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A method of designing suboptimal detector nonlinearities is
presented. A suboptimal nonlinearity is chosen, and the family
of densities for which it is locally optimal is found. A member
of this family is then fitted to the observed noise, and the
corresponding detector is used. When the nonlinearity is a
rational function, the Pearson family of densities results. Not
only does this family contain many common univariate densities,
but a member density can be fitted to an observed noise using
only the first four sample moments. Other possible nonlinearities
are considered, including possible multivariate extensions.

A ten minute sample of Arctic under-ice ambient noise is
subjected to a moment analysis as suggested above. The noise is
found to be nonstationary and nearly Gaussian with sporadic
bursts of non-Gaussian noise, a conclusion also reached by other
investigators.

The LR and LO detectors for several classes of multivariate
densities are given. These classes include closed form,
differential equation, spherically symmetric, series expansion,
transformation and moving average models. The transformation
model, (noise generated by a memoryless, nonlinear transformation
of a correlated, Gaussian source) is dicussed in some detail.
The performance and practical aspects of obtaining the trans-
formation LO detector are considered. Applicability of the noise
models and tractability of the resulting detectors are discussed.

*! The problem of finding the minimum length matched filter in
discrete-time to achieve a desired level of performance (SNR)
is considered when there is some freedom in choosir signal

' shape. Exact and approximate upper and lower bounds le SNR
are given, and the problems of optimal and suboptima. -?l de-
sign are discussed..
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This report deals with the problem of detecting a known signal in

non-Gaussian or dependent noise. Although likelihood ratio (LR) detec-

tors are discussed, primary attention is paid to asymptotic detector per-

formance, and therefore to maximum efficacy or locally optimal (LO)

detectors. In general, the detectors considered consist of a nonlinearity

followed by a filter and a threshold comparator.

The asymptotic performance of three common suboptimal detectors

is considered for several families of noise densities as the input signal-

to-noise ratio (SNR) varies. Contours of equal detector performance are
I

plotted allowing the relative utility of the detectors to be assessed.

A method of designing suboptimal detector nonlinearities is

presented. A suboptimal nonlinearity is chosen, and the family of densi-

ties for which it is locally optimal is found. A member of this family is

then fitted to the observed noise, and the corresponding detector is used.

When the nonlinearity is a rational function, the Pearson family of densi-

ties results. Not only does this family contain many common univariate

densities, but a member density can be fitted to an observed noise using

only the first four sample moments. Other possible nonlinearities are
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considered, including possible multivariate extensions.

A ten minute sample of Arctic under-ice ambient noise is subjected

to a moment analysis as suggested above. The noise is found to be non-

stationary and largely Gaussian or nearly Gaussian with sporadic bursts

of non-Gaussian noise.

The LR and LO detectors for several classes of multivariate densities

are given. These classes include closed form, differential equation, spher-

ically symmetric, series expansion, transformation and moving average

models. The transformation model, (noise generated by a memoryless,

nonlinear transformation of a correlated, Gaussian source) is discussed in

some detail. The performance and practical aspects of obtaining the sub-

systems of the transformation LO detector are considered. Applicability

of the noise models and tractability of the resulting detectors are dis-

cussed.

The problem of finding the minimum length matched filter in

discrete-time to achieve a desired level of performance (SNR) is con-

sidered when there is some freedom in choosing a signal shape. Exact

and approximate upper and lower bounds on the SNR are given, and the

problems of optimal and suboptimal signal design are discussed.
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CHAPTER I - IITIODUCTION
4.

THE DETETON PROBIEN

The detection problem considered here is basically a simple one. A

detector must determine whether a signal or, to generalize slightly,

which of a number of possible signals, is present at its input. Were there

no noise contaminating the received signal the problem would be moot.

However, with the-tresence of noise, often of an unknown or incompletely

known character, the choice of detector structure can be quite difficult.

This problem occurs in many areas unrelated to communications, but

unlike many of those areas, decisions frequently must be made in "real

time" and with guaranteed bounds on the probability of error.

While there are many possible measures of detector performance.

asymptotic results are used throughout this dissertation, often without

much background or justification. While this makes each chapter more

readable (and less repetitious), a fuller development of asymptotic

-. theory can increase understanding. A more complete discussion of

. asymptotic theory can be found several recent books. Pitman's [1)
development is fairly rigorous and complete. Of particular interest in the

framework of this dissertation, Pitman derives the efficacy as a measure

of asymptotic detector performance, and discusses some of the proper-

ties of both efficacy and the locally optimal detector. Huber [2] uses

asymptotic results to develop his theory of robustness for both detectors

and estimators. A more general background, clearly placing asymptotic

results within the broader area of statistical inference theory is given by

Bikel and Doksum [3], and by Helstrom [4] who approaches the problem

.' . . . . . . .,
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more from an engineering point of view.

InL the sections which follow, some of the basic results of asymptotic

"theory are presented. both to make the notation clear. and to give some

i ~ background for the following chapters. Fisher's Information is derived, :

• and shown to be a measure of the sensitivity of a density to differential '

: changes in a parameter 0. The efficacy is then shown to be related to.!

• Fisher's Information through the Information Inequality. And finally the

. efficacy is shown to be an indicator of the asymptotic behavior of a detec-

, tor. The comments made here are not intended to form a rigorous

-.- 2

development of asymptotic theory; for that the reader is referred to any

akof the References listed above.

FhDetection and estination problems are generally concerned with a
set of probability measures P,di c o indexed by a real parameter (or

parameters) 0 contained in an interval 0. This set has a corresponding

set of densities LI@ E 01 and an associated c-flnite measure A. In the

detection problem considered in this dissertation d is generally taken to

% be the signal level, and the detector is asked to decide whether O = o or

1. Fisher's Information

The sensitivity of a detector or estimator to changes in the parame-

ter 0 is frequently of interest. This would give an indication of detector

or estimator performance for small signal level, 0 O 0. As shown below,

Fisher's Information can be viewed as the sensitivity of a density to

differential changes in 0.

L%
4- " ° ° . ° ,
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As a measure of how two densities differ at a point x, consider the

likelihood ratio (LR):

,. 'A(z) = 1(z)/f Cz)

or equivalently the log-likelihood ratio:

X(z)= )n f #(z) - nf. f (z)

Both the LR and log-LR detectors are well known [1-4] to be Neyman-

Pearson optimal for deciding between fe and f. based on an observation

x. Because the LR and log-LR are optimal statistics for distinguishing

between two densities, either can also be viewed as a measure of the dis-

tinguishability of the two densities at a point z. The derivation which fol-

lows would be essentially the same, and would, in fact, yield identical

* results whether the LR or log-LR is used as a measure of distinguishabil-

ity. However, the log-LR is used since it has several appealing charac-

teristics. Without sacrificing the optinality of the LR, the log-LR equals

zero when two densities are indistinguishable at z, that is when

f O(z) = h,(z). It also has an appealing symmetry since

ln(f #/ f) -ln(f d/ f)

The sensitivity of fo to a change in I can be written as the ratio of

the distinguishability (i.e. log-LR) to the change in ':

z) = lnf,#(z) -lnf 0 (z)

As0 -+ @o the result is the rate of discrimination:

lim S(z) lim

Assuming that O is an element of a real interval, and that the 0 derivative

Li
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of f@ exists at i3, then

where f denotes the 0 derivative of ft at 0 = 0 o. Denoting the log-

likelihood function at 10 as

Then the rate of discrimination is the 0 derivative of the log-likelihood

function:

.,Sim () = LO'(z) =f O(Z)/f 4C) (1)
it-to

The rate of discrimination LG'(z) is a random variable with expected

"" value zero:

E = f, 0 '(z)d = 0 (2)

As a measure of overall discrimination, consider the variance of LO':

VoL,0 ' = (L,0,')2 = f 0',)2/f,OdA = 1,0 (3)

which is seen to equal I(Oo), Fisher's information at 'o.

Fisher's information can be interpreted to measure the overall sensi-

tivity of a density to differential changes in a parameter at -00. In

another light, it can be viewed as the distinguishability of fO and f o as

0K40-

2. Efficacy and Information Inequality

Fisher's Information can be shown to have a corresponding measure

of asymptotic detector (or estimator) performance, the efficacy.

Further, the Information Inequality (or Cramer-Rao bound) states that

Fisher's Information is an upper bound on efficacy.



Let T(z) a statistic of the observation z with density f,(z) with

expected value given by

ET f= )f,(x)d,

The density f,# is assumed regular in Pitman's sense [I], allowing the -0

derivative of E, T to be brought inside the integral:

Z!:. b. ,r = g,,= fr()4=a

and using Eq (1):

E,'T = fT()L'(=)fg(x)dj4 (4)

Since ELO' = 0 from Eq. (2), then an examination of Eq. (4) reveals that

E'T is the covariance of T and LO'. Thus by the correlation inequality:

(Eg'T)2 -A V3 TVL,,'

with equality if and only if T = k L' where k is a real constant. From Eq.

(3), V#LO' = I(0). The result is the Information Inequality:

~E,,' T7 _
E4 72-., '-' --T- 1 (,0) (5)

which can be slightly rearranged to yield the Cramer-Rao lower bound.

The quantity on the left side of the inequality is defined as the efficacy of

the statistic T(x) at 0, and is denoted

J (T) = E#'T/ VeT

It follows from the correlation inequality that the efficacy is maximized

by the test statistic T. = L.'. This test statistic is referred to as the

locally optimal test statistic, and has efficacy equal to Fisher's Informa-

tion, J(T) =1().
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3. Asymptotic Power of a Detector

The efficacy can be shown to measure the asymptotic behavior of a

detector for large n and small I. A general but loose proof of this is

*given below. This can, and indeed has been made more rigorous, and a

more detailed development is given by Pitman [ I].

As stated above, the detection problem considered consists of testing

the hypothesis that -6 = ,o against the alternative that 0 > ,o, where -0

and 0 are contained in the real interval 0. The detector consists of a

test statistic Tn which is compared to a threshold tn to decide for the

hypothesis or alternative. Here n is the observation size, and Tn has

expected value E.Tn =14 and finite variance V6T, = al. Then if the Cen-

tral Limit Theorem holds, as n-,, the random variable (Tn - .)/ aO is

asymptotically normal with distribution $ for all -0. The approximate

level an of Tn can thus be given, for large n, by:

a.1 = P41 Tn > t.1] G[. - tn )/ a-#.]

The threshold can be found in terms of an:

S•tn Ow Mq - a*,- I(a.) (6

In a similar fashion, the approximate power of a test is given by

Combining Eqs. (6) and (7) yields the approximate power function:

Using the mean value theorem, we can write

where prime indicates differentiation with respect to 0, and 1° lies



between 0 and -00. The power function can be written as

_(a) + (0"6 ' 1=
~ a]

For convenience, define d = p.*/ a* Then for large n, d dominates the

expression in brackets, and the power function is a monotone increasing

function of d. Since d - 0, maximizing d2 is equivalent to maximizing the

power function. For O? ao, then ,@ °  a0, and d 2 is very nearly equal to

the efficacy J(TRn):

= 2"= J(T )

Thus for large observation size n, and 10m 0o, maximizing the efficacy is

equivalent to maximizing the power function. It can also be shown that

maximizing the efficacy is equivalent to maximizing the slope of the

*1 power function at 1=0.

DISERTATION OUTLINE

This dissertation deals with the problem of detecting a known signal

in additive noise. Several of the traditional assumptions are relaxed; the

noise is assumed to be non-Gaussian and/or dependent. In addition, the

statistical mode.1 is often assumed to be incompletely known.

In Chapter 2, the performance of several common detectors is con-

sidered for several families of noise densities as the input signal-to-noise

ratio (SNR) varies. The detector consists of a nonlinearity followed by a

F filter and a threshold comparator. Three commonly used nonlinearities

[I. are investigated: the linear amplifier, the sign detector and the amplifier

limiter. Contours of equal detector performance are plotted allowing the



relative utility of the three detectors to be assessed for the noise models

considered. The investigation was motivated by the observation that the

locally optimal (or small signal) detector is designed for zero input SNR

and can perform rather poorly as the input SNR increases. While this

observation is born out, some additional conclusions can be drawn. In

particular, the performance of the sign detector falls off rather quickly

with increases in input SNR.

It is well known that the locally optimal detector for known signal in

noise consists of a nonlinearity followed by a matched filter. In Chapter.

3, suboptimal nonlinearities are investigated. It is assumed that either

the locally optimal nonlinearity is too complex to use or that the noise

density is not known precisely. A suboptimal nonlinearity can be chosen,

and the family of densities for which it is optimal is found. A member of

this family is then fitted to the observed noise, and the corresponding

detector is used. When a rational function is chosen for the nonlinearity,

the Pearson family is the set of solution densities. This is not only a gen-

eral family which contains many common univariate densities, but for

nearly Gaussian noise the method of moments can be used efficiently to

fit a member density to the noise. The coefficients of a ZNL are

estimated for several (non-Pearson) densities using the first four noise

moments. Performance of the suboptimal detectors is investigated.

Other possible nonlinearities are considered, including multivariate

-° extensions.

In Chapter 4, 10 minutes of Arctic under-ice ambient noise is sub-

V jected to a moment analysis similar to that suggested in chapter 3. The



noise is found to be nonstationary and largely Gaussian or nearly Gaus-

sian with sporadic bursts of non-Gaussian noise. Unfortunately,

insufficient data is available for more extensive moments analysis, but

the tentative conclusions drawn about the nature of the noise are

interesting.

Chapters 5 and 6 (excluding Appendix B of Chapter 5) were coau-

thored with P.F. Swaszek and also appear in his dissertation [5].

In solving problems in detection, it is often assumed that the under-

lying statistical description is independent or Gaussian. Not making

these assumptions leads to difficulties in detector design due to problems

usually encountered in specifying multivariate noise statistics. In

Chapters 5 and 6, several characterizations of multivariate densities are

considered within a detection framework. The discussions include

specific examples and also some general methods of density generation.

The particular detection problem considered in Chapter 5 is that of a

known signal with a vanishingly small amplitude in additive noise.

