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A Robust Alternative to the Normal Distribution

D. L. McLeish

Consider some of the arguments often advanced for the use of the

normal distribution in a given situation:

(a) It is thought that the variable of interest can be represented as

a sum of a large number of independent, small, and possibly iden-

A tically distributed increments (i.e., the distribution is infinitely

divisible).

(b) The distribution is symmetric and has all moments finite (it is

argued that most real world measurements should have this property).

(c) The distribution is closed under convolutions; therefore useful for

estimation and modelling.

(d) The normal distribution (or.a reasonable facsimile) seems to fit

many real world phenomena.

(e) The model can be extended to allow for dependent increments.

(f) The distribution is easy to handle. In the normal case, the maximum

likelihood estimates are simple, although the distribution function

requires numerical approximation. Generation of random normal var-

iates is easy from a uniform generator.

On the other hand, many arguments have been made against the routine

assumption of normality. Perhaps the most important of these is that

"outliers" or "errors" seem to occur in otherwise normal samples and the

normal estimates are highly non-robust to these. This observation has

given rise to a considerable volume of literature in the robust theory

of estimation. Many of the arguments and controversies surrounding,

for example, the choice of the psi function for Huberts M-estimates ar

difficult for many to appreciate since they are presented either with
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only heuristic justification or in reference to a seemingly artificial

contamination model. The notion that there are "gross errors" in an

experimenter's data is often one that is difficult to account for: fur-

thermore, it is unnecessary to the justification of robust procedures as

we shall see. Finally, although there is widespread agreement about the

desirability of using robust methods, which such methods are most effec-

tive remains a controversial question (cf. Stigler (1977)). Some of the

remaining reluctance to use robust methods may be related to Fisher's

conment (quoted from Wilkinson (1979)):

"This example (relating to the Cauchy distribution) serves also to illus-

trate the practical difficulty which observers often find, that a few

extreme observations appear to dominate the value of the mean. In these

cases the rejection of extreme values is often advocated, and it may

often happen that gross errors are thus rejected. As a statistical mea-

sure, however, the rejection of observations is too crude to be defended:

and unless there are other reasons for rejection than mere divergence

from the majority, it would be more philosophical to accept these extreme

values, not as gross errors, but as indications that the distribution of

errors is not normal. As we shall show, the only Pearsonian curve for

which the mean is the best statistic for locating the curve, is the nor-

ma 1 or Gaussian curve of errors. If the curve is not of this form the

mean is not necessarily of any value whatever. The determination of

the true curves for different types of work is therefore of great prac-

tical Importance..."

-The purpose of this paper is to discuss a family of distributions

that seems more natural than the contamination models (for example, they
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possess the properties (a) through (e) above), which approximate the

normal distribution arbitrarily closely, and yet for which the maximum

likelihood estimators are robust. Property (f) is not enjoyed by this

family of distributions, since the simplest form for the density func-

tion in general is through a convergent power series. However, with

the rapid decrease in the cost of high-speed computation, this defect

is thought to be relatively unimportant. This distribution arises quite

naturally in two different ways, and in a related paper is shown to pro-

vide a good fit to stock returns. Random generation of variates having

this distribution requires only a normal and a gamma generator. The

density function resembles that of the normal, having as support the

whole real line, but the greater kurtosis makes this useful for model-

ling normal-like data in which there are apprarent "outliers".

The density function resembles that of the normal; it is symmetric,

unimodal, and has support the whole real line. The kurtosis is greater

than or equal to the normal, making this distribution useful in modelling

phenomena with somewhat heavier tails than the normal. It has been used,

for example, by Sichel 11973) to model the size distribution of diamonds.

This family connects two extreme members, the normal (for which the

maximun likelihood estimates are not robust) and the Laplace (for which

the maximum likelihood estimate of location is the median and is highly

robust though not very efficient for normal-like distributions). There

are other ways of connecting these two extremes. For example, the ex-

ponential power family (cf. Wilkinson (1979)) leads to Lp estimates

of location, 1 < p1 _2. For p > 1 , these are not robust. Another

family is proposed by 0. Barndorff-Nielson (1977) to model the
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distribution of sizes of sand particles. This distribution resembl es

ours in mn ways, although it is not closed under convolutions. It

could, like the present family, be used to derive robust estimates of

location.

Some of the properties of the present family are also obtained by

Teichroev (1957).

