


UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ IN-TRUCTIONS

BEFORE COMPLETINVG FORM
1. REPORT NUMBER 2. GOVT ACCESSION NOj 3. RECIPIENT'S CATALOG NUMBER

4. TITLE land Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Technical Status ReportResearch in VLSI Systems Mach 1 tay 1982March 1981 - May 1982

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORls'
8. CONTRACT OR GRANT NUMBER(s)

J. Hennessy, R. Matthews, J. Newkirk MA90379C0680

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Computer and Information Systems Laboratories AREA & WORK UNIT NUMBERS

Stanford University
Stanford, California 94305

12. REPORT DATE 13. NO. OF PAGES
11. CONTROLLING OFFICE NAME AND ADDRESS S

Defense Advanced Research Projects Agency 15. SECURITY CLASS. (of this report)
Arlington, Virginia 22209

14 M0,NITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)

Office of Naval Research (Stanford Branch) 15a. DECLASSIFICATION'/DOWNGRADING

Stanford University SCHEDULE

Stanford, California 94305
16. DISTRIBUTION STATEMENT (of this report)

Unclassified; approved for general distribution.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
VLSI VLSI Processor nMOS Cell Library
Relative Geometric Layout SLIM and PLA Synthesis
Electrically Based Layout Routing
Clocking Discipline Formal Models for VLSI Systems
Defect Tolerence ICTEST
Graphics Architecture SUN Workstation

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report summatizes progress on Dafense Advanced Research Projects Agency contrac
I IMDA903-79-C-068.. Research in VLSI Systems, from March 1981 to May 1982. The major
* areas under investigation are design description and synthesis, testing, and algorit ms

and architectures. In each ares, our aim is to anticipate and to solve problems
attendent to VLSI. We introduce the research in detail and discuss progress; we also
discuss important practical developments. The bibliography list research papers
describTng the work in greater depth.e-

, D7~ 3 1FO3 UNCLASSIFIED
EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION O THIS PAGE (When Data Entered)





-2-

Executive Summary

This report summarizes the progress on DARPA contract MDA-903-79-C-
0880, entitled Research In VLSI Systems, for the period May, 1981, through May,
1982. It includes an introduction, summaries of work accomplished in each
major area, and related papers and research documents.

We are engaged in research in 3 principal areas: design description and syn-
thesis, testing; and algorithms and architectures. Over this period, major
accomplishments in these areas include:

1. Relative Geometric Layout. SILT is a relative geometric layout language:
the position of each structure is relative to some other structure except for
the origin of the base cell. The first SILT implementation has been opera-
tional since October 1981 and is being actively used by the MIPS project. A
prototype of YALE, SILT's graphical front-end, is running.

2. Electrically Based Layout. LAVA is an electrically based layout language.
We used it to perform circuit extraction and sticks-tc, layout conversion for
a 10,000-transistor serial memory for signal processing applications. The
design was wired manually, fabricated, extensively tested, and found to
work. LAVA was also used to do a full layout of the memory. We have
developed related mathematical optimization techniques that we believe
are efficient enough for 100,000-transistor designs.

3. Clocking Discipline. We have developed a notation for describing clocking
in 2-phase, synchronous designs. This work has led to a clocking discipline
and auditing tools for checking a circuit for conformance to the discipline.
As a result of this work, there were no unexplained simulation or testing
problems in the Winter 1982 Testing Class.

4. Defect Tolerance. We have developed capacity theorems and practical
block codes for error correction in memory systems (e.g., a code for
correcting 2 hard errors and 1 soft error per word). We also have new
theoretical results for predicting the yield of reconfigurable 1-dimensional
and 2-dimensional arrays.

5. Graphics Architectures. The Geometry Engine is a high-performance,
floating-point computing engine for geometric operations in 2D and 3D com-
puter graphics. The Geometry Engine has been under design since Fall of
1980; recently (March 1982) completely working chips were received. The
companion Image Memory Processor (IMP) provides ultra-high-performance
frame buffer operations. The IMP design was redone, and working versions
of it have been demonstrated.

6. A VLSI Processor. MIPS (Microprocessor without Interlock between Pipe
Stages) is a project to develop a high-speed (> 1 MIP), single-chip. 32-bit
microprocessor. Like the RISC project at Berkeley, MIPS uses a simplified
instruction set and a load-store architecture. We have completed the
instruction set description of MIPS, the high-level design, and informal
schematics. Layout is underway, and a number of chips testing portions of
the design are being fabricated.

Other progress of note includes:

1. SLIM and PLA Synthesis. SLIM is a language designed to describe on-chip
control as microcode, to simulate that microcode using a functional
description of the chip components, and to generate a PLA implementation
of the microcode. Major additions to SLIM include a complete expression
normalizer, a sum-of-products optimizer, and a state assignment optimizer.

w



2. Routing. We have analyzed the performance of our existing custom-layout
router and discovered that the major problems were in global routing
dynamics and in the poor match of channel-based routing to the problem.
We have explored using quadratic programming to control the placement,
and initial results have been promising. We have also devised a new area
router based on pseudo-polar coordinates, and we have proposed new
metrics for characterizing are a-routing problems.

3. Formal Models for VLSI Systems, We have constructed a model for specify-
ing and verifying concurrent hardware systems. The model has been used
on several composite modules, including a memory cell, a shift register,
and a flip-flop.

4. ICTEST and Practical Testing. The ICTEST testing language has been
updated to include the clocking notation. The Tektronix 3-3260 tester has
been integrated into the testing system and used to test 5 designs at speed.
The ICTEST system has now been used by over 80 utsigners, including 2
testing classes and many research designers (MIPS, SAR memory, Geometry
Engine).

5. The SUN Workstation. We received thc fir.qt commercially manufactured
SUN workstations in March 1982. A number of potential vendors have
licensed the SUN design.

6. nvf S Cell Library. We have refined the Cell Library, documented it, and
distributed it to the DARPA community.