Efficacy is employed as a criterion of detector performance and the max-

imum efficacy (locally optimal) detector is discussed. The class of mul-

q 'tivariate densities generated by a memoryless, nonlinear transformation

of a correlated, Gaussian source is discussed in some detail. A member

of this class has the advantage of being completely characterized by its

marginal density and its covariance matrix. The locally optimal detector

structure is derived for this class and the practical aspects of obtaining

detector sub-systems are considered. Examples of this detector are

presented for noise sources with Laplace and Pearson Type VII marginal
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densities, and Monte Carlo simulations are included to aid performance

analysis. A second class of multivariate densities generated by a linear

transformation of an iid noise source is also considered, and its locally

optimal detector is described.

In Chapter 8 the likelihood ratio and locally optimal detectors for

several classes of multivariate densities are given. These classes include

- closed form, differential equation, spherically symmetric, series expan-

sion, transformation and moving average models. Applicability of the

'" noise models and tractability of the resulting detectors are discussed.

The Matched Filter (MF) is well known to be the linear detector that

has the maximum output Signal-to-Noise Ratio (SNR). In Chapter 7, the

problem of finding the minimum filter length in discrete time to achieve

a certain level of performance is considered when there is some freedom

in choosing a signal shape. Upper and lower bounds on the SNR are given

in terms of the eigenvalues of the noise covariance matrix. Since these

bounds are rather difficult to compute, looser, but easier to compute,

bounds are given. Several examples are presented which illustrate the

exact and approximate bounds.

In Chapter 8, the main results of this work are summerized, andL ideas for further research are given.

LoP.

w



REVERENCES
1. E.J.G. Pitman, Some Basic Thor-yfor Statistical Inference. London:

Chapman and Hall, 1979.
2. P.J. Huber, Robust Statistics New York:John Wiley & Sons, 198 1.
3. P.J. Bikel and K.A. Doksum, Mathematical Statistics: Basic Ideas ad

Selected Topics. San Francisco: Holden-Day, 1977.
4. C.W. Helstrom, Statistical Theory of Signal Detection. Oxford: Per-

gamon Press, 1968.
5. P.F. Swaszek, Rbbust Quamtiszan, Vector Qumntizatio and Detec-

tion; PhD dissertation, Princeton University, October 1982.

,.. ]]

:U

U



CHAPTER 2 - ASYMPTOTIC PERFOJ1ANCE OF DETECTORS

WITH NON-ZERO INPUT SNR.

INTRODUCTION

Frequently, the performance of locally optimal and suboptimal

detection schemes is evaluated using asymptotic measures such as the

Asymptotic Relative Efficiency (ARE). Unfortunately, the ARE requires

the assumption, not only of a large number of samples (for the central

limit theorem to hold), but of a vanishingly small input signal-to-noise

ratio (SNR). It follows that any optimal or suboptimal system designed by

maximizing ARE may perform poorly for a signal level greater than zero.

From a survey of the literature, it is evident that these assumptions

have concerned other researchers in the past. In particular, Miller and

Thomas [1] investigated the convergence of Relative Efficiency to ARE for

a signal in id Laplace noise. They found the convergence to be relatively

slow, implying that the ARE may not be an accurate measure for small to

moderate sample size. Spaulding [2) found that, for small sample size

and large signal level, the hard limiter may well outperform the locally

U. optimal detector for a signal in Hall-distributed noise.

These results motivate a further investigation. In this chapter, the

asymptotic performance of several simple detector structures is con-

sidered when input SNR is not constrained to be zero. Originally, we

looked at the single case of Laplace noise and were interested in the rela-
Live performance of the locally optimal (sign), the Neyman-Pearson

(amplifier limiter), and linear detectors as the input SNR is increased.

Since these are frequently encountered suboptimal, robust or -

-12-
I



Fig. 1. Typical detector structure.



-"14-

nonparamretric detectors, a comparison of their performance for other

families of densities might prove interesting.

The detector structure considered in this chapter consists of a zero

memory nonlinearity (ZNL) followed by a summer and a threshold com-

parator as shown in Fig. 1. Both the likelihood ratio and locally optimal

detectors for lid noise and constant signal have this configuration. and for

this reason among others, this form has particular appeal not only in

optimal but in suboptimal detector design. In this chapter, three detec-

tor ZNL's are used: the linear amplifier, the sign detector and the

amplifier limiter.

DETECTION PROBLEM

The problem of detecting a constant signal in additive noise, given a

sequence of observations, can be expressed as an hypothesis and an

alternative:

H 1 : z = 74 +0

Under the hypothesis H0. the observation zx consists of noise only; under

the alternative H1 .it consists of noise plus an additive signal "4. When the

noise is assumed to be independent and identically distributed (lid) with

density f (74), both the likelihood ratio detector and the locally optimal

detector consist of a ZNL g (-) followed by a linear filter. If the number of

q samples is m then the test statistic Tm is given by

m

To simplify notation somewhat, let



Me = EoT. o = Eorm2 - ]or
.= = ETn2 - ES Tn

where E0 and Ep represent the expected value under HO and H, respec-

;": tively.

If m is sufficiently large for the central limit theorem to be applied,

then under Ho and H1 the two random variables

Tm~o - A M--
and

* are both approximately unit normal, and the approximate level a is

therefore

"a f do(z)=

where is the Gaussian N(O. 1) cdf. The threshold t can be found in terms

of a:

f =M' - aof-(a)

Likewise the approximate power can be computed:

P f d#-x

Using the expression for the threshold. yields the power function:

(a) = 1[Q4-1(a) + 'i

The approximate power of a test for fixed level a and large sample size m.

is a monotone increasing function of the square root of the detector out-

put SNR, where



SNRourT = 02

As ' m . -, the term eontainif the square root of the SNR will elearly

dominate the other term in the power function, and the SNR is an accu-

rate measure of detector performance. For moderate m, where the

Gaussian assumption may still be quite good, the term a0f-'(a)/ at can

become important. In this case, using the SNR to compare the perfor-

mance of two tests may not be enough; o/ a should ideally equal the

same constant for both tests. In the following examples o0 = a# for all

detectors considered. Asymptotically, the results are equivalent, but this

should yield more valid results for moderate m.

COMPARISON OF SEVERAL TESTS

In this section, three tests are considered: the linear detector, sign

detector and the amplifier limiter. Under Ho the observation x has distri-

bution F(z) and under H, distribution F(z -4). Obviously, the noise vari-

ance will have no effect on the gain in SNR of each detector (input to out-

put), and therefore it can be set equal to unity with no loss of generality.

1. The linear detector (UD) is simple and frequently used. It is usually

4 justified by making a Gaussian assumption about the noise, and is both
the Neyman Pearson and locally optimal detector for Gaussian noise. The

LD has the ZNL

g(z) = z
and so

' 0 = 0 p= - and 0= a,2= 1

and the output SNR of this detector is



-17-

SNR, = (1)

2. The sign detector (SD) is probably the simplest ZNL which may be

effective in an impulsive environment. It has been shown [4] that the SD

frequently performs reasonably well for small signals in impulsive noise.

The SD has the ZNL:

g(z) = sgn(z)

Thus

po=1-2F(O) p4 I - 2F(--O) and ao = O I

and the SNR of the SD is

SNRSD = 4[F(O) - F(-O)]2  (2)

3. The form of the amplifier limiter (AL) used here is the Neyman-

Pearson optimal test ZNL for Laplace noise, with breakpoints at the signal

level 0. While this is not necessarily the best breakpoint for all noise

environments, it avoids the difficulties inherent in choosing optimal

breakpoints [4] while still preserving some of the robust characteristics

described by Martin and Schwartz 16].

The AL has the ZNL

0 z<O 
g(Z) =Z 0!%-!9

Thus

fo =9[ - F(1)] +fz dF(x)
0
0

,.=0 I[ - F(--O)] + fz dF(z)

v z-0

a0 zdq)+ ~[
• • • . . .0

I
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0 0

fXf dF(z) + 2Of dF(x) + 02 [1-F(-)] - A42

- -4
Denote the ith incomplete moment as lj, where

1 = fxi dF(x)
0

Then ill is assumed symmetric:

o =0[6 - 1o] + 11

p = + 1o] - I,
02= a2 = 1 + .2[) + Jo] - -42

The AL has SNR

S =4(1o - J1)2i.SNRAL, 120= 0,-,2 J22II (3)

IOULTS

A. GENERALIZED GAUSSIAN

The first distribution considered is the generalized Gaussian.

i/ccj-.. Wlr exp(-a'lxll)

21(i/ c)
For a variance of unity

• : a2/ = r(3/1c)/ ro/ c)"
In addition to including the Gaussian and Laplace as special cases, the

generalized Gaussian offers considerable control over the rate of tail

decay through decay parameter c. It has been suggested as a model of

impulsive atmospheric noise, particularly for 0.1 <c < 0.6, and used to

demonstrate the locally optimal detector by Miller and Thomas [3], and

later by Lu and Eisenstein [5].

The incomplete moments I, (for i = 0, 1, 2) are

qV
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" lo = 7(1/c'a~c)
'0. 2r(1/c)

2[ro / c )r(3/ c)
7(3/ c,al € )12 = 7. / o
2r(3/ c)

where -y(.,.) is the incomplete 7 function.

Using the incomplete moments and Eqs. (1-3), the output SNR's of

the LD, SD and AL detectors are computed and plotted in Figs. 2-6 for

several values of decay parameter c. Two values of c are of particular

interest.

When c = 1 (Fig. 3) the generalized Gaussian reduces to the Laplace

density. The SD is then locally optimal and the AL is Neyman-Pearson

optimal. As expected, the AL outperforms both the LD and SD for when

the input SNR is greater than zero. Perhaps surprisingly, the perfor-

mance of the locally optimal SD decays significantly as input SNR

increases. In fact, the LD outperforms the SD when SNRIN > 0.272.

The Gaussian density results when c = 2 (Fig. 5.). In this case, the ID

is both locally and Neyrnan-Pearson optimal, and as expected, it outper-

forms both the AL and the SD.

The points of greatest interest in Figs. 2-6 are the crossover points at

which two tests have equal output SNR. In Fig. 7, the contours of

SNRsD = SNRw and SNRA = SNRLD are plotted in the c xSNRIN plane.

The two contours divide the portion of the plane considered into three

regions.

When SNRN = 0, the SD and AL are equivalent; for all SNRIN > 0, the

AL outperforms the SD. As configured here, the AL requires the signal
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Fig. 2. SNRINr versus SNR0 ~ for generalized Gaussian, c 0.5.
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UFig. 5. SNRIN versus SNR 0VT for generalized Gaussian, c 2.0.
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level "G to be known, and when Ois known the AL would normally be used

over the SD. The LD is to be preferred over the AL only in the rightmost

region, right of the contour SNRL = SNRw. When O is not known, the

choice is between the LD and the SD. The L outperforms the SD in all

but the region left of the contour SNRSD = SNRw.

In Fig. 8, the the relative performance of the SD and the LD is shown

as contours of (SNRSD/SNRLo)dB in the c XSNRIN plane. The 0dB line

corresponds to the line of equal performance in Fig. 7, and performance

of the SD relative to that of the LD can be seen to fall off quickly not only

with the transition from Laplace (c = 1) to Gaussian (c = 2) but with

increases in SNRIN.

In practice, one might use single or (especially in nonstationary noise

environments) multiple estimates of c and SNRIN and Fig. 7 to choose a

detector structure. To simplify the process, since c is rather difficult to

estimate, the two contours SNRSD = SNRLw and SNRAL = SNRLo are

given in the PSxSNRIN plane in Fig. 9. Here P2 is the normalized fourth

moment, or kurtosis of the noise, frequently used as a measure of density

"peakedness". The kurtosis is defined to be:

q ~P2= 4#

where A2 and A4 are the second and fourth noise moments about the

mean. Not only is the kurtosis P2 easier to estimate, but it is a more gen-

eral measure than c and can be applied to many other densities.

F7

I..-
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B. PEARSON VII

The next model considered is the Pearson VII density:

F(z) = K(t + az2)-m

where

K ____ P 3 M P - 9

riyorom -) 2010f2 m  20p2 -3)

Rather than exponentially decaying tails as in the previous example, the

Pearson VII density has tails which decay algebraically. In the limit as

P 3 the density approaches the Gaussian density.

In this case the incomplete moments i (for i = 0, 1, 2) are computed

numerically. Using these incomplete moments and Eqs. (1-3), the output

SNR's of the LD, SD and AL were found for several values of kurtosis, P2,

and plotted in Figs. (10-13).

At P2 = 3, the Gaussian density results, and the performance of the

three detectors is described in the last section, and shown in Fig. 5. As P2

increases, the density becomes heavier tailed and the performance of

both the AL and the SD improves relative to that of the ID. As before, the

AL consistently outperforms the SD.

I In Fig. 14, the contour of equal performance of the SD and LD,

SNRSD = SNRL, is shown in the P2XSNRIN plane. Considering the

results of the last section, it is interesting how poorly the SD performs in

this particular noise environment. Comparing Figs. 9 and 14, not only is

the SD for Pearson VII noise much more sensitive to increases in SNRIN

but the kurtosis must be nearly three times as great (at SNRIN = 0) for

;6 the SD to outperform the LD.
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Fig. 10. SNRIN versus SNROUT for Pearson VII, P~2 3. 1.
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*Fig. 12. SNRINk versus SWR 0, for Pearsor 171, 6.0.
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C. MIXTURE MODEL

The next noise model considered is a mixture model. Under certain

. conditions [4,6,7] a noise process may be well-described by a mixture of

the form

f (Z) = (I-)fB(z) + C f (X)
where fy describes a background noise process contaminated by bursts

of impulsive f I distributed noise. In the examples which follow, the back-

ground noise is assumed Gaussian:

1

i. fB(z) = -;expL J-. 2/r12;

The impulsive contaminant is assumed to be Laplace or Gaussian.

1. Gauss-Laplace mixture

*The Gauss-Laplace mixture assumes the contaminating impulsive

noise to be Laplace:

fj(z) = -exp(-a IzI)

The ratio of the variances 7 = 2/ a 2e proves to be an important constant.