For convenience, distributions and their parameters will be as de-

fined in Johnson and Kotz (1970).

The Density and Its Properties.

Let G be a gamma distributed variate with parameters (a,2) and

let Z be a standard normal variate independent of G. Then the den-

sity function of G is:

() g (z) 1 ry°a3/2 e-(z 2 /2y)-y/2 dy.a A ,/r (a) O

This density is finite for all z 0 0 if a > 0 and finite for all z

if a> . For a>;*,

(2) x=(o)- 2ARr(C9)

!he modified Bessel function of the second kind is an even function that

may be defined by:

JI( z IV t v ' I • " t -z 2 A(t dt•

If we nov put t = y/2 in the definition of the density £ , we obtain:



This density was defined by Pearson, Jeffrey, and Elderton (1929) and

investigated further by Pearson, Stouffer and David (1932). Here an

asymptotic formula for large O is also given. The distribution is

applied to testing for differences between chi-squared values in con-

tingency tabled data, and tables of the distribution function for small

values of a are provided. This density may be used to describe the

sample covariance between independent, identically distributed normal

samples.

It is not difficult to show that this family of densities satisfies,

for positive a , a homogeneous differential equation of the form

gF(Z) - 2(Oe - 1) ga(z) - g (Z) = 0

This obtains from the modified Bessel equation satisfied by K,(z) ,

2K" + z K' - (z2 + V ) K = 0
V V

hg_(z) also satisfies the difference equation:

2

2(o - 1) gC(tlz
) - 2mg,1() + (2a - 1) g(z) n 0

which follows from the equation:
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z _( - KW. 1() *2VIV(z)

A more general family:

go,&(x) (1 -.2)oeax g Zx

may also be defined. This is closely related to the Bessel function

distribution (cf. McKay (1932) and Laha (1954)). In this model, hov-

ever, it is fairly difficult to disentangle the parameters a,a from

the Location-scale parameters. We will therefore concentrate on (3)

although many of its properties carry over to its generalization (cf.

Press (1967)).

We will adopt (3) as the definition of the density since this will

allow the function to be defined even for negative values of a (al-

though in this case it is not a density function).

We now introduce location and scale parameters to obtain the more

general family of densities:

(4) f (x; ,e,CX) - 1L g ,(- -- ._ 1

We express this general family as Be(p,e,a). This is the density func-

tion of a constant u plus the product of a standard normal variate with

one having the distribution of the square root of a gamna (cz,2e ) var-

iate. The moment generating function of the density is:

(5) m(t;UOc) - e( -2t2)o
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Since (5) factors into e t(l-6t)'a(let) , it is easily seen that

this is also the density of V, + G1 - G2 where G1 and G2 are in-

dependent ga-ma (a,8) variates. Moreover, since

m(t;ul,e,Ol) m(t;12 ,8,a 2 ) - m(t;i3i3 ,9 e 3 ) where IA3 = i + P2 and

a3 = a 1+ a 2 ' this distribution is closed under convolutions (for fixed

scale parameters) and is therefore infinitely divisible. It therefore

has a representation such as that in property (a) above. The central

moments of the distribution are:

EIX-.iUl 2 l (2 e)2p-l r(p) r(q+P- )

and in particular, when 2p - 1 = 1, 2, 4 respectively, we obtain

2er(a+,) 2e2 a , and 128 4a(t+ 1)

rrr (a)

Two important cases of this family of densities deserve mention.

The first is the case a = . , when

(6) g1(z) = W e- Z •

This is the Laplace distribution, for which the maximum likelihood es-

timates of location and scale are sample median and average absolute

deviation. The second case occurs when, for a2  a positive constant,

e approaches 0 and a approaches infinity. Specifically, as e . 0

f(x;1,e,a2 /2e ) approaches the normal (ip,c ) density.



When a in an integer, say Ga n + 1, n > 0 ,we have the

following representation of g.

(7) gin)- I -i s 2nk) 1

This is clearly a convolution between Poisson probabilities and

those as a negative binomial tV:pe, i.e.,

(8) n++ ,j 0, 1, 2, 3....

