AD-A120 338

OnCLASSIFIED

CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 9/2
USER'S MANUAL FOR MILENG1/UTIL READ-ONLY MEMORY MODULE OF THE C==ETC(U}
SEP 82 J M DEPONAL

CERL=TR=P=136 . NL

construction

engineering
research DAL 1002 |
laboratory :

USER'S MANUAL FOR MILENG1/UTIL READ-ONLY-
MEMORY MODULE OF THE COMBAT ENGINEER
PROGRAMMABLE HAND-HELD CALCULATOR

AD A120338

by
John M. Deponai 111

\\\\

y.

‘/—\\\\

DTIC
ELECTES%;
SOCT 15982 7 &

I

. ,’,”
54 k3 '\'
e

A

i

E=l.

82 10 15 o005

Approved for public release; distribution unlimited.

el A e SR>
SRR B——)

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entored)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
' a!BoIi NUH.!E 2. GOVY ACCESSION NOJ 3. RECIPIENT’S CATALOOC NUMBER
CERL-TR-P~136

S. TYPE OF REPORT & PERIOD COVERED

WA /20 23§
TITLE (and Subtitle,

4.)
USER.-S MANUAL FOR MILENG1/UTIL READ ONLY MEMORY

MODULE OF THE COMBAT ENGINEER PROGRAMMABLE HAND- FINAL

HELD CALCULATOR 6. PERFORMING ORG. REPORT NUMBER

3. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s)
John M. Deponai III

:]. us-nrommm ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT. PROJECT TASK

CONSTRUCTION ENGINEERING RESEARCH LABORATORY

P.O. BOX 4005, CHAMPAIGN, IL 61820 4A762731AT41-D-049

11. CONTROLLING OFFICE NAME AND ADDRESS - | 12. rePoRT DATE
September 1982

13. NUMBER OF PAGES

45
[T& MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 15. SECURITY CLASS. (of thie report)
Unclassified

[18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

Té. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered in Blook 20, I dilferent from Report)

18. SUPPLEMENTARY NOTES

Copies are obtainable from the National Technical Information Service
Springfield, VA 22151

19. KEY WORDS (Continue on reverse sida if necessary and identify by block nymber)

military engineering
calculators
programmable calculators
HP=-41C

fan A CT (Cautiuse an severse sbid N noseesary and identify by block manber)

Six pilot combat engineering programs and ten programming utility sub-
routines have been developed as part of an ongoing study to evaluate whether
programmable hand-held calculators can increase the efficiency or military
effectiveness of engineer troop units from platoon through brigade levels.
This report describes the programs, explains how to use them, and gives exam-
ple problems.

K

DD ," 2™ UJ3 £otnow or ' wov 6 13 OBsOLETE

e R Tacam Lk e g

SECURTY CLASSIFICATION OF THIS PAGE (When Data Entered)

o st

YA ST LN R P FRE <) (e

g‘ Al 6 ey

" ta T AT et e - L e e e oA e = et S o7 T e e AT e e

FOREWORD

- This investigation was conducted for the Directorate of Military Pro-~
grams, Office of the Chief of Engineers (OCE), under Project 4A762731AT4l,
"Design, Construction, and Operation and Maintenance Technology for Military
Facilities"; Task D, "Combat Engineering Strategy"; Work Umit 049, "Program-
mable Calculator Technology for Engineer Troop Units." The applicable STO is
81-5.1:19. The OCE Technical Monitors were LTC John Howard and Dr. Clemens
Meyer, both of DAEN-ZCM.

This work was performed by the Facility Systems Division (FS) of the U.S.
Ammy Construction Engineering Research Laboratory (CERL). Mr. E. A. Lotz is
Chief of CERL-FS.

The cooperation and contributions of many persons on the staff of the
U,S5. Army Engineer School are gratefully acknowledged. CPT Scott Loomer of
the Defense Mapping School is especially commended for developing the Bridge
Classification Program and all but two of the global utility routines
described in this report.

COL Louis J. Circeo is Commander and Director of CERL, and Dr. L. R.
Shaffer is Technical Director.

; 2~cession For
i PTTS GRAXI
;
3

¢ TAB O
VLoainounced 'l

diztification
/ 0

. ey

t Tistribution/

i Availakility Codes |
' ‘Avall cndfor
ist Spreial

oo v o -

R —

L L i,

T ————

T

CONTENTS

DD FORM 1473
. FOREWORD
LIST OF TABLES AND FIGURES

-3 DD e

1 ImoDUcrIoN..-......‘..........Q"..'.......!....'.....'......l..'..
Background
Conventions

2 THE BRIDGE CLASSIFICATION PROGRAM (BRDGCLS) eeeeeeeosscoseesssascancss 10
General Program Information]
Program Sequence I
~ BRDGCLS Program Example

3 THE CRITICAL PATH METHOD PROGRAM (CPM) ¢cvecvscocvcvrsccconosssscacessns 16
General Program Information !
Program Sequence
CPM Program Example

4 THE ROAD CRATER PROGRAM (CRATER).ceveeecevovssecannssonnceassssnansee 22 }
General Program Information
Program Sequence
CRATER Program Example

5 mE DmOLITION PROGMH (Dmo)................O..ll'.............ll... 26
General Program Information
Program Sequence
DEMO Program Example

6 mE HINEFIELD PROGW (Mlms)....'.........................‘..I...l.' 30
General Program Information
Program Sequence
MINES Program Example

7 THE WIRE OBSTACLE PROGRAM (WIRE)..................................... 34
General Program Information '
Program Sequence i
WIRE Program Example ;J
;

8 m‘oBAL UTILITY sUBRwTINEs...'.....I......l.'..‘............l..‘.l.l. 39 :
Conventions
Global Subroutine *S
Global Subroutine *F i
Global Subroutine *I
Global Subroutine *0
Global Subroutine *D
Global Subroutine *Y
Global Subroutine *A
Global Subroutine *C
Global Subroutine *R
Global Subroutine *P

DISTRIBUTION

1 BRDGCLS Abbreviations 11

2 ~ BRDGCLS Program Input Variable Operating Limits 11
3 CPM Program Abbreviations 17
4 CPM Program Variable Input Operating Limits 17
5 CRATER Program Abbreviations 23 ;
6 CRATER Program Input Variable Operating Limits 23 5“
7 DEMO Program Abbreviations 27
8 DEMO Program Input Variable Operating Limits 27 !v
9 MINES Program Abbreviations 31
10 MINES Program Input Variable Operating Limits 31
11 WIRE Program Abbreviations 35
12 WIRE Program Input Variable Operating Limits 35 |
FIGURES ;
1 BREGCLS Program Sequence 12 :
2 BRDGCLS Program Problem Example 13 ’
{ 3 BRDGCLS Program Example (With Printer) 15 i
; 4 CPM Program Sequence 16 ;
7 5 CPM Program Problem Example 19 ‘
. 6 CPM Program Example (With Printer) 21 :
4 7 CBATER Program Sequence 22 .'
f 8 CRATER Program Problem Example 24
1 9 CRATER Program Examples (With Printer) 25
¢
{ 10 DEMO Program Sequence 26
; 11 DEMO Program Problem Example 28
f; 12 DEMO Program Examples (With Printer) 29
t
4
ﬁ 5

13
14
15
16
17
18

FIGURES (Cont“d)

MINES Program Sequence

MINES Program Problem Example

MINES Program Examples (With Printer)
WIRE Program Sequence

WIRE Program Problem Example

WIRE Program Examples (With Printer)

30

32

33

36

37
38

USER”S MANUAL FOR MILENG1/UTIL READ ONLY MEMORY MODULE
OF THE COMBAT ENGINEER PROGRAMMABLE EANT-HELD CALCULATOR

1 INTRODUCTION

Background

Recent advancements in the state of the art of prograrmable calculators
have indicated that these devices might belp military engineers work more
efficiently. To determine the potential of these systems, in March 1980 the
U.S. Ammy Engineer School asked the U.S. Ammy Construction Engineering
Research Laboratory (CERL) to see how hand~held programmable calculators could
be exploited by combat engineers. To date, six pilot programs and ten utility
routines have been developed for testing. Details of the study and comprehen-
sive information on the programs and routines appear in CERL Technical Report
P-134, Software Documentatjon for MILENG1/UTIL Read Oply Megory Module.

This user”s manual describes each MILENGLl/UTIL program, explains how to
use each program, and gives example problems.

Conventijons

Only a few conventions must be learned to use the MILENGl/UTIL programs
effectively.