The incomplete moments, 14 can be computed numerically, and the

resulting SNR's can be found from Eqs (1-3). The contours of equal SNR

for the linear and sign detector are plotted for several values of Y in Fig.

15. The SD outperforms the LD below the contours, and the LD is superior

above. Typically 7 will be large and c small corresponding to infrequent

large energy bursts. In this case, the sign detector may be of use as

shown by the 7 = 100 contour.

V

f .
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Fig. 15. Contours of SNRsD S NRLD in cxSNRIN for Gauss-Laplace mixture.
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2. Gauss-Gauss Mixture

In this case the contaminant is assumed also to be Gaussian, with

- variance s2 . The ratio of the variances again proves useful, where

-7 = S2 / ..

The contours of SNRSD = SNRLw are plotted in Fig. 16 for several

values of -/. The SD outperforms the LD below the contours as in the last

example. It is interesting to note that while the LD is optimal at c = 0 or

v = I since f is then purely Gaussian, the performance of the SD may in

fact surpass that of the LD for 0 < v < 1. As stated above, 7 will fre-

quently be large and v small; in this case the SD would appear to perform

quite well.

A

U

U.
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CONCLUSIONS

Care should be taken in applying locally optimal results, since the

locally optimal detector is designed for zero input SNR. As shown in the

Laplace example, the performance can deteriorate rather quickly as

SNRmN increases, so quickly in fact that the linear detector may well out-

perform the locally optimal detector for SNRIN fairly small.

The comparison of generalized Gaussian and Pearson VII results indi-

cates the importance of correctly choosing a noise model. The sign

detector performs considerably less well, particularly in sensitivity to

increases in SNRIN, for Pearson VII distributed noise. From these

results, we can conclude that even two densities which have equal

moments up to fourth order can yield decidedly different performance

from the same detectors.

In general the performance of the amplifier limiter is quite good for

the noise models used. The sign detector on the other hand is at times

disappointing. One case in which it does appear to work well was for the

mixture model with infrequent but high energy impulsive bursts (-/ large,

v small). Not only does the sign detector outperform the linear detector,

but it is relatively insensitive to the form of the contaminant; similar per-

* "formance is seen for both Laplace and Gaussian contaminant.

U

U,
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CHA'rR 3 - DEECTOR DESIGN USING A DENSITY FIT

TO NON-GAUSSAN NOISE

MINTRODUCTION

The locally optimal detector has been suggested for the detection of

small known signals in noise. The detector consists of a nonlinearity fol-

lowed by a linear filter and a threshold comparator (Fig. 1). In this

chapter, we consider the selection of suitable nonlinearities when a com-

plete statistical description of the noise is not available.

In piactice, the realization of the locally optimal nonlinearity may

present some difficulties. The functional form may be unwieldy to imple-

ment. Especially fof dependent noise, a multivariate density may not be

known with precision and it may be difficult to estimate. The noise may

not be stationary, making it desirable for the nonlinearity to adapt to

changing noise statistics.

For independent, identically distributed (iid) noise, the nonlinearity

is memoryless, and suboptimal approximations to this zero memory non-

linearity (ZNL) have received some attention. Kassam and Lim [4] have
U

addressed the problem of finding an optimal quantized version of the

ZNL. Miller and Thomas [2,3] use hard limiters, amplifier limiters, mul-

tilevel, and piecewise linear suboptimal nonlinearities in place of the

optimal ZNL. Frequently these approximations have parameters which

are chosen to maximize the detector efficacy. Unfortunately, this usually

proves to be a numerical problem involving considerable computations.

It is not always clear how to choose or optimize these nonlinearities when

-41 -
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HO

Fig. 1. Typical detector structure.
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the noise density is not known exactly.

A second approach is used in this chapter. An approximate non-

linearity with a desirable functional form and one or more free parame-

ters is chosen. A !amily of noise densities with the same free parameters

can then be found for which the nonlinearity is optimal. The parameters

are evaluated by fitting a member of this family of densities to the noise.

LOCALLY OPTIMIAL DEECrOR

The problem of detecting a known signal s in noise n can be

expressed as an hypothesis H0 and an alternative HI:
'U

Ho:x = n
SHi:x = n + -Os 16 > 0

Under Ho, the observation vector x consists of noise n with density f (a),

and under ,H, the observation consists of noise plus known signal s with

amplitude t. The detector can be written as a real-valued functional T(x)

on the observation, followed by a threshold comparator to decide for Ho

or H1 .

When the magnitude 0 of the signal is unknown, but assumed to be

nearly zero, the efficacy

[ 4Lr-lp T]2 rfTf 'dxz

J(T)= [LTn = 2  (1)Lu V# T f Tf - [T! dx)

is frequently used as a measure of detector performance [1-8]. It is well

known [14] that the statistic T. which maximizes the efficacy is the -0

derivation of the log likelihood function at =0:

Ti, (z) = lin - -n[f (O)I

K
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known as the locally optimal detector. For a signal in additive noise with

amplitude @, the statistic consists of a nonlinearity

g, (X) = -Vf (z)/ f(x)

followed by a correlator

Th (x) = W V()-s = g (X)
f ()

where 'T" is the gradient and "." is the vector dot product. The statistic

reduces for iid noise to a zero memory nonlinearity (ZNL)

g (x) = -f'()/f (Z) (2)

followed by a correlator:

N NTo (Z) E Z-SJi) () -T .Esi gi.(Zi)
t" al 2-l

with efficacy

J(T) = f -2/ fd.

Suppose a ZNL g is chosen with free parameters 'V. Then Eq.(2) can

be viewed as a differential equation which can be solved under certain

regularity conditions. The differential equation is written as

g(z) =-f,(=)/ f W

Thus

fg (x) d = -fdln(f (x)) = -In(f (x)) + C

and so

f (z) = K exp-fg (z)dxl

A suitable suboptimal ZNL can now be selected, and the correspond-

ing family of solution densities found for which the ZNL is optimal. Not

only should the ZNL have a relatively simple form, but it must lead to a

F,
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reasonable set of densities. Since a member of the solution family is to

be fitted to the observed noise, it should be general enough to provide a

relatively good fit, and the densities should have parameters that are not

too difficult to estimate.

PEARSON APPROXIMATION TO THE ZNL

As an approximate ZNL consider a rational function:

g(z) = -N(x)/D(x) (3)

where N and D are polynomials in z of degree n and d respectively. This

is a general form of the Pearson differential equation.

Choosing n=1 and d=2 yields the classical Pearson family as solu-

tions of the differential equation:

f .() a+zX (4)f (Z) bo-Fb i: b z2 2

The classical Pearson family includes as special cases the Gaussian,

Cauchy. t, F, X2. uniform, gamma, exponential and beta densities. Origi-

nally proposed by Karl Pearson [I I] as a tool for fitting densities to data,

it has continued to attract considerable attention.

Solutions of the differential Eq.(4) depend on the roots of the denomi-

nator D. There are three possibilities:

1. real roots, same sign

2. real roots, different sign

3. complex conjugate roots

These correspond to the three main Pearson types VI, I and IV respec-

tively. Transition types result when parameters in the main types

approach a particular set of limiting values. The Pearson types and
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associated common densities are summarized in Table 1.

Maximum likelihood (ML) estimators of the parameters in the Pear-

son family depend on the density type which is the best fitted to the

observations. A simpler approach is to use the method of moments (MM)

*which requires estimates of the first four noise moments. For nearly

Gaussian noise (#1 9 0. 1 and 2.62 #2! r 3.42), the ratio of the variance of

MM to ML estimates exceeds 80% [12,13].

The coefficients of the Pearson system can be found in terms of the

first four moments (or skewness and kurtosis)if they exist [9,10,Appen-

dix]. Define variance, skewness and kurtosis:

In terms of these quantities the coefficients are:

-a = 1 = opj%(p 2+3)/D

0 = -U2(4#2-3#1)/ D

b2 = (29 2-39 1-6)/D
with the denominator D given by

D = 1OP2-12#1-18

As an aid to selecting a Pearson type density given the sample values

of .6 and P2, Pearson constructed a chart showing the regions occupied
w

by each of the Pearson types in the Pjx#2 plane (Fig. 2).

Although the Pearson family consists of both skewed and symmetric

densities, only the symmetric (#,=0) are considered below. The sym-

metric solutions can be seen from Fig. 2 to include the Pearson types II,

VII and normal densities. These can be written in a single function form:

W f (z) = K(-axz2 )t

U-
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The constant K can be written in terms of the incomplete beta function

~BC...):

K acxB(zm+1) m >-1 II

When the first four moments exist:

a = (3-# 2)/2oef- (5)
m = (5#2-9)/2(3-#2)

Note that for 162<3, f (z) has finite support, I x <a-%. For #2-3. f (z) has

infinite support, and at #2=3, the density is normal. Fig. 3 shows f (z)

for several values of P2, and properties of f (z) are summarized in Table

2.

Restricting the density to be symmetric simplifies the ZNL since,

from Eq.(l1), when #1=0, then a=b 1 =0 and the resulting ZNL is odd sym-

metric. The locally optimal ZNL is found from Eq.(2) to be:

g&. W X (6)
1-ax

2

with range -- <z <0 for a-0 and I x - for a>O. The parameter a in

this nonlinearity can be estimated from the variance and kurtosis of the

observed noise using the expression in Eq.(5). The II/VII ZNL, shown in

Fig. 4 for several values of P2, can take three important forms: expander

(12<3), linear (92=3), and contractor (P2>3). A fourth type, the limiter, is

not included, causing some problems when fitting to a density with

exponential tails, for which a limiter is optimal.

The Asymptotic Relative Efficiency (ARE) is defined, under certain

regularity conditions, to be the ratio of the efficacies of two detectors:

ARE 1,2 = J(T 1)/J(T 2)
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and is a frequently used measure of relative performance of the detec-

tors. A linear detector for any density is easily seen from Eq.(1) to have

the efficacy-

The efficacy of the locally optimal detector of the Pearson II/VII density

is

J(T,) 5(92-3)(2#2-3)
AOZ(72- 15)

The AREbd is plotted in Fig. 5. The ARE ,I is a minimum of unity at

P2 = 3 corresponding to the Gaussian density. As P2 decreases, resulting

in densities with increasingly lighLer tails, the ARE increases asymptoti-

cally to inflnity at P2 = 15/7. For heavier tailed densities, the improve-

ment is less marked. As P2 -oo the ARE approaches the limiting value

10/7.
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EXAMPLES

In the last section, a method of finding a suboptimal ZNL using the

first four sample moments was developed. In practice we would use only

these moments to fit our suboptimal ZNL. The problem of estimating

these moments efficiently for an unknown density will not be considered

here. Instead, in our examples, we assume two classes of non-Pearson

noise densities and use analytically derived moments to fit the Pearson

ZNL. Then the efficacies of the suboptimal and optimal detectors are

compared as a measure of detector performance. The two classes of den-

sities chosen are the generalized Gaussian and a Gauss-Laplace mixture

density.

A. Gauss-Laplae Mixture Noise

The Gauss-Laplace density is given by:

f ( 1) -- z + xp(-io Z

where O-." I and O<or2,O. One justification of this density is to assume a

Gaussian noise with bursts of Laplace (impulsive) noise 100c% of the time

[2]. An additional quantity which proves useful is the ratio of the vari-

ances:

y = (,O)2/2

Typically c and 7 are assumed small. The moments are:
"I

Al = A3= 0

IA = (1-c)o2 + e(2/ )

4 = (I-e) + c(2/1 2 )

with skewness and kurtosis:



I _(I-[f + ]2,

The Pearson ZNL is given by Eq.(6):

g(Z) = /(I-az 2 )
where a can be found from Eq.(5):

a = (P2-3)/ (2Pfi2)

Notice that the Pearson ZNL is designed using estimates of the noise

moments, and not estimates of the quantities r or y which are more

difficult to compute. Since the moments are relatively simple to esimate,

this nonlinearity is by nature adaptive.

AREg,M is computed numerically and shown with ARE4,I in Figs. 6-

10, for several values of -y. Reasonable performance is seen for v small

(nearly Gaussian noise) even though the Gaussian noise is contaminated

with a non-Pearson density. In addition the performane in all cases

equals or exceeds that of the linear detector, AREg,w:l.
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B. Generalized Gaussian Noise

The Gaussian density can be generalized by providing for a variable

rate of exponential decay [1]:

f (z) =Kexp(- Iz Ir)

where

M=/(c) and K=c /2(1/c)

This class of densities is of interest because it contains both the Gaussian

(c =2) and Laplace (c =1) densities as special cases, and it allows consid-

erable control over the rate of tail decay.

The moments are zero for n odd and for n even:

= (t ]((n +1)/c )l(I/)

r(3/n)n/c
with skewness and kurtosis:

0and # = r(5/c)m(I/c)
r(3/c) 2

The Pearson ZNL is given in Eq (6) and a in (5). Once again, the moments

are estimated, and not the decay parameter c, which is rather difficult to

estimate. Since a is easily estimated, the Pearson ZNL is potentially

• adaptive.

AREg,Ld is computed numerically and shown in Fig. 11. AREj , and

AREdd are also shown for comparison. ARE,, is the ARE of the sign

detector (hard limiter) vs the linear detector. The sign detector is

optimal for Laplace noise (c = 1) and nearly optimal for c t 1. However, for

nearly Gaussian noise c f2, the Pearson detector is better. This suggests

that a system including both the sign detector and the Pearson detector

U
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might well surpass the performance of either one alone. J

MORE COMPLEX 7ZNL's

Values of n and d can be chosen other than n=I and d=2 of the clas-

sical family. The resulting families may contain multimodal curves (for

instance nt=2, d=3 results in a family including bimodal curves). Higher

values of #I and P2 may also be admitted. The major disadvantage of

increasing n and d is that high order moments are required. Since the

number of parameters to be found is n+d+1, using the method of

moments requires n +d+1 moments. As the moments become increas-

ingly difficult to estimate with increasing order, increasing n and d

significantly may not be possible or desirable.