-4-

Introduction

Research in VLSI Systems is a broad-based research project, including fun-
damental research, tool-building, and applications. This section of the report
describes the structure of the research project. The body of the report is
organized by topic, and includes a detailed discussion of progress in each area
of effort. The bibliography lists papers and research documents that cover
further details; they are organized by author.

The research divides into 3 major areas. Within each, there are a number of
interrelated efforts. Here we shall summarize the research in an outline, includ-
ing a short description of each effort and its current status (new, continuing,
mature, or complete).

1. Design Description and Synthesis. Research relating to design disciplines,
design description, and efficient layout.

1.1. Relative-geometry layout system, SILT. General-purpose layout tool
using stretchable geometry. Graphical front end, YALE.
(mature/continuing)

1.2. Electrically based layout system, LAVA. General-purpose layout tool,
essentially sticks-based. Graphical front end, SEDIT. Mathematical
optimization techniques appropriate for sticks-based layout. (continu-
ing)

1.3. Routing of custom layouts. Placement, adjustment, and routing for
custom layouts, including power/ground routing. Characterization of
custom routing problem. Area-routing measures and algorithms. (con-
tinuing)

1.4. Control description and synthesis. SLIM microcode description
language, SPAM optimizer, PLA generator. (mature/continuing)

1.5. Logic-to-sticks conversion. Automatic and semi-automatic conversion
of circuit specification to sticks. (new)

1.6. Models for concurrent systems. Structural algebra for describing
module interconnections. Behavioral semantics for modules.
Mathematical properties and analysis techniques. (continuing)

2. Testing. Research in test description systems; testers; practical testing.

2.1. The ICTEST testing system. 2-tiered functional test/ simulation sys-
tem. ICTEST test description language. Testing hardware.
(continuing/mature)

2.2. 2-phase clocking notation and discipline. Auditing tools. (new)

2.3. Practical experience with testing. Testing classes. Extensive testing of
a serial memory. (continuing/mature)

3. Algorithms and architectures. Processor architectures. Graphics proces-
sors. Techniques for hard-error tolerance. Signal-processing architec-
tures.

3.1. VLSI processor architectures. Pipelined processor, MIPS. Compiler,
pipeline reorganizer, and simulation tools. (new)

3.2. Graphics architectures. High performance graphics processor, the
Geometry Engine. Image memory processor, IMP. (mature)

3.3. Coding for hard-error tolerance. Capacity theorems for memories with
defects. Practical codes for hard- and soft-error correction. (com-
plete)



'" -5-

3.4. Defect tolerance in array archi'ectures. Analysis of the effect of
defects on 1- and 2-dimensional array architectures. Interconnection
and communication requirements. (mature)

3.5. Ladder-form CORDIC architectures. Estimation algorithms. Ladder
architectures. Speech analysis and synthesis. (continuing)

4. Other projects.

4.1. SUN workstation. (complete)

4.2. Polygon package and accurate design rule checker. (complete)

4.3. nMOS Cell Library. (mature)

4.4. Schematic input system for esim. (new)

4.5. Logic equation extractor and simulator. (continuing)

4.6. Geometric chip description language, CLL. (complete)

In the next section, we describe in detail the status of each of these efforts.
For each topic, we present our objectives and the status of the work. Also
included for convenience are the names of the staff associated with the topic,
references to papers and research documents, and references to related work,
if appropriate.

.q



Technical Progress

1. Design Description and Synthesis

1. 1. SILT
SILT is a language that plays somewhat the same role in VLSI design as a

relocatable assembler does in software development. It is not as ambitious as a
*'silicon compiler" would be. but it is much easier to implement and forms a
valuable component of a silicon compilation system.

SILT is a relative layout language, which means that every structure's posi-
tion is relative to some other structure, except for the origin of the entire lay-
out. Changing the distance between a structure and the structure to which it is
relative will thus alter the shape of the cell. This makes it easy to design flexible
library cells and to delay some design decisioiis by allowing for some stretch in
finished parts of the cell design. Relativeness is hierarchical in nature, which
assists in structured design. Cell descriptions may include parameters so that
multiple cells differing only in some power requirement or pull-up ratio can be
described by the same code.

SILT is completely descriptive. It does not attempt to put a lot of intelli-
gence into the prog-ram, but rather depends on the good sense of a human
designer. The descriptive nature of the language allows it to be efficiently
translated into CIF or other mask-level descriptions.

SILT is designed primarily for use in conjunction with a graphical front-end.
However, SILT text is designed to be easily human readable to aid in debugging,
and it is practical~ as a direct-use language.

Finally, special care is taken to control names properly. Names for
features deep down in the hierarchy are hidden from higher levels unless they
are important enough to be specifically "exported" L'p the hierarchy.

The first SILT implementation has been operational since October 1981 and
is being actively used by the MIPS project.

YALE (Yet Another Layout Editor) is a symbolic layout editor that will run
on the SUN and make the capabilities of SILT available in a graphics front-end.
YALE is currently being implemented on a combination of the SUN workstation
and the VAX. It uses the SUN as an intelligent graphics workstation (no disk
required); thus this work is being carried out in collaboration with the Network
Graphics project at Stanford. YALE is primarily a graphics interface Lo SILT.

q allowing the placement of reference lines graphically. It also allows textual or
graphical specification of constraints and textual specification of expressions for
computation of reference line placement.

Network Graphic primitives have been specified and work is now underway
on the VAX portion of the YALE editor. The SUN portion of the project is
currently also underway. A subset of SILT was selected for the initial implemen-

q tation, and a parser for that subset has been written. Hierarchical cell descrip-
tions, rectangles, and reference points are currently working. The cell being
edited can be viewed simultaneously through a number of different windows on
the screen; the magnification and region of the cell viewed can be independently
set in each window. The windows can be stretched or shrunk, moved rigidly on
the screen, and the view in each window can be zoomed ir or out, or panned.
Most of the commands are invoked by means of mouse-button clicks and pop-up
menus.



