
AD-A119 976 ARMY MISSILE COMMANU REDSTONE ARSENAL AL RESEARCH D ETC F/S 9/2
FORTH AND THE IEEE-488 BUS.(U)
JUL 82 K B FARR J G DUTHIE

UNICLASSIFIED DRSMI/RR- 82 9-TR SBI-AD-E950 296 NLSuuuuuum/uuu

-6

TECHNICAL REPORT RR-82-9

r~l FORTH AND THE IEEE.488 BUS

K. B. Farr
J. G. Duthie
Research Directorate
US Army Missile Laboratory

JULY 1982 DETC
OLCTE

Approved for public release; distribution unlimited.

C-

82 10 06 003
Wi FO1d 1021, 1 JUL 70 PREVIOUS EITIOII IS OSOLETE

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT
RETURN IT TO THE ORIG INATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES
NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF
THE UOSE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dote £nteod)

REPORT DOCUMENTATION PAGE - READ INSTRUCTIONS
REPORT_______________PAGE_ BEFORE COMPLETING FORM

I. REPORT NUMBER 2, GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RR-82-9AI Y-(
4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

FORTH AND THE IEEE-488 BUS TECHNICAL REPORT

6. PERFORMING ORO. REPORT NUMBER

7. AUTHOR(s) U. CONTRACT OR GRANT NUMSER(a)

K. B. Farr and J. G. Duthie

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Commander, US Army Missile Command
ATTN: DRSMI-RR
Redstone Arsenal, AL 35898

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Commander, US Army Missile Command 2 July 1982
ATTN: DRSMI-RPT 13. NUMBER OF PAGES
Redstone Arsenal, AL 35898 20

14. MONITORING AGENCY NAME & ADDRESS(It different from Controlling Office) IS. SECURITY CLASS. (of tCia report)

UNCLASSIFIED

IS&. DECL ASSIFICATION/DOWNGRAOING
SCHEDULE

IS. DISTRIUUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue an revere aid@ It c.ceeary and Identify by block number)

Computers Electronic Control

Software Forth

IEEE-488 Standards

MO ATNRACT'(0 m r 'ammeS &&b N iasseey n idetidF by block number)

This report demonstrates the natural marriage of the IEEE-488 bus to

microcomputers using FORTH in a laboratory situation.

D ao 103 E5ol oP N 6ov usOLETE Unclassified

SECUWITY CLASSIFICATION OP THIS PA"t (Man Deta Entered)

SECURITY CLASSIFICATION OF TIlS PMAOE(Wlaanr Date aner)

BLANK PAGE

SECURITY CLASSIFICATION OF THIS PAOE(Vhon Date Enterod)

TABIE OF CONENTS

Page no.
IIOt 1

II THE IEEE-488 BUS 2

III FIT 4

IV IEEE-488 SOURCE HANDSHAKE 5
V TH E EU iI RIV U 6S .. z... e...... 6

VI EXAMPLES...............................
7

VII CON HSIONS*9

VIII BIBLIOGRA PH 11

IX APPENDIX Ao 12

Aecession For

NTIS GRA&I

DTIC TAB []cu c f ca n-------

DistriutiOn/

Availrbility Codes

00; n nd/or

Dist :pucial

M

ii,1

ii

I INTRODUCTION

The IEEE-488(l) standard interface (occasionally referred
to as the HPIB or the GPIB) bus is used to interconnect many
laboratory instruments. The use of the IEEE-488 bus facilitates
the operation of experiments by standardizing the means of
intercommunicating data or commands between elements of the
experiment. The IEEE-488 bus was originally proposed by Hewlett
Packard in 1972. It was adopted as an IEEE standard in 1975 and
is now offered by many manufacturers as an option on several
hundreds of pieces of equipment us-ed for control, test and
measurement purposes.

The IEEE-488 bus uses a standard 24 pin connector daisy
chaining a 24 wire cable between up to 15 devices. The 24 wires
include 8 data lines, 3 hand shaking lines, 5 bus management
lines, 7 grounds and one shield. one element on the bus is the
controller (frequently a mini or micro computer) which manages
the system and directs traffic on the data and control lines.

Programming of the IEEE-488 bus controller may be done in
assembly language or in a high level language such as BASIC.
While assembly language programming may yield the most compact
and efficient operating system, it is not easy for the operator
to work with if he needs to change routines in the middle of
operating the experiment. On iLhe other hand, however, although
BASIC is easily programmed, it is relatively slow to operate and
it is difficult to implement the sort of flexibility one often
needs in laboratory situations. The threaded language FORTH
offers a compromise between the efficiency of assembly language
and the user friendliness of BASIC while offering the operator

'--he maximum flexibility in operating an experiment.

FORTH (2) was originally developed at the National Radio
Astronomical Observatory as an efficient means to control the
operation of, and data acquisition from radio telescopes. It. was
further developed at Kitt Peak National Observatory where it
provided excellent interface between computers, scientific
equipment and observers. Other laboratories such as the
University of Rochester's Laboratory for Laser Energetics quickly
realized the applicability of FORTH in their operations. FORTH is
currently available on mainframe computers, minicomputers and on
microcomputers. At the microcomputer end where we have our
application FORTH or FORTH-like languages such as URTH or STOIC
are now widely available from a large variety of sources.

It is the purpose of this report to demonstrate the natural
marriage of the IEEE-488 bus to microcomputers using FORTH in a
laboratory situation. Like the IEEE-488 bus, there is a standard
FORTH. However, different versions of FORTH have their
idiosyncrasies as do individual pieces of IEEE-488 hardware both
of which are supposed to be standard. We hope that by documenting
our efforts to control the IEEE-488 bus in FORTH we can
illustrate the procedures we have employed and indicate some of

the difficulties one can meet due to different manufacturers
interpretations of the standzrds.