A single or multiple discontinuities can be allowed in the nonlinear-

ity. The result is a family of curves which consist of segments of Pearson

curves between the points of discontinuity. For a single discontinuity at

Z=0:

fW(z)= +a)(1-c
f$(.) bo+blx+b~x

where

U() z <0

Solving this differential equation yields a family of Pearson curves con-

q sisting of two half curves for za0 and z<0. Each of the two halves are of

the same Pearson type but with different parameters. Among the possi-

ble solutions, two of particular interest are the Laplace or double

exponential and the double Gaussian densities.

II



As an example where this method of curve fitting fails, consider the

nonlinearity on the open interval (z 1,x2):

g (x) = asgn (x) I. I

Then for c ;1 and z1 <I<z2 :

f (z) = Kexp{-( .T.~ 1 c+j

This density is commonly called the generalized Gaussian with Laplace

(c =0) and Gaussian (c =1) as special cases. Unfortunately there is no

good method for estimating the exponential parameter c, and thus the

ZNL cannot be fitted in the manner used above.

Several multivariate extensions to the Pearson family have been con-

sidered [10,15]. Following the same line of reasoning which led to the

univariate Pearson family, K. Pearson wrote the difference equations

describing the bivariate hypergeometric density as a pair of differential

equations:

: ~~~Of (X,.V) =cubic in X,Y x v
ax quartic in x,y

and

f-(,Y) =another cubic in ,f (x, ) (8)
d @y quartic in x,y

Other nonlinearities are possible, but all suffer from the same drawbacks.

It is extremely tedious to solve the simultaneous equations if the method

of moments is used, and the number of coefficients needed for a com-

plete fit increases extremely rapidly. In the bivariate case alone, there~are 15 moments up to fourth order [15]:

1. 1-total mass.

2. 2-position of mean.

"2
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* 3 2-variate standard deviations.

4. 1-coefficient of correlation.

5. A-marginal P's (P I, P2, P', G).

6. 2-third order product moment coefficients.

7. 3-fourth order product moment coefficients.

Thus a complete fit up to fourth order moments requires 15 coefficients

in the nonlinearities. Since there are fewer than 15 in Eqs.(7-8), and in

fact in most reasonable nonlinearities, some relationship among the

higher moments must be tolerated-to reduce the number of coefficients

required. It then becomes less clear that the fit will be a good one.

CONCLUSION

The optimal ZNL in a locally optimal detector may be cumbersome to

implement or even impossible to find when noise statistics are not known

exactly. It is possible to choose a practical form for the nonlinearity, and

solve the locally optimal differential equation yielding a family of solution

densities for which the nonlinearity is optimal. One of these densities can

then be fitted to the noise, and the corresponding detector used. If the

family of densities can provide a good fit to the noise, it is likely that the

detector so derived will have nearly optimal performance.

Choosing a rational function for the ZNL in a locally optimal detector

results in a particularly useful family of solution densities, the Pearson

family. Not only does the Pearson family contain many common densi-

ties, including the Gaussian, but for nearly Gaussian noise the method of

moments can be used efficiently to compute the coefficients of the ZNL.

This method produces a detector which performs at least as well as the
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linear detector for the two classes of densities considered, and nearly as

well as the optimal detectors for nearly Gaussian noise.
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APPENDIX - Method of Moments for Pearson Family

The coefficients of the Pearson system can be found in terms of the

first four moments if they exist [9,10]. Cross multiply the Pearson

differential equation, Eq.(12), multiply both sides by z' and integrate to

obtain

fzn(bo+bjz+bzz2)f'(z)dz = fzl(a+z)f (z)dz

The left side can be integrated by parts:

z n (bo+blz+bz Z)ff'(z)dz -

f(nboz,-+(n+ I)b 1zR +(n+2)b2 z')f (z)dz

w = tafz/ (Z)dx + fzR'1f (z)dT

but ff'(z)dz = 0, and 1' is the i-th moment about zero. This gives

four equations (for n=0, 1, 2. 3):

-An+,'= agn'+bonpi-,'+bl(n+t)P4'+ 2 (n+T2) 1 +i '

Shift the moments to moments about the mean by setting 1, = 0 and

S fori 2, 3, 4. Thus

61 + a = 0

bo + 3A2b 2 = -A2

31AbI + 4 b 2 + I4 CL- = -A 3

* 3/Ab 0 + 4L3b 1 + 5A4b 2 + M3a = -4

Solving gives:

- = b I =j (A4+3A)/ D

* b 0 = / g(3A?3-4AZ"z 4)/ D

b 2 = (-2Azs4+33 2 +6M 3)/D

D = 10, ,4-18/3 -12 12A32

I Define variance, skewness and kurtosis:



a2 I2 I A-693 P U/A

In terms of these quantities the coefficients are:

-a I = pM2+)D

6 -U2(4P2-3p )/ D
b2 =(2P2 -3P 1--6)/D

D = OP2-12P 1-18
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CHAPTER 4 - AN EXAMPLE OF MOMENT ANALYUS

ON ARCTIC UNDER-ICE DATA

INTRODUCTION

As an example of data subjected to moment analysis, we consider

samples of under-ice ambient noise. The data were collected on April 23,

1980 under Arctic pack ice at 86°N latitude and 25°W longitude by a

multi-institutional experimental group. The raw samples were gathered

using an omnidirectional hydrophone suspended 91 meters below the ice,

and they represent approximately 10 minutes of noise. The noise was

preflltered with a low-pass filter, cutoff frequency at 2600Hz and

96dB/octave roll-off. The result was sampled at 10kHz and stored as 6006

records of 1024 samples, each record representing about 0. 1 seconds.

For further information, the reader is referred to References [ 1 and 2].

COMPUTATION OF SAMPLE MOMENTS

In this chapter, as in 11], the Arctic under-ice samples are assumed

independent and stationary. The first four sample moments are com-

puted for each record of 1024 samples (a 0.1 seconds). As an estimator

of the kth central moment, gk, consider the kth central sample moment,

ink:

where Z is the sample mean:

N
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In the previous chapter, the skewness # and kurtosis #2 were defined

in terms of the variance 2 and the third and fourth central moments A 3

and M4:

p, = A3/ou and P2 =  4/ a,

As estimators of P2, # and P2, the sample variance s 2 , skewness 6 and

kurtosis b2 can be used, where

s 2 =m 2  b,=mi/s 3  b 2 = m 4/s 4

The sample variance, skewness and kurtosis are plotted versus

record number in Figs. 1-3 for the Arctic under-ice ambient noise data.

These plots are essentially the same as those in [ 1], except that here the

moments are centered on the sample mean of each record, rather than

on the mean of the entire 6006 records. From these figures it can be

seen that the noise under study is not only nonstationary, but, at times,

non-Gaussian.

Both sample skewness and kurtosis have been suggested [2,4] as

measures of Gaussianness. The 1% and 5% confidence intervals for b I and

b2 given a sample size 1000 are given in Table 1. as computed in [4].

Applying either of these bounds to Fig. 2 or 3 gives a clear indication that

the data consist of Gaussian or nearly Gaussian noise with sporadic,

highly non-Gaussian bursts.

If skewness and kurtosis are taken to be measures of Gaussianness, a

convenient tool for viewing these statistics is the PxP2 plot. Originally

suggested by K. Pearson [5,6] as a tool for curve fitting, it is discussed at

length in the last chapter. Its most useful property is that each density

or family of densities corresponds to a specific region of the PIx# 2 plane.

w IlMlnl~ .. bm.,/mu/m n~e" ,
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4

Confidence Interval

5% 1%

b ±0.127 ±0.180

b 2  (2.76,3.26) (2.68,3.41)

Table 1. 1% and 5% Confidence intervals on b and b2
4for 1000 Gaussian samples.

n

V
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For example the Gaussian density corresponds to a single point,

", = (0,3). While a (91,,2) pair does not uniquely specify a density,

two densities at the same point can be made to have equal moments up

to fourth order. The Pearson and Johnson families are of particular

interest since they both cover the entire possible region of the 1 1x#2

plane.

The Pearson family is described in the last chapter and in [5,6]. It

contains the Cauchy, t, F, X2, uniform, gamma, exponential and beta den-

sities as special cases. Fig. 4 is a # 1X 2 plot with the regions correspond-

ing to the Pearson types on it. Superimposed on this figure is a scatter-

plot of the (b 1,b 2) pairs generated for each of the 6006 records.

The Johnson family is described in [5,6] and consists of three types.

In the Johnson system, the transformation of a non-Gaussian variate is

assumed to be unit normal. In the most common of the Johnson types,

Lhe lognormal, SL, the transformation is

:. g~L(Z) = C + 1o[09 -a)b

Thus if x is lognormal, gL(z) is unit normal. In a similar fashion, S, and

SB are defined by the transformations:

w
gg(z) = c + d sinh-1[(x -a)/b]

and

gB() = c + dlog[(z - a)/(b -z) 2

In Fig. 5 the sample (bl,b2) pairs are plotted on the 9x10 plane for the

Johnson family.

In both plots, the vast majority of the points are clustered about the

point (0,3) corresponding to the Gaussian density in both families. While

1 I...
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confidence regions are extremely difficult to compute, nevertheless these

figures show more clearly than Fig. 2 and 3 the essential Gaussian nature

of the data.

CONCLUSIONS

The results in Figs. 1-5 indicate that the Arctic under-ice noise is

non-stationary and although Gaussian or nearly Gaussian, it is contam-

inated by sporadic bursts of a highly non-Gaussian nature. Further

moment analysis of the non-Gaussian component is of questionable value,

due to the small number of highly non-Gaussian records. Perhaps with a

Ularger data set, stronger conclusions could be drawn.

Two assumptions are made earlier in this chapter should be exam-

ined further. The data are assumed stationary, but the results obtained

do not bear this out. Some investigation of the degree of nonstationarity,

perhaps the rate at which the moments change would be of interest. The

data are clearly not independent, since, among other sources of depen-

dence, they were preffltered befo 'e being recorded. However, the

assumption of independence is made, and the sample moment estimators

are perhaps not the best that could be used. For example, consider the
U

sample variance:

-- _X -_.-.2 =
N j-1 N i= N2 i=lj=l

Taking the expected value yields

ES2  = - N

where the a.? are the covariance terms. When the noise is uncorrelated,
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the cross terms vanish, but for non-white noise, the cross terms can

affect the estimates. For higher order central moment estimates, higher

order cross terms result. Several possible moment estimators for depen-

dent data are discussed in [3], but in general, they require knowing or

4estimating the cross terms.

U
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APPENDIX - Moments Estimators for Dependent Noise.

The following is an example of moment estimators which have been

corrected for second order dependence. The prewhitening technique

used requires that the correlation either be known or estimated. Note

that this corrects only to second order, and the expected value of higher

order moment estimates still may contain non-zero cross-moment

coefficients of order greater than two.

A data record can be written as a length N vector x. with NxN

covariance matrix E. Computing the moments about zero requires that

the vector x be centered; this can be written [4] in terms of the centering

matrix C:

Xi=I N x= Cx

where I is the identity matrix and I is a vector of 1 's.

The centered vector may still be correlated, but it can be prewhi-

tened if it is assumed that the correlation matrix R = E/o 2 is known.

Assuming R is Toeplitz, it can be factored into an upper and lower tri-

angular matrix:

R LU and R-1  U-IL-1

where L = UT and L1- = (U-1)7. The matrix L-1 can be used to prewhiten

the centered matrix with the result that L-'Cx is uncorrelated. An esti-

K, mate of the ith moment about the mean is given by:

HN
Mk = ,,)

where y = L1 Cx is the centered and prewhitened observation vector. The

three parameters of interest in the last chapter are the variance,
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skewness and kurtosis. The variance u2 has estimate S2:

!S2 = k'U1C71x

The estimates of skewness and kurtosis are

61 m7 3 /s 3  and 62 7TL4 /S 4

10
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CHAPTER 5 - LOCALLY OPTIMAL DETECTION IN MULTIVARIATE

NON-GAUSSIAN NOISEt

INTRODUCTION

In problems of detection and estimation in discrete time, the

observed noise sequence is often assumed to be independent. Under this

assumption, various detection schemes have been found and analyzed

[1,2,3,4]. Often, however, a strong dependence structure exists suggest-

ing that designs based on the assumption of independence are less than

optimum. Previous research on detection in dependent noise is often
U

limited to simple detector structures such as a linear (matched) filter or

a ZNL followed by a linear filter [5]. In this chapter, a noise observation

consists of a length m vector which is assumed to be no more than m-

dependent. Under this model the noise statistics are contained in an m-

dimensional multivariate distribution and optimal detectors often con-

tain nonlinearities with memory. Finding a suitable multivariate noise

distribution for dependent, non-Gaussian noise is a problem with no sin-

gle best solution. Instead we discuss several known forms of multivariate

densities and draw attention to a characterization entitled trausforrna-

tion noise which has several useful properties.

There exist a number of well known, closed form, multivariate densi- 1
* ties [6,7] including the Gaussian, Wishart, multivariate Pearson family

and multivariate forms of many common univariate densities. The mul-

tivariate Gaussian is often employed not oniy because of its tractability

tThis chapter (excluding Appendix B) was co-authored with Peter F. Swaszek, and
also appears in his PhD dissertation Robust Quantization, Vector Quantization
and Detecton , Princeton University, October 1982.
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but because a preponderance of evidence suggests that it is the natural

multivariate density with Gaussian marginals. Unfortunately central

limit arguments do not always hold and this approximation can be poor.

Additional closed form multivariate densities can be generated by replac-

ing the argument of a univariate density with the square root of a qua-

dratic form [8]. This extends each univariate to an elliptically symmetric

density in m-space. These densities all have closed functional forms and

the advantage of tractability, but the dependence structure may not be

well represented by any of these densities.

A second approach is to use a multivariate series expansion of the

Gram-Charlier type [9]. This has a certain theoretical elegance and can

be used to derive general properties of densities. For independent data,

useful detection procedures have resulted from this method since the

nonlinearity is a function of the moments of the noise process [10]. There

is still the problem of choosing a proper weighting density on which to

base the series. By careful selection, it is often possible to minimize

truncation and tail errors.