-7-

Before YALE can be used for real designs, a number of things must be
finished:

*1. The initial work was done on ix SUN workstation without a mouse. A bit pad
was hooked to it and programmed to look something like a mouse. An
interface to a real mouse is being written.

2. A few changes must be made to the display routines to increase the
efficiency of storage. In addition, some work has to be done to implement
swapping over the network when the designs involved are larger than will fit
in the local SUN memory.

3. In addition to these two major goals, a number of minor improvements
must be made - commands to handle arrays of symbols, mechanisms for
dealing with ambiguous selections, copying symbol definitions, a better
interface to cell libraries, and a control for the depth of expansion when
working on cells near the top of the hierarchy.
No official documentation for the YALE system exists yet, but there is a

document describing all of the features currently implemented, which assumes
that the reader is thoroughly familiar wyith the SILT language.
Staff. J. Clark, T. Davis
Relatedi Efforts: EARL (CalTech), DPL (MIT)
Ref ere'nc es: Davis~ia

1.a L AVA
LAVA is a electrically based, general-purpose layout language. Our principal

objectives are topological, rather than geometric, layout description, and
guaranteed design-rule correctness of layouts. lAVA's major components are a
sticks compactor, cell stretching and abutment mechanisms, a router, and a
framework to link them together.

We have used the logic description, circuit extraction, and sticks compac-
tion facilities of LAVA in a design of a 10,000-transistor serial memory. LAVA was
used as a hardware description language, enabling us to describe the chip in
terms of gates, transistors, and connectivity. It provided the circuit description
and symbol table information required by the MIT simulators; this information
was used in conjunction with ICTEST to verify the chip design prior to layout.
While we used the LAVA sticks compactor to do the physical design of cells for
the chip, we used CLL for composing and interconnecting them.

Subsequently, we laid out the serial memory entirely in LAVA. Leaf level
q cells were described in stick notation, pads were taken from the cell library, and

wiring was done using wiring cells described as sticks.
One of the key operations that LAVA must perform efficiently is formulating

and solving large systems of linear constraints. Initially, LAVA used the obvious
n 3 algorithm (Floyd's algorithm); we have now devised algorithms that typically
run in essentially linear time, based on studies of several hundred constraint
problems from LAVA. Originally, a control cell containing about 200 objects
required about 20 minutes to compact; it now takes about 10 seconds. We are
convinced that our current techniques are adequate for designs approaching
100.000-transistor complexity.

Three of our designers have been using LAVA as a tool for sticks compaction
and simple composition, and we have also used it as a target language for our
area-routing effort. However, we have uncovered a number of weaknesses in the
language processor, and the program itself has become ragged from changes.
Therefore, over the next 6 months we plan to rewrite LAVA to stabilize and



U

improve it. We shall also begin to incorporate limited routing capability into the
system.

Staff: D. Chapiro, P. Eichenberger, R. Mathews, J. Newkirk, D. Perkins, T. Saxe

Related Efforts: EARL (CalTech), CABBAGE (UCB)
References: Mathe82a, Eiche80a, Burns82a

1.3. SLIM

SLIM. Stanford language for Implementing Microcode, was initially imple-
mented during an earlier contract and presented at the 1981 CalTech VLSI
Conference. The goals of SLIM are to describe on-chip control as microcode, to
simulate that microcode using a functional description of the chip components,
and to generate a PLA implementation of the microcode. The initial SLIM imple-
mentation has been working since the end of 1980. During the first year of this
contract, the following major improvements were added to SLIM:

1. The completion of the port to the VAX.

2. Addition of a complete normalizer that allows arbitrary Boolean expres-
sions, default next states, and don't-care equations.

3. Interface to the SPAM array minimizer (PLA sum of products optimizer).

4. Construction of the first version of a state assignment optimizer. Further
work will concentrate on the development of additional PLA optimization
systems.

Staff: L. Adams, J. Hennessy

Related Efforts: MacPitts (Lincoln Labs), SLANG (UCB).
References: Henne8la, HenneSl b, HenneB0a

1.4. Routing

We are attempting to develop a router for custom layouts. Starting from an
initial placement provided by the designer, it will adjust the placement until
routing, including power/ground routing, is complete. An initial version, the
Grandiose router, is based on channel routing, and uses statistical models to
predict wiring requirements.

During this period, we have performed evaluations of the Grandiose router.
The router seemed to be impractical: it exacted 50% area penalties on some of
the half-dozen test cases we tried. However, by judiciously manipulating its
input, we have been able to achieve area penalties as low as 20%, on a 25-block,
200-net layout. This result proved hard to achieve and highly sensitive to minor
perturbations. Initially, we expected to find fault with our intrachannel algo-
rithms. We now conclude that the major problems were actually in global rout-
ing dynamics and in the poor match of channel-based routing to the custom
routing problem. Some recent work with quadratic programming to control
placement has given much better performance.

4 We have developed a new, 2-dimensional area router, the loop routing
scheme (LRS). LRS handles both rectangular- and doughnut-shaped routing
areas. It produces sticks, which LAVA in turn compacts to produce the final
routing. LRS is a promising box router for the custom routing problem because,
like the dogleg channel router, it indicates how much expansion of the routing
area (if any) is necessary to complete the routing. Constraint loops are no prob-
lem for it.

We are also working on modeling the custom routing problem. We are
analyzing those large designs available to us to verify some of the conjectures



-9-

arising from our experimentation with routing. We would especially like to thank
Dave Patterson, Jim Clark, and Mark Hannah for providing their layouts to us.
Staff: R. Mathews, J. Newkirk, Z. Saed, T. Saxe, L. Smith

Related Efforts: PI project (MIT)

References: Smith82a, Mathe~la

Logic-to-sticks Conversion

This new work is aimed at simplifying the layout of random logic. Some
amount of glue is inevitable in a design, but it is painful to lay out and does not
consume a significant amount of area on a typical design. Consequently, we
have begun tc look at techniques for converting logic, specified as trp '.stors
and a net list, to stick diagrams for LAVA.