Indeed, if X has a Poisson distribution with parameter Izi and Y

has probabilities specified by (8), then

%(z) = P(X+Y-n)

The first few densities of this type are easily written out:

9 -() e-Iz gz(z) - (z2 + 31zl + 3)e-1z1/16

g2(z) - k(l+ 1lz)elz g 4(z) [ + 51z- + 2z2 + z

See Figure 1 for graphs of the densities. The distribution function may

be defined by symetry and the relation:

n Y(k+l.x)
(9) P(Ixl x) - 2 1 pn-k k1

k,,O

where y(a,x) is the incomplete gams, function O t a ' e - t dt.
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For the purpose of estimating location or scale, it is often con-

venient to generate the score function directly. Setting

-gl(x)
n (x) = a

and using the difference equation satisfied by g

T1 X x

x (x) + (2a-1)

and for integral a , we have a continued fraction expansion,

7+ (x) - + ... + + + sgn
a+1 .

Then, given go for small a , we may generate subsequent densities

through the expression

m r ( m -1
(10) go'm(x) Ig ()g(x) r(z x2 t4flk-- n+k

Here, r(k) is the complete gamma function, y(k,-). This approach

is often preferable to the use of the series expansion valid when

v a- is not an integer:

(~2k [_ __ _ __ _

9a(x ) a 2r(a) sin(vw) k 1 r(-v+k+l) - r +k+l

An alternative expansion to (7), useful for large jz , and ca

integral is the following:
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g,(z) Iz10- e-IZl + U _: + 01-1)(P-9)
r(a) 2x81 I 21(8z)2

++
31 (811 )32J

where U 4(a

An expression for the ~ g,(z) useful for maximum likelihood

estimation, is obtained by differentisting (10):

() -*(a) g '(Z) - lcot(vw) % (z)

(u) + 2r(o) sin(v) I r(-v + k

+ T i (v +k + 1) - 9n

where () is the digama function L Ln r(a).
dcx

Estimation of Parameters.

Before we present the maximum likelihood estimators of the para-

meters, we require an elementary property of the score function that is

based on the similar property for the Bessel function (cf. Abramowitz

and Stegun (1964)): zV(z) + vK(z) -zKzl(z) for all v . Therefore,

(1) (,, z K V1(z) z gmlz
9- 70 - -K z 2 (a -1)

for a > 1 and z 0.
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We now consider the problem of estimating the parameters. We

start with the estimation of a. To begin with, as z co

gs~ 1 ci-i -z
raa)) z e ,

and

aga(z)

Therefore, maximum likelihood estimation of a for large z is nearly

2.achieved by setting the sample mean of the variables Zn zi, i = 1, 2,

..., n equal to their expected value and solving for a. Moreover,

since the shape parameter a is primarily evident for a > 3/2 by the

weight in the tails, and since true maximum likelihood estimation of ci

is fairly cumbersome computationally, this is one approach we used. When

true maximum likelihood estimation was attempted on samples, the

iterates often seemed to fail to converge. Furthermore, we are pri-

marily interested here in efficient estimation of V , and as we shall

see, this depends very little on getting an accurate estimate of a.

One possibility for the estimator of parameters is the simple mo-

ment method. For example, one approach tried was to estimate a from

the relation:

E log(X1-p)
2 = -Y + log e2 + *(a)

where y is Euler's constant .57721... and f is the digamma function.
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This equation was solved recursively for CL after initial estimation

of V and 9.

Another approach that is feasible though reasonably expensive is

full maximum likelihood estimation of all three parameters. While this

may be an asymptotically desirable procedure, or useful if we are in-

terested in accurate estimates of a , it is not necessarily the best

method when attention is focused on estimating Ii for small sample

size. In fact, some evidence was obtained that full MIE had lover

efficiency for the estimator of p (n = 20, underlying distribution

normal) than the simple minded scheme used in the simulation.

The rather difficult question of which scheme for estimating x

leads to highest efficiency for estimation location will not be dealt

with definitively here. However, after estimating a , we may estimate

p and 8 as follows:

The maximum likelihood equation for V is:

N g'(z ) X -U
0 with z i

or, if a > 1 and no z = 0

N
1 wiXi

N
i

where wi -g-1 (zi)/ga(zi). Similarly, the maximum likelihood equation

for 9 is:

N
i zigm(z)/gQ( z i ) + N - 0

i-l
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F
or, if a > 1

(_e2 1 N= (i)2(15) K = i i  "J

Now (14) and (15) are iterated for fixed OL until convergence occurs.