In a multivariate setting however, it is less clear how well series will

work. For one thing, the number of coefficients in a series increases

exponentially in m and the expansion requires estimates of the cross

moments of the process. It is necessary to truncate the series which may

* result in a poor representation or in negative values in the tail regions of

the pdf. The number of high order, cross moment estimates required for

good representation may be prohibitive.

A third class of densities which are often considered are those gen-
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erated by transformations from other densities [1.1]. Common univariate

examples are the log-normal and the Johnson family. In a multivariate

setting, this method involves a nonlinearity (possibly with memory)

operating on a noise sequence with a known density. The intractability of

this general class of transformations suggests constraining interest to

those invertible transformations with zero memory (ZNL). A block

diagram of the system generating this type of noise is given in Fig. 1.

Given an identically distributed, m-dependent background noise process

v with a known density rp(v) and marginals ro1(v%), a ZNL g can be selected

to produce a noise n with the desired marginals f 1(r4). If rp, and g are
U

fixed, the dependence structure of n is completely determined by the

background noise dependency. This lack of fi--ibility in choosing a

dependence structure may be a disadvantage in some cases. Noise gen-

erated by this method will be called transformation noise.

If the input v has a multivariate Gaussian distribution, this transfor-

mation can be modeled as shown in Fig. 2 where z is an iid N(O,I1) random

vector, and L is a linear operator. It is well known that any symmetric

matrix R can be factored by Crout resolution [ 12] to give the form:

R=LLT

where L is an unique lower triangular (hence causal) matrix. This

corresponds to spectral factorization in continuous time which is used to

solve the Weiner-Hopf equation. The linear filter L in Fig. 2 can be there-

fore chosen to produce a desired covariance in v:

EjLvT = E (Lz)(Lz)Tr = L EzzT LT = LLT = R
U This transformation model allows selection of the noise marginals but

qi .. . .
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Fig. 1. General transformation noise.

U

zW7L

Fig. 2. Transformation noise from a Gaussian background.

S

U

S:



- -6 9-

increases the complexity of calculating the output dependency. The

advantages of the model alluded to above are that the only knowledge of

the source needed for its complete statistical specification are the non-

Gaussian marginal density and the mxm covariance matrix.

DETECTION PROBLiEM

The detection problem considered is formulated as a hypothesis Ho

and an alternative HI:

Ho: x = n

HI: x=n+i s

Under H0 , the length m observation vector x consists of m-dependent

noise n only and under H, it consists of signal s with unknown amplitude

19 plus noise. It is assumed that the signal is known and that the noise

has an rn-dimensional density f (n). A detector is represented as a func-

tional +(x) operating on the observation x and this scalar valued test

statistic is compared to a threshold to decide for H0 or H 1 (see Fig.3).

As the signal amplitude approaches zero, a frequently used measure

of detector performance is its efficacy:

rn2
J (q) = lira

04, Vard'(x)

This is a measure of the asymptotic performance of the detector and is

maximized to produce the locally optimal test.

Throughout this discussion we assume that bnth the family of dpns:-

ties f (x,1) and the test statistic +(x) satisfy certain regularity cond.

* tions. Let the test statistic have expected value

V
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E4I'(x) =f(x)f (is)dIA
To be able to move the derivative inside the expectation operator the

statistic 4*(x) is required to be regular at @O; that is for all ) in an open

neighborhood of 0o

EO' *() = a-f-()f (x,)) = fJ,*()f '(z.,-),4

We also desire that *(x) =1 be regular:

a ff (izO)dA f '(xo)d = 0

To satisfy these conditions restrictions must be made on the test statistic

*W(x) or on the family of densities f (WO). Rather than overly limit the

class of test statistics, 'restrictions are applied primarily to the family of

densities. It can be shown [13] that all real-valued test statistics with

finite second moment are regular in the neighborhood of 00o if the family

of densities f are smooth (in Pitman's sense) at 30. For family of densi-

ties to be smooth at 10

(i) f has a I derivative f' at almost every x for each value of 0 in an

open neighborhood of 00.

(ii) (f ')2/f is integrable and fi ')21/f dM < (finite Fisher's Informa-

tion).

It is well known [13] that under the above regularity conditions the

function that maximizes efficacy, the locally optimal test statistic *j, (x),

is the O derivative of the log likelihood function at O = 0:

=4 Z lim ~log If (x1)I

In particular, for this detection problem (a shift in mean):

U
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where Vf is the gradient of f. The efficacy of this test is given by

:i:J'(*S.) =Eo(* 2)

In the independent and identically distributed (iid) case, the mul-

tivariate density is the in-fold product of the noise marginal f 1(4). Eq.

(1) reduces to a ZNL followed by a correlator. a form considered exten-

sively in the literature:

The ZNL gi. is the locally optimal nonlinearity for uid noise, given by

!:gi. (ZO = _ 2 ) (2)
fi

Given a specific, closed form multivariate density of the type con-

sidered in Section I, the locally optimal detector can be found from Eq.

(1). In the case of the multivariate Gaussian density:

f (n) = Iexp(- nrRIn/ 2)
(27r)m/ 21 RI3

where R is the. covariance matrix, the resulting detector is the matched

filter:

(X)= 2TR'x

As a non-Gaussian example, consider a bivariate, elliptically symmetric

density with Laplace marginals [8]:

f1 K (n)= K(V2n R-n)
irRi 1"

The resulting detector is

1 ____ _ =_L..;.x- JR Kl vo2z-rR---,.:

.-.. -
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.' where K0 and K, are modified Bessel functions. The test statistic is the

product of the outputs of a matched filter and a nonlinearity with

memory.

As in the example above, closed form multivariate densities typically

yield detectors *hich include nonlinearities with memory, making these

detectors difficult to implement. Employing the transformation noise

model (with Gaussian background) simplifies the resulting detector to a

combination of ZNL's and a linear filter.

T:ANSFORMATION NOISE DETECTOR

As described in the IntroducLion, the m-dimensional noise n is gen-

erated by passing an identically distributed noise sequence V with a

known multivariate density rp(v) and marginals go(vi) through an inverti-

ble ZNL as shown in Fig. 1. The output noise n has a multivariate density

f (n) with a dependency structure and marginals f 
1
(Yi) determined by rp

and g. It is assumed that g is twice differentiable almost everywhere and

., that both 14 and vi have invertible cdf's. The density of n is found with a

change of variables:

f (n) = r[g(n)]l Ig'(n,)I

where

g (n) = [ (n 1), g (n 2 ), g(,..,)

The locally optimal detector is found from Eq. (1) to be

NJ,. (,) = g'(X) .z)J •

A block diagram of *j, is given in Fig. 4 where the symbol 0 is an element

....°"°o, . -..... ... ". °. o.- . - .o... •' - - . '.°. •" .• "% oo - - • ° - o- ° - .
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Fig. 4. Transformation noise detector.
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by element vector multiplication and 0 is a vector dot product. The sys-

tem consists of the locally optimal nonlinearity with memory (for signal

in V distributed noise), three ZNL's and a correlator followed by a thres-

hold comparator.

The transformation ZNL g can be found by equating the marginal

cdf's of n and Y (FI(nh) and 0 1(yi) respectively):

g(;q) = 4,-1 [Fj(zj)] (3)

The nonlinearity go is found by differentiating Eq. (3)

gi(;() (4)
.1 [g (T) I

- and likewise

.-- __ ; = - (Z+] g'+

. fi

At values where the denominator of these expressions equals zero,

the quantity is assumed to equal infinity. This is acceptable since an

observation in a region of zero probability of the noise process indicates

the sure presence of the signal.

When P is a multivariate Gaussian random vector with unit variance

and covariance matrix P, this third nonlinearity becomes

:, - -o

9 fl
The locally optimal nonlinearity, with memory, is a linear filter

- - -() = lx

.: Therefore, the system can be reconfigured as shown in Fig. 5. The third

ZNL gi, is the locally optimal nonlinearity for signal in iid, I distributed

noise as given in Eq. (2). Thus, under the assumption of transformed unit

w
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Fig. 5. Locally optimal detector for transformation noise with Gaussian

back~ground.
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variance Gaussian noise (Fig. 2), the system consists of one linear filter

and three ZNL's, one of which is the nonlinearity occurring in the iid

locally optimal detector.

Under the assumed noise model, the detector design requires

knowledge of g, the nonlinear transformation, and R, the covariance

matrix of the background Gaussian vector P. In practice, however, the

available information is often the noise marginal density and the noise

covariance matrix R.. The transformation nonlinearity g is found from

the marginal cdf with Eq.(3). Computing R, from R in general requires

numerical integration (Appendix A).

TRANSRMATION EX(AIIPLE

Two examples of the proposed detector are considered in this sec-

tion. The first example employs the Laplace density as the noise marginal

and the second example has Pearson Type VII marginals. For both of

these examples, Eqs. (3),(4) and (2) yield the ZNL's g, g' and g, respec-

tively. Covariance mapping described in Appendix A relates the back-

ground and noise covariance matrices, R, and RR.

The Asymptotic Reletve Efficiency (ARE) is often used to compare

the performance of two detectors. It is defined as the ratio of the

number of samples needed to achieve the same level and power of the
P

two detectors as the number of samples goes to infinity. With the above

regularity conditions and the Pitman-Noether theorem, the ARE is equal

to the ratio of the efficacies

J2*(z)
ARE 2 = J2(X)
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An analytic evaluation of the efficacy of these detectors is generally

intractable and depends on the signal s. As a result, the operation of the

optimal and several suboptimal detectors was simulated to evaluate the

performance in two multivariate transformation noise environments. The

simulated structures are numbered as follows:

1. Locally optimal system (Fig. 5)

2. Locally optimal test for iid noise (gj.)

3. Matched filter paralleled by gb and the values summed

4. Matched filter

Detector 3 is included to determine the effects of removing the vector

multiplication in the optimal detector, significantly simplifying its struc-

ture. A Monte Carlo simulation was employed to compute the efficacy of

the four detectors above. These results were then used to compute the

ARE for each scheme as compared to the matched filter.

The matched filter has efficacy sTR-1s. In a bivariate noise environ-

ment, with correlation coefficient p, the efficacy of the matched filter is

maximized by sl = -s 2 when p Z 0 and by s1 = S2 when p < 0. Conversely,

it is minimized by sI =s 2 for p 0 and by s = -s 2 for p < 0. Since all

four systems are symmetric in sI and s2, the condition sl = s 2 maximizes

while s1 = -s 2 minimizes efficacy for p s 0 (the extrema are reversed for

p 2 0). A constant signal with unit power is used in the evaluation of

bivariate detectors in this chapter, and therefore, the simulation yields

minimum and maximum efficacies for p L 0 and p < 0 respectively.

The bivariate simulation shows ARE for -I < p < I. However, for m-
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dependent noise, this entire range may not be of importance. Since all

terms of the m-dependent autocorrelation sequence beyond the first m

vanish and the covariance matrix must be positive definite, bounds can

be placed on the correlation sequence [14]. For the bivariate case

(m = 2), the bounds on p are II , with the result that the values of

ARE where jpI j ! are perhaps of the most interest. Although the

efficacies are maximized or minimized by the selection of the signal, this

does not appear in the plots of ARE. This results because the matched

filter is more sensitive than many other detectors to signal selection.

For multivariate simulations of length m, a triangular correlation

function sampled at equal intervals is assumed:

[:. =i 1 > ,,

This triangular function approximates the type of correlation often seen

in highly correlated noise sequences. For these examples, the signal to

maximize the efficacies is no longer obvious due to the nonlinearities

present in the detectors. Rather than find the signal to maximize thi . -

efficacy, simulations are presented with a constant (s = k) and an oscil-

lating (a = ik,-k,k, " " i ) signal. These were chosen because they yield

nearly the worst and best performance from the matched filter respec-

tively for the correlation sequence above.

-9.

. .. .

. . *.
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1. Laplace Results

Impulsive noise environments are often modeled by densities whose

tails are heavier than the Gaussian [15,16]. The Laplace density is chosen

as a first example since it is a frequently used model of non-Gaussian,

impulsive noise [17]. For the marginal density

.f (.) = -exp(-a 1 )
2

Eqs. (3). (4) and (2) yield the three detector ZNL's

g(X,) = ',-'1 + sgn(,) [1-exp(-a xrj)]1

w u(:C) - -42w eXp(g2(= /_,al ).
2 )/2

g g(t) = a sgn(;)

where 0-1 is the inverse normal cdf. For unit power noise a = V-2 and

correlation coefficient mapping shows that p P PL. Figs. 6, 7 and 8 con-

tain the three nonlinearities g, g' and g,. The resulting ARE's for the

bivariate case are shown in Fig. 9, and for the multivariate case in Figs.

10 and 11.

'S:

°

1 *. . .. '
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Fig. 6. Laplace ZINL 1, g (y).
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Fig. 8. Laplace ZNL3, gw (y).
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100

1. loc. opt. dot.
2. ild loc. opt. dot.
3. parallel scheme
4. matched filter

10AR

2

1 2 3 4 5 10 20
m

Fig. 10. ARE of Laplace detectors vs. detector length m for triangular

correlation and a constant signal.
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AE
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1. loc. opt. det.
2. lid loc. opt. dot. ARE 2, 4
3. parallel scheme
4. mtehed filter

0.1
1 2 3 4 5 10 20K In

Fig. 11. ARE of Laplace detectors vs. detector lengtb m for triamigular

correlation and an alternating signal.



2. Pearson Type VII Results

The Pearson VII density is selected as a second example because it

car. be made arbitrarily close to Gaussian by changing one of its parame-

ters [II]. Here the marginal is

f 10%) - K 11 + (7i/ CL)1
As a-*-, the density approaches the Gaussian. For this example, let a

This results in a density with a nearly Gaussian body and algebraically

decaying tails. The three nonlinearities in the detector are found from

Eqs. (3), (4) and (2) to be

g(zj) = '-'[Fj(zj)]

g,( ) = K [ e/p( )/2)'

S(x) = 14T/(cL2 + ;2)

where F, is the Pearson VII cdf. These ZNL's are depicted in Figs. 12, 13

and 14. In Fig. 15, the ARE's generated by simulation for bivariate noise

are plotted. The multivariate simulation results are depicted in Figs. 16

and 17 for constant and alternating signals respectively.