Our initial, simple logic-to-sticks conversion algorithm yielded yout
(after sticks compaction) four times larger than hand-designed layouts a 10-
transistor control-logic cell. For this particular case, such an expansio -uld
be acceptable; the automatic layout would have fit in the area availa .le
saving us a considerable amount of effort.

However, if a tolerably small cell is to emerge after compaction, converting
schematics to sticks is apparently a relatively hard problem. Component place-
ment, component orientation, and interconnection all have significant impact on
the final size. Currently, the automatically generated sticks yield cells about
50% larger than the equivalent hand-drawn sticks. By providing 5-10 hints in
the form of component orientations, relative component placement, and wire
routes, the penalty drops to about 25%.

Clearly, this research has a long way to go before we have to understand the
Issues completely.

Staff: R. Mathews, W. Wolf

Related Efforts: Rule-based circuits-to-sticks conversion (A. Bell, PARC)

1.5. Formal Models for Concurrent Systems

*. We have constructed a model for specifying and verifying concurrent sys-
tems. The model contains two parts: a structural algebra that describes module
interconnection structures, and a behavioral semantics that defines the function
computed by a set of modules. We have shown that the model has a number of
attractive mathematical properties, which are summarized below. In addition,
we have used it to analyze and verify several composite modules, including a

* memory cell, shift register, and a flip-flop synthesized from gates.

The structural algebra defines a set of operators for synthesizing networks
of interconnected modules. The basic building blocks are primitive modules.
Each primitive module is associated with a set of named ports for input/output,
but it has no internal structure. Compound modules have both internal struc-
ture and ports for communication. There are three operators for defining com-
pound modules: port renaming, composition, and the feedback loop. Port
renaming leaves structure unchanged but applies new names to ports: it is use-
ful because the other operators make connections based on port names. Com-
position of two modules matches output ports of the first module with input
ports of the same name in the second module. Looping matches output ports of
a module with input ports of the same module, wherever the names match.

q The algebra defined in this way exactly captures the set of proper nets,
which are essentially nets with distinct port names. That is, any expression in
the algebra is a proper net, and any proper net corresponds to an expression in

V



-10-

the algebra. Also, any expression has an equivalent normal form as a composi-
tion of feedback loops of primitive modules, possibly with renaming of ports.
This fact makes it possible to test for equivalence of nets. An axiomatic system
for manipulating net expressions is provided

The structural algebra describes static structure; the dynamic aspects of a
system are described by its behavioral semantics. This semantics associates
with each module:
a a functional mapping between partially ordered events at input and output

ports,
a a domain constraint, specifying that certain output events must precede

certain input events, and
a a functional constraint, specifying that certain input events must precede

certain output events. The functional and domain constraints are a gen-
eralization of those defined by Seitz. We have used Scott's least-fixed-point
semantics to derive the semantics of compound modules created by the
operators of the structural algebra. As a result of this derivation, we can
prove that the semantics of a compound net are computable if its com-
ponents' semantics are computable.

The main problem remaining concerns the conditions under which one
* module can be substituted for another without affecting the properties of a com-

pound system. This is most important when we consider module specifications.
In that case we are asking when a module implementation satisfies its
specification and can be used wherever a module of that specification is
required. We also expect to expand the range of examples that we have
analyzed.

Vy) Staff: S. Owicki, N. Yamanouchi

References: Malac~l a

2. Testing

2. 1. ICTFSr

L .The ICTEST system is a unified system for functional simulation and testing.
A test is written in ICTEST, C extended to include testing primitives, data for-
matting, and mechanisms for specifying parallelism and pipelining. The test
may then be targeted to run against a simulator (esim or tsim) or a tester
(MINIMAL, MEDIUM, or TEK S-3260). The MEDIUM tester is the testing workhorse;
the TZK is intended primarily for performance measurement and functional

9 testing at speed.

ICTEST has been extended to capitalize upon LAVA circuit extraction by
using symbolic naming and by providing symbolic debugging facilities. ICTEST
has undergone a consolidation, resulting in stabler code and much improved
documentation. Also, we have incorporated the 2-phase clocking notation and
extensions for the TEK. Thirty to forty different designs have been tested so far

U using ICTEST, including the SAR memory Lest chip and MIPS test chips.

Incorporating the TEK tester into our testing system proved to be a major
effort. Nevertheless, we are now able to use the TEK directly from ICTEST; its
principal utility is in performance testing at speed. Testing is fully automatic,
although we were forced to add electronic means for pushing the start button on
the TEK.

We have speed-tested only a few parts so far. For example, one of the fall
quarter design projects is a Walsh transformer chip intended to run at 1MHZ. Of

q



S

-11-

6 chips received from MOSIS, 5 ran exhaustive tests correctly at 4-5 MHZ; 1 chip
had a single stuck-at fault.

There is no new work on the MINIMAL or MEDIUM testers per se. However,
the MEDIUM tester is now being reduced to a chip set. It will connect to a stan-
dard DEC DMA interface. We shall distribute it to the community when it
becomes available.

Staff: D. Boyle, R. Mathews, J. Newkirk, I. Watson

Related Work. FIFI project (CalTech)

References: Watso60a, Newki8la, Newki8lb, Watso52a

2.2. Clocking Discipline

We have developed a 2-phase clocking notation and an associated clocking
discipline. The objective is to provide appropriate formal concepts for thinking
about clocking in 2-phase systems, and to delineate a circuit syntax guarantee-
ing consistent clocking. The clocking discipline can also be co-opted to guaran-
tee other forms of correctness, e.g., freedom from charge sharing.

We initially developed a basic notation and discipline and have now
extended it to allow precharged logic and 2-phase busses. Timeck is a new

* auditing tool that checks an extracted circuit for conformity to this discipline.
It flags clocking errors, charge sharing, and dynamic instability.

