
AD-All 253 AIR FORCE INST OF TECH WRIGHT-PATTERSO
AFS OH SCHOO--ETC FIG 9/2

DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECTRONI--ETC(U)
DEC Al R H STOKES

UNCLASSIFIED AFIT/GCS/EE/A1D-16 N

- AX

-IIf

i% - Oj

rw

AFIT/GCS/EE/ B1D-16

DESIGN~ OF A LOCAL COMFUTER NE~TWORK
FOR THE ROBINS AFB

ELECTRONIC WARFARE DIVISION
ENGINEERING BRANCH LABORATORY

THESIS

AFI1T/GCS/EE/ 81"i- 16 Robert H. Stokes

CIV USAF

Approved for public release; distribution unlimited.

AFIT/GCS/EE/ 81D-16

DESIGN OF A LOCAL COMPUTER NETWORK

FOR THE ROBINS AFB

ELECTRONIC WARFARE DIVISION

ENGINEERING BRANCH LABORATORY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

by ~N~

Robert H. Stokes, BSEE, MSA

CIV USAF

Graduate Electrical Engineering
Aval,"lt

December 1981 C-

Approved for public release; distribution unlimited.

I;I

This work presents a design of a local computer network :or the

Electronic Warfare Division Engineering Branch Laboratory which I hope

wiLl provide an engineering tool that Viii significantly reduce the ill

effects caused by the reduced engineering manning levels currently

existing within the branch. The design is based upon techniques

developed by Tom DeMarco, and a network protocol model developed by the

International Standards Organization. I gratefully acknowledge the part

the above individual's and organization's techniques played in making my

task simpler.

I would like to express my appreciation to Mr. Fred Hassey and Mr.

Steven Jones for their help in obtaining extensive documentation on the

p Digital Equipment Corporation's network. DECnet. Phase II and Phase III

configurations at no cost to the government nor myself. I wish to thank

Dr. Gary Lamont and Major Walter Seward whose leadership as my research

advisors afforted me valuable guidance and encouragement. Also, I thank

my reader. Captain James Moore for his constructive comments which

helped to improve the clarity of this thesis. In addition. I am

indebted to Mr. Joe Black and all the system lead engineers whom I

interviewed to determine the requirements of the Engineering Branch

Laboratory for a local computer network.

Finally. I wish to express my loving appreciation to my wife and

family whose love and understanding endured through this graduate

program * Robert R. Stokes

Cogtent

Page

Preface i

List of Figures......................... **. .vi

List of Acronyms and Abbreviations.................. viii

1.* Introduction 1

Historical Perspective.*.......................*so.* 1

Integrated Support Stto................ 6
Objective of this ~uetgto............. 7

Overview of the Tei......*.... 11

II. EWNET Functional Requirements.****.*****........... 13

I ~ 13
User ure...................... 14
Projected Uses of EWu11ET............. 16
User-Oriented Functional Requirements.....e...so 90 18
Design-Oriented Functional Requirements*****...* 23
Additional Functional Requirements 26
Constraints on EWNET 26

III. EWNET System Requirements..... 30

30
System Hardware ontans... 31

Host Coptr... *...... 31

Transmission Meim............................33

Software Specification Tol.... 33

Contants (Cont.)

I n t r d u c i o n ; .. : : : : : : : : : : : : : : : : .: : : : : : : : P a g e

S 34

Protocol Hierarchies....... 37

Introduction............e.... .. .**.*.. .**.. 37
Physical Layer....... 39
Data Link Layer 00*66. 64440 . . . 0466. 39
Network Layer..... o.. 0 39
Transport Lyr...... 39 -

Session ayr..... 39
Presentation Layer*....*..,,. 39
Application Layer.......... 40

Structured Specification of the Protocol Requirements ... 40

Context ia am.... 40
System Diagram.o.ooosoo.....0...... *0.. 43
Help User Requirements..%..e..... ... o 0....... 46
Architecture Level Protocol Requirements..s.... . 48
Transport Level Protocol Requirements o..ooo.. 55
Network Level Protocol Requirementso.... oo........0 66
Routing Alogrithm Requirements.000... .. 46......... 70
Data Link Level Protocol Requirementsso..... 71
Phys-*%l Level Protocol Requirements.o............ 79

IV. Design of EW E 81

Introductiono...0. 60.. 81
Hardware Dein...... 81

Topologyo......oeo 81
Hoss............................ to..... 84

.... 85
Transmission Medium. 86

iv

Contents (cent.)

Page
IndEcEt n... .° ** * 88
DECNET Phse.................... 88DECNET Phase IlI.o... 00*600.466.0 89
DECNET Phase III .. o.......0..................... 93
EWN'ET Dein....................95

96

V. Conclusions and Recommendations........................... 102

Conclusions ... 102

Recommendations............ 104

Bibliography 106

Appendix A: User Survey Results............................. 108

Appendix B: Electronic Warfare Engineering Branch

Laboratory Floor Layout Diagrams.................. 128

Appendix C: Structured Specification........................... 134

Appendix D: EWNET Design Profile............................... 368

Vi a. 409

v

.5i

List of Figures
tFigure Page

1 SISS Functional blockdiagram............................... 8

2 DFD Components 35

3 ISO OSI Network Architecture Model 38

4 Context Diagram....................... 41

5 EWNET Overview (Network Operation System) DFD............... 44

6 Execute EWNET Protocol at Primary Node (1.0) DFD............ 45

7 Execute Help Commands (1.2) DFD 47

8 EWNET (Architecture) Overview DFD 53

9 Execute Architecture Protocol at Primary Node (1.0) DFD 54

10 EWNET (Transport/Network) Overview DFD 60

11 Execute Transport Protocol at Primary Node (1.0) DFD 64

12 Execute Network Protocol at Primary Node (2.0) DFD.......... 68

13 INET (HDLC) Overview DFD 72

14 Execute HDLC Protocol at Primary Node (1.0) DFD............. 77

15 Basic EWNET Topology................ 82

16 Initial EWNET Configuration..*,............................. 87

17 EWNET Protocol Building* 90

18 Host-to-Node / Node-to-Host Data Flow....................... 97

19 Node-to-Node Data Flow........................... 98

20 Host-to-Host Data Flow...................................... 99

vi

List of Tables

9Table Page

I Projected uses of EWE................... 19

2 User-Oriented Functional Requirementse.. 24

3 Design-Oriented Functional Requiremenits.......o.......... 26

4 Protocol Layers... 6~~ 42

5 Network Operating System Process Hierarchy..0... 00.0000... 42

6 Architecture Level Protocol Process Eierarchy.#9.....*. 48

7 Transport Level Protocol Process Hierarchy 56

8 Network Level Protocol Process Hierarchy.*............ 66

9 Data Link Level Protocol Process Hierarchy.... 0 73

vii

List of Acronyms and AbbrevIations

ACK Acknowledge

ADD Address

AFLC Air Force Logistic Command

ARC Area Reprogrammable Capability

ARPANET Advanced Research Projects Agency Network

ATS Advanced Threat Simulator

BPS Bytes per Second

CCITT International Telephone and Telegraph Consultative Committee

DEC Digital Equipment Corporation

DECNET Digital Equipment Corporation Network

DFD Data Flow Diagram

DNA Digital Network Architecture

ECF Execute Command File

ECSAS Electronic Countermeasures Signal Analysis System

LINT Electronic Intelligence Gathering

EMI Electromagnetic Interference

EOF End of File

EOS End of Stream

ER Erase

EW Electronic Warfare

EWNET Electronic Warfare Network

EWOLS Electronic Warfare Open Loop Simulator

HOL Higher Order Language

ISO International Standards Organization

ISS Integrated Support Station

, viii

K kilo

M mega

MTBF Mean-Time-Between-Failure

MTR Mean-Time-To-Restore

MTTR Mean-Time-To-Repair

NAK Negative Acknowledge

OFP Operational Flight Program

OSI Open Systems Interconnection

PACKETNETS Public Packet Switching Networks

RF Radio Frequency

,RWR Radar Warning Receiver

SCF Submit to Command File

SISS Standard Integrated Support Station

SISS SPEC Standardized Integration Support Station Sys. Spec.

SISS STUDY Standardized Integration Support Station Sys. Study

SNA IBM's Systems Network Architecture

STG Standard Threat Generator

TEWS Tactical Electronic Wartare System

UNIVAC-1I08 Electronic Warfare Installation Host Computer

WR-ALC Warner Robins Air Logistic Center

ix

AFIT/GCS/EE/81D-16

A local computer for the Electronic Warfare Division Engineering

Branch Laboratory was designed around a commerically available and

supportable network configuration. The requirements for this network

were specified by interviewing the engineers associated with the

Engineering Branch Laboratory and then translating the functional

requirements into a detailed set of hardware and software system

requirements. Structured Analysis was used to produce a structured

specification for application, transport, network, and data link

protocol level requirements. Digital Equipment Corporation's 'DECnet'

Phase II and Phase III network configurations were combined together to

form this unique Electronic Warfare Network (EWNET). The node network

uses a loop topology with a star of up to seven hosts connected to each

node. The nodes are implemented using Digital Equipment Corporation's

PDP-11/70 computers. Initially, the network will include fourteen

Integrated Support Station computers which are either Digital

VAX-11/780s or Digital PDP-ll/34s. These computers will be connected to

the nodes using duplex fiber optic links supporting transmission rates

up to I Mbs. The Phase II DECnet protocol was selected to provide the

file transfer and data transport protocols in conjunction with a basic

routing algorithm at each host, while the Phase III DECnet protocol was

selected to provide these functions at a higher level in the nodes. The

selection of the above topology in conjunction with the described

x

L-

protocol structure keeps any one host from degrading the network if the

host should fail.\ All Integrated Support Station common oft-line/
functions, common databases. and commonly used support software tools

are hosted on the node Cmputer for easy. universal access, allowing for

a degree of standardization.

xi

I. Introduction

i

The purpose of this thesis investigation was to design a local

computer network for the Warner Robins Air Logistics Center (WR-ALC)

Electronic Warfare Division Engineering Branch. This network, named the

Electronic Warfare Network (EWNET), was first proposed in 1980, when the

number of Integrated Support Stations in the Engineering Branch had

grown to nine. At this time, there were insufficient peripheral devices

plus engineering expertise to completely support existing and future

electronic warfare (EW) efforts. Local networks were becoming

invaluable aids to organizations and corporations similar in structure

to the EW Division. This was due to a desire to increase information

processing power without additional computers. Also, corporations were

finding that the shortage of electronic and software engineers was

causing project non-support to result since multi-system expertise

amoung existing engineers was becoming next to impossible to obtain.

Interest in both of the above areas plus the potential cost savings,

provided the impetus for the development of a local computer network for

the WR-ALC EW Division.

Historical Perspective

For the past decade, the field of Data Communications has been

rapidly changing, with important innovations emerging all the time. One

1i

recent development of wide ranging significance is the introduction of

several new techniques for short distance high speed local computer

networks. By definition, a local network is a data communication system

designed to interconnect computers and terminals over a restricted

geographical area. typically less than 2-kilometers in diameter (Ref.

4:18). A number of implications follow from this definition.

At a technical level, the problems involved in designing local

networks are not very different from those relating to long distance

networks such as the Advanced Research Projects Agency Network

(ARPANET). However. the parameters are different. Since communication

is required only over a local region, the following observations can be

made.

-- A more expensive communication medium. in terms of cost per

meter, can be used in a local network because the total cost of th~e

medium is likely to be small compared to installation and other

hardware and software costs.

-Since a more expensive communication medium can be used. a

more powerful medium is possible, especially in terms of speed and

error performance. Thus the communication network and communication

medium represent less of a bottleneck to the system as compared to

geographical (global) networks.

-- Since the communication network and transmission mediums are

no longer bottlenecks, transmission rates are higher. Delivery

rates and maximum delivery delays become shorter. The increased

2

bandwidth and shorter transmission distance of the communication

medium causes error rates to be reduced. Also, the short

transmission distance reduces the cost associated wi.th

interconnecting terminal and computer equipment.

-- Since wide bandwidth mediums are cost eftective for use with

local networks, greater use of broadcast or multi-address

communications is possible. The wide bandwidth medium alleviates

the problem of channel contention where two or more transmitting

terminals overlap on the same channel (clash).

-- Local interface hardware and communication protocols can be

considerably simplified because there is no need to optimize4

available communications bandwidth, since the inherent traffic

handling capacity of the network is so much greater than in a global

network.

-- The cost of interconnecting a device to a local network can

be reduced by the procedures of simplification (no longer need

central switching or control systems) and standardization.

Only recently have local networks been used extensively, therefore

no standardization exists. One of the most attractive possibilities for

standardization is the problem of a standard interface and associated

protocol. For example, the X.25 Protocol, which defines the interface

of a computer to a packet-switching network, has just recently become a

standard (Ref. 8:108). Additionally, one of the most often ignored

C 3

problems when considering the design of a local network is the number of

levels of function-oriented protocols necessary to accomplish useful

work on the network. In order to be useful the local network must

support some form of data transport protocols file transfer protocol,

and virtual terminal protocol. These protocols are necessary so that a

computer which was designed with one data and file format, and with a

particular terminal type in mind, can transfer data and files to other

computers in other formats, and accept information from foreign terminal

types (Ref. 4:26).

Finally, no standard local computer network exists. In the past.

most local computer networks available commercially were developed by a

firm to support their own systems. Foreign device interfacing was

accomplished through the development of an emulator to make the foreign

device appear at the interface as one of the manufacturer's own devices.

IBM's System Network Architecture (SNA) and the Digital Equipment

Corporation's Network (DECNET) are both examples of this type of network

(Ref. 1:3).

Recently developed by Xerox Corporation. the ETHERNET network

concept, utilizing contention-allocation mechanisms (packet collision

detection) and data packets on a logical channel, can interface a

hetergeneous set of computers together (Ref. 5:78).

Thus local computer networks have evolved from long-distance

networks to meet the needs of a local organization requiring internal

control of their own systems. The local network offers advantages not

4

.........

accessable to organizations in the past. Even though problems still

exists, several existing systems such as DECNET. SNA. and ETHERNET have

come a long way in providing a standard design. So it is from this

viewpoint that the development of EWNET took place. The following

sections give additional definitions and background necessary to

understand the EWNET design decisions.

Background

This investigation follows two studies performed by the Georgia

Institute of Technology Engineering Experiment Station Systems

Engineering Laboratory (Ref. 2.3). The Standardized Integration

Support Station System Study (SISS Study) was the final standardization

report which identified the need for the EWNET (Ref. 2:8-13). The

Standardized Integeration Support Station System Specification (SISS

Spec) was the final system specification that resulted in several

general theoretical concepts upon which the network design was based

(Ref. 3:41-43).

Both documents cover the EWNET in limited detail and essentially

state a reason for the network followed by a possible configuration.

The configuration presented in the SISS System Specification is based on

the author's personal preference and not on an actual study of the

Engineering Branch requirements. Therefore, additional work was

required before a design for EWNET could be developed and implemented in

the Engineering Branch Laboratory.

1D

5

Integrated SuRPort Station

To correctly design a local computer network, the functions to be

supported by the network must be understood in context with the existing

support equipment.

Integrated Support Stations (ISS) are systems that support the

efforts required to provide software reprogramming and hardware update

prototyping for electronic warfare (EW) systems. An ISS is not used to

repair or test the numerous fielded EW systems of a given type.

An ISS is divided into two major parts. For convenience, these two

parts will be referred to as the ISS Development System and the ISS

Control System. One system controls the testing of an operational EW

system modified for laboratory use (Hot Mock-up). The other major

system supports the development of the software for the EW system. A

functional block diagram is shown in Figure 1 on page 8.

The ISS Development System supports reprogramming development for

the EW system Operational Flight Program (OFP) software. The facilities

provided for development include facilities to prepare OFP software for

the EW system and computers in the ISS, to support distribution of OFP

software to the field, to prepare test procedures for the EW system, and

to analyze results of EW system tests.

The ISS Control System provides supervisory control of the ISS,

automatic execution of EW system test including stimulus of the EW

system Hot Mock-up and response measurement system, an automatic test

6

and calibration of ISS stimulus and measurement equipment, and

communication facilities in the ISS and to the network of all ISSes and

other computers.

Each ISS interfaces with the Advanced Threat Simulator (ATS) and

the Electronic Warfare Open Loop Simulator (EWOLS) and the Electronic

Countermeasures Signal Analysis System (ECSAS) for the purpose of

performing large scale tests of the supported EW system. The EWOLS or

ATS and ECSAS combination is a dense radio frequency (RF) signal

enviroment and analyzer, respectively (Ref. 3:4).

Each ISS has the capability to operate independent of the ISS

network and any common large scale computer. Therefore, an ISS is a

support station that is built around an advanced state-of-the-art

minicomputer with special internal interfaces to the Hot Mock-up to

control and monitor OFP software and flight hardware operation.

Objective of This Investigation

The objective of this investigation was to specity the design of

the EWNET in "sufficient- detail to obtain a network design that met the

Engineering Branch baseline need of a local resource sharing network

that is highly reliable, through built-in redundancy, and contains a

minimal amount of one-of--a-kind technology. To arrive at this baseline

design, the following steps were followed:

1. Survey of user needs and requirements.

7

tWtI-

i C i - VC"L V " .

-.
C '-

-~- -

I -

C ._

C#

J in

2. Determination of user functional requirements.

3. Translation of functional requirements into a system

specification through the use of Structured Analysis techniques

(Ref. 9:55-165).

4. Development of the hardware design

5. Specification of the necessary protocol within a

comercially available system software design and

6. Evaluation of the Electronic Engineering Branch Laboratory

Host processor (UNIVAC-1108) off-line functions to determine if the

fuinctions can reside within the EWNET configuration.

The following approach was used in the design of EWNET. First, a

top-dcwn development of the design was chosen. This allowed the design

to first address those levels closest to the user. thereby insuring that

the design would be consistent with the user's requirements. Then the

lower levels of the design were developed to support the requirements of

the next higher levels.

Due to the size of the development effort. structured analysis and

design techniques were used in the approach to provide clear written

specifications and diagrs. Structured analysis and design techniques

were chosen over other techniques since they provide unambiguous

9

information about a large design to those implementing it.

The first phase of the investigation consisted of researching the

literature and gaining a working knowledge of computer networks.

protocols, hardware interfaces, and the capabilities of tne Engineering

Branch Laboratory ISSes.

Once a sufficient background had been obtained, a user interview

was designed and the 155 system lead engineers were interviewed. From

these interviews, a set of projected uses and functional requirements

were compiled and used to determine the system requirements.

The system requirements consist of both hardware requirements for

the topology, hosts, nodes, and transmission mediums, as well as

software requirements. Structured analysis was used to document the

software requirements (Ref. 9). Data flaw diagrams and a data

dictionary were used to generate the structured specification.

The system requirements were then used to develop a hardware design

and a software design through the study and refinement of an existing

commerically available network configuration. The final stage of the

investigation included an evaluation of the Engineering Branch

UNIVAC-1108 functions (off-line support, backup, and databases) and the

resulting decision to delete the Branch requirement to perform the

UNIVAC-1108 functions on the UNIVAC-1108 computer. Instead, these

off-line functions will, in the future, be performed by the EWNET node

computers.

4Q 10

Overview of the Thesis

The structure of the thesis basically follows the approach that was

taken in the investigation.

Chapter II contains an analysis of the EWNET functional

requirements. Appendix A provides the supporting information including

the compilation of the results of the user interviews, ISS systems to be

supported by EWNET, a list of those interviewed, and their respective

areas of expertise.

Chapter III translates the functional requirements into hardware

and sottware requirements. Structured analysis is defined and data flow

diagrams are used throughout the chapter to support the written

description of the software requirements. Appendix B contains the floor

layouts of the location of the EW systems to be supported by EWNET with

tentative locations identified for the EWNET node computers. The

Georgia Institute of Technology proposed topology diagrams are included

in Appendix B to further clarify the floor layouts (Ref. 2:10).

Appendix C contains the complete structured specitication in support of

the software requirements.

Chapter IV describes the design phases of EWNET. The design of the

hardware is specified, including the topology to be employed, the EW

systems to be included in the network, the nodes to be used in the

network, and the transmission medium to be used. The software design is

described in terms of a commercially available network design. First,

the functional specification and requirements were used to select the

4 "1

best commercially available network from a list of three existing

designs. Then the selected design was tuned to represent the exact

requirements of EWNET. Additionally. off-line host software was

allocated to the node processors. Finally. Appendix D contains the

actual software and hardware design in the format required by the

selected vendor, so that the Appendix D can be used as the document

necessary to procure the EWNET.

Chapter V summarizes this investigation and gives recommendations

for follow-on research efforts.

12

II. EWNET Functional Requirements

This chapter specifies the functional requirements of EWNET.

First, the background of the requirements analysis is discussed,

including the reason it is important to conduct a thorough investigation

of the functional requirements. Then the content of the user survey

that was used to help determine the FWNET requirements is described.

Also included in this section is a description of how the survey was

conducted including personal observations about the survey contents.

The next section summarizes the projected uses of EWNET, followed by

sections summarizing user-oriented, design-oriented, and additional

functional requirements. Finally, EWNET constraints not addressed by

the user survey are discussed.

Possibly the most crucial step in designing a computer network is

the specification of the network requirements. Yet, this phase of

development was completely overlooked by both the SISS Study and the

SISS System Specification (Ref. 2,3). While it is possible to specity

many requirements that are generally desirable in a network, using this

approach without additional thought will result in a incomplete and

inaccurate requirements specitications. This is due to the way local

13

- j

- ------ W I

computer networks vary from organization to organization (Ref. 4:18).

This is obvious from the many varied designs that presently exist in

industry. Also, not all requirements for a network have the same

weight. Due to time or money constraints, the network may not be able

to support all requirements. Some requirements add no value to the

network when considered for a particular organization's uses. Finally.

every organization is unique and would have unique requirements for

'thieir' network. These unique requirements would be overlooked if we

only considered what is generally desired in a network.

User Srve

A systematic approach was needed to specify the requirements for

EWNET that would tailor it to the requirements of the Engineering Branch

Laboratory. Thus, a four-part user survey was designed.

In the first section, the users were asked what applications could

be served by EWNET from their utilization perspective. To aid the users

being interviewed, twelve common local network applications were listed

which the user could evaluate on a five-point bcale from 'OFNIO-USEt to

'VERY GOOD'. These applications included peripheral sharing amoung the

computers in the network, file accessing and transfers across the

network, sharing software tools on the network, accessing AUTODIN 1,

accessing ARPANET, accessing the UNIVAC-1108 host installation computer,

using digital threat information generated from a central location,

monitoring Eglin AFB flight test in real time, doing distributed

14

processing. managing distributed databases, monitoring Eglin AFB flight

test video. and providing fault tolerance for the EWNET. Finally, this

section asked the users to identify the applications that they felt

should be implemented first and to prioritize the applications in terms

of their personal needs with any related comments.

The second section asked the user to estimate the requirements from

their perspective for 8ix basic network parameters. The user-oriented

parameters were throughput, response time, the user interface, security.

availability of the network, and ISS-to-ISS interaction. Each of the

subsections addressing a parameter had a number of questions to aid the

user in evaluating the requirement for that parameter. Each user was

then asked to identify any other user-oriented parameters that might

influence EWNET's design. Finally, the second section concluded by

having the user rate each of the six parameters on a five-point scale

from 'DOES NOT APPLY' to 'MUST HAVE'.

The third section asked users to make any other comments that they

felt might help specify the requirements of EWNET.

The fourth section asked the general branch management to estimate

the design-oriented functional requirements of EWNET since no single

network management group existed within the Engineering Branch. Three

basic network design-oriented parameters were listed. They were

flexibility, performance monitoring, and the availability of a

distributed processing language. As with the user-oriented parameters,

each subsection contained a number of questions to help management to

15

evaluate the parameter. Management was also asked to identify other

t design-oriented parameters and conclude the section by rating each of

the three parameters on a five-point scale from 'DOES NOT APPLY' to

'MUST HAVE'.

The user's of EWNET were addressed as being the ISS system lead

engineers, section leaders, and the branch chief. The users were sent

the 'EWNET INTERVIEW' survey two weeks prior to the actual interviews

being conducted. This was done to give the users time to develop their

own questions about the survey.

Each user was interviewed for approximately fifty minutes usi~ng the

user survey forms sent to them two weeks prior. Personal interviews

were selected to allow the user to completely understand the survey by

asking direct questions to the interviewer. Also, the interviewer was

able to help the user weigh his answers to the survey questions. The

response to the user interviews was excellent and the information

obtained was used to formulate the general requirements specitications

that follow.

Projected Uags of EMNT

The initial uses of EWNET as presented in The Standardized

Integration Support Station System Specification~ are as follows (Ref.

3:8):

1. Threat data access =access by every ISS to the Standard

16

Threat Database hosted on the Electronic Warfare Branch Host

Computer (UNIVAC-1108).

2. Hardware resource sharing = ability to use other ISS's

hardware through the use of the network.

3. Software resource sharing = ability of each ISS to use a

common depository of software tools.

4. Supplemental analysis = The ability of each ISS to perform

off-line time-consuming supplemental analysis processing

(flight-test data reduction) on the Electronic Warfare Branch host

computer.

5. Back-up processing = in the event of a complete ISS

computer failure, the ability to continue with EW support through

the use of the network and the Electronic Warfare Branch host

computer. Finally, the network will be used as one of the

instruments to bring about complete standardization of the

Engineering Branch Laboratory.

The user survey results were used to determine the projected uses

of EWNET. The principal uses that were considered most beneficial were

in the area of resource sharing. Peripheral sharing, file access and

transfer, software tool sharing, and access to the UNIVAC-1108 were

identified by all users as being of top-priority. Next in potential

benefits was the capability of executing job processes that can run

concurrently on different computers (distributed processing) and the
41

" 17

capability to access and maintain distributed databases. Access to

ARPANET and to AUTODIN I through the use of EWNET was completely

rejected because the security of the Engineering Branch allowed no

external (outside imediate building area) gateways to the ISSes.

Access to Eglin AFB flight test data (digital and video) was looked upon

as a very nice capability but noc required for the immediate future due

to the cost incurred in obtaining a dedicated satellite plus encryption

and decryption devices, receivers, and transmitters. Access to a remote

digital threat generator was rejected because most ISSes already have a

local capability and those that do not are in the process of developing

this capability. Finally, the network is expected to support critical

functions, therefore, the users perceived that a need would arise for

the network to guarantee uninterrupted service to the ISSes through

redundancy and fault-tolerance. The projected uses of EWNET are

summarized in Table 1.

User-Oriented Functional Requirnent

The user's functional requirements were also obtained from the

survey. The throughput indicated by the users required the data rates

in the network to be a minimum of I million bits per second per

transmission link. Data rates between the Host computer and the other

computers in the network should be a minimum of 56,000 bits per second

per transmission link. Usage of the computers in the Engineering Branch

Laboratory will average between 6 to 10 hours per day with peaks of up

to 24 hours a day for all ISSes during ofticial OFP change exercises.

4.1
it1

These exercises are staggered

IPROJECTED USE IVERY IGOOD IMEDIUM ILITTLE INO I
GOODI USE IUSE I

I PERPHERAL SHARING 1 5 1 4 1 2 I 1 1 0

I FILE TANSFERS 1 8 1 2 1 1 1 1 1 1 1

I SOFTWARE TOOL SHARING 1 8 1 3 1 1 1 0 1 0 1

I ACCESS TO UNIVAC-1108 1 5 1 4 1I 1 1 1 2 1

I ACCESS TO ARPANET 1 0 1 0 I 0 1 4 1 8 1I

I ACCESS TOAUTODIN I 1 1 1 I 2 1 0 1 8 1I

THREAT GENERATOR 14 15 I 1 3 I 1 I

IFLIGHT TEST ONITOR I2 I1 I 3 1 3 I 3

I DISTRIBUTED PROCESSING 1 2 1 3 1 4 I 3 1 0 1

IDISTRIBUTED DATABASES 12 13 I 4 I 4 I 0 I

I VIDEO I 1 1 2 1 3 1 2 1 4 1

I FAULT TOLERANCE 1 4 1 7 1 2 1 0 1 0 1

Table 1 Projected Uses of EWNET (Composite of User Responses)

throughout each year and usually only two thirds of all ISSes are

affected., The ISS computers being aftected by heavy usage at the

present time are listed below.

1. Harris 6024/4

2. VAX 11/780

19

3. PDP 11/34

4. Modcomp Classic

5. Data General Ellispe S-230

These ISS computers are the presently used computers. Future

standardization plans (by 1984) require that all ISS host computers

will be one of the models from the Digital Equipment Corporation

line of computers (Ref. 3:17-20).

The response time requirement was, of course. closely tied to the

throughput requirement. The requirement for response time was addressed

for three modes: interactive, file transfers, and echoing user inputs.

In the interactive mode, two to three seconds for 'simnple' commands was

considered to be satisfactory. For file transfers, the response time

was set to five minutes for a 32 Kbyte file. Also, each ISS wiil

require the ability to obtain and verify a copy of the Standard Threat

Database from an installation host computer through the network within

20 minutes. This was considered an acceptable tradeoft between user

requirements and the file accessing capabilities of the computers in the

Engineering Branch Laboratory. The echo response time was given as a

maximum of one-half second. This was to insure that the echos of the

user inputs did not interfere with their entering subsequent data at theK

terminal keyboard. All response time requirements seemed consistent

with th, results of psychological studies predicting satisfactory levels

of performance for the typical user (Ref. 6:322-323). An additional

20

requirement on the response time addressed consistency in the response

times.

Other user interface requirements of equal importance included

error recovery, built-in-test, user 'help' command capabilities, and an

in-house distribution capability so that messages from one ISS to

another could be transmitted point-to-point. Also. a management

distribution capability was recommended. In this case a message would

be sent from someone at an ISS to perhaps a stand-alone terminal located

at a central management point. All users stressed the importance of

maintaining ISS independence from the network in case there was a

network-wide failure the individual ISSes could continue to function.

Finally, all users indicated that ISS-to-network accounting data would

be a requirement, especially if it would provide them with the number of

times their ISS was being externally accessed over any given day.

Security was addressed from four perspectives. All users indicated

that tSecrett data would be running on the network and on the ISSes.

Therefore. the concensus was that the network would require a design to

safeguard the processing of classitied data. The second aspect of

security addressed was the requirement to protect files on the network

from unauthorized access or alteration. It is highly undesirable for

all ISSes to have unlimited access to all classitied files without some

means of control and need-to-know establishment for the particular data.

Thus, file access restrictions were found to be a security requirement

for the network. A two element file password to protect this

need-to-know was suggested. And as a matter of security accountability

21

i *
a -.- " -

it was suggested that the ISS/network interface accounting package

)should record time. destination. and password of all classified

recipients (each access). This would also be of benefit to audits of

ISS classified activity when problems arose. The third aspect of

security was related to the electromagnetic interference (EMI) generated

by the network mediums. All users indicated that fiber optic based

systems should be used as the network medium, where possible, because

fiber optic based systems are less susceptible to EMI than systems using

traditional metallic connections. The f ixrth and final aspect of

security was access control to the network from outside the Engineering

Branch Laboratory. As discussed before, all users inaicated that such

gateways could not be allowed due to the restrictions placed on the ISS

internal security.

The availability of EWNET was defined to be the percentage of time

that the network provided the capabilities required by a particular user

as compared to the time that it was suppose to provide those

capabilities. This definition resulted in assessments ranging from 50

percent to 100 percent with 100 percent being the answer given by almost

half of the users. The time periods that the network should be

available were identified as either normal duty hours (0800-1700) or

during times when emergency OFP changes would require duty to extend

beyond normal hours. The 90 percent availability level was finally

determined to be acceptable considering the network should be available

90 percent of a 24 hour day, leaving 10 percent of the 24 hour day for

maintenance downtime. This 90 percent availability level represents a

22

reasonable target for the system design.

ISS-to-ISS interaction was considered to be of minimual importance.

Most users felt that ISS-to-ISS interaction within a section (type of

ISS) would be beneficial but that external section interaction would not

be needed. This internal section ISS-to-ISS interaction directly

corresponds to the suggestion that ISS-to-ISS interaction take place

only around a node computer and/or with the installation host computer.

Other user-oriented requirements included a word processor

capability plus central network documentation located on a installation

host computer. A common network command language was also thought to be

important to minimize confusion. A real-time network capability where

one ISS took complete control of the network when emergency changes

dictated it was suggested. Finally, for future consideration, a data

link to EW Elint sources, overflow / surge load handling (using another

ISS's terminals to operate your ISS). and selt-configuration through

periodic status checks of the network members were other suggestions

made but were felt to be of little immediate importance. Table 2

summarizes the user-oriented functional requirements.

Design-Orientgd Funetionnl Rpquirm ents

The design-oriented functional requirements included flexibility.

performance monitoring, and distributed processing language. The

flexibility requirement was addressed by asking management to describe

how they would see the network changing over the next five years. The

23

IAREA IMUST I VERY APPLY IMARGIN INOT I
I HAVE IAPPLYI IAPPLY IAPPLYI

THROUGHPUT 3 7 3 1 0 1 0 1

IRESPONSE TIME 1 3 1 7 1 2 1 1 1 0 1

IUSER INTERFACE 1 8 1 4 1 2 1 0 1 0 1

ISECURITY 1 12 1 0 1 0 1 0 1 0 1

IAVAILABILITY 1 5 1 4 1 4 1 0 1 0 1

I ISS-TO-ISS INTERACTION 1 1 1 2 1 1 1 4 1 4 1

Table 2 User-Oriented Functional Requirements (Composite of User Responses)

response given by management was that more nodes and ISSes would be

added to the network. Management felt that it was very important for

EWNET to be easily reconfigurable with respect to adding additional

nodes and ISSes. Other changes mentioned included increased use of the

network for management functions, and a transition of the network

workload from predominantly file transfers to more interactive traffic.

All users expressed the concern that the network should start small with

limited capabilities and as new uses are identified as being valuable to

the organization, the changes could be implemented into the network with

minimum effort. Flexibility with respect to the topology, protocols,

and transmission medium was considered to be important only to the

extent of the changes necessary to these areas when additional nodes and

ISSes were added to the network.

The need for some form of performance monitoring capability was

expressed by management, but they felt that the limited knowledge on

24

their part would only confuse the matter. Generally, management felt

that accounting data should be available on the network plus node

statistics, a software monitor, and a way to detect network bottlenecks.

The requirement for a performance monitoring node was rejected,

management felt that to protect the network from slowdown that

pertormance monitoring should be done only on a demand basis.

The need for a distributed processing language has been a topic of

much discussion between the Air Force Logistic Command Headquarters and

the Electronic Warfare Branch at Robins AFB. The Embedded Computer

Standardization Program Office established 7 January 1981, as the single

Air Force Office responsible for the acquisition of software tools for

users of computers designed to MIL-STD-1750A (Instruction Set

Architecture) is to provide support to Air Force Logistic Command (AFLC)

to develop a Jovial J-73 compiler for the VAX 11/780 computer. This

office and Jovial J-73 will be used to assist the Air Force in the

transition from currently used higher order languages (HOL) to the

tri-service HOL of the future - ADA (Ref. 7:3). Due to the above,

management feels that all ISS host computers will be required to

implement Jovial J-73, Fortran, and eventually ADA programming languages

on the network host computers. ADA will become the distributed

processing language at WR-ALC. Table 3 lists how management ranked each

of the design-oriented functional requirements on a scale from 'DOES NOT

APPLY' to 'MUST HAVE t.

4

• 25

AREA MUST IVERY I APPLY IMARGIN INOT I
I IHAVE IAPPLY I IAPPLY lAPPLY I

IPERFORMANCE MONITORING 12 I 3 I 4 I 0 I 0 I

IDIST. PROCESS LANGUAGE I 2 I 1 I 6 I 0 I 0 I

IFLEXIBILITY 1 4 1 3 1 2 I 0 I 0 1

Table 3 Design-Oriented Functional Requirements (Composite of User Responses)

Additional Functional Requirements

The Third section of The user interview was used by users and

management alike to list additional requirements for the network. The

ability to find a file in the network that had been sent from one host

to another was felt to be an important requirement. The network being

used for general software development and the network implementation

being started with limited capabilities, planning for future growth,

were two requirements that were well accepted. Requirements such as

being able to initialize the network with an arbitary subset of nodes,

the location and number of nodes, and the number of ISSes per node were

areas where most users had no established opinions. As a final

requirement, management felt that the network access should be protected

through the use of a network password.

Constraints on EWNET

The network described in this thesis will be required to operate

successfully in an enviroment characterized by significant levels and

4
4 P 26

__________.________________________

amounts of electromagnetic interference (EMI). All network equipments,

tsystems, subsystems, and modules shall be able to perform as specitied

within the EMI enviroment while not permitting any performance

degradation or erroneous data and signals to be introduced. MIL-STD-461

should be used as a guideline.

Additionally, the communication subsystem shall be capable of

reconfiguration to remove and add optional communication linKs and ISS

subsystems, control of different types of communication interface

hardware, and controlling different types of communication

configurations (Star, Ring, and Bus networks) simultaneously.

The physical layout of the ISSes plus nodes had to be addressed.

Appendix B gives the floor layout diagrams for the Engineering Branch

Laboratory with ISS and node locations identified. The maximum

ISS-to-node separation is 200 feet. The maximum node-to-node separation

is 300 feet since the Engineering Branch Laboratory is made up of three

floors of equipment. These figures will hold true in future EW

laboratory expansion efforts.

The design goal for the network for Meam-Time-To-Restore (UR)

should be determined. MTR instead of Mean-Time-To-Repair (MTTR) is used

to indicate a return to an operational state for the network by

replacing major 'subsystems of the network. All software must be

thoroughly documented and the hardware should be designed for easy

modular replacement.

27

As a final constraint on EWNET. network reliability will be

addressed in the design. History generally indicates there is improved

reliability where design goals are established prior to development

versus where reliability is a fallout of the system design. The

following are realistic design goals which address reliability (Ref.

10:15):

1. Failure of a particular node will not render the network

inoperative.

2. Optional or alternative interconnection paths between nodes

can be established and assured if the primary or direct path is

inoperative.

3. Stored data will be preserved in spite of electrical

failure.

Summaxyl

Due to the results obtained through the use of the user survey it

was possible to specify a comprehensive list of functional requirements

and estimate their relative importance. The aspects of resource sharing

was the most important use that the users wished to see implemented

first. User-interface and security were considered the most important

user-oriented functional requirements. while flexibility was considered

the most important design-oriented functional requirement. Finally.

EMI. communication subsystem, and physical layout considerations were

28

accessed. Appendix A contains a complete compilation of the user survey

results.

Chapter III documents the translation of the general functional

requirements identified by this chapter into more detailed system

specifications.

4.

29

III. EWNET Systpm Requirmaet

This chapter translates the general functional requirements

identified in the last chapter into more detailed system specit:cations.

The first section of this chapter addresses the system hardware

requirements while the second section specifies the system software

requirements. The hardware system requirements addressed are the

network topology, the host computers to be included in the network, the

selection of a suitable node computer for the network and the choice of

an appropriate transmission medium for the EWNET communication links.

The system software requirements are specified using DeMarco's

Structured Analysis technique (Ref. 9). A description of the

components of the technique is given and its use is justitied. Then,

the structuring technique used to arrive at the proposed protocol

hierarchies is described (Ref. 11:10-21). Using the Structured

Analysis techniques described, the system software requirements are

specified at the defined protocol hierarchic levels. Finally, the

physical protocol specifications are stated.

The requirements specification was actually an iterative process.

While some of the specifications found in this chapter could be derived

directly from the functional requirements, many actually followed from

design decisions made in the following chapter. These requirements

would then trigger new design decisions which might in turn modity the

30

_ _ _ _ .4 . - .

requirements specification further. What follows is the final results

of this iterative process.

System Hardware Constraints

The functional requirements of Chapter II were used to derive the

following detailed specifications of the hardware that was required for

EWNET. This was done by considering how the functional requirements of

the system place constraints on the system hardware. These constraints

were then used to derive the more detailed hardware specitications.

Topology. The primary requirement for the topology was that the

topology had to be flexible, and must be easy to expand through the

addition of more hosts and nodes. Additionally, since availability was

of major concern, the topology had to contain built-in redundancy which

would not be degraded when one of the host (ISS) computers decided to

drop out of the network (voluntarily or involuntarily). The topology

also must not contain bottlenecks that will limit the throughput on the

network below the stated level or that will increase the response time

to an unacceptable high level due to queueing delays. The response time

requirement may also impact the topology by limiting the number of nodes

between any two host computers since the combined queueing delays may

increase the response time to an unacceptable level.