',:. 01
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ig. 12. Pearson VII ZN1. 9y
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Fig. 14. Pearson VII ZNL3, gin (Yi)
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ARE
ARE 4  ARE 4

AI

2. iid loc- opt. det. *
3. parallel scheme
4. matched filter

12 3 4 5 7n 10 20

Fig. 16. ARE of Pearson VII detectors vs. detector length ma for triangular -

correlation and a constant signal.

ARE

ARE R
1.4 ARE

6..c pt *.L APR!
2. Lid lco. opt. dot.
3. parallel sceme
4. matched filter

12 3 45 7n 10 20

Fg. 17. ARE of Pearson VII detectors vs. detector lengft mn for triangular

correlation and an alternating signal.
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MOVING AVERAGE (M,) NOISE DETECTR

Modeling the noise process as in Fig. 2 suggests the reversed model

shown in Fig. 18. The input z, id N(O,I), is passed through the ZNL g-1 to

produce the id vector - with non-Gaussian marginals r and variance a .

Passing -t through a linear filter L of length m produces the sequence n

with a dependence structure generated by L This model is typically

called a moving average process (MA) of order rn-1 [14).

As in the Introduction, Crout factorization can be used to solve for an

unique lower triangular matrix L, given I, since the covariance matrix of

n is given by

S= EEnn(L = =(L)T= LEjrvT1 LT = (a2UTo

where o2 is the variance of the 7-y This MA model has a more straightfor-

ward dependence structure than the transformation noise, but solving for

the marginals is more difficult. Note that these two schemes are

equivalent only when g- is linear (n is multivariate Gaussian).

Denoting the - marginal as rpl(yi), the density of the MA noise n is

found to be

f (n) = II- p jlo1 [(L-'n)]

where vi is assumed continuously differentiable and strictly positive. The

locally optimal detector *I' (x) is found from Eq. (1) to be

I" w *10 (Z) T LI~g10 (LI.X)

where ge, is the ZNL in the id locally optimal detector for the rp, margi-

rr

nal: El
%-~z *
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rz n

Fig. 18. Moving average noise model.
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L Fig. 19. Moving average noise detector.
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A block diagram of this detector is given in Fig. 19. The system is a ZNL

embedded in a matched filter. Note that for n Ad, L is an identity matrix,

.i -and the resulting detector is the iid locally optimal detector sT9 . (x). For

* the Gaussian case [g-A(z) = z] the result is the matched filter uTR"lx

The efficacy of the locally optimal test statistic is

.J( E*2= (x)
where Eo is the expectation under Ho. This can be calculated for the

moving average model:

JM()= (1-Is)T Efg(L-'x)gt(L-'x)I (L-'s)

where g, is the ZNL embedded in the detector. The outer product under

the expectation can be simplified since L-Ix = y is an iid random vector.

The nonlinearity gi, has expected value zero for any locally optimal

detector since

Eigio = - f (z) dx= 0
The outer product reduces to a diagonal matrix with diagonal elements:

gEojg0(=)j = 10
where 1o is Fisher's information for the marginal density f 1. The efficacy

of the system becomes
U

J(*)j = L..Rr1 o

and the ARE as compared to the matched filter is

~AREW,,.f = 10/o

Fisher's information is known to have a minimum of a2 for the Gaussian

density; hence, the ARE is always greater than or equal to unity and the

locally optimal detector performs at least as well as the matched filter.

[Q
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CONCLUSONS

Given a completely specified multivariate density, methods of finding

optimal detectors are well known. If the noise is non-nid or non-Gaussian,

the complete statistical description, the m-dimensional density, may be

an unreasonable amount of information to expect in practice. The

transformation and moving average density models, however, are charac-

.* terized solely by the marginal densities and the covariance matrices.

Also, the use of moving average and transformation noise models as

structures for a non-Gaussian noise environment simplifies the locally

optimal detector structure since no nonlinearities with memory are

required.

Three of the four detector structures considered in the simulations

are of particular importance. The matched filter uses the covariance

matrix only and is optimal when the density is Gaussian. The iid locally

optimal detector employs the marginal density of the noise and is

optimal if the noise is independent. The multivariate transformation

noise detector uses both the correlation and the marginals, and is

optimal or nearly optimal when the noise is described well by the

*t transformation noise model.

In the bivariate case the effects of dependence upon performance as

indicated in the simulations are minimal (particularly for Ip I&. The iid

locally optimal detector performed nearly as well as the multivariate

locally optimal detector. Both detectors performed better than the

linear detector indicating that in fact the form of the marginal is more
q

important than the dependence structure.

!'
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For longer correlation sequences (m >2), the dependence structure

becomes increasingly more important. In the simulations, the ARE of the

id locally optimal detector falls well below that of the optL-nal detector.

When the signal is chosen to nearly optimize the matched filter perfor-

mance, even the matched filter performs better than the iid locally

optimal detector. In this case, the dependence structure and the margi-

nals are both important and a detector structure should exploit both

when possible.

The moving average model was introduced as a permutation of the

transformation formulation. Simulations were not attempted because of

the need to factor the marginal characteristic function to arrive at a 7'

process. However, the detector structure itself is simple and suggests its

use as a general suboptimal structure which can be optimized numeri-

cally.

V..

LIIi

V.
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APPENDIX A - Computation of Rs

Implementation of the transformation noise detector requires

knowledge of the covariance matrix of the background Gaussian process.

Assuming that the input and output processes have unit power, this prob

lem reduces to finding a mapping between the noise correlation

coefficient p,1 and the background process correlation p, [18]. The out-

put correlation coefficient is given by

pi)= Efr&,n1+j ='-(jg-(1~

where g- 1 is defined to be

Since the v, and vi+i are unit normal random variables, with correlation

coefficient p = p,(i), the expression for Pn (i) becomes

P() = ffg-(z)g1(y) exp- _p 2  dz d (AlI)
27rVT~ 2(1-p

Solution of this integral expression, usually numerically, provides the

required mapping of p, to p,.

In [19], Wise and Thomas express the joint normal density as a series

expansion, Meher's formula:

N(0,0,1,1,p) = -Lexpj-(Z2+y2)/2 P Hk(z)Hk(y)
2-rk:0 k !

where Hk is the k-th Hermite polynomial. The nonlinearity g-1 can be

represented by its Herrnite expansion:

.- o

with coefficients bk given by

bk = fgl(x) -exp( Z2 /2) Hk()d
-27



Employing the orthogonality relationship of the Hermite polynomials:

:F-fHk (z)I11 (x)exp( x2/ 2) dz 6j

the integral in Eq.(AI.) reduces to

k-0

In the noise examples in this chapter, the marginal density is

assumed to be symmetric; hence, both g and g- are odd symmetric.

The even Hermite expansion coefficients (6a, k=O,1 .... ) are zero and

p,(i) is an increasing, odd symmetric function of p,(i). Therefore in

practice, the values of p,, can be interpolated from a table of p, versus P,.

Also, as an added note, the Gaussian process has a correlation coefficient

that is always larger in modulus than the output correlation:

P" ""

[:.

| I ° -I wI
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APPENDiX B - Estimation of Tranmsformation NonLinearity.

Suppose a particular multivariate non-Gaussian noise process is well

described by the transformation model with Gaussian pre-transformation

noise. Then it is assumed that the length m non-Gaussian noise vector n

with multivariate density fm (n) can be produced by passing Gaussian

noise v with denity rm (u) through an invertible zero memory nonlinearity

(ZNL) as shown iHL Fig BI. It is assumed that both rom(Y) and fm (n) each

have identical marginals (rp(vj) and f (N-) respectively).

If the marginals r and f are both known, then g can be found by

equating marginal cd's and the problem is solved. Frequently in prac-

tice, f may not be known exactly, and an approximation to this ZNL with

easily estimated parameters may be desired. For instance, the locally

optimal detector for transformation noise derived in this chapter

requires g given only the observed post-transformation, non-Gaussian

noise n. Under certain regularity conditions on the f, the Cornish-Fisher

expansion can be used to generate an approximate transformation of the

form [11,20]:

= g(n) = ao + al + a2n 2 +•

Certain regularity conditions on f are required. The Edgeworth

expansion (and therefore the cumulants) of f should exist:

(2- 0')D2  , 3D3  ,c4D4

f (n) =exp{-(i - + 2 .... 

where o(z) is N(u,o2 ), D is the differential operator and r,. is the rt4

cumulant of f. The rth curnulant is required to be of order O( 03-1 ),

where 0 is chosen so that f approaches Gaussian as -o; for example, 1

K.
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might be sample size. In general these conditions are not too severe, and

are satisfied by most common densities.

Havin met these conditions, the Cornish-Fisher expansion can be

used to estimate the transformation. Using terms up to order O( 0-2

the approximate transformation is [20]:

- g(n) -- 0.+ a I +G a 2
2 + Z 3 T + a4n 4 + a 5n (BI)

where

-3 K 5IC3K4  13K33aO 6 40+ 48 162

"4 7K? r 3542 17K3ic5 19 3
21 4  2473Kc4 .

, -+ -+ -+
36 48 384 120 36 7776

K3- + 7X3K4 +1c.
6 20 24 648

K'/4 + 32 + KS K4 2K 3 C5 547K3
2K4  907K34

24 9 72 12 15 864 1944
K5  1 1K 3 K:4  23c3

120 144 216

- 6 5K4c 7cK3 5  11 1K3 R€ 79K44
a5=-72 +  - - + 360 864 + 848

i . EXAMPE

The two densities used in the examples earlier in this chapter are

considered here. To simplify the examples without loss of generality,

assume that both f and rp have zero mean and unit variance.

The first density considered is the Laplace:

(z) I x,. e 1p-~l)

The odd cumulants are zero, and the even cumulants are given by

K = (2n)!
n2"

Thus

-V
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I 3=a=K50 and 21 I 4= 3 e=30
From Eq. (B 1) the approximate transformation is

g(n) 201 l1 3 29 -

The exact transformation is

- g(n) [-exp(-V/n)

where t is the unit normal cdf. The exact and approximate transforma-

tions are plotted in Fig B1.

The second example is the Pearson VII:

fr(z) = K(1 - (z/ a) ,)

As in the examples earlier in this chapter, let n =7. Then az = -11 and

the cumulants are

K K ==
3  O and K2 I K4

= 2/3 4= 13

Then from Eq. BI the approximate transformation is:

" 737 251 3 53_ "g(n) + + -

26 4320
The exact and approximate transformation is plotted in Fig. B2.

I

I!



-120-

39

00

Fig. BI Exact and approximate transformation for n Laplace.
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UFig. B2 Exact and approximate transformation for n Pearson VII.
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CHAPTER 6 - NOISE MODELS FOR DETECTIONt

INTRODUCTION

Problems in binary detection involve choosing between two statistical

environments, described as an hypothesis Ho and an alternative HI:

Ho Po(x)

HI: P,(x)

This decision is based on a statistic of an observation sequence x of

length m. Various functionals of the vector x are traditionally employed

to reduce the data to a scalar statistic easing the resulting detection pro-

cess. This test statistic is compared to a threshold T to decide for H0 or

H, (Fig. 1). For the criteria of detector optimality often considered [1]

(Neyman-Pearson, Bayes, probability of error) the Likelood Ratio (LR)

is known to be the optimal statistic of the observation z A second detec-

tor structure often used is the Locally Optimal or small signal detector

(LO). Both the LR and LO detectors are considered here for several mul-

tivariate noise models.

The class of problems considered here is that of a deterministic sig-

nal in additive noise. Ho and H, become

HO: x = n

H:x~n+s a)>0

Under H0 the observation consists of noise n with density f (n), and

under H, the observation consists of a signal s with amplitude 19 plus

noise n.

This chapter was co-authored with Peter F. Swaszek, and also appears in his PhD
dissertation Robust Q otia, Vctor Quantiatio and Detection, Princeton
University, October 1982.
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The likelihood ratio is given by

LR(z) = fI -f (X-6) ()
1 O() f (X)

When the amplitude constant l is small and unknown, the locally optimal

test statistic

= f (z)LO(z)=- (2)

is frequently employed [211.

Throughout this chapter a monotone function of LR or LO may be

used in place of LR or LO when it simplifies a detector structure. This

can be done without loss of generality since taking a monotonic function

of both the test statistic and the threshold value does not effect the per-

formance of the test. The log function is often used since the test statis-

tic for an independent noise process reduces to a sum of zero memory

nonlinear functions of the observations.

MULTIVA-TE DEN~TIES

In this section several methods of generating families of multivariate

noise densities are considered. Methods that produce large families of

densities are of particular interest since they are more variable and may

provide a closer fit to the actual noise. For each family of densities, LR

and LO detectors are derived and discussed. It should be noted that

some noise models produce structures which are more practical than

others, and the practicality of each structure is considered.

CLOSED FORMS

I There are a number of well known closed form multivariate densities
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[3]. In general these are named for their marginals, which are often com-

mon univariate densities. Unfortunately, the marginal densities do not

uniquely determine a multivariate density, and in many cases it is not

even possible to make the conditional densities have the same form as

the marginals. Although closed form multivariate densities may result

from a particu]ar model, more often they are the result of extending a

characteristic of the univariate density. While they have the advantage of

tractability, there is usually very little control over the dependency

structure. LR and LO detectors as a rule contain nonlinearities with

memory which may prove difficult to implement.

In the case of the multivariate Gaussian density

.f (n) =(27r) M/2 ]IK xp ]L

where R is the n xm covariance matrix, the resulting detectors (LO and

Li?) are both the matched filter:

LR(x) = LO(x) = sTR-1x

The multivariate Cauchy density [4]:

f (n)= K
"~I 2c + n )'R'l/

yields the test statistics:

c 2 + xTRIIX
LR(X) 2+ ( l_

• and

LO(z) =

Both contain non-linearities with memory.



w -1t28 -

DIFFERENTIAL EQUATIONS

One class of noise models is of particular interest in LO detection.