Timeck was used by the Winter '82 testing class. So far all designs that pass
timeck have the property that esim predicts the chip behavior exactly. We have
also found that timeck catches many functional errors - even wiring errors -
before simulation. We are now working on solidifying both the theory and the
auditing tool.
Staff: R. Mathews, J. Newkirk, D. Noice

Related Efforts: Glasser's work (MIT)

References: NoiceBla, Noice82a, Noice82b

2.3. Practical Testing

We offered the testing class again during the Winter Quarter of 1982. Class
size was 40 students; 20 projects were tested. Results were similar to last
year's, with about a third of the projects complete failures, a third seriously
flawed, and a third working. The major change from last year was that there
were no mysterious failures; we attribute this in large part to the clocking dis-
cipline and the clocking checker. Special thanks go to Danny Cohen and the
crew at ISI for good turnaround on the class fabrication run.

We have designed and thoroughly tested a 10,000-transistor serial memory
based on a 3-transistor RAM cell. We have used this project to exercise our lay-
out capabilities and our testing system, and to check our understanding of the
clocking discipline. The memory is intended as a step toward a serial signal pro-

* cessing system.

We received 12 chips, all from the same MOSIS run, in 2 batches of 4 and 8.
Of the first 4, 1 is perfect, 2 have point fabrication defects, and 1 exhibits a gross
failure to precharge the memory plane. Of the second 8, all are gross failures.
They behaved intermittently, which puzzled us for a long time. Eventually, we
discovered that the failures were uniformly due to very short (less than 400

* microsecond) storage times. We now understand the functional behavior of all
serial memory parts we have received so far.



-12-

Staff: D. Boyle, R. Mathews, J. Newkirk, D. Perkins, T. Saxe, Linda Shwetz, I. Wat-
son

References: SaxeB1a, Wolf8la, Wolf82a, Torke6la

3. Algorithms and architectures.

3.1. Coding for Hard-Error Tolerance

This work has concentrated on defect tolerance for memory systems. We
have developed both capacity theorems for memories with hard and soft errors,
and practical codes for 1- and 2-bit hard error correction and the presence of
noise. For example, to correct two stuck-at faults and one soft error in a 10-bit
word requires 6 additional bits and a simple encoder and decoder; in contrast,
correcting 3 soft errors requires 12 additional bits and a complex decoder. The
serial memory (see above) incorporates the 1-bit hard-error correction scheme.

Staff: A. El Gamal, C. Heegard

References: HeegaBla

32. Defect Tolerance in Array Architectures

We have begun to develop a new body of theory on the effect defects have on
yield of array architectures. For example, consider the problem of finding an
embedded chain of good elements in a square array of elements. (This problem
has close ties to percolation theory in physics.) If the probability P that an ele-
ment is good is greater than one half, than with non-zero probability there exists
a connected region of 0(n ' ) of good elements. Moreover, the probability goes
smoothly to one as P- 1.

What is surprising is that if you set out to use a fixed fraction F of the good
elements, there exists with probability 1 a chain where successive members in
the chain are no more than a fixed distance apart. The distance depends on F.
but is independent of the size of the array. These results have been verified by
simulation.
Staff: A. El Gamal, J. Greene

3.3. A ligh-Speed. Single-Chip Vl-I Processor

MIPS (Microprocessor without Interlock between Pipe Stages) is a project to
develop a high-speed (> 1 MIP), single-chip, 32-bit microprocessor. Like the
RISC project at Berkeley, MIPS uses a simplified instruction set and a load-store
architecture. The two major aims in the MIPS design are:
0 to attempt to shift the complexity from the architecture to the compiler

and code generator for the processor, and
a to provide instructions that allow 100% utilization of the components of the

micromachine architecture.

The micromachine architecture is a six-stage pipeline that holds three
active instructions at any one time. The three pipe stages loosely correspond to
instruction fetch and decode, operand decode and fetch, and execution. The
major resources that are distributed to the pipe stages are register access, PC
access and increment, ALU functions, and memory access. Thus, each instruc-
tion has a chance to use the instruction memory once, the data memory once,
and the ALU twice (once for operand addressing and once for execution). In
each pipe stage a potential instruction can utilize all the resources associated
with that stage. Thus, the major resources have a duty cycle close to 100%
(including the memory).



- 13-

In a pipelined machine, a large segment of the hardware is associated with
pipeline interlocks. Additionally, pipeline interlock hardware is extremely
difficult to accommodate in VLSI, since it usually requires a complex intercon-
nection to many elements of the data path. MIPS does not have pipeline inter-
lock hardware; this function must be provided by the compiler. The load/store
design makes the pipeline interlock checks straightforward and also simplifies
the support for branching, interrupts, and page fault handling.

The MIPS instruction set consists of several instruction classes: load/store
instructions, ALU instructions (which are all register-register), branches and
calls, and miscellaneous instructions. All instructions are 32 bits (one word).
There are 16 general-purpose, symmetric, 32-bit registers. The instruction
classes are orthogonal, although a single instruction word may contain two
unconnected instructions. For example, a single instruction word can contain
both a load instruction and an ALU instruction (which may use the value loaded
in the load instruction). The instructions are summarized below:
0 Load/Store:

- Load/Store absolute

- Load/Store based, with varying offset sizes

- Load Immediate
0 ALU Instructions:

- Two and three register forms; instructions combine with Load/Store
instructions or with another ALU instruction.

- Operations include: Add, Subtract, Multiply and Divide Steps, Shift,
Complement, AND, and OR. Non-commutative instructions have a
reverse form.

- A short unsigned constant may replace one of the source registers.
0 Branches and Calls:

- Branches and Calls can be PC-relative or absolute, and may also be
indexed.

- Conditional branches test two registers (or a register and a constant).

- A delayed branch is used (the two instructions following the branch are
executed).

a Jnterrupts and Page Faults:

- These are handled as a special class of instructions.

- Instructions prior to the interrupting or faulting instructions are exe-
cuted.