When a is known, the Fisher information matrix is given by:

f zg-1 (z)/g (z) dz 0

1= 2 0 1&(a..l)2  _,~ ~~(Z)/g,,(Z) dz

Some features of these equations are interesting in the light of the

theory of robust estimation. For the purpose of this discussion, let us

assume a > 1.5. Note by (2) that when a > .5, gM(O) = r(a-k)/r(a).

Therefore, corresponding to z = 0 , we assign weight w = (a-i)/(a-3/2).

1 L-i -z
Similarly, as z , (z) i z -I e-  and so correspondingr(a)2

to large z.

wi * 2(a-l)/z i

This produces the effect that the influence curve is approximately linear

in the central region, but bounded for all z. This is true for any fi-

nite a although the influence curve for the normal is unbounded and

densities in this family can approximate arbitrarily closely the normal

density by taking a sufficiently large.
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9.1

Thus maximum likelihood estimation within this family seems to be

highly robust, but of course, robustness may be achieved at considerable

loss of efficiency. Robustness against obtaining a false value of a is

particularly important here, since although the mean )A and the variance

262a are relatively easy to estimate, the estimate of a itself is

subject to considerable error. We considered only the loss in efficiency

in the estimation of the location parameter u when a is misspecified.

To take an extreme case, let us suppose that the observations arise from

a normal distribution (a-) with mean P and known variance 2 a 10.

Let us suppose, however, we believe a = 5 (so the value of e is .1a2).

Then the asymptotic relative efficiency of the ML estimator of . ob-

tained from the solution of (14) is

E (z)

where *(x) = g and Z is N(0,a 2 ). Figure 2 shows the asymptotic

efficiency of the estimator for a normal sample when various other values

of a are assumed. Note that there is high efficiency for any value of

a above about 2 and the worst value (a = 1 for the sample median) is

.637. The efficiency seems to be much flatter as a function of sample

size than for many other robust procedures. Holland and Welsch (1977)

show that when the scale parameter is estimated, the small sample effi-

ciency for many of the robust procedures seems to be substantially below

its asymptotic value. For comparison, we used a " 3.46 (asymptotic

efficiency - 95%) and Monte Carlo methods on normal samples of size 10

to obtain an estimate of the efficiency for n 1 10 of .94.

... . ' - mn1 4



On the other hand, if the observations come from a distribution of

this form with I< < , we may choose to use a = 1.7 in construct-

ing the estimates. This provides asymptotic efficiency for location at

least 84.7% for all the members of this family.

We now discuss briefly the asymptotic efficiency of these estimates

for the Cauchy distribution, a large tailed distribution which is clearly

not a member of this family. Consider an M-estimate in general, obtained

as the solution of:

(16) n(Xx -U)) = 0

i

The minimum asymptotic variance over all choices of the scale para-

meter X is:

n 4 F(dx)
(17) min TIPxX)2

X 2{ n' F(dx)

Consider F to be the Cauchy distribution function (in standard form)

and n(x) = x(l-x2 )2  for lxi < 1, 0 otherwise. This is Tukey's bi-

square and results in maximum asymptotic efficiency obtained from (17)

of about 90%. This efficiency is quite sensitive to the value of A.

As A increases beyond its optimal value, the efficiency decreases to

0 because of the "redescending" nature of the function n. Therefore,

a reasonably accurate estimate of the scale factor A is critical for

efficient estimates of location. Replacing n(x) by g'(x)/g,(x) re-

sults in asymptotic efficiency of around .86 for a a 2 and 3 , for

example. In this case, however, the asymptotic efficiency is flat for

15



X in a broad neighbourhood of the optimum and as A + , it approaches

28/1 . Here, the choice of the optimal X is not nearly as critical

and results in the better performance of the estimator for n = 20 in

the simulations of the next section. Bell (1980) explores problems in

adaptive estimation of the optimal X for the bisquare.

It my be desired to build in more adaptivity for large tailed dis-

tributions into this family. In fact, the family could be broadened to

include distributions whose tails decay at a slower than exponential

rate (and therefore lead to redescending score functions) by replacing

the gamna distribution which multiplies the normal by a distribution

such as Fisher's F. Of course, the resulting distribution will no

longer be closed under convolutions, one of the most attractive features

of the present family.

How much "robustness" is purchased with the loss in asymptotic ef-

ficiency evident in Figure 2? Since the influence curve is proportional

to the score function which is bounded, the estimates are robust.