The detector nonlinearity g (xa) parameterized by a is chosen for trac-

tability. Eq.(2) can be viewed as a vector differential equation and solved

to give a family of solution densities fi(xa). A member density of this

family can then be fitted to the noise by choosing a. This estimate of a

can be inserted in g, and the result is a fitted LO nonlinearity.

14 This method has been applied when g,, is assumed to be a rational

function [5] The resulting family of densities is the Pearson family which

is particularly well adapted to using the method of moments to estimate

This approach has the advantage of producing an adaptive detection

system, but there is no guarantee that any member of the family of solu-

tion densities will be a good fit for a given noise process. The detector

structure is pictured in Fig. 2.

ELLIPTICALLY SYMMETRIC

Another way to characterize multivariate densities is to require that

the pdf have contours of constant height which are ellipsoids in m-space.

These elliptically symmetric densities can be generated by replacing the

independent variable of a univariate density, say f 1(n), with a quadratic

form nrR-1 n. The resulting density has the form:

f f(n) = K f I('n 1 n]

where K is a scaling constant and R is similar to a correlation matrix.

However, the resulting multivariate density does not in general have as
¢V



x estimator

(X, a)LOWx

Fig. 2 - Differential equation LO detector
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its marginals the univariate density f 1(n).

There is a method of generating elliptically symmetric densities with

a specific marginal f 1(n). Assume the marginal has characteristic func-

tion rp1(u), and let the m-dimensional characteristic function be

Taking the inverse transform yields the rn-dimensional density f (n).

Care must be taken to ensure that f (n) integrates to unity and is posi-

tive for all n. Thus the marginals can be controlled but the dependency

structure of n is not related to R in a simple or obvious way.

Since the argument of f is a quadratic form, the detector structures

can be written as

LR(x) = (z~X

and

LO (x) - x' f R/jji) sTRIlx
fi

. Block diagrams of these systems appear in Fig. 3.

As a non-Gaussian example, consider an elliptically symmetric den-

0 "sity with Laplace marginals [6]:

f() = -In)

The resulting detectors are

KO----x: ....- x-i

LR(X) = 0 '1-

" and

w .



ZNLj

AIB LR(x)

(a)

(b)

Fig. 3 - Ellipticafly symmetric LR (a) and LO (b) deteclais.
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LO(x) = [ 1 (BTRX)

RI Ko [V x I]- x

where K0 and K, are modified Bessel functions. The test statistics both

involve nonlinearities with memory.

SERIES

It is well known that under certain regularity conditions a density

f (n) with marginals f1(74) can be expanded in series form [7]:

j "ui 1=0 j 1= =

where the Otj, are sequences of orthonormal functions with generating

functions f,. The coefficients are given by:

f. f f(n) fl-6tj.(n*)dn
k=1

Series forms have a certain theoretical elegance and can be used to

derive general properties of densities. However, in practice, it is usually

necessary to truncate the series, resulting in a poor representation and

possibly even negative values in the tail regions of the pdf [8]. Even if

this difficulty is over-looked, detector nonlinearities for truncated series

are rational forms that are poorly behaved for observations falling in the

tail regions.

TRANSFORMATION NOISE

|v Another class of multivariate densities are those generated by

transformations from other densities [8]. Common univariate examples

are the log-normal and the Johnson family. In a multivariate setting, this

method involves a nonlinearity (possibly with memory) operating on a



ZNL

g1.)f

Fig. 4 - Transformation noise generation.
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noise sequence with a known density. The intractability of this general

class of transformations suggests constraining interest to those inverti-

ble transformations with zero memory (ZNL). A block diagram of the sys-

tem generating this type of noise is given in Fig. 4. Given an identically

distributed, m-dependent background noise process v with a known den-

sity qo(v) and marginals go(vi), a ZNL g can be selected to produce a noise

n with the desired marginals f1(74). If rp, and g are fixed, the depen-

dence structure of n is completely determined by the background noise

dependency. This lack of flexibility in choosing a dependence structure

may be a disadvantage in some cases.

The density of n is found with a change of variables:

(n) = p[g(n)] I g'(,L)l

where

y (n) g [(nj) g (n2), ., 9 (n.)

The transformation ZNL g can be found by equating the marginal

cdf's of n and v (FI(N.) and $1(vi) respectively):

g(n,) = it'[F(N.)] (3)
The LR detector is found from Eq.(1):

LR(x) = log p[o(-si ) + slog g(;-s )

which is the g-noise LR detector added to a sum of the observations

through a zero memory non-linearity. The nonlinearity g' is found by

differentiating Eq. (3)

g'() i(;) / f( g[g(2)]
The block diagram of this detector appears in Fig. 5a.

• .



The locally optimal detector LO(z) is found from Eq.(2) to be

LO(z) = [ 4(x)J g(Z) + X) .

A block diagram of LO(x) is also given to Fig. 5b where the symbol @ is an

element by element vector multiplication and 0 is a vector dot product.

The system consists of the locally optimal nonlinearity with memory (for

signal in rp distributed noise), three ZNL's and a correlator followed by a

threshold comparator.

It can be seen that if the background process, p is chosen to be Gaus-

sian with correlation matrix P, the LR system reduces to

LR=(x)XTR-+ log f

*.i which consists of a matched filter and zero memory nonlinearities (Fig.

* 6a). This can be considerably easier to realize than the nonlinearities

with memory required by other schemes.

For the LO detector, the third nonlinearity is

=ZZ (4;)O+ g'(;,)g (Z)
, f

The locally optimal nonlinearity, with memory, is a linear filter

Therefore, the LO system can be reconfigured as shown in Fig. 6b. The

third ZNL gi, is the locally optimal nonlinearity for signal in iid, f i distri-

* buted noise as given in Eq.(2). Thus, under the assumption of

transformed unit variance Gaussian noise, the system consists of one

linear filter and three ZNL's, one of which is the nonlinearity occurring in

the dld locally optimal detector.

4 -
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(a)

()

Fig. 5 Transformation noise LR (a) and LO (b) detect=*s.
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4 logfi(r)+ L 2(_)2>
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Fig. 6 - Transformed Gaussian LR(a) and LO (b) detectors.
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Under the assumed noise model, the detector designs require

knowledge of the nonlinear transformation g and R, the covariance

matrix of the background Gaussian vector v. In practice, however, the

available information is often the noise marginal density and the noise

covariance matrix 1,. The transformation nonlinearity g is found from

the marginal cdf with Eq.(3). Computing R, from 1 in general requires a

numerical integration solution [9.10].

If the input v has a multivariate Gaussian distribution, this transfor-

mation can be modeled as shown in Fig.7 where z is an iid N(O.1) random

vector, and L is a linear operator. It is well known that any symmetric

matrix R can be factored by Crout resolution [11] the give the form:

R, LL
where L is an unique lower triangular (hence causal) matrix. The linear

filter L in Fig.? can be therefore chosen to produce a desired covariance

in v:

E[vvT] = E[(Lz)(Lz)T] = LE[zzT] LT = LLT =R

Modeling noise in this way suggestp the second model shown in Fig. 8.

The input z, iid N(0,1), is passed through the ZNL g 1 t.-d produce the id

vector w with non-Gaussian marginals and variance o. Passing w through

a linear filter L of length m produces the sequence n with a dependence

structure generated by L This model is typically called a Moving Average

process (MA) of order r-I [12]. As above, Crout factorization can be

used to solve for an unique lower triangular matrix L, given H,, since the

covariance matrix of n is given by

. 1 -- E[nn] = E[(Lw)(Lw)T] - LE[wwT ] L= A7LU.
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ZNIL

Fig. 7 - Gaussian background model.

ZNL

z L

Fig. 8 - Moving average noise model.



-140-

.- The major difficulty in using this model is selecting the marginal density

of w which yields the desired marginal for n. Denoting the w marginal as

I(w), the density of the MA noise n is

f(n) = j
The LR detector is

LRlx) = log [ [Lz)]

The locally optimal detector LO(x) is found from Eq.(2) to be

LO(x) = (L-s)Tg.(L-x)

where g9, is the ZNL in the iid locally optimal detector for rp, marginal:

g (z ) = _ -)

Block diagrams of these detectors are given in Fig. 9. The LO system is a

ZNL embedded in a matched filter. Note that for n iid, L is an identity

matrix, and the resulting LO detector is the lid locally optimal detector

U *g(x). For the Gaussian case (g-(x)-z) the result is the matched

filter (linear detector) sT1zIx.

I.

[ "I ' l I I i i i i i i i I . ... i ' i . . .
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ZNL

xi_ -- L- H  -log (pI(')

X 0. L(x)

L-is
(b)

' L

Fig. 9 - Moving average LR (a) and LO (b) detectors.
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CONCLUSIONS

This chapter presents several multivariate noise densities and their

associated LO and LR detector structures.

I- Closed form densities are tractable but are not general in any sense,

Aand there is little or no control over the dependency structure.

2- The differential equation method applies only in the LO case. There

is a great deal of control over the functional form of the detector

nonlinearity, but there is no guarantee that the corresponding family

of solution densities provides a good fit to a given noise process.

3- The elliptically symmetric densities, although yielding detectors con-

taining nonlinearities with memory, are not difficult to implement.

However, the meaning of the matrix R in the quadratic form is

unclear and the dependence is difficult to control.

4- The series forms have difficulties in implementation due to the

necessity of truncation. The generally slow convergence of series,

and the poor tail behavior usually noted when the series is truncated

result in very poor behavior of the detector nonlinearity in the tail

region.

5- The transformation model allows selection of the noise marginals but

increases the complexity of calculating the output dependency. The

MA model has a more straightforward dependence structure but solv-

ing for the marginals is more difficult. Note that these two schemes

are equivalent only when g - is linear (n is multivariate Gaussian).

V



U- -143-

REFERENCES

1. T.S. Ferguson, Mathematical Statistics: a Decision Theoretic
Aproach. New York: Academic Press, 1967.

2. E.J.G. Pitman, Some Basic Theory for Statistical Inference. London:
Chapman and Hall, 1979.

3. N.L. Johnson and S. Kotz, Distributions in Statistics. Continuous
Multivariate Distributions. New York: Wiley, 1972.

4. K.V. Mardia, Families of Bivariate Distributiors. New York: Hafner,
1972.

5. A.B. Martinez & J.B. Thomas, "Robust Detection Using a Pearson Fit to
Nearly Gaussian Noise," Proceedings of the 15-th Johns Hopkins
CISS, March 1981, pp.125-130.

6. D.K. McGraw and J.F. Wagner, "Elliptically Symmetric Distributions,"
IEEE Trans. on Inform. Theory, Vol. IT-14, Jan. 1968, pp. 110-120.

7. H.O. Lancaster, "The Structure of Bivariate Distribution," Ann. Math.
Stat., Vol. 34, 1963, pp. 532-538.

8. J.K. Ord, Faminies of Frequency Distributions. New York: Hafner,
1977.

9. G.L. Wise, A.P. Traganitis, and J.B. Thomas, 'The Effect of a Memory-
less Nonlinearity on the Spectrum of a Random Process," IEEE
Trans. on Inform. Theory, Vol. IT-23, Jan. 1977, pp. 84-89.

10. S.T. Li and J.L. Hammond, "Generation of Pseudorandom Numbers
with Specified Univariate Distributions and Correlation Coefficiemts,"
IEEE Trmns. o'n Sys., Man., and Cybernetics, Vol. SMC-5, No. 5, Sept.
1975, pp. 557-561.

11. G. Strang, Linear Algebra and its Applications. New York: Academic
Press, 1980.

12. G.E. Box and G.M. Jenkins, Time Series Analysis: Forecasting and
Control. San Francisco: Holden Day, 1970.



CHAPTER 7 - FINITE LENGTH DISCRETE MATCHED FILTERS

INTRODUCTION

The design and implementation of the Matched Filter (MF) has

received considerable attention [4-8]. As a detector it has the advantage

of linearity, and since it is based only on easily estimated 2nd order noise

statistics, the MF is simple to optimize. The performance criterion, the

Signal-to-Noise Ratio (SNR) is tractable, and intuitively appealing.

For a fixed signal in discrete time, Levinson [8] has presented a sim-

ple and efficient algorithm to solve the MF equation. Since the MF

impulse response and the SNR are computed iteratively, the algorithm

can be terminated when a filter with desired performance is found.

Unfortunately, when there is some freedom in choosing a signal, the

choice of signal plays an important part in optimizing the detector.

Because the optimal signal of length M is a truncated version of the

optimal length M+ 1 signal under only very special conditions, the Levin-

son algorithm must be repeated N times, and thus loses its computa-

tional advantage. In this chapter, easily computed bounds on the perfor-

mance of the MF as a function of length are found. Then, before any

attempt is made to solve the MF equation, an estimate of the filter length

can be found from these bounds.

DETECTION PROBLEM

The detection problem considered in this chapter is one of finding a

linear detector that discriminates between an hypothesis H0 and an

-144-
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alternative HI. The decision'is based on a discrete length N observation

vector x composed under Ho of noise n with density f and under H, of a

known signal a in noise:

H0 : x = n

HI: i = n + a
The detector consists of a real scalar test statistic T(x), a functional of

the observation x, which is compared to a scalar threshold to decide for

Ho or H1 .

The criterion of detector optimality used in this chapter is a SNR

measure often called the deflection:

[EI(T) -E(T)] 2

SNR= Varo(T)()

where ED and El are the expectation under Ho and H, and Vera is the

variance under H.o

It is well known that the log likelihood ratio detector for Gaussian

noise is linear, the matched filter. Since the detector power is a mono-

0 tone increasing function of the SNR of T, the SNR is frequently used as a

measure of detector performance. The SNR, outside of its intuitive

appeal, is often justified by making a Gaussian assumption about n or

applying the central limit theorem to T.

Using the MF as a detector for non-Gaussian noise is more difficult to

justify. In general, the likelihood ratio detector maximizes the SNR [1].

and by a simple calculus of variations argument, maximizing the SNR (as

defined above) with no restriction on the linearity of the detector can be

shown to yield a linear function of the likelihood ratio. The MF is the

F

I
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linear filter which maximizes output SNR, but the likelihood ratio is gen-

erally nonlinear. Therefore in making a restriction of linearity on T, it is

tacitly assumed that the noise is Gaussian or nearly Gaussian in the sense

that the MF performs reasonably well and that any loss of optimality is

compensated for by the simplicity and linearity of the MF.