- The status of the processor is correctly restored by the return.

We have completed the instruction set description of MIPS, a complete
high-level design, informal schematics, and 75% of the layout work.

Staff: F. Baskett, J. Burnett, J. Gill, K. Gopinath, T. Gross, J. Hennessy, N. Jouppi,
J. Leonard, S. Przybylski, C. Rowen, A. Strong.

Related Efforts: RISC (UCB), IBM 801 (IBM Yorktown)

References: Henne8lc, Henne82a, Henne82b, lHenne82c

q a I



-14-

3.4. Graphics Architecture - the Geometry Engine and the IMP

The Geometry Engine is a high-performance, floating-point computing
engine for geometric operations in 2D and 3D computer graphics. Multiple
copies of the Geometry Engine provide a parallel computing system with very
high-performance (5-10 million floating-point operations per second).

The Geometry Engine has been implemented as 40,000-transistor VLSI chip.
The project started in 1980 and the first complete working chips were delivered
in March 1982. The goals and design of the Geometry Engine are explained in
detail in the references.

The Image Memory Processor (IMP) is a special purpose chip that provides
control over an image memory and provides ultra-high-performance frame-
buffer operations. This preformance is obtained by associating an IMP with each
RAM chip in the image memory and executing scan conversion primitives in
parallel within each memory chip that is affected by the primitive. The IMPs are
configured in a matrix organization: a single column IMP for each column in the
image memory and multiple row IMPs associated with that column IMP.

In the initial design (described in a report in the references) a single chip
performed two IMP functions. Although this design was fabricated and worked, it
was slightly too large to be made economically in the numbers needed to build a
full-scale image memory system. Because the bulk of the complexity is associ-
ated with the column IMP, which is used in smaller numbers, the design of two
separate IMPs (a row and column version) is substantially more economical.
This strategy was chosen and two separate designs were completed. These parts
were fabricated and found to be functional, although the yield on column IMPs
was still quite low.

Staff: K. Akeley, J. Clark, M. Grossman, M. Hannah, C. Rhodes

References: ClarkS0a, Clark8Ob

3.5. Ladder-form CORDIC architectures

The fast Cholesky algorithm has proved effective for finding predictors for
LM moving-average processes. We are now looking for proper E-orthogonal transfor-

mations to map this solution into ladder-form structures, since ladder-forms
have an immediate mapping into a chip architecture.

Continuing work on CORDICs has been mostly of a theoretical nature. We
have discovered faster CORDIC algorithms and techniques for systematically
constructing scattering arrays based on CORDIC processing elements.

Staff: H. Ahmed, P. Ang, M. Morf

References: Ahmed8la, Delos82a, Lee82a, Morf62a, Ahmed62a, Ahmed8lb,
Ahmed8lc, AhmedBld

4. Other Projects

4.1. CLL
Our workhorse layout language, CLL, has been extended in modest ways by

adding cpp, the C preprocessor, as a front end and including arithmetic in CLL
itself. As a result, stretchable cells and wiring can be defined, although handling
the parameters is entirely up to the user.

The spring 1981 version of CLL has been available for some time. It has
been heavily exercised and is substantially bug-free. It runs 2-5 times faster
than its predecessor.



-15-

Staff: C. Burns, T. Saxe
References: Saxes lb

4.2. Polygon Package and Design-Rule Checker

We have made available a high-quality design-rule checker based on our
polygon package. It is slow, about 2 times slower than the old MIT design rule
checker. However, if one accepts its interpretation of design rules with respect
to butting contacts, it produces no false errors and misses no errors. It derives
circuit connectivity information to prevent reporting of false separation errors
between electrically connected components. This checker is used by our design
classes and has been heavily tested by 50+ designers.

The polygon package is distributed as part of the design-rule checking
software.

Staff: D. Noice

References: Noice8lb

4.3. nLMOS Cell Library

We have completed a documented nMOS Cell Library. It includes MPC cells.
u cleaned-up MPC cells, new cells (e.g., an ALU slice and an adder slice), and Dick

Lyon's serial arithmetic cells. The documentation describes logical, physical,
and electrical characteristics.

The first formal printing of the Cell Library was completed in July 1981. It
has proved to be a popular publication in the ARPA VLSI community. We con-
tinue to discover inadequacies in the Cell Library, however; please report any
you find to us so that they may be repaired in future versions.

Staff: C. Burns, D. Noice, R. Mathews. J. Newkirk, J. Redford, T. Saxe, L. Smith

References: Newki81 c

4.4. Schematic Simulation System

The schematic simulation system allows the submission of hierarchically
structured (SCALD-like) circuit schematics. The schematic design is expanded
and translated to input for esim. This allows simulation long before layout and
also permits cross checking between the schematic and its laid out version.

This system has been used for one test chip in the MIPS design and we
expect to complete the schematic design of the chip using this tool.

q Staff: J. Hennessy, C. Rowen

4.5. Handling IC Designs at the Logic Gate Level

An integrated circuit can be usefully viewed from many different levels of
abstraction. One of these is the Logic Gate level, in which a circuit consists of
things like NAND gates, inverters, and pass gates, connected to electrical nodes.
There are currently a number of tools to deal with other representations (such
as circuit level and switch level descriptions). The goal of this project is to
develop tools to deal with a logic gate level description of an IC.

Representing a circuit as a net of logic gates makes the tacit assumption
that the signals flow in only one direction through components. which is not
necessarily true in nMOS. The nMOS transistor is a bidirectional device. How-
ever, this bidirectionality is not often used in actual designs. It certainly will not
be used in circuits that implement a net of logic gates. Where bidirectionality is
used, it can be detected. To the extent that bidirectionality is not used, tools

I



- 16-

that use a logic level description can take advantage of this, whercas tools using
a lower level description can not.