Yes/No Input

When the program asks a question that needs a "yes" or "no" answer, the
calculator will display an alpha string ending in (Y/N)?. To respond "yes",
press two keys: Y and R/S.* To answer "mno", press the N and R/S keys. Any
other responses will be rejected by the program and the question will be
displayed again., When the program asks this type of question, it automati-
cally puts the calculator in the alpha mode, then awaits your response.

Mumeric I nput

When the program asks for numeric input the calculator displays an alpha
string concatenated with a unit of measurement and an =?, To respond, key in
a numeric string, then press the R/S key. (Do not use the ENIER key.) If an
slpha string were keyed in, it would be rejected and the question would be
repested. If the input is not within the allowable range specified in the
program, one of the following messages will be displayed:

* When several letters/symbols are underlined, it means that as a group they
identify the name of a single key on the calculator. Only key function
nsmes will be shown. Use of the shift key, if needed, is assumed. Single
letters or numbers represent individual keys on the calculator.

V- A

MUST BE <= (some maximum value)

or
MUST BE >= (some minimum value).

Then, the original question will be repeated.

Output

All “"MILENG1/UTIL" programs can run with or without a printer. If a
printer is attached, the program stops only (1) when your input is required
and (2) at the end of a program. If a printer is not attached, the program
also will stop after each line of output. To continue execution, press the
R/S key each time the program stops. If you use a printer, set it to the NORM
mode.

Program Access
To access a particular program, you must "execute" the program name. For

example, to call the MINES program, press XEQ ALPHAMINESALPHA and the program
will begin execution.

Each program may be assigned to almost any key on the HP-4l calculator.
For example, to assign the MINES program to the/x key, press ASN
ALPHAMINESALPHA vX. Then, when the calculator is in the USER mode, the MINES

program will be executed if thevX key is pressed. See the HP-4l Owner’s Hand-
book and Programming Guide for more information on this "assign" feature.

Siae Check

Before a program can be executed there must be enough data registers
available to run the program. The minimum number of registers required for
each program is:

Program Registers Required
BRDGCLS 52
CPM *(2A+43)
CRATER 40
DEMO 41
MINES 53
WIRE 44

*A = Number of Activity Nodes

To set a program to the correct size, press XEQ ALPHASIZEALPHA. The calcula-
tor then will prompt for the number of registers required. A three-digit
number must be entered; i.e., for the BRDGCLS program, enter 052, If the pro-
gram is sized incorrectly, the program will immediately tell you to

RESIZE > (No. of Registers Required, minus one).

For example, if the BRDGCLS program was originally sized at 040, the
BRDCGLS program would display the message RESIZE> 51, You would then press
XEQ ALPHASIZEALPHA 052 (or greater), and then execute the program name again.

Register Use T

Registers 00 through 19 are reserved for your use. These registers are
not used by any of the programs on MILENG1/UTIL. However, the contents of
registers 20 and above are arffected, depending ou which programs are executed.

- v . o "—“L-

2 THE BRIDGE CLASSIFICATION PROGRAM (BRDGCLS)

The bridge classification program is used with certain tables in FM 5-34
(September 1976) to help you determine bridge superstructure classification.
This program may be used for both timber and steel stringer bridges. It first
asks you for the basic dimensions of the bridge. At the appropriate times, it
refers you to certain tables and figures in FM 5-34, tells you what entry
values are needed, and asks for the value of the variables corresponding to
those entry conditions. You extract the appropriate value from the manual’s
table (or figure) and input it to the calculator. The program determines the
limiting classifications for one- and two-way traffic by wheeled and tracked
vehicles. It determines the constraints imposed by moment capacity, shear
capacity, deck thickness, roadway width, and also determines if additiomal
braces are required.

General Program Informatjion

Abbreviations used in BRDGCLS are listed in Table 1. Input variable operating
limits are listed in Table 2.

Program Sequence

The typical sequence of events and the options you encounter when execut-
ing this program are shown in Figure 1.

BRDGCLS Program Example

Assume that a bridge reconnaisance was conducted to obtain the informa-—
tion below for a timber trestle bridge. Determine the final bridge classifi-
cation.

Road Width = 23 ft Span Length = 17 ft

Nine Timber Stringers, each 8" x 18" Springer Spacing = 35 in.
Deck = two layers of 3" x 12" plank

Two Lateral Braces, 8" x 10" at midpoint and at one end of span.

Figure 2 shows how to solve this problem using the BRGCLS program. Fig-
ure 3 is an example of BRGCLS output with printer attached.

10

e 14
—y

Table 1
BRDGCLS Abbreviations

Symbol Mesning
- CLS ,CLASS Classification '
T Deck Thicimess '
FIG Pigure
29 Feet
m Inches
| <4 Kip
L,M Maximum Span Length
LAM Laminated
}? | Lane

M Moment Capacity
M, DL Dead Load Moweant
¥,LL Live Load Moment
N Effective Number of Stringers/Lsne

N2 Effective Number of Stringers/Lane
for s 2-Lane Bridge 1]
RECON Reconmaissance :
S,B Maximum Bracing Spacing
8,8 Stringer Spscing
STL Steel
20 3 Stringer
TAB Table
b1} Timber
THICK Thiciness
v Shear Capacity
v,0L Dead Load Shear
v,LL Live Load Shear
wY Vay
(x/w) (Yes/¥o)
¢ Y, amber
4 Percemnt
Table 2
BRDGCLS Program Input Varisble Operating Limits t
Yaciable Inita Miniaum Maximm
Rosd width Test 8 50
Spen length) 7914 10 200
Stringer mumber Rach 2 25
Stringer width Ioches 4 20
Stringer depth Inches 6 60
Stringer flange thickness Inches 3 2 F
Stringer spacing Inchas 10 100 i
Deck Thickmess Inchas 2 12
2 laminated 4 0 100
Number of bracas Rach 0 20 5
Noment capscity Kip~Feat 3 iio0 '
Shear capecity Kip 3 600 :
Maximua spea lemgth | 13 9 135
Maximum bracing spating Post 6 2%
Dead losd moment Kip-Test 3 1200
Dead load shear Kip 1 63
Wheel classification Class 0 150]
Irack claseification Clase 0 150 b
Claasification Class 0 150 i

Source Refarence Notes:

7N 5=34 (September 1976), pps 170-184 eud 199-203. 3

g
'
i

11

EXECUTE "BRDGCLS" i

ENTER ROAD WIDTM IN FEET

ENTER SPAN LENGTH IN FERET
ENTER NUMBER OF STRINGERS
DECIDE 1F STRINGERS ARE STEEL
ENTER STRINGER WIDTH IN INCHES
ENTER STRINGER DEPTH IN INCHES
ENTER STRINGER FLANGE THICKNESS IN INCHES®*
ENTER STRINGER SPACING IN INCHES
ENTER DECK '.l"HIClN!SS IN INCHES
DECIDE IF LAMINATED)
-] 3
DECILL IFLLAYERED ENTER 2 L‘AHIIATED

ENTER m?n OF BRACES

ENTER MOMENT CAPACITY (KIP-FT) FROM TAB. 7-1 OR 7-2, FM 5-34

ENTER SHEAR CAPACITY (KIPS) FROM TAB. 7-1 OR 7-2, FM 5-34

ENTER MAXIMUM SPAN LENGTH (FT) FROM TAB. 7-1 OR 7-2, FM 5-34

ENTER MAXIMUM BRACING SPACING (FT) FROM TAB. 7-2, FM 5-34%
ENTER DEAD LOAD MOMENT (KP-FT) FROM FIG, 7-4, FM 5-34

ENTER DEAD LOAD SHEAR (RIP) FROM FIG. 7-4, FM 5-34
PROGRAM COMPUTES/OUTPUTS DEAD LOAD MOMENT PER STRINGER, LIVE LOAD MOMENT PER
STRINGER, EFFECTIVE NUMBER OF STRINGERS PER LANE (Nj), AND EFFECTIVE

NUMBER OF STRINGERS PER LANE FOR A 2-LANE BRILGE (N2)
ENTER CLASS OF WHEELED VEHICLE FROM FIG. 7-3, FM 5-34 '
ENTER CLASS OF TRACKED VEHICLE FROM FIG. 7-3, FM 5-34

PROGRAM COMPUTES /OUTPUTS D LOAD SHEAR PER STRINGER AND
LIVE LOAD SHEAR PER STRINGER

ENTER CLASS OF WHEELED VRHICLE FROM FIG. 7-5, FM 5-34
ENTER CLASS OF TRACKED VEHICLE FROM FIG, 7-5, FM 5-34
PROGRAM COMPUTES/OUTPUTS WIDTH CLASSIFICATION
ENTER DECKING CLASSI!ICAT!O! PROM FIG. 7-7. FM 5-34

PROGRAM COMPUTES/QUTPUTS
FINAL CLASSIFICATIONS

* (ONLY IF STEEL STRINGERS ARE USED)

Figure 1. BRDGCLS program sequence.

12

e

WWwwwwbwwwlwL N NN N PO N R ot bt (ot ot fut fud st st oot ot

eefiby

SB

W =
S & K- BVK--X. N -]

86.40
14,40
21.50

37.36
8.75

A A A A A I A A2 A A S

&

&8

?is\lte 2,

Resultiog Display Comments

BRIDGE CLASS
RECON:

ROAD WIDTH (FT) = ?
SPAN LENGTH (FT) = 1

STRINGERS:
STR, NUMBER = ?
STEEL (Y/N)?

STR. WIDTH (IN) = ?
STR. DEPTR (IN) = ?
STR. SPACING (IN) = ?
DECK THICK. (IN) = ?

LAMINATED (Y/N)?

DECK LAYERED (Y/N)?

BRACES = ?
CLASS:

TAB, 7-1, FM 5-34:
8.0X18.0

M(KP-FT) = ?

v (KIP) = ?

L,M (FT) = ?

TBR, 2 LN, 17. FT:
M,DL (KP-FT) = ?
V,DL (KIP) = ?
M,DL/STR= 4,2
M,LL/STR=82.2

Nl = 2,71

N2 = 3.38

FIG. 7-3, FM 5-34:

17 FT. & 223. M,LL:

CLS, WHEEL = ?
CLS, TRACK = ?
V,DL/STR = 1.0
V,LL/SIR = 13.4
F1G. 7~5, FM 5-34:
17 FT. & 52. V,LL:
CLS, WHEEL = ?
CLS, TRACK = ?
WIDTH CLS:

1 WAY = 100

2 WAY = 30

FIG, 7~7, FM 5-34:

DT = 4,0 & 8,8 = 35.:

CLASS = ?

BRDGCLS prngram problem example.

13

See

See

See

See

See

Note

Note

Note

Note

Note

O

PO T

Step Press
45 12 R/S
46 R/S
47 R/S
48 R/S
49 R/S
50 R/S
51 R/S
Notes:

Resulting Display Comments

FINAL CLASS:
ADD 1 .,BRACES
1 WY WHEEL = 12.
2 WY WHEEL = 12,
+ Y TRACK = 12,
2 WY TRACK = 12,
END PROGRAM

See Note 6

l. See Table 7-1, FM 5-34 for the properties of timber stringers.

2, See Figure 7-4, FM 5-34 to determine

3. See Figure 7-3, FM 5-34 to determine
based on moment capacity.

4. See Figure 7-5, FM 5-34 to determine
based on shear capacity.

5. See Figure 7-7, FM 5-34 to determine
thickness.,

6. If a printer is connected and in the
be output automatically.

Figure 2,

14

the dead load moment and shear.

the wheel and track classification

the wheel and track classification

the classification based on decking

NORM mode, steps 46 through 51 will

(Cont“d).

. M,DL/STR=4.2
XROM "BRDGCLS M,LL/STR=82.2
BRIDGE CLASS N1w=2.71
RECON N2=3.38
ROAD WIDTH(¥T)=? PIG.7-3,MM5-36:
23. RUN 17 .PT.4223.M,LL:
SPAN LENGTH(FT)=? CLS, WHEELe?
17. RUN 60. RUN
STRINGERS: CLS, TRACK=?
STR, NUMBER=? 40. RUN
9. RUN V,DL/STR=1.0
STEEL(Y/N)? V,LL/STR=13.4
N RUN FIG.7-5,PM5~34:
STR. WIDTH(IN)=? 17 .FT.&52.V,LL:
. RON CLS, WHEEL=?
STR. DEPTB(I“)-? 50. RUN
18. RUN CLS, TRACK=?
STR. SPACING(IN)=? 40. RUN
35. RUN WIDTH CLS:
DECK THICK.(IN)=? 1 WAY=100.
6. RUN 2 WAY=30.
LAMINATED(Y/N)? PIG.7~7,FM5-34:
N RUN DT=4.08S,5=35.:
DECK LAYERED(Y/N)? CLASS=?
Y RUN 12. RUN
#BRACES=? FINAL CLASS:
2. RUN ADD 1. BRACES
CLASS: 1WY WHEEL=12.
TAB.7-1,FM5~34: 2WY WHEEL=12.
8.0X81.0 LWY TRACK=12.
M(KP~FT)=? 2WY TRACK=12.
86.40 RUN END PROGRAM
V(KIP)=?
14 .40 RUN
L,M(FT)=? .
21.50 RUN
FIG.7-4,FM5~34.
TBR,2 LN,17.FT:
M,DL(KP~FT)=?
37.36 RUN
V,DL(KIP)=?
8.75 RUN

P

Figure 3. BRDGCLS program example (with printer).

15

3 THE CRITICAL PATH METHOD PROGRAM (CPM)

The CPM program provides an easy way to do the tedious calculations asso-
ciated with using CPM project control. The CPM program uses activity-on-the-
A1 node logic. Up to 98 activities can be analyzed if the full HP-4lcv resident
{ capacity for data storage is used. Up to 20 activities can be done on the
: HP-4lc model without memory modules.

The program computes the total float, the early start time, the early

finish time, the late start time, and the late finish time for each activity.
The "with printer" version prints out in boxes. These boxes can be cut out
and pasted together to graph logical relationships. In the printer version,
the preceding activities for each activity are noted to the left of each

. diagram, so the user will know how to connect the activities together. The
"without printer" output must be copied as it is output. Then diagrams can be
drawn by hand and annotated with the correct information.

nexal Progr 1 ion

Abbreviations used in the CPM program are listed in Table 3. Variable
input operating limits are listed in Table 4.

Program Sequence

The typical sequence of events and the options you encounter when execut-
ing this program are shown in Figure 4.

EXECUTE CPM
ENTER TOTAL NUMBER OF ACTIVITIES

ENTER ACTIVITY NUMBER, DURATION, AND PRECEDING
ACTIVITIES FOR EACH ACTIVITY

ENTER ENDING ACTIVITIES
ENTER STARTING ACTIVITY NUMBER
PROGRAM COMPUTES AND OUTPUTS

EARLY START, EARLY FINISH, LATE START, LATE
FINISH, TOTAL FLOAT AND CRITICAL PATH

Figure 4. CPM program sequence.

16

——

P

Table 3

CPM Program Abbreviations

Symbol Meaning
ACT Activity
CPM Critical Path Method
143 Early Finish
END Ending
ES Early Start
LF Late Finish
LS Late Start
PRED Preceding
START Starting
TF Total Float
(Y/N) (Yes/No)
] Number

Table 4

CPM Program Variable Input Operating Limits

Varisbl Mini Maxi
Total Number of Activities 1 98
Activity Identification Numbers 1* 98
Duration 0 1000
Preceding Activity Identification Numbers 1% 98
Starting Activity Number 1 98

*0 is also a valid input but tells the program that there are no more
inputs for these variables.

The limits set for preceding activity numbers (i.e.,, the jdentification
number) show that you can enter any activity between 1 and 98. However, the
total number of preceding activities for a gingle activity cannot exceed five.
The registers will be disrupted if more than five prececding activities or more

than 25 ending activities are used. The CPM program is not designed to check
these last two limits.

17

P

CPM Program Example

Given the following information, determine the early start, early finish,
late start, late finish, and total float for each activity using the critical

path method.
Activity No, Duration Preceding Activity }
1 15 -
2 20 1
3 18 1
4 18 3
5 20 2,4

Figure 5 shows how to solve this problem using the CPM program. Figure 6
is an example of CPM program output with printer attached,

Table 3

CPM Program Abbreviations

Symbol Meaning

ACT Activity

CPM Critical Path Method

EF Early Finish

END Ending

ES Early Start

LF Late Finish

1S Late Start

PRED Preceding

START Starting

TF Total Float

(Y/v) (Yes/No)

Number
Table 4

CPM Program Variable Input Operating Limits

Variabl Mipj Maxi
Total Number of Activities 1 98
Activity Identification Numbers 1» 98
Duration 0 1000
Preceding Activity Identification Numbers 1% 98
Starting Activity Number 1 98

*0 is also a valid input but tells the program that there are no more
inputs for these variables.

The limits set for preceding activity numbers (i.e., the jdentification
number) show that you can enter sny activity between 1 and 98. However, the
total number of preceding activities for s gingle activity cannot exceed five.
The registers will be disrupted if more than five preceding activities or more
than 25 ending activities are used. The CPM program is not designed to check
these last two limits.

17

I

e g oI

Press Besulting Display Comments
XEQ

ALPRA
CPM

ALPHA TOTAL # ACTIVITIES = ?

5 R/S ACTIVITY # = ? See Note 1

1 R/S DURATION = ?

15 R/S PRED, ACT = 7

0 R[S ACTIVITY # = 17

2 R/S DURATION = ?

20 R/S PRED, ACT = ?

1 R/S PRED, ACT = ?

0 R/S ACTIVITY # = 2

3 R/S DURATION = ?

18 R/s PRED, ACT = 7

1 R/S PRED. ACT = ?

0 R/S ACTIVITY # = ?

4 R[S DURATION = ?

18 R/S PRED. ACT = ?

3 R/S PRED, ACT = ?

0 R/S ACTIVITY # = ?

5 R[S DURATION = ?

20 R/S PRED, ACT = ?

2 R/S PRED, ACT = ?

4 R/S PRED, ACT = ?

0 R/S ACTIVITY # = ?

0 R/S ANY CHANGES (Y/N)?

N R/S ENTER ENDING ACTIVITIES

END ACT., # = ? See Note 2

5R/S END ACT, # = ?

0 R/S START ACT. # = ? See Note 3

1 R/S ACT # =1, ’
R/S DURATION = 15, See Note 4 :
R/S ES = 0, '
R/S EF = 15, f
R[S 1S = 0. ;.
R/S IF = 15, 3
R/S TF = 0 J
R/S ACT # = 2, }
R/S DURATION = 20, ;
R/S PRED, ACT = 1, g
m ES = }15, "
R/S EF = 35, |
m IS = 310
m IF = 51.
BL& TF = 16,
ﬁ ACT #-30

DURATION = 18,

R[S PRED. ACT =],

Figure 5.

CPM program problem example.

19

Step Pregs Resulting Dieplay Comments
45 R/S ES = 15,

46 B_Lg EF = 330

47 R/S s = 15,

48 RIS LF = 33,

49 R/S TF = 0.

50 R/S ACT # = 4,

51 R/S DURATION = 18,
52 RIS PRED. ACT = 3.
53 B—& ES = 330

54 R/S EF = 51,

55 R/S LS = 33,

56 R/S LF = 51,

57 R/S TF = 0.

58 R[S ACT # = 5,

59 R/S DURATION = 20,
60 R/S PRED. ACT = 2.
61 R/S PRED. ACT = 4.
62 R/S ES = 51,

63 R/S EF = 71,

64 R/S IS = 51,

65 R/S IF = 71,

66 R/S TF = 0.,

67 R/S END PROGRAM

Notes:

l., Activity numbers must be positive integers, beginning with l. The numbers
must be cuasecutive, but need not be entered sequentially.

2, Ending activities are those activities that do not precede any other
activity.

3. The starting activity number will tell the program where you want to begin
to output the results.

4, 1f the printer is connected and in the NOEM mode, lines 28 through 67 will
be output automatically. You do not have to press the R/S key.

Figure 5. (Cont®d).

20

RoN “CPM”
TOTAL #ACTIVITIES=?

S.
ACTIVITY#=?
DURATION=?

15.
PRED. ACT=?

0.
ACTIVITY#=?

2.
DURATION=?

20.
PRED. ACT=?

1.
PRED. ACT=?

0.
ACTIVITY#a?

3.
DURATION=?

16.
PRED. ACT=?

1.
PRED. ACT=?

0.
ACTIVITY#=?

4.
DURATION=?

18.
PRED. ACT=?

3.
PRED. ACT=?

0.
ACTIVITY#=?

5.
DURATION=?

20.
PRED. ACT=?

2.
PRED. ACT=?

4.
PRED. ACT=?

0.
ACTIVITY#=?

0.

ANY CBANGES(Y/N)?
N

RUN
RUN
RUN
RUN
RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

RUN

ENTER ERDING ACTIVITIES

END ACT.f#=?
5. RUN
END ACT.f#=?
0. RUN
START ACT.#=?
1. RUN
SER KEY(Y/N)?
k { RUN
/€5 KT8 EF/
7 NRATION
7s LF/
Figure 6.

731, 8. .

CPM program example (with printer).

21

4 THE ROAD CRATER PROGRAM (CRATER)

The road crater program computes the amount of explosive, number of
cratering charges, and the number and depth of holes needed to produce hasty,
deliberate, or relieved-face road craters for lengths of crater you specify.

General Program Information

Abbreviations used in the CRATER program are listed in Table 5. Input
variable operating limits are listed in Table 6.

Progr S nc

The typical sequence of events and the options you encounter when execut-
ing this program are shown in Figure 7.

CRATER Program Example

Determine how much TNT, how many boreholes, and how many 40-1lb cratering
charges are required to blast a 4l-ft-long deliberate crater.

Figure 8 shows how to solve this problem using the CRATER program. Fig-
ure 9 gives three examples of CRATER program output with printer attached.

EXECUTE CRATER
ENTER CRATER LENGTH
INDICATE IF CRATERING CHARGES ARE TO BE USED

SELECT TYPE OFlCRATER

|

ENTER CRATER DEPTH
(for "hasty" option only)
}

N

PROGRAM COMPUTES AND OQUTPUTS RESULTS

Figure 7. CRATER program sequence.

22

j
!
!
|
i

Table 5 !

CRATER Program Abbreviations

Symbol. Maaning
cue Charge i
BXPLO Explosive(s) I
T Feet !
LRS Pounds
x/m) (Yes/No)
¢ Number

Sum of (Total)

Table 6

CRATER Program Input Variable Operating Limits

Yaziabls Inits Minimum Maxismum
Crater Length Peet 12 999 i’
Crater Depth Feat 7.5 ' 15

Source Reference Notes:

P4 5-34 (September 1976), pp 28-32 |
M 5-35 (February 1971), pp 3-21 through 3-25 -

Stap Exsas Bagulting Diselay Sommgnts
1 b}
CRATER
ALTEA CRATER LENGTR, (FT) = 1 f
2 A)8 USE CRATER CHARGE (Y/M)? ;
3 Y ﬁ% CRATER TYPE: See Note 1 1
4 EASTY (Y/W)?
S | BV} DELIBEBATE (Y/N)? i
6 !iﬂ # 7 FI. HOLES = &, See Note 2
7 # 5 FT. HOLES = 2. |
8 s # CRATER CHG = 10. !
9 R/8 PRIMER: TNT, LBS = 2, |
10 RS EXPLO, 1B = 402. 1
11 8 ALSO: NEED SHAPE CHARGES ‘
12 RE 70 BLAST BOREHOLES!
13 AR DD PROGRAM |

Notes:
1. Crater—type Memu Order: BHasty, Deliberate, Relieved-Face

2. 1f & prister is conmected and in the WORM mode, Steps 7 through 13 will be
output swtomatically.

FPigure 8. CRATER program problem example.

23

[
!
|

XROM "CRATER"
CRATER LENGTH, (FT)=?

41.0 RUN
USE CRATER CHARGE(Y/N)?
N RUN
CRATER TYPE:
HASTY(Y/N)?
Y RUN
CRATER DEPTH, (FT)=?

7.5 RUN
#HOLES=6.

HOLE DEPTH,FT=5.0
EXPLOSIVE, LBS/HOLE=50.

EXPLO,ZLB=300.

ALSO: NEED SHAPE CHARGES
TO BLAST BOREHOLES!

END PROGRAM

XROM "CRATER"
CRATER LENGTH, (FT)=7

41.0 RUN
USE CRATER CHARGE(Y/N)?
Y RUN
CRATER TYPE:
HASTY(Y/N)?
N RUN
DELIBERATE(Y/N)/?
Y RUN
#5FT.HOLES=2.
CRATER CHG=10.
PRIMER: TNT, LBS=2.

EXPLO, ILB=402.

ALSO: NEED SHAPE CHARGES
TO BLAST BOREHOLES!

END PROGRAM

XROM "CRATER"

CRATER LENGTH, (FT)=?

41.0 RUN
USE CRATER CHARGE(Y/N)?
Y RUN
CRATER TYPE:
HASTY(Y/N)?
N RUN
DELIBERATE(Y/N)?
N RUN
RELIEVED FACE(Y/N)?
Y RUN

FRIEND SIDE:

#5FT .HOLES=6.
#CRATER CHG=6.
PRIMER:TNT,LBS=6.

ENEMY SIDE:
#4FT.HOLES=5.
TNT,LBS=150.

EXPLO, ZLB=396.

ALSO: NEED SHAPE CHARGES
TO BLAST BOREHOLES!

END PROGRAM

Figure 9. CRATER program examples (with printer).

24

|)

s
3

X,
o~

S THE DEMOLITION PROGRAM (DEMO)

The demolition program determines the amount of explosive required, the
number of explosive units, the number of charges, and the minimum safe dis-
tance for the following engineer activities: cutting timber, cutting steel,
and breaching walls. A menu of explosive types to be used is also presented.
The program has three timber cutting options: internal charge placement,
external placement, and abatis. The steel cutting options cover four applica-
tion areas: railroad rails, round steel sections, structural steel sections,
and carbon steel rods. The breaching applications are used in conjunction
with applicable tables in FM 5~34.

eral Progr Information

Abbreviations used in the DEMO program are listed in Table 7. Input
variable operating limits are listed in Table 8.

Program Sequence

The typical sequence of events and the options you encounter when execut-
ing this program are showu in Figure 10,
DEMO Program Ex

Determine the amount of explosive required, the number of explosive
units, the number of charges, and the miminum safe distance required to breach

EXECUTE DEMO

SELECT TYPE OF EXPLOSIVE

CHOOSE APPLICATION

ENTER APPROPRIATE DATA FOR THE CHOSEN APPLICATION

PROGRAM COMPUTES AND OUTPUTS:
POUNDS OF EXPLOSIVE REQUIRED
NUMBER OF EXPLOSIVE UNITS
NUMBER OF CHARGES (for BREACHING APPLICATION)
"IN OPEN" SAFE DISTANCE

Figure 10. DEMO program sequence.

25

Table 7

DEMO Program Abbreviations

Symbol

BREACH
c
CONCR
DEMO
DIA
DIST
EXPLO
EXTERN
FT

HT

IN
INTERN
K

LB

M

MIN
REINF
REQD
RR
SECT
STL
STR .STL.
$Q. IN
TAB
X~SECT
(Y/N)

Meaning

Breaching
Tamping Factor
Concrete
Demolition
Diameter
Distance
Explosive
External

Feet

Height

Inches

Internal
Material Factor
Pound(s)

Meter

Minimum
Reinforced
Required
Railroad
Section

Steel
Structural Steel
Square Inches
Table
Cross—Sectional
(Yes/No)

Number

Table 8

DEMO Program Input Variable Operating Limits

Variabl

Timber Diameter
Rail Height

Bar Diameter
X~Sect Area
Section Dismeter
Material Factor, K
Tamp Factor, €
Barrier Width
Breaching Radius

Source References:

Units Minimum Maximum
Inches 0.5 180
Inches 1 9
Inches 0 24
(1ncn)? 0 99
Inches 0 99
0.07 1.76
1 3.6
Feet 0 999
Feet 0.1 99

FM 5-34 (September 1976), pp 24-29

FM 5-29 (February 1971), pp 1-6 and 3-20

26

a reinforced wall 7-1/2 ft thick and 42 ft long, using ground placed, tamped
charges.

Figure 11 shows how to solve this problem using the DEMO program. Figure
12 gives three examples of DEMO program output with printer attached.

Step Press Resulting Display Comments
1 XEQ
ALPHA
DEMO
ALPHA EXPLOSIVE TYPE: See Note 1.
2 R/S INT (Y/N)?
3 N R/S Ml12 C4 (1.25 LB) (Y/N)?
4 N R/S M5A1 C4 (2.5 LB) (Y/N)?
5 N R/S DYNAMITE, Ml (Y/N)?
6 Y R/S APPLICATION:
7 R/S CUT TIMBER (Y/N)?
8 N R/S CUT STEEL (Y/N)?
9 N R/S BREACH (Y/N)?
10 Y R/S TAB, 2-3, FM 5-34: See Note 2.
11 RIS MATERIAL FACTOR, K = ?
12 .54 R[S TAB. 2-4, FM 5-34: See Note 3.
13 R[S TAMP FACTOR, C = ?
14 2 R/S BARRIER WIDTH, (FT) = ?
15 42 R/S BREACH. RADIUS, (FT) = ?
16 7.5 R/S REQD. EXPLO, LBS = 1,486.5
17 R/S # EXPLO. UNITS = 2,973, See Note 4.
18 R/S # CHARGES = 3.
19 R/S OPEN, SAFE DIST, M = 1.141,
20 R/S END PROGRAM

Notes:

1. Explosive Type Menu Order: TNT, M112 <4(1.25 1b), M5A1 C4(2.5 1b), Dynam-
ite, Tetrytol, M118 Sheet (0.5 1b), M186 Roll (25 1b)

2, See Table 2-3, FM 5-34 to determine the material factor, K
3. See Table 2-4, FM 5~34 to determine the tamp factor, C

4, 1f a printer is conmected and in the NORM mode, steps 17 through 20 will
be output automatically.

Figure 11. DEMO program problem example.

27

g

—

XROM “DEMO"

EXPLOSIVE TYPE:
TNT(Y/N)?
N RUN
M112 C4(1.25LB)(Y/N)?
Y RUN
APPLICATION:
CUT TIMBER(Y/N)?
Y RUN
TIMBER DIA.(IN)=?

24.0 RUN
CHARGE PLACEMENT:
ABATIS(Y/N)?
N RUN
EXTERN.(Y/N)?
Y RUN

REQD.EXPLO,LBS=11.3
#EXPLO.UNITS=9.

IN OPEN,SAFE DIST,M=300.
END PROGRAM

XROM "DEMO"
EXPLOSIVE TYPE:
TNT(Y/N)?
Y RUN
BLOCKS, TNT, 1LB(Y/N)?
N RUN
APPLICATION:
CUT TIMBER(Y/N)?
N : RUN
CUT STEEL(Y/N)?
Y RUN
TYPE STEEL:
RR.RAIL(Y/N)?
Y RUN
MIL.“-(IN)-?

5.0 RUN
RR.FROG(Y/N)?
N RUN
REQD .EXPLO, LBS=1.0
#EXPLO,UNITS=2.

IN OPEN,SAFE DIST,M=300.
END PROGRAM

XROM " DEMO"
EXPLOSIVE TYPE:
TNT(Y/N)?
N RUN
M112 C4(1.25LB)(Y/N)?
N RUN
M5A1 CA(2.5LB)(Y/N)?
N RUN
DYNAMITE,M1(Y/N)?
Y RUN
APPLICATION:
CUT TIMBER(Y/N)?
: RUN
CUT STEEL(Y/N)?
N RUN
BREACH(Y/N)?
Y RUN

TAB.2-3,PMS~34:
MATERIAL FACTOR,K=?

.54 RUN
TAB.2-4,FM5~34:
TAMP PACTOR,C=?

2.0 RUN
BARRIER WIDTH, (FT)=?

42.0 RUN

BREACH, RADIUS,(FT)=?

7.5 RUN

REQD .EXPLO,LBS=1,486.5
#EXPLO.UNITS=2,973.
#CHARGES=3.

OPEN,SAFE DIST,M=1,141.
END PROGRAM

Figure 12, DEMO program examples (with printer).

28

6 THE MINEFIELD PROGRAM (MINES)

The minefield program comput es the logistical requirements for installing
a standard pattern minefield given the field demsity, the irregular outer-edge
cluster composition, the field length and depth, and conditions under which

the work is to be done.

Geperal Program Informatjon
Abbreviations used in the MINES program are listed in Table 9. Inmput
variable operating limits are listed in Table 10.

Progxam Sequence

The typiczl sequence of events and the options encountered when executing
the MINES program is shown in Figure 13,

MIRES Program Example

Determine the logistical tequ:.rements for a minefield, 400-m long and
400-m deep, with an AT-APF-APB mine density of 1-1-0, and an AT-APF-APB mine
Irregular Outer Edge (I0E) cluster composition of 1-2-2.

Figure 14 shows how to solve this problem using the MINES program. Fig-
ure 15 gives two examples of MINES program output with printer attached.
EXECUTE MINES
ENTER MINE DENSITIES

ENTER I0E CLUSTER COMPOSITION

\
INDICATE IF NIGHT WORK IS TO BE DONE

INPUT MINEFIELD LENGTH IN METERS

PROGRAM COMPUTES LOGISTICAL REQUIREMENTS

RETRIEVE RESULTS

Figure 13, MINES program sequence.

29

Table 9

MINES Program Abbreviations

MINES Program Input Variable Operating Limits

Variable

Mine Densities:
AT Mines/M

APF
APB
IOE
No.
No.
No.

Mines /M

Mines /M

Cluster Composition:
of AT Mines

of APF Mines

of APB Mines

Minefield Length
Minefield Depth

Source Reference Notes:

Meanjing

Anti~Personnel

Anti-Personnel Fragmentation

Anti-Tank

Blast

Irregular Outer Edge

Metex(s)
Maxinum

Main Minefiecld
Reel(s)

Yes /No

Number

Table 10

Units

Mines /M
Mines /M
Mines /M

Each

Each

Each
Meters
Meters

FM 5~34 (September 1976), pp 54-59

FM 5-20

(November 1976)

30

Mini

[=N =~ - =] (=~ -

5000
999

e £

:

(=~ o W

&8
EEEEEREERREREEEEEERRERERREE EEE

g
E

ENTER MINE DENSITY:

AT/M = ?

APF/M = ?

APB/M = 1

T0E CLUSTER COMPOSITION:
#AT = ?

APF = ?

APB = 7

DO AT NIGHT (Y/N)?
FIELD LENGTH, (M) = ?
FIELD DEPTH, (M) = ?
TOTAL MINES:

AT = 1,370, See Note 1.
APF = 1,859,

APB = 3,619,

I0E MINES:

AT = 45.

APB = 90,

MMF MINES:

AT = 1,200,

APF = 1,600,

APB = 3,2000

IOE CLUSTERS = 45,

STRIPS = 9,

2-STRAND, 4-SIDE FENCE:
WIRE (RL) = 13,

SIGNS, PICKETS = 165.
SANDBAGS = 3,780.
MANHOURS = 962.

END PROGRAM

1. If a printer is connected and in the NORM mode, steps 13 through 31 will

be output automatically.

Figure 14,

MINES program problem example.

31

XROM -MINES*
ENTER MINE DENSITY:
T /N=?
1.89 RUN
APF/N=?
1.08 RUN
1APB/N="
2,08 RUN

I0E CLUSTER COMPGSITION:
T2
. RUN
MPF=?
1. RN
#pe=?
. R
B0 AT RIGHT(Y/N)?
Y RUN
FIELD LENGTH, ()=?
408. RN
FIELD DEPTH, (N)=?
166. RUY

TOTAL MINES.

#T=4948,

#aPF=498.

MPB=930.

16E MINES:

#AT=45.

#APF=45.

#APB=43.

MMF MINES:

$aT=404.

WAPF=408,

1ArB=808.

$10E CLUSTERS=43,
$STRIPS=3.

2-STRAND, 4-SIBE FENCE:
WIRE(RL)=9,
$SIGNS,PICKETS=189.
ISANDBACS=1, 358,
WANHOURS=436.

END PROGRAM

XROM “MINEC-
ENTER WINE DEHSITY:
$T/N=2

3.68 RN
$APF /N="

4,06 Ry
#APB/N=?

6.86 RN

[0E CLUSTER COMPOSITION:
#7=2
. RUN
PAPF =
2. RN
#APB="
2. RUK
10 AT NIGHTCY/N)?
N RUN
FIELD LENGTH, (H)=?
480, RUN
FIELD DEPTH, (N)=?
498, RN

TOTAL MINES:
#A1=1,378.

#APF=1,859.
#APB=3,619.

I0E WINES:

$RT=435.

#PF=90,

#RPB=98.

WNF MIHES:

#T=1,209,

#APF=1, 6880,

$APB=3, 200,

#I0E CLUSTERS=43,
$5TRIPS=9.

2-STRAND, 4-SIBE FENCE:
MIRE(RL)=13.

#SIGNS, PICKETS=185.
ESANDBAGS=3. 764,
KANHOURS=962.

END PROGRAM

Figure 15, MINES program examples (with printer).

32

7 THE WIRE OBSTABLE PROGRAM (WIRE)

The WIRE obstacle program computes the logistical requirements for
installing any of seven common wire obstacles: double apron fence, 4- and 2-
pace; double apron fence, 6- and 3-pace; high wire; low wire; 4-stand fence;
triple standard concertina; and general purpose barbed tape obstacle. The
program can also be used to compute the effective length of the obstacle
according to its function and location on the battlefield. If you already
know the effective length, you can input the effective length directly.

n P I mati

Abbreviations used in the WIRE program are listed in Table 11. Input
variable operating limits are listed in Table 12.

Program Sequence

The typical sequence of events and the options encountered when executing
this program sre shown in Figure 16.

WIRE P

Determine the effective length, the number of 300-m sections, the amount
of material, the number of manhours, and the number of truckloads required to
construct a triple-standard concertina obstacle. The entanglement is for pro-
tecting an area on the FEBA which has 100 m of actual front. Only one belt of
wire is to be used. The comstruction is done at night with experienced
troops.

Figure 17 shows how to solve this problem using the WIRE program. Figure
18 gives two examples of WIRE program output with printer attached.

DBL.
EFF.LEN,
FEBA
GPBTO

MED

T
(Y/N)
3-STD

WIRE Program

Variable

Camp Perimeter
Length of Front
Unit Depth
Effective Length
Number of Belts

Source Reference Notes:

FM 5-34 (September 1976),
FM 5-15 (June 1972), pp 6

Table 11

WIRE Program Abbreviations

Meaping

Double

Effective Length

Forward Edge of the Battle Area
General Purpose Barbed Tape Obstacle
Meter(s)

Medium

Ton(s)

(Yes/No)

Triple standard

Number

Table 12

Input Variable Operating Limits

Units Minimum Maximum

Meter 0 50,000
Meter 0 50,000
Meter 0 5,000
Meter 0 2,250,000
Each 1 9

pp 105-109

-10, 6-22, and 6-23

34

|
Execute WIRE ﬁ
4
Is Effective Length Known? '
'y
'
NO YES
Select Type Enter
of Troop Development Effective Length in

Meters

i
(Base Camp) (FEBA)

J v :
Enter Camp Enter Length of 4
Perimeter in Meters Front in Meters |

L 1 :
Select How Wire
Is To Be Used

Enter Unit Depth in
Meters if Wire Use Is
Supplemental: FEBA, REAR
Program Computes Effective
Length in Meters
l —w Select Special Conditions From Menu

Select Barrier Type from Menu
Program Computes Logistical Requirements

Retrieve Results

Figure 16, WIRE program sequence.

35

A Y 0 AN . - Ce e e

USING U-PICKETS = 6.
USING PICKET, SCREW = 6.
USING PICKET, WOOD = 7.

Step Press Resulting Display Comments
1 XEQ
ALPHA
WIRE
ALPHA KNOW. EFF. LEN (Y/N)?
2 N R/S ON. FEBA (Y/N)?
3 Y R/S FRONT LENGTH, (M) = ?
4 100 R/S # BELTS = ?
5 1 R/S WIRE USE: See Note 1.
6 R/S TACTICAL (Y/N)?
7 Y R/S EFF. LEN, M = 125,
8 R[S USE BARBED TAPE (Y/N)?
9 N R[S EXPERIENCED TROOPS (Y/N)?
10 Y R/S USE DRIVEN PICKETS (Y/N)?
11 N R/S DO AT NIGHT (Y/N)?
12 Y R/S BARRIER TYPE: See Note 2.
13 R/S DBL APRON 4+2 (Y/N)1
14 Y R/S 300M SECTIONS = 0.4
15 R/S PICKETS, LONG = 42, See Note 3.
16 R/S PICKETS, SHORT = 83,
17 R/S # WIRE REELS:
18 R[S
19 R/S
20 R[S
21 R/S MANHOURS = 25.

22 R[S # 2.5T LOADS = 0.3

23 R/S END PROGRAM

Notes:

l. Wire Use Menu orders: Tactical, Protective, Supplemental

2, Barrier Type Menu Order: double apron, 4~ and 2-pace; double apron, 6-
and 3-pace; high wire; low wire; 4~wire fence; triple standard concertina;

general purpose barbed tape obstacle

3. If a printer is comnected and in the NORM mode, do not press the R/S key
for Steps 15 through 23, The results will be output automatically.

Figure 17. WIRE program problem example.

XROM -NIRE"
KNOM. EFF . LEN. (Y/N)?
N RUN
ON. FEBA(Y/N)?
Y

RUN
FRONT LENGTH, (H)=?
168. RUN
#BELTS=?
1. RUN
RIRE USE:
TACTICALCY/N)?
Y RUN

EFF.LEN. H=125.
USE BARBED TAPE(Y/N)?

N RUN
EXPERIENCED TROOPS(Y/N)?
Y RUN
USE BRIVEN PICKETSC(Y/N)?
N RUN
B0 AT RIGHT(Y/N)?

Y RUN
BARRIER TYPE:

DBL APRON 4+2(Y/K)?

Y RUN

3004 SECTIONS=6.4
PICKETS, LONG=42.
PICKETS, SHORT=83.
SUIRE REELS:

USING U-PICKETS=6.
USING PICKET,SCREM=6.
USING PICKET.NOO0D=?.

© WANHOURS=23.

#2.5°L0ADS=0.3
END PROGRAM

XRON “MIRE"

KNOM. EFF . LEN. (Y/H)?
Y RUN
EFF.LEN, (N)=?

1,588, RUN
USE BARBED TAPE(Y/N)?
N RUN
EXPERIENCED TROOPS(Y/N)?
N RUK
USE DRIVEN PICKETS(Y/N)?
| RUN
D0 AT HIGHT(Y/N)?
N RUN
BARRIER TYPE:
DBL APRON 4+2(Y/N)?
N RN
BBL APRON 6+3(Y/H)?
L] RUN
HIGH NIRE(Y/N)?
N RUN
LOW WIRECY/N)?
N RUN
4-HIRE FENCECY/N)?
N RUN
CONCERTINA, 3-STD(Y/N)?
Y RUN
Jaon SECTIONS=5.0
PICKETS, LONG=8088.
PICKETS, SHORT=29.
WIRE REELS:

USING U-PICKETS=I3.
USING PICKET,SCREN=13.
USING PICKET,N00D=13.
ROLL, CONCERT INA=295.
STAPLES=1,585.
NANNOURS=158.
§2.5°LOADS=35.4

END PROGRAM

Figure 18. WIRE program exsmples (with printer).

Y

8 GLOBAL UTILITY SUBROUTINES

The global subroutines are used by the six main application programs
stored on MILENG1/UTIL and can be used by you to write your own programs. The
subroutines can also be used by other military engineering programs that may
one day be stored on ROMs designed to be used concurrently with the
MILENG1/UTIL ROM. This convention will save a lot of room on future ROMs and
in user—developed programs -- room that would otherwise be needed to store
similar subroutines. If programmers adopt these subroutines, the military
engineer community should find it easier to understand each oihers” programs.,

Convent ions

The following information on register use applies to all global utility
subroutines. Registers 20 through 29 are reserved for existing and future
global utility subroutines. Registers 20 through 23 are used to store tem-
porarily up to 24 characters of a message that will be presented as a prompt
of some sort to a program user. Each register stores up to six characters,
Register 24 is an indirect storage register for a "pointer" to show where the
next input value will be stored. Registers 25 and 26 store the minimum and
maximum limits, respectively, of the current input variable. Registers 27
through 29 are reserved for global subroutines that may be developed in the
future.

The following flag conventions are also used. Flag "10" records the
results of a yes/no question. The flag is set if the response is "Y" (yes)
and cleared if the response is "N" (no). Flag "9" is programmed into subrou-
tine *I (numeric input) and *A (alpha input) to allow an answer already stored
somewhere to be used instead of the user-defined values (alpha or numeric)
that usually result when the *I and *A subroutines are invoked. Although this
option is not used in any of the six main application programs on
MILENG1/UTIL, the potential to bypass the normal user-input route and to use a
value already in the system is available in these two subroutines. This flex-
ibility may be useful in future applications.

Flag "8" was not used in the MILENG1/UTIL programs. It is reserved for
future use as a "glcoal use” flag, which "jumps over" certain parts of a pro-
gram that do not have to be executed each time on repetitive runs. Flags "0"
through "7" are reserved for application program use and are cleared each time
the *F subroutine is invoked.

G Subrouti *S

Running global subroutine *S shouid always be one of the first steps im
any program; this insures that adequate data registezrs have been allocated for
the program being executed. If enough registers are available, the sub-
routine returns to the main program and continues execution; if not, a user is
prompted to resize the memory. The program must then be restarted.

Before using the subroutine, the entry condition must first be satisfied.
The number of data registers required for the program is first loaded into the

38

X register. Note that this is the actual number required, not the number of
the highest register, which would be one less because register 00 counts as
one register. *S is then executed.

The following exit conditions are observed: *S returns to the calling
program if adequate registers are available; otherwise, *S prompts to resize.
Assume that the stack contents are destroyed upon the return.

A sample calling sequence follows:

Program
Instruction Explanation
61 Loads "61" into X register; says that 61 registers
(0 through 60) are required for this particular program;
XEQ "*s" Calls the *S subroutine
XXXXXXXXXX Resume with main program

Note that *S also uses global subroutines *0 and *D,

Global Subroutipe *F

This subroutine clears flags "00" through "07"; it should be used to ini-
tialize a program and to "clean up" at the end of each application program.

To use the subroutine, simply execute *F., *F returns to the calling pro-
gram once flags "00"” through "07" have been cleared.

A sample calling sequence follows:

Program
Instyruction Explanation
XEQ *F Calls the *F subroutine
XXXXX Resume with main program
G S i *1

Global subroutine *I prompts for numeric input; a single tone will signal
that input is required. If the input provided is not numeric, the prompt will
be presented again.

The input value must pass a range check. If the input is out of range, a
user is informed of the maximum or minimum acceptable value and reprompted.
Global subroutine *I has a built-in option; if a user presses only the R/S
key, he will be prompted with the current value.

To use *I, the indirect -egister pointer in register 24 must be set to
the data register the input is to be stored in. This pointer is incremented

39

-

during eacn input call and has to be set only once if sequential input is to
be stored in sequential registers. A prompt line and maximum and minimum
acceptable value for the input are passed to the subroutine from the main pro-
gram. The subcoutine will not return to the main program until an acceptable
value has been iuput. A "=7" is automatically appended to the prompt. If
flag "9" is set, an "=" gign, the current value in the specified register, and

a ll?ll

are added to the prompt and displayed.

Entry conditions when calling *I are as follows: register X must contain
the minimum acceptable value, register Y must contain the maximum acceptable
value, register A must contain the prompt. Register 24 must contain the
address of the register that the input is to be stored in.

The exit conditions from *I occur when an acceptable value has been
entered; *I then returns to the calling program. (If flag "9" is set and R/S
is pressed without nvmeric entry, the current value is used.) The input value
i8 ztored in the specified register and in the X register, The rest of the
stack should be considered destroyed.

A sample calling sequence follows:

Program

Instruction Explanation

SF 09 Optional: used if "current value" of variable is to be
presented to user for verification,

30 Identifies register address where input is to be stored.

STO 24 Stores indirect register address in register 24,

123 Specifies maximum acceptable input value

ENTER Places maximum value in Y register

-37 Specifies minimum acceptable input value and puts in
X register

"HEIGHT" Specifies prompt to be presented to user

XEQ "*I" Calls subroutine *I

CF 09 Used only if SF 09 option is used

XXXXXXXX Resume with main program

Note that if input is sequential, the second two instructions only have to be
programmed before the first variable ie input. Also, if the current value
option is used, make sure the calculator is FIX’d to the desired setting
before calling *I. Note that *I also uses global subroutines "0 and *D.

40

G Sub i *0

This subroutine displays labeled output. A label is passed to the sub-
routine, and an "=" and the value in the X register are appended. A two-tone
sequence signals output. The routine then displays the labeled answer. If a
printer is attached, the output display is printed and the program continues
execution after a pause. If no printer is attached, program execution stops
until the the R/S key is pressed.

Before executing the subroutine, insure that register X contains the
numeric data to be displayed and that register A contains the label to be
appended. When the subroutine is done, it returns to the calling program. No
registers are affected.

A sample calling sequence follows:

Program
Instructjon Explanation
4,27 Puts value to be displayed in X register
"ANSWER" Pute label to be used in alpha register
XEQ "*0" Executes the *0 subroutine
XXXXXXXX Resume with main program

Note that the calculator should be FIX“d to the desired accuracy before exe-
cuting *0. Note that *0 also uses global subroutine *D,

G Subrouti *D

This subroutine displays an alphanumeric text line. A two-tone sequence
is used to signal the display; the routine then displays the contents of the
alpha register. If a printer is attached, the output is printed and
displayed; the program continues execution after a pause. If no printer is
attached, program execution stops until the R/S key is pressed.

Before executing *D, insure that register A contains the alphanumeric
text to be displayed. When *D is done, it returns to the calling program. No
registers are affected.

An example calling sequence follows:

Program
Instructions Explapation
"SAMPLE" Puts text to be displayed in alpha register
XEQ "#D" Execute the *D subroutine
XXXXXKXXX Resume with main program

41

Global Sub i *Y

This subroutine takes a prompt that is passed to it and appends "(Y/N)?"
to it. A user must then respond with "Y" or "N" or the routine will reprompt.
The answer to the query is returned to the calling program as flag "10"
status. For "Y" responses, flag "10" is set; for "N" responses, it is
cleared. The routine automatically places the calculator in the alpha mode
before prompting and turns off the alpha mode after a response is input.

Before executing *Y, insure that register A contains the query text.
When *Y is done, it returns to the calling program. Flag "10" status is
affected.

A sample calling sequence follows:

Program
Instructions Explanation
"PRINT" Puts query text in alpha register
XEQ "*Y" Executes the *Y subroutine
FS? 10 Tests response: set=yes; clear=no
XXXXXXXX Resume with main program

G 1 Subroutine *A

This subroutine prompts a user for alpha input. A maximum of 12 alpha
characters are stored. A tone sounds to signal that input is required. A
built-in option will allow you to prompt with the "current value" of the alpha
variable. Under this option, if R/S is pressed, the "current value" of the
text will be used when the program continues execution.

This subroutine requires that the indirect register address (pointer)
stored in register 24 be set to the data register the alpha input is to be
stored in. The alpha input is stored in two registers, six characters in
each. The pointer in register 24 is incremented twice during each input call,
so it only has to be set once if a string of input is to be put in sequential
registers. A prompt line to label the input is passed to the subroutine, and
a "=7" is added to this prompt by the subroutine.

To use the subroutine, the entry conditions must be satisfied. Register
"A" must contain the prompt. Register 24 must contain the address of the
register that the first six characters of the input will be stored in. If you
set flag "9" before calling *A, the "current value" in the specified registers
will be appended to the prompt and will be presented for ve.. "ication. If a
user agrees with the alpha value assigned, he would press the R/S key, and the
program would use that alpha value for the variable. If a user elects to
change the value, he would simply enter the correct alpha string (12 charac-
ters or fewer) and then press the R/S key. This new alpha value would then be
used in place of the "current value."

42

The following exit conditions result: *A returns to the calling program,
and the input value is stored in the specified registers. No other registers
are affected.

A sample calling sequence follows:

Program
Instructions Explanation
SF 09 (Optional) 1If current value of variable is to be
presented to user
30 First register address where input is to be stored
STO 24 Stores first indirect register address in register 24
"VARIABLENAME" Specifies prompt to be presented to user
XEQ "*A" Calls the "*A" subroutinme
CF 09 Used only with "SF 09" option.
AXXXXXXX Resume with main program.

Note that if input is sequential, only the second and third instructions need
to be programmed before the first variable is input.

Global Subroytine *C

This subroutine clears a specified range of registers by storing a "0" in
them, This subroutine should be used instead of CLRG so that the contents of
registers not used in the application program are preserved.

Before the subroutine can be used, the entry conditions must be satis-
fied. Register X must contain the range of registers to be cleared; the for-
mat is £££f,111, where ££f is the address of the first register to be cleared
and 111 is the address of the last register to be cleared.

After the specified registers have been cleared, *C exits to the calling
program. The stack should be considered destroyed.

A sample calling sequence follows:

Program
30.045 Specifies address of registers to be cleared
(30 through 45)
XEQ "#C" Calls the *C subroutine
XXXXXXXX Resume with main program

43

A et

Global Subroutine *R

This subroutine "rounds-up” a value and displays the integer portion of
the number. The subroutine first adds 0.99 to the value stored in register X,
then uses the integer portion of that value. Before entering the subroutine,
insure that register X contains the value to be rounded. When *R is done, it
returns to the calling program.

A sample calling sequence follows:

Program
Instructions Explanation
5.49 Specifies value to be rounded; could also be a recall
RCL instruction
XEQ *R Calls the *R subroutine
XXXXXXXX Resume with main program
Global Subrouti *p

This subroutine displays the "END PROGRAM" message in large type. A
two—-tone sequence alerts the user; *P then displays the message. There are no
pre-entry conditions for *P. The subroutine is called directly with the
instruction, "XEQ *P", When *P is done, it returns to the calling program; no
registers are affected.

44

CERL DISTRIBUTION

US Military Academy 10996
ATTR: Dept of Geography &
Computer Science

16 EBagr Bon 09696

17 Bagr Bn 76546

19 Engr Bn 40121

20 Bngr Bn 42223

23 Engr Bn 09165

27 Engr Bn 28307

30 Engr Bn 22060]
34 Engr Bn 66442 1
39 Engr Bn 01433

43 Engr Bn 31905

44 Bngr Bn 96483

46 Engr Bn 36362 b
52 Bngr Ba 80913 !
54 Engr Bn 09026
62 Engr Bn 76544
65 Engr Bn 96857
76 Engr Ba 20755
78 Engr Bn 09351 i
79 Engr Bn 09360 !
82 Engr Bn 09139

Chief of Engineers ATTN: 2 Engr Bn 96224
ATTN: Tech Monitor ATTN: 3 Engr Bo 31313
ATTN: DAEN-ASI-L (2) ATTN: & BEngr Bn 80913
ATTN: DAEN-ZCM ATTN: S5 Engr Ba 635473
ATTN: 7 Engr Bn 71459
FESA, ATIN: Library 22060 ATTN: 8 Engr Bn 76545
ATTN: 9 Engr Bn 09162
416th Engineer Command 60623 ATTN: 10 Engr Bn 09701
ATTN: Pacilities Engineer ATTN: 11 Engr Bn 22060
ATTN: 12 Engr Bn 09111 |
ROK/US Combined Porces Command 96301 ATTN: 13 Bagr Bn 9394l !
ATTN: EUSA-HHC-CPC/Engr ATTN: 14 Bngr Bn 93941
ATTN: 15 Engr Bon 98433

Engineer Studies Center 20315
ATTN: Library

AMMRC, ATTN: DRXMR-WE 02172
USA ARRCOM 61299

ATTN: DRCIS~-RI-I

ATIN: DRCIS-IS
DLA, ATTN: DLA-WI 22314

FORSCOM
FORSCOM Engineer, ATIN: AFEN-FE

Fort Belvoir, VA 22060
ATTN: ATZA-DTE-EM

e ¢ ve we e s s €0 4 4s Se S5 oo S0 ve e»

ATTN: ATZA-DIE-SW 84 Engr Ba 96857
ATTN: ATZA-FE 92 Engr Ba 31313
ATTH: Engineer Library 9 Engr Bn 09175
ATIN: Canadian Liaison Officer (2) 237 Engr Bo 09176

ATTN: IWR Library 249 Eagr Bn 09360
293 Engr Bn 09034
299 Engr Bn 73503
307 Eagr Bn 28307
317 Eagr Ba 09757
326 Engr Ban 42223
547 Engr Bu 09175
548 Engr Bn 28307
549 Engr Bn 28307
549 Bagr Bn 09081
559 Engr Ba 09165
563 Engr Bn 09154
565 Engr Bn 09164
588 Engr Bn 71459
649 Engr Ban 09081
652 Engr Bn 96858
802 Engr Bn 96271
864 Engr Bn 98433

e ve se ov ee oo

Cold Regions Research Engr Lab 03755
ATTN: Library

ETL, ATTN: Library 22060

Watervays Experiment Station 39180
ATTN: Library

8Q, XVIII Airborne Corps & Ft Bragg 28307
ATTN: Library

Defense Technicsl Info Center 22314
ATTN: DDA (12)

US Government Printing 22304
Receiving Section/Depository Copies (2)

3399993995595593335559935935355933393555a9

US Army, Commander National Guard Bureau 20310 i
ATTN: 7 Engr Bde 09154 Installation Division
ATTN: 18 Engr Bde 09164

ATTN: 20 Engr BMde 28307
ATTN: 130 Engr Bde 09165
ATTN: 2 Engr Crp 96301
ATTN: 36 Engr Grp 31903
ATTN: 937 Engr Crp 66442
ATTN: 1 Engr Ba 66442

o - . . . TR e e S et R U DN bl ¥ et <1 g -

Deponal, John M.

User's manual for MILENG1/UTIL read only memory module of the combat
engineer programmable hand-held calculator. -~ Champaign, Ill : Construction
Engineering Research Laboratory ; available from NTIS, 19§2,

45 p. (Technical report / Coustruction Engineering Research Laburatory ;
P-136)

1. Military engineering. 2, Programmable calculators. 3. HP4lc.
1. Title. 1Il. Series: Technical repert (Construction Englneering
Research Laboratory) ; P~136,