Under the assumption of linearity, the test statistic T(x) is equal to

the output at time N of a linear filter with impulse response h. As a con-

venience, the pseudo-signal is defined to be a length N vector with ele-

ments %. = hN+-I, the filter impulse response in reverse order. The out-

put SNR of the linear detector is found from Eq. (1) to be

<u Ru>
where <I> is standard inner product notation, R is the noise covariance

matrix, and A is the maximum value of SNR for the optimal pseudo-signal.

Cross-multiplication yields

L(u) = <uIs>2 -A, <ulRu> -. 0
This can be maximized in the usual way by setting its gradient equal to

zero:

VL (u) = 2<ul >s - 2ARu = 0
* vRearranging and noting that A/ <u Is> is a constant and can be set equal

_ to unity with no loss of generality, the result is the well known MF equa-

tion:

- = (A/<ul>)Ru = Ru (2)

The solution of Eq. (2) is the pseudo-signal of the MF:

u "R-I
with output SNR given by
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SNR, : <uja> = <s R-19>

In discrete time and with a fixed signal, the MF matrix equation can

be solved quite efficiently using the Levinson algorithm. In continuous

time, the classical method of solution is to use spectral factorization to

solve the equation on an infinite interval; this (possibly) non-causal solu-'

tion is then projected onto a causal space [3]. In discrete time, there is a

parallel spectral approach using the eigenvectors and values of R

SIGNAL SELECTION AND BOUNDS ON THE SNR

It is well known that the MF is the linear filter with the maximum

SNR. for a given signal in noise. In addition for non-white noise, the SNRo

* "of the MF can be maximized by proper choice of signal shape. Because of

this, for signals of constant energy, the SNRo of the MF has a range of

possible values.

Since the NxN covariance matrix R is positive definite and Hermi-

tian, it has positive, real eigenvalues:

and a corresponding set of orthonormal eigenvectors:

el, e2 ... , eN

The matrix R can be diagonalized:

R=EAE -

where E is the eigenvector matrix:

and A is a matrix of eigenvalues:

r0
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Likewise R- 1 has the diagonal form:

B1t- = E-'rI

where A-' has as its diagonal elements the eigenvalues of M-1 :

1 1 1A

Thus the MF equation has the solution:

u =EA-E-Is (3)

The signal s can be expanded in terms of the eigenvectors:

a.= EC (4)

where c is the coordinate of a under the basis formed by the orthonormal

eigenvectors of R From Eqs. (3) and (4) the pseudo-signal is

u = E-e (5)
The SNR, of the MF becomes

SNR. = cTA-Ic

If the signal is chosen to be in the eigenspace of the ith eigenvector r

* (s = ke,), then the MF is a simple correlator (u = s) and

SNR =k /A,

The Rayleigh quotient theorem [2] states that

1__ <s IR'u> sj•~~ e# I-s I 2>
AN H11xI

where the upper and lower bounds are achieved for a signals in the eigen-

space of el and eN respectively. Thus the SNR of the MF is bounded:

"ls 6 Rn 111.' (6 )

The best choice of signal is el, the eigenvector of R with the smallest

eigenvalue. This is equivalent to putting the signal in that part of the
q : spectrum of R where the noise has the smallest magnitude.

-. . . *. . . . .
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Grettenberg [7] has taken the logical step of using M eigenvectors as

an M character alphabet of signals. By choosing the eigenvectors of R

corresponding to the smallest M eigenvalues, not only is the set orthogo-

nal, but it achieves the greatest minimum SNRJ of any such M character

set. This also has an advantage of simplicity, since, when the signal is

chosen to be an eigenvector of R, from Eq. (9) the pseudo-signal equals

the signal, and the MF reduces to a simple correlator.

A minimax strategy is used by Turin [5] to find the worst-case noise,

and the corresponding best signals in continuous time. He shows that the

best signal spectrum should consist of the noise spectrai components

with the smallest magnitude. As a consequence, '.he worst spectra and

the best signal both have flat spectra.

LEVINSON ALGORITHM AND OPTIMAL SGNAL SELECTION

For the Levinson algorithm to produce the u-optimal MF on each

iteration, the length N optimal eigenvector e(N) has to be a truncated

version of the length N+ 1 eigenvector e(N+1).

e(N4.1) = [.(N) 1
Let R(N I) be the (N+1)x(N+l) covariance matrix with elements rlijj;

then

IR(N4.I)e(N+1) = X(N'+1) e(N+l)

where A(N+I) is the eigenvector corresponding to the eigenvector e(N+ I).

Noting that the NxN minor of the covariance matrix R(N1) is R(N):

(N.) 6(N+I) = X(N+1)(N.1) r (I) r(N) e(o) = [ 1.(. ) + (N+1 )
)) T o N. l1 (N))Tre(N) N" -[,oj
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*. where

r(11 [rM rN-l ... rl]T

For e(N) to be a truncated version of e(N+1), then for all N I:

((N+1) _ ;(N))e(N) = eN+lr(N)

Solving this equation iteratively yields permissible autocovariance

sequences. Let r. be the first nonzero term in the covariance sequence

after rr. Then every pth term with index less than L is nonzero, and the

rest are zero. All nonzero terms have the same magnitude with alternat-

ing or constant sign. The covariance sequences have the form:

{;10+r = k =1, 2,...,p- or ip+ki.L

where i L>0 0! k <p-1, p O, and L ! 0. As a special case, if L-+O or

p- the result is white noise, r = 0 for all i 2 1.

This places a severe restriction on the noise autocovariance

sequence, and places corresponding limits on the utility of the Levinson

algorithm for this particular problem.

APPROMXMATE BOUNDS ON THE SNR

It is impractical to find a suitable filter length N from the bounds in

Eq. (8) since they require knowledge of the eigenvalues of each MxM

minor of R. Looser but easier to compute bounds can be found.

The equivalent rectangular time duration AT of the noise autocovari-

ance is introduced as a rough measure of correlation [3]:

wi naT. I I

; where o2 r o is the noise variance. The largest eigenvalue of IR denoted



by ;N is well known to be the smallest norm of , thus using another

norm:

AN" IIRII m= maxEry !sAT

This yields the looser bound:

11,1 !9 _ 112112 !6 1_212 SNF
o2aT maxErv AN

An upper bound can be found. The condition number K of a matrix is

defined as:

i" K = ,,/x, =mi 11R I11 11 R1,

then from Eq. (6)

SNRr II 2II K/ A.
The trace of R equals the sum of its eigenvalues:

N
ti1 

-.therefore

and so

19ll2  11 g1 2 K (7)eATSNR

Since the input SNR is given by

SNRj =
Na 2

the improvement in SNR of the MF is given by

T SNROrN- =SRF N 8
K..
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EMPLES

As a first example, consider white noise with an NXN covariance

matrix R = ol. The covariance matrix has an Nth order eigenvalue o

making the upper and lower bounds in Eq. (6) equal, and the choice of sig-

nal arbitrary. Other considerations, such as a ceiling on transmitted sig-

nal strength, may still make the spreading of signal energy.in time desir-

able.

For N = 3, the autocorrelation sequence is given by

.~ r=[I r, rzlr

For R to be positive definite, the values that ri and T can take are res-

tricted:

-rjI,IrsI < 1 and IrII < v(r 2 +l)/2

* This region of the rlxr2 plane is shown in Figs. I and 2.

The difference in dB between the upper and lower SNR bounds in Eq.

(6) is plotted as contours in Fig. 1. Even for a filter this short, the signal

selection is shown to be quite important.

* - In Fig. 2, the SNR of the MF for an alternating signal (si = (-1)') is

* 'shown in dB over the lower bound. The alternating signal was chosen as a

0 suboptimal approximation to the optimal signal because of its simplicity,

and similarity in shape to the optimal signal for r, L 0. It is readily seen

to be nearly optimal in this case. Because of the symmetry of this prob-

lem, a constant signal (si = 1), chosen as a suboptimal signal for ri < 0

has performance contours which are the mirror image of those in Fig. 2.

Four noise autocorrelation functions were chosen as representative -

the exponential:

!0
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Fig. I. Contours of SNRwI upper bound
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Fig. 2. Contours of SNRq, for alternating
signal in , x, plane.
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, = exp(-0.2 lit)

the triangular:

jI=I0 it I >10

the Gaussian:

A ri = exp(-ir(i/ 10)2)

and the hyperbolic secant:

r, = sech(iTi/ 10)

The exponential is the simplest member of the Markov class; the triangu-

lar function has finite supoort; the Gaussian correlation function has

infinite support, yet has tails which fall off faster than the exponential,

and the hyperbolic secant has a nearly Gaussian shape at the origin, but

exponential tails.

The upper and lower bounds on the SNRMF from Eq. (6) are plotted in

dB versus filter length N in Figs. 3-6. Here signal selection is extremely

important for all N > 2 and increasingly so for increasing N. Even for the

length 5 filter, the difference between the best and worse-case SNRF is

at least 15dB for all four cases. At N = 20, the difference is at least 19dB.

The parameters of these four correlation functions were chosen so

that each has an equivalent rectangular time duration of AT f 10. Thus

the approximate lower bound (Eq. 8) for each function is

N/I10! SNRF

The approximate and exact lower bounds for each correlation function is

shown is Figs. 7- 10.
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Fig. 7. Approximate and exact lower bound

for exponential correlation.
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Fig. 8. Approximate and exact lower bound

for triangular correlation.
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Fig. 9. Approximate and exact lower bound

V for Gaussian correlation.
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Fig. 10. Approximate and exact lower bound

for hyperbolic secant correlation.
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CONCLUSIONS

The bounds on SNRMF in Eq. (6) show the selection of the signal to be

important for optimal performance of the MF. The selection bf a subop-

timal signal, if made intelligently, can produce nearly optimal results,

and certainly the importance of signal shape should not be overlooked.

The approximate lower bound of Eq. (8) gives a simple although con-

servative estimate of worse case MF performance. An estimate of filter

length can be made with only knowledge of the equivalent rectangular

time duration AT.

i q

q. -
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CHAPTER 8 - CONCLUSIONS

Review and Ideas for Further Research

In this chapter, some of the main points covered in the previous

chapters are reviewed briefly, and some ideas for further research are

given.

In Chapter 2. the performance of three commonly used detectors is

considered for several families of noise densities as the input signal-to-

noise ratio (SNR) varies. The three detectors investigated are the linear

detector, the sign detector and the amplifier limiter detector. Perhaps

the most interesting results of this chapter are the contours of equal

detector performance which illustrate the regions of relative superiority

for each detector. While the nonlinearities chosen for analysis are

interesting, other nonlinearities could be included. In particular, the

performance of the locally optimal detector for each specific density

would be informative, since it would give some feel for the degradation in

performance which can be expected when the input SNR is greater than

zero.

In Chapter 3, suboptimal detector nonlinearities are investigated.

The design method consists of choosing a suboptimal nonlinearity and

finding the family of densities for which the nonlinearity is optimal. A

member of this family is then fitted to the observed noise, and the

corresponding detector is used. The advantages of this approach are

threefold. When the optimal nonlinearity is too complex to use, a

simpler, more tractable nonlinearity can be chosen. Because the non-

linearity is in effect fitted to an observed noise using parameter

• • - 161 -
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estimates, the noise statistics need not be known exactly and can be
nonstationary. As a result, this procedure can produce simple adaptive

detectors. In Chapter 3, the parameters to be estimated are assumed

known exactly before the analysis of detector performance is made. One

reasonable extension of this work is to study the sensitivity of the detec-

tor performance to variations normally experienced in parameter esti-

mates. A more difficult, but possibly quite fruitful area for continued

study, is the problem of how best to choose from among suboptimal non-

linearities, or equivalently, how to choose a good noise model when the

actual noise statistics are incompletely known.

The moment analysis of Arctic under-ice ambient noise is included in

Chapter 4 to give an example of some of the techniques presented in

Chapter 3. The results in this chapter suggest that the noise is nonsta-

tionary and largely Gaussian or nearly Gaussian with sporadic bursts of

non-Gaussian noise. Unfortunately, insufficient data is available for more

extensive analysis. With a larger data set, a more complete analysis

could be done; in particular, the non-Gaussian bursts merit more atten-

tion. Also, the assumptions of stationarity and independence and their

effects on moment estimators should be investigated further. Some

investigation of the degree of nonstationarity would be of interest, since

this would relate directly to the performance of the adaptive detectors

proposed in Chapter 3.

In Chapters 5 and 6, it is assumed that a noise process is both

significantly dependent and non-Gaussian, and that detector performance

would suffer considerably if either Gaussian or independence assump-
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tions were made. In this case it is seen that the real problem becomes

one of choosinLg a reasonable noise model. Several multivariate noise

models are considered. The value of each is assessed not primarily by

the "goodness of fit" of a particular model, but by the tractability of the

resulting detector. This may not be too bad an assumption; most of the

models considered probably offer a reasonable fit. For example, the

transformation model is a perfect fit up to second order moments. How-

ever, some investigation of the relative value of each model in fitting a

specific observed noise would also be important. A number of appealing

detector structures are suggested in these chapters, but very little

analysis of their performance is done. Some of these detectors, or slight

modifications of these detectors, might well be simple but effective for

environments which are both non-Gaussian and dependent.

In Chapter 7, two topics related to discrete time matched filters are

considered, bounds on the SNR (used as a measure of filter performance),

and signal selection. Exact upper and lower bounds on the SNR are given.

and a looser, but easier to compute, lower bound is given. As a possible

extension of this work, an approximate upper bound which is easier to

compute than the exact bound could be of value. In this chapter it is

shown that the selection of a suboptimal signal, if made intelligently, can

produce nearly optimal results. The signals used in the examples of

Chapter 7 were chosen because of their intuitive appeal. It may be possi-

Ki ble to find an orderly procedure for selecting a suboptimal signal.

F I< .-_
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