II THE IEEE-488 BUS

The IEEE-488 bus includes 8 data lines, 3 handshake lines
and 5 bus management lines. The data lines, labelled DIO1 through
DI08, allow for bit parallel byte serial data exchange. DIO8 is
the most significant bit (MSB). The three handshake lines are

i) DAV - Data valid
ii) NRFD - Not ready for data

iii) NDAC - Not data accepted
The five bus management lines are

i) EOI - End or identify
ii) IFC - Interface clear

iii) SRQ - Service request
iv) REN - Remote enable
v) ATN - Attention

The bus uses an active-low principle in which the logical 0 or
false corresponds to +5 volts while a logical 1 or true
corresponds to 0 volts. Thus many devices can be connected to a
common line and if any device wishes to assert a line true it has
the authority to do so. A line can only be false if none of the
devices connected to it are trying to hold it true. Up to 15
devices can be on the bus at any time.

Handshaking is required of all information exchanges. One
device (frequently but not always the computer) is the talker
while others on the bus are listeners. Not all the devices are
either talkers or listeners at any time - they have to be
instructed by the controller to be such, or by default sit
passively on the bus.

Handshaking is performed as follows. All the listeners
should be asserting NDAC true. Following the previous handshake
or immediately after being commanded to become a listener some
listeners may assert NRFD true but this is a temporary situation
and within a few milliseconds all listeners will assert the NRFD
line false. If both NRFD and NDAC are false this indicates that
no listeners are on the bus - an error condition which must be
taken care of. The talker senses the NRFD lines and waits until
it is false indicating that the slowest listener is ready to
accept data. The talker then outputs the data on lines DIO
through DIO8. It waits until the data has settled down then the
talker asserts DAV true. The fastest listener asserts NRFD true
followed by all the others. Each listener at its own speed
accepts the data byte and releases NDAC. When the slowest
listener has responded the talker will sense the NDAC line as
being false indicating the byte transfer is complete and it then
sets DAV false . All the listeners set NDAC true and, when ready
to receive the next data they will set NRFD false.

Whether a device is a talker, a listener or neither is under

2

the control of the controller. The ATN line may be asserted true
only by the controller. With ATN true all information on the data
lines is regarded as a command and is listened to by all devices
on the bus. while ATN is false the information on the data lines
is considered as a message or data to be read by designated
listeners.

All IEEE-488 devices have a 5 bit address which may be f ixed
or may be set by means of switches on or in the device. This is
the device's basic address and may have a value between 0 and 31.
The address 31 is reserved for a special purpose however. If the
controller sets ATN true it can command devices to become
listeners or talkers. The commands are simply the basic address
of the device plus 32 for a listener or the basic address plus 64
for a talker. Thus if a device had address 4 then to command it
to be a listener the controller would, with ATN true, issue the
binary equivalent of 36 on the data lines. If the base address 31
is transmitted with 32 or 64 then the controller is telling all
devices to beco~me non listeners or non talkers respectively.
These are known as the UNIVERSAL UNLISTEN and UNIVERSAL UNTALK
commands. When an address is sent with both lines D106 and DI07
true then this is known as a secondary address and is discussed
further below in the example showing use of the micropositioning
equipment.

The remaining IEEE-488 control lines are IFC, SRQ, REN, and
EOI. When IFC is true all the instruments are forced into a
defined condition which is generally unlisten and untalk. The
line SRQ is used by instruments to indicate that they are in a
condition that needs attention by the controller or some human
intervention. Such a request could be made for example by a motor
drive controller if the motor hits some limit switch. It is
necessary for the controller to respond to a service request by
polling all devices to see which one called for service and then
taking necessary corrective measures.

Many instruments have front panel controls which allow them
to be operated independently from the IEEE-488 bus. For these
devic-- to operate under bus control it is essential for the
controller to assert REN true. At the end of each transmission of
a set of bytes EOI is made true by the talker. This is done in
conjunction with the transmission of the last byte.

There are situations where more than one of the control
lines are set true simultaneously. For some of these there is a
special interpretation of the control function. For example the
combination of EOI and ATN both true signals the start of a
parallel poll to check out a service request call. Such special
combinations are discussed in the IEEE-488 standards
documentation and except for a few special cases will not be
treated here.

3

I I FORTH

FORTH is a programming language which offers speed and
flexibility. It is highly interactive with the user and in
addition requires very little memory (about 7k for the entire
system). Near error-free programs can easily be obtained
because any part of a routino- can be tested before it is
compiled. Originally developed for control applications, FORTH
lends itself well to the management of the IEEE-488 bus.

Being a threaded language, programming in FORTH is done by
building new functions (similar to subroutines) from previously
defined functions until finally, one performs the desired task.
Initially FORTH is a kernel of about one hundred functions
(words). New words are compiled as they are defined and
immediately become part of FORTH (no subroutine calls are
needed). These new words may be used to define other words.
Thus the vocabulary of FORTH grows outward towards higher memory.

A word may be invoked (interpreted) at any time simply by
typing it on the console. FORTH's outer interpreter, at that
time, finds the word in its dictionary and executes it. If the
word is not found an error message occurs informing the operator
that he is attempting to use an undefined word.

Definition of a new word takes the form.
:nnnn < definition (old FORTH words) >;

The word 11:" tells FORTH to create a new word with the label
nnnn. Subsequent words up to ";" will be compiled instead of
executed. If the label nnnn has already been used, a redefine
message is given. The old word may not be accessed directly
afterwards, but earlier routines using that word are not
affected. The latest definition of a word is always executed by
the interpreter.

Access to machine code is allowed by the word CODE. This
word invokes the FORTH assembler and allows machine-language
subroutines to be defined in the form:

CODE nnnn < definition > EDOC.
Words defined in this way are compiled and become part of the
FORTH vocabulary just like any other FORTH word. In this manner
all the efficiency of assembly language is offered along with the
programming ease of the higher-level language.