Host Comnuters. The requirements for the host (ISS) computers to

be included in EWNET was directly related to their need to access

centrally located databases, their level of standardization, and their

31

peripheral power. EMNT must meet all standardization requirements

tpresently defined within the Engineering Branch Laboratory. Therefore,

the level of host computer sophistication and standardization must be as

defined in the Standardized Integration Support Station System

Specification- (Ref. 3). Finally, the usefulness of the network would

be enhanced, if those host computers used most often in the Engineering

Branch Laboratory were included in EWNET.

Nodes.., The requirements for the nodes in the network also were

addressed. Since the host CISS) computers must be able to drop out of

the network at anytime without degrading the network capabilities, the

host CISS) computers can not act as the node computers. Therefore, all

node computers must be individual stand-alone computers that meet all

the standardization requirements defined in the "Standardized

Integration Support Station System Specification~ (Ref. 3). Because

EWMET is to be an off-the-shelf standardized local computer network, all

centrally located databases and backup ISS functions should be hosted on

a Standard Engineering Branch Computer (Ref. 3:16-21). Therefore, it

should be possible to combine the Engineering Branch Installation Host

Computer function with the EWNET Node Computer function, given a

sufficiently sophisticated computer. This implys that the node

computers must be capable of handling lower-level network protocols.

The nodes should contain their own set of peropherals to provide backup

peripheral capability for the ISSes plus to be used when accessing the

node computer directly. Furthermore, the node should have the

capability to collect performance monitoring statistics. Finally, a

32

compiler should be available for the node CPU so that the protocol

software may be written in a higher order language. This would reduce

the magnitude of the implementation effort and enhance the

maintainability of the software.

Transmission Modium. There were several system requirements for

the transmission medium. First, it must support the data transmission

rates necessary to meet the throughput and response time requirements.

Second, it must provide reliable communication links to avoid degrading

throughput and response times. Otherwise, if a high percentage of

blocks of data required retransmission then both response time and

throughput would suffer. The same is true when forward error correction

is used and a high degree of redundancy is required (Ref. 12:202-208).

However, the primary constraint on the transmission medium is that it

must provide secure communications in conjunction with a high noise

imnity. Finally, the transmission medium should be easily re-routed

to allow the topology to be reconfigured with network growth.

Software Specification Tools

Tntroduction. While the user surveys provided an excellent tool

for specifying the functional requirements for EWNET, and some of the

more hardware-related system requirements, a technique was required to

translate the EWNET functional requirements into system software

requirements. Techniques available for this task included DeMarcots

Structured Analysis Technique, SofTech's Structured Analysis and Design

33

Technique (SADT), IBM's Hierarchical Input-Process-Output (HIPO)

diagrams, and various problem statement languages (Ref. 9). DeMarco's

Structured Analysis technique was chosen since it offered several

advantages over the other methods. But before these advantages can be

understood, it will be necessary to understand the basic components of

the Structured Analysis technique.

Structured Analysis. Structured Analysis is a technique using data

flow diagrams (DFDs) and a data dictionary which uses Structured

English, decision tables, and decision trees to describe the DFDs. The

data flow diagram ia a graphic tool used to depict the logical flow of

data through a program or a system. The basic components of a DFD are

shown in Figure 2. page 35. The first component is the data flow. It

is a *pipeline" of other data flows and of data elements. The data

elements are the basic data types that can not be partitioned further

and still retain their meaning. The data flow / elements are identified

as the labeled arrows that connect the circles on the DFDs. The circles

on the DFDs are known as transforms (each identifying a function that

transforms data). Transforms convert input data flows to output data

flows and is the second component of the DFDs. The boxes represent any

mechanism by which information enters or leaves the system. Finally,

files are the last component and are repositories of information within

the system. They are depicted by stright lines. Access to and response

from a file is depicted by a pair of unlabeled arrows. The arrow to the

file represents the search argument. The arrow from the file represents

retrieved information or status. The DFDs are layered starting with an

34

.... %,n -'

I

I
I

4<

Ia

I
I

C

E

:3-

on

35

overview DFD. The overview DFD is used to show on one page the major

processes required in a system. These processes normally must be broken

down to show the detailed processing requirements within each major

function. To understand the detail of a given process you should refer

to a DFD with the same numerical pref ex as the process in question.

Each process on the *parent" diagram is a consolidation of the network

shown on the -child- diagram. The partitioning of the processes

continues until the data flows entering and leaving a process consist of

only one data element each. At this point. a process description is

written for the process and the process is not expanded into a

lower-level diagram. The process descri.ptions. data flow and element

descriptions, and file descriptions f or all the DFDs are compiled into

the data dictionary.

Using the above "working- definition of Structured Analysis, it is

now possible to examine the advantages that Structured Analysis offers.

First. it was based upon the concept of partitioning. This facilitates

Top-Down analysis, as major user functions are decomposed into their

subfunctions. Thus, allowing the large and complex EWNET requirements

problem to be approached in an orderly manner rather than causing the

engineer to be overwhelmed by the vast amount of requirements to be

specified. Second. the data dictionary focuses on data flows rather

than on processes, resulting in clearly defined interfaces. Third, the

process definitions could be easily specified using Structured English.

a tool incorporated into Structured Analysis. Fourth. redundancy in the

Structured Specification is eliminated due to the organization

36

associated with the DFD /data dictionary combination. This made the

task of maintaining the specification and changing it much easier.

Fifth. the data flow diagrams were a two-dimensional presentation of the

requirements, thus presenting the structure in a much clearer manner

than would otherwise be possible using the traditional linear and

voluminous specification approach. Sixth, Structured Analysis

differentiated between the logical and the physical enviroment, thus

allowing the functional software requirements to be specitied without

being concerned about the actual hardware that would execute those

requirements. Finally, it was easier to spot inconsistencies and gaps

in the structured specification and to correct those deficiencies. The

major disadvantage was that it was time comsuming to generate the DFDs.

Protocol Hiernrchies

Introduction, now that we have discussed the need for using

Structured Analysis in the specification phase. it becomes apparent that

a method would be required whereby the different software protocol

functions could be further layered to facilitate easier implementation.

In keeping with standardization efforts (worldwide), it was decided to

layer the protocols for EWNET using the International Standards

Organization (ISO) model for network protocols (Ref. 11:15-16). The

Reference model of Open Systems Interconnection (OSI). as ISO calls it,

has seven layers as shown in Figure 3, page 38 (Ref. 11:16). They are

the physical layer, the data link layer, the network layer, the

transport layer, the session layer, the presentation layer, and the

37

-~ ~L

-

U

I

:0

0,

w

A
C

-
--

i
I

1
-

=

I I
I I
I I

I H
z

-
I

I

:~I
:0

-I
0,

I - -

- z - -
- -

I I

z

e

q

CC

C

CL

38

- 4

application layer.

Physical Layar. This layer is concerned with transmitting raw bits

over a communication channel.

Data Link Layer. The task of the data link layer is to take a raw

transmission facility and transform it into a link that appears free of

transmission errors to the network layer. It accomplishes this task by

breaking the input data up into data frames, transmitting the frames

sequentially, and processing the acknowledge frames sent back by the

receiver.

Network Layer. This layer determines the chief characteristics of

the host-to-node computer interface, and how packets, the units of

information exchange in layer 3, are routed within the subnet.

Trans~ort Layer. The basic function of this layer. is to accept

data from the session layer, split it up into smaller units, pass these

to the network layer, and ensure that the pieces all arrive correctly at

the other end.

Session Layer. The session layer is the usr' interface into the

network. It is with this layer that the user must negotiate to

establish a connection with a process on another machine.

Presentation Layer. The presentation layer performs functions that

are requested sufficiently often to varrent finding a general solution

for theme rather than letting each user solve the problems.

39

Application Layer. This layer is used to control remote file

f access, network access, and to manage any statistical functions on the

network.

Finally, it should be noted that the session lager, presentation

layer, and the application layer are combined in several different ways

to form one or more high-level protocol layers not discussed here. This

is done depending on the individual system requirements.

Structured Specification of the Protocol Reguir~ments

Context Diagram. The context data flow diagram shows the system

boundary and interface with the user. From Figure 4. page 41, it can be

seen that the network operating system must include everything between

the user input from a keyboard that is connected to a computer in the

network, to the response that the user receives at his display. Thus

the Network Operating System includes all the computer operating systems

in the network as well as all interface software and hardware required

to implement the network functional requirements. To initial.ize the

network. a configuration bootstrap process is also required. Table 4

shows the layers of protocol that are defined in the set of DFDs that

follow. Table 5 describes the process hierarchy for the first set of

DFDs. the Network Operating System.

40

ECE

OLL

411

... ..

Table 4
Protocol Layers

EWNET ISO - OSI

NETWORK OPERATING SYSTEM ------------------ ARCHITECTURE PROTOCOL
PRESENTATION PROTOCOL
SESSION PROTOCOL

ARCHITECTURE PROTOCOL (DECNET) ------------------ ARCHITECTURE PROTOCOL
PRESENTATION PROTOCOL
SESSION PROTOCOL

TRANSPORT PROTOCOL (DECNET) ------------------ SESSION PROTOCOL
TRANSPORT PROTOCOL

NETWORK PROTOCOL NETWORK PROTOCOL
DATA LINK PROTOCOL (HDLC) ------------------ DATA LINK PROTOCOL
PHYSICAL PROTOCOL (RS-232-C) ------------------ PHYSICAL PROTOCOL

Table 5---Network Operating System Process Hierarchy

1.0 Execute EWNET Protocol at Primary Node

1.1 Determine Command Type

1.2 Execute Help Commands

1.2.1 Decode Help Command

1.2.2 Provide General Network Info

1.2.3 Provide Procedure for Transferring Files

1.2.4 Provide List of Active Hosts and Devices

1.2.5 Provide Network Startup Procedures

1.2.6 Code Help Responses

1.3 Execute Architecture Level Protocol

1.4 Execute Transport Level Protocol

1.5 Execute Network Level Protocol

1.6 Execute Link Level Protocol

1.7 Execute Physical Level Protocol

42

1.8 Decode Protocol Responses

t 2.0 Execute EWNET Protocol at Secondary Node

System Diagram. The system diagram translates the key functional

requirements into the software requiremdnts for the network operating

system as shown in Figures 5 and 6. pages 44 and 45. First, the user

command must be examined to determine whether it is a help command,

network command, or local command (1.1). If it is a help command, then

the appropriate help information must be output to the user. Depending

upon the Type of help command. this process may require access to the

Dialogue Process Table (1.2).

If the incoming command is a network command, then send it to the

correct protocol level to be implemented. If the command was to

transfer a file, then the Architecture Level Protocol will execute the

command (1.3). Else. if the command is to start or stop the network

then the Transport Level Protocol will execute the command (1.4). Once

the Architecture Level Protocol has been implemented for a file access

or transfer then the file plus the Architecture Protocol Header will be

sent to the Transport Level Protocol (1.4). The Transport Protocol will

satellite nodte orl a roter ode itelidatiogt re motet nsode I
determine ifote filroe rnfe or initiaiato rus is fog o e or aod

then the Transport Protocol Header is added to the packet and it is sent

to the Network Level Protocol for processing (1.5). The Network Level

Protocol adds routing information headers and sends it to the Data Link

Level Protocol (1.6). Also, if the data to the Transport Level Protocol

43

II

N C C)

Z E

41..

44,

Ct.

445

II

is to be sent to a satellite node then send the data with the Transport

t Level Protocol Header directly to the Data Link Level Protocol (1.6).

The Data Link Level Protocol then adds its own header and sends the

entire packet to the Physical Level Protocol (1.7). which transmits the

bit stream. Finally, the response that has been outputed from one of

the three processes must be transmitted back to the user as the network

response (1.8).

If the user command was a local command, then the command must be

routed internally to perform the required function. In all processes

listed in Figure 6. page 45, there is the possibility for errors to

develop. and thus* error messages must be generated in place of the

expected result.

Hem2 User ReAuirementz. The user help process may be specified

further by the lower-level DFD shown in Figure 7. page 47. The

transmitted help request must be classified as either a general

information request, a file transfer information request, a list of the

active host and device names, or a protocol start information request

(1.2.1). If it is a general information request, then a menu selection

consisting of the available commands and their formats must be output

along With the formates for the more specific help requests (1.2.2). If

the transmitted help request is a file transfer information request,

then format for the transfer file commands must be output (1.2.3). If

the transmitted help request is a list of the active hosts and device

names request, then this list must be output by accessing the Dialogue

Process Table (1.2.4). If the transmitted help request is a protocol

46

w In

AE

CL-

Me

47.

start information request, then the commands necessary to start, stop.

and abort the session must be output (1.2.5). Finally, all help

responses are output to the user as a help response (1.2.6).

Architecture Level Protocol Requirmaents. The previous protocol

requirements were specified to implement the applications of obtaining

user help information and identifing network commands. The identifing

of the network commands process relies upon an architecture file

transfer mechanism which was treated as a primitive by this process. If

the DFD partitioning process had been followed as specitied by DeMarco,

then the partitioning of the file transfer mechanism would have been

duplicated several times. However, by defining the file transfer

mechanisms as primitives that are used by several processes, it was

possible to start a new set of DFDs for this mechanism without having to

duplicate them for each process. Table 6 shows the overall process

hierarchy for the Architecture Level Protocol DFDs. In the interest of

conservation of material, the detailed DFDs for the Architecture Level

are not included in the text, but are included in Appendix C, as are all

upper and lower-level DFDs for the entire software specitication.

Table 6---Architecture Level Protocol Process Hierarchy

1.0 Execute Architecture Protocol at Primary Node

1.1 Decode Architecture Packets

1.2 Decode Status Packets

1.2.1 Check for Errors

48

!4

1.2.2 Decode MACCODE Field

1.2.3 Decode Unsupported MICCODE Field

1.2.4 Decode Pending MICCODE Field

1.2.5 Decode Format MICCODE Field

1.2.6 Decode File MICODE Field

1.2.7 Decode Sync W.CCODE Field

1.2.8 Decode Successful MICCODE Field

1.3 Generate Control Packets

1.3.1 Decode Control Type

1.3.2 Generate Control Connect Packet

1.3.3 Generate Control Seq-Get Packet

1.3.4 Generate Control Seq-Put Packet

1.3.5 Generate Control Key-Get Packet

1.3.6 Generate Control Key-Put Packet

1.3.7 Generate Control Add-Get Packet

1.3.8 Generate Contijl Add-Put Packet

1.3.9 Code Get Fields

1.3.10 Code Put E, elds

1.3.11 Code Control Fields

1.4 Execute Startup Packets

1.4.1 Generate Configuration Packet

1.4.2 Check for Configuration Errors

1.4.3 Decode Configuration Fields

1.4.4 Generate Attributes/Access Packet

1.4.5 Generate Access/Erase/Rename Packet

49

I I I I II IIl I " II i i.. .i

1.4.6 Generate Access/ECF/SCF Packet

1.4.7 Generate Attributes Packet

1.4.8 Check for Acknowledge Errors

1.4.9 Check for Attributes Errors

1.4.10 Check for Access Errors

1.4.11 Decode Attributes Fields

1.4.12 Code Setup Errors

1.4.13 Code Setup Packets

1.5 Execute ACC/ACK Packets

1.5.1 Generate Access Packet

1.5.2 Decode Access Fields

1.5.3 Generate Access Complete Packet

1.5.4 Generate Acknowledge Packet

1.5.5 Check for Access Complete Errors

1.5.6 Decode CMPFUNC Fields

1.5.7 Generate ATTRIB/ACK Packet

1.6 Execute Control Packets

1.6.1 Decode Control Packet

1.6.2 Decode Connect Fields

1.6.3 Decode Get Fields

1.6.4 Decode Put Fields

1.7 Execute Continue Packets

1.7.1 Decide on Next Action

1.7.2 Decide on Required Action

50

1.7.3 Generate Continue Abort Packet

t 1.7.4 Generate Continue Skip Packet

1.7.5 Generate Continue Only Packet

1.7.6 Code Continue Packets

1.7.7 Generate Data Packet

1.7.8 Code Continue Errors

1.8 Code Architecture Packets

1.8.1 Start/Stop Timer

1.8.2 Code Working Packets

1.8.3 Generate Status Packets

1.8.4 Terminate Logical Link

1.8.5 Terminate Data Stream

1.8.6 Code File Packets

1.9 Check for Continue Error

2.0 Execute Architecture Protocol at Secondary Node

The Architecture Layer provides the network functions for the user

layer. Modules in this layer include network remote file access

modules, a remote file transfer utility, and a remote system loader

module.

The use of the network remote file access modules and the remote

file transfer utility are limited to the following type of files:

1. Sequential -Each record's Position depends on the position

of the previous record. Records may not be processed in any other

order (Ref. 13:298).

2. Relative - Each record in the file has a unique identifying

number, its record number. Records may be accessed randomly by

specifying their record number in a control message (Ref.

13:298-299).

3. Direct/Indexed - These files have records organized

according to some classification method, usually an access key.

Within a particular key, the records are assumed to be sequential

(Ref. 13:299).

The reason for this is because it was felt that these three types

of files were the types projected to be most prevalent on the network.

Figure 8. page 53. is the overview DFD for the Architecture Level

Protocol. Obviously, the most important function of the Architecture

Protocol is to transfer data to and from I/O devices and mass storage

files independent of the I/O structure of the system being accessed.

This implys that the protocol must be transparent to the files being

transferred. From the network, it must appear as if the EWNET systems

support the Architecture Protocol Messages directly within their file

systems. The protocol must set up the conversation path for remote file

access, transferring data over the link and terminating the logical

link. The EWNET processes will implement the Architecture Protocol

using the Transport/Network Protocol and the network facilities for the

creation of the logical link and for flow control. Figure 9. page 54.

52

A

:2

I

I 2

5

U~ ~L

2-

* .2

tC~

2

I 2 -

2

2~~ C,

U C*.2
IL

2. L -2-I. C:m~.
I.:

C,:

I-

53

> Y

'7a'id..Receve..e

acK

AK

54:4

is the upper-level DFD for the Architecture Level Protocol.

Once the link is established by the Transport Level Protocol, the

EWNET processes the exchange of Architecture Level messages to set up

the file access. These initial set up messages include configuration.

file, data mode, and format information. A data stream is then set up

to transfer data over the link. Data may be sent either to the

accessing node as in a retrieve operation or from it as in a store

operation. One control message sets up the data stream for both

sequential and random access file transfer. After file transfer is

accomplished, additional Architecture Level messages terminate the data

stream. A disconnect request terminates the logical link. Status

messages are returned if there are errors in the set up procedure, flile

transfer, or termination.

Transoort Level Protocol Requirements. The previous protocol

requirements were specified to implement the applications of file

transfers on the network. These file transfer processes rely upon a

Transport Protocol (transferring mechanism) which was treated as a

primitive by these processes. Since the Transport Protocol is a

primitive that is used by several processes, it was possible, as with

the architecture protocol, to start a new set of DFDs for this mechanism

without having to duplicate them for each process. Table 7 shows the

overall process hierarchy for this set of DFDs. As with the

Architecture Level Protocol DFDs. only the upper-level DFDs will be

included in the text explaination for this protocol.

55

Table 7--Transnort Level Protocol Process Hierarchy

1.0 Execute Transport Protocol at Primary Node

1.1 Decode Route Header

1.1.1 Decode RTHDR Field

1.1.2 Decode MSGFLG Field

1.1.3 Generate First Disconnect Confirm Packet

1.1.4 Examine Logical-Link Database

1.1.5 Pass to Satellite

1.2 Decode Packet Type

1.3 Execute Incoming Dialogue Message

1.3.1 Execute Dialogue Segment

1.3.1.1 Decode Dialogue Message

1.3.1.2 Examine Adjacent Node Parameter and Decode

1.3.1.3 Break Dialogue Data into Segments

1.3.1.4 Examine Data Flow Control Parameters

1.3.1.5 Piggyback Data Acknowledge

1.3.1,6 Assign Segment Number Mod 4096

1.3.1.7 Load and Delete Data Memory

1.3.1.8 Check Data Retransmit

1.3.1.9 Code Data and I/L Packets

1.3.2 Execute I/L Packet

1.3.2.1 Examine Interrupt Flow Control Parameters

1.3.2.2 Generate Interrupt-Link Services Packet

1.3.2.3 Piggyback I/L Acknowledge

1.3.2.4 Code I/L Packet

56

1.3.2.5 Generate Data-Link Services Packet

t 1.3.2.6 Assign Packet Number Mod 4096

1.3.2.7 Load and Delete I/L Memory

1.4 Execute Data Packet

1.4.1 Determine Data Packet Type

1.4.2 Decode Data ACKNUM Field

1.4.3 Decode Data Segment Number

1.4.4 Decode I/L Segment Number

1.4.5 Decode I/L ACKNUMI Field

1.4.6 Generate Data Acknowledge Packet

1.4.7 Generate Data Negative Acknowledge Packet

1.4.8 Load Receive Buffer until Full or LS

1.4.9 Generate I/L Negative Acknowledge Packet

1.4.10 Generate I/L Acknowledge Packet

1.4.11 Decode Valid I/L Packet

1.4.12 Code Acknowledge Packets

1.4.13 Code Data Packets

1.4.14 Decode Link Services Packet

1.5 Execute Startup Packet

1.5.1 Transition Link to On-Line Mode

1.5.2 Decode Functions Field

1.5.3 Decode Initialization Packet

1.5.4 Generate Node Initialization Packet Verify 0

1.5.5 Decode Remaining Fields

57

1.5.6 Generate Node Verification Packet

t 1.5.7 Generate Node Initialization Packet Verify

1.5.8 Decode Password

1.5.9 Code Initialization Packets

1.6 Execute Control Packet

1.6.1 Execute Connect Packet

1.6.1.1 Generate Connect Initiate Packet

1.6.1.2 Decode Control Packet

1.6.1.3 Decode Connect Initiate Packet

1.6.1.4 Dialogue Process External End

1.6.1.5 Decode Connect Confirm Packet

1.6.1.6 Generate Connect Confirm Packet

1.6.1.7 Generate Disconnect Initiate Packet

1.6.1.8 Code Control Packet

1.6.2 Execute Disconnect Packet

1.6.2.1 Decode Disconnect Confirm Packet

1.6.2.2 Decode Disconnect Initiate Packet

1.6.2.3 Dialogue Process End

1.6.2.4 Generate Disconnect Confirm Packet

1.7 Execute Acknowledge Packet

1.7.1 Determine Acknowledge Type

1.7.2 Decode Data ACK Packet

1.7.3 Decode IlL - ACK Packet

58

1.8 Execute Outgoing Transport Packets

1.8.1 Examine DSTADDR Field

1.8.2 Add RTHDR Field

1.8.3 Is Routing Necessary and Present

1.8.4 Pass to Correct Adjacent Node

1.9 Code Outgoing Dialogue Message

1.10 Send to Network Protocol

4.0 Execute Transport Protocol at Secondary Node

The overview DFD for the Transport Layer is shown in Figure 10,

page 60. Obviously, the most important function of this protocol is to

transmit data from the source host to the destination host. To

accomplish this function the Transport Protocol must retain primary

responsibility for:

1. Establishing, maintaining, and destroying communication

links between different user and network application program

modules.

2. Performing initialization between adjacent nodes.

3. Acknowledgement of all messages.

4. Detecting node and line failures.

In addition, the Transport Protocol will provide the facility for

two dialogue processes (typically, user-written or network application

59

-~~ fth-.N

Coll)

60

modules residing at different nodes) to exchange information regardless

* of their physical location within a network. This facility is referred

to as Logical Link Service (Ref. 12:127).

Logical Link Service allows a dialogue process to establish a

connection (called a logical link) to another dialogue process. Once

the logical link is established. each dialogue process may send data to

the other dialogue process via the logical link. When the dialogue is

complete, either dialogue process may request that the logical link be

disconnected. A logical link provides both guaranteed delivery (that

is, delivery of information to an area of storage accessable to the

destination process) and sequentiality.

Other network management activities performed by the Transport

Level Protocol are data flow control, node initialization, destination

node and process identification, and link failure handling.

To support the above functions the Transport Protocol must have two

types of messages that it uses. These are Data Messages and Control

Messages. Data Messages are also of two types: normal data messages

and interrupt messages. Normal data messages can be either an entire

message or a message segment. Interrupt messages carry small amounts of

information (high-priority information such as an alarm condition).

Control Messages pass information between the Transport modules.

These messages are used for the following purposes:

1. Starting Up and initializing nodes,

61

2. Testing,

3. Establishing, maintaining, and terminating logical link

operation, and

4. Controlling the flow of data and interrupt messages on a

logical link.

The reason for the interrupt data commands is to allow long

transfering files to be interrupted for the transmission of the network

control commands. If this were not done, a long file transfer could

easily degrade the response time of a network command to an unacceptable

level.

This concept of interrupting file transfers requires that the

transmission medium be shared. Time Division Multiplexing (TDM) or

Frequency Division Multiplexing (FDM) could provide multiple paths

between any two hosts as could many topologies (Ref. 12). However,

since the throughput requirement might possibly grow greater than the

channel capacity between nodes on EWNET, FDM was thought to be the best

way to meet present and future response time requirements. Therefore,

it was decided that, since a large bandwidth transmission medium will be

used on EWNET and an initial high throughput would be required, a

Frequency Division Multiplexed Packet Switched Protocol would be

appropriate for the Transport Level Protocol. Due to the constraint of

developing a network for the Engineering Branch that would meet all

internal standardization requirements and be an off-the-shelt item, the

62

Digital Equipment Corporation's DECNET Protocol was chosen for EWNET.

The DECNET Digital Network Architecture (DNA) model and its application

to the EWNET will be discussed in Chapter 4 of this thesis. Figure 11,

page 64, is the Transport Level Protocol high-level DED for the EWNET.

The Transport Level Protocol is responsible for establishing and

destroying a logical link between dialogue processes. This is

accomplished via a set of control messages sent back and forth between

Transport modules. Once a logical link has been established, data may

be exchanged over the link. Information sent over the link can be: (1)

normal data -- that is. data segments or messages or (2) interrupt data.

Dialogue messages are usually sent as normal data segments over the

link.

Unless the message to be sent is small enough to be transmitted

through the network intact, the Transport Protocol will break up the

message into segments and transmit each segment individually. To ensure

proper data sequentiality and delivery, each Transport module employs a

segment acknowledgement scheme. This scheme keeps track of data

segments sent and ascertains whether or not retransmission is necessary.

At any time during a dialogue exchange, the Transport Protocol will

allow either process/party to abort or terminate the conversation. When

the Transport Protocol has been properly notified to do so. it will

disconnect the logical link.

There are two data streams on a logical link. One stream contains

interrupt (for user high-priority information) and link service messages

63

cr I

a C 91

6 z

.00

x c

-
C

64j

(for Transport flow control); the other contains normal data messages.

t Each stream may be considered a subchannel on the logical link. On the

interrupt/link service subchannel, all messages are single Transport

segments. On the data subchannel, however, data messages are usually

broken up into segments. Transport segment acknowledgement is performed

independently for each subchannel.

When normal data (dialogue) messages are broken up into segments,

the transmit segment size parameter determines the size of these

segments. The value of the parameter is specified when the logical link

is established. In addition, transmitter and receiver subchannels must

be synchronized for all data message transmission. This is accomplished

at the transmitter using the interrupt/link service subchannel transmit

number and the data subchannel transmit number and at the receiver using

corresponding receive numbers. When a logical link connection is

established between two dialogue processes, these numbers are set to 1.

As Transport segments are transmitted and acknowledged over the logical

link, the appropriate numbers are incremented.

Operating at a level above the segment acknowledgement scheme is

the flow control operation. Its purpose is to determine whether there

should be a permanent shift from the transmitter to the receiver in the

buffering of information. Four parameters are associated with flow

control: a data flow control switch ("open" or -closed-); an interrupt

request count; a data request switch ("segment"); and a data request

count. The receiver may control data flow by sending a link service

message that sets appropriate parameters. The receiver can request

65

interrupt messages, stop data segment flow, allow data segment flow, and

t request data by means of the segment request count. The transmitter

responds appropriately to the link service message of the receiver.

When the transmitter has data to send (either normal data or interrupt),

it examines the appropriate flow control parameters and request count

before sending the data. The receiver may reject segments for which it

does not have buffer space available by sending a negative

acknowledgement.

Network Level Protocol Requirements. As with the Transport

Protocol, the Network Level Protocol is used by several processes and is

treated as a primitive by all other protocol levels. Table 8 shows the

overall process hierarchy for this set of DFDs.

Table 8---Network Level Protocol Process Hierarchy

2.0 Execute Network Protocol at Primary Node

2.1 Decode message type

2.2 Check R-Hop Count = 2

2.3 Decode Network Header

2.4 Increment Hop

2.5 Update Routing Table If New

2.6 Determine Least Cost Link

2.7 Add Network Header

2.8 Send Old Values Out Over New Initialized Line

2.9 Check N-Hop Count = 2

4

"" 66

2.10 Update Network Header

t 2.11 Every Timer Interval Update Adjacent Line

2.12 Issue Correct Link Cost Over All Links

2.13 Send Packet Over Correct Line(s)

3.0 Execute Network Protocol at Secondary Node

The overview DFD for the network layer is shown in Figure 10, page

60. The most important function of this protocol is to implement what

is termed in the communication field a Datagram Service (Ref. 12:60).

A Datagram Service delivers packets on a -best effort** basis. That is,

the Network Protocol makes no absolute guarantees against packets being

lost. duplicated, or delivered out of order. Rather, higher layers of

the EWNET Protocol structure provide such guarantees (Transport Level

Protocol). The Network Protocol selects routes based on network

topology and operator-assigned line costs. The Network Protocol

automatically adapts to changes in the network topology, for example, by

finding an alternate path if a line or node fails. This protocol does

not adapt to traffic loading: the amount of traffic on a channel does

not affect the Network Protocol's routing algorithms. Figure 12, page

68, is the Network Level Protocol DFD for the EWNET.

The Network Level Protocol is responsible for providing the

following functions:

1. Determines packet paths. A path is the sequence of

connected nodes between a source node and a destination node. If

67

z L

L

68

more than one path exists for a packet, the Network Protocol

* determines the best path.

2. Forward packets. If a packet is addressed to the local

node, the protocol forwards it up to the Transport Level Protocol

for disposition. If a packet is addressed to a remote node, the

protocol forwards it on to the next line in the path.

3. Manages the characteristics of packet paths. If a line or

node fails on a path, the Network Protocol finds an alternate path,

if one exists.

4. Periodically updates other Network Level modules. Other

Network Level modules are periodically updated so that all nodes in

the network are aware of any routing change (such as a line down or

a node coming up).

5. Limits the number of nodes a packet can visit. This

prevents old packets from cluttering the network.

There are two types of Network Protocol messages: data messages

and control messages. Data messages carry data from the Transport Level

Protocol. The Network Protocol adds a packet route header to the

Transport Level messages. Control messages exchange information between

Network Protocol modules in adjacent nodes to maintain the routing

tables.

69

Routin2 Algorithm Requirement. One of the constraints on the EWNET

t design was that it start with a minimal set of capabilities while

retaining the flexiability to be expanded if future requirements demand

such an expansion. Therefore, the routing algorithm initially

implemented was relatively simple, while retaining the capability to be

expanded if the need arises. The routing algorithm consist of seven

processes that must be performed:

I. Decision. The decision process selects routes to each

destination in the network. It consist of a connectivity algorithm

that maintains path lengths, and a traffic assignment algorithm that

maintains path costs. Path length is the sum of the hops along a

path between two nodes. Line cost is a positive integer value

associated with using a line, and path cost is the sum of the line

costs along a path between two nodes. When a routing node receives

a Routing Packet, the routing node executes tie two decision

algorithms. Executing both algorithms is required since a packet

might have a choice of two paths, both having equal cost but less

hops required, or having equal hops required but less cost per line.

This execution results in updating the databases used to determine

packet routes.

2. Update. The update process constructs and propagates

Routing Packets. The update process sends Routing Packets to

adjacent nodes as required by the decision process and periodically

to ensure the integrity of the routing databases.

70

3. Forwarding. The forwarding process supplies and manages

the buffers necessary to support packet route-through to all

destinations.

4. Select. The select process performs a table look-up to

select the output line for the packet. If a destination is

unreachable, this process discards the packet.

5. Receive. The receive process inspects a packetts route

header, dispatching the packet to the appropriate Network Level or

Transport Level module.

6. Congestion Control. This implementation of the EMET

Network Level Protocol does not perform any congestion control

functions upon the network.

7. Packet Lifetime Control. A loop detector prevents

excessive packet looping by discarding packets that have visited too

many nodes.

As the topology of EWNET evolves this simple adaptive routing

algorithm will require updating to a more complex distributed adaptive

routing algorithm (Ref. 11:235-237).

Data Link Level Protocol Requirements. This protocol level is

nodeled after the High Level Data Link Control (HDLC) (Ref.

12:208-232). The overview DFD for this protocol level is shown in

Figure 13, page 72. Also, Table 9 shows the process hierarchy for this

71

)L

CC

ccC

'ece

52

Q7

set of DFDs.

Table 9---Data Link Level Protocol Process Hierarchy

1.0 Decode HDLC Protocol at Primary Node

1.1 Decode and Sync Incoming Bit Stream

1.1.1 Check for and Renove Pad Sequence

1.1.2 Check for Startup

1.1.3 Locate Two Consecutive Sync Bytes

1.1.4 Decode Packet Header

1.1.5 Check for QSYNC

1.2 Frame Secondary Incoming Packets

1.2.1 Check Header Length

1.2.2 Check BLKCK1

1.2.3 Check Data Length (Count)

1.2.4 Check BLKCK2

1.2.5 Check ENQ Header Length

1.2.6 Check BLKCK3

1.2.7 Generate CRC Remainder

1.2.8 Check Select Bit

1.3 Execute Incoming Control Packet

1.3.1 Decode ENQ Packet

1.3.2 Set NAK Transmit Flag

1.3.3 Set Negative Acknowledge Flag, Reset Timer

1.3.4 Check STRT Select Bit

73

1.3.5 Check STACK Select Bit

t 1.3.6 Check NUIM Field to R

1.3.7 Set Acknowledge Flag. Reset Timer

1.3.8 Count Errors (NAK)

1.4 Execute Outgoing Control Packet

1.4.1 N=N+1, Reset Timer

1.4.2 Generate Negative Acknowledge Packet

1.4.3 Generate Start Packet

1.4.4 Generate Start Acknowledge Packet

1.4.5 Generate Acknowledge Packet

1.4.6 Generate REP Packet

1.4.7 Clear Negative Acknowledge Flag

1.4.8 If Initialization, then Pad Packet

1.4.9 Clear Acknowledge Flag

1.4.10 Clear SREP Flag

1.5 Execute Data Packet

1.5.1 Process NUM Field

1.5.2 Process RESP Field

1.6 Execute Maintenance Packet

1.6.1 Generate Maintenance Mode Packets

1.6.2 Generate Maintenance Packet

1.7 Frame Primary Information Packets

1.7.1 Add 4 Sync Bytes to Packet if QSYNC

1.7.2 Count Data Field ADD BLKCK2 /Count

47

1.7.3 Add Remaining Header Fields

1.7.4 Set OSYNC Bit

1.7.5 Count Header Field and Add BLKCKl

1.7.6 Piggyback Acknowledge Received: Set RESP

1.7.7 Check Modulo 256

1.7.8 Increment Packet Count

1.7.9 Check Retransmit

1.7.10 Add 4 Sync Bytes to Data Packet if QSYNC I INIT.

1.7.11 Load and Delete Memory

1.8 Start Reply Timer

1.8.1 If STRT, STACK, or Data Packet then Start Timer

1.8.2 Reset Timer

1.8.3 Count Errors (Time)

1.8.4 Identify Timeout Packet

2.0 Transmit Bit Streams

3.0 Execute HDLC Protocol at Secondary Node

This layer of the EWNET Protocol Structure controls the operation

of the physical link, maintaining the integrity and sequentiality of

data tr- smitted over a communication channel. This Data Link Protocol

is a byte-oriented link control procedure that operates in full-duplex

synchronous mode and supports point-to-point communications. This

protocol is concerned with the logical transmission of data grouped into

physical blocks known as data packets. The primary function of the

75

, .1

protocol being the exchange of these data packets while ensuring their

9 correctness. Each data packet is assigned a number to ensure proper

packet sequencing at the receiver. The numbering begins with number one

after initialization and is incremented by one (modulo 256) for each

subsequent data packet. The receiver acknowledges the correct receipt

of data packets by returning the packet number as a response.

Acknowledgement of data packet n implies acknowledgement of all data

packets sent up to and including data packet n. Additionally, the Data

Link Protocol provides an envelop in which maintenance messages can be

sent for down-line loading, up-line dumping. loopback testing and

control of unattended remote systems. The protocol uses retransmission

to recover from errors. The error recovery mechanism uses timeouts and

control packets to resynchronize and trigger retransmission. Figure 14,

page 77, is the Data Link Level Protocol high-level DFD for EWNET,

low-level DFDs are supplied in Appendix C.

The Data Link Protocol uses three types of packets: data packets,

control packets, and maintenance packets. All data is sent over the

physical link in numbered data packets. Responses and control

information are returned within unnumbered control packets. In the

maintenance mode, the protocol provides a maintenance packet envelop for

boot strapping. dumping and link testing. The initial field of each

packet is a special ASCII character (SOH, ENQ, or DLE respectively).

The Data Link Level Protocol consist of three functional

components: Framing, Link Management, and Packet Exchange.

76

C4.1

0i

-4, OL -

a-,%Ol

77

Framing is the process of locating the beginning and end of a

packet at the receiving end of a link (Ref. 12:201-202). It requires

synchronization: locating a certain bit, byte or packet and then

operating at the same rate as the bit, byte, or packet. Framing is

achieved when data is synchronized at the bit, byte, or packet levels

(Ref. 12:330). Bit synchronization is done by the modems and

intertaces on the link. Byte synchronization involves locating the

proper 8-bit window in the bit stream. This is accomplished by a sync

character search. Packet synchronization is achieved by searching for

one of the three special starting bytes (SOH, ENQ, or DLE). After

achieving byte synchronization the packet synchronization is maintained

by counting out the fixed length headers, and, when required, the

variable length data, based on the count field supplied in the header.

The Link Management component controls the transmission and

reception on links connected to two or more transmitters and/or

receivers in a given direction (Ref. 12:122-129).

The Packet Exchange component transfers the data correctly and in

sequence over the link. Once framing is accomplished, this component

operates at the packet l, ve!, exchanging data and control packets.

The Data Link Protocol is a positive acknowledgement retransmission

protocol. For each data packet correctly received and passed to the

next level, a positive acknowledgement is returned on the link.

notifying the transmitter of the correct receipt of the data packet. If

a data packet is incorrectly received, the data is not passed to the

7

78 i

user and the packet is not acknowledged. Eventually, the packet will be

retransmitted. For efficiency, the Data Link Protocol may transmit

several packets (up to 255) before requiring the acknowledgement of the

first one. This is called pipelining (Ref. 11:153-157). If the CRC

block check reveals a transmission error, the receiver returns a

negative acknowledgement.

The Data Link Protocol provides three types of counters for

recording and evaluating errors: Threshold counters, Cumulative

counters, and Background counters. Threshold counters are used to

detect persistent error conditions; Cumulative counters record overall

error statistics; and Background counters provide a base on which to

evaluate performance. To determine a persistent error, the protocol

counts consecutive errors, notifying the user when a predefined

threshold value is reached.

Phyaical Level Protocol Requirements. The DECNET does not require

that any one physical level protocol be used (Ref. 13:300). Thus,

there were, only two requirements for the physical level protocol. It

had to be a widely recognized standard to minimize the difficulty in

adding new hosts to EWNET and it had to be compatible with the

transmission medium selected and the distances of transmission required.

Thus, if these requirements could be met then the Transmit Bit Streams

(2.0) process in the Data Link Level Protocol (Figure 13. page 72) could

be performed.

79

This chapter has refined the hardware specifications and addressed

the software specifications for EWNET in detail. The software

specification was length, -,ut. because of the partitioning and levels of

abstraction made possible through the use of Structured Analysis. if was

easier to comprehend than would otherwise be possible. The data

dictionary contains the explicit information on these specifications and

is included in Appendix C along with the high and low-level data flow

diagrams. These requirements formed the basic foundation for the

overall structural design approach taken in Chapter IV to design the

EWNET.

80

IV. Design of EWNETt

The previous chapters determined the user functional requirements

and translated them into detailed hardware and structured software

specifications. In this chapter, the hardware requirements

specification was employed along with supporting background information

to develop the hardware design. The software for EWNET was also

designed by selecting the specification of a commerically available

network design (DECNET). As a part of the software and hardware design,

Appendix D contains a complete EWNET Network Profile for use by the

Electronic Warfare Engineering Branch as a means of obtaining the

correct commerically available network configuration to meet their

present and future needs. This chapter also presents diagrams that

depict the exact interaction of the Host-to-Node network configuation

selected for the EWNET design.