There are two uses for the logic level description. One is to close a top-
down design, bottom-up verification ioop. A circuit can be designed at the logic
gate level (as in SCALD, for instance), or at a higher level and then expanded to
the logic gate level. From this, a layout is designed. By extracting a logic gate
level description from the layout, and then comparing this to the intended logic
gate design, the correctness of the layout with respect to the logic gate design
can be verified. Currently, we use a modified version of a program written by
Clark Baker to extract a switch-level description of a circuit from a CIF descrip-
tion of the layout. We are working on a program to extract a logic gate level
description from the switch level description, and are thinking about a program
to compare two logic gate level descriptions.

The logic gate level description should prove useful in itself. Since it is
more abstract than the switch level description or the layout (which are the lev-
els of abstraction currently used by many tools), it is a more compact represen-
tation of the circuit. This compactness is achieved by the loss of some detail,
but for many purposes, this detail is irrelevant. For instance, a logic gate level
simulator could be used to explore and debug high level algorithms and their
implementations in logic, without worrying about things like inverter ratios.

Currently, we have a version of the logic gates from switch level extractor
written in C, and we are working on a version in Pascal. We have given some
thought to programs for comparing, simulating, and drawing the logic gate
representation.

The extractor was first developed in C, cannibalizing another C program
that also used the output of Clark Baker's program. We can now run a circuit
through it, and get out a set of equations of the form NODE=EXPRESSION, which
signifies a subnet of gates, with inputs mentioned in the EXPRESSION, and whose
output is NODE. The EXPRESSION is built by composition from the functions:
Inversion, And, Or, Pass, and Wire-Or. If the output node is pulled up, the
expression derived for it is NOT(when-this-node-is-conne cted-t o-g round). When-
this-node-is-coninected-to-ground is an expression in terms of Ands and Ors of
nodes, which is true when those nodles enable a path from the node in question
to ground. Thus, when the output node is pulled up, an expression in Boolean
logic can be derived for it by a simple analysis: it is high, unless it is being pulled
low. When the output node is not pulled up (or, by a symmetric argument,
pulled down), matters are not so simple, and the Pass and Wire-Or functions are
used. An output node which is not pulled up is connected to a number of
enhancement mode transistors, each of which has some signal on its gate, and
something on the other side. The expression derived for this sort of node is a
Wire-Or of a number of terms, where each term corresponds to one of these
transistors. Each such term is "A Pass 13", where A is what is on the gate of the
transistor, and B is what is on the other side. This is like the conditional expres-
sion of some programming languages, where the As are the conditions and the
Bs are the results. The expressions for the gate and other side of a transistor
are obtained by recursively applying this analysis function to those nodes, as it
they were outputs,
Staf: F. Baskett, M. Spreitzer



-17-

4.6. The SLN Workstation
This project includes the design of the SUN hardware, software for the SUN.

and network support software for the SUN network.

There are numerous configurations for the SUN workstation:

• Smart graphics terminal to the Ethernet (processor/memory, Ethernet
interface, and display controller, plus keyboard and mouse).

• Stand-alone workstation with disk (add a disk controller board and disk).

* Ethertip terminal concentrator to allow normal terminals access to Ether-
net (remove the graphics board).

• Gateway between Ethernets (two Ethernet boards, one processor/memory
board).
To support stand-alone SUNs we brought a Unix-based leaf server into full

production. We have been experimenting with leaf server processes under Unix
since May 1981, and have finally settled on the right configuration of processes,
ports, connections, and file handles that allows the leaf server to be efficient
while maintaining file access controls. This leaf server runs as a privileged back-
ground process under Unix, and responds to leaf service requests coming in over
the Ethernet.

We have both a PUP-based implementation of the leaf server and an IP-
based implementation of the leaf server, though we have not tested the IP-based
version in production yet, because the necessary student manpower has not
been available since IP became available in our environment. The IP-based leaf
server will be available in the near future.

Staff: F. Baskett, A. Bechtolsheim, V. Pratt, B. Reid

References: Be chtB2a

U



-1B-

Bibliography

Ahmed8la. H. M. Ahmed and M. Morf, "VLSI Array Architectures for Matrix Fac-
torization," Proc. Workshop on Fast Algorithms for Linear Systems, (Sept.
1981).

Ahmed8lb. H. M. Ahmed, M. Morf, D. T. L. Lee, and P. H. Ang, "A VLSI Speech
Analysis Chip Set Based on Square-Root Normalized Ladder Forms," Proc.
1981 Int'l Conf. Acoustics Speech and Signal Processing, pp. 648-653
(Mar.-Apr. 1981).

Ahmed8lc. H. M. Ahmed, Signal Processing Algorithms and Architectures, PhD
Thesis. Dept. of Electrical Engineering, Stanford University (Dec. 1981).

Ahmed8ld. H. M. Ahrned, P. H. Ang, and M. Morf, "A VLSI Chip Set Utilizing Co-
Ordinate Rotation Arithmetic," Proc. Int'l Symp. Circuits and Systems,
(Mar. 1981).

Ahmed82a. H. M. Ahmed, J.-M. Delosme, and M. Morf, "Highly Concurrent Com-
puting Structures for Matrix Arithmetic and Signal Processing," IEEE Corn-
purer 15(1) pp. 65-81 (Jan. 1982).

Becht82a. A. Bechtolsheim, F. Baskett, and V. Pratt, "The SUN Workstation
Architecture," Technical Report #229, Computer Systems Laboratory.
Stanford University (Mar. 1982).

Burns82a. C. Burns and T. Saxe, "SEDIT Tutorial." 1SL VLSI File #041182 (Apr.
1982).

ClarkB0a. J. H. Clark, "A VLSI Geometry Processor for Graphics," Computer
13(7) pp. 59-68 (Jul. 1980).

ClarkB0b. J. H. Clark and M. R. Hannah, "Distributed Processing in a High-
Performance Smart Image Memory," Lambda 1(3) pp. 40-45 (1980).

Davis8la. T. Davis and J. Clark, "SILT: Stanford Intermediate Language for
Topology," Technical Report #226. Computer Systems Laboratory, Stan-
ford University (Nov. 1981).