This function is also smooth for a adequately greater than 1. Treat-

ment of "outliers" is evident from the score function graphed in Figure

3 for various values of a. These functions are all asymptotic to 1

as x ' I. Consider, for example the case a a 2. It is seen that the

value of the score function at x - 1 (roughly .7 standard deviations

from the mean) is around .5. In other words, in iterating (14), one

observation at - is only the equivalent of about 2 observations at

x a 1. The degree of robustness for the other values of a may simi-

larly be compared.

16



Small Sample Behavior.

1, Andrews et al. (1972) indicate that adaptive estimates do not nor-

mally outperform non-adaptive ones except for moderate and large sample

sizes. It is therefore not expected that these estimates can consis-

tently outperform others over a broad range of distributions. On the

other hand, the attractive features of this family of distributions leads

one to hope that it does not suffer from the lack of robustness of nor-

mal estimators, or from too great a lack of efficiency by comparison

with others. There is little doubt that these estimators will be com-

petitive with the trimmed mean or Huber's proposal 2; the influence

functions can be made similar and the distributions considered here,

like Huber's least favourable distribution, all have exponentially de-

creasing tails. It was therefore decided to make the comparison on

possibly unfavourable ground; with an M-estimate of redescending type

such as Tukey's bisquare, and including wide tailed distributions such

as the Cauchy and the slash. We also chose a relatively small sample

size, n = 20 for the comparison. Adaptive estimates are usually ex-

pected to improve their performance for increasing n.

Exact maximum likelihood estimation of all three parameters is

computationally feasible and was performed on several samples of n a 20.

Some problems are apparent because of the very flat nature of the like-

lihood as a function of a. For example, a significant proportion of

normal samples (a - -) leads to MLE of a constrained to the in-

terval [1,-] of 1 and the resulting estimate of location the sample

median. This seems to result in loss of efficiency for the normal.

Due to the cost of full MLE, it was impossible to conduct a simulation
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study of the performance of the estimators and so the following crude

substitute was used. It seemed to provide comparable efficiency for

the estimation of location to a scheme based on likelihoods (but not,

of course, for estimation of a).

Define m = med(Xi) and

n I (Xj-m)
k =-il

The estimator of a was

2= 4.2< k< 6
k< 4.2

In the case a = 1 , the scale parameter does not affect the loca-

tion estimator which is simply the sample median. In case a - 2 or 3 ,

the scale parameter was estimated crudely by matching the median abso-

lute deviation of the sample with that of the assumed distribution.

Setting MAD = medIXi- med(X)I

/1.146 when a 2

m= ,1.58 when a 3.

Finally, the location estimator was obtained by a one step Newton-

Raphson iteration of equation (14) starting with the median.

Coparison is made with the mean (normal case) and the sample median

for the other three distributi,ns. It is also compared with Tukey's bi-

square, an M-estimator with n(x) x(l-x2)2 for IxI 1 and 0 other-

wise. The value of X was taken to be 1/6.4mAD , a value that is

18
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observed by Bell (1980) and Johns to perform well over a wide range of

distributions. For larger values of X , the efficiency for the Cauchy

*and the slash improve, but the efficiency for the normal drops sharply.

Table 1 contains the results of a simulation. The small sacrifice

in terms of the efficiency for the slash is exchanged for an improve-

ment on the Laplace, the normal and the Cauchy. This is not meant to

imply that estimation from this family should always be preferred to

Tukey's bisqu-re. The strength of the bisquare rests in part on its

treatment of situations not considered here. The implication intended

is that model-based inference can be competitive even outside the family

although it leaves open the question of whether the appropriate scheme

is maximum likelihood.

*1
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TABLE I

SMALL SAMPLE EFFICIENCY OF ADAPTIVE ESTIMATES WITH RESPECT TO:

(A) THE MEAN OR MEDIAN

(B) TUKEY'S BISQUARE

Sample size: n - 20

Table gives estimated efficiency in %

UNDERLYING DISTRIBUTION

NORMAL LAPLACE CAUCHY SLASH

(A) 93# 97* 94* 97*

(B) 103.5 108 107 96.4

Sample 8000 20000 24000 24000
Size

I efficiency relative to sample mean.

* efficiency relative to sample median.