Hardware Design

Toplgy, The topology shown in Figure 15, page 82, was chosen for

EWNET for two reasons. First, the basic loop architecture of the nodes

allows the initial routing algorithm to be -simple" since a message has

only two possible paths to its destination node. This gives the

Electronic Warfare Branch Laboratory the minimum operational

81

82

capabil'ty, as identified in the functional requirements, in the least

amount of development time; thereby, allowing additional time to

evaluate and develop a more sophisticated routing algorithm to handle

more complex future topologies. Second, to maintain a cost-effective

initial network, the loop network has only one more link between nodes

than a minimum spanning tree, since deleting one of the links, results

in a linear connection of the node computers. This linear connected

network then constitutes a minimum spanining, tree sincze additional

node-link deletions would result in a non-connected network. As the

topology of EWNET expands to include an additional node computer, it

will no longer be possible to take advantage of the cost-effectiveness

derived from the minimum spanning tree concept, since the basic loop

architecture will be replaced by a topology which will give maximum

reliaLility and response time to the network.

The star topology connecting the hosts to the node was chosen for

several reasons. First, it minimizes the loop topology disadvantages of

increased response time and reduced reliability due to multiple node

computers connected in a single loop. Second. the topology given in

Figure 15, page 82, takes full advantage of the star configuration by

grouping around the same node those host that will interact the most

with each other. In this configuration, much of the traffic need only

pass through its entry node to the network. This decreases trne average

response time on EWNET and decreases the amount of traffic transmitted

between nodes. However, reliability from the host's perspective is

decreased since the failure of a node can cause several hosts to lose

83

AD-AI19 253 AIR FORCE INST OF TECH WRIGHT-PATTERSON AF5 OH SCHOO--ETC F/6 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECTRONI--ETC(U)
DEC al R H STOKES

UNCLASSIFIED AFIT/GC S/EE /8ID-16 NL

25 flfflfflfflfflfflf
EEEEEllhEllEllI
EEEIIIEEEEEEEEE
EEEIIIIIIEEEEEE
IEEEEEIIEEIII

access to the network. Also. there must be a greater transmission rate

between nodes than that between the hosts and the nodes. This is to

keep the nodes from acting as bottlenecks and thereby decreasing

throughput to an unacceptable level. Finally. the star configuration

allows any host to be able to drop out of the network without adversely

aftecting the performance of the network. This meets the requirement.

that all ISSes must be able to operate completely independent from the

network without affecting the network.

n Fourteen hosts were chosen for the initial network

configuration. This number represents those EW systems within the

Electronic Warfare Engineering Branch Laboratory which will require the

greatest access to the network and which contain the most sophisticated

and powerful minicomputers. The following list of Hosts represents a

generous cross-section of the type systems which will require access to

the network (present and future).

1. F-15 Tactical Electronic Warfare System (TEWS) = Integrated
ISS System

2. EF-111A = Integrated ISS System

3. APR-38 Fire control ISS System

4. Area Reprogrammable Capability (ARC) = EW system emulation
ISS System

5. ALQ-131 = Jammer ISS System

6. ALQ-155 = Jammer ISS System

7. ALQ-119 = Jammer ISS System

8. ALR-69 = Radar Warning Receiver (RWR) ISS System

9. EWOLS/ECSAS = Simulation and analysis systems respectively

84

10. B-52 = Tail Warning ISS System

11. ALR-62 = RWR lBS System

12. ALR-46 =RWR ISS System

13. Flight Line Test Sets (FITS) = FLTS ISS System

14. ALQ-125 = Electronic Intelligence Gathering (ELINT) 155

System

Nodes., Since there existed no requirement to be able to internally

modify the network protocols once the network was established, and due

to the standardization efforts of the Electronic Warfare Engineering

Branch (Ref. 3). it was decided that the node computers used within the

network should be compatible with the standardized ISS computer and at 4

the same time be able to host the commercially selected software

protocol design. This resulted in the selection process for the node

computers being narrowed down to the Digital Equipment Corporation's

PDP-11 family of computers. There still remained the management

requested requirement that, if possible, the organizational Host

Processor (UNIVAC-1108) functions and the Network Routing Node functions

be performed by the same computer(s). Therefore. it was decided that

the Network Node computers could easily perform the existing

organizational Host Processor functions if the node computers were of

sufficient sophistication.

The Digital Equipment Corporation's PDP-11/70 computer was selected

for the EWNET Node computers. It is of sufficient sophistication to

support all present and future organizational Host Processor functions

(Ref. 14:261-305), it meets all Electronic Warfare Engineering Branch

85

Laboratory standardization efforts (Ref. 3). and it supports the Phase

I III routing DECNET software (Ref. 15:67). As shown in Figure 16, page

879 there will initially be three PDP-11/70 node computers. The

division of functions for these computers other than network functions

is given below:

1. First Floor Node = Host all off-line ISS backup assemblers.

2. Second Floor Node = Host all common ISS software tools and

common databases such as the organizational threat database.

3. Third Floor Node = Host all off-line ISS (Flight Test) data

reduct ion programs.

Transmission Medium., Due to the security and EMI requirements for

EMNT, as discussed in Chapter 3, all transmission links within the

network will use fiber optics. The optimum transmission rate for the

network, considering the throughput and response time requirements, was

1 mbps.

Appendix D contains further details concerning the hardware design

and Figure 16, page 87, shows the total hardware design.

Sof tware Deizu

Introduction, The design of the software was accomplished through

the specification of a commercially available network design. The

Electronic Warfare Engineering Branch Management. acting in behalf ot a

86

a 4k

0 1

- o-4

In Lt..0 0-

0 .0 - ~ 0 8

then non-existing network management group, specified that the EWNET

design must be obtained from an existing, contract supportable*

commercially available network design that would meet all internal

standardization efforts and be as compatible as possible with existing

ISS standard computers. Considering these requirements the Digital

Equipment Corporation's DECNET product was selected (Ref. 15:331-349).

DIMTL DECNET is the collective name for the set of software

products that extend various Digital Equipment Corporation operating

systems by enabling the user to interconnect these systems with each

other to form computer networks. DECNET Phase II products allow

point-to-point physical and logical connections. DECNET Phase III

products extend the logical connectivity through routing (Ref. 16:17).

Phase II and III products can be intermixed in the network.

In order to satiafy widely varying applications, DECNET allows the

user to build networks from a wide range of systems and communications

components. DECNET allows the user to interconnect systems using serial

synchronous facilities. When configuring DECNET systems, both ends of

any givea link must use the same type of communications discipline

running at the same line speed (Ref. 15:331-339).

DECNET is implemented from a set of layered network protocols (ISO

OSI Model), each of which is designed to fulfill specific functions

within the network. Collectively, these protocols are known as the

Digital Network Architecture (DNA)(Ref. 16:Vol 1).

88

DNA modules in a layer typically use the services of modules in the

layer immediately below. Some layers may contain more than one type of

module (as is the case in Phase II DECNET Protocols). Each module

specified by DNA operates as a -black box"% That is, the operation

within the black box is transparent to other layers and to equivalent

modules in other nodes. The architecture does not define specitic code

for implementing modules. It only defines specific operations that the

modules must perform. The architecture specifies two kinds of

relationships between modules:

1. Interfaces. Interfaces are the relationships between

different modules that are usually in the same node.

2. Protocols. Protocols are the relationships between

equivalent modules that are usually in different nodes.

The architectur- specifies common error reporting, operational

parameters. and counters that certain layers must maintain. This

standardization ensures that maintenance. error logging, and network

management can take place consistently. Finally. DNA is an open-ended

architecture. Future phases of DNA may model additional layers.

additional modules within existing layers, or alternative models for

certa!in layers. A brief description of DECNET Phase II and Phase III

architectures follows.

DECNET Phase II. Figure 17. Page 90. shows the building of

information for each layer of the DECNXT Phase 11 DNA. Each protocol

I; 89

I .4

i H

a

L e -ar

-z E-

'. I I *I~ 't I

90

layer present is defined as follows (Ref. 16):

1. User Layer. This layer contains all user-supplied

functions. It is the highest layer in the Phase II DNA structure

(Ref. 16:Vol I).

2. Network Application Layer. This layer provides the network

functions for the user layer. Modules in this layer include network

remote file access modules, a remote file transfer utility, and a

remote system loader module. The protocol used for remote file

access and file transfer is the Data Access Protocol (DAP)(Ref.

16:Vol II).

3. Network Services Layer. This layer provides a

location-independent communication mechanism for both the user layer

and the network application layer. Two network application modules

may communicate with each other by means of the network services

layer regardless of their netvork locations. The protocol used

between network service modules is the Network Services Protocol

(NSP)(Ref. 16:Vol III).

4. Transport Layer. This layer provides a mechanism for the

network services layer to send a unit of data (a packet) from any

node in a network to any other node in the network. This layer,

while conceptually seperate from the network service layer, is

sufficiently simple in Phase II DNA that its specification is

encompassed by the NSP specification described above (Ref. 16:Vol

II9).

• " 91

- ..-.

5. Data Link Layer. This layer provides the transport layer

with an error-free communication mechanism between adjacent nodes.

The data link module specified for this layer implements the Digital

Data Communications Message Protocol CDDCMP). The functions

provided by this layer are independent of communication facility

characteristics (Ref. 16:Vol IV).

6. Physical Link Layer. Modules in the physical link layer

manage the physical transmission of data over a channel. The

Ifunctions of modules in this layer include monitoring channel

signals, clocking on the channel, handling interrupts from the

hardware, and informing the data link layer when a transmission is

complete. Implementations of this layer encompass parts of device

drivers for each communications device as well as the communications

hardware itself. The hardware includes devices, modems, and lines.

In this layer, industry standard electrical signal specifications

such EIA RS-232-C or CCITT V.24 operate rather than protocols (Ref.

16:Vol V).

The services between modules in the physical link and data link

layers are less sophisticated than those provided by the transport layer

modules. The modules that reside in the physical link and data link

layer provide services for moving data from a given node to an adjacent

node only. The modules in the transport and higher layers provide I-

services for moving data from a given node to any other node in the

network.

92

DECNET Phase III. Figure 17, page 90. shows the building of

information as data passes through the Phase III DNA layers. Each of

the Phase III DNA layers are defined below:

1. User Layer. The user layer contains most user-supplied

functions. It also contains the Network Control Program, a network

management module that gives system managers access to lower layers

to control and observe the network from a terminal (Ref. 17:Vol I).

2. Network Management Layer. Modules in the network

management layer provide user control of and access to operational

parameters and counters in lower layers. Network management also

performs down-link loading, up-line dumping, and test functions. In

addition, the network management performs event logging functions.

This layer is the only one that has direct access to each lower

layer. The protocols for this layer are (Ref. 17:Vol II):

A. Network Information and Control Exchange (NICE)

Protocol. This is used for triggering, down-line loading,

up-line dumping, testing, reading parameters and counters,

setting parameters, and zeroing counters.

B. Event Logger Protocol. This is used for recording

significant occurances in lower layers. An 'event" could result

from a line coming up, a counter reaching a threshold, a node

becoming unreachable, and so on.

4, 93

3. Network Application Layer. The network application layer

provides generic services to the user layer. Services include

remote file access, remote file transfer, and resource managing

programs. This layer contains both user- and Digital-supplied

modules. The following modules execute simultaneously and

independently in this layer (Ref. 17:Vol III):

A. Data Access Protocol (DAP). This is used for remote

file access and transfer.

B. Loopback Mirror Protocol. This is used for network

management logical link loopback tests.

4. Session Control Layer. The session control layer defines

the system-dependent aspects of logical link communication. Session

control functions include name to address translation, process

addressing, and process activation and access control. The module

at this level is called the Session Control Protocol (Ref. 17:Vol

IV).

5. Network Services Layer. The network services layer is

responsible for the system-independent aspects of creating and

managing logical links for network users. The Network Services

Protocol (NSP) module performs data flow control, end-to-end error

control, and the segmentation and reassembly of us -r messages (Ref.

17:Vol V).

4 " 94

. . . h A . , .-

6. Transport Layer. Modules in the transport layer route user

data, contained in packets, to its destination. The Transport

Protocol module also provides congestion control and packet lifetime

control (Ref. 17:Vol VI).

7. Data Link Layer. This is DDCMP as described previously for

Phase II DNA (Ref. 17:Vol VII).

8. Physical Link Layer. This module is the same as described

previously for Phase II DNA (Ref. 17:Vol VIII).

The three higher layers each interface directly with Session

Control for logical link services. Each layer interfaces with the layer

directly below to use its services. The User Layer interfaces directly

with the Network Application Layer as well. In addition, Network

Management modules interface with each lower layer directly for access

and control purposes. Finally, Network Management interfaces directly

with the Data Link Layer for service functions that do not require

logical links.

EWNEJ Design,. The primary purpose of a network is to pass data

from a source in one node to a destination is another. Because EWNET is

designed around the Phase II and III DNA structure, it is important to

understand how data flows through the DNA layers and between EWNET

nodes. Data traveling from one node in a network to another passes from

a source process in the user layer down through each layer of the

appropriate-phase DNA hierarchy of the source node or host before being

95

.4-

transmitted across a line. If the destination node or host is not

adjacent. the data must then travel up to the Transport Layer of the

adjacent node, where it is routed (or switched). sent back down through

the two lover layers. and transmitted across the next line in the path.

The data keeps traveling in this manner until it reaches its destination

node or host. At this node or host, the data passes up the hierarchy of

layers to the destination process.

All hosts attached to EWNET will contain Phase II DNA software.

while all EWNET nodes will contain Phase III DNA software. This

configuration is appropriate for EWNET since the use of Phase II DNA

software in the hosts will reduce the amount of network software that

must be present (homogeneous network) in the host. This satisfies the

requirements that the hosts (ISS computers) contain the least amount of

network software possible; and that host should not be allowed to

perform routing functions. Since the EWNET nodes are the center of the

star topology, they will be required to perform network packet routing

and thus will require the Phase III DNA software. Figures 18, 19. and

20 on pages 97, 98. and 99, are the data flow graphs for EWRET.

BnMx=

This chapter has translated the hardware and software requirements

into a commercially available system design. The hardware design

specifies the topology to be used, the hosts to be included, the

96

C jt

3 I0

I ___ _____

97 -

22

-C c

I 98

Qz

L .J1

411

I9

specific node to use. and the transmission medium to be used for each

EWNET link. Each of these design decisions is based upon the

requirements analysis and supported by background data gained from

researching the various design options. The software design is based

upon the structured specification in Appendix C and was derived

primarily by studing the commercially available network products such as

IBMts SNA. Xerox's ETHERNET, and Digital's DECNET. Once the network

product best suited to EWNET functional requirements was chosen, further

refinement of the commerically available network product was required to

fine tune the network configuration to the EWNET requirements. The

Digital Equipment Corporation's DECNET was chosen and refined because it

best suited EWNET's functional requirements and because the DECNET was

designed around the X.25 communications protocol (Ref. 15:348).

Additionally, DECNET is completely supported by the Digital Equipment

Corporation's Internets product (Ref. 15:340-349). The Internet

products are data transfer facilitators (not hardware emulators) that

provide mechanisms for interchanging data with IBM's SNA protocol

structure and remote batch workstation, UNIVAC's remote UNI004/NTR

batch, and CDC's interactive MUX200 batch. Finally, Digital Equipment

Corporation is in the process of implementing Packetnets (public packet

switching networks) based on the X.25 protocol throughout Canada, the

United States, and France; and initial local computer DECNET networks

are being designed by Digital Equipment Corporation that will be based

entirely upon the ETHERNET concept.

Due to the above discussion it is apparent that Digital Equipment

100

Corporation's DECNET is not just another network design; is is a

complete networking concept which allows future growth as technological V

advances are made.

The complete structured design of EWNET is contained in the Network

Profile located in Appendix D (Refs. 18;19). Appendix D was included

as a tool to be used by the EWNET Management group in the procurement of

the EWNET. Appendix D was written in the exact format required by the

Digital Equipment Corporation, but does not contain all data necessary

to procure the network at this time since this thesis study was

concluded before complete information on all hosts became available (had

not been procurred).

This chapter allocated all off-line host software modules to

particular node processors in the network.

1101

V. Conclusions and Racommendations

Cnncmlusons

This investigation, the development of EWNET, was based upon the

actual requirements of the Electronic Wartare Engineering Branch

Laboratory. The user interviews were used both to determine what the

exact user requirements were and to provide a vehicle to document these

requirements. From these user identified requirements the functional

requirement specifications of EWNET were determined.

The EWNET functional requirement specifications were broken down

into the hardware specification and the software structured

specification. This portion of the investigation was the most

time-consuming. The process of determining these specitications

required that iterative design decisions be made as the specifications

evolved.

The time spent developing the functional requirement specifications

proved to be worthwhile once the design phase was started. Because of

the amount of partitioning that had to be done to arrive at the

specification level, the design proved to be straightforward. The

evaluation and selection of a commercially available network product and

the tuning of this network configuration lead to a network design that

was unique with respect to the EWNET functional requirements.

The network was designed in such a way to minimize the amount of

102

U - -!

protocol software residing in each ISS so that minimum effect would be

9 felt by each ISS at implementation time. The Engineering Branch Host

Computer functions and the EWNET functions were combined to eliminate

the need for virtual terminal protocols. The most difficult portion of

the investigation concerned the vast amount of information existing on

network designs, forcing extensive reading on the part of the author.

The implementation and testing of the EWNET configuration is in

process at the Electronic Warfare Division, Robins AFB, Georgia. The

implementation is proceeding in steps; each star configuration is being

set up and tested before the core loop configuration wiLl be added.

This approach is giving the ISS lead engineers time to familiarize

themselves with the benefits of using the network.

Recent news from Robins AFB indicates that the EWNET is already

proving to be a valuable tool to the Electronic Warfare Division; the

time spent in obtaining databases from other similar ISSes has been

significantly reduced. thereby freeing up valuable time for engineers to

perform other task.

In suemary. through the user interviews, Structured Analysis

techniques, and Structured Design techniques, a top-down design of EWNET

was achieved. All primary requirements of the Electronic Wartare

Engineering Branch Laboratory for file transfer capability, resource

sharing and ISS independence have been met in the design. The

structured approach allowed the interfaces between the layers of

protocol to be clearly defined and together with the functional

103

.~~--

requirement specifications allowed the selection of an appropriate

commercially available network product to be signigicantly simplified.

leaving only network enhancements to be considered in follow-on

investigations.

Recoemmndations

Because the selection of a design for EWNET was limited to a

commercially available network design which is already in the

implementation and testing phases, follow-on investigations will be

limited to enhancements to the EWNET. The exact enhancements and

specific task involved which the Engineering Branch Laboratory would be

interested in are listed below:

1. Data link to Eglin AFB. FL. Math Laboratory.

a. Determine best approach (satellite or landline).

b. Develop and implement the necessary virtual terminal

protocol.

2. Standardize all outputs from the network into one format.

3. Automate all ISS and EWNET documentation.

4. Implement a network command terminal capability so that

standalone terminals can be added to the network.

Ito 104

5. Evaluate DECnet statistical network data and make

recommendations for additional capability (i.e., software monitors*

hardware monitors, or standalone statistics collecting node).

6. Evaluate the EWNET routing algorithm when the network grows

to include an additional node.

a. Design new algorithm

b. Test algorthim using a simulation of the EWNET

c. Implement new algorithm

!I
A simulation for an AFLC Bulk Data Network has been formulated in

another research project at the Air Force Institute of Technology (Ref.

20). This simulation was written by a fellow Robins, AFB employee using

Pascal to represent a specified network design. But, in conversations

with the simulation author, it was determined that slight modifications

(packet length. etc.) could result in the tailoring of the simulation to

represent the EWNET cofiguration. This simulation could then be hosted

on any of the computers within the Engineering Branch Laboratory and act

as a valuable testing tool in the evaluation of future enhancements to

the EWNET. Finally, it is suggested that extensive study and evaluation

of the DECnet-ETHERNET concept be undertaken once tne Digital Equipment

Corporation makes the documentation available. The study should focus

on the advantages to the Engineering Branch Laboratory of implementing

this protocol structure on EWNET.

105

1. Hobart, William C. Desig: of a Local Computer Network for the
Air Force Institute of Technology Digital Engineering Laboratory. MS
Thesis. Wright-Patterson AFB. Ohio: School of Engineering, Air Force
Institute of Technology, March 1981.

2. Vogler. F. H. and J. A. Copland.
Standardized Integratlon Supnort Station System Study. Georgia
Institute of Technology Study. Engineering Experiment Station, Altanta,
Georgia, May 1980.

3. Georgia Institute of Technology. Engineering Experiment Station,
Systems Engineering Laboratory. Standardized Integration Support
Station System Specification. Altanta, Georgia. 1980.

4. McQuillan. John M. "Local Network Architecture"% Computer Design,
4:18 - 26 (May 1981).

5. Dineson. Mark A. *Broadband Local Networks Enhance Communication
Design, Electronic Design News, 12: 77 - 85 (March 1981).

6. Martin. James. Design of Man-Computer Dialogues. Englewood Cliffs,
N. J. : Prentice-Hall. Inc.. 1973.

7. Air Force Logistic Cnmmand Headquarters Staff Letter.
Wright-Patterson AFB. Ohio. 1 April 1981.

8. Levy, Walter A. "Too Many Networks, Not Enough Gateways-,
Mini-Micro Systems. 9 : 104 - 109. (September 1980).

9. Weinbery, Victor. Structured Analysis. New York, N. Y.
Yourdon, Inc., 1979.

10. TRW Defense and Space Systems Group. Long Rane Logistics
Support Plan for Embedded Computer System.---Phane III Dralt. Redondo
Beach, California, April 1981.

11. Tanenbaum, Andrews. C=mputer Networks. Englewood Clitfs, New

106

~,, . .- -

_____ __-"_ - -- ... " ' -
- ~ ' -

. .. .,, ,,i

Yersey: Prentice-Hall, Inc., 1981.

t 12. Davies. D. W., D. L. A. Barber, W. L. Price. and C. M.
Solomonides. Computer Networks and Their Protocols. New York, N. Y.:
John Wiley and Sons Ltd., 1979.

13. Digital Equipment Corporation. VAX 11 Software Handbook.
Description of VAX-11/780 Software. Digital's Sales Support Literature
Group. 1980.

14. Digital Equipment Corporation. PDP 11 Processor Handbook.
Description of PDP-11/04/24/34A/44/70 Processors. Digital's Sales
Support Literature Group, 1981.

15. Digital Equipment Corporation. PDP 11 Software Handbook.
Description of PDP-11 Software Products. Digital's Sales Support
Literature Group. 1980-81.

16. Digital Equipment Corporation. Digital Network Architecture.II
Protocol Specifications± Volumes I. Ii IIl IV. and V. Description

of the Digital Network Architecture - Phase II Implementation of All
Protocol Layers. Digital's Sales Support Literature Group, 1980.

17. Digital Equipment Corporation. Digital Network Architecture III
Protocol Specifications: Volumes I. II. III. IV. V. VT. VII. and
VITI. Description of the Digital Network Architecture - Phase III
Implementation of all Protocol Layers. Digital's Sales Support
Literature Group, 1981.

18. Digital Equipment Corporation. Peirpheral Handbook. Descriptions
of all Peripheral Equipment Manufactured by the Digital Equipment
Corporation. Digital's Sales Support Literature Group. 1981.

19. Digital Equipment Corporation.
Terminals and Communications Handbook. Descriptions of all the
Terminals and Interface Products Manufactured by the Digital Equipment
Corporation. Digital's Sales Support Literature Group. 1980.

20. Stewart. Stephen. Simulation of the AFLC Bulk Data Network. MS
Thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force
Institute of Technology. December 1981.

. 10

__ _ _ _ __ _ _ _ __ - -

9 User Interview Results

This appendix contains a compilation of the results of the user

interviews that were conducted in the requirements analysis phase of the

investigation at Robins AFB, Georgia on 10. 11, and 12 June 1981. These

results provided the basis for the specification of the EWNET functional

requirements in Chapter II.

Contents

Page

Letter Requesting Interview........... 109

Interview...* 111
Projected Uses 0..... 113

Functional Requirements of EWNET 115

Other Comments......... 121

Design-Oriented Functional Requirements.. 122

List of Users who were Interviewed.............................. 127

4.,0 ' 108

To: MMRR (Mr. Joe Black)

Subject: AFIT Thesis Electronic Warfare Local Computer Network

(EWNET)

From : AFIT/ENE (Mr. Robert H.Stokes, Box 4083)

1. Attached you will find 25 copies of the interview I am using to
obtain data necessary to design the Electronic Wartare Engineering
Branch Local Computer Network (EWNET).

2. These copies are provided for distribution to yourself and the MMRR
sections listed below:

1. MMRRA

2. MMRRC

3. MMRRI

4. MMRRV

5. MMRRW (Info Copy Only)

6. MMRRF (Info Copy Only)

I wish each section chief to retain a copy and send the extras to the
following system lead engineers:

1. AN/ALR-46

2. AN/ALR-62

3. AN/ALR-69

4. AN/ALQ-119

5. AN/ALQ-125

6. AN/ALQ-131

7. AN/ALQ-155

8. AN/APR-38

9. B-52

10. F-15 TEWS

109

• I.

11. EF-Il1A

12. FLTS

13. EWOLS/ECSAS

14. UNIVAC-1108

15. Engineering Branch Standardization Group

Plus any systems the section chiefs feel should be included in this
list. Feel free to make additional copies of the interview if the need
arises.

3. Each system engineer should review the EWNET interview, answering
those questions that are self explanatory, within the next two weeks. I
will be arriving at WR-ALC on the morning of 10 June 1981, and will be
available to interview each system engineer and to answer questions
about the interview portions that are not self explanatory. I will only
be able to spend 3 days at WR-ALC before returning to Ohio. Therefore,
I hope that the two weeks before I arrive will be ample time for all
users to review the interview and be prepared for my arrival. In the
interest of expediency, I would appreciate it if each section chief
would query the system engineers in his command and meet with tne other
section chiefs to setup an interview schedule for me. I think it will
take approximately 50 minutes per interview if each system lead engineer
is interviewed separately. If the section chief wishes, I can be
prepared to interview all system lead engineers in his section at one
time in a group discussion. The interview schedule should be delivered
to Mr. Black's office COB Tuesday 9 June 1981, for immediate pickup by
Mr. Stokes on the morning of 10 June 1981.

4. I am fully aware of the limited time and resources at your disposal
and hope that what I have requested will not cause undue hardships on
anyone. I only wish to design a network that will meet everyone's needs
within the Engineering Branch, while providing the maximum feasable
support for the ISSes. I can only obtain this goal it I have your help,
without it I must rely on my own limited kno'ledge of all the system
requirements. Your efforts in this area are much appreciated.

Robert H. Stokes
MSEE Computer Systems

110

I-.

EWNET INTERVIEW

Introductory Narrative

I am in the Preliminary design phase of the Electronic Wartare

Branch Local Computer Network (EWNET) and am attempting to determine the

uses envisioned for EWNET as well as all functional requirements

associated with it. Therefore. I would appreciate any help that you can

give me in determining these requirements. Hopefully, the questions

that I have prepared in the interview outline will provide a framework

within which you can communicate your ideas to me in this area.

The interview is divided into four sections. The first section

lists typical uses of local computer networks, asks you to evaluate the

benef its of having the capability for each use on EWNET, and then asks

you to specify which uses you would like to see implemented first. The

second section lists some of the functional requirements that must be

determined and asks specific questions dealing with each of these

requirements. At the end of this section, you will be asked to rate

each of the functional requirements on a scale from **DOES-NOT-APPLY** to

-MUST HAVE%* The third section requests that you express any ideas that

you have concerning EWNET that were not expressed by your responses to

the questions in the first two sections. Finally, the fourth section

contains questions related to design-oriented requirements and deals

with network management. Users are not required to answer these

questions, only section and branch management need respond, although all

4L

inputs will be appreciated.

Name of the Person Interviewed

Date of Interview

EW System Represented

Section I : Projected Uses of EWNET

A. Resource Sharing

1. Peripheral Sharing = capability to access network from any

terminal and access any peripheral in the network from any host.

2. File Access and Transfer = capability to transfer files

between the devices and the hosts with all file restructuring

transparent to the user.

3. Software Tool Sharing = capability to access programs.

compilers, cross-assemblers, and utility routines anywhere in the

network for the user's program.

4. Access To ARPANET = capability to access ARPANET from any

terminal.

5. Access to AUTODIN I = capability to access AUTODIN I from

any terminal.

6. Access To UNIVAC-1108 capability to access the

UNIVAC-1108 from any terminal.

112

I. .o -

7. Threat Generator =capability to use digital threat

information generated from a central location.

8. Flight Test Monitor =capability to monitor Eglin AFB

flight test in real time. *

B. Distributed Processing = capability of executing job processes that

can run concurrently on different computers.

C. Distributed Databases = capability to access and maintain databases

that are distributed across several computers in the network (Central

Threat Database).

D. Video =capability to monitor Eglin APB test video (ground and

in-flight). *

E. Fault-Tolerance =capability to provide a more graceful degradation

of user service when a network failure occurs.

113

F. Rate the Above Projected Uses.

I PROJECTED USES I VERY I GOOD I MEDIUM I LITTLE NO I
I IGOODI USE IUSEI

I PERIPHERAL SHARING 1 51 41 2 I 1 1 0

IFILE TRANSFERS 1 8 1 2 1 1 1 1 i 0

ISOFTWARE TOOL SARING 1 8 1 3 I 1 I 0 1 0

IACCESS TO THE UNIVAC-1108 1 51 41 1 I 1 12

IACCESS TO AUTODIN I 1 1 1 I 2 1 0 1 8

IACCESS TO ARPANET 1 0 1 0 0 4 18

THREAT GENERATOR 4 5 I1 3 1 I

FLIGHT TEST MONITOR 2 i 3 3 31

IDISTRIBUTED PROCESSING 2 3 4 3 01

I DISTRIBUTED DATABASES 1 2 1 3 1 4 1 4 1 0

IVIDEO 1 1 21 31 2 1 4

FAULT-TOLERANCE 4 7 2 0 0

(Composite of User Responses)

G. What group of things would you like to see implemented first?

1. Peripheral Sharing_ 4

2. Software Tool Sharing_1

3. File Transfer 1

4. UNIVAC-1108 Access-1

5. Distributed Processing_.1

114

H. Prioritize the above group of uses with related comments:

9 1. File Transfers

2. Software Tool Sharing

3. Access to the UNIVAC-1108 - Backup of ISSes. Common

Databases. and Off-Line Processing.

4. Peripheral Sharing - Critical peripherals such as plotters

and printers.

5. Fault Tolerance - No support from DECNET.

6. Threat Generator

7. Rest of List in any order.

** Intertace to Eglin AFB TM-Stations and Math Lab has not been defined.

Possible satellite link to Eglin AFB is being considered.

Section II : Functional Requirements of EWNET

A. User-Oriented Requirements

1. Throughput

A. What computer / models do you envision using with

your ISSes over the next 5 years?

B. What will be the average utilization in hours per day?

115

* - * *~, ~

C. What will be the maximum utilization in hours per day?

COMPUTER NORMAL USAGE MAXIMUM USAGE

UNIVAC-1108 8 24
VAX 11/780 6 12
VAX 11/780 4 7
VAX 11/780 7 8
VAX 11/780 10 24
VAX 11/780 5 8
VAX 11/780 8 24
VAX 11/780 8 24
VAX 11/780 8 12
VAX 11/780 5 12
PDP 11/34 6 12
PDP 11/34 6 24
PDP 11/34 6 24
PDP 11/34 8 12
D. G. ECLISPE 5 12 I TEMPORARY
HARRIS 6024/4 4 24 I TEMPORARY

2. Response Time

Do you forsee any projected uses of the network that

requires that the response time of the network to a set of

commands not exceed some threshold?

NO --------------------------------------6

YES--Fast enough so no data is lost to a low sampling rate.

YES--Response time due to resource conflict should never

exceed 5 seconds.

YES--Interactive terminals = 5 seconds.

YES--Interactive terminals < 1 second.

YES--File transfer ISS-to-ISS < 5 minutes.

3. User Interface

116

A. Would symbolic device accessing be desirable?

(Making the actual host that an I/O device is connected

to transparent to the user.)

YES ---------- 13

NO ----------- 0

OPTION ------- 4

B. Should the same be done for software tools?

YES --------- 13

NO ---------- 0

OPTION ------- 4

C. Do you forsee the need for ISS / network interface

accounting data?

YES ---------- 11

NO ---------- 3

NOTE:

Number o- times the ISS is externally accessed.

D. What other features should the network present

to the user?

Built-in-test -------------------------- I

User prompts and 'help' routines ---------- 3

ISS independence ----------------------- 13

In-house distribution

117

Point-to-point ------------------- 3

Broadcast ------------------------ 1

4. Security

A. Do you forsee the running of classitied data or

programs on the network, and if so at what

classification?

YES -------------- 14

NO --------------- 0

SECRET

B. Do you forsee the need to protect databases on

the network from unauthorized access?

YES -------------- 14

NO --------------- 0

COMMENT:

2 Element-password to protect need-to-know

Security accountability = if the net could

record time, destination, and password of

classified receiptents, then would be a benefit

to audits of activity when problems arise.

5. Availability

A. What is the minimum percentage of time that you

118

feel that the network should be available?

B. What is the reason for giving the above

availability?

100 %--6 (0800-1700 hours + emergency changes 5

day work week)

99.9 % ---- I

95 %--2 (24 hour day. downtime =5 %)

90 %--I (network required f or full ISS capability)

50 %--2

C. Special consideration for availability: Emergency

changes should have priority when field support is

required, nothing should get in the way.

6. ISS Interaction

How and why do you envision ISS-to-ISS interaction?

1. Internal to section onl-------------------- 5

2. No external / limited external ------------- 10

3. Interaction with simulation & analysi-------1

4. Interaction with Flight Line Tests Sets ----- 1

7. Other User-Oriented Requirements?

1. Common network command languag--------------2

2. Central documentation -------------------- 2

3. Word-processor------------------------------ 5

119

4. Data link to Elint sources ------------------ I

5. Overflow / surge load handling ------------- 1

(Using another ISS's terminals

to operate your own ISS)

6. Self-configuring through periodic

status checks of the network members ---------1

7. Real-time capabitity where one

ISS takes complete control of network -------- 2

120

B. How would you rank the functional requirements for the above areas?

SAREA NOT MARGIN iAPPLY iVERY 1MUST

I I APPLYI i IAPPLY IHAVEI

THROUGHPUT 0 0 3 7 3

RESPONSE TIME 0 I1 2 7 3

USER INTERFACE 0 0 2 4 8

SECURITY 0 0 0 0 1 12

AVAILABILITY 0 0 4 4 5

ISS-TO-ISS INTERACTION 4 4 1 2 1

(Composite of User Responses)

Section III : Other Comments

What other comments or suggestions do you have concerning the

projected uses and/or functional requirements of EWNET?

1. The network software must be interrupt-driven. (Undecided)

2. It would be nice to be able to interrogate the network to

find a file that was sent. (6)

3. The network should not be used for general software

development. (4)

4. It should be easy to initialize the network with an

arbitrary subset of the nodes available on the network. (4)

121

5. The number of nodes and their locations should be

addressed. (4)

6. The number of ISSes per node should be addressed. (4)

7. Fiber optics should be used for the interface cables. (4)

8. The network must be designed for a high level of

interaction for future growth but must be capable of implementation

with very limited capabilities. (13)

Section IV : Design-Oriented Functional Requirements

The following requirements are not user-oriented and should be

answered by section and branch management. Section and branch

management are being asked to answer the questions in this section since

no single network management group presently exists within the

Engineering Branch.

Management Title____________________

A. Design-Oriented Requirements

1. Flexibility

A. What changes do you see being made to the network

during the next few years?

1. More hosts and devices being added --------------- 6

122

2. Being used more for non-EW purposes -------------- 3

3. Workload changing from mainly file transfers ----- 3

4. More software development systems added ---------- 5

5. Expanded use of on-line threat database ---------- 1

6. Usage expansion as value is identified -----------1

B. How important do you feel it is for EWNET to be

easily reconfigurable with respect to the following?

NETWORK SUBCOMPONENTS VERY I SOME I NOT

NEW COMPUTERS AND DEVICES 7 3 1 0

NEW TOPOLOGIES 2 3 1 5

NEW PROTOCOLS 2 2 1 6

NEW TRANSMISSION MEDIUM 1 2 1 3 1 5 1

SERIAL-TO-PARALLEL 1 7 I 2

(Composite of User Responses)

2. Per ormanoe Monitoring

What performance monitoring capabilities should

EWNET have?

1. Collect accounting data ----------------- 9

2. Collect node statistics ----------------- 7

3. Hardware monitors -----------------------

4. Software monitors ----------------------- 7

123

-*j~ "

5. Monitor network bottlenecks ------------- 9

6. Monitor network statu------------------9

7. Performance monitoring nod-------------3

NOTE:

To protect from network slowdown must be on demand

basis only.

3. Distributed Processing Language

What language(s) would you like to see implemented on

all or most of the hosts if a distributed processing

capability is implemented?

1. Jovial J-73 ----------4

2. Pascal ---------------3

3. ADA ----------------- 10

4. Fortra---------------6

5. Basic ----------------5

NOTE:

ADA has powerful control structures for distributed

processing.

4. Other Design-Oriented Requirements

Are there any other design oriented requirements that

should be addressed?

1. System should contain dual pass-word access.

124

2. Infinite queue detection

B. How would you rank the functional requirements for the above areas?

I AREA I NOT I MARGIN I APPLY [VERY I MUST I

I IAPPLY APPLY I IAPPLY IHAVEI

I FLEXIBILITY 1 0 1 0 1 2 1 3 1 4 1

I PERFORMANCE MONITORING 1 0 1 0 I 4 I 3 I 2 1

I DIST. PROCESS LANGUAGE 1 0 1 0 I 6 I 1 1 2 1

(Composite of User Responses)

C. General Comments

Al Richardson: "I see the host processor group

handling the nodes and documentation, word processing,

backup requirements for all ISSes connected to the

network. The software common tools and the database

must be resident at nodes common to all systems. The

EWOLS and ECSAS systems must be able to operate through

the network from any CRT terminal and not interfere

with ISS operation.

Everjn.en: Dontt want own ISS tied up by someone

125

else. Each ISS should process its own jobs first

before servicing anyone else".

M"apment: "'If it is possible, we world like to see the

functions performed by the UNIVAC-1108. performed by the

Network Node Computers.~

126

Section V : List of Users Who were Interviewed

USER'S NAM EW SYSTEM CONTROLLED OFFICE SYM4BOL

Mr. Joe Black Electronic Warfare Branch Chief MQIRR

Mr. John LaVecchia Simulation & Analysis Chief)MIRRA

Maj. Al Richardson Unit Chief MOMRRAA

Mr. Russell Decote Standardization MMRRAA

Mr. Jerry Nachreiner ECSAS M1M RAA

Mr. Don Schroeder EWOLS MMRRAA

Mr. Art Daum UNIVAC-1108 MMRRAH

Mr. Bobby McDonald Jammer Section Chief MMRRC

Mr. Dean DeLaigle ALQ-119 Unit Chief MMRRCB

Mr. Dennis Thomas ALQ-155 MMRRCC

Mr. H. J. Hildreth Integrated Sys. Section Chief MI4RRI

Mr. Jerry Reynolds F-15 TEWS MMRRIA

Mr. Hal Haney EF-111A Unit Chief MMRRIC

Mr. Gary Cox USM-464 (FLTS) MMRRIC

Mr. Bert Goble APR-38 MMRRIT

Mr. Tom Ridout APR-38 MMRRIT

Mr. Tom Batterman RWR Sys. Section Chief MOMRRV

Mr. Phil Oliver ALR-46 Unit Chief MMKRVA

Mr. Bob Smock ALR-46 MMRRVA

Mr. John Louth ALR-46 MMRRVA

Mr. N. Mitin ALR-62 MMRRVB

Mr. Harry Jennings ALR-69 Unit Chief MMRRVC

44 1 127

Electronic Warfare Engineering Branch Laboratory Floor Layout Diagram

and Topology Structure

This appendix contains a floor layout diagram of the Electronic

Wartare Engineering Branch Laboratory at Robins AFB. Georgia. The

location of all ISS computers with semi-permanent locations are shown as

well as the proposed locations of the EWNET node computers. Finally,

the computer links (topology) that were initially proposed by the

Georgia Institute of Technology to connect the node computers are shown

(Ref. 2:10).