Arithmetic operations are done in FORTH using a stack and
postfix notation system much like that used in many hand
calculators. Arithmetic formulae are written in postfix notation
with the operators after the arguments instead of between them,
with the arguments taken off the stack on a last in, first out
basis. For example, to add the numbers 5 and 7 one would enter
the FORTH word 5, which places the number 5 on the stack followed
by the word 7 and finally the word + which removes the top two
numbers f rom the stack and leaves their sum on the top of the
stack. Almost all FORTH operations communicate only through the

4

stack, taking data from the top of the stack and leaving results
on the top of the stack.

IV IEEE-488 SOURCE HANDSHAKE

In order for the talker (in this case a microcomputer) to
transfer data to a listener, a software handshake must be
implemented. This handshake must be able to manipulate the three
handshake lines and place data on the eight data lines in
accordance with the IEEE-488 standards as discussed above. We
will discuss here how that handshake may be implemented in FORTH.

First of all the talker must determine if there are any
listeners on the bus, and if not output an error message and
return control to the operator for corrective action. This error
condition is indicated by the handshake lines NDAC and NRFD both
being false (high).

To bring the handshake line information from the port and
place it on the stack, the word ?EARSUP is defined from the FORTH
assembly language. All numbers are hexadecimal.

CODE ?EARSUP 7D IN 60 AND 0 H LD A L LD HL PUSH $NEXT JP EDOC
This brings in the handshake and management data from port 7D to
the accumulator, logically ands it with a hexadecimal 60 to mask
off all but the two lines we are interested in, puts a 0 in the H
register and loads the contents of the accumulator into the L
register, then pushes the HL register pair onto the stack.The
ports for control and data on the IEEE-488 bus in our setup are
7D and 7E respectively.

The word to be executed on the error condition is:
: MS1 T" NO LISTENERS ON 488 BUS " CR RESTART ;

The error message is printed on the screen (with a carriage
return) and FORTH is restarted.

These two words are used in the following routine which
performs the entire function:

EARSUP ?EARSUP 60 - 0= IF MS1 ENDIF
MS1 is executed if and only if ?EARSUP places a 60 on the stack.

Next the talker must place the data to be transferred onto
the data bus, wait at least two milliseconds for the lines to
settle, then determine that all listeners are ready for data.

OUTDATA places the number on top of the stack out to the
IEEE-488 data port 7E, performing a ones complement to compensate
for the IEEE-488 high-false logic.

CODE OUTDATA HL POP L A LD CPL 7E OUT $NEXT JP EDOC

That the listeners are ready for data is indicated by NRFD
being false. No action is taken until this condition is
satisfied.

: ?READY BEGIN ?EARSUP 40 & 40 - 0= END ;
The word & is the FORTH logical AND of the top two numbers on the
stack.

5

Now the talker must wait at least two milliseconds before
indicating that the data is available. This is accomplished by
redefining ?READY:

: ?READY ?READY WAIT
where WAIT is essentially a delay loop.

These words are now combined.
: OUTEM OUTDATA ?READY DAV ON ZAPP

The words DAV ON ZAPP force the handshake line DAV true,
informing the listeners that the data on the bus is valid.

The talker now determines that the listeners have accepted
the data, and makes the DAV line false indicating that the data
lines no longer carry valid data.

?AXCEPT BEGIN ?EARSUP 20 - 0= END ;
ENDSHAKE ?AXCEPT DAV OFF ZAPP 00 OUTDATA ;

Now the above words can be tied together into one word wh
will carry out the entire source handshake, sending the tup
the stack over the data lines to the listeners.

: CHRSEND EARSUP OUTEM ENDSHAKE

Thus the sequence 24 CHRSEND will result in the number z4
being sent out by the talker (the computer) and received by all
the listeners on the bus. Care should be paid to the current
numeric base being utilized by FORTH. The base can be binary
(base 2) octal (base 8) decimal (base 10) or hexadecimal (base
16). For most control applications decimal or hexadecimal numbers
are used. In this article hexadecimal numbers prevail.

V THE FORTH DRIVERS

The particular hardware configuration used by each
experimenter will differ according to his individual needs. Thus
FORTH routines will have to be developed for his situation. The
listing of FORTH routines in Appendix A have been created to use
with a particular set of laboratory hardware. Although the set
may not exactly match that found in other laboratories they are
probably typical of what one might expect to find. The solution
to IEEE-488 interfacing in other laboratories can be expected to
resemble the ones we present here. In the present case the
controller is a NorthStar Horizon microcomputer with two double
density disc drives operating under CP/M (CP/M is a trademark of
Digital Research of Pacific Grove CA.). The version of FORTH used
is SL5 (SuperSoft Associates, Champaign ILL) and the IEEE-488 bus
controller was a Pickles and Trout 488 board.

Specific hardware to be controlled in our experiments were

1) Quantex Model DS-30 Digital Video Processor.

2) Hewlett Packard Model 9872A Plotter.

3) Two Ealing System 5 micropositioners

6

(One vertical and one horizontal)

The routines we have developed are given in Appendix A . A
brief summary of these follows.

Upon loading the bus drivers the first thing done is to
store the current arithmetic base used by FORTH then designating
the base as HEXadecimal. (The words BASE @ store the current base
on the stack while HEX makes the base hexadecimal). This is
followed by a definition of a word to set the base to binary for
future use.

A series of variables and constants are then defined. GIMTCH
is a variable whose initial value is zero as defined in the
statement

0 VARIABLE GIMTCH
The purpose of GIMTCH is to store the data which will be put on
the handshake and bus management lines. Similarly the variable
BUS is used to store the actual state of the bus.

A set of words is then defined culminating in the definition
of the word ZAPP which places the contents of GIMTCH on the eight
handshake and management lines.

The diagnostic word LINES is defined from the previous words
to give the status of the handshake and management lines thus

DAV... ON
NRFD.. OFF
NDAC.. OFF
IFC... ON
ATN... OFF
SRQ... OFF
REN... ON
EOI... OFF

for example.