Note: The "Princeton swindle" was used throughout. (cf.
Andrews et al.). I thank Barry Fynon for running these
simulations on the Stanford ccmputer, and the Department
of Statistics, Stanford Univrsity, for providing the
computer time.
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Modelling Dependence.

One possible use for this family of distributions is in modelling

processes that are wider tailed than the normal and at the same time

dependent. This may be needed, for example, in determining whether an

estimate is robust against both correlation in the sample and mild de-

partures from normality. Interactions between these two types of fai-

lures in the assumed model might be detected through Monte Carlo methods.

There are two rather distinct ways in which a process having marginals

(4) can fail to be independent. Unlike a Gaussian process, we may have

X , Xj uncorrelated and Xi, Xj correlated for i # 3. Modelling be-

haviour of this kind and testing estimates against this type of "second

* order" correlation may be important, especially since this is a type of

dependence rarely checked for in practice. This kind of behaviour is

by no means unusual. For example, consecutive changes in security

prices (on a log scale) often seem to indicate no first order correla-

tion but significant second order correlation.

We consider here processes analogous to the simpler Gaussian time

series such as stationary first order autoregressive. For a process

{X t  with marginals distributed as Be(O,ecs) , we may define

(18) Xtl B x.l t +et "

The coefficients B% are not constant as in the Gaussian case, but aret

distributed as the square root of a beta variate with parameters po

and (1-p)a where 0 < p < 1. The errors et are distributed
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as Be(0,8,(1-p)M) and the variables Bt, X. , and et  are all inde-

pendent. The correlation function of a process defined as in (18) is

that of a stationary first order autoregressive:

(19) P hh where p-= Epa. r G+ ) "

Note that for a Gaussian process with correlation function (19), we

would have Cov(Xt,t.h) - constant 021hI. In this case, however, we

have a slower (exponential) rate of decay with the correlation between

and X2 given by p h j (note that p >P).

t+h gvny~h

A similar process can be defined with Bt replaced by its negative,t

resulting in p in (19) being replaced by its negative.

An alternative method of generating dependence (which may be used

for the generation of a continuous time process) is the following: Let

Zt  be a stationary (0,1) Gaussian sequence with correlation function

*(h). Let Gt be a sequence of (possibly dependent) gama (a,28 )

variables, independent of the Zt  sequence. Define:

(20) xt = G Zt .

Then the autocovariance function of Xt  is:

(21) Cov(Xt,Xt,) a *(h)BUt G +

(22) Cov(X ,X .+) - (1 +2l (h))E(GtGt+h) -

22



Note that when Zt  consists of i.i.d. normal variables, the first

order correlation (21) is 0 but the second order (22) is not necessa-

rily so. Therefore, this process may be used to model one such as the

first difference in the logarithm of stock prices, which exhibit nearly

normal behaviour, have no apparent correlation of the first order, but

show a tendency for large values of lXi to be followed by large values

of lXi. All we need do to model such a process is introduce dependence

in the Gt sequence with either a moving average or an autoregressive

type relation such as:

G =BG + 6
t+l t t t

where Bt, Gt, 6t  are independent variables having respectively the beta

(pa, (l-p)a), gamma (a,202 ) and gamma ((l-p)c,2e2 ) distributions. This

is the theme of [13].

A more convenient representation than (18) is available when a is

an integer. In fact, a stationary sequence can be generated by the usual

first order autoregressive relation:

(23) Xt+I = PXt + et

where -1 < p < 1 and e t  is a random variable independent of Xi

having moment generating function:

me(S) = P2. 1 2 1
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If we interpret Be(O,O,oL) as a point mass at the origin whenever

either e or a = 0 , this is Just the distribution of Be(0,6,a')

where a' is distributed binomially with parameters a and 1- p2 .

Alternatively, it may be expressed as the sum of a random variables

with distribution Be(O,e',l) where e' = 0 or 6 with probabili-

ties p2 , i- p2 . Thus, this family of densities is in Feller's class

L (Feller (1971), pp. 588-590).

Similarly, higher order autoregressive schemes are obtainable.

For example, for a second order autoregressive process with distinct

characteristic roots P1 and P2 9 both less than 1 in absolute

value, the distribution of the errors is the distribution of the sum

of a i.i.d. variates having distribution Be(0,e',l) where 6' is

a random variable assuming three values, 0, p1 P2 e , and 6.
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Figure 3
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