Contents

Page

First Floor Layout ... 129

Second Floor Layout 130

Third Floor Layout 131

Proposed Georgia Tech Topology I Structure..*............so........... 132

Proposed Georgia Tech Topology 2 Structure 133

128

FSASb ILLVAULT

UNIVAC10

;" s FLOOR

NODE

NORT 3II IS

-I 0
VVAX1 1 '780

APR5

I SS

ARR IS6S / I D-1/411

129 Figure i-I 1 F/7 rLaou

ALQ-

VAX-11/7800

,Cn)

NORTHNOD1

ooVAX-i 1/780

nd130 Figure ~2B2 ForLyu

S w1

B - 5 2
V X 1 / 8

PDP-

I '3 4

-ALR-46

AX-11/'78
- -I

north FLTS I s w
] PDP- 5/4

FLOOR

oNODE

PDP-1 1/34

___________ CLASSIC_______

113 Feet Fo
131 Figure 3 -1.rd Flour Layout

lt.. . . ,........* ,,,,,,-., ,, : . ..": "1 •.. v
" ' ' j' ' '

-"- - ".... .. l .-

B-52 ALR-62 ALR-46 FLTS ALQ-125

PDFP-11/34 VAX-11/78 VAX-11/780 -1 /3 PDP-11/ '3

3rd FLOOR NODE_________

ALQ-131 ALQ-155 EWOLS/ECSAS ALR-69. ALQ-119

VAX-1 1/780 VAX-11/780 7VAX-11'780 7VAX-1I'780 XIAX-11,'780

1s FLOOR NODE 2 FLOOR NODE

AP-8F-15 TEWS ARC EF-111A UNIVAC-lb0

HARRIS-6024 VAX-11/780 PDP-1l.'34 VAX-1l/780

132 Figure 4-B Topolop-y Structure

VX13/80

133 Figure X- -3Tplo/ Strutur

00
VAX11/78

AR..ndix..

Structured Specification

This appendix contains the structured specification of the software

requirements for EWNET. First, the complete set of data flow diagrams

is included. These are followed by the data dictionaries for the

high-level protocol (user-level), the architecture-level protocol, the

transport/network-level protocol, and the link-level protocol.

Contents

Page

Data Flow Diagrams for User Leve Level Potoco........ 139

Data Flow Diagrams for Architecture Level Protocol0. 139

Data Flow Diagrams for Transport/Network Level Protocol 149

Data Flow Diagrams for Data Link Level Protocol*................. 164

Data Dictionary for User Level Protocol 175

Data Dictionary for Architecture Level Protocol 190

Data Dictionary for Transport/Network Level Protocol 256

Data Dictionary for Data Link Level Protocol.......................... 325

134

9

Data Flow Dia2rams for User Level Protocol

Page

EWNET Overview (Network Operating System) DFD.......................... 136

Execute EWNET Protocol at Primary Node (1) DFD 137

Execute Help Commands (1.2) DFD.. 138

135

- - " - i- "' i *,. d "."

KI
K K

" I~ 2 0 C

K~ C

K

i

0
-6-- ' r

C ItO
- 612

C-.
6461;. Z
.6 CC.

C. -~

K 3
-3

C. N
K I
- Id

I 3
C

C It
6. 6.

C.
o o

S I
644

6~ - C-

I. 6.

K. C.

C
3

6. ~6

C.)

.~ ~.

CL
4.

Z6~

136

01-

x z

137

C.

S.
2~.

4.4.

C-

4. -C

N S S - S -, 4

.4.5'

~J2

E
E

C-

x

138

-.-- ~ A ~

Data Flow DiAgrams for Architecture Level1 Protocol

~fluet

Page

EWNET (Architecture) Overview DFD. **** 140

Execute Architecture Protocol at Primary Node (1) DFD 141

Decode Status Packets (1 .2) DFD. 142

Generate Control Packets (1.3) DFD 143

Execute Startup Packets (1.4) DFD 144

Execute ACC/ACK Packets (1.5) DFD 145

Execute Control Packets (1.6) DFD ... 0............... 0................ 146

Execute Continue Packets (1.7) DFD...................... S.. 147

Code Architecture Packets (1.8) DFD......... 0...... 148

139

ta

In I

L. 0

10

2E

,-PAC zc

> ;

Startu-Error

Stru pakt

141 UA~es

Vald-RceyedA~4 .. ,.c -

* *

A ~ 0 0
6 U 0 - N

6 6. 1. 6 - - - B
0 - 6 - 0 S S. - A t'2 0 - N
0 -~ 6 0 0 6 6 5! - . - I

I I I ~ ~S 6.66 - - ?. 0 0 Z S
0 - - £ - rj S .- 6 -o - S. 0 0 6 6 - .. - - -. -

6 S 6 6 6 - 6 6 6 6 1 U 0 - 0 .~ -
- - - I I I I I I . 0 6

- - L-~ .~
0. I~ I I I

0 0 0 0 0 0 0 0 U U I - - -
45 55 55 55 £ 16 55 45 55 6 6 6 6 6 6 =
- - - - j ~ 0 0 - -

I I I I I I I I I I I
-~ -~ *0 *0 *0 *0 '0 *~ '0 '0 '0 '0 '0 0 -~ '0 0 '0

6 6 6 6 6 6 6 6 6 6 6 6 6 L 6 6 6 6 6 6
S S S S S S S S S S 16 5 5 16 5 5 5 5 - S

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6666 - -
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 -

I = = I = = I I I I I I - -

*0 55
6 - 6
-. - 6 - '0 0

1~66 '0 C. 6'0'0 6 - --
0150- 6 - -'0 -N0£. 6 6 NU66 I~ 0 6--

'60.6. - *666 I ?J606.~. -
I 60.-j. 6 65--

£5-I - I -. 06~1 6

06 6. 5'

66

I 6 6 J

I I

0

45 '0
,I:-66

15

'06 £6.1 01

I

0

-. 55 55 7

666 5'N~0: 116 6'

10

4- C.)

142

tt

-0

W a,

143

97

IS&

= ~ u *L -~~ ;a. -C

144

> 1h

145

t

SI I

,- .,C

i x

ICI

- C

rw~2.S

147

4%a c .

148

Data Flow DiagZ=m for Transport/Network Level Protocol

Content

Page

EWNET (Transport/Network) Overview DFD 150

Execute Transport Protocol at Primary node (1) DFD 151

Decode Route Header (1 .1) DFD.. 152

Execute Incoming Dialogue Message (1.3) DFD.................. 153

Execute Dialogue Segment (1.3.1) DFD0......................... 154

Execute IlL Packet (1.3.2) DFD. 155

Execute Data Packet (1.4) DFD. 156

Execute Startup Packet (1.5) DFD. 157

Execute Control Packet (1.6) DFD 158

Execute Connect Packet (1.6.1) DFD 0........ 159

Execute Disconnect Packet (1.6.2) DFD.....0................ 160

Execute Acknowledge Packet (1.7) DFD0....0..............0 161

Execute Outgoing Transport Packets (1.8) DFDo..........o.....o 162

Execute Network Protocol at Primary Node (2) DFD163

149

C Z

26:

Z3

150

7 Z______Z

C. m

-71

C.. 4 .L

39 A

4 .7

21I

152

F.o.-Cor. r,,.-Parameters

Data-Ack-Pa et

Data Nak-Pacxet

Ack-D-Fi:e

Link-ln-ACCeSsab.e

,aT -r'o-Err,)r

:ncom:n2-Dialcrue-Messa2e
Onerato

Onera-r-Passwor I -,: ,nmanc
Execute
Dia7olzue Ab r-
SeR-1- bw

114 3--' Disconnec-Recuect

Segment-Count

Cannec-Rennes-

:ncominQ-Dialogue-Int

:.5-Code Execute InTerrunt-7:o-Error
IL

Packet

Ack-I L-F41e

!/L-Ack-Packet

I IL-Nak-Packet

Figure C-16 Execute Incoming Dialogue Message (1.3) DFD

153

AWN

z z

ML

ac

cm lw0 ME 4,

154

V. E)

a. Z)

31-

155

tr.~

u Z

S tr.

OIi

II
156d

tt

157

x c

lU ~ daRIU -ja-3TCP~a4

U: -

I 15-

zii

159

E. ii

17T

160~

I !

"I

U

a

C ...

71.1

U

tt

162:

P.TW
77I

vl:

163

Data Flow Dia2rms for Data Link Level Protocol

I Contents

Page

EWNET (HDLC) Overview DFD 165

Execute HDLC Protocol at Primary Node (1) DFD 166

Decode and Sync Incoming Bit Stream (1.1) DFD 167

Frame Secondary Information Packets (1.2) DFD 168

Execute Incoming Control Packet (1.3) DFD 169

Execute Outgoing Control Packet (1.4) DFD 170

Execute Data Packet (1.5) DFD 171

Execute Maintenance Packet (1.6) DFD 172

Frame Primary Information Packets (1.7) DFD 173

Start Reply Timer (1.8) DFD 174

164

tt

II

165

Apo-

uus

all6

t m

7-167

I

1681

t

169

xI X

2 kS

t- 4)

z - 1

at~ u

4' :~~- '-/ -.

- 170

iA

II

/- =

I,1
iz

CL
172

"T)

1 72

Ir

173~

9

U

S

S ~- .~
U

C

I-.

E

S

I
E

4

174

DATA DICTIONARY

FOR USER LEVEL (Ui) PROTOCOL

Page

Data Element/Flow Descriptions..................... 176

Process Specification 187

175

DATA ELEMENT NAME: ABORTCOMMAND
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

DATA FLOW NAME: ARCHITECTUREOPERATIONCOMMANDS
ALIASES: NONE
COMPOSITION:

ARCHITECTUREOPERATIONCOMMANDS = PRIMARYSTART_FILE_
CONFIGURATION

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: CONNECT-REQUEST
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT LEVEL PROTOCOL

DATA ELEMENT NAME: DISCONNECT-REQUEST
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

DATA FLOW NAME: DLEPACKET
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL,
NOTES: EXECUTE LINK LEVEL PROTOCOL LAYER

DATA FLOW NAME: EN_PACKET
ALIASES: NONE
COMPOST ION:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE LINK LEVEL PROTOCOL LAYER

17
, 176

DATA FLOW NAME: ERROR-REASON
ALIASES: NONE

COMPOSITION:
REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT PROTOCOL LAYER

DATA ELEMENT NAME: FILE_TRANSFERINFORMATION

ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO OBTAIN PROCEDURES FOR TRANSFERRING FILES.
NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: FILETRANSFERPROCEDURE
ALIASES: NONE
COMPOSITION:

FILETRANSFERPROCEDURE = TABLE OF NECESSARY ACTIONS AND
COMMANDS DEPENDING ON FILE_
TRANSFERTYPE (SEQUENTIAL, KEY,

OR DATA FILE ADDRESS).
NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAdE: FLOWCONTROLERRORS

ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT PROTOCOL LAYER

DATA ELEMENT NAME: GENERALINFORMATION
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO OBTAIN GENERAL NETWORK INFORMATION.
NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: HELPRESPONSE
ALIASES: NONE
COMPOSITION:

HELPRESPONSE = I FILETRANSFERPROCEDURE I
I MENUSELECTION

177

I NETWORKCONFIGURATION

STARTUP_PROCEDURE

NOTES: EXECUTE HELP COMMANDS LAYER
EXECUTE EWMET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: INCOMINGARCHITECTURE_PACKETS
ALIASES: OUTGOING_.ARCHITECTUREPACKETS
COMPOSITION:

INCOMINGARCHITECTURE_PACKETS = INCOMINGPRIMARYNODE_
ARCHITECTUREPACKETS

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: INCOMINGLINKPACKETS
ALIASES: PRIMARYIMCOMINGPHYSICALPACKETS

IMCOMINGPHYSICALPACKETS

OUTGOINGPHYSICALPACKETS

OUTGOINGLINKPACKETS
SECONDARYINCOMINGPHYSICALPACKETS

COMPOSITION:
INCOMINGLINK_PACKETS = (11111111) + (2{SYNC}8) +

SOHPACKET

I DLEPACKET
I ENQPACKET

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: INCOMINGNODENETWORKPACKET
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE NETWORK LEVEL PROTOCOL

DATA FLOW NAME: INCOMINGPHYSICALPACKETS
ALIASES: INCOMINGLINKPACKETS

OUTGOINGPHYSICALPACKETS
PRIMARYINCOMINGPHYSICALPACKETS
OUTGOINGLINKPACKETS
SECONDARYINCOMINGPHYSICALPACKES

COMPOSITION:
SEE ALIASES

4
4 178

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: INCOMINGPRIMARYNODEARCHITECTUREPACKETS
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR ARCHITECTURE LEVEL PROTOCOL.
NOTES: EXECUTE ARCHITECTURE LEVEL PROTOCOL

DATA FLOW NAME: INCOMINGSATELLITE_TRANSPORTPACKET
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT LEVEL PROTOCOL

DATA FLOW NAME: INCOMINGTRANSPORTPACKETS
ALIASES: OUTGOINGTRANSPORTPACKETS
COMPOSITION:

INCOMINGTRANSPORTPACKETS = INCOMING_SATELLITE_TRANSPORT_
PACKET

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: LISTOFACTIVEHOSTANDDEVICENAES
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO OBTAIN THE CURRENT NETWORK CONFIGURATION.
NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: LOCALCOMMAND
ALIASES: NONE
COMPOSITION:

LOCALCOMMAND = ALL LOCAL COMPUTER COMMANDS.
NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: MENUSELECTION
ALIASES: NONE
COMPOSITION:

MENUSELECTION = [LISTOFACTIVEHOSTAND_DEVICENAMES'

179

A-A119 253 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO--ETC F/G 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECTRONI--ETC(U)

U C S OEC Al R H STOKES .
UNCLASSIFIED AFIT/GCS/EE/A1D-16 N...m.m.muimu
EIEEEEEEEEEEEE
EEEIIEEIIEEIIE
EEEEEEEEEEIIEE
EIEEEEEEEEEIIE
IIIIEEEEEEEIIEE

I FILETRANSFER..INFORMATION
I PROTOCOLSTARTUPINFORMATION

NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: NETWORK-CONFIGURATION
ALIASES: NONE
COMPOSITION:

NEWORKCONFIGURATION = ALL DATA IN THE DIALOGUE_PROCESS_
TABLE.

NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: NETWORKHELPCOMMAND
ALIASES: NONE
COMPOSITION:

NETWORK_HELP_.COMMAND =

I LISTOF.ACTIVEHOSTAND_.DEVICENAMES
I FILETRANSFERINFORMATION
I GENERAL_INFORMATION
I PROTOCOLSTARTINFORMATION

NOTES: EXECUTE HELP COMMANDS LAYER
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: OPERATOIRCOMMANDS
ALIASES: PRIMARYOPERATOR.COMMANDS

SECONDARYOPERATORCOMMANDS
COMPOSITION:

OPERATOR.-COMMANDS = IARCHITECTUREOPERATIONCOMMANDS
I TRANSPORTOPERATION..COMMANDS
I LOCALCOMMAND
I NETWORK_HELP_COMMANIDS

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: OPERATOR-DISPLAY
ALIASES: PRIMARYOPERATOR-DISPLAY

SECONDARYOPERATOR.-DISPLAY
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

,,,, 180

9 DATA ELEMENT NAME: OPERATORPASSWORDCOMMAND

ALIASES: NONE
VALUhES AND MEANINGS: REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL

PROTOCOL*
NOTES: EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

DATA ELEMENT NAME: OPERATOR_STARTCOMMAND
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

DATA FLOW NAME: OUTGOINGJARCHITECTUREPACKETS
ALIASES: INCOMINGARCHITECTURE.PACKETS
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: OUTGOINGLINK_PACKETS
ALIASES: INCOMINGLINK_PACKETS

PRIMARY-INCOMING-PHYS ICAL_.PACKETS
INCOMINGPHYS ICALPACKETS
OUTGOING-PHYS ICALPACKETS
SECONDARYINCOMING..PHYS ICALPACKETS

COMPOSITION: SEE ALIASES

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: OUTGOINGNETWORKPACKETS
ALIASES: INCOMING-NETWORK-PACKETS
COMPOSITION:

SEE ALIASES

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: OUTGOINGPHYS ICALPACKETS
ALIASES: INCOMINGLINKPACKETS

PRIMARYINCOMINGPHYS ICALPACKETS

181

INCOMINGPHYS ICALPACKETS
OUTGOING-LINKPACKETS
SECONDARYINCOMINGPHYSICAL-PACKETS

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: OUTGOINGTRANSPORT-PACKETS
ALIASES: INCOMING-TRANSPORT-PACKETS
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: PRIMARYINCOMINGPHYSICALPACKETS
ALIASES: SECONDARYINCOMING_..PHYSICAL-PACKETS

INCOMINGPHYS ICALPACKETS
OUTGOING-PHYS ICAL.PACKETS
INCOMING-LINKPACKETS
OUTGOING-LINK-PACKETS

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER

DATA FLOW NAME: PRIMARYOPERATORCOMMANDS
ALIASES: OPERATORCOMMANDS

SECONDARY-OPERATORCOMMANDS
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: PRIMARYOPERATORDISPLAY
ALIASES: OPERATOR-DISPLAY

SECONDARYOPE RATOR...DIS PLAY
COMPOSITION:

PRIMARYOPERATORDISPLAY = TRANSPORTDISPLAY.COMMANDS
H RELP-RESPONSE

NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: PRIMARYSTARTJFILECONFIGURATION
ALIASES: NONE

lip 182

I.

VALUES AND MEANINGS:
REFER TO DATA DICTIONARY FOR ARCHITECTURE LEVEL PROTOCOL.

NOTES: EXECUTE ARICHITECTURE LEVEL PROTOCOL LAYER

DATA ELEMENT NAME: PROTOCOLSTART-INFORMATION
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO OBTAIN STARTUP PROCEDURES,
NOTES: EXECUTE HELP COMMANDS LAYER

DATA ELEMENT NAME: RECEIVED-INCORRECT_PAS SWORDCOMMAND

ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: EXECUTE TRANSPORT PROTOCOL LAYER

DATA FLOW NAME: SECONDARYINCOMINGPHYSICALPACKETS
ALIASES: INCOMING-LINKPACKETS

PRIMARYINCOMING-PHYS ICALPACKETS
INCOMINGPHYS ICAL..PACKETS
OUTGOINGPHYS ICAL-YACKETS
OUTGOING-LINKPACKETS

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYOPERATOR.COMMANDS
ALIASES: OPERATORCOMMANDS

PRIMARY-OPERATOICOMMANDS
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYOPERATOR_DISPLAY
ALIASES: PRIMARYOPERATOR-DISPLAY

OPERATOR-DISPLAY
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

183

WL..

DATA FLOW NAME: SOHPACKETALIASES: NONE

COMPOSITION:
REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.

NOTES: EXECUTE LINK LEVEL PROTOCOL LAYER

DATA FLOW NAME: STARTUP-PROCEDURES
ALIASES: NONE
COMPOSITION:

STARTUPPROCEDURES = A TABLE THAT CONTAINS ALL COMMANDS
AND ACTIONS OF A NETWORK STARTUP.

NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: SYNC
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE LINK LEVEL PROTOCOL LAYER

DATA FLOW NAME: TRANSPORTDISPLAYCOMMANDS
ALIASES: NONE
COMPOSITION:

TRANSPORTDISPLAYCOMMANDS =

IRECEIVEDINCORRECTPASSWORD_COMMAND
I ERROR.EASON
I FLOWCONTROLERRORS

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: TRANSPORT_OPERATIONCOMMANDS
ALIASES: NONE
COMPOSITION:

TRANSPORTOPERATIONCOMMANDS =

-OPERATORPAS SWORDoCOMMADI
I OPERATORSTART_COMMAND
I ABORTCOMMAND
I DISCONNECTREQUEST
I CONNECT-REQUEST

18

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

u 185

FILE DEFINITIONS (U)

FILE OR DATABASE NAME: DIALOGUEJROCESS_TABLE
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR THE TRANSPO.RT/NETWORK

LEVEL PROTOCOL.
NOTES: EXECUTE HELP COMMANDS LAYER

i

PROCESS SPECIFICATION (U)

PROCESS NAME: DETERMINE COMMAND TYPE
PROCESS NUMBER: 1.1
PROCESS DESCRIPTION:
IF USERCOMMAND contains NETWORKID and COMMAND_FIELD TRANSFERCOMMAND then

Output command as ARCHITECTUREOPERATION_COMMANDS
ELSEIF USEICOMMAND contains NETWORKID and COMMANDFIELD = LOGICAL_LINK_

ESTABLISHMENT then
Output command as TRANSPORT_OPERATION_COMMANDS

ELSEIF USER_COMMAND contains NETWORKID and COMMAND_FIELD = HELP then
Output commatd as NETWORK.HELPCOMMAND

ELSE output command as LOCALCOMMAND

PROCESS NAME: DECODE HELP COMMAND
PROCESS NUMBER: 1.2.1
PROCESS DESCRIPTION:
IF NETWORK.HELPCOMMAND contains HELP_FIELD = General information then

Output GENERALINFORMATION Flag
ELSEIF NETWORK-HELPCOMMAND contains HELP_FIELD = File transfer then

Output FILETRANSFERINFORMATION Flag
ELSEIF NETWORKJHELPCOMMAND contains HELP..FIELD = Start then

Output PROTOCOLSTART.JNFORMATION
ELSE output LISTOFACTIVEHOST.ANDDEVICENAMES Flag

PROCESS NAME: PROVIDE GENERAL NETWORK INFO
PROCESS NUMBER: 1.2.2
PROCESS DESCRIPTION:
IF Input = GENERALINFORMATION Flag then

Output MENUSELECT ION
ELSE Null

PROCESS NAME: PROVIDE PROCEDURE FOR TRANSFERING FILES
PROCESS NUMBER: 1.2.3
PROCESS DESCRIPTION,
IF Input = FILETRANSFER..INFORMATION Flag then

Output FILETRANSFER_PROCEDURE
ELSE Null

PROCESS NAME: PROVIDE LIST OF ACTIVE HOSTS AND DEVICES

187

PROCESS NUMBER: 1.2.4
PROCESS DESCRIPTION:
IF Tnput = LISTOFACTIVEHOST_AND_DEVICENAMES Flag then

Extract from DIALOGUEPROCESS_TABLE and
Output NETWORKCONFIGURATION

ELSE Null

PROttSS NAME: PROVIDE NETWORK STARTUP PROCEDURES
PROCESS NUMBER: 1.2.5
PROCESS DESCRIPTION:
IF Input = PROTOCOL_START_INFORMATION Flag then

Output STARTUPJ.'ROCEDURES
ELSE Null

PROCESS NAME: CODE HELP RESPONSES
PROtSS NUMBER: 1.2.6
PROCESS DESCRIPTION:
IF Input = MENUSELECTION, FILETRANSFERPROCEDURES. NETWORKCONFIGURATION,

or STARTUPPROCEDURES then
Output as HELPRESPONSE

ELSE Null

PROCESS NAME: EXECUTE ARCHITECTURE LEVEL PROTOCOL
PROCESS NUMBER: 1.3
PROCESS DESCRIPTION:
EXECUTE the necessary processes to provide standardized formats and procedures

for accessing and passing data between a user process and a file system
existing in a network enviroment.

PROCESS NAME: EXECUTE TRANSPORT LEVEL PROTOCOL
PROCESS NUMBER: 1.4
PROCESS DESCRIPTION:
EXECUTE the necessary processes to create an interprocess communication

mechanism amoung the network nodes. It is concerned with the set of
services provided and management within the network.

PROCESS NAME: EXECUTE NETWORK LEVEL PROTOCOL
PROCESS NUMBER: 1.5
PROCESS DESCRIPTION:
EXECUTE the processes necessary to control the routing of packets within the

communication network.

188

PROCESS NAME: EXECUTE LINK LEVEL PROTOCOL
PROCESS NUMBER: 1.6
PROCESS DESCRIPTION:
EXECUTE the processes necessary to provide a data link control procedure that

will ensure a reliable data communication path between nodes of an network.

PROCESS NAME: EXECUTE PHYSICAL LEVEL PROTOCOL
PROCESS NUMBER: 1.7
PROCESS DESCRIPTION:
EXECUTE the interface processes necessary to deliver a bit stream from one node

to another.

PROCESS NAME: DECODE PROTOCOL RESPONSES
PROCESS NUMBER: 1.8
PROCESS DESCRIPTION:
DELIVER individual TRANSPORTDISPLAYCOMMANDS to the operator as

OPERATOPDISPLAY

PROCESS NAME: EXECUTE EWNET PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 2.0
PROCESS DESCRIPTION:
EXECUTE the architecture protocol, transport protocol, network protocol, link

protocol, and physical protocol established for the EWNET.

189

DATA DICTIONARY

FOR THE ARCHITECTURE LEVEL (A) PROTOCOL

Page

Data Element /Flow Descriptions...... *a o o 191

File Definitions.. 0009.....06.......... 00......0.......00...... 0..... 239

Process Specification..o.... o, 240

190

DATA._FLOWNAME: ABORT/STATUSERRORS
ALIASES: NONE
COMPOSITION: _

ABORT/STATUSERRORS = RECEIVED_UNSUPPORTSTATUS2

RECEIVEDFORMATSTATUS2
RECEIVEDSYNCSTATUS2
RECErVEDUNSUPPORTMISC

RECEIVEDFORMATMISC
RECEIVEDSYNCUNKNOWN

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: ACC/ECF/SCF.PACKET
ALIASES: NONE
COMPOSITION:

ACC/ECF/SCFPACKET = I ACCESS(ECF)_PACKET I
I ACCESS(SCF)_PACKET I

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: ACCEPTCONFIRM
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG FROM THE TRANSPORT PROTOCOL IMPLYING THAT THE
CONNECTCONFIRM PACKET HAS BEEN RECEIVED AND T.E LOGICAL_
LINK ESTABLISHED.

NOTES: EXECUTE STARTUP PACKETS LAYER,
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: ACC/ERPACKET
ALIASES: NONE
COMPOSITION:

ACC/ERPACKET - ACCESS(ERASE)_PACKET "
I ACCESS(RENA17)_.PACKETI

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ACCESSCOMPLETEPACKET
ALIASES: RECEIVEDACCESSCOMPLETEPACKET

VALIDRECEIVED.JC CES S_COMPLETE_PACKET
RECEIVEDACCOMP (COMMAND)
RECEIVED_AC COMP (PURGE)

191

, F.

RECEIVED..ACCOMP(RESPONSE)
RECEIVED-.ACCOMPC EOS)

COMPOSITION:

ACCESS_COMPLETE,_PACKET OPERATOR +TYPE=7 +CMPFUNC +FOP
NOTES: EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: ACCESS(ECF)JPACKET
ALIASES: ACCESS-.PACKET

AC CE SS(ERAS E LPACKET
ACCESS(RENAMIE).PACKET
ACCESS(SCF)...PACKET
RECEIVED..ACCESS_ PACKET
VALIDRECEIVED-AC CESS-YACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ACCESS(ERASE)PYACKET
ALIASES: ACCESSPACKET

AC CES S(RENAME)_PYACKET
ACCESS(ECF)...ACKET
ACCESS(SCFL-PACKET
RECEIVED-ACCESSPACKET
VALIDRECEIVED-AC CES SPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ACCESSPACKET
ALIASES: RECEIVED-.ACCESSPACKET

VALIDRECEIVED.AC CES SPACKET
AC CES S(CERASE)_..PACKET
ACCESS(RENAME)_PACKET
ACCESS(ECF)..PACKET
ACCESS(SCF)..PACKET

COMPOSITION:
ACCESS_PACKET =OPERATOR + TYPE=3 + ACCFUNC + ACCOPT +

FILESPEC + FAC + SER
NOTES: EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: ACCESS(RENAME)_PACKET[

192

ALIASES: ACCESS-_PACKET
ACCESS(ERASE)._PACKET
ACCES S(SCF)_PACKET
ACCESS(ECF)LPACKET

RECEIVEDAC CES SPACKE.
VALIDRECEIVED..ACCES SPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ACCESS(SCF)_PACKET
ALIASES: ACCESSPACKET

ACCESS(ERASE)JACKET
ACCESS(RENAME)_PACKET
ACCESS(ECF)_PACKET
RECEIVED.AC CES SPACKET
VALIDRECEIVEDJACCESS_PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: ACCFUNC
ALIASES: NONE
VALUES AND MEANINGS:

THE REQUEST CODE SPECIFYING THE OPERATION TO BE PERFORMED
SUCH AS: OPEN FILE, CREATE FILE. RENAME FILE, ERASE
FILE, DIRECTORY LIST, SUBMIT AS COMMAND FILE, AND EXECUTE
COMMAND FILE.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: ACCOMP(COMMAND)
ALIASES: ACCOMP(PURGE)
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THE END OF A DATA STREAM, PLUS A
POSSIBLE ABORT, PLUS THE REQUESTING OF THE END OF THE
LOGICAL LINK. GENERATES THE APPROPRIATE ACCESSCOMPLETE_
PACKET

NOTES: EXECUTE ACC/ACK PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: ACCOMP(EOS)
ALIASES: NONE

4

" 193

VALUES AND MEANINGS:
A FLAG USED TO INDICATE THE END OF A DATA STREAM REQUEST.
GENERATES AN ACCESSCOMPLETE_PACKET.

NOTES: EXECUTE ACC/ACK PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: ACCOMP(PURGE)
ALIASES: ACCOMP(COMMAND)
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE ACC/ACK PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: ACCOPT
ALIASES: NONE
VALUES AND MEANINGS:

ACCESS OPTIONS:
1. A RECORD MAY BE SKIPPED OR REPEATED AS SPECIFIED BY

THE CONTINUE PACKET. I/O ERRORS ARE NOT FATAL.
2. IF SET, A STATUS PACKET WILL BE RETURNED FOLLOWING

EACH RECORD SENT TO THE ACCESSED PROCESS IN THE
RECORD ACCESS MODE.

3. IF SET, RETURN A STATUS PACKET WITH EACH RECORD
RETRIEVED FROM AN ACCESSED SYSTEM. THE STATUS
PACKET SHOULD PRECEDE THE DATA PACKET SO THAT IT IS
POSSIBLE TO BLOCK THE TWO INTO ONE PACKET. WHEN A
USER REQUIRES A RECORD FILE ADDRESS TO BE RETURNED.
THIS OPTION IS USED.

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: ACKNOWLEDGE-PACKET
ALIASES: VALIDRECEIVED-ACKNOWLEDGEPACKET

RECEIVEDACKNOWLEDGEPACKET
COMPOSITION:

ACKNOWLEDGEPACKET = OPERATOR + TYPE=6
NOTES: EXECUTE ACC/ACK PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ADDGET_.PACKET
ALIASES: RECEIVED.-ADDGETPACKET
COMPOSITION:

-d 194

ADDGETPACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + KEY + ROP

NOTES: GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: ADDPUTPACKET
ALIASES: RECEIVEDADD..PUTPACKET
COMPOSITION:

ADDPUT_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + KEY + ROP

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: ALQ
ALIASES: NONE
VALUES AND MEANINGS:

THIS FIELD SPECIFIES THE ALLOCATION QUANTITY. FOR FILE
CREATION, IT SPECIFIES THE INITIAL SIZE OF THE NEW FILE.
THE ACTUAL SIZE OF THE NEW FILE IS RETURNED IN THIS FIELD.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: ATTMENU
ALIASES: NONE
VALUES AND MEANINGS:

SPECIFIES WHICH OF THE ATTRIBUTES FIELDS WILL BE PRESENT IN
THE MAIN ATTRIBUTES PACKET.

NOTES: ALL ARCHITECTURE lAYERS

DATA ELEMENT NAME: ATTRIB/ACCERROR
ALIASES: NONE
VALUtS AND MEANINGS:

A FLAG USED TO NOTIFY THE ACCESS CHECK PROCESS THAT ON A
RECEIVE OF A ATTRIB/ACCPACKET THE ATTRIBUTES PORTION OF
THE PACKET WAS IN ERROR.

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ATTRIB/ACCPACKET
ALIASES: RECEIVEDATTRIB/ACCPACKET
COMPOSITION:

ATTRIB/ACCPACKET = ATTRIBUTESPACKET + ACCESS-PACKET
NOTES: EXECUTE STARTUP PACKETS LAYER

195

DATA ELEMENT NAME: ATTRIB/ACK-ERROR
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO NOTIFY THE ACKNOWLEDGE CHECK PROCESS THAT
ON A RECEIVE OF A ATTRIB/ACKPACKET THE ATTRIBUTES PORTION
OF THE PACKET WAS IN ERROR.

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: ATTRIB/ACKPACKET
ALIASES: RECEIVED.ATTRIB/ACK PACKET
COMPOSITION:

ATTRIBiACK_PACKET = ATTRIBUTESPACKET ACKNOWLEDGEPACKET
NOTES: EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: ATTRIBUTES-PACKET
ALIASES: RECEIVED_.ATTRIBUTESPACKET

VALIDRECEIVED._ATTRI BUTES_PACKET
COMPOSITION:

ATTRIBUTES_PACKET = OPERATOR + TYPE=2 + ATTMENU +
(DATATYPE) + (ORG) + (RFM) + (RAT) +
(BLS) + (MRS) + (ALQ) + (BKS) + (FSZ) +

(MRN) + (RUNSYS) + (DEQ) + (FOP)
NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: BKS
ALIASES: NONE
VALUES AND MEANINGS:

BUCKET SIZE, USED ONLY FOR ACCESS TO RELATIVE FILES.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: BLS
ALIASES: NONE
VALUE.S AND MEANINGS:

PHYSICAL BLOCK SIZE.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: BUFSIZE
ALIASES: NONE
VALUES AND MEANINGS:

196

THE MAXIMUM BUFFER SIZE OF THE SENDING SYSTEM ALLOCATED FOR
PACKET EXCHANGE. THE TWO SPEAKING PROCESSES WILL USE THE
LESSER OF THE TWO BUFFER SIZES AS THE MAXIMUM SIZE. IF A
SYSTEM HAS AN UNLIMITED BUFFER SIZE, IF SENDS A 0 AND THE
TWO SYSTEMS WILL USE THE NONZERO BUFFER SIZE AS THE MAXIMUM.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: CMPFUNC
ALIASES: NONE
VALUES AND MEANINGS:

ACCESS COMPLETION FUNCTIONS SUCH AS:
1. TERMINATE ACCESS
2. RESPONSE
3. PURGE
4. ENDOFSTREAM (EOS)

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: CONFIGURATION-PACKET
ALIASES: RECEIVEDCONFIGURATIONPACKET

VALIDRECEIVEDCONFIGURATIONPACKET
COMPOSITION:

CONFIGURATIONPACKET = OPERATOR + TYPE=1 + BUFSIZE +
OSTYPE + FILESYS + VERSION + SYSCAP

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: CONFUNC
ALIASES: NONE
VALUES AND MEANINGS:

THIS FIELD IS USED TO SPECIFY THE RECOVERY ACTION TO BE
TAKEN. 1. TRY AGAIN

2. SKIP
3. ABORT

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: CONNECTPACKET
ALIASES: RECEIVED.CONNECTPACKET
COMPOSITION:

CONNECT._PACKET = OPERATOR + TYPE=4 + CTLFUNC + (CTLMENU) +

(RAC) + (KEY) + (ROP)
NOTES: GENERATE CONTROL PACKETS LAYER

197

DATA FLOW NAME: CONTINUE...ABORT-ERROR
ALIASES: CONTINUE...SKIP-.ERROR

CONTIVUE-.ONLY...ERROR

COMPOSITION:
CONT INUE-BORT-ERROR = RECE IVED-UNSUPPORT...CONTINUEI

IRECK IVEDJORMAT..CONTI NUE
I ECEIVED-SYNCCONTINUE

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW MNE: CONTINUEJ.BORT..YACKET
ALIASES: CONTINUE..ONLY...PACKET

CONTINUE-SKIPPACKET
RECEIVED-CONT INUE-j.BORT-.PACKET
RECEIVED-CONTINUE-ONLY..PACKET
RECEIVED-.CONT INUESKIP-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: CONTINUE/DATA-PACKET
ALIASES: NONE
COMPOSITION:

CONTINUE/DATA-PACKET = CONTINU&.INTERRUPT..YACKET + DATA_
PACKET

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: CONTIVUE...ERRORS
ALIASES: NONE
COMPOSITION:

CONTINUE_ERRORS IRECEIVED..UNSUPPORT_.CONTINUE
IRECEIVEDJORMAT..CONTINUE
IRECEIVED-SYNC-CONTINVE

RECEIVED-NSUPPORT-.MISC I
IRECEIVED...FORMATMISC
IRECEIVED-SYNCNKNOWN

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: CONT INUE-.INTERRUPT..PACKET
ALIASES: RECEIVED-.CONTINUE-PACKETS
COMPOSITION:

qp 198

CONTINUE...INTERRUPT...PACKET =CONTINUE_.ABORTPACKET +
CONTINUE-SXIPPACKET +
CONTINUE..ONLY-P.ACKET

NOTES: EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: CONTINUE..ony-.ERROR
ALIASES: CONT INUE-ABORT..ERROR

CONTINUE...SKIP..ERROR
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: CONTINUE-onLY..ACKET
ALIASES: CONTINUE...ABORT...PACKET

CONTINUE...SKIPPACKET
RECEIVEDCONTINUEABORT-PACKET
RECE IVED-CONTINUE-S.KIP..PACKET

COMPOSTION:RECEIVEDCONTINUEONLY-P.ACKET

CONTINUE_.ONLYPACKET = OPERATOR +TYPE=5 +CONFUNC

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: CONTINUE..SKIP..ERROR
ALIASES: CONTINUE-ABORTERROR

CONT INUE-OnLY..ERROR
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW KNE: CONTINUE-SKIP..PACKET
ALIASES: CONTINUE..ONLY..)ACKET

CONTINUEJJBORT-PACKET
RECEIVED...CONTINUE..ABORT_.PACKET
RECEIVEDCONTINUENLY.YACKET
RECEIVED...CONTINUE_..SKIP....ACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: CONTINUE-.WTILEAD-RECORD

199

ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE BAD RECORD SHOULD BE LEFT
AS IS AND CONTINUE RECIEVING RECORDS.

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: CONTROLPACKET
ALIASES: RECEIVED-CONTROLPACKET
COMPOSITION:

CONTROL-PACKET = I-CONNECT-PACKET I
I GET-PACKET I
I PUT-PACKET I

NOTES: GENERATE CONTROL PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: CTLFUNC
ALIASES: NONE
VALUES AND MEANINGS:

SPECIFIC CONTROL INFORMATION:
1. GET RECORD
2. CONNECT
3. UPDATE
4. PUT RECORD
5. DELETE
6. REWIND

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: CTLMENU
ALIASES: NONE
VALUES AND MEANINGS:

INDICATES OPTIONAL FIELDS ARE PRESENT.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: DATA
ALIASES: FILE. DATA
VALUES AND MEANINGS:

THE FILE DATA BEING TRANSFERRED. THIS FIELD IS TOTALLY
TRANSPARENT AND USES ALL 8-BITS OF EACH BYTE.

NOTES: EXECUTE CONTINUE PACKETS LAYER

200

DATA FLOW NAME: DATA_ERRORS
ALIASES: NONE
COMPOSITION:

DATA-ERRORS - RECEIVED_UNSUPPORTDATA-i
RECEIVED_FORMT_DATA I
RECEIVEDSYNC.DATA
RECEIVEDUNSUPPORTMISC
RECEIVEDFORMATMISC
RECEIVEDSYNCUNKNOWN

NOTES: EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: DATA-PACKET
ALIASES: RECEIVEDDATAFILE
COMPOSITION:

DATA-PACKET = OPERATOR + TYPE=8 + RECNUM + FILEDATA
NOTES: EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: DATA-TYPE
ALIASES: NONE
VALUES AND MEANINGS:

THE TYPE OF DATA BEING TRANSFERRED. DEFAULT TO IMAGE.
THIS FIELD IS VERY IMPORTANT FOR FILE/RECORD RETRIEVAL.
MANY FILE SYSTEMS DO NOT EXPLICITLY STORE WITH THE FILE
ATTRIBUTES, INFORMATION AS TO WHETHER THE FILE CONTAINS
ASCII, EBCDIC, OR IMAGE DATA. THEREFORE, THE CONTENTS
OF A FILE ARE INTERPRETED ACCORDING TO THE DATA TYPE
SUPPLIED BY THE USER.
IMAGE IS THE MODE WHERE NO CODE SET IS SPECIFIED. IT IS A
FORMAT FOR SENDING 8-BIT QUANTITIES WITHOUT SPECIFYING ANY
CODE REPRESENTATION. THE ACTUAL DATA MAY BE ASCII, OR
BINARY. IT IS UP TO THE USER PROCESS TO DETERMINE HUW TO
USE THE DATA.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: DEQ
ALIASES: NONE
VALUES AND MEANINGS:

FILE EXTENSION QUANTUM SIZE IN VIRTUAL BLOCKS, WHICH IS THE
AMOUNT OF SPACE, IN BLOCKS, ADDED TO THE FILE EACH TIME THE
FILE IS IMPLICITLY EXTENDED.

NOTES: ALL ARCHITECTURE LAYERS

201

DATA ELEMENT NAME: DISCONNECT
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE TERMINATION OF THE LOGICAL LINK.
NOTES: CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: DISCONNECT-REQUEST
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: EOF
ALIASES: RECEIVED EOF
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: EXECUTE_.ERRORS
ALIASES: NONE
COMPOSITION:

EXECUTE-ERRORS = I OPERATIONINPROGRESS
I FILE-ERRORS
1 SUCCESSFUL-OPERATION
I EOF
I DATA-ERRORS

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: FAC
ALIASES: NONE
VALUES AND MEANINGS:

FILE ACCESS OPERATIONS A USER REQUIRES.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: FLAGS

202

- - Io

ALIASES: NONE
VALUES AND MEANINGS:THE PACKET FLAGS SUCH AS:

1. STREAM IDENTIFICATION FIELD PRESENT
2. LENGTH FIELD PRESENT
3. EXTENSION PRESENT

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: FILEDATA
ALIASES: DATA
VALUES AND MEANINGS:

SEE ALIASES
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: FILEERRORS
ALIASES: RECEIVEDFILEERRORS
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: FILESPEC
ALIASES: NONE
VALUES AND MEANINGS:

THE FILE SPECIFICATION IN THE FORMAT REQUIRED BY THE
REMOTE NODE.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: FILESYS
ALIASES: NONE
VALUES AND MEANINGS:

FILE SYSTEM TYPE OF THE FILE SYSTEM BEING USED BY THE
PROCESS SENDING THIS MESSAGE.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: FIRST-ATTRIBFLAG
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG SET WHEN THIS NODE IS THE ONE GENERATING THE FIRST
ATTRIBUTES PACKET.

NOTES: EXECUTE STARTUP PACKETS LAYER

203

DATA ELEMENT NAME: FIRSTCONFIGFLAG
ALIASES: NONE
VALUES AND MEANINGS :

A FLAG SET WHEN THIS NODE IS THE ONE GENERATING THE FIRST
CONFIGURATION-PACKET.

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: FOP
ALIASES: NONE
VALUES AND MEANINGS:

FILE ACCESS OPTIONS A USER REQUIRES SUCH AS REWIND, OPEN,
REWIND ON CLOSE, OR POSITION MAGNETIC TAPE, ETC.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: FSZ
ALIASES: NONE
VALUES AND MEANINGS:

SIZE OF THE FIXED PART OF VARIABLE LENGTH RECORDS WITH
FIXED CONTROL FORMAT.

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: GET-PACKET
ALIASES: RECEIVEDGET_.PACKET
COMPOSITION:

GETPACKET =I ADDGETPACKET I
I KEYGETPACKET I
I SEQGET.PACKET I

NOTES: GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: INCOMINGPRIMARYNODEARCHITECTUiE_PACKETS
ALIASES: INCOMINGSECONDARYNODEJARCHITECTUREPACKETS
COMPOSITION:

INCOMINGPRIMARYNODEARCHITECTUREPACKETS

-RECEIVEDACCESS_COMPLETEPACKET

[RECEIVEDSTATUS_PACKET
I RECEIVEDSTARTUPPACKET
I RECEIVEDCONTINUEABORT

204

ACCEPTCONFIRM
RECEIVEDCONTINUEONLYAPACKET

IRECEIVEDCONTINUESKIPPACKET
RECEIVEDDATAFILE

RECEIVED_CONTROL_FILE
DISCONNECTCONFIRMVERSION

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATA FLOW NAME: INCOMINGSECONDARYNODE.ARCHITECTUREPACKETS
ALIASES: INCOMINGPRIMARYIODEARCHITECTUREPACKETS
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: KEY
ALIASES: NONE
VALUES AND MEANINGS:

RELATIVE FILES = RECORD NUMBER
INDEXED FILES = RECORD KEY
DIRECT FILES = RECORD KEY
RECORD FILE ADDRESS:

ACCESS MODE = RECORD FILE ADDRESS
BLOCK MODE ACC = VIRTUAL BLOCK NUMBER

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: KEY_GET_PACKET
ALIASES: RECEIVEDKEYGET.-PACKET
COMPOSITION:

KEYGETPACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + KEY + ROP

NOTES: GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: KEY_PUTPACKET
ALIASES: RECEIVEDKEYPUT-PACKET
COMPOSITION:

KEYPUTPACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + KEY + ROP

NOTES: GENERATE CONTROL PACKETS LAYER

4

~205

DATA ELEMENT NAME: LENGTH
ALIASES: NONE
VALUES AND MEANINGS:

DENOTES THE LENGTH OF THE OPERAND FIELD (NUMBER OF 8-BIT
BYTES).

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: MRN
ALIASES: NONE
VALUES AND MEANINGS:

MAXIMUM RECORD NUMBER FOR A FILE.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: MRS
ALIASES: NONE
VALUES AND MEANINGS:

THE LENGTH OF EACH FILE RECORD IN NUMBER OF BYTES.* FOR
VARIABLELENGTH RECORDS, THIS FIELD SPECIFIES THE MAXIMUM
RECORD SIZE. WHEN THE ACCESSED PROCESS RECEIVES THE MRS
(MAXIMUM RECORD SIZE), IT MUST CHECK IT AGAINST; THE LENGTH
OF ITS BUFFER. IF THE BUFFER WILL NOT ACCOMMODATE THIS
SIZE RECORD, THE ACCESSED PROCESS SHOULD RETURN ITS BUFFER
SIZE.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: NEW-ACCESS
ALIASES: NONEI VALUES AND MEANINGS:

A INTERNAL FLAG USED TO START A NEW DATA STREAM ACCESS ONCE
AN OLD FILE TRANSFER IS COMPLETE.

NOTES: EXLCUTE STARTUP PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: OPERAND
ALIASES: NONE
VALUES AND MEANINGS:

THE INFORMATION FIELD OF THE PACKET. IT IS DEPENDENT ON THE
TYPE FIELD.

NOTES: ALL ARCHITECTURE LAYERS

206

DATA ELEMENT NAME: OPERATIONIN_PROGRESS
ALIASES: RECE-IVEDPENDINGSTATUS

RECEIVED-OPERATIONINPROGRESS
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: OPERATOR
ALIASES: NONE
COMPOSITION:

OPERATOR = TYPE + FLAGS + (STREAMID) + (LENGTH) + (OPERAND)

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: ORG
ALIASES: NONE
VALUES AND MEANINGS:

ATTRIBUTES OF THE FILE BEING ACCESSED. DEFAULT SEQUENTIAL.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: OSTYPE
ALIASES: NONE
VALUES AND MEANINGS:

OPERATING SYSTEM TYPE
NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: OUTGOINGPRIMARYNODEARCHITECTUREPACKETS
ALIASES: OUTGOINGSECONDARY-NODEJARCHITECTURE_PACKETS
COMPOSITION:

OUTGOING_PRIMARYNODE.-ARCHITECTURE_PACKETS

IDISCONNECTREQUEST
IWORKINGPACKETS
1 STATUSPACKETS

NOTES: OVERVIEW LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: OUTGOINGSECONDARYNODE.ARCHITECTUREPACKETS
ALIASES: OUTGOINGPRIMARYNODEARCHITECTURE_PACKETS

207/

-

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER

DATA FLOW NAME: PRIMARYINCOMINGDIALOGUE-COM ANDS
ALIASES: SECONDARYINCOMING..DIALOGUECOMMANDS
COMPOSITION:

PRIMARYINCOMING-DIALOGUECOMMANDS

IOPERATORPASSWORD.COMMAND
OPERATORSTART.COMMAND

I ABORTCOMMAND
1 CONNECTREQUEST

NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: PRIMARY-STARTFILECONFIGURATION
ALIASES: SECONDARYSTARTFILE-CONFIGURATION
VALUES AND MEANINGS:

THIS IS A COMMAND FROM THE OPERATOR TO START THE FILE-
TRANSFER PROTOCOL BY ISSUING A CONFIGURATIONPACKET.

NOTES: OVERVIEW LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: PRIMARYOUTGOINGQ.DIALOGUECOMMANDS
ALIASES: SECONDARYOUTGOINGDIALOGUECOMMANDS
COMPOSITION:

PRIMARYOUTGOING-DIALOGUECOMMANDS

-RECE IVEDINCORRECTY.PAS SWORDCOMMAND
FLOWCONTROLERRORS

I OUTGOINGDIALOGUEDATAPACKET
I ERROR.REASON

- OUTGOING_DIALOGUE_MESSAGE
REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.

NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: PURGE/ABORTINTERRUPT
ALIASES: NONE
VALUES AND MEANINGS:

4

208

A FLAG USED TO INDICATE THAT A CONTINUEABORT.PACKET SHOULD
BE GENERATED AND OUTPUTED AFTER THE GENERATION OF AN
ACCOMP(PURGE).ACKET OR ACCOMP(COMMAND)..PACKET.

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: PUT-PACKET
ALIASES: RECEIVED..PUTPACKET
COMPOSITION:

PUT-PACKET = -SE.PUTPACKET-
IKEYPUTPACKET I
IADDPUT_PACKET I

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: RAC
ALIASES: NONE
VALUES AND MEANINGS:

SETS THE ACCESS MODE:
1. SEQUENTIAL RECORD ADDESS
2. KEYED ACCESS
3. ACCESS BY RECORD FILE ADDRESS
4. SEQUENTIAL FILE ACCESS
5. ACCESS BY VIRTUAL BLOCK NUMBER
6. BLOCK MODE FILE TRANSFER

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: RAT
ALIASES: NONE
VALUES AND MEANINGS:

INFORMATION ABOUT THE ATTRIBUTES OF THE INDIVIDUAL RECORDS
SUCH AS TYPE OF CARRAGE CONTROL, LINE FEED, ETC.

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: RECEIVED-ACCESS-COMPLETEERRORS
ALIASES: NONE
COMPOSITION:

RECEIVEDACCES S-COMPLETE..ERRORS

-RECEIVED..UNSUPPORTAC C/COMP'
I RECEIVED_FORMATACC/COMP
I RECEIVEDSYNC..ACC/COMP
I RECEIVEDUNSUPPORTMISC
I RECEIVEDFORMATMISC

q -209

A

IRECEIVED..SYNCUNKNOWN

9NOTES: EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: RECEIVED-ACCESS-COMPLETE-ACKET
ALIASES: ACCESS...COMPLETE..PACKET

VALID...RECEIVEDJCCES S..COMPLETE...PACKET
RECEIVED-.ACCOMP(COMMAND)
RECEIVEDJLCCOMP(PURGE)
RECEIVED...ACCONP(RESPONSE)
RECEIVED..ACCOMP(EOS)

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ACC/ACK PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVED..ACCESS-.PACKET
ALIASES: ACCESS-PACKET

VALIDRECEIVED.AC CES S..PACKET
AC CES S (ERASE) JACKET
ACCESS(RENAME)J'ACKET
ACCESS(ECFX..PACKET
ACCESS(SCFL-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVEL-ACCOMP(COMMAND)
ALIASES: ACCESS..SOMPLETE..PACKET

RECEIVED-.AC CES S..COMPLETEPACKET
VALID-.RECEIVED-.AC CES S..COMPLETEPACKET
RECEIVED-.ACCOMP (PURGE)
RECEIVED-.ACCOMP(RESPONSE)
RECEIVED-.AC COMP(EOS)

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATAJLOW....AME: RECEIVED-.ACCOMP(EOS)
ALIASES: ACCESS-.COMPLETE-.PACKET

RECEIVED...ACCES S..COMPLETE-PACKET
VALID...RECEIVED..AC CES S..COMPLETE...PACKET

210

RECEIVED..ACCOMP (COMMAND)
RECEIVED..ACCOMP (PURGE)

COMPSITON:RECEIVED-.ACCOMP(RESPONSE)

SEE ALIASES
NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: RECEIVED-.ACCOMP(PURGE)
ALIASES: ACCESS.-COMPLETEPACKET

RECEIVED.AC CES SCOMPLETE..PACKET
VALID-RECEIVED-.ACCES S..COHPLETE-PACKET
RECEIVED...ACCOMP(COMMAND)
RECEIVED...ACCOMP(RESPONSE)
RECEIVED..ACCOMP(EOS)

COMPOSITION:
SEE ALIASES

MOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: RECEIVED..ACCOMP(RESPONSE)
ALIASES: ACCESSCOMPLETE...ACKET

RECEIVED-.AC CESS_-COMPLET,.-PACKET
VALID...RECEIVED..ACCESSCOMPLETEJ-ACKET
RECEIVEDJCCOMP (COMMAND)
RECEIVED-.AC COMPC PURGE)
RECEIVEDJAC COMP(EOS)

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: RECEIVED-.ACC..ERRORS
ALIASES: NONE
COMPOSITION:

RECEIVED..ACCERRORS IRECEIVED-UNSUPPORT-.ACCESS!
IRECEIVED-NSUPPORT..MISC
IRECEIVED-JORMAT-.ACCESS
IRECEIVEDFORMATMISC
IRECEIVED..SYNC-.ACCESS
IRECEIVEDSYNC_.UNKNOWN

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVED-.ACK-ERRORS
ALIASES: NONE

211

COMPOSIT ION: RECEIVEDCACKTERRORS I RECEIVEDUNSUPPORTMISCI

I RECEIVEDUNSUPPOETACK
I RECEIVED_FORMATACK

RECEIVEDJFORMATJMISC
RECE IVEDSYNCACK
RECEIVED_SYNC_UNKNOWN

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVED.ACKNOWLEDGE-PACKET
ALIASES: ACKNOWLEDGE-PACKET

VALIDRECEIVEDACKNOWLEDGEPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVEDJDD_GET..PACKET
ALIASES: ADD.GETPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVED.ADDPUTPACKET
ALIASES: ADD.PUT-PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDATTRIB/ACC_PACKET
ALIASES: ATTRIB/ACCPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVED..ATTRIB/ACKPACKET
ALIASES: ATTRIB/ACK.PACKET
COMPOSITION:

SEE ALIASES

0 212

* * - 4*~:

NOTES: EXECUTE STARTUP PACKETS LAYER

t
DATA FLOW NAME: RECEIVED-ATTRIBERRORS
ALIASES: NONE
COMPOSITION:

RECEIVED_,TTRIB_ERRORS I RECEIVED_UNSUPPORTATTRIB
RECEIVEDJORMATATTRIB
RECEIVEDSYNCJITTRIB
RECEIVEDUNSUPPORTMISC
RECEIVED-FORMATMISC
RECEIVED_SYNCUNKNOWN

1OTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVED-ATTRIBUTESPACKET
ALIASES: ATTRIBUTESPACKET

VALIDRECEIVED-.Arl.IBUTES_PACKET
COMPOSIT:ON:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NADE: RECEIVED.AT&FILE
ALIASES: DATAPACKET
COVi-OSITION:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDCONFIGERRORS
ALIASES: NONE
COMPOSITION:

RECEIVEDCONFIGERRORS I RECEIVEDUNSUPPORT_CONFIG
RECEIVEDFORMAT_CONFIG
RECEIVEDSYNCCONFIG
RECEIVED_UNSUPPORTMISC
RECEIVEDFORMATMISC
RECEIVEDSYNC_UNKNOWN

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVED-CONFIGURATION-PACKET

4, "213

ALIASES: CONFIGURATION-PACKET
VALIDRECEIVEDCONFIGURATIONPACKET

COMPOSITION:
* SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVEDCONNECTPACKET
ALIASES: CONNECT-PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

DATA FLOW NAME: RECEIVEDCONTINUE.ABORT_PACKET
ALIASES: CONTINUE-ONLYPACKET

CONTINUE_-ABORTPACKET
CONTINUE-SKIP PPACKET
RECEIVEDCONTINUE-0NLY-PACKET
RECEIVEDCONTINUESKIP-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE ACClACK PACKETS LAYER

DATA FLOW NAME: RECEIVEDCONTINUE-ONLY-PACKET
ALIASES: CONTINUEONLYPACKET

CONTINUESKIPPACKET
CONT INUE-ABORTPACKET
RECEIVEDCONTINUESKIP-PACKET
RECEIVED_CONTINUE..ABORTPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDCONTINUEPACKETS
ALIASES: CONTINUEINTERRUPTPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDCONTINUESKIPPACKET

d

" 214

ALIASES: CONTINUEONLYPACKET
CONTINUE_ABORT_PACKET9 CONT INUESKIP..PACKET
RECEIVEDCONINUE_ABORTPACKET
RECZIVED_CONTINUEONLY..PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDCONTINUE-STATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDCONTINUESTATUS

I RECEIVEDOPERATIONINPROGRESS
RECEIVEDSUCCESSFULOPERATION
RECEIVEDSYNCJDATA
RECEIVEDFORMATDATA
RECEIVEDUNSUPPORTDATA

I RECEIVEDFILEERRORS

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDCONTROL_ERRORS
ALIASES: NONE
COMPOSITION:

RECEIVEDCONTROLERRORS = "-RECEIVED.UNSUPPORT.CONTROL
RECE IVED.,SYNCCONTROL

I RECEIVEDFORMAT-CONTROL
I RECEIVEDUNSUPPORTMISC
I RECEIVED_FORMATJMISC

RECEIVEDSYNC_UNKNOWN

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTROL PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: RECEIVEDCONTROL..PACKET
ALIASES: CONTROL-PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

EXECUTE CONTROL PACKETS LAYER

215

DATA FLOW NAME: RECEIVEDCONTROLSTATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDCONTROLSTATUS = "-RECEIVEDUNSUPPORTCONTROL"
[RECEIVEDFORMATCONTROL
I RECEIVEDSYNCCONTROL

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: RECEIVEDEOF
ALIASES: EOF
VALUES AND MEANINGS:

RECEIVED END-OF-FILE SUCCESSFULLY.
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDFILEERRORS
ALIASES: FILE-ERRORS
VALUES AND MEANINGS:

1. ERRORS THAT OCCUR BEFORE A FILE IS SUCCESSFULLY
OPENED.

2. ERRORS THAT OCCUR AFTER OPENING A FILE AND BEFORE
CLOSING THAT FILE.

3. ERRORS ASSOCIATED WITH TERMINATING ACCESS TO A FILE.
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDFILESTATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDFILESTATIYS = RECEIVEDFILEERRORS
I RECEIVEDTIMEOUT

NOTES: DECODE STATUS PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDFORMATACC/COMP
ALIASES: RECEIVEDFORMATMISC
VALUES AND MEANINGS:

r SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

216

9 DATA ELEMENT NAME: RECEIVEDFORMAT.ACCESS
ALIASES: RECEIVEDFORMATMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDFORMATACK
ALIASES: RECEIVEDFORMAT-MISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDFORMATJ.ATTRIB
ALIASES: RECEIVED-FORMATMISC
VALUES AND MEANINGS:

SEE ALIASES

NOTES: DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVED-FORMAT-CONFIG
ALIASES: RECEIVEDFORMAT-MISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVED-FORMAT-CONTINUE
ALIASES: RECEIVEDJFORMATMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVED-FORMAT_CONTROL

217

I -: .~

ALIASES: RECEIVEDFORMATMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMATJDATA
ALIASES: RECEIVEDFORMATMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDFORMAT.MISC
ALIASES: RECEIVED-FORMATCONFIG

RECEIVED-FORMAT.ATTRIB
RECEIVED-FORMATAC CES S
RECEIVEDFORMATCONTINUE
RECEIVEDFORMATCONTROL
RECEIVEDFORMAT.ACK
RECEIVEDFORMATACC/ACK
RECEIVEDFORMATDATA
RECEIVEDFORMATSTATUS2

VALUES AND MEANINGS:
1. ERROR IN PARSING THE PARTICULAR PACKET.
2. FIELD OF THE PARTICULAR PACKET IS INVALID (e.g., BITS

THAT ARE MEANT TO BE MUTUALLY EXCLUSIVE ARE SET, AN
UNDEFINED BIT IS SET, A FIELD VALUE IS OUT OF RANGE
OR AN ILLEGAL STRING IS IN A FIELD).

NOTES: DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: RECEIVED_FORMAT-STATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDFORMAT-STATUS RECEIVEDFORMAT_MISC
RECEIVED_FORMATACC/COMP
RECEIVEDFORMATCONFIG
RrkCEIVEDFORMAT..ATTRIB
RECEIVEDFORMAT..ACCES S
RECEIV7D_FORMATCONTINUE
RECEIVEDFORMAT_CONTROL
RECEIVED_FORMAT_ACK
RECEIVEDFORMATDATA

IRECEIVEDFORMATSTATUS2 I

218

NOTES: DECODE STATUS PACKETS LAYERt
DATA ELEMENT NAME: RECEIVEDFORMATSTATUS2
ALIASES: RECEIVEDFORMATMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: RECEIVEDGET_.PACKET
ALIASES: GETPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDKEYGET_PACKET
ALIASES: KEYGETPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDKEYPUTPACKET
ALIASES: KEY_PUTPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVED-OPERATIONINPROGRESS
ALIASES: RECEIVEDPENDINGSTATUS

OPERATIONIN_PROGRESS
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

2

. • 219

Vi

2

DATA ELEMENT NAME: RECEIVEDPENDINGSTATUS
ALIASES: RECEIVED-OPERATIONINPROGRESS

OPERATIONIN-PROGRESS
VALUES AND MEANINGS:

STATUS MESSAGE INDICATING THAT PAST SENT DATA PACKETS ARE
BEING STORED/APPENDED. ETC. AND THAT ALL IS WELL.

NOTES: DECODE STATUS PACKETS LAYER

DATA FLOW NAME: RECEIVEDPUTPACKET
ALIASES: PUTPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

I1

DATA FLOW NAME: RECEIVED-SEOGET-PACKET
ALIASES: SEQGETPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDSEQ.PUT-PACKET
ALIASES: SEPPUTPACKET
COMPOSITION:

SEE ALIASES

NOTES: EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVED-STARTUPPACKETS
ALIASES: NONE
COMPOSITION:_ RECEIVEDSTARTUPPACKETS,

RECEIVEDCONFIGURATIONPACKET

RECEIVED-ACKNOWLEDGEPACKET
RECEIVEDATTRIB/ACK.PACKET
RECEIVED..ATTRIBUTESPACKET

I RECEIVEDATTRIB/ACCPACKET
RECEIVEDJACCESS_PACKET

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

220

DATA FLOW NAME: RECEIVEDSTARTUPSTATUS

ALIASES: NONE
COMPOSITION:

RECEIVEDSTARTUPSTATUS I RECEIVED_UNSUPPORTACC/COMP--
RECEIVEDSYNCCONFIG
RECEIVEDFORMATCONFIG
RECEIVEDUNSUPPORT_.CONFIG
RECEIVED_FORMATATTRIB
RECEIVEDFORMATACCES S
RECEIVEDUNSUPPCRTATTRIB
RECEIVEDSYNCATTRIB
RECEIVEDUNSUPPORT-ACCES S
RECEIVEDSYNCACCESS
RECEIVEDFORMATACC/COMP
RECEIVED_SYNCACC/COMP
RECEIVED_UNSUPPORTACK
RECEIVEDSYNC-ACK
RECEIVEDFORMAT_ACK
RECEIVEDEOF
RECEIVEDTIMEOUT

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDSTATUS_ERROR
ALIASES: NONE
COMPOSITION: T R I E

RECEIVEDSTATUS_ERROR IU RECEIVED.UNSUPPORTSTATUS
RECEIVED-FORMATSTATUS I

I RECEIVED-SYNCSTATUS

NOTES: DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDSTATUS..PACKET
ALIASES: VALIDRECEIVED-STATUS_PACKET
COMPOSITION:

RECEIVEDSTATUSPACKET I RECEIVEDSUCCESSFULSTATUS
RECEIVEtUNSUPPORTSTATUS I
RECEIVED_PENDINGSTATUS I
RECEIVEDFORMAT_STATUS
RECEIVEDSYNCSTATUS
RECEIVEDFILESTATUS

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

221

0 so ,mwm~

DECODE STATUS PACKETS LAYER

I
DATA ELEMENT NAME: RECEIVEDSUCCESSFULOPERATION
ALIASES: SUCCESSFUL..OPERATION
VALUES AND MEANINGS:

RETURNS INFORMATION THAT INDICATES SUCCESS. USED WHEN
PERFORMING RECORD-STORE ACTIONS.

NOTES: DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDSUCCESSFULSTATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDSUCCESSFULSTATUS

1 RECEIVEDSUCCESSFULOPERATION
I RECEIVEDEOF

NOTES: DECODE STATUS PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNC.ACC/COMP
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNCACCESS
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNCACK
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

S 4
"+ 222

$ DATA ELEMENT NAME: RECEIVEDSYNC_ATTRIB
ALIASES: RECEIVEDSYNC-UNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNCCONFIG
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNCCONTINUE
ALIASES: RECEIVED-SYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNC.CONTROL
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNC-DATA
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: RECEIVEDSYNCSTATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDSYNC_STATUS I RECEIVEDSYNCCONFIG -

223

RECEIVEDSYNCATTRIB
RECEIVEDSYNCACCES S
RECEIVEDSYNCCONTROL
RECEIVEDSYNCCONTINUE
RECEIVEDSYNC.ACK
RECEIVEDSYNC._ACC/COMP
RECEIVEDSYNCDATA I
RECEIVEDSYNCSTATUS2
RECETVEDSYNCUNKNOWN

NOTES: DECODE STATUS PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNCSTATUS2
ALIASES: RECEIVEDSYNCUNKNOWN
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDSYNC_UNKNOWN
ALIASES: RECEIVEDSYNCCONFIG

RECEIVEDSYNC.ATTRIB
RECEIVEDSYNC..AC CES S
RECEIVEDSYNCCONTROL
RECEIVEDSYNCCONTINUE
RECEIVEDSYNC.ACK
RECEIVEDSYNCJAC C/COMP
RECEIVEDSYNC_DATA
RECEIVEDSYNCSTATUS2

VALUES AND MEANINGS:
THE PARTICULAR PACKET WAS RECEIVED OUT OF SYNCHRONIZATION.

NOTES: DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDTIMEOUT
ALIASES: TIMEOUT
VALUES AND MEANINGS:

A STATUS PACKET INDICATING THAT THE ACCESSED SYSTEM (NODE)
RECEIVED A CONFIGURATION, ACCESS ATTRIBUTES, OR ACCESS_
COMPLETE_PACKET AND HAS NOT RECEIVED THE APPROPRIATE
PACKETS TO RESET THE TIMER. OR THE ACCESSED SYSTEM HAS
RECEIVED A ACCESS-COMPLETE(RESPONSE) BUT AFTER A SUITABLE
AMOUNT OF TIME NO OTHER COMMAND IS RECEIVED. WHEN A
TIMEOUT IS SENT THE LOGICAL LINK IS ALSO TERMINATED.

NOTES: DECODE STATUS PACKETS LAYER

224

- A

EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVED-UNSUPPORTACC/COMP
ALIASES: RECEIVEDUNSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVED UNSUPPORTACCESS
ALIASES: RECEIVEDUNSUPPORT_MISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDUNSUPPORTACK
ALIASES: RECEIVED UNSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE ACClACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVED UNSUPPORTATTRIB
ALIASES: RECEIVEDUNSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDLUNSUPPORTCONFIG
ALIASES: RECEIVEDUNSUPPORT.MISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDUNSUPPORTCONTINUE

225

ALIASES: RECEIVED-UNSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDJUNSUPPORTCONTROL
ALIASES: RECEIVEDUNSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

GENERATE CONTROL PACKETS l.YER

DATA ELEMENT NAME: RECEIVED-UNSUPPORT.DATA
ALIASES: RECEIVEDU5NSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDUNSUPPORTJMISC
ALIASES: RECEIVEDUNSUPPORTCONFIG

RECEIVEDUNSUPPORT.ATTRIB
RECEIVEDUNSUPPORTAC CES S
RECEIVEDUNSUPPORT-CONTINUE
RECEIVED.INSUPPORT-CONTROL
RECEIVEDUNSUPPORTACK
RECEIVEDUNSUPPORT..ACC/COMP
RECEIVEDUNSUPPORTDATA
RECE IVEDUNSUPPORT-STATUS2

VALUES AND MEANINGS:
THIS IS USED WHEN AN UNSUPPORTED BIT/FIELD OR A FIELD/
VALUE, FOR A PARTICULAR PACKET TYPE, IS ENCOUNTERED WHICH
A PARTICULAR IMPLEMENTATION DOES NOT SUPPORT.

NOTES: DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW NAME: RECEIVEDUNSUPPORTSTATUS
ALIASES: NONE
COMPOSITION:

RECEIVEDUNSUPPORTSTATUS I RECEIVEDUNSUPPORT_CONTINUE
I RECEIVEDUNSUPPORT_MISC
I RECEIVEDUNSUPPORTCONFIG

226

RECEIVEDUNSUPPORT....ATTRIB
RECEIVED-UNSUPPORT...ACCESS9 I RECEIVEDUNSUPPORT-CONTROL
RECEIVEDUNSUPPORTACK
RECEIVED_.UNSUPPORT.ACC/COMP
RECEIVEDUNSUPPORTDATA
RECEIVEDUNSUPPORTSTATUS2

NOTES: DECODE STATUS PACKETS LAYER

DATA ELEMENT NAME: RECEIVEDUNSUPPORTSTATUS2
ALIASES: RECEIVED_UNSUPPORTMISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: RECNUM
ALIASES: NONE
VALUES AND MEANINGS:

THIS FIELD IS USED TO SEND THE RECORD NUMBER WHEN ACCESSING
RELATIVE FILES. FOR RANDOM STORE, THIS FIELD WILL CONTAIN
THE RECORD NUMBER. WHEN IN THE BLOCK MODE, THIS FIELD
WILL CONTAIN THE VIRTUAL BLOCK NUMBER.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: RESEND-INFO
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG TO INDICATE THAT THE BAD RECORD SHOULD BE RESENT
AND THEN CONTINUE ON UNTIL EOF.

NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RFA
ALIASES: NONE
VALUES AND MEANINGS:

USED TO RETURN THE RECORD FILE ADDRESS OF THE RECORD TO
WHICH THIS STATUS PACKET APPLIES.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: RFM

227

ALIASES: NONE
VALUES AND MEANINGS:IFORMAT OF THE RECORDS BEING TRANSFERRED.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: ROP
ALIASES: NONE
VALUES AND MEANINGS:

OPTIONAL RECORD PROCESSING FEATURES SUCH AS POSITION OF
EOF.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: RUNSYS
ALIASES: NONE
VALUES AND MEANINGS:

NAME OF THE RUN-TIME SYSTEM ENVIROMENT REQUIRED TO EXECUTE
THE CODE CONTAINED IN THE FILE. THIS FIELD IS USEFUL TO
TO OPERATING SYSTEMS THAT CAN EMULATE OTHER OPERATING
SYSTEM ENVIROMENTS.

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: SECONDARYINCOMING_DIALOGUECOMMANDS
ALIASES: PRIMARYINCOMINGDIALOGUECOMMANDS
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYOUTGOINGDIALOGUE_COMMANDS
ALIASES: PRIMARYOUTGOINGDIALOGUE_COMMANDS
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: SECONDARYSTART-FILECONFIGURATION
ALIASES: PRIMARYSTART-FILECONFIGURATION
VALUES AND MEANINGS:

SEE ALIASES
NOTES: OVERVIEW LAYER

228

DATA ELEMENT NAME: SECOND-ATTRIB-FLAG
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THIS NODE HAS NOT PREVIOUSLY
ISSUED AN ATTRIBUTES PACKET BUT HAS RECEIVED ONE.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: SECONDCONFIG-FLAG
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THIS NODE HAS NOT PREVIOUSLY
ISSUED A CONFIGURATION.PACKET BUT HAS RECEIVED ONE.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW NAME: SE0LGETPACKET
ALIASES: RECEIVEDSEQGET-PACKET
COMPOSITION:

SEOGETPACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + ROP

NOTES: GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: SEOLPUT_.PACKET
ALIASES: RECEIVEDSEQPUTPACKET
COMPOSITION:

SEQ.PUTPACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + ROP

NOTES: GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: SETUP-ERRORS
ALIASES: NONE
COMPOSITION:

SETUP-ERRORS - I RECEIVEDACCESSCOPLETEERRORS-I
RECEIVEDCONFIGERRORS I

I RECEIVED..ACKERRORS I
I RECEIVEDATTRIBERRORS
I RECE IVED-AC C-ERRORS I

NOTES: EXECUTE STARTUP PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

42
4. 229

DATA FLOW NAME: SETUPPACKETS
ALIASES: NONE

It COMPOSITION:
SETUPPACKETS I ACCESS_COMPLETEPACKET--

I ATTRIB/ACKPACKET
ACKNOWLEDGEJPACKET
ACCESS_PACKET

I ATTRIB/ACCPACKET
ACC/ER..PACKET
ACC/ECF/SCF..PACKET
ATTRIBUTES-PACKET

NOTES: EXECUTE STARTUP PACKET LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: SHR

ALIASES: NONE
VALUES AND MEANINGS:

OPERATIONS SHARED WITH OTHER USERS.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: SKIPINFO/CONTINUE
ALIASES: SKIPREC/CONTINUE
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: SKIPREC/CONTINUE
ALIASES: SKIPINFO/CONTINUE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE BAD RECORD SHOULD BE

SKIPPED OVER AND THE REMAINING RECORDS PROCESSED.
NOTES: EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: START.ACC/COMP
ALIASES: STARTER/ECFCOMP
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE ACC/ACK PACKETS LAYER

230

DATA ELEMENT NAME: START..ACC..ECF
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START GENERATION OF AN ACCESS(ECF) OR
ACCESS(SCF) PACKETS.

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: STARTAC C..ER
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED .TO INDICATE THE GENERATION OF AN ACCESS(ERASE)
PACKET, OR ACCESS(RENAME) PACKET.

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: START-ACCESS
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE LAST ATTRIBUTES PACKET
HAS BEEN RECEIVED AND A ACCESS PACKET CAN NOW BE GENERATED
AND OUTPUTTED.

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: STARTATTRIB/ACC
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THE GENERATION OF A ATTRIBUTES/
ACCESS PACKET (ATTRIB/ACCPACKET).

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: STARTACK
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF AN ACKNOWLEDGE_
PACKET.

NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: STARTADDGET

ALIASES: NONE

. 31

VALUES AND MEANINGS:
A FLAG USED TO START THE GENERATION OF A CONTROL ADDGET_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: START.ADDPUT
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF A CONTROL ADDPUT_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: STARTATTRIB/ACK
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF AN ATTRIB/ACKPACKET.
NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: START-ATTRIBUTES
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG WHICH IS ISSUED WHEN FIRSTCONFIGURATION_FLAG IS
SET AND WE RECEIVE A CONFIGURATION PACKET. IT STARTS
GENERATION OF THE FIRST ATTRIBUTESPACKET.

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: STARTCONNECT
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF A CONTROLCONNECT_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: STARTCONNECT.ACK
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG MEANING THAT A VALID CONTROLCONNECTPACKET HAS
BEEN RECEIVED, THEREFORE ISSUE AN ACKNOWLEDGEPACKET.

NOTES: EXECUTE ACC/ACK PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTROL PACKETS LAYER

232

DATA ELEMENT NAME: STARTER/ECF.COMP

ALIASES: STARTACC/COMP
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF AN ACCESSCOMPLETE_
PACKET.

NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: START__KEYGET
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF A CONTROL KEYGET_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: STARTKEYPUT
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF A CONTROL KEYPUT_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: STARTSE(LPUTAPPEND
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF A CONTROL SEQPUT_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: STARTSEOLGET
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START THE GENERATION OF A CONTROL SEQGET_
PACKET.

NOTES: GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: STARTUP_ERRORS
ALIASES: NONE
COMPOSITION:

233

STARTUPERRORS = RECEIVEDJACCESSCOMPLETEERRORS

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYERt
DATA FLOW NAME: STARTUP-PACKETS
ALIASES: NONE
COMPOSITION: STARTUPPACKETS = -ACCESSCOMPLETEPACKETi

I ATTRIB/ACKPACKET
I ACKNOWLEDGEPACKET I
I ACCESSPACKET

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: STATUS-PACKETS
ALIASES: NONE
COMPOSITION:

STATUS_PACKETS = RECEIVEDCONTROLERRORS
RECEIVEDUNSUPPORTSTATUS2
RECEIVED-FORMAT_.STATUS2
RECEIVEDSTATUS_ERROR
SETUP_.ERRORS
EOF
FILEERRORS
SUCCESSFULOPERATION
OPERATIONINPROGRESS

OPERATOR + TYPE=9 + STSCODE + RFA +
RECNUM + STV

NOTES: CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: STREAMID
ALIASES: NONE
VALUES AND MEANINGS:

THE STREAM IDENTIFICATION FIELD. THIS FIELD IS USED TO
ALLOW A SINGLE USER TO HAVE MULTIPLE DATA STREAMS IN USE
FOR A SINGLE OPEN FILE. ALL DATA STREAMS USE THE SAME
LOGICAL LINK (MULTIPLEX ON 'HE STEAMID NUMBER).

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: STSCODE
ALIASES: NONE
VALUES AND MEANINGS:

STATUS FIELD MACCODE = THE MACRO OR FUNCTIONAL GROUP

4234 * 234

REASON FOR THE ERROR.
MICCODE = THE SPECIFIC REASON FOR THE ERROR.t NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: STV
ALIASES: NONE
VALUES AND MEANINGS:

SECONDARY STATUS. USED TO RETURN SECONDARY STATUS
INFORMATION SUCH AS DEVTCE ERROR CODES, ETC.

NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: SUBMITASCOMMAND_FILE
ALIASES: NONE
VALUES AND MEANINGS:

REQUEST IN THE ACCESSPACKET THAT REQUESTS THAT A STORE
OPERATION BE DONE ON THE DATA THAT FOLLOWS IN A TEMPORARY
FILE AND THAT THIS FILE BE SUBMITTED TO A BATCH-TYPE
FACILITY UPON ACCESS COMPLETION. THE FILE WILL BE DELETED
FOLLOWING EXECUTION BY THE BATCH FACILITY. THE FILE IS
TRANSFERRED USING SEQUENTIAL FILE STORAGE.

NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: SUCCESSFULOPERATION
ALIASES: RECEIVEDSUCCESSFULOPERATION
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: SYSCAP
ALI %SES: NONE
VALUES AND MEANINGS:

GENERIC SYSTEM CAPABILITIES SUCH AS;
1. SUPPORTS SEQUENTIAL FILE ORGANIZATION
2. SUPPORTS RELATIVE FILE ORGANIZATION
3. SUPPORTS FILE PREALLOCATION
4. SUPPORTS SEQUENTIAL FILE ACCESS
5. SUPPORTS RANDOM ACCESS BY RECORD NUMBER
6. SUPPORTS RANDOM ACCESS BY VIRTUAL BLOCK NUMBER
7. SUPPORTS APPEND TO FILE ACCESS
8. SUPPORTS COMMAND FILE SUBMISSION AND/OR EXECUTION
9. SUPPORTS MULTIPLE DATA STREAMS

10. SUPPORTS STATUS RETURN AND

235

_____ ____ _____ ____ ___

11. SUPPORST BLOCKING OF PACKETS
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEM4ENT NAME: TIMEOUT
ALIASES: RECEIVED_TIMEOUT
VALUES AND MEANINGS:

SEE ALIASES
NOTES: CODE ARCHITECTURE PACKETS

DATA ELEMENT NAME: TYPE
ALIASES: NONE
VALUES AND MEANINGS:

THE TYPE OF PACKET. REFER TO EACH INDIVIDUAL MESSAGE
FOR ITS TYPE.

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: VALIDRECEIVED-ACCESSCOMPLETEPACKET
ALIASES: ACCESS_.COMPLETEPACKET

RECEIVEDACCESS_COMPLETEPACKET
RECEIVEDJAC COMP(COMMAND)
RECE IVED..AC COMP (PURGE)
RECEIVED.ACCOMP(RESPONSE)
RECEIVED.AC COMP(EOS)

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE ACC/ACK PACKETS LAYER

DATA FLOW NAME: VALIDRECEIVEDACCESSPACKET
ALIASES: ACCESS-PACKET

RECEIVEDAC CESS..PACKET
ACCESS(ERAS E).PACKET
ACCESS(RENAE)..ACKET
AC CES S (ECF).PACKET
ACCESS(SCF)..PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: VALIDRECEIVEDACKNOWLEDGEPACKET

236

. . .*,V j _ . .