Delos82a. J.-M. Delosme and M. Morf, "Constant-Gain Filters for Finite Shift-Rank
Processes," Proc. 1982 Int'l Conf. Acoustics Speech and Signal Processing.
pp. 1732-1735 (May 1982).

Eiche80a. P. Eichenberger, "LAVA: an IC Layout Language," ISL VLSI File
#102580 (Oct. 1980).

HeegaBla. C. Heegard, "Linear Block Codes for Computer Memory with
Defects," ISL VLSI File #051181 (May 1981). Submitted to IEEE Trans. Infor-
mation Theory.

Henne80a. J. L. Hennessy, "A Language for Microcode Description and Simula-
tion in VLSI," Computer 13(7) pp. 66-67 (Jul. 1980).

IIenne81c. J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill. "MIPS: A VLSI Pro-
cessor Architecture," Proc. CMU Conference on VLSI Sjstemns and Compu-

* tations, pp. 203-212 Computer Science Press, (Oct. 1981).

Henne8la. J. L. Hennessy, "A Language for Microcode Description and Simula-
tion inVLSI," Proc. of the Second CalTech Conference on VLSI, (Jan. 1981).

Henne8lb. J. L. Hennessy, "SLIM: A Simulation and Implementation Language
for VLSI Microcode," Lam,-bda, (Second Quarter 1981).

Henne82a. J. L. Hennessy and T. R. Gross, "Code Generation and Reorganization
in the Presence of Pipeline Constraints," Proc. Ninth POPL Conference.
(Jan. 1982).



-19-

Henne82b. J. L. Hennessy, N. Jouppi, F. Baskett, T. R. Gross, and J. Gill,
"Hardware/Software Tradeoffs for Increased Performance," Sym. on Archi-
tectural Support for Programming Languages and Operating S .items,
(Mar. 1982).

Henne82c. J. L. Hennessy, N. Jouppi, J. Gill, F. Baskett, A. Strong, T. R. Gross, C.
Rowen, and J. Leonard, "The MIPS Machine," Proc. Compcon, pp. 2-7 (Feb.
1982).

Lee82a. D. T. L. Lee and M. Morf, "Generalized CORDIC for Digital Signal Process-
ing," Proc. 1982 Int'L Conf. Acoustics Speech and Signal Processing, pp.
1748-1751 (May 1982).

Malac8la. Y. Malachi and S. S. Owicki, "Temporal Specifications of Self-Timed
Systems," CMU Conference on VLSI Systems and Computations, pp. 203-
212 Computer Science Press, (Oct. 1981).

MatheBla. R. Mathews, "A Formalization of Channel Routing," ISL VLSI File
#092481 (Sept. 1981).

Mathe82a. R. Mathews, J. Newkirk, and P. Eichenberger, "A Target Language for
Silicon Compilers," Proc. Compcon, (Feb. 1982).

Morf82a. M. Morf, C. H. Muravchik, P. H. Ang, and J.-M. Delosme, "Fast Cholesky
Algorithms and Adaptive Feedback Filters," Proc. 1982 Int l Conf. Acoustics
Speech and Signal Processing, pp. 1727-1731 (May 1982).

Newki8la. J. Newkirk, R. Mathews, I. Watson, and W. Wolf, "Testing Chips using
ICTEST version 1," ISL VLSI File #020281 (Feb. 1981).

Newki8lb, J. Newkirk, R. Mathews, I. Watson, and W. Wolf, "Testing Chips using
ICTEST version 2," ISL VLSI File #020381 (Feb. 1981).

NLwki81c. J. Newkirk, R. Mathews, J. Redford, and C. Burns, "The Stanford nMOS
Cell Library (First Edition)," ISL VLSI Tech. Rept #001 (Jul. 1981).

Noice8la. D. Noice, R. Mathews, and J, Newkirk, "A Design Discipline for Digital
Integrated Circuits," ISL VLSI File #082681 (Aug. 1981).

Noice8lb. D. Noice, J. Newkirk, and R. Mathews, "A Polygon Package for Analyz-
ing Intergrated Circuit Designs," Lambda, pp. 33-36 (Third Quarter 1981).

Noice82a. D. Noice, R. Mathews, and J. Newkirk, "How to Make Digital Integrated
Circuits Work the First Time," ISL VLSI File #031082 (Mar. 1982).

Noice82b. D. Noice, R. Mathews, and J. Newkirk, "A Timing Discipline for Digital
Integrated Circuits," ISL VLSI File #032882 (Mar. . 982). Submitted to 1982
ICCC.

q Saxe8la. T. Saxe, "Testing the High-Yield Memory," ISL VLSI File #811103 (Mar.
1981).

SaxeBlb. T. Saxe, "CLL (Version 3) - A Chip Layout Language," EE271 Class Han-
dout (Fall 1981).

Smith82a. L. Smith, T. Saxe, J. Newkirk, and R. Mathews, "A New Area Router,"
ISL VLSI File #040882 (Apr. 1982). Submitted to 1982 ICCC.

Torke8la. K. Torkclsson and J. Fokkema, "A Project Applying the M & C
Approach to LSI Design," ISL VLSI File #071581 (Jul. 191.

Watso80a. I. Watson, "Choice of a Functional IC Test and Measurement System
for the Stanford Electronics Labs," Internal Stanford Memorandum (Oct.
1980).



- 20 -

WatsoB2a. I. Watson R. Mathews, J. Newkirk, and D. Boyle, "ICTEST: A Unified
System for Functional Testing and Simulation of Digital ICs," ISL VLSI File
#082782 (Aug. 1982). Submitted to 1982 Cherry Hill Testing Conference.

Wolf8la. W. Wolf, "Design Validation for EE271," ISL VLSI File #111181 (Nov.
1981).

Woif82a. W. Wolf, "Design Validation for EE271," ISL VLSI File #050182 (May
1982).

U

If

Km

K