These words are then followed by routines which allow the
controller to perform source and acceptor handshakes much as
described above. The listing then shows the definitions of the
the IEEE-488 addresses (in HEX) of the various devices in the
system as well as the definition of an initialization routine for
the Pickles and Trout interface board.

The remainder of the listing gives the dc-finitions of FORTH
words specific to the devices in the particular laboratory
situation of our application. Finally the system performs an INIT
to set up the interface board, rings a bell on the console (7
TCH) and re-establishes the base to what it was prior to the
loading of the routines

VI EXAMPLES

In this section examples will be given to demonstrate the

7

use of the software in appendix A in a laboratory situation.

The Quantex digital video processor is capable of storing in
its memory one frame of input video and can output to a monitor
its input, its memory, or some processed version of its memory.
In 3rder to access the Quantex unit over the IEEE-488 bus, it
must Lirst be assigned as a listener. This is done by typing

QUANTEX LISTENER
QUANTEX is a constant (04, the address of the video processor)
and LISTENER carries out the controller function of assigning a
device as a listener, taking the number on the top of the stack
as the device address.

Now to save a frame of video input, one would type
STORE- INPUT

If the difference between the input and memory is desired
DIFF

displays the mathematical difference between the two digitized
scenes on the monitor.

To compare the difference between the input scene and the
memory, one might define the following:

:COMPARE 100 0 DO INPUT PAUSE MEMORY PAUSE LOOP;
which will cause the video processor to switch from input to
memory display 100 hex times (256 decimal). To execute this
command, simply type

COMPARE

We now wish to drive the Ealing micropositioners. Note that
the Ealing System 5 hardware makes extensive use of secondary
addresses. These are addresses of internal parts of the hardware
or software that must be addressed in order to transfer data to
or from those parts. These addresses must be sent with ATN true
after the primary address has been sent. The secondary listen
addresses cover the functions local, remote, drive, reverse,
forward, travel and speed while secondary talk addresses are used
for transmission of travel and speed data. These addresses can be
seen under the EALING COMMANDS in Appendix A to range f rom 61 to
68 HEX. Another complication is that for some commands such
as TRAVEL the Ealing system is looking for a three byte data
transfer whereas FORTH uses two byte numbers. The capability of
using double precision numbers is available in FORTH but in our
application these are seldom if ever used. In our application we
simply use single precision numbers and transmit zero for the
high order byte.

For illustrative purposes we will discuss one of the EALING
COMMANDS in some detail. The word TRAVEL consists of the
following sequence. First the word TRAVEL expects a number to be
on the stack. This is the number of discrete steps the stage is
going to have to make. The word TRAVEL first checks to see if the
system is ready to receive data. Next ATN is set true and a 3F is
sent out to make everyone into an unlistener. The variable EALING
contains the basic address of the device to be made into a

8

listener. A logical OR (FORTH word I) is performed on the basic
device address and the hex number 20, the result being
transmitted to the bus making the device a listener. With ATN
still true the secondary address 66 is sent to advise the unit to
expect three bytes of travel data. ATN is released. The word
TWOBITS takes the number on top of the stack and converts it into
two numbers for transmission to the micropositioner low order
byte first. Finally the high order byte zero is sent with EOI
true and the computer ends the transmission with the data lines
cleared.

To drive the vertical stage 200 steps at 50 steps per
second we would type:

DECIMAL VERTICAL REMOTE 50 SPEED 200 TRAVEL FORWARD DRIVE
DECIMAL converts to base 10, VERTICAL indicates which unit to
address and DRIVE initiates the motion of the positioners.

If a raster scan of 500 x 500 micrometers (one step is equal
to one micrometer) is desired, the following word may be written:

RASTER HORIZONTAL 100 SPEED VERTICAL 10 SPEED
500 0 DO HORIZONTAL I 2 MOD 0= IF FORWARD
ELSE REVERSE ENDIF
500 TRAVEL DRIVE
VERTICAL FORWARD 1 TRAVEL DRIVE LOOP

A useful facility that has been developed is the routine
VIEWGRAPH. Using a commercially available word processor, a CP/M
text file may be edited and saved onto disc. The operator then,
after loading FORTH, types the command VIEWGRAPH. The computer
responds with "ENTER THE NAME OF THE VIEWGRAPH FILE". After the
file name is entered the text is then printed on the plotter. A
useful feature of the routine is that it senses when the text
contains the reserved charachter ASC(47H). If this charachter is
present the plotting is suspended to allow the user to enter a
single FORTH word which is the executed before plotting resumes.
This can be used, for example,to change plotter pens. This is a
valuable tool for producing text viewgraphs. Especially useful
results are obtained if transparent film and special pens are
used.

VII CONCLUSIONS

We have developed software for control of the IEEE-488
interface using FORTH as a programming language. The resulting
set of routines give a fast, flexible operating environment for
an experimenter working with a laboratory system under computer
control. The elementary routines in Appendix A can be
individually executed or new FORTH words can be easily defined to
combine earlier defined words into a single command.

9

The laboratory situation in which we have implemented FORTH
drivers for the interface bus may be typical of others. In each
case however it is to be expected that different pieces of
hardware will be used on the IEEE-488 bus. Routines similar to
those given in Appendix A will have to be individually tailored.
We hope this discussion will provide a useful basis for other
workers.

we have not discussed details of some additional features of
the IEEE-488 interface. Included are the ways to respond to a
service request (SRO), the use of secondary addresses, the
correct method of ending a set of instructions with an EQI and
the use of serial polls. These are all implemented in the sample
of FORTH routines given in Appendix A. For more details on the
IEEE-488 bus the reader is referred to reference 1.