ALIASES: ACKNOWLEDGEPACKET
RECEIVEDACKNOWLEDGEPACKET9COMPOSITION:SEALSS
SEE ALIASES

NOTES: EXECUTE STARTUP PACKETS LAYER
GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: VALIDRECEIVED.ATTRIBUTESPACKET
ALIASES: ATTRIBUTES-PACKET

RECEIVED.ATTRIBUTES.PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: VALID-RECEIVED_CONFIGURATIONPACKET
ALIASES: CONFIGURATION-PACKET

RECEIVEDCONFI GURATIONPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: VALIDRECEIVEDSTATUS_PACKET
ALIASES: RECEIVEDSTATUSPACKET
COMPOSITION:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

DATA ELEMENT NAME: VERSION
ALIASES: NONE
VALUES AND MEANINGS:

A FIELD IDENTIFYING THE PROTOCOL AND SOFTWARE VERSION
NUMBERS.

NOTES: ALL ARCHITECTURE LAYERS

DATA FLOW NAME: WORKING-PACKETS
ALIASES: NONE
COMPOSITION:

WORKINGPACKETS I SETUP-PACKETS
I DATA..PACKETS
I CONTROL-PACKETS
I CONTINUEINTERRUPTPACKET

4

4 • 237

NOTES: CODE ARCHITECTURE PACKETS LAYER

238

FILE DEFINITIONS (A)

FILE OR DATABASE NAME: LOCAL...DATAJ'ILE
ALIASES: NONE
COMPOSITION:

THE MEMORY USED TO READ, WRITE, AND DELETE FILES AT
THIS NODE.

ORGANIZATION: STANDARD MEMORY
NOTES: EXECUTE CONTINUE PACKETS LAYER

239

7w .79

PROCESS SPECIFICATION (A)

t
PROCESS NAME: DECODE ARCHITECTURE PACKETS
PROCESS NUMBER: 1.1
PROCESS DESCRIPTION:
IF Input type code = 9 then

Output as RECEIVEDSTATUSPACKET
ELSEIF Input type code = 8 then

Output as RECEIVED_DATAFILE
ELSEIF Input type code = 7 then

Output as RECEIVEDACCESSCOMPLETE..PACKET
ELSEIF Input type code = 1, 2. 3, or 6 then

Output as RECEIVEDSTARTUP.PACKETS
ELSEIF Input type code = 5 then

Output as RECEIVEDCONTINUEPACKETS
ELSEIF Input type code = 4 then

Output as RECEIVEDCONTROL_PACKETS
ELSE output as ACCEPT_CONFIRM

PROCESS NAME: CHECK FOR ERRORS
PROCESS NUMBER: 1.2.1
PROCESS DESCRIPTION:
ON a RECEIVEDSTATUSPACKET

IF errors exist in packet then
Output as RECEIVEDSTATUSERROR

ELSE output as VALIDRECIEVEDSTATUSPACKET

PROCESS NAME: DECODE MACCODE FIELD
PROCESS NUMBER: 1.2.2
PROCESS DESCRIPTION:
IF Input MACCODE value = 0 then

Output as RECEIVEDPENDING_STATUS
ELSEIF Input MACCODE value =l then

Output as RECEIVEDSUCCESSFULSTATUS
ELSEIF Input MACCODE value = 2 then

Output as RECEIVED_UNSUPPORTEDSTATUS
ELSEIF Input MACCODE value = 4 then

Output as RECEIVED_FILE_STATUS
ELSEIF Input MACCODE value = 5 then

Output as RECEIVED_FORMAT_STATUS
ELSE Input MACCODE value = 6 then

Output as RECEIVED_SYhC_STATUS

240

PROCESS NAME: DECODE UNSUPPORTED MICCODE FIELD
PROCESS NUMBER: 1.2.3
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then

Output as RECEIVED_UNSUPPORT_MISC
ELSEIF Input MICCJDE value = 1 then

Output as RFZEIVED_UNSUPPORTCONFIG
ELSEIF Input MI.tCODE value = 2 then

Output as RECIEVED_UNSUPPORT.ATTRIB
ELSEIF Input MICCODE value = 3 then

Output as RECEIVED_UNSUPPORTACCESS
ELSEIF Input MICCODE value = 4 then

Output as RECEIVEDUNSUPPORT_CONTINUE
ELSEIF Input MICCODE value = 5 then

Output as RECEIVEDUNSUPPORTCONTROL
ELSEIF Input MICCODE value = 6 then

Output as RECEIVEDUNSUPPORTACK
ELSEIF Input MICCODE value = 7 then

Output as RECEIVED_UNSUPPORTACC/COMP
ELSEIF Input MICCODE value = 8 then

Output as RECEIVED_UNSUPPORTDATA
ELSE Input MICCODE value = 9 then

Output as RECEIVED_UNSUPPORT_STATUS2

PROCESS NAME: DECODE PENDING MICCODE FIELD
PROCESS NUMBER: 1.2.4
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then

Output as RECEIVED_OPERATION_IN_PROGRESS
ELSE Null

PROCESS NAME: DECODE FORMAT MICCODE FIELD
PRC&L6 Q NUMBER: 1.2.5
PROCESS DEbCRIPTION:
IF Input MICCODE 7alue = 0 then

Output as RECEIVEDFORMAT_MISC
ELSEIF Input MICCODE value = 1 then

Output as RECEIVED_FORMAT_CONFIG
ELSEIF Input MICCODE value = 2 then

Output as RECEIVED.FORMATATTRIB
ELSEIF Input MICCODE value = 3 then

Output as RECEIVED..FORMATACCESS
ELSEIF Input MICCODE value = 4 then

Output as RECEIVEDFORMATCONTINUE
ELSEIF Input MICCODE value = 5 then

Output as RECEIVEDFORMATCONTROL

241

ELSEIF Input MICCODE value = 6 then
Output as RECEIVEDFORMATACKt ELSEIF Input MICCODE value = 7 then
Output as RECEIVED_FORMATACC/COMP

ELSEIF Input MICCODE value = 8 then
Output as RECEIVEDFORMATDATA

ELSE Input MICCODE value = 9 then
Output as RECEIVEDFORMATSTATUS2

PROCESS NAME: DECODE FILE MICCODE FIELD
PROCESS NUMBER: 1.2.6
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then

Output as RECEIVEDFILE_ZRRORS
ELSE Input MICCODE value = I then

Output as RECEIVEDTIMEOUT

PROCESS NAME: DECODE SYNC MICCODE FIELD
PROCESS NUMBER: 1.2.7
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then

Output as RECEIVEDSYNCCONFIG
ELSEIF Input MICCODE value = I then

Output as RECEIVEDSYNC_ATTRIB
ELSEIF Input MICCODE value = 2 then

Output as RECEIVED_SYNCJACCESS
ELSEIF Input MICCODE value = 3 then

Output as RECEIVED_SYNCCONTROL
ELSEIF Input MICCODE value = 4 then

Output as RECEIVED_SYNC_CONTINUE
ELSEIF Input MICCODE value = 5 then

Output as RECEIVEDSYNC_.ACK
ELSEIF Input MICCODE value = 6 then

Output as RECEIVEDSYNCACC/COMP
ELSEIF Input MICCODE value = 7 then

Output as RECEIVED..SYNCDATA
ELSEIF Input MICCODE value = 8 then

Output as RECEIVED_SYNC_STATUS2
ELSE Input MICCODE value = 9 then

Output as RECEIVED_SYNC_UNKNOWN

PROCESS NAME: DECODE SUCCESSFUL MICCODE FIELD
PROCESS NUMBER: 1.2.8
PROCESS DESCRIPTION:
IF Input MICCODE value 0 then

242

Output as RECIEVEDEOF
ELSE Input MICCODE value = I then

Output as RECEIVEDSUCCESSFUL OPERATION

PROCESS NAME: DECODE CONTROL TYPE
PROCESS NUMBER: 1.3.1
PROCESS DESCRIPTION:
IF Input = VALIDRECEIVEDACKNOWLEDGEPACKET and connect flag is not set then

Output a STARTCONNECT
Set the connect flag

ELSEIF Input = VALIDRECEIVEDACKNOWLEDGE_PACKET and connect flag is set then
Generate the following outputs according to the file process to be
performed:

Reset the connect flag
FILE-PROCESS OUTPUT

Sequential file storage STARTSE0PUTAPPEND
Sequential file append STARTSEOPUT.APPEND
Sequential file retrieval STARTSEQGET
Keyed record retrieval STARTKEYGET
Record file address retrieval STARTADDGET
Keyed record storage STARTKEYPUT
Record file address storage START_ADD_PUT
Submit as command file STARTSEQOPUTAPPEND

ELSE Input STATUS_PACKET then
Output above start command depending on the value passed in the Scatus_
Packet MACCODE, MICCODE field combination

PROCESS NAME: GENERATE CONTROL CONNECT PACKET
PROCESS NUMBER: 1.3.2
PROCESS DESCRIPTION:
IF Input = STARTCONNECT then

Output CONNECT-PACKET
ELSE Null

PROCESS NAME: GENERATE CONTROL SEQ-GET PACKET
PROCESS NUMBER: 1.3.3
PROCESS DESCRIPTION:
IF Input = STARTSEO.GET then

Output SEQGET.PACKET
ELSE Null

4
4 243

PROCESS NAME: GENERATE CONTROL SEQ-PUT PACKET
PROCESS NUMBER: 1.3.4tPROCESS DESCRIPTION:
IF Input = STARTSEQ._PUT..APPEND then

Output SEQ.PUTPACKET
ELSE Null

PROCESS NAME: GENERATE CONTROL KEY-GET PACKET

PROCESS NUMBER: 1.3.5
PROCESS DESCRIPTION:
IF Input = START..KEY-GET then

Output KEYGET._PACKET
ELSE Null

PROCESS NAME: GENERATE CONTROL KEY-PUT PACKET

PROCESS NUMBER: 1.3.6
PROCESS DESCRIPTION:

IF Input = STARTKEYPUT then

Output KEY_PUTPACKET
ELSE Null

PROCESS NAME: GENERATE CONTROL ADD-GET PACKET

PROCESS NUMBER: 1.3.7
PROCESS DESCRIPTION:
IF Input = ST-aiT..ADD..GET then

Output ADD_.GET_PACKET
ELSE Null

PROCESS NAME: GENERATE CONTROL ADD-PUT PACKET

PROCESS NUMBER: 1.3.8
PROCESS DESCRIPTION:

IF Input = STARTADD-PUT then
Output ADD_.PUT_PACKET

ELSE Null

PROCESS NAME: CODE GET FIELDS

PROCESS NUMBER: 1.3.9
PROCESS DESCRIPTION:

IF Input f SEQ.GETJPACKET, KEYGETPACKET, or ADDGET PACKET then

Output as GET.PACKET
ELSE Null

244

PROCESS NAME: CODE PUT FIELDS
PROCESS NUMBER: 1.3.10
PROCESS DESCRIPTION:
IF Input = SEO.PUTPACKET, KEYPUT_PACKET, or ADD_PUT_PACKET then

Output as PUT_PACKET
ELSE Null

PROCESS NAME: CODE CONTROL FIELDS
PROCESS NUMBER: 1.3.11
PROCESS DESCRIPTION:
IF Input = GET_PACKET or PUTPACKET then

Output as CONTROL_PACKET
ELSE Null

PROCESS NAME: GENERATE CONFIGURATION PACKET
PROCESS NUMBER: 1.4.1
PROCESS DESCRIPTION:
IF Input = PRIMARY_START_FILE_CONFIGURATION and ACCEPTCONFIRM or input z

PRIMARY_STARTFILE_CONFIGURATION and NEW_ACCESS then
Output CONFIGURATIONPACKET and
Output FIRST_CONFIG_FLAG

ELSE Input = RECEIVEDSYNC..CONFIG, RECEIVEDJIMEOUT, RECEIVED_FORMAT_CONFIG,
RECEIVED_UNSUPPORTCONFIG, RECEIVEDFORMAT_ATTRIB, RECEIVED_FORMAT_
ACCESS, or SECONDCONFIG_FLAG then

Output CONFIGURATIONPACKET

PROCESS NAME: CHECK FOR CONFIGURATION ERRORS
PROCESS NUMBER: 1.4.2
PROCESS DESCRIPTION:
IF Input contains errors then

Output RECEIVED_CONFIG_ERRORS
ELSE output VALIDRECEIVEDCONFIGURATION_PACKET

PROCESS NAME: DECODE CONFIGURATION FIELDS
PROCESS NUMBER: 1.4.3
PROCESS DESCRIPTION:
IF Input SYSCAP value = ERASE or RENAME then

Output START..ACCER flag
ELSEIF Input SYSCAP value = EXECUTE_COMMAND..FILE or SUBMIT_COMMANDFILE then

Output STARTACC_ECF flag

245

- _ _ _ __ _ _ _ __ _ _ _ __ _ _

ELSEIF FIRSTCONFIG_FLAG is set and BUFSIZ is large enough then
Output STARTATTRIB/ACC flag

Reset FIRSTCONFIG_FLAG
ELSEIF FIRST_CONFIG_FLAG is set and BUFSIZ is small then

Output START_ATTRIBUTES flag
Reset FIRSTCONFIG_FLAG

ELSE FIRSTCONFIGFLAG is not set then
Output a SECOND_CONFIG_FLAG

PROCESS NAME: GENERATE ATTRIBUTES/ACCESS PACKET
PROCESS NUMBER: 1.4.4
PROCESS DESCRIPTION:
IF Input = START..ATTRIB/ACC or RECEIVEDTIMEOUT then

Output a ATTRIB/ACC..PACKET
ELSE Null

PROCESS NAME: GENERATE ACCESS ERASE, RENAME PACKET
PROCESS NUMBER: 1.4.5
PROCESS DESCRIPTION:
IF Input = STARTACC_ER or RECEIVED_TIMEOUT and ERASE is indicated then

Output an ACC/ER_PACKET to erase
ELSE Input = START_ACCER or RECEIVED_TIMEOUT and RENAME is indicated then

Output an ACC/ER_PACKET to rename

PROCESS NIAME: GENERATE ACCESS ECF/SCF PACKET
PROCESS NUMBER: 1.4.6
PROCESS DESCRIPTION:
IF Input = START_ACCECF/SCF or RECEIVED_TIMEOUT and ECF is indicated then

Output an EXECUTE_COMMANDFILE ACC/ECF/SCF_PACKET
ELSE Input = STARTACCECF or RECEIVED_TIEOUT and SCF is indicated then

Output a SUBMIT COMMAND FILE ACC/ECF/SCF_PACKET

PROCESS NAME: GENERATE ATTRIBUTES PACKET
PROCESS NUMBER: 1.4.7
PROCESS DESCRIPTION:
IF Input = STARTATTRIBUTES then

Output FIRSTATTRIBFLAG
Output ATTRIBUTES_PACKET

ELSEIF Input = SECOND_ATTRIB_FLAG then
Output ATTRIBUTESPACKET

ELSE Input = RECEIVEDUNSUPPORTATTRIB, RECEIVEDSYNC_ATTRIB, or RECEIVED_
TIMEOUT then
Output ATTRIBUTES_PACKET

246

Reset FIRST_ATTRIBFLAG

PROCESS NAME: CHECK FOR ACKNOWLEDGE ERRORS
PROCESS NUMBER: 1.4.8
PROCESS DESCRIPTION:
IF Input = RECEIVEDACKNOWLEDGE_PACKET and no errors exist then

Output VALIDRECEIVED.ACKNOWLEDGE_PACKET
ELSEIF Input = RECEIVED._ACKNOWLEDGE_PACKET with errors then

Output RECEIVED.ACK_ERRORS
ELSEIF Input = RECEIVED_.ATTRIB/ACKPACKET and errors exist then

Output RECEIVEDACK_ERRORS
ELSEIF Input = RECEIVEDATTRIB/ACKPACKET and no errors exist and ATTRIB/ACK_

ERRORFLAG is not set then
Output VALID_RECEIVED_ACKNOWLEDGE_PACKET

ELSE ATTRIB/ACK_ERRORFLAG is set then null

PROCESS NAME: CHECK FOR ATTRIBUTES ERRORS
PROCESS NUMBER: 1.4.9
PROCESS DESCRIPTION:
IF Input = RECEIVED_ATTRIBUTES_PACKET and no errors exist then

Output VALIDRECEIVEDATTRIBUTES_PACKET
ELSEIF Input = RECEIVEDATTRIBUTES_PACKET and errors exist then

Output RECEIVEDATTRIBERRORS
ELSEIF input = RECEIVEDATTRIB/ACK_PACKET and errors exist then

Output ATTRIB/ACKERROR flag
Output RECEIVED_ATTRIB_ERRORS

ELSEIF Input = RECEIVEDATTRIB/ACCPACKET and errors exist then
Output ATTRIB/ACCERROR flag
Output RECEIVED_ATTRIB_ERRORS

ELSE Input = RECEIVED_ATTRIB/ACK_PACKET or RECEIVEDATTRIB/ACC_PACKET and
no errors exist then null

PROCESS NAME: CHECK FOR ACCESS ERRORS
PROCESS NUMBER: 1.4.10
PROCESS DESCRIPTION:
IF Input = RECEIVED_ACCESS_PACKET with no error then

Output VALIDRECEIVEDACCESS_PACKET
ELSEIF Input = RECEIVED_ACCESPACKET with errors then

Output RECEIVEDACC_ERRORS
ELSEIF Input = RECEIVEDATTRIB/ACC_PACKET with no errors and ATTRIB/ACCERROR

flag is not set then
Output VALID_RECEIVEDACCESS_PACKET

ELSEIF Input = RECEIVEDATTRIB/ACCPACKET with errors and the ATTRIB/ACCERROR
flag is not set then

Output RECEIVEDACCERRORS

247

r -~

ELSE Input ATTRIB/ACCERROR then null

PROCESS NAME: DECODE ATTRIBUTES FIELDS
PROCESS NUMBER: 1.4.11
PROCESS DESCRIPTION:
IF Input = VALID_RECEIVEDATTRIBUTESPACKET and FIRSTATTRIB_FLAG is not set
then

Output SECOND_ATTRIBFLAG
ELSE Input = VALID_RECEIVEDATTRIBUTES_PACKET and FIRST_ATTRIB_FLAG is set
then

Output STARTACCESS
Reset FIRST-ATTRIB_FLAG

PROCESS NAME: CODE SETUP ERRORS
PROCESS NUMBER: 1.4.12
PROCESS DESCRIPTION:
IF Input = RECEIVED_CONFIGERRORS, RECEIVED_ACKERRORS,

RECEIVEDATTRIBERRORS, RECEIVEDACC_ERRORS, or RECEIVEDACCESS_
COMPLETEERRORS then

Output as SETUP_ERRORS
ELSE Null

PROCE3S NAME: CODE SETUP PACKETS
PROCESS NUMBER: 1.4.13

PROCESS DESCRIPTION:
IF Input = ACCESS_COMPLETEPACKET, ATTRIB/ACK_PACKET, ACKNOWLEDGE_PACKET,

ACCESS_PACKET, ACC/ERPACKET, CONFIGURATIONPACKET, ACC/ECF/SCF_
PACKET, ATTRIB/ACC_PACKET, or ATTRIBUTES_PACKET then

Output as SETUPPACKETS
ELSE Null

PROCESS NAME: GENERATE ACCESS PACKET
PRfOCESS NUMBER: 1.5.1
PROCESS DESCRIPT iON:
IF Input = RECEIVED_TIMEOUT, RECEIVEDUPSUPPORTACCESS, RECEIVED_SYNCACCESS,

or START-ACCESS then
Output ACCESS_PACKET

ELSE Null

PROCESS NAME: DECODE ACCESS FIELDS

248

PROCESS NUMBER: 1.5.2
PROCESS DESCRIPTION:
IF Input ACCFUNC value =open or create AND ATTRIB/ACC_PACKET was received
then

Output START.ATTRIB/ACK flag
ELSEIF Input ACCFUNC value = open or create and ATTRIB/ACCPACKET was not

received then
Output STARTJACK flag

ELSEIF Input ACCFUNC value = rename, erase, or execute command file then
Output STARTER/ECFCOMP flag

ELSEIF Input ACCFUNC value = directory-list then
Output STARTACC/COMP flag

ELSE Input ACCFUNC value = submit command file then
Output SUBMITASCOMMANDFILE

PROCESS NAME: GENERATE ACCESS COMPLETE PACKET
PROCESS NUMBER: 1.5.3
PROCESS DESCRIPTION:
IF Input = STARTER/ECF_COMP, STARTACC/COMP, RECEIVEDACCOMP(COMMAND),

RECEIVEDACCOMP(PURGE), or RECEIVEDACCOMP(PURGE) in conjunction
with a RECEIVEDCONTINUEABORTPACKET then

Generate and Output an ACCESS_COMPLETE_PACKET(RESPONSE)
ELSEIF Input = ACCOMP(EOS) then

Output an ACCESSCOMPLETE_PACKET(EOS)
ELSEIF Input = ACCOMP(COMMAND) or RECEIVED_EOF then

Output an ACCESS_COMPLETEPACKET(COMMAND)
ELSEIF Input = ACCOMP(PURGE) then

Output an ACCES S_COMPLETEPACKET(PURGE)
ELSE Input = RECEIVEDFORMATACC/COMP, RECEIVED_UNSUPPORT_ACC/COMP, RECEIVED_

SYNCACC/COMP, or RECEIVEDTIMEOUT then
Output the appropriate ACCESS_COMPLETE_PACKET

PROCESS NAME: GENERATE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.5.4
PROCESS DESCRIPTION:
IF Input =RECEIVEDTIMEOUT, START_CONNECT_ACK, RECEIVED_U,.SUPPORTACK,

RECEIVED_SYNCACK, RECEIVEDFORMATACK, or STARTACK then
Output an ACKNOWLEDGEPACKET

ELSE Null

PROCESS NAME: CHECK FOR ACCESS COMPLETE ERRORS
PROCESS NUMBER: 1.5.5
PROCESS DESCRIPTION:
IF Input = RECEIVEDACCESSCOMPLETE_PACKET with no errors then

Output a VALID_RECEIVEDACCESS_COMPLETE_PACKET

249

ELSE Input RECEIVEDACCESS_COMPLETE..YACKET with errors then

Output a RECEIVEDACCESS_COMPLETEERRORS

PROCESS NAME: DECODE CMPFUNC FIELDS

PROCESS NUMBER: 1.5.6
PROCESS DESCRIPTION:
IF Input CMPFUMC value = terminate then

Output RECEIVED..ACCOMP(COMMAND)
ELSEIF Input CMPFUNC value = response then

Output RECEIEDACCOMP(RESPONSE)

ELSEIF Input CMPFUNC value = end of stream then

Output RECEIVED_ACCOMP (EOS)
ELSE Output RECEIVEDACCOMP(PURGE)

PROCESS NAME: GENERATE ATTRIB/ACK PACKET

PROCESS NUMBER: 1.5.7
PROCESS DESCRIPTION:
IF Input = RECEIVED_TIMEOUT or STARTATTRIB/ACK then

Output a ATTRIB/ACK..PACKET
ELSE Null

PROCESS NAME: DECODE CONTROL PACKET

PROCESS NUMBER: 1.6.1
PROCESS DESCRIPTION:
IF Input = RECEIVED_CONTROLPACKET with errors then

Output RECEIVED..CONTROLERRORS
ELSEIF Input CTLFUNC value = connect then

Output RECEIVED_CONNECTPACKET
ELSEIF Input CTLFUNC value

= get then
Output RECEIVED_GET..PACKET

ELSE Input CTLFUNC value = put, delete, update, or rewing then

Output RECEIVEDPUTPACKET

PROCESS NAME: DECODE CONNECT FIELDS
PROCESS NUMBER: 1.6.2
PROCESS DESCRIPTION:
IF Input + RECEIVEDCONNECTPACKET then

Decode the fields and
Output a STARTCONNECTJACK flag

ELSE Null

250

PROCESS NAME: DECODE GET FIELDS
PROCESS NUMBER: 1.6.3
PROCESS DESCRIPTION:
IF Input RAC field = sequential file access or sequential record access or

block mode file transfer then
Output RECEIVED-SEQ.GETPACKET

ELSEIF Input RAC field = keyed access then
Output RECEIVEDKEYGETPACKET

ELSE Input RAC field = access by record file address then
Output RECEIVEDADDGET_PACKET

PROCESS NAME: DECODE PUT FIELDS
PROCESS NUMBER: 1.6.4
PROCESS DESCRIPTION:
IF Input RAC field = sequential file access or sequential record access or

block mode file transfer then
Output RECEIVEDSEQ._PUT_PACKET

ELSEIF Input RAC field = keyed access then
Output RECEIVEDKEYPUT_PACKET

ELSE Input RAC field = access by record file address then
Output RECEIVED_ADD_PUT_PACKET

PROCESS NAME: DECODE ON NEXT ACTION
PROCESS NUMBER: 1.7.1
PROCESS DESCRIPTION:
IF Input = RECEIVEDSEQ_.GET_PACKET or RECEIVED_KEY_GET_PACKET then

Send out the data in the correct format
ELSEIF Input = RECEIVED_ADDLGET_PACKET then

Send out the data one record at a time between reception of the RECEIVED_
SUCCESSFULOPERATION status packet

ELSEIF Input = RECEIVED_CONTINUE_ONLY_PACKET then either
Resend the bad data record and continue or just
Continue sending data records.

ELSEIF Input = RECEIVEDCONTINUESKIPPACKET then
Skip over the bad record and continue sending data records

ELSEIF Input = errors in any of the above inputs then
Output FILEERRORS

ELSEIF Input RECEIVEDSYNCDATA, RECEIVED_FILE_ERRORS, RECEIVED_FORMAT_
DATA, RECEIVED_UNSUPPORTDATA then

IF want to skip the bad record and continue then
Output SKIPREC/CONTINUE

ELSEIF want to continue with the bad record still in
the file then

Output CONTINUEWITH_BAD_REC
ELSEIF want to purge the new file and terminate then

Output ACCOMP(PURGE) immediately followed by
Output PURGE/ABORTINTERRUPT

251

ELSE want to close the new file and terminate then

Output ACCOMP(COMMAND) immediately followed by9 Output PRUGE/ABORTINTERRUPT

ELSEIF want to stop a sequential file storage operation before it is complete
and purge the incomplete file then

Output PURGE/ABORT_INTERRUPT
ELSEIF want to send a message to let the accessing system know there will be a

delay in getting data then
Output OPERATION_IN_PROGRESS

ELSE end-of-file is detected and want to end the data stream but not the
logical link then

Output ACCOMP(EOS)

PROCESS NAME: DECODE ON REQUIRED ACTION
PROCESS NUMBER: 1.7.2

PROCESS DESCRIPTION:
IF Input = RECEIVEDDATA_FILE with errors or RECEIVED_FILE_ERRORS then

Output either DATA_ERRORS or FILEERRORS or
IF want to request link termination then

Output ACCOMP(COMMAND)
ELSEIF want to request data stream termination then

Output ACCOMP(EOS)
ELSEIF want to request the information be sent again then

Output RESENTINFO
ELSE want to ship that record and continue then

Output SKIPINFO/CONTINUE
ELSEIF Input = RECEIVEDDATA_FILE and RECEIVEDSEQPUT_PACKET or RECEIVED_

KEY_PUT_PACKET or SUBMIT_AS_COMMANDFILE then

Output data to file in correct format
ELSEIF Input = RECEIVED_DATA_FILE and RECEIVED_ADD_PUT_PACKET then

Output data to file in correct format and after each store operation

Output SUCCESSFUL_OPERATION
ELSE Input = RECEIVED_OPERATION_IN_PROGERSS then do not

Output FILEERRORS or DATAERRORS

PROCESS NAME: GENERATE CONTINUE ABORT PACKET
PROCESS NUMBER: 1.7.3
PROCESS DESCRIPTION:
IF Input = PURGE/ABORT_INTERRUPT or CONTINUE_ABORTERROR then

Output CONTINUE_ABORT_PACKET
ELSE Null

PROCESS NAME: GENERATE CONTINUE SKIP PACKET
PROCESS NUMBER: 1.7.4
PROCESS DESCRIPTION:

252

IF Input = SKIP-REC/CONTINUE, SKIP_INFO/CONTINUE, or CONTINUE-SKIPERROR then
Output CONTINUE_SKIP_PACKET

ELSE Null

PROCESS NAME: GENERATE CONTINUE ONLY PACKET
PROCESS NUMBER: 1.7.5
PROCESS DESCRIPTION:
IF Input = CONTINUEWITHBAD.REC, RESEND_INFO, or CONTINUEONLYERROR then

Output CONTINUEONLY-PACKET
ELSE Null

PROCESS NAME: CODE CONTINUE PACKETS
PROCESS NUMBER: 1.7.6
PROCESS DESCRIPTION:
IF Input = CONTINUE.ABORT_PACKET, CONTINUESKIP_PACKET, or CONTINUE_ONLY_

PACKET then
Output as CONTINUEINTERRUPTPACKET

ELSE Null

PROCESS NAME: GENERATE DATA PACKET
PROCESS NUMBER: 1.7.7
PROCESS DESCRIPTION:
IF Input = DATA then

Generate and output a DATAPACKET
ELSE Input = DATA + EOF then

Generate and output last DATAPACKET and
Output EOF flag

PROCESS NAME: CODE CONTINUE ERRORS
PROCESS NUMBER: 1.7.8
PROCESS DESCRIPTION:
IF Input = RECEIVEDUNSUPPORTCONTINUE, RECEIVED_FORMATCONTINUE, or RECEIVED_

SYNC-CONTINUE then
IF CONTINUEABORT_PACKET was the last continue packet sent then

Output CONTINUEABORT-ERROR
ELSEIF CONTINUESKIP_PACKET was the last continue packet sent then

Output CONTINUESKIP-ERROR
ELSE CONTINUEONLYPACKET was the last continue packet sent then

Output CONTINUEONLYERROR
ELSE Null

253

PROCESS NAME: START/STOP TIMER
PROCESS NUMBER: 1.8.19 PROCESS DESCRIPTION:
IF Input = RECEIVEDCONFIGURATIONPACKET, RECEIVEDATTRIBUTESPACKET,

RECEIVEDACCESS..-PACKET, RECEIVED..ATTRIB/ACCPACKET, ACCESS-_
COMPLETE..PACKET(RESPONSE), or SETUP_ERRORS then

START TIMER
ELSEIF Input = CONFIGURATIONPACKET, ATTRIBUTES_PACKET, ACKNOWLEDGE_PACKET.

RECEIVEDCONFIGURATIONPACKET, LINKTERMINATION, or RECEIVED_
STARTUPPACKETS then

STOP TIMER
ELSE output TIIEOUT

PROCESS NAME: CODE WORKING PACKETS
PROCESS NUMBER: 1.8.2
PROCESS DESCRIPTION:
IF Input = SETUP_PACKETS, DATAPACKETS, CONTROL_PACKETS, or CONTINUE_

INTERRUPTPACKETS then
Output WORKING_PACKETS

ELSE Null

PROCESS NAME: GENERATE STATUS PACKETS
PROCESS NUMBER: 1.8.3
PROCESS DESCRIPTION:
IF Input = RECEIVED_CONTROLERRORS, RECEIVED_UNSUPPORT_STATUS2, RECEIVED_

FORMATSTATUS2. RECEIVEDSYNC_STATUS2, SETUPERRORS, EOF, FILE_
ERRORS, SUCCESSFUL_OPERATION, OPERATION_INPROGRESS, RECEIVED.
STATUSERROR, DATA.ERRORS, or CONTINUEERRORS then

Output appropriate status packet as STATUS_PACKET
ELSE Null

PROCESS NAME: TERMINATE LOGICAL LINK
PROCESS NUMBER: 1.8.4
PROCESS DESCRIPTION:
IF Input = TIMEOUT. RECEIVEDUNSUPPORT_MISC, RECEIVED_FORMATMISC, RECEIVED_

SYNC_UNKNOWN, or DISCONNECT then
Output DISCONNECTREQUEST

ELSE Null

PROCESS NAME: TERMINATE DATA STREAM
PROCESS NUMBER: 1.8.5
PROCESS DESCRIPTION:
IF Input RECEIVED_.ACCOMP(EOS) then

254

IF want to start new access then
Output NEWACCESSIELSE output DISCONNECT

ELSE Input = RECEIVED_ACCOMP(RESPONSE) then
Output DISCONNECT

PROCESS NAME: CODE FILE PACKETS
PROCESS NUMBER: 1.8.6
PROCESS DESCRIPTION:
IF Input = DISCONNECT-REQUEST, WORKINGPACKETS, or STATUS_PACKETS then

Output as OUTGOINGPRIMARY_NODEARCHITECTURE_PACKET
ELSE Null

PROCESS NAME: CHECK FOR CONTINUE ERROR
PROCESS NUMBER: 1.9
PROCESS DESCRIPTION:
IF Input = CONTINUE_PACKETS with errors then

Output CONTINUEERRORS
ELSEIF Input CONFUNC value = try again then

Output as RECEIVED_CONTINUE_.ONLYPACKET
ELSEIF Input CONFUNC value = skip then

Output as RECEIVEDCONTINUESKIPPACKET
ELSE Input CONFUNC value = abort then

Output as RECEIVED_CONTINUEABORT_PACKET

PROCESS NAME: EXECUTE ARCHITECETURE PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 2.0
PROCESS DESCRIPTION:

Provide standardized formats and procedures for accessing and passing
data between a user process and a file system existing in a network
enviroment.

255

DATA DICTIONARY

FOR TRANSPORT/NETWORK LEVEL (T/N) PROTOCOL

Page

Data Element / Flow Descriptons 257

File Definitions 299

Process Specifications 306

256

..t

DATA ELEMENT NAME: ABORT
ALIASES: NONEt VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE RECEIVEDDISCONNECT_
INITIATEPACKET IS A RESULT OF AN ABORTCOMMAND. RESULTS
IN THE IMMEDIATE GENERATION OF A DISCONNECTCONFIRM_
PACKET.

NOTES: EXECUTE DISCONNECT PACKET LAYER

DATA ELEMENT NAME: ABORTCOMMAND
ALIASES: NONE
VALUES AND MEANINGS:

OPERATOR OR DIALOGUE COMMAND USED TO ABORT A LOGICAL LINK
CONNECTION, DIALOGUE DATA IS NOT SAVED, CURRENT DIALOGUE
DATA BEING TRANSMITTED IS LOST.

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: ACCEPTCONFIRM
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO SET THE LINKACCESSABLE BIT IN THE
ADJACENTNODEPARAMETERS TABLE. THIS INDICATES THAT TFE
LOGICAL-LINK HAS BEEN SUCCESSFUL CONNECTED.

NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: ACCEPT_CONNECT
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO INDICATE THE ACCEPTANCE OF A RECEIVED_
CONNECT-INITIATEPACKET. RESULTS IN THE GENERATION OF A
CONNECTCONFIRMPACKET.

NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: ACCOUNT
ALIASES: NONE
VALUES AND MEANINGS:

A CHARACTER-CODED DEFINITION THAT WHEN PAIRED WITH THE
REQUESTOR-ID IDENTIFIES A "BILLING ADDRESS" FOR SERVICE
COSTS AT THE DESTINATION NODE.

257

257

NOTES: ALL TRANSPORT LAYERS

t
DATA ELEMENT NAME: ACKNIUM
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBER OF THE LAST TRANSPORT DATA SEGMENT
SUCCESSFULLY
RECEIVED AND AN ACK OR NAK INDICATION. THIS FIELD IS
OPTIONAL. ITS PRESENCE IS INDICATED BY BIT 15 BEING SET.
FORMAT:

QUAL = ACK = ACKNOWLEDGE
NAK = NEGATIVE ACKNOWLEDGE

NUMBER = THE SEGMENT NUMBER
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: ACKNUMI
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBER OF THE LAST TRANSPORT INTERRUPT OR LINK
SERVICE PACKET SUCCESSFULLY RECEIVED AND AN ACK OR NAK
INDICATION. THIS FIELD IS OPTIONAL. :TS PRESENCE IS
INDICATED BY BIT 15 BEING SET.
FORMAT:

QUAL = ACK = ACKNOWLEDGE
NAK = NEGATIVE ACKNOWLEDGE

NUMBER = THE PACKET NUMBER
NOTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: ADJACENTNODEPACKETS
ALIASES: NONE
COMPOSITION:

ADJACENTNODEPACKETS

-- TRANSMITTEDTRANSPORTINITIALIZATIONPACKET

FIRSTDISCONNECTCONFIRM_PACKET
TRANSMITTEDTRANSPORTDATA_PACKET

TRANSMITTEDTRANSPORT.ACKNOWLEDGEPACKET
TRANSMITTEDTRANSPORTCONTROLPACKET

(EXCEPT FOR CONNECTINITIATE)

= WHERE DSTADDR IMPLYS THAT THE
PACKET IS GOING TO AN ADJACENT
NODE. INITIALIZATION PACKETS
ALWAYS ARE BETWEEN ADJACENT NODES
ONLY.

4
" 258

NOTES: EXECUTE OUTGOING TRANSPORT PACKET LAYER

DATA FLOW NAME: ADJACENTNODEROUTINGPACKET
ALIASES: ROUTINGPACKET

VALIDROUTINGPACKET
HOPPEDROUT INGPACKET
INITIALROUTEPACKET
OLDROUTINGPACKETS

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: BLKSIZE
ALIASES: NONE
VALUES AND MEANINGS:

THE MAXIMUM PHYSICAL BLOCK SIZE THE LINK WILL ACCEPT.
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: CHOKE
ALIASES: NONE
VALUES AND MEANINGS:

BIT INDICATES THAT THE PACKET IS A CHOKE PACKET RATHER
THAN AN ORDINARY DATA PACKET. NOT PRESENTLY USED.

NOTES: ALL NETWORK LAYERS

DATA ELEMENT NAME: CLOSEDFLOWCONTROL
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG THAT INDICATES THAT THE FLOW_-CONTROLPARAMETER
DATAFLOWCONTROLSWITCH IS SET TO CLOSED RESULTING IN
ALL INCOMING DATA PACKETS BEING NEGATIVELY ACKNOWLEDGED.

NOTES: EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: COMMVER
ALIASES: NONE
VALUES AND MEANINGS:

THE VERSION OF THE COMMUNICATIONS PART OF THE TRANSPORT
PROTOCOL.

NOTES: ALL TRANSPORT LAYERS

259

259

DATA FLOW NAME: CONNECTCONFIRM_PACKET
ALIASES: RECEIVELCONNECTCONFIRMPACKET
COMPOSIT ION:

CONNECTCONFIRM_.PACKET = MSGFLG + DSTADDR SRCADDR +
SEGMENT REQUESTS COUNTS + INFO +
SEGSIZE + DSTNAME + SRCNAME +
MENU + RQSTRID + PASSWRD +
ACCOUNT

NOTES: EXECUTE CONNECT PACKET LAYER

DATA FLOW NAME: CONNECTINITIATE_PACKET
ALIASES: RECEIVEDCONNECTINITIATEPACKET
COMPOSITION:

CONNECTINITIATEPACKET = MSGFLG + DSTADDR=O + SRCADDR +

SEGMENT REQUEST COUNT + INFO +
SEGSIZE + DSTNAME + SRCNAME +
MENU + RQSTRID + PASSWRD +
ACCOUNT

NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: CONNECTREQUEST
ALIASES: NONE
VALUES AND MEANINGS:

OPERATOR OR DIALOGUE COMMAND TO START CONNECTION OF THE
LOGICAL LINK.

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE CONNECT PACKET LAYER
EXEUTE CONTROL PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: CORRECTPASSWORD
ALIASES: NONE
VALUES AND MEANINGS:

THE RECEIVED CORRECT PASSWORD

NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: CORRECTPASSWORDCOMMAND
ALIASES: RECEIVEDCORRECTPASSWORD_COMMAND
VALUES AND MEANINGS:

A COMMAND TO NOTIFY THE SATELLITE NODE THAT THE PASSWORD
GIVEN IN THE NODE-VERIFICATIONPACKET WAS CORRECT.

260

LOGICAL LINK ESTABLISHMENT CAN NOW PROCEED. ADJACENT_
NODE_PARAMETER TABLE VALUES ARE NOW VALID.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW NAME: COUNTEDTRANSPORTDATA&SEGMENT
ALIASES: INCOMING_DIALOGUE-DATA

NORMALDATAPACKET
VALIDNORMALDATA-SEGMENT
RECEIVEDNORMALDATASEGMENT
INCOMINGDIALOGUESEGMENT

TRANSPORTDATA.SEGMENT
PIGGYBACKEDTRANSPORTDATASEGMENT

TRANSMITTEDDATA.PACKET
RETRANSMITTED_DATAPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA FLOW NAME: COUNTED-TRANSPORTI/LPACKET
ALIASES: TRANSPORTI/LPACKET

RETRANSMITTEDI/L_PACKET

TRANSMITTEDI/LPACKET
COMPOSITION:

COUNTEDTRANSPORTI/LPACKET =

T INTERRUPT_LINK_SERVICES_PACKET
I DATALINKSERVICESPACKET

NOTES: EXECUTE I/L PACKET LAYER

DATA ELEMENT NAME: DATA
ALIASES: NONE
VALUES AND MEANINGS:

THE DATA THE DIALOGUE PROCESS WISHES TO SEND OVER A
LOGICAL LINK. THIS INFORMATION WILL BE TOTALLY
TRANSPARENT AND MAY BE ALL 8-BITS OF EACH BYTE. DATA
PACKETS ARE LIMITED TO THE MAXIMUM SEGSIZE ALLOWED ON THE
LOGICAL LINK IN THE DIRECTION THAT THE PACKET IS SENT.
THE LENGTH OF THE DATA FIELD IS ASCERTAINED FROM THE
TOTAL LENGTH OF THE NORMAL DATA SEGMENT AND CONSIST OF
ALL BYTES IN THE SEGMENT AFTER THE SEGNUM FIELD. THE
DATA FIELD MAY BE NULL.

NOTES: ALL TRANSPORT LAYERS

) 261

DATA ELEMENT NAME: DATA-ACK_FLAG
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO START THE GENERATION OF AN ACKNOWLEDGEMENT
PACKET ON A RECIEVED DATA PACKET.

NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: DATAACKPACKET
ALIASES: DA rANAKPACKET
COMPOSITION:

DATA_ACKPACKET = MSGFLG + DSTADDR + SRCADDR + ACKNUM

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: DATA_FLOWERROR
ALIASES: NONE
VALUES AND MEANINGS:

INDICATES TiL'T THE FLOWCONTROLPARAMETER TABLE CONTAINED
A CLOSED DATAFLOWCONTROLSWITCH OR THE DATAREQUEST_
COUNT HAD BEEN OVERFLOWED.

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA ELEMENT NAME: DATAI
ALIASES: NONE
VALUES AND MEANINGS:

THE DATA TO BE SENT OVER A LOGICAL LINK. THIS FIELD IS
TOTALLY TRANSPARENT AND MAY USE ALL 8-BITS OF EACH BYTE.
THE LENGTH OF THE DATA FIELD IS ASCERTAINED FROM THE
TOTAL LENGTH OF THE INTERRUPT PACKET AND CONSIST OF ALL
BYTES IN THE PACKET AFTER THE SEGNUMI FIELD.

NOTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: DATALINKSERVICES_PACKET
ALIASES: INTERRUPTLINKSERVICESPACKET

VALIDLINKSERVICESPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE I/L PACKET LAYER

262

DATA ELEMENT NAME: DATA_NAKFLAG
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO START THE GENERATION OF AN NEGATIVE
ACKNOWLEDGEMENT PACKET ON A RECEIVED DATA PACKET.

NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: DATANAKPACKET
ALIASES: DATAACKPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: DESTINATION

ALIASES: NONE
VALUES AND MEANINGS:

THE NAME OF THE NODE TO WHICH THE ROUTING PACKET IS
GOING.

NOTES: ALL NETWORK LAYERS

DATA FLOW NAME: DISCONNECTCONFIRMPACKET
ALIASES: FIRST_DISCONNECTCONFIRMPACKET

RECEIVEDDISCONNECTCONFIRM_PACKET
COMPOSITION:

SEE ALIASES

NOTES: EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER

DATA FLOW NAME: DISCONNECTINITIATEPACKET
ALIASES: RECEIVED_DISCONNECTINITIATEPACKET

COMPOSITION:
DISCONNECTINITIATEPACKET = MSGFLG + DSTADDR + SRCADDR +

DISCONNECT REASON + DSTNAME

+ SRCNAME + MENU + RQSTRID +
PASSWRD + ACCOUNT

NOTES: EXECUTE CONNECT PACKET LAYER

263

DATA ELEMENT NAME: DISCONNECT-REQUEST
ALIASES: NONE
VALUES AND MEANINGS:

OPERATOR OR DIALOGUE COMMAND USED TO STOP THE LOGICAL
LINK PROCESS. CURRENT DIALOGUE DATA IS TRANSMITTED AND
ACKNOWLEDGED BEFORE THE DISCONNECT-REQUEST IS ALLOWED TO
TAKE EFFECT.

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: DISCONNECT-REQUIRED
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE
SATELLITENODEPARAMETERS TABLE IS NOT SET TO
THE CORRECT PASSWORDS AND THAT THE
LINK IS NOT UP AND RUNNING.

NOTES: DECODE ROUTE HEADER LAYER

DATA ELEMENT NAME: DSTADDR
ALIASES: NONE
VALUES AND MEANINGS:

THE LOGICAL LINK DESTINATION ADDRESS FOR THE PACKET.

(CONNECTPACKETS).
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: DSTNAME
ALIASES: NONE
VALUES AND MEANINGS:

THE DESTINATION PROCESS IDENTIFICATION.
FORMAT 02:

OBJTYPE = OBJECT TYPE
GRPCODE = BINARY GROUP CODE
USRCODE = BINARY USER CODE
DESCRPT = PROCESS DESCRIPTOR. A UNIQUE NAME THAT

QUALIFIES THE OBJECT TYPE.
FORMAT 01:

OBJTYPE = OBJECT TYPE
DESCRPT = PROCESS DESCRIPTOR

264

FORMAT 00:
OBJTYPE OBJECT TYPE

RUS APPLICATION PROGRAMS FORMAT 01 OR 02
DIALOGUE LEVEL PROTOCOL = FORMAT 00
SOURCE PROCESS DESCRIPTOR = FORMAT 02

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: ENTERMAINTENANCEMODE
ALIASES: NONE
VALUES AND MEANINGS :

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA ELEMENT NAME: ERROR-REASON
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO FILE 'REASON"
NOTES: EXECUTE DISCONNECT PACKET LAYER

EXECUTE CONTROL PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: FCVAL
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBER OF NORMAL DATA SEGMENTS OR INTERRUPT PACKETS
THAT THE SENDER OF THE PACKET CAN RECEIVE IN ADDITION TO
THOSE PREVIOUSLY REQUESTED BY A LINK SERVICE PACKET. THIS
NUMBER IS ADDED TO THE REQUEST COUNT WHICH IS MAINTAINED
IN THE FLOWCONTROLPARAMETERS TABLE TO DETERMINE HOW
MANY NORMAL DATA SEGMENTS OR INTERRUPT PACKETS WILL BE
TRANSMITTED VIA A LOGICAL LINK.

NOTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: FIRSTDISCONNECTCONFIRM_PACKET
ALIASES: RECEIVED_DISCONNECTCONFIRMPACKET

DISCONNECTCONFIRM_PACKET
COMPO SIT ION:

FIRST_.DISCONNECTCONFIRMPACKET = MSGFLG + DSTADDR +
SRCADDR + REASON

NOTES: DECODE ROUTE HEADER LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

265

DATA FLOW NAME: FLOWCONTROL_.ERRORS
ALIASES: NONE
COMPOSITION:

FLOWCONTROL_.ERRORS I LINKJNACCESSABLE -
I INTERRUPTFLOWERROR I
I DATA.FLOW_.ERROR I

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: FUNCTIONS
ALIASES: NONE
VALUES AND MEANINGS:

THE FUNCTIONS SUPPORTED AT THIS NODE.
FORMAT:

INT = INTERCEPT FUNCTIONS
= 000 = NO INTERCEPT - SET ON TRANSMIT BY A

NON- INTERCEPT- SATELLITE
NODE

= 111 = INTERCEPT - SET ON TRANSMIT BY A

INTERCEPT-ROUTING-NODE

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: HOP._COUNT
ALIASES: HOPS
VALUES AND MEANINGS:

NOTES: ALL NETWORK LAYERS

DATA FLOW NAME: HOPPEDROUTINGPACKET
ALIASES: ROUTINGPACKET

VALIDROUT INGPACKET
INITIALROUTINGPACKET
ADAJACENTNODEROUTINGPACKET
OLDROUTINGPACKETS

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: HOPS
ALIASES: HOPCOUNT

266

VALUES AND MEANINGS:
COUNTER USED TO KILL OFF OLD PACKETS.

NOTES: ALL NETWORK LAYERS

DATA ELEMENT NAME: I/L.ACKFLAG
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO START THE GENERATION OF AN ACKNOWLEDGEMENT
PACKET ON A RECEIVEDI/LPACKET.

NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: I/L_.ACKPACKET
ALIASES: I/LNAKPACKET
COMPOSITION:

I/L.ACK_PACKET = MSGFLG + DSTADDR + SRCADDR + ACKNUMI
NOTES: EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: I/LNAKFLAG
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO START THE GENERATION OF AN NEGATIVE
ACKNOWLEDGEMENT PACKET ON A RECEIVED I/L PACKET.

NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: I/LNAKPACKET
ALIASES: I/LACKPACKET
COMPOSITION:

SEE ALIASES

NOTES: EXECUTE I/L PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA FLOW NAME: INCOMING_.DIALOGUE_DATA
ALIASES: NORMAL_DATAPACKET

VALID-NORMALDATA._SEGMENT
RECEIVED.NORLLLDATASEGMENT
INCOMING_DIALOGUESEGMENT

267

TRAN SPORT....ATA-SEGMENT
PIGGYBACKED...TR.ANSPORTDPATA-SEGNENT
COUNTED-TRAN SPORT..DATA..SEGMENT4 IMTTDDTAPCE
RTRANSMITTEDDATAPACKET

COMPOSITION:
INCOMINGDIALOGUEDPATA =MSGFLG + DSTADDR + SRCADDR +

ACKNUM + SEGNUM + DATA
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA FLOW NAME: INCOMINGDIALOGUEINTERRUPT
ALIASES: TRANSPORTINTERRUPT-JACKET

PIGGYBACKED.-TRANSPORTINTERRUPT_ PACKET
VALIDINTERRUPTPACKET

COMPOSITION:
INCOMING_-DIALOGUEINTERRUPT = MSGFLG + DSTADDR + SRCADDR

+ACKNUMI + SEGNUMI + DATAI
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE I/L PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: INCOMINGDIALOGUE-MESSAGE
ALIASES: SECONDARYINCOMINGJ)DIALOGUEMESSAGE
COMPOSITION:

INCOMINGDPIALOGUEMESSAGE =I INCOMING_DPIALOGUEPACKET
IOPERATORPAS SWORDCQOMMAND
ICONNECT-REQUEST
IENTER-MAINTENANCENODE
IOPERATOR..START-OMMAND
IABORTCOMMAND
IDISCONNECT-REQUEST

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATA FLOW NAME: INCOMING_-DIALOGUE_ PACKET
ALIASES: OUTGOINGDIALOGUE-DAT&.PACKET
COMPOSITION:

INCOMINGDIALOGUEPACKET

IINCOMING-.DIALOGUEINTERRUPT
IINCOMING_-DIALOGUEDATA

* 268

7NOTES: EXECUTE DIALOGUE SEGM4ENT LAYER

DATA FLOW NAME: INCOMING-P..IALOGUE_.SEGMENT
ALIASES: INCOMINGDIALOGUEDATA

NOMAL-DATA-PACKET
VALIDNORMAL...DAT&-SEGMENT
RECEIVED-NORMAL-.DAT&..SEGMENT
TRANSPORTDATA-SEGMENT
PIGGYBACKEDTRANSPORT...DATA-SEGMENT
COUNTEDTRANSPORT-.DATASEGMENT
TR-ANSMITTEDDATA-PACKET
RETRAN SMITTED...DATA-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA FLOW MNE: INCOMINGNODENETWORKPACKET
ALIASES: SECONDARYINCOMINGNODE..NETWORKPACKET
COMPOSITION:

INCOMINGNODE-NETWORKPACKET INETWORK_PACKET
IROUT ING-..PACKET

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATA FLOW NAME: INCOMINGNODETRANSPORT.-PACKET
ALIASES: INCOMINGSATELLITETRANSPORT_-PACKET

SECONDARYINCOMINGSATELLITETRANSPORTPACKET
SECONDARYINCOMING_ NODETRANSPORTPACKET

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DECODE ROUTE HEADER LAYER
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: INCOMINGSATELLITETRANSPORTPACKET
ALIASES: SECONDARYINCOMINGSATELLITETRANSPORTPACKET

INCOMINGNODETRANSPORT-PACKET
SECONDARYINCOMINGNODE-.TRANSPORTPACKET

COMPOSITION:

INCOMINGSATELLITE_TRANSPORT_ PACKET

x 269

l OUTGOINGTRANSPORT..ROUTEPACKET 1
I RECIEVED...ADJACENTNODEPACKETS
I VALIDDSTNODE_CIPACKET
INVALID..DSTNODEtPACKETS
VALIDDSTNODEPACKETS

NOTES: OVERVIEW LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DECODE ROUTE HEADER LAYER

DATA ELEMENT NAME: INCORRECTPAS SWORD__COMMAND
.,LIASES: RECEIVEDINCORRECTPASSWORD_COMMAND
VALUES AND MEANINGS:

A COMMAND TO NOTIFY THE SATELLITE NODE THAT THE PASSWORD
GIVEN IN THE NODE_VERIFICATIONPACKET WAS INCORRECT.
BEFORE LOGICAL LINK ESTABLISHMENT CAN PROCEED MUST START
INITIALIZATION PROCEDURE OVER WITH CORRECT PASSWORD.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: INFO
ALIASES: NONE
VALUES AND MEANINGS:

INFORMATION. FORMAT:

PRI = LINK PRIORITY NOT USED AT
PRESENT.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: INITIALIZELINK
ATTASES: NONE
V/JES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: INITIALIZATION-COMPLETE
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: INITIZATIONON-OTHEFEND
ALIASES: NONE

4* 270

VALUES AND MEANINGS:
REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.t NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW NAME: INITIALROUTEPACKET
ALIASES: ROUT ING-PACKET

VALIDROUTINGPACKET
HOPPEDROUTINGPACKET
ADJACENTNODEROUTINGPACKET
OLDROUTING..PACKETS

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: INTERRUPTERROR
ALIASES: NONE
VALUES AND MEANINGS:

FLOW CONTROL FAILURE = INTERRUPT MESSAGE RECEIVED WHEN
THE INTERRUPT REQUEST COUNT IS ZERO.

NOTES: EXECUTE DATA PACKET LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: INTERRUPTFLOWERROR
ALIASES: NONE
VALUES AND MEANINGS:

INDICATES THAT IN THE FLOWCONTROLPARAMETERS TABLE THAT
THE INTERRUPTREQUESTCOUNT HAD BEEN OVERFLOWED.

NOTES: EXECUTE I/L PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: INTERRUPTLINKSERVICESPACKET
ALIASES: DATALINKSERVICESJPACKET

VALIDLINKSERVICESPACKET
COMPOSITION:

INTERRUPTLINKSERVICES_PACKET = MSGFLG + DSTADDR +
SRCADDR + ACKNUMI +
SEGNUMI + LSFLAGS +
FCVAL

NOTES: EXECUTE I/L PACKET LAYER

27 1

DATA ELEMENT NAME: INVALID DSTADDR_PACKETS
ALTASES: NONE
VA S AND MEANINGS:

A FLAG USED TO INDICATE THAT THE DSTADDR FIELD WITHIN THE
MSGFLG FIELD DOES NOT CONTAIN AN ADDRESS OF A REACHABLE
LOGICAL LINK FROM THIS NODE.

NOTES: DECODE ROUTE HEADER LAYER

DATA ELEMENT NAME: INVALIDDSTNODE..PACKETS
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO INDICATE THAT THE DESTINATION CODE WITHIN
THE RTHDR FIELD IS NOT EQUAL TO THE NAME OF A REACHABLE
SATELLITE FROM THIS NODE.

NOTES: DECODE ROUTE HEADER LAYER

DATA ELEMENT NAME: LINECOST
ALIASES: NONE
VALUES AND MEANINGS:

WEIGHT OF A PARTICULAR PHYSICAL LINK.
NOTES: ALL NETWORK LAYERS

DATA ELEMENT NAME: LINKINACCESSABLE
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG TEAT INDICATES THAT THE ADJACENTNODEPARAMETERS
TABLE HAS BEEN SET TO A LINKINACCESSABLE SINCE THE
PHYSICAL LINK OVER WHICH THE ADJACENT NODE INITIALIZATION
THAT TOOK PLACE HAS UNDERGONE A TRANSITION OUT OF THE ON
STATE.

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA ELEMENT NAME: LINKSERVICESERROR
ALIASES: NONE
VALUES AND MEANINGS:

FLOW CONTROL VIOLATION - ILLEGAL FCVAL
NOTES: EXECUTE DATA PACKET LAYER

EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

272

DATA ELEMENT NAME: LSCODE
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT A TRANSMIT BUFFER WAS NOT
COMPLETELY FULL WHEN THE LAST DATA SEGMENT WAS PUT INTO
IT.

NOTES: EXECUTE I/L PACKET LAYER
EXECUTE DATA PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: LSFLAGS
ALIASES: NONE
VALUES AND MEANINGS:

LINK SERVICE FLAGS. FORMAT:
FCMOD = FLOW CONTROL MODIFICATION

= 0 = NO CHANGE
1 = STOP DATA

= 2 = START DATA
FCVAL INT = INTERPRETATION OF

FCVAL FIELD
- 0 = DATA SEGMENT COUNT
- I = INTERRUPT REQUEST

COU NT
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: MAXLNKS
ALIASES: N-,NE
VALUES AND MEANINGS:

THE MAXIMUM NUMBER OF LINKS THIS NODE WILL SUPPORT. THE
VALUE IS LIMITED TO 4096.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: MENU
ALIASES: NONE
VALUES AND MEANINGS:

FIELD FORMAT CONTROL RQSTRID, PASSWORD, ACCOUNT FIELDS
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: MSGDATA

2
• ' 273

ALIASES: NONE
VALUES AND MEANINGS:

t DATA. THE REMAINDER OF A TRANSPORT PACKET
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: MSGFLG
ALIASES: NONE
VALUES AND MEANINGS:

00000000 = MIDDLE SEGMENT OF A MULTI-SEGMENT DIALOGUE
MESSAGE

00100000 = THE FIRST SEGMENT OF A MULTI-SEGMENT DIALOGUE
MESSAGE

01000000 = THE LAST SEGMENT OF A MULTI-SEGMENT DIALOGUE
MESSAGE

01100000 = THE ONLY SEGMENT OF A DIALOGUE MESSAGE
00110000 = INTERRUPT PACKET
00010000 = LINK SERVICE PACKET
00000100 = ACKNOWLEDGEMENT OF NORMAL DATA SEGMENT
00010100 = ACKNOWLEDGEMENT OF INTERRUPT PACKET OR LINK

SERVICES PACKET
00011000 = CONNECTINITIATEPACKET
00101000 = CONNECT_CONFIRM_PACKET
00111000 = DISCONNECTINITIATE_PACKET
01001000 = DISCONNECTCONFIRMPACKET
01011000 = NODEINITIALIZATION_PACKET
01011000 = NODE_VERIFICATION_PACKET
00001000 = NO OPERATION (NOP)

NOTES: ALL TRANSP:,RT LAYERS

DATA ELEMENT NAME: NODEADDR
ALIASES: NONE
VALUES AND MEANINGS:

THE SOURCE NODE ADDRESS. THE VALUE OF THIS FIELD MUST BE
GREATER THAN 1 AND LESS THAN 241. NO TWO NODES IN THE
SAME NETWORK MAY HAVE THE SAME NODE ADDRESS.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: NODENAME
ALIASES: RTHDR(SRCNODE)
VALUES AND MEANINGS:

SEE ALIASES
NOTES: ALL TRANSPORT LAYERS

274

DATA FLOW NAME: NETWORKPACKET
& ALIASES: NONE

COMPOSITION:
NETWORKPACKET = INCOMINGNODE_TRANSPORTPACKET

NETWORK_TO_NETWORKPACKET

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: NETWORKTONETWORKPACKET
ALIASES: VALID.NETWORK_TONETWORKPACKET

VALIDNETWORK_PACKET
COMPOSITION:

NETWORKTONETWORKPACKET = TRANSPORT_PACKET WITH A
DESTINATION CODE THAT IS NOT ADJACENT TO THIS
NODE.

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: NOABORT
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE RECEIVEDDISCONNECT_
INITIATEPACKET IS A NORMALLY GENERATED DISCONNECT.
RESULTS IN A STOPLINK FLAG BEING ISSUED.

NOTES: EXECUTE DISCONNECT PACKET LAYER

DATA ELEMENT NAME: NOBUFFERSPACE
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO GENERATE A NEGATIVE ACKNOWLEDGEMENT SINCE
THERE WERE NO MORE RECEIVE BUFFERS TO LOAD INCOMING DATA
PACKETS INTO.

NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: NODEINITIALIZATION_VOPACKET
ALIASES: RECEIVEDNODEINITIALIZATIONPACKET

RECEIVEDINTERCEPT_INITIALIZATIONPACKET
RECEIVEDNOINTERCEPTJINITIALIZATIONPACKET
NODEINITIALIZATIONV _PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKET LAYER

27 5

AO-All4 .53 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO -ETC F/6 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFS ELECTRONI) ETC U)
DEC Al R H STOKES

UNCLASSIFIED AFIT/GCS/EE/8l101A N

4. Lmhhmhh,7 hhhmhh

DATA FLOW NAME: NODEINITIALIZATIONVIPACKET
ALIASES: RECEIVEDNODEINITIALIZATIONPACKET

RECEIVEDINTERCEPTINITIALIZATION-PACKET
RECEIVEDNOINTERCEPTINITIALIZATION-PACKET
NODEINITIALIZATIONVOPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW NAME: NODEVERIFICATIONPACKET
ALIASES: RECEIVEDNODEVERIFICATION-PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW NAME: NONADJACENTNODEPACKETS
ALIASES: NONE
COMPOSITION:

NONADJACENTNODE..PACKETS =

TRANSMITTED_TRANSPORTACKNOWLEDGE.PACKETi
I FIRST.DISCONNECTCONFIRMPACKET
I TRANSMITTEDTRANSPORTCONTROLPACKET
I lEAN SMITTED-TRAN SPO RTDATA.PACKET

WHERE THE DSTADDR IMPLYS THAT
THE PACKET IS GOING TO A NON-
ADJACENT NODE. IF A CONNECT-
INITIATE-PACKET THEN ALWAYS
GIVES THIS ROUTE.

NOTES: EXECUTE OUTGOING TRANSPORT PACKET LAYER

DATA FLOW NAME: NONADJACENT-ROUTEPACKET
ALIASES: OUTGOINGTRANSPORTROUTEPACKET

OUTGOINGNODETRANSPORTPACKET
SECONDARYOUTGOINGNODE-TRANSPORTPACKET
TRANSPORT-PACKET

COMPOSITION:
NONDAJACENT.ROUTEPACKET z CONTAINS A RTHDR FIELD THAT

HAS A DSTNODE NAME THAT IS
REFERING TO A SATELLITE THAT
IS NOT ADJACENT TO THIS
ROUTING NODE.

NOTES: EXECUTE OUTGOING TRANSPORT PACKETS LAYER

.276

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: NONADJACENTSATELLITEPACKETS
ALIASES: NONE
COMPOSITION:

NONADJACENTSATELLITEPACKETS = RTHDRONADJACENTJNODE_
PACKETS - NONADJACENT-
ROUTE-PACKET

NOTES: EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW NAME: NORMAL.DATAPACKET
ALIASES: INCOMINGDIALOGUE.DATA

VALIDNORALDATASEGMENT
RECEIVEDNORMAL.DATA.SEGMENT
INCOMING._DIALOGUESEGMENT
TRANSPORTDATASEGMENT
PIGGYBACKEDTRANSPORTDATASEGMENT
COUNTEDTRANSPORT..DATASEGMENT
TRANSMITTEDDATAPACKET
RETRANSMITTEDDATAPACKET

COMPOSITION:

SEE ALIASES
NOTES: EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: NSPSIZE
ALIASES: NONE
VALUES AND MEANINGS:

THE MAXIMUM TRANSPORT PACKET SEGMENT SIZE THIS NODE WILL
ACCEPT. THIS NUMBER MUST BE LESS THAN OR EQUAL TO BLKSIZE

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: OBJTYPE
ALIASES: NONE
VALUES AND MEANINGS:

1. GENERAL TASK, USER PROCESS
2. FILE ACCESS
3. UNIT RECORD SERVICES
4. APPLICATION TERMINAL SERVICES
5. COMMAND TERMINAL SERVICES
6. RSX-11M TASK CONTROL
7. OPERATOR SERVICES INTERFACE
8. NODE RESOURCE MANAGER

NOTES: ALL TRANSPORT LAYERS

277

DATA FLOW DAME: OLD..ROUTINGPACKETS
ALIASES: ROUTING.PACKET

VALIDROUTING-PACKET
HOP PEDROUT ING.PACKET
INIT IAL_ROTE.ACKET
ADJACENTNODE...RUTINGPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: OPERATORLPASSWORDCOMMAND
ALIASES: NONE
VALUES AND MEANINGS:

OPERATOR COMMAND PROVIDED DURNING THE NODE VERIFICATION
PHASE OF INITIALIZATION.

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: OPERATORSTARTCOMMAND
ALIASES: NONE
VALUES AND MEANINGS:

OPERATOR COMMAND TO START INITIALIZATION OF THE PHYSICAL
LINK.

NOTES: EXECUTE STARTUP PACKET LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: OUTGOINGDIALOGUEDATA.PACKET
ALIASES: INCOMING.DIALOGUE.PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE DATA PACKET LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NIE: OUTGOING..DIALOGUE_,IESSAGE
ALIASES: SECONDARYOUTGOING.DIALOGUEJSAGE
COMPOSITION:

278

OUTGOING-.DIALOGUE-MESSAGE

OUIGDALGATA ACKET
IRECEIVED...INCORUECT-ASSWOBD-COIOWID

I ERROR-3EASON

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATA FLOW NAME: OUTGoI-NG..NODEHETWORKPACKET
ALIASES: SEcONDARy_.OUTGOING...NODEIETWORK..YACKET
COMPOSITION:

OUTGOING..NODENETWORKPACKET

TIADJACEPNT-.NODE-.ROUTINGJPACKET'I
I TRANspORT...TOJIETWORK-P.ACKETI
I OLD..ROUTING-.PACKETSI
I HOPPED...ROUTINGJPACKET
I VALIDJETWORK..PACKET
I INITIL..RXTE-.PACKET

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATA FLOW NAME: OUTGOING-NODE...TRANSPORT-YACICET
ALIASES: NONADJACENT_.ROUTE-.PACKET

OUTGOING...TRANSPORT...ROTE_.PACKET
SECONDARY-.OUTGOING-NODE-.TRANSPORT_.PACKET
TRANSPORT-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATAno FLWANE: OUGONTRANSPOR!...ROUTILPACKET
ALIASES: ROBADJACENTRODTEPACKET

OUTGOING_.NODTRANSPORT-PACKET
SECONDARy_.OUGOING_.NODE.TRANSORTPACKET
TRAN SPORT-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

279

DECODE ROUTE HEADER LAYER

DATA FLOW NAME: OUTGOING-SATELLITETRANSPORT-PACKET
ALIASES: SECONDARYOUTGOINGSATELLITLTRANSPORTPACKET
COMPOSITION:

OUTGOINGSATELLITE.TRANSPORTPACKET =

INONADJACENTSATELLITL-PACKETI
I ADJACENT-NODEPACKETS

NOTES: EXECUTE OUTGOING TRAN SPORT PACKETS LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

DATA ELEMENT NAME: PAS SWORD
ALIASES: NONE
VALUES AND MEANINGS:

THE PASSWORD FOR THE REQUESTING NODE. IT IS THE SAME FOR
THE ENTIRE NETWORK.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: PASSWRD
ALIASES: NONE
VALUES AND MEANINGS:

ACCESS VERIFICATION PASSWORD = AN ARBITRARY BYTE STRING
USED FOR CROSS-CHECK VERIFICATION (NORMALLY UNIQUELY
PAIRED WITH THE REQUESTOR-ID OR WITH TRE SERVICE).

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: PERSISTENTERROR
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE CONNECT PACKET LAYER

DATA FLOW NAME: PIGGYBACKEDTRANSPORT.DAT&SEGMENT
ALIASES: INCOMINGOILOGUDATA

NORMALDATAPACKET
VALIDNORMALDATSEGMENT
RECEIVEDNORMAL_DATA...SEGMENT
INCOMINGDIALOGUE.SEGMENT

to 280

TEAM SPORT-.DATA..SEGMENT
COURTE..TRAN SPORT-UDTA.JEGHENT
TRNSITTED..DATA..PACKET
RETRANSMITTEDJ-ATA-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATAFOW KAME: PIGG3ACKED...TRANSPORT-InERRJPT-PACKET
ALIASES: INCONING..DIALOGUE..ACKET

TRANSPORT...INTRUPT..)ACKET
VALID,..INTERRUPT..PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE I/L PACKET LAYER

DATA ELEMENT NAME: REAS ON
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO FIL17- BY SAME NAME.
NOTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: RECEIVED-.ADJACENT..NODE..PACKETS
ALIASES: VALID-.SATELLIT...TRANSPORT..PACKET

VALID..DSTADDR-PACKETS
VALID.DSTNODEJPACKETS
VALID..DSTNODE..CI...PACKET

COMPOSITION:
RECEIVED...AJACENTNODEPACKETS

T-RCEtivEDTRANSPORLT..INITIALIZATION....ACKET1I
I RECEIVED-TRANSPORT..DATA-PACKETI
I RECEIVED-..TRANSPORT-CONROL..PACKETI
I RECEIVED-TANSPORT-ACKNOWLEGE..PACKETI

NOTES: DECODE ROUTE READER LAYER

EUZCUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVED..CONNECT...CONFIRILPACKET
ALIASES: CONNECT...CONFIRILPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONNECT PACKET LAYER

281

DATA FLOW NAME: RECEIVEDCONECT-INITIATE-PACKET
ALIASES: CONNECT-INITIATEACIET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: RECEIVED-CORRECT.PASSWORD-COMMAND
ALIASES: CORRECTPASSWORDCOMMAND
VALUES AND MEANINGS:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW ',TE: RECEIVED-DISCONNECTCONFIRM-PACKET
ALIASES: FIRST-DISCONNECTCONFIRMPACKET

DISCONNECTCONFIRMPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER

DATA FLOW NAME: RECEIVED._DISCONECTINITIATEJPACKET
ALIASES: DI SCONNECTINITATEPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONNECT PACKET LAYER

EXECUTE DISCONNECT PACKET LAYER
EXECUTE CONTROL PACKET LAYER

DATA FLOW NAME: RCEIVEDI/LACK..PACKET
ALIASES: NONE
COMPO SITION: RECEIVEDj/LACK-PACKET

= -I/..ACK-PACKEf"I

I I_.IAKPACKET I

NOTES: EXECUTE ACKNOWLEDGE PACKET LAYER

DATA FLOW NAME: RECEIVED.I/L-PACKET

282i
* .i o . ', !

.° tl

ALIASES: VALID..I/L.PACKET
COMPOSITION:

RECK IVED.../L.PACKET I VALID...LINL..ERVICESPACKETI
IVALID-JNTERRUPT-.PACKET

NOTES: EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: RECEIVEDINCORBECT..)AS SWORDCOMMAND
ALIASES: INCORRECT-ASSWORD-COMMAND
VALUES AND M EAN INGS:

SEE ALIASES
NOTES: EXECUTE STARTUP PACKET LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVED...INTERCEPTJNITIAIZATION-ACKET
ALIASES: RECEIVED-.NODEINITIALIZATION-ACKET

RECEIVED...NOINTERCEPT-.INITIALIZATION-PACKET
NODE-.INITIALIZATION.VO-.PACKET
NODE...INITIALIZATION..Vl-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKET LAYER

DATA FLOW NAME: RECEivED-NoDEJrNITIALIZATION-'ACKET
ALIASES: RECEIVED-.INTERCEPT-.1NITIALIZATION.YACKET

RECEIVUDNOINTERCEPT.INITIALIZATION.PACKET
NODE...INITIALIZATION-VO-PACKET
NODE-INITIALIZATION..VI-ACKET

COMPOSITION:
RECEIVED-NODE-JNITIALIZATIONACKET =MSGFLG + STARTTYPE

+NODEADDR + NODENAME + FUNCTIONS + REQUESTS
+ LKSIZE + NSPSIZE + MAXLINKS + ROUTVER +

COMMVER + SYSVER
NOTES: EXECUTE STARTUP PACKET LAYER

DATA o FLWnM: RECEIVED...NODE-.VERIFICATION-PACKET
ALIASES: NODE...VERIFICATTnNIJACKET

COMPOSTION:RECEIVED-NODE-.VERIFICATIOILPACKET s GFLG + STAITTYPE +

PAS SWORD

NOTES: EXECUTE STARTUP PACKET LAYER

283

21 DATA FLOW NAME: RECEIVED-NIOJNTERCEPT...INITIALIZATION-PACKET
ALIASES: RECEIVED..NODE...IITIALIZATION..PACKET

4' NODE-JNITIALIZATION..VO-PACKET
NODEINITIALIZATION..VlJACKET
RECEIVED-INTERCEPT....NITIhLIZATION-YACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE STARTUP PACKET LAYER

DATA PLOW NAME: RECEIVEDNORMAL-ATAACK.YACKET
ALIASES: NONE

COMPOSTION:RECEIVEORALDATACKPACKET = IDATAACK..PACKET7-
I DATAJ{A...PACKETI

NOTES: EXECUTE ACKNOWLEDGE PACKET LAYER

DATA PLOW NAME: RECEIVED-.NORMAL...DATA-SEGMENT
ALIASES: INCOMING-DIALOGUE-J)ATA,

Norn L-.DATA-PACKET
VALID-OMAL...DATA-SEGMENT
INCOMING-.DIALOGUE-.SEGMENT
TRAN SPO RT-ATA-~.SEG14ENT
PIGGYBACKED...TRANSPORT-DATASEGMENT
COUNTEDTRANSPORTDATA-SIGHERT
TRANSMITTED...DATAJPACKET
RETR SMITTED.DATAPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DATA PACKET LAYER

DATA ELEMENT NA)M: RECEIVED...PACKET
ALIASES: Non
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW RANK: RECEIVU...TRANSPORTACKNOWLEDGK.ACKET
ALIASES: TRANSMITTED-TAISPORT-.ACKNOWLEDGLPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE ACKNOWLEDGE PACKET LAYER

284

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDTRANSPORTCONTROLPACKET
ALIASES: TRANSMITTEDTRANSPORTCONTROLPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONNECT PACKET LAYER

EXECUTE CONTROL PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDTRANSPORTDATAPACKET
ALIASES: NONE
COMPOSITION:

RECEIVEDTRANSPORTDATAJPACKET =

IRECEIVED_NORMALDATASEGMENTI
I RECEIVED.I/LPACKET

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA FLOW NAME: RECEIVEDTRANSPORTINITIALIZATIONPACKET
ALIASES: NONE
COMPOSITION:

RECEIVEDTRANSPORTINITIALIZATIONPACKET =

-RECEIVED-INCORRECTJASSWORDCOMMAND-
I RECEIVEDNODENITL IZATIONPACKET
I RECEIVEDNODEVERIFICATIONPACKET
I RECEIVEDCORRECTPASSWORDCOMMAND

NOTES: EXECUTE STARTUP PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: REJECT-CONFIRM
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THE REJECTION OF A RECEIVED-
CONNECTCONFIRMIPACKET, RESULTS IN A
DISCONNECTINITIATEPACKET BEING GENERATED.

NOTES: EXECUTE CONNECT PACKET LAYER

42

, - 285

DATA ELEMENT NAME: REJECT-CONNECT
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THE REJECTION OF A RECEIVED.
CONNECTINITIATEPACKET. RESULTS IN THE GENERATION OF A
DISCONNECT-INITIATE.PACKET.

NOTES: EXECUTE CONNECT PACKET LAYER

DATA FLOW NAME: RETRANSMITTEDDATAPACKET
ALIASES: INCOMINGDIALOGUE.DATA

NORMAL-DATA.PACKET
VALIDNORMAL-DATASEGMENT
RECEIVEDNORMALDATA.SEGMENT
INCOMINGDIALOGUESEGMENT
TRANSPORT.DATASEGMENT
PIGGYBACKED-TRANSPORT..DATASEGMENT
COUNTEDTRANSPORT.DATA-SEGMENT
TRANSMITTED_.DATAPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA FLOW NAME: RETRANSMITTEDI/LPACKET
ALIASES: COUNTEDTRANSPORT.I/LPACKET

TRANSPORTI/LPACKET
TRANSMITTEDI/LPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE I/L PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA ELEMENT NAME: RETURNING
ALIASES: NONE
VALUES AND MEANINGS:

THIS BIT IS TURNED ON WHEN A PACKET IS ON ITS RETURN
JOURNEY. NOT PRESENTLY USED.

NOTES: ALL NETWORK LAYERS

DATA ELEMENT NAME: RETURN-QUEST
ALIASES: NONE
VALUES AND MEANINGS:

286

THIS BIT INDICATES THAT AN UNDELIVERABLE PACKET SHOULD BE
RETURNED TO THE SENDER.

NOTES: ALL NETWORK LAYERS

DATA ELEMENT NAME: REQUESTS
ALIASES: NONE
VALUES AND MEANINGS:

THE REQUESTS DESIRED OF THE RECEIVER BY THE SENDER OF THE
INITIALIZATION PACKET. FORMAT:

VERIF = NODE VERIFICATION PACKET

REQUIRED.
RINT = 0 = NO INTERCEPT = SET

ON TRANSMIT BY A ROUTING
NODE GOING TO A SATELLITE
NODE.
1 = INTERCEPT = SET ON
TRANSMIT BY A ROUTING NODE
GOING TO A ROUTING NODE OR
ON TRANSMIT BY A SATELLITE
NODE GOING TO A ROUTING
NODE.

NOTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: ROUTINGPACKET
ALIASES: VALIDROUTINGPACKET

HOPPEDROUTINGPACKET
INITIALROUTE__PACKET
ADAJACENTNODEROUTINGQPACKET
OLD_ROUTINGPACKETS

COMPOSITION:
ROUTINGPACKET DESTINATION + LINFCOST + HOPCOUNT

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: ROUTVER
ALIASES: NONE
VALUES AND MEANINGS:

THE VERSION OF THE ROUTING ALGORITHM. FORMAT:
1. VERSION NUMBER
2. ECO NUMBE",
3. CUSTOMER LEVEL NUMBER

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: RTHDR

287

I
ALIASES: NONE
VALUES AND MEANINGS:

THE RTHDR IS USED BY NODES CONTAINING AN INTERCEPT
FUNCTION

TO DETERMINE THE PHYSICAL LINK ON WHICH TO SEND THE
PACKET TOWARD THE DESTINATION NODE. A TRANSPORT PACKET
GOING TO AN ADJACENT NODE WILL NOT CONTAIN THE RTHDR
FIELD UNLESS IT IS A NETWORKTONETWORK-PACKET. FORMAT:

1. DSTNODE = DESTINATION NODE NAME
2. SRCNODE = SOURCE NODE NAME
3. MPRI = PRIORITY

NOTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: RTHDRNONADJACENTNODEPACKETS
ALIASES: NONE
COMPOSITION:

RTHDR._NONADJACENTNODEPACKETS = NONADJACENTNODE_PACKETS
+ RTHDR FIELD

NOTES: EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA ELEMENT NAME: RQSTRID
ALIASES: NONE
VALUES AND MEANINGS:

REQUESTOR ID = A CHARACTER-CODED REFERENCE THAT, IN A
SINGLE NODE CONTEXT, UNIQUELY IDENTIFIES
THE PERSON OR PROCESS REQUESTING SERVICE.

NCTES: ALL TRANSPORT LAYERS

DATA FLOW NAME: SECONDARYINCOMINGNODENETWORKPACKET
ALIASES: INCOMINGNODEJNETWORKPACKET
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYINCOMINGNODETRANSPORTPACKET
ALIASES: INCOMINGSATELLITETRANSPORTPACKET

SECONARYINCOMINGSATELLITETRANSPORTPACKET
INCOMING-NODETRANSPORTPACKET

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER

288

r
DATA FLOW NAME: SECONDARYINCOMINGSATELLITE..TRANSPORT-PACKET
ALIASES: INCOMINGSATELLITE_.TRANSPORT.PACKET

INCOMINGNODETRANSP ,,A._PACKET
SECONDARYINCOMING_NODETRANSPORTPACKET

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYEk

DATA FLOW NAME: SECONDARYOUTGOING.DIALOGUEMESSAGE
ALIASES: OUTGOINGJDIALOGUE_MESSAGE
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYOUTGOINGNODENETWORKPACKET
ALIASES: OUTGOINGNODENETWORKPACKET
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYOUTGOINGNODETRANSPORT.PACKET
ALIASES: NONADJACENTROUTEPACKET

OUTGOINGTRANSPORTROUTEPACKET
OUTGOING_NODETRANSPORTPACKET
TRANSPORT-PACKET

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARYOUTGOINGSATELLITETRANSPORTPACKET
ALIASES: OUTGOINGSATELLITETRANSPORT-PACKET
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: SEGMENT-COUNT
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBER OF SEGMENTS THE TRANSMITTER IS GOING TO BREAK
THE INCOMING DIALOGUE DATA INTO.

289

1I

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE I/L PACKET LAYER4-

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA ELEMENT NAME: SEGNUM
ALIASES: NONE
VALUES AND MEANINGS:

TEE NUMBER OF THIS SEGMENT, MODULO 4096.
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: SEGNUMI
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBER OF THIS INTERRUPT OR LINK SERVICE PACKET.
NUMBERS FOR INTERRUPT OR LINK SERVICE PACKETS WILL HAVE
NO RELATIONSHIP TO THE NUMBERS ASSIGNED TO NORMAL DATA
PACKETS. EACH PACKET TYPE UTILIZES A DIFFERENT
SUBCHANNEL ON A LOGICAL LINK.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: SEGSIZE
ALIASES: NONE
VALUES AND MEANINGS:

THE MAXIMUM SIZE OF A NORMAL DATA SEGMENT TO BE RECEIVED
ON THIS LOGICAL LINK.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: SERVICES
ALIASES: NONE
VALUES AND MEANINGS:

REQUESTED SERVICES. FORMAT:
FCOPT = FLOW CONTROL OPTION

= 0 = NONE
= 1 = SEGMENT REQUEST COUNT

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: SOURCE
ALIASES: NONE
VALUES AND MEANINGS:

THE NAME OF THE NODE FROM WHICH THE ROUTING PACKET CAME
FROM.

290

NOTES: ALL NETWORK LAYERS

DATA ELEMENT NAME: SRCADDR
ALIASES: NONE
VALUES AND MEANINGS:

THE LOGICAL LINK SOURCE ADDRESS. THIS ADDRESS IS ASSIGNED
WHEN A LINK IS ESTABLISHED (CONNECT.PACKETS).

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: SRCNAME
ALIASES: NONE
VALUES AND MEANINGS:

THE SOURCE PROCESS IDENTIFICATION. USE OF FORMAT 02 AS
DESCRIBED IN DSTNAME.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: START
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT THE NODE SHOULD START THE
INITIALIZATION PROCESS.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: START-DATA
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO TRIGGER THE RETRANSMITTING OF NEGATIVELY
ACKNOWLEDGED DATA PACKETS.

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA ELEMENT NAME: STARTI/L
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO TRIGGER THE RETRANSMITTING OF NEGATIVELY
ACKNOWLEDGED INTERRUPT AND LINK SERVICES PACKETS.

NOTES: EXECUTE I/L PACKET LAYER

DATA ELEMENT NAME: STARTTYPE
ALIASES: NONE

291

r
VALUES AND MEANINGS:

TYPE OF STARTUP MESSAGE. I = NODE_INITIALIZATION_PACKET
2 = NODEVERIFICATION.PACKET

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: STOP
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO START LOGICAL LINK DISCONNECTION DUE TO A
RECEIVEDDISCONNECT.REQUESTCOMMAND.

NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: STOP.LINK
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE DISCONNECT PACKET LAYER

DATA ELEMENT NAME: STOP-LINK-NOW
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT A DISCONNECTCONFIRMPACKET
CAN NOW BE ISSUED SINCE ALL DATA-PACKETS SENT OUT HAVE
BEEN POSITIVELY ACKNOWLEDGED.

NOTES: EXECUTE DISCONNECT PACKET LAYER

DATA ELEMENT NAME: SYSVER
ALIASES: NONE
VALUES AND MEANINGS:

A STRING DESCRIBING THE OPERATING SYSTEM. DATA OF
CREATION. ETC.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: TRANSIENTERRORHRESOLDCOUNTER-OVERFLOW
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

292

DATA ELEMENT NAME: TRANSMIT-PACKET
ALIASES: NONE
VALUES AND MEANINGS:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
NOTES: EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW NAME: TRANSMITTEDDATAPACKET
ALIASES: INCOMINGDIALOGUEPACKET

NORMAL-DATA.PACKET
VALIDNORMALDATASEGMENT
RECEIVEDNORMALDATASEGMENT
INCOMING.DIALOGUESEGMENT
TRANSPORT-DATASEGENT
PIGGYBACKEDTRANSPORT-DATA-SEGMENT
COUNTEDTRANSPORTDATA-.SEGMENT
RETRANSMITTEDATAPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA FLOW NAME: TRANSMITTEDI/LPACKET
ALIASES: COUNTEDTRANSPORTI/LPACKET

TRAN SPORTI/L._PACKET
RETRANSMITTEDI/LPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE I/L PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: TRANSMITTEDTRANSPORT.ACKNOWLEDGE..PACKET
ALIASES: RECEIVED-TRANSPORTACKNOWLEDGEPACKET
COMPOSITION:

TRANSMITTED_TRANSPORTACKNOWLEDGE.PACKET =

-DATA.ACK-PACKET"
I DATAIAK..PACKET
I I/LACK,,,,PACKET
I I/L.,AK...PACKET

NOTES: EXECUTE DATA PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

4. 293

I _ • ,: .:- ., ,

DATA FLOW NAME: TRANSMITTED-..TRANSPORT-.DTAJPACKET
ALIASES: NONE

COMPOSITION:
TRANSMITTEDTRANSPORT-..DTAPACKET z

RETRANSKITTED..)AT&-PACKEi
I RETRANSITTEDI/IPACKETI
ITRANSMITTEDJ/k.PACKET
ITRANSMITTED...DTA-.PACKET

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE TRAN SPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: TRANSMITTEDTRANSPORT...CONTROLJPACKET
ALIASES: RECIEVED-TRANSPORT..CONTROL..PACKET
COMPOSITION:

TRANSMITTEDTRANSPORTCONTROL..PACKET

IDISCONNECT_.INITIAT...PACKEi
ICONNECT...INITIATE-.PACKET
ICONNECT...CONFIRMJPACKET
IDISCONNECT-.CONFIRMCPACKET

NOTES: EXECUTE CONNECT PACKET LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW NAME: TRANSMITTED-.TRANSPORT..INITIALIZATION..)ACKET
ALIASES: NONE
COMPOSITION:

TRANSMITTED-TRANSPORT...INITIALIZATIONPA~ET

T NODE...INITIALIZATIONLVO..PACKliTI
I ODE...IITIALIZATIONLVLPACKETI
I ODE..VERIFICATIOJACIET
ICORUCT.PASSORD.COOAUD
IINCORRcT-ASSWoRD-coaiMD

NOTES: EXECUTE STARTUP PACKET LATER
EXECUTE OUTGOING TRANSPORT PACKET LATER1
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NOWE LaE

294

DATAnFOW NAME: TRAM SPORT,.)ATA-SEGMENT
ALIASES: INCOMIG...DIALOGUE-IATA

NORMhl..DATAPACKET
VALID-NORMhL-AT.-SGMENT
RECEIVED-ORMAL-U.DTA...SEGMENT
INCOMING-DIALOGULSEGHENT
PIGGYACKED..TRANSPORT-ATA-SEGM4EN
COUWTED...TWISPORT...ATA-SEGMEN
RETRANSMITTEDDATA-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DIALOGUE SEGM4ENT LAYER

DATA FLOW NAME: TRAM SPORT-.INTEUUPT.PACKET
ALIASES: INCOMING...DIALOGUE...INTEBJIJPT

PIGGYACKEDTRANSPORT-M.INTRMYPT-PACKET
VALID-JNTERRUPT..PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE I/L PACKET LAYER

DATA FLow NANE: TRAM SPORT-PACKET
ALIASES: NONADJACENTROUT!JPACKET

OUTGOING...TRANSPORT-.RtOJTE..ACKET
OUTGOING...NODETRANSPORT-PACKET
SECONDARY-OUTGOING-NODE..TRANSPORT-PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NANE: TWINSPORT..TO-NETWORK-PACKET
ALIASES: NONE
COMPOSITION:

TRAM SPORTTOJETOK..ACKET z TRAN SPORT-..PACKET + flOPS +
SOURCE + DESTINATION +
CHOKE + RETURN + REQUEST +
RETURNING + VERSION

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA UIDSEMT NAWE: TSTDATA
ALIASES: NONE
VALUES AND MEANINGS:

295

IANY TEST DATA PATTERN. THIS PACKET IS IGNORED ON RECEIVE.

NOTES: ALL TRANSPORT LAYERS
4.-

DATA FLOW NAME: VALID.DSTADDRPACKETS
ALIASES: RECEIVEDADJACENTNODE-PACKETS

VALID..SATELLIT-...TRANSPORT.PACKETS
VALID..DSTNODE..PACKETS
VALIDDSTNODECIPACKET

COMPOSITION:

SEE ALIASES
NOTES: DECODE ROUTE HEADER LAYER

DATA FLOW NAME: VALID..DSTNODECI..PACKET
ALIASES: RECEIVED.ADJACENT_NODEPACKETS

VALIDSATELLITE_TRANSPORT-PACKET
VALID.DSTADDR-PACKETS
VALIDDSTNODEPACKETS

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DECODE ROUTE HEADER LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW NAME: VALIDDSTNODEPACKETS
ALIASES: RECE IVEDJADJACENTNODEPACKETS

VALIDSATELLITE.TRANSPORT-PACKET
VALID..DSTADDLPACKETS
VALID..DSTNODECI.PACKETS

COMPOSITION:
SEE ALIASES

NOTES: DECODE ROUTE HEADER LAYER

DATA FLOW NAME: VALIDI/LPACKET
ALIASES: RECEIVEDI/LPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW RAME: VALIDMIUTERRUPT.PACKET
ALIASES: INCOMING-DIALOGUE.INTERRUPT

TRANSPORTWINTERRUPT-PACKET

296

PIGGYBACKED-.TRAN SPORT...INTERRUPT..YACKET
4 COMPOSITION:

SEE ALIASES
'4'NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: VALID-LINK-ERVICES-PACKET
ALIASES: INERRJPT..LINK-SERVICESPACKET

DATA-LINK...SERVICES.YACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE DATA PACKET LAYER

DATA FLOW NAME: VALID-NETWORK..)ACKET
ALIASES: NETWORK...TO...NETWORKPACKET

VALID...NETWOI-TO-NETWORK-PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: VAL ID-ETWORK-.TO-EWORKPACKET
ALIASES: NETWORK...TONETWORK-PACKET

VALID-ETWORK...PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE NETWOR1K PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAMJE: VAL ID-NOOLAL-.DATA-SEGMENT
ALIASES: INCOMING.J)IALOGUE-.PACKET

NORMAL....AT-PACKET
RECK IVEflJOAL.DATA-SEGHENT
INCOMING-..DIALOGUE-.SEG14ENT
TRANSPORT...DATA-SEGHNT
PIGG3ACKED.TRANSPORT)DATA.SEGMENT
COUMTED-.TRANSPORT..DTAJSEGMENT
TRAM SMITTED...DATA-PACKET
RETRANSMITTED..DTAJPACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE DI TA PACKET LAYER

297

DATA FLOW NAME: VALID._ROUTING.PACKET
ALIASES: ROUTING-PACKET

HOP PEDROT ING.PACKET
INITIALROUT.PACKET
ADJACENTNODE-ROUTINGPACKET
OLDROUTINGPACKETS

COMPOSITION:
SEE ALIASES

NOTES% EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: VALIDSATELLITETRANSPORT.PACKET
ALIASES: RECEIVEDADJACENTNODEPACKETS

VALID..DSTADDRPACKETS
VALIDDSTNODEPACKETS
VALID.DSTNODECI-PACKET

COMPOSITION:
SEE ALIASES

NOTES: DECODE ROUTE HEADER LAYER

DATA ELEMENT NAME: VERIFY-CLEAR
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG TO INDICATE THAT A
RECEIVEDINTERCEPT-INITIALIZATIONPACKET
WAS RECEIVED WITH THE VERIFY BIT NOT SET CAUSING
GENERATION OF ANOTHER RECEIVED_INTERCEPTINITIALIZATION._
PACKET WITH THE VERIFY BIT NOT SET.

NOTTS: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: VERIFY-SET
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO INDICATE THAT A RECEIVEDINTERCEPT_
INITIALIZATION-PACKET WAS RECEIVED WITH THE VERIFY BIT
SET CAUSING THE GENERATION OF A NODE.VERIFICATIONPACKET.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: VERSION
ALIASES: NONE
VALUES AND MEANINGS:

THIS BIT TELLS WHICH VERSION OF THE NETWORK PROTOCOL
GENERATED THE PACKET. PRESENTLY NOT USED.

NOTES: ALL NETWORK LAYERS

298

FTLE DEFINITIONS (T/N)

FILE OR DATABASE NAME: ACK_..FILE
ALIASES: NONE
COMPOSITION:

ACK..FILE = THE SEGMENT NUMBER OF THE LAST DATA
PACKET POSITIVELY ACKNOWLEDGED.

ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DATA PACKET LAYER
EXECUTE ACKNOWLEDGE PACKET LAYER

FILE OR DATABASE NAME: ACKI/L..FILE
ALIASES: NONE
COMPOSITION:

ACKI/L.FILE = THE SEGMENT NUMBER OF THE LAST
INTERRUPT OR LINK SERVICES PACKET POSITIVELY
ACKNOWLEDGED TO THIS NODE.

ORGANIZATION: I 8-BIT BYTE
NOTES: EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DATA PACKET LAYER
EXECUTE ACKNOWLEDGE PACKET LAYER

FILE OR DATABASE NAME: ADJACENT_NODE_PARAMETERS
ALIASES: NONE
COMPOSITION:

ADJACENT._NODE_PARAMETERS = NODEADDR + NODENAME + NO
INTERCEPT + INTERCEPT
REQUESTED + BLKSIZE +
NSPSIZE + KAXLNKS + COMMVER
+ SYSVER + CORRECT-
PASSWORD + LINKACCESSABLE

ORGANIZATION: VARIABLE LENGTH 8-BIT BYTE COMBINATIONS
NOTES: EXECUTE STARTUP PACKET LAYER

EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

299

FILE OR DATABASE NAME: DATAMEMORY
ALIASES: NONE
COMPOSITION:

DATAMEMORY DATA SEGMENTS ARE LOADED INTO MEMORY
UNTIL SUCH TIME A POSITIVE
ACKNOWLEDGEMENT IS RECEIVED.

ORGANIZATION: ARRAY OF VARIABLE BYTE LENGTH WORDS.
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

FILE OR DATABASE NAME: DATA.NAK_.FILE
ALIASES: NONE
COMPOSITION:

DATA-.A-FILE = THE SEGMENT NUMBER OF THE LAST DATA
PACKET NEGATIVELY ACKNOWLEDGED TO THIS
NODE, AT OTHER TIMES IT IS EQUAL TO
TRANSMIT_D_FILE + 1.

ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE DATA PACKET LAYER
EXECUTE ACKNOWLEDGE PACKET LAYER

FILE OR DATABASE NAME: DIALOGUEPROCESSTABLE
ALIASES: NONE
COMPOSITION:

DIALOGUEPROCESS-TABLE = DESTINATION NODE NAME +
DESTINATION PROCESS
IDENTIFICATION + SOURCE
PROCESS IDENTIFICATION +
LINK IDENTIFIER + ACCESS
CONTROL INFORMATION +
SOURCE NODE NAME + SOURCE
PROCESS IDENTIFICATION +
DESTINATION PROCESS
IDENTIFICATION +
REPLY IDENTIFIER + REMOTE
PROCESS'S SEGMENT SIZE.

ORGANIZATION: VARIABLE LENGTH 8-BIT BYTE WORDS.
NOTES: EXECUTE CONNECT PACKET LAYER

EXECUTE DISCONNECT PACKET LAYER
EXECUTE DIALOGUE SEGMENT LAYER
DECODE ROUTE READER LAYER
EXECUTE DATA PACKET LAYER
EXECUTE I/L PACKET LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

300

FILE OR DATABASE NAME: FLOWCONTROLPARAMETERS
ALIASES: NONE
COMPOSITION:

FLOWCONTROL,_PARAMETERS DATA FLOW CONTROL SWITCH +
INTERRUPT REQUEST COUNT +
DATA REQUEST SWITCH + DATA
REQUEST COUNT

ORGANIZATION: INITIAL PARAMETERS = OPEN,1,SEGMENTO RESPECTIVELY
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE I/L PACKET LAYER
EXECUTE DATA PACKET LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER

FILE OR DATABASE NAME: I/L_MEMORY
ALIASES: NONE
COMPOSITION:

I/L_MEMORY = INTERRUPT AND LINK SERVICE PACKETS ARE
LOADED INTO MEMORY UNTIL SUCH TIME A
POSITIVE ACKNOWLEDGEMENT IS RECEIVED.

ORGANIZATION: ARRAY OF VARIABLE BYTE LENGTH WORDS.
NOTES: EXECUTE I/L PACKET LAYER

FILE OR DATABASE NAME: I/L_NAK_FILE
ALIASES: NONE
COMPOSITION:

I/LJNAKFILE = THE SEGMENT NUMBER OF THE LAST
INTERRUPT OR LINK SERVICES PACKET NEGATIVELY
ACKNOWLEDGED TO
THIS NODE. ALSO EQUAL TO TRANSMITI/LFILE + 1.

ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE I/L PACKET LAYER

EXECUTE DATA PACKET LAYER
EXECUTE ACKNOWLEDGE PACKET LAYER

FILE OR DATABASE NAME: INITIALPARAMETERLIST
ALIASES: NONE
COMPOSITION:

INITIALPARAMETER-LIST NODEADDR + NODENAME +

"NOINTERCEPT I IN-NOINTERCEPTREQUESTE-
[INTERCEPT I [INTERCEPT-REQUESTED

301

+ BLKSIZE + NSPSIZE + MAflNKS + ROUTVER +
COMMVER + SYSVER

ORGANIZATION: VARIABLE LENGTH 8-BIT BYTE COMBINATIONS
NOTES: EXECUTE STARTUP PACKET LAYER

FILE OR DATABASE NAME: LINKTOTRANSPORTCOMMAND_TABLE
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL
ORGANIZATION: SINGLE VARIABLE
NOTES: EXECUTE STARTUP PACKET LAYER

EXECUTE CONNECT PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

FILE OR DATABASE NAME: LS_FILE
ALIASES: NONE
COMPOSITION:

LSFILE = SEGMENT NUMBER OF LAST PACKET SENT.
ORGANIZATION: I BYTE
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER

FILE OR DATABASE NAME: REASON
ALIASES: NONE
COMPOSITION:

A FILE WITH THE FOLLOWING ERRORS:
ERROR CODE MEANING

0 NO ERROR
1 RESOURCES ALLOCATION FAILURE
2 DESTINATION NODE DOES NOT EXIST
3 NODE SHUTTING DOWN
4 DESTINATION PROCESS DOES NOT EXIST
5 INVALID PROCESS NAME FIELD
6 DESTINATION PROCESS QUEUE OVERFLOW
7 UNSPECIFIED ERROR CONDITION
8 THIRD PARTY ABORTED THE LOGICAL LINK
9 LINK ABORT BY DIALOGUE PROCESS

10 FLOW CONTROL VIOLATION-ILLEGAL FCVAL IN LINK
SERVICES MESSAGE

11 TOO MANY CONNECTIONS TO NODE

302

12 TOO MANY CONNECTIONS TO DESTINATION PROCESS
13 ACCESS NOT PERMITTED-UNACCEPTABLE RQSTRID OR

PAS SWORD
14 LOGICAL LINK SERVICES MISMATCH
15 UNACCEPTABLE ACCOUNT INFORMATION-UNAUTHORIZED

OR ACCOUNT BALANCE UNACCEPTABLE
16 SEGSIZE TOO SMALL
17 DIALOGUE PROCESS ABORTED. TIMED OUT, OR

CANCELLED REQUEST
18 NO PATH TO DESTINATION NODE
19 FLOW CONTROL FAILURE
20 DSTADDR LOGICAL LINK DOES NOT EXIST
21 CONFIRMATION OF DISCONNECT INITIATE
22 IMAGE DATA FIELD TOO LONG-RQSTRID. PASSWORD.

ACCOUNT, USRDATA. AND DATA.
ORGANIZATION: EACH ERROR = 2 BYTES
NOTES: DECODE ROUTE HEADER LAYER

EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER

FILE OR DATABASE NAME: RECEIVEDDFILE
ALIASES: NONE
COMPOSITION:

RECEIVED_DFILE = MOST CURRENT DATA SEGMENT NUMBER
RECEIVED.

ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE DATA PACKET LAYER

FILE OR DATABASE NAME: RECEIVEDI/LFILE
ALIASES: NONE
COMPOSITION:

RECEIVEDI/LFILE MOST CURRENT I/L SEGMENT NUMBER
RECEIVED.

ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE DATA PACKET LAYER

FILE OR DATABASE NAME: ROUTINGTABLEl
ALIASES: NONE
COMPOSITION:

ROUTINGTABLE_1 = 1-2 = 6
2-3 = 5
3-1 = 10

1-2-3 = 11
2-3-1 = 15

303

m_

3-1-2 = 16
ABOVE NUMBERS HAVE ASSOCIATED NODE NAMES.

ORGANIZATION: THIS IS A TABLE THAT CONTAINS THE PERMINATE LINK COST,
IF THE FULL NETWORK WERE UP AND RUNNING. THE ABOVE
VALUES ARE FOR A 3 ROUTING NODE NETWORK CONFIGURATION.

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

FILE OR DATABASE NAME: ROUTING-TABLE_2
ALIASES: NONE
COMPOSITION:

ROUTINGTABLE_2 = 1-2 + 2-3 + 3-1 + 1-2-3 + 2-3-1 +
3-1-2

ORGANIZATION: THIS IS THE TABLE THAT IS ACTUALLY USED AS THE NETWORK
ROUTING TABLE FOR GENERATING AND SENDING ROUTING
PACKETS.

NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

FILE OR DATABASE NAME: SATELLITE.NODEPARAMETERS
ALIASES: NONE
COMPOSITION:

SATELLITE.-NODE.PARAETERS = NODEADDR + NODENAME +
INTERCEPT + NO INTERCEPT +
BLKSIZE + NSPSIZE +
MAXLNKS + ROUTVER +
COMMVER + SYSVER +
PAS SWORD

ORGANIZATION: VARIABLE LENGHT 8-BIT BYTE COMBINATIONS
NOTES: EXECUTE STARTUP PACKET LAYER

DECODE ROUTE HEADER LAYER

FILE OR DATABASE NAME: TRANSMITDYILE
ALIASES: NONE
COMPOSITION:

TRANSMIT_DFILE = DATA TRANSMITTING SEGMENT NUMBER,
MODULO 4096.

ORGANZATION: 1 8-BIT BYTE
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

FILE OR DATABASE NAME: TRANSMITI/LFILE
ALIASES: NONE
COMPOSITION:

TRANSMITI/L..YILE = INTERRUPT OR LINK SERVICES
TRANSMITTING SEGMENT NUMBER.

304

U

I

MODULO 4096.
ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE I/L PACKET LAYER

FILE OR DATABASE NAME: TRANSPORT-TOLINK-COMMANDTABLE
ALIASES: NONE
COMPOSITION:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
ORGANIZATION: SINGLE VARIABLE
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE STARTUP PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

305

PROCESS SPECIFICATIONS (TIN)

PROCESS NAME: DECODE RTHDR FIELD
PROCESS NUMBER: 1.1.1
PROCESS DESCRIPTION:
WREN Input = INCOMINGSATELLITETRANSPORT.PACKET or INCOMINGJNODETRANSPORT_

PACKET then
Check for RTHDR field

IF RTRDR field not present then
Output RECEIVEDADJACENT_NODEPACKETS

ELSE
IF DSTNODE = valid satellite node and MSGFLG u 00011000

then

Output VALIDDSTCIPACKET
ELSEIF DSTNODE = valid satellite node then

Output VALID..DSTNODEPACKETS
ELSEIF DSTNODE z valid routing node then

Output OUTGOINGTRANSPORTROUTE_PACKET
ELSE output INVALID..DSTNODE_PACKETS

PROCESS NAME: DECODE MSGFLG FIELD
PROCESS NUMBER: 1.1.2
PROCESS DESCRIPTION:
IF MSGFLG field = valid destination logical link address then

Output VALIDDSTADDRPACKETS
ELSE output INVALID..DSTADDRLPACKETS

PROCESS NAME: GENERATE FIRST DISCONNECT CONFIRM
PROCESS NUMBER: 1.1.3
PROCESS DESCRIPTION:
IF Input = INVALID..DSTADDRPACKETS or DISCONNECTREQUIRED or INVALIDDSTNODE_

PACKETS then
Extract REASONCODE from REASON file and
Output FIRST_DISCONNECTCONFIR)_PACKET

ELSE Null

PROCESS NAME: EXAMINE LOGICAL LINK DATABASE
PROCESS NUMBER: 1.1.4
PROCESS DESCRIPTION:
IF SATELLIT&JIODEPJARAMETERS are null then

Output DISCONUICTtQUIRED
ELSE output VALIDATELLITLTRANSPORT-PACKET

306

PROCESS NAME: PASS TO SATELLITE
PROCESS NUMBER: .1.1.5
PROCESS DESCRIPTION:
WHEN Input is VALID_SATELLITE_TRANSPORTPACKET or VALID..DSTNODECIPACKET

Pass to satellite node according to DSTADDR value.
ELSE Null

PROCESS NAME: DECODE PACKET TYPE
PROCESS NUMBER: 1.2
PROCESS DESCRIPTION:
WHEN Input is RECEIVED_ADJACENTNODEPACKETS then

IF MSGFLG = OBBOOOOO where BB = 00,01,10,11 then
Output RECEIVEDTRANSPORTDATAPACKET

ELSEIF MSGFLG = 00110000 then
Output RECEIVEDTRANSPORTDATA_PACKET

ELSEIF MSGFLG = 00010000 then
Output RECEIVED_TRANSPORTDATA_PACKET

ELSEIF MSGFLG = 00010100 or 00000100 then
Output RECEIVEDTRANSPORTACKNOWLEDGEPACKET

ELSEIF MSGFLG = 00011000, 00101000, 00111000. or 01001000 then
Output RECEIVED_TRANSPORTCONTROLPACKET

ELSEIF MSGFLG = 0101100 with a STARTTYPE of 1 or 2 then
Output RECEIVED_TRANSPORTINITIALIZATIONPACKET

ELSE Null

PROCESS NAME: DECODE DIALOGUE MESSAGE
PROCESS NUMBER: 1.3.1.1
PROCESS DESCRIPTION:
IF Input = command format then

Output appropriate command:
ENTER(AINTENANCEMODE
CONNECT-REQUEST
OPERATOLPAS SWORDCOMMAND
OPERATORSTARTCOMMAND
ABORTCOMMAND
DISCONNECT-REQUEST

ELSE output input as INCOMING"DIALOGUEPACKET

PROCESS NAME: EXAMINE ADJACENT NODE PARAMETERS AND DECODE
PROCESS NUMBER: 1.3.1.2
PROCESS DESCRIPTION:
IF ADJACENT-NODEJPARAMETER is equal to LINK..INACCESSABLE then

307

Output LINK.NACCESSABLEERROR
ELSEIF Input = dialogue data then

Output INCOMING-DIALOGUE.)ATA
ELSE output INCOMING-DIALOGUEINTERWUPT

PROCESS NAM: BREAK DIALOGUE DATA INTO SEGMENTS
PROCESS NUMBER: 1.3.1.3
PROCESS DESCRIPTION:
TAKE INCOMINGDIALOGUEDATA and break into segments according to the mazimm

segment length the node can handle.
Output each segment as INCOMINGDIALOUE_SEGMENT.
Output the total number of segments the message has been broken up in

as the SEGMENT _COUNT

PROCESS NAME: EXAMINE DATA FLOW CONTROL PARAMETERS
PROCESS NUMBER: 1.3.1.4
PROCESS DESCRIPTION:
IF FLOWCONTROLPARAMETERS is set to closed then

Output DATA.FLOWERROR
ELSEIF FLOWCONTROLPARAMETERS DATAREQUESTCOUNT is greater than 0 then

Decrement the DATA_REQUESTCOUNT and
Output the INCOMINGDIALOGUESEGMENT as TRANSPORTDATASEGMENT

ELSE output DATA-FLOW_ERROR

PROCESS NAME: PIGGYBACKED DATA ACKNOWLEDGE
PROCESS NUMBER: 1.3.1.5
PROCESS DESCRIPTION:
IF Input = DATAACK..PACKET or DATAAKPACKET then

Output TRANSPORTDATASEGENT with the appropriate ACKNUM field set
ELSE output PIGGYBACKEDTRANSPORT_DATA_SEGMENT with a null ACKNUM field

PROCESS NAME: ASSIGN SEGMENT NUMBER MOD 4096
PROCESS NUMBER: 1.3.1.6
PROCESS DESCRIPTION:
IF TRANSMITDFILE < 4096 then

TRANSMITDFILE = TRANSMITDFILE + 1
DATA_ NAK _FILE = TRANSMIT.D..FILE + 1

Output COUNTEDTRANSPORTDATA-SEGMENT
IF last segment then

Output TRANSMITDFILE value to LSFILE
ELSE Null

ELSE TRANSMITDFILE = 0
DATAIAK_.FILE = 1

308

Output COUNTEDTRANSPORTDATA.SEGMENT
IF last segment then

Output TRANSITDFILE value to LS..FILE
ELSE Null

PROCESS KANE: LOAD AND DELETE DATA MEMORY
PROCESS NUMBER: 1.3.1.7
PROCESS DESCRIPTION:
IF Input = COUNTEDTRANSPORT-DATASEGMENT then

Output to memory
ELSEIF Input = ACK._ADILE value then

Delete all CCUNTEDTRANSPORTJATA.SEGMENTS that have the same or lover
values for segment numbers

ELSE Input = STARTDATA flag then
Output all recorded COUWTEDTRANSPORTDATASEGMENTS with segment numbers

equal to or greater than the DATANAK_.FILE value as RETRANSMITTED_
DATA-PACKET. All COUNTEDTRANSPORTJATASEGMENTS with segment
numbers less than the DATANAKFILE value are deleted.

PROCESS NAME: CHECK DATA RETRANSMIT
PROCESS NUMBER: 1.3.1.8
PROCESS DESCRIPTION:
IF DATAIAM-FILE = TRANSMITDFILE + 1 then

Output COUNTEDTRANSPORTDATAPACKET as TRANSMITTEDDATAPACKET
ELSE the DATANAK..FILE value will be substracted from the TRANSMITI/L_FILE

value and this value will be used to increment the
FP.OWCONTROLPARAMETERS DATAREQUESTCOUNT value.

Output START_.DATA flag
Buffer all incoming COUNTEDTRANSPORTDATASEGMENTS

PROCESS NAME: CODE DATA AND I/L PACKETS
PROCESS NUMBER: 1.3.1.9
PROCESS DESCRIPTION:
IF Input = RETRANSITTED.DATA&PACKETS. TRANSMITTEDJDATA&PACKETS,

RETRANSMITTEDI/L.PACKET, or TRANSMITTEDI/LPACKETS then
Output as TRANSMITTEDTRANSPORTDATAPACKET

ELSE Null

PROCESS NAME: EXAMINE INTERRUPT FLOW CONTROL PARAMETERS
PROCESS NUMBER: 1.3.2.1
PROCESS DESCRIPTION:
IF FLOWCONTROL-PARAETER INTERRUPTREQUESTCOUNT is greater than 0 then

Decrement the INTERRUPTREUESTCOUNT and

309

Output the INCOMINGDIALOGUEINTERIWPT as TRANSPORTINTERRUPT.PACKET
4 ELSE output INTERWUPTJYLOWJRROR

PROCESS NAME: GENERATE INTERRUPT LINK SERVICES
PROCESS NUMBER: 1.3.2.2
PROCESS DESCRIPTION:
UPON reception of the first INCOMIN-DIALOGUEINTERRUPT

Generate and output an INTERPTJLIINKSERVICESPACKET with LSFLAGS ficid
Set to INTERRUPTREQUESTCOUNT plus a STARTIDATA command. The actual
INTERRUPTDATA.COUNT is contained in the FCVAL field.

PROCESS NAME: PIGGYBACK I/L ACKNOWLEDGE
PROCESS NUMBER: 1.3.2.3
PROCESS DESCRIPTION:
IF Input = I/LACK.PACKET or I/LAK..PACKET then

Output TRANSPORTINTERRUPT.PACKET with the apporpriate ACKNUM field set
ELSE output PIGGYBACKED_TRASPORT_INTERRUPT_PACKET with a null ACKNUM field

PROCESS NAME: CODE I/L PACKET
PROCESS NUMBER: 1.3.2.4
PROCESS DESCRIPTION:
IF Input = PIGGYBACKEDTRANSPORTINTERRUPTPACKET, INTERRUPTLINKSERVICES_

PACKET, or DATA_LINKSERVICESPACKET then
Output as TRANSPORTI/L_PACKET

ELSE Null

PROCESS NAME: GENERATE DATA LINK SERVICES
PROCESS NUMBER: 1.3.2.5
PROCESS DESCRIPTION:
IF Input = SEGENTCOUNT then

Output a DATALINKSERVICESPACKET with LSFLAGS field set to
DATAREQUESTCOUNT
Output a START_,DATA command. The actual DATAREQUESTCOUNT value is
contained in the FCVAL field

ELSEIF Input = LSCODE then
Output a DATALINKSERVICESPACKET with LSFLAG field set to DATA.REQUEST_

COUNT.
Output a STOPDATA command. The actual DATAREQUESTCOUNT value is the

amount of segment space left over from filling the last buffer.
ELSE Null

310

PROCESS NAME: ASSIGN PACKET NUMBER MOD 4096
PROCESS NUMBER: 1.3.2.6
PROCESS DESCRIPTION:
IF TRANSMITI/LJFILE < 4096 then

TRANSMITI/LFILE = TEANSMITI/LJFILE + 1
I/LJNAK-FILE = TRANSMITI/LFILE + I
Output COUNTEDTRANSPORTI/LPACKET

ELSE TRANSMITI/LFILE = 0
I/I.-A FILE = 1
Output COUNTEDTRANSPORTI/LPACKET

PROCESS NAME: LOAD AND DELETE I/L MEMORY
PROCESS NUMBER: 1.3.2.7
PROCESS DESCRIPTION:
IF Input = COUNTED_TRANSPORTI/LPACKET then

Load to MEMORY
ELSEIF Input = ACKI/L..FILE value then

Delete all COUTEDTRANSPORTI/L_PACKETS that have the same of lover
values for segment numbers

ELSE Input = STARTI/L flag then
Output all recorded COUNTEDTRANSPORTI/L..PACKETS with segment numbers

equal to or greater than the I/L..NAKFILE value as RETRANSMITTED_
I/LPACKETS.

Delete all COUNTEDTRANSPORTI/LPACKETS with segment numbers less than
the I/L..NAK..FILE value

PROCESS NAME: CHECK I/L RETRANSMIT
PROCESS NUMBER: 1.3.2.8
PROCESS DESCRIPTION:
IF I/LNAK.FILE = TRANSMIT.I/LFILE + I then

Output COUNTED_TRANSPORT_I/L_PACKET as TRANSMITTEDI/LPACKET
ELSE output STARTI/L flag and

Buf fer incoming COUNTEDTRANSPORTI/L_PACKET

PROCESS NAME: DETERMINE DATA PACKET TYPE
PROCESS NUMBER: 1.4.1
PROCESS DESCRIPTION:
IF Input MSGFLG = OBBOOOOO where BB = 00.01.10.11 then

Output RECEIVEDNORKAL_DATASEGHENT
ELSEIF Input MSGFLG = 00110000 or 00010000 then

Output RECEIVEDI/LPACKET
ELSE Null

311

lL

PROCESS NAME: DECODE DATA ACKNUM
PROCESS NUMBER: 1.4.2
PROCESS DESCRIPTION:
IF RECEIVEDNORMALDATASEGMENT ACKNUM field = NAK then

Output data segment number to DATANAK_FILE
ELSEIF RECEIVEDNORMALDATASEGMENT ACKNUM field = ACK then

IF RECEIVEDNORMAL-DATA_SEGENT ACKNUM value is greater than the stored
ACK.D.FILE value then
Output segment number to the ACK..DFILE

ELSE Null
ELSE Null

PROCESS NAME: DECODE DATA SEGMENT NUMBER
PROCESS NUMBER: 1.4.3
PROCESS DESCRIPTION:
IF Input data segment number is greater than the RECEIVED_DFILE value then

Update the RECEIVEDDFILE value then
IF the FLOWCONTROL.PARAMETER DATA_FLOW_CONTROL_SWITCH is set to open

then
Output VALIDNORMAL.DATASEGMENT and DATA_ACK_LG

ELSE output CLOSEDFLOWCONTROL
ELSE output DATA_.NAKFLAG

PROCESS NAME: DECODE I/L SEGMENT NUMBER
PROCESS NUMBER: 1.4.4
PROCESS DESCRIPTION:
IF Input I/L segment number is greater than the RECEIVEDI/LFILE value then

Update the RECEIVED_I/L_FILE and
Output I/LACKFLAG and VALID_I/LPACKET

ELSE output I/LNAK_FLAG

PROCESS NAME: DECODE I/L ACKNUMI FIELD
PROCESS NUMBER: 1.4.5
PROCESS DESCRIPTION:
IF RECEIVEDI/LPACKET ACKNUMI field is equal to NAK then

Output stored I/L..SEGMENT_.UMBER to I/L-NAKFILE
ELSEIF RECEIVEDI/LPACKET ACKNUMI field is greated than the stored ACKI/L_

FILE value then
Output segment number to the ACK_I/LFILE

ELSE Null

PROCESS NAME: GENERATE DATA ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.6

312

PROCESS DESCRIPTION:
UPON reception of a DATAACK_FLAG

Generate and output a DATAACK_PACKET

PROCESS NAME: GENERATE DATA NEGATIVE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.7
PROCESS DESCRIPTION:
UPON reception of a DATAJAKFIAG or CLOSEDFLOWCONTROL flag

Output a DATA.AKPACKET

PROCESS NAME: LOAD RECEIVE BUFFER UNTIL FULL OR LS
PROCESS NUMBER: 1.4.8
PROCESS DESCRIPTION:
IF receive buffers available then

Fill until all data segments are accounted for and
Output NORMALDATA_PACKET
IF last receive buffer is not entirely full when last data segment is

deposited then
Output LSCODE

ELSE Null
ELSE output NOBUFFER.SPACE

PROCESS NAME: GENERATE I/L NEGATIVE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.9
PROCESS DESCRIPTION:
UPON reception of an I/L_NAKFLAG

Generate and output an I/LNAKPACKET

PROCESS NAME: GENERATE I/L ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.10
PROCESS DESCRIPTION:
UPON reception of an I/LACKFLAG

Generate and output an I/LACKPACKET

PROCESS NAME: DECODE VALID I/L PACKET
PROCESS NUMBER: 1.4.11
PROCESS DESCRIPTION:
IF Input MSGFLG = 00010000 then

Output VALIDLINKSERVICES-PACKET
ELSEIF Input MSGFLG = 00110000 then

IF INTERRUPTREQUESTCOUNT is greater than 0 then

313

Output VALIDINTERRUPT..PACKET
ELSE output INTERRUPT-ERROR

jELSE Null

PROCESS NAME: CODE ACKNOWLEDGE PACKETS
PROCESS NUMBER: 1.4.12
PROCESS DESCRIPTION:
IF Input = DATAACKPACKET, DATA.NAK..PACKET, I/LACK-PACKET, or I/LNAKPACKET

then
Output as TRANSMITTEDTRANSPORTACKNOWLEDGEPACKET

ELSE Null

PROCESS NAME: CODE DATA PACKETS
PROCESS NUMBER: 1.4.13
PROCESS DESCRIPTION:
IF Input = NORMALDATA_PACKET or VALIDINTERRUPTPACKET then

Output as OUTGOING-DIALOGUEDATA_PACKET
ELSE Null

PROCESS NAME: DECODE LINK SERVICES PACKET
PROCESS NUMBER: 1.4.14
PROCESS DESCRIPTION:
IF FCVAL field value of the VALIDLINK_SERVICES_PACKET when added to the data

segment request would result in a DATA_SEGMENT_REQUESTCOUNT greater than
+127 or less than -127 then
Output LINKSERVICESERROR

3LSEIF FCVAL field value of the VALID_LINK_SERVICESPACKET when added to the
I/L segment request would result in a INTERRUPT_REQUESTCOUNT greater
than +127 then
Output LINK_SERVICESERROR

ELSE output FCVAL field value + current SEGMENTREQUESTCOUNT to the FLOW_
CONTROL_PARAETERSTABLE

PROCESS NAME: TRANSITION LINK TO ON-LINE MODE
PROCESS NUMBER: 1.5.1
PROCESS DESCRIPTION:
IF Input = OPERATOR.STARTCