eq. (2) is the pseudo-signal of the MF:

u=Rs
with output SNR given by
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Mo

SNR, = <u|s> = <s|R"1s>
In discrete time and with a fixed signal, the MF matrix equation can

be solved quite efliciently using the Levinson algorithm. In continuous

PP |

time, the classical method of solution is to use spectral factorization to

solve the equation on an infinite interval; this (possibly) non-causal solu-

e

tion is then projected onto a causal space [3]. In discrete time, there is a ]

parallel spectral approach using the eigenvectors and values of R

SIGNAL SELECTION AND BOUNDS ON THE SNR

It is well known that the MF is the linear filter with the maximum
SNR, for a given signal in noise. In addition for non-white noise, the SNR,
of the MF can be maximized by proper choice of signal shape. Because of
this, for signals of constant energy, the SNR, of the MF has a range of

possible values.

Since the NxN covariance matrix R is positive definite and Hermi-

tian, it has positive, real eigenvalues:

0CA SAS -+ <Ay

and a corresponding set of orthonormal eigenvectors:

€, €y, ..., ey

' The matrix R can be diagonalized:
R=EAE"!
where E is the eigenvector matrix:
L
- - E=[e;, e, ..., ey]
and A is a matrix of eigenvalues:
L’§ A= L 0
0 Ay
&t.

" il PP Sy s A PYEPT SN T ST SO G P et A & & U S
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Likewise R™! has the diagonal form:

R—l = EA-lE-l
where A~! has as its diagonal elements the eigenvalues of R™!:

1 1 1
e D> - P e
A A AN

Thus the MF equation has the solution:

u=EA"'E"!s (3)
The signal s can be expanded in terms of the eigenvectors:

s = Ec (4)
where ¢ is the coordinate of 8 under the basis formed by the orthonormal
eigenvectors of R From Egs. (3) and (4) the pseudo-signal is

u=EAle (5)
The SNR, of the MF becomes

SNR, = cTA"le
If the signal is chosen to be in the eigenspace of the ith eigenvector

(s = ke;), theu the MF is a simple correlator (u = s) and

SNR, =k/A;
The Rayleigh quotient theorem [2] states that
1 _ <s|R7's> _ 1
< < —
AN Isi? A
where the upper and lower bounds are achieved for a signals in the eigen-

space of e; and ey respectively. Thus the SNR of the MF is bounded:
1sl® _ sng, < Isi® (6)
Ay A
The best choice of signal is e,, the eigenvector of R with the smallest

eigenvalue. This is equivalent to putting the signal im that part of the

spectrum of R where the noise has the smallest magnitude.
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[ Grettenberg [7] has taken the logical step of using M eigenvectors as
"‘ an M character alphabet of signals. By choosing the eigenvectors of R
4 ’:l corresponding to the smallest M eigenvalues, not only is the set orthogo-
nal, but it achieves the greatest minimum SNR, of any such M character
é set. This also has an advantage of simplicity, since, when the signal is
- chosen to be an eigenvector of R, from Eq. (9) the pseudo-signal equals

the signal, and the MF reduces to a simple correlator.

LH A minimax strategy is used by Turin [5] to find the worst-case noise,
o and the corresponding best signals in continuous time. He shows that the
best signal spectrum should consist of the noise spectrai components
with the smallest magnitude. As a consequence, "he worst spectra and

the best signal both have flat spectra.

LEVINSON ALGORITHM AND OPTIMAL SIGNAL SELECTION

For the Levinson algorithm to produce the s-optimal MF' on each

ey .

iteration, the length N optimal eigenvector e") has to be a truncated

version of the length N+1 eigenvector eN+1),

e®

(N+1) —
¢ € N41

T

< Let RW*D be the (N+1)x(N+1) covariance matrix with elements r;_;|:
- then

R(N-H)e(NH) = A(Nn) e(l\h-l)

where AN*D jg the eigenvector corresponding to the eigenvector elV+1),

Noting that the NxN minor of the covariance matrix R+ js RN

L

[
€ + 'N*lrro

l¢N+1

AN)
(rW)T o)

[
RWN+1)g(N+1) = A(N+1)g(N4+1) = I(rlgvﬁgr r:.’:’

.

- 4

-
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where

M =[ry rygy -7

For e¥) to be a truncated version of e¥*1), then for all N = 1: g

(A(N"'l) - A(N))e(N) = eN+lr(N)

Solving this equation iteratively yields permissible autocovariance
sequences. Let 7, be the first nonzero term in the covariance sequence 3
after 7;. Then every pth term with index less than L is nonzero, and the
rest are zero. All nonzero terms have the same magnitude with alternat- J
ing or constant sign. The covariance sequences have the form:

Tplsgn(mp)*! k=0

Tip+k = {0 k=12 ...,p-1 or ip+k=1L .4
where i 20, 0<sk <p-1,p 20, and L = 0. As a special case, if L-+0 or

p-= the result is white noise, 7; = Oforalli = 1.

This places a severe restriction on the noise autocovariance
sequence, and places corresponding limits on the utility of the Levinson

algorithm for this particular problem.

APPROXINMATE BOUNDS ON THE SNR

It is impractical to find a suitable filter length N from the bounds in
o Eq. (8) since they require knowledge of the eigenvalues of each MxM

- minor of R. Looser but easier to compute bounds can be found.

The equivalent rectangular time duration AT of the noise autocovari-

- ance is introduced as a rough measure of correlation [3]:
AT = z": |7y |
. [t L= 3 Uz
' where 02 = 7, is the noise variance. The largest eigenvalue of R, denoted
-
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by Ay is well known to be the smallest norm of R, thus using another
norm:
A = |Rla = maxZry; < o?AT
J

This yields the looser bound:

”||z “8"2 ”."2
o2AT < T < y” < SNR,
v

An upper bound can be found. The condition number K of a matrix is

defined as:

K = Apag/ Amin = R} IR}
then from Eq. (8)

SNR < |s]1?2 K/ Apax
The trace of R equals the sum of its eigenvalues:

tr(R) = No? = 3,

i=]
therefore
0% < Agax < NO?
and so
1sl® o snR, < 18K 7
oAt = SV < =2 @)
Since the input SNK is given by
2
SNR,; = JLEL
' No®

the improvement in SNR of the MF is given by

N SNR,

= SNRyp < NK (8)

AT = SNR,

o
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EXAMPLES

As a first example, consider white noise with an NxN covariance
matrix R = 0®l. The covariance matrix has an Nth order eigenvalue 0?
making the upper and lower bounds in Eq. (8) equal, and the choice of sig-
nal arbitrary. Other considerations, such as a ceiling on transmitted sig-
nal strength, may still make the spreading of signal energy .in time desir-
able.

For N = 3, the autocorrelation sequence is given by

r= [1 rl rz]T
For R to be positive definite, the values that »; and r, can take are res-
tricted:

I7il 072l €1 and |7y < V{rg*1)72

This region of the r;xr, plane is shown in Figs. 1 and 2.

The difference in dB between the upper and lower SNR bounds in Eq.
(8) is plotted as contours in Fig. 1. Even for a filter this short, the signal

selection is shown to be quite important.

In Fig. 2, the SNR of the MF for an alternating signal (s; = (—1)) is
shown in dB over the lower bound. The alternating signal was chosen as a
suboptimal approximation to the optimal signal because of its simplicity,
and similarity in shape to the optimnal signal for 7, 2 0. It is readily seen
to be nearly optimal in this case. Because of the symmetry of this prob-
lem, a constant signal (s; = 1), chosen as a suboptimal signal for r; <0

has performance contours which are the mirror image of those in Fig. 2.

Four noise autocorrelation functions were chosen as representative —

the exponential:
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1 9dB

6dB

0.5 3dB

1dB

fz 0 O 9

0.5
N |

-1 0.5 0 0.5 |

r

Fig. 1. Contours of SNR,,, upper bound
for N=3 in ryxr, plane.

1dB 3dB 64B 9dB

-1 0.5 0 0.5 1

4
Fig. 2. Conitours of SNR,,; for aliernating
signal in 7 xr, plane.
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r; = exp(-0.2 |i])
the triangular:

=110 il s10
i=lo {i] > 10

the Gaussian:

r; = exp(—m(i/ 10)%)
and the hyperbolic secant:

r; = sech(mi/ 10) :
The exponential is the simplest member of the Markov class; the triangu-
lar function has finite supoort; the Gaussian correlation function has
infinite support, yet has tails which fall off faster than the exponential,
and the hyperbolic secant has & nearly Gaussian shape at the origin, but

exponential tails.

The upper and lower bounds on the SNRyr from Eq. (8) are plotted in
dB versus filter length N in Figs. 3-6. Here signal selection is extremely
important for all N > 2 and increasingly so for increasing N. Even for the
length 5 filter, the difference between the best and worse-case SNRyr is

at least 15dB for all four cases. At N = 20, the difference is at least 19dB.

The parameters of these four correlation functions were chosen so
that each has an equivalent rectangular time duration of AT ® 10. Thus
the approximate lower bound (Eq. 8) for each function is

N/ 10 =< SNRyp
The approximate and exact lower bounds for each correlation function is

shown is Figs. 7-10.
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Fig. 3. Upper and lower bounds on SNR,; for exponential correlation.

30
[ upper bound
@
°
£ '
§ 15
3
lower bound
o 1 Yy " "
0 4 8 12 16 20

filter length. N

Fig. 4. Upper and lower bounds on SNR,,, for triangular correlation.
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Fig. 5. Upper and lower bounds on SAR,, for Gaussian correlation.
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CONCLUSIONS

The bounds on SNRyf in Eq. (6) show the selection of the signal to be
important for optimal performance of the MF. The selection of a subop-
timal signal, if made intelligently, can produce nearly optimal results,
and certainly the importance of signal shape should not be overlooked.

The approximate lower bound of Eq. (8) gives a simple although con-
servative estimate of worse case MF performance. An estimate of filter
length can be made with only knowledge of the equivalent rectangular

time duration AT.

o
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CHAPTER 8 - CONCLUSIONS

Review and Ideas for Further Research

In this chapter, some of the main points covered in the previous
chapters are reviewed briefly, and some ideas for further research are

given.

In Chapter 2, the performance of three commonly used detectors is
considered for several families of noise densities as the input signal-to-
noise ratio (SNR) varies. The three detectors investigated are the linear
detector,' the sign detector and the amplifier limiter detector. Perhaps
the most interesting results of this chapter are the contours of equal
detector performance which illustrate the regions of relative superiority
for each detector. While the nonlinearities chosen for analysis are
interesting, other nonlinearities could be included. In particular, the
performance of the locally optimal detector for each specific density
would be informative, since it would give some feel for the degradation in
performance which can be expected when the input SNR is greater than

zero.

In Chapter 3, suboptimal detector nonlinearities are investigated.
The design method consists of choosing a suboptimal nonlinearity and
finding the family of densities for which the nonlinearity is optimal. A
member of this family is then fitted to the observed noise, and the
corresponding detector is used. The advantages of this approach are
threefold. When the optimal nonlinearity is too complex to use, a
simpler, more tractable nonlinearity can be chosen. Because the non-

linearity is in effect fitted to an observed noise using parameter
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estimates, the noise statistics need not be known exactly and can be
nonstationary. As a result, this procedure can produce simple adaptive
detectors. In Chapter 3, the parameters to be estimated are assumed
known exactly before the analysis of detector performance is made. One
reasonable extension of this work is to study the sensitivity of the detec-
tor performance to variations normally experienced in parameter esti-
mates. A more difficult, but possibly quite fruitful area for continued
study, is the problem of how best to choose from among suboptimal non-
linearities, or equivalently, how to choose a good noise model when the

actual noise statistics are incompletely known.

The moment analysis of Arctic under-ice ambient noise is included in
Chapter 4 to give an example of some of the techniques presented in
Chapter 3. The results in this chapter suggest that the noise is nonsta-
tionary and largely Gaussian or nearly Gaussian with sporadic bursts of
non-Gaussian noise. Unfortunately, insufficient data is available for more
extensive analysis. With a larger data set, a more complete analysis
could be done; in particular, the non-Gaussian bursts merit more atten-
tion. Also, the assumptions of stationarity and independence and their
effects on moment estimators should be investigated further. Some
investigation of the degree of nonstationarity would be of interest, since
this would relate directly to the performance of the adaptive detectors
proposed in Chapter 3.

In Chapters 5 and 6, it is assurned that a noise process is both

significantly dependent and non-Gaussian, and that detector performance

would suffer considerably if either Gaussian or independence assump-
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tions were made. In this case it is seen that the real problem becomes
‘ one of choosing a reasonable noise model. Several multivariate noise
“ models are considered. The value of each is assessed not primarily by
the "goodness of fit" of a particular model, but by the tractability of the
g resulting detector. This may not be too bad an assumption; most of the
models considered probably offer a reasonable fit. For example, the

transformaticn model is a perfect fit up to second order moments. How-

N

S ever, some investigation of the relative value of each model in fitting a
specific observed noise would also be important. A number of appealing
detector structures are suggested in these chapters, but very little

-~ analysis of their performance is done. Some of these detectors, or slight

E

4
-4
E
s
-
-

modifications of these detectors, might well be simple but effective for

environments which are both non-Gaussian and dependent.

In Chapier 7, two topics related to discrete time matched filters are
considered, bounds on the SNR (used as a measure of filter performance),
and signal selection. Exact upper and lower bounds on the SNR are given,
and a looser, but easier to compute, lower bound is given. As a possible
extension of this work, an approximate upper bound which is easier to

compute than the exact bound could be of value. In this chapter it is

shown that the selection of a suboptimal signal, if made intelligently, can
produce nearly optimal results. The signals used in the examples of
he Chapter 7 were chosen because of their intuitive appeal. It may be possi-

ble to find an orderly procedure for selecting a suboptimal signal.
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