11

BIBLIOGRAPHY

1) IEEE Standard Digital Interface for Programmable
Instrumentation. IEEE Std. 488-1978

2) Moore, C. H. , "FORTH a New Way to Program a
Computer ",Astronomy and Astrophysics Supp j5d,497,l974

APPENDIX A

BASE @ HEX
* BINARY 2 BASE I;
0 VARIABLE GIMTCH 0 VARIABLE BUS
80 CONSTANT DAV 40 CONSTANT NRFD 20 CONSTANT NDAC 10 CONSTANT IFC
08 CONSTANT ATN 04 CONSTANT SRO 02 CONSTANT REN 01 CONSTANT EOI

(CONTROL LINE MANIPULATION COMMANDS)
CODE TOGGLE HL POP L A LD CPL A L LD HL PUSH $NEXT JP EDOC
: ON TOGGLE GIMTCH @ & GIMTCH ! ;
: OFF GIMTCH @ I GIMTCH ! ;
CODE CMND HL POP L A LD 7D OUT HL PUSH $NEXT JP EDOC
: COMMAND CMND GIMTCH ! ;
: ZAPP GIMTCH @ COMMAND ;

CONTROL LINE INQUIRY COMMANDS
: RESPO4D 0= IF T" ON " ELSE T" OFF " ENDIF CR
: ?DAV T" DAV... " BUS @ 80 & RESPOND ;
: ?NRFD T" NRFD.. " BUS @ 40 & RESPOND ;
: ?NDAC T" NDAC.. " BUS @ 20 & RESPOND ;
: ?IFC T" IFC... " BUS @ 10 & RESPOND ;
: ?ATN T" ATN... " BUS @ 08 & RESPOND ;
: ?SRQ T" SRQ... " BUS @ 04 & RESPOND ;
: ?REN T" REN... " BUS @ 02 & RESPOND ;
: ?EOI T" EOI... " BUS @ 01 & RESPOND ;
CODE LINES 7D IN 0 H LD A L LD HL PUSH $NEXT JP EDOC

> >LINES LINES BUS ! CR ?DAV ?NRFD ?NDAC ?IFC ?ATN ?SRQ ?REN ?EOI

IEEE 488 SOURCE HANDSHAKE COMMANDS)
: MS1 T" NO LISTENERS ON 488 BUS " CR RESTART
CODE ?EARSUP 7D IN 60 AND 0 H LD A L LD HL PUSH $NEXT JP EDOC
: EARSUP ?EARSUP 60 - 0= IF MS1 ENDIF ;
: ?READY BEGIN ?EARSUP 40 & 40 - 0= END ;
(ONES COMPLEMENT [CPL] PREFORMED IN OUTDATA TO COMPENSATE FOR
(PICKLE AND TROUT NEGATIVE LOGIC)
CODE OUTDATA HL POP L A LD CPL 7E OUT $NEXT JP EDOC
: WAIT 2 0 DO I DROP LOOP;
: ?READY ?READY WAIT ;
: OUTEM OUTDATA ?READY DAV ON ZAPP ;
: ?AXCEPT BEGIN ?EARSUP 20 - 0= END ;
: ENDSHAKE ?AXCEPT DAV OFF ZAPP 00 OUTDATA ;
: CHRSEND EARSUP OUTEM ENDSHAKE

(ACCEPTOR HANDSHAKE)
CODE INDATA 7E IN CPL A L LD 0 H LD HL PUSH $NEXT JP EDOC
: INDATA 00 OUTDATA INDATA ;
: ?DAVON BEGIN LINES 80 & 0- END ;
: ?DAVOFF BEGIN LINES 80 & 80 - 0- END
CHRRCV NRF) ON NDAC ON ZAPP WAIT NRFD OFF ZAPP ?DAVON

NRFD ON ZAPP INDATA NDAC OFF ZAPP ?DAVOFF NDAC ON ZAPP ;
>DATA BASE @ INDATA BINARY . BASE I;

(IEEE-488 DEVICE ADDRESSES
03 CONSTANT NORTHSTAR 04 CONSTANT QUANTEX 05 CONSTANT PLOTTER
OB CONSTANT VER-EAL OC CONSTANT HOR-EAL

12

APPENDIX A

PICKLE AND TROUT IEEE 488 INITIALIZATION)
CODE IMNIT FF A LD 7F OUT 7E OUT A L LD O H LD HL PUSH $NEXT JP EDOC
CODE 21NIT 0 A LD 7C OUT $NEXT JP EDOC

INIT IINIT COMMAND 21NIT REN ON ZAPP;

NORTHSTAR CONTROLER COMMANDS)
UNLISTEN ATN ON ZAPP 3F CHRSEND ATN OFF ZAPP;
UNTALK ATN ON NRFD OFF NDAC OFF ZAPP 5F CHRSEND ATN OFF ZAPP;
TALKER ATN ON ZAPP 40 1 CHRSEND NDAC ON ZAPP NRFD ON ZAPP

ATN OFF ZAPP ;
LISTENER ATN ON ZAPP 20 1 CHRSEND ATN OFF ZAPP;
SP-ENABLE ATN ON ZAPP 18 CHRSEND ATN OFF ZAPP ;
SP-DISABLE UNTALK ATN ON ZAPP 19 CHRSEND ATN OFF ZAPP

COMMANDS SPECIFIC TO QUANTEX UNIT)
0 VARIABLE HI 0 VARIABLE H2 0 VARIABLE H3
0 VARIABLE Ri 0 VARIABLE R2

STRIP 10 MOD ;I
:UNPICK DUP STRIP Hi ! 10 / DUP STRIP H2 !10 / STRIP H3
:DATA 7F UNPICK ; :COMMAND 7E UNPICK;
:RUNPICK DUP STRIP RI ! 10 / STRIP R2 I
:RIN A8 RUNPICK ; :ROUT E8 RUNPICK ;
:SEND UNPICK Hi @ CHRSEND H2 @ CHRSEND H3 @ CHRSEND;
: SET EOI ON ZAPP 00 CHRSEND EOI OFF ZAPP

00 CHRSEND 01 CHRSEND 30 R2 @ I CHRSEND 20 Ri @ I CHRSEND
02 CHRSEND 20 Hi @ I CHRSEND 30 H2 @ I CHRSEND 40 H3 @ I CHRSEND
OF CHRSEND ;

:COMMANDLOAD QUANTEX LISTENER RIM COMMAND QSET SEND;
:COMMANDCHEC< QUANTEX LISTENER ROUT COMMAND QSET UNLISTEN

QUANTEX TALKER
BEGIN CHRRCV OF & CHRRCV OF & + CHRRCV OF & + 0= END
NRFD OFF NDAC OFF UNTALK ;

:DATALOAD QUANTEX LISTENER DATA RIN OSET SEND
:DATARECEIVE QUANTEX LISTENER DATA ROUT QSET UNLISTEN

QUANTEX TALKER CHRRCV OF & CHRRCV OF & 10 *+

CHRRCV OF & 100 * + NDAC OFF NRFD OFF ZAPP UNTALK

QUANTEX FRONT PANEL INSTRUCTION SET)
SUM-ALIGN DATALOAD 1 COMMANDLOAD COMMANDCHECK;
SUM-PRESET-DATA DATALOAD 2 COMMANDLOAD COMMANDCHECK
AVG-PRESET-DATA DATALOAD 3 COMMANDLOAD COMMANDCHECK
AVG-PARAM DATALOAD 4 COMMANDLOAD COMMANDCHECK
TOTAL 5 COMMANDLOAD COMMANDCHECK DATARECEIVE;
OFFSET-DATA DATALOAD 6 COMMANDLOAD COMMANDCHECK;
GAIN-DATA DATALOAD 7 COMMANDLOAD COMMANDCHECK
PAUSE-SET DATALOAD 8 COMMANDLOAD COMMANDCHECK;
PROG-STEP 9 COMMANDLOAD COMMANDCHECK DATARECEIVE;
POT-i DATALOAD 10 COMMANDLOAD COMMANDCHECK;
POT-2 DATALOAD 11 COMMANDLOAD COMMAMDCHECK;
POT-3 DATALOAD 12 COMMANDLOAD COMMANDCHECK
POT-4 DATALOAD 13 COMMANDLOAD COMMANDCHECK;
SYS-TEST 15 COMMANDLOAD COMMANDCHECK;
SUM 15 COMMANDLOAD COMMANDCHECK ;
SUM-PRESET 16 COMMANDLOAD COMMANDCHECK

13

APPENDIX A

: SUM-FULL 17 COMMANDLOAD COMMANDCHECK;
:AVG 18 COMMANDLOAD COMMANDCHECK ;
:AVG-PRESET 19 COMMANDLOAD COMMANDCHECK;
: STORE-INPUT 20 COMMANDLOAD COMMANDCHECK
: STORE-OUTPUT 21 COMMANDLOAD COMMANDCHECK;
: INV 22 COMMANDLOAD COMMANDCHECK

:HOLD/CONTROL 23 COMMANDLOAD COMMANDCHECI(
: INPUT 24 COMMANDLOAD COMMANDCHECK;

:MEMORY 25 COMMANDLOAD COMMANDCHECK
: OFFSET 26 COMMANDLOAD COMMANDCHECK;
: GAIN 27 COMMANDLOAD COMMANDCHECK;
: C'TOUR 28 COMMANDLOAD COMMANDCHECK
:DIFF 29 COMMANDLOAD COMMANDCHECK;
:NEG-DIFF 30 COMMANDLOAD COMMANDCHECK;
:POS-DIFF 31 COMMANDLOAD COMMANDCHEC<
: MAG-DIFF 32 COMMANDLOAD COMMANDCHECK
: EDGE-ENH 33 COMMANDLOAD COMMANDCHECK
: LEARN 34 COMMANDLOAD COMMANDCHECI(
: ACTIVE 35 COMMANDLOAD COMMANDCHECK;
:WAIT 36 COMMANDLOAD COMMANDCHECK
: PAUSE 37 COMMANDLOAD COMMANDCHECK
: RUN 38 COMMANDLOAD COMMANDCHECK ;
: SET-MEM-QUAD DATALOAD 39 COMMANDLOAD COMMANDCHECK
: SET-MEM-FIELD DATALOAD 40 COMMANDLOAD COMMANDCHECK
: CLEAR 41 COMMANDLOAD COMMANDCHECK;
: NON-LINEAR 42 COMMANDLOAD COMMANDCHECK;
:POLARITY-INVERT 43 COMMANDLOAD COMMANDCHECK;
: INTEGRATE 44 COMMANDLOAD COMMANDCHECK;
: FRAME-COUNT DATALOAD 45 COMMANDLOAD COMMANDCHECK;
: CHECK-MODE 46 COMMANDLOAD COMMANDCHECK DATARECEIVE;
: CHECK-ARITH-STATE 47 COMMANDLOAD COMMANDCH-ECK DATARECEIVE
:CHECK-TOGG-STATE 48 COMMANDLOAD COMMANDCHECK DATARECEIVE
: OUTPUT-TRANS-CONT DATALOAD 49 COMMANDLOAD COMMANDCHECK
: POWER-ON-INIT 50 COMMANDLOAD, COMMANDCHECK

(VIDEO RAM INPUT)
VIN 00 CHRSEND 01 CHRSEND 39 CHRSEND 22 CHRSEND 02 CHRSEND

20 CHRSEND 30 CHRSEND 40 CHRSEND 50 CHRSEND 6E CHRSEND
OF CHRSEND

VIDEO OUT)
VOUT 00 CHRSEND 01 CHRSEND 3D CHRSEND 22 CHRSEND 02 CHRSEND

20 CHRSEND 30 CHRSEND 40 CHRSEND 50 CHRSEND 6E CHRSEND
03 CHRSEND 20 CHRSEND 30 CHRSEND 41 CHRSEND 50 CHRSEND
61 CHESEND OF CHRSEND;

EALING COMMANDS)
0 VARIABLE EALING
: VERTICAL OB EALING I
: HORIZONTAL OC EALING I
0 VARIABLE HO 0 VARIABLE MO 0 VARIABLE LO

CODE NRFDCK 7D IN 40 AND 0 H LD A L LD HL PUSH $NEXT JP EDOC
: NRFDCHECK BEGIN NRFDCK 40 - 0- END ;
: TWOBITS DUP 100 MOD LO 1 100 /MO 1 0 HO I
: LOCAL NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ ICHRSEND

14

APPENDIX A

61 CHRSEND ATN OFF ZAPP 00 OUTDATA
REMOTE NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ ICHRSEND

62 CHRSEND ATN OFF ZAPP 00 OUTDATA ;I
DRIVE NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ ICHRSEND

63 CHRSEND ATN OFF ZAPP 00 OUTDATA ;
REVERSE NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ ICHRSEND

64 CHRSEND ATM OFF ZAPP 00 OUTDATA
FORWARD NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ CHRSEND

65 CHRSEND ATN OFF ZAPP 00 OUTDATA ;
TRAVEL NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ ICHRSEND

66 CHRSEND ATM OFF ZAPP TWOBITS LO @ CHRSEND MO @ CHRSEND
EOI ON ZAPP 00 CHRSEND EOI OFF ZAPP 00 OUTDATA ;

SPEED NRFDCHECK ATN ON ZAPP 3F CHRSEND 20 EALING @ I CHRSEND
67 CHRSEND ATM OFF ZAPP TWOBITS
MO @ CHRSEND EOI ON ZAPP LO @ CHRSEND EOI OFF ZAPP 00 OUTDATA;

TRAVELREAD NRFDCHECK ATN ON ZAPP 3F CHRSEND 40 EALING @ I CHRSEND
66 CHRSEND ATM OFF ZAPP 00 OUTDATA ;

COUNTREAD NRFDCHECK ATN ON ZAPP 3F CHRSEND 40 EALING @ I CHRSEND

68 CHRSEND ATN OFF ZAPP 00 OUTOATA

HP 9872A PLOTTER

2DUP DROP DUP ROT 1 - DUP 0= IF DROP DROP DROP
ELSE 0 DO * SWAP DUP ROT LOOP ROT DROP SWAP DROP ENDIF;

STR DUP 0 < IF 2D CHRSEND -1 * ENDIF DUP A 4 ^/ 30 + CHRSEND A 4
MOD DUP A 3 -/ 30 + CHRSEND A 3 ^MOD DUP
A 2 /30 + CHRSEND A 2 ^MOD DUP
A 1 /30 + CHRSEND A MOD 30 + CHRSEND;

PLOTTER INSTRUCTION SET)
PLOT 50 CHRSEND 41 CHRSEND SWAP STR 2C CHRSEND STR 3B CHRSEND;
PLOT-REL 50 CHRSEND 52 CHRSEND SWAP STR 2C CHRSEND STR 3B CHRSEND;
PENUP 50 CHRSEND 55 CHRSEND 3B CHRSEND ;
PENDOWN 50 CHRSEND 44 CHRSEND 3B CHRSEND;
DP 44 CHRSEND 50 CHRSEND 3B CHRSEND;
OD 4F CHRSEND 44 CHRSEND 3B CHRSEND;
OC 4F CHRSEND 43 CHRSEND 3B CHRSEND;
OS 4F CHRSEND 53 CHRSEND 3B CHRSEND;
DIGITIZE T" ENTER NAME OF FILE"

FILEl DUP NAMIT OPENW
BEG IN
UNLISTEN PLOTTER LISTENER DP SP-ENABLE UNLISTEN
PLOTTER TALKER
BEGIN OB DUP CALLCPM 0 = IF CHRRCV 4 & 4 = ELSE
30 FILEl WEYTE 2C FILEl WBYTE 30 FILEl WBYTE 3B FILEl WBYTE
FILEl FLUSH FILEl CLOSE
SP-DISABLE UNTALK PLOTTER LISTENER OD RESTART ENDIF END
SP-DISABLE UNTALK PLOTTER LISTENER OD
UNLISTEN PLOTTER TALKER
BEGIN CHRRCV DUP FILEl WBYTE 2C - END
BEGIN CHRRCV DUP FILEl WBYTE 2C - END UNTALK
0 END ;I

:PLOTD T" ENTER NAME OF FILE TO PLOT
FILEl NAMIT
FILEl OPENR 50 CHRSEND 41 CHRSEND

15

APPENDIX A

BEGIN FILE1 RBYTE DUP CHRSE I
3B = IF 1 ELSE 0 ENDIF END
FILE1 CLOSE ;

: SP 53 CHRSEND 50 CHRSEND CHRSEND 3B CHRSEND
: RED 31 SP ;
: GREEN 32 SP ;
: BLACK 33 SP ;
: BLUE 34 SP ;
: TEXT 4C CHRSEND 42 CHRSEND BEGIN GCH DUP CHRSEND D - 0= END 3 CHRSEND
: VIEWGRAPH INIT T" ENTER NAME OF VIEWGRAPH FILE: " FILE1 NAMIT

UNLISTEN PLOTTER LISTENER PENUP BLACK
0 1F40 PLOT FILE1 OPENR 4C CHRSEND 42 CHRSEND
BEGIN FILE1 RBYTE DUP
7C = IF 3 CHRSEND WORD FIND IF EXECUTE ELSE NUMBER IF
LITERAL ELSE UNDEFINED ENDIF ENDIF
4C CHRSEND 42 CHRSEND DROP 20
ENDIF DUP 1A = IF 3 CHRSEND ELSE DUP CHRSEND
ENDIF IA - 0= END 30 SP 3000 2500 PLOT ININIT

SERIAL POLL
EMSG-1 T" DRIVE ON " CR ;
EMSG-2 T" REQUEST STOP " CR ;
EMSG-3 T" REVERSE LIMIT REACHED " CR ;
EMSG-4 T" FORWARD LIMIT REACHED " CR ;
EMSG-5 T" REQUEST LOCAL CONTROL " CR
VER-EAL-RESPONSE DUP 01 & 01 = IF T" VERTICAL " EMSG-1 ENDIF

DUP 02 & 02 = IF T" VERTICAL " EMSG-2 ENDIF
DUP 04 & 04 = IF T" VERTICAL " EMSG-3 ENDIF
DUP 08 & 08 = IF T" VERTICAL " EMSG-4 ENDIF

10 & 10 = IF T" VERTICAL " EMSG-5 ENDIF ;
HOR-EAL-RESPONSE DUP 01 & 01 = IF T" HORIZONTAL " EMSG-1 ENDIF

DUP 02 & 02 = IF T" HORIZONTAL " EMSG-2 ENDIF
DUP 04 & 04 = IF T" HORIZONTAL " EMSG-3 ENDIF
DUP 08 & 08 = IF T" HORIZONTAL " EMSG-4 ENDIF

10 & 10 = IF T" HORIZONTAL " EMSG-5 ENDIF ;
PLOTTER-RESPONSE T" PLOTTER "
POLLRESPONSE SWAP DUP 05 = IF DROP PLOTTER-RESPONSE ENDIF

DUP OB = IF DROP VER-EAL-RESPONSE ENDIF
DUP OC = IF DROP HOR-EAL-RESPONSE ENDIF ;

: SRQCALL? DUP TALKER CHRRCV DUP 40 & 40 = UNTALK IF POLLRESPONSE
ELSE DROP DROP ENDIF ;

; SERIALPOLL UNLISTEN UNTALK
SP-ENABLE
PLOTTER SRQCALL?
VER-EAL SRQCALL?
HOR-EAL SRQCALL?
SP-DISABLE ;

: SRQ? LINES FF XI 04 & 04 IF SERIALPOLL ENDIF

INIT
7 TCH
BASE I
(END-OF-FILE]

16

DISM7'MIGN LIST

No. of
Copies

Cmmander 5
US Army Research Office
ATTN: DRXR)-PH, Dr. R. Lontz
P. 0. Box 12211
Research Triangle Park, NC 27709

Headquarters, Department of the Army
Office of the DCS for Research, Development

& Acquisition
ATN: DIA-ARZ
Room 3A474, The Pentagon
ashington, DC 20301

Director
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Director
US Army Night Vision Laboratory
ATTN: John Johnson

John Deline
Peter VanAtta

Fort Belvoir, VA 22060

Commander
US Army Picatinny Arsenal
Dover, NJ 07801

Conmander
US Army Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

Comwander
UZ Army Foreign Science and Technology Center
ATMI. W. S. Alcott
Federal Office Building
220 7th Street, NE
Charlottesville, VA 22901

17

Commander 1
US Army Training and Doctrine Corand
Fort Monroe, VA 22351

Director
Ballistic Missile Defense Advanced Technology Center
ATTN: ATC-D 1

ATC-O 1
ATC-R 1
ATC-T I

P. 0. Box 1500
Huntsville, AL 35808

Environmental Research Institute of Michigan
Radar and Optics Division
AT1'N: Dr. A. Kozma 1

Dr. C. C. Aleksoff 2
Juris Upatnieks 1

P. 0. Box 8618
Ann Arbor, MI 41807

IIT Research Institute I
ATTN: GACAC
10 West 35th Street
Chicago, IL 60616

Dr. J. G. Castle 1
9801 San Gabriel, NE
Albuquerque, NM 87111

Commander, Center for Naval Analyses 1
ATITN: Document Control
1401 Wilson Boulevard
Arlington, VA 22209

Dr. R. Brown 2
Department of Industrial Systems Engineering
University of Alabama
Huntsville, AL

Dr. Richard Berg 1
DNIA/SPOEM4
8301 Greensboro Drive
McLean, VA 22102

Dr. Nicholas George 2
The Institute of Optics
University of Rochester
Rochester, NY 14627

18

Dr. L. Forsely
laboratory for Laser Enegetics
University of Rochester
Rochester, NY 14627

Professor Anil K. Jain
Department of Electrical Engineering
University of California, Davis
Davis, CA 95616

Terry Turpin
Department of Defense
9800 Savage Road
Fort George G. Meade, MD 20755

Dr. Stuart A. Collins 1
Electrical Engineering Department
Ohio State University
1320 Kennear Rod
Columbus, OH 43212

US Army Materiel Systems Analysis Activity 1
ATN: DRXSY-P
Aberdeen Proving Ground, MD 21005

US Army Night Vision Laboratorry I
ATTN: DELNV-L, Dr. R. Buser
Fort Belvoir, VA 22060

Dr. F. T. S. Yu I
Penn State University
Department of Electrical Engineering
University Park, PA 16802

Don Ramsey 3
United Controls Corporation
P. 0. Box 4620
Farley Station, AL 35802

K. B. Farr 5
210 Thomas Street
Tuscaloosa, AL 35401

Ed Runnion 2
J. M. Cockerham and Associates
4717 University Drive
Huntsville, AL

19

Dr. R. Kurtz 2
TAI, Inc.
12010 South Parkway
Huntsville, AL 35803

DRCPM-PE-E, John Pettitt 1
-PE 1

DRSMI-LP, Mr. Voigt 1
-0 1
-Y 1
-R 1
-RN, Jerry Hagood 1
-RE, W. Pittman 1
-RD 3
-"{ 1
-RG, J. A. McLean 1
-R, Dr. R. L. Hartman 1

Dr. J. S. Bennett 1
Dr. C. R. Christensen 1
Dr. J. G. Duthie 50
Mr. H. Dudel 1

-RPR 15
-RPT 1

ru.S. GOVERNMENT PRINTING OFFICE: 1982-546-116/764

20

DATE

FILM I

J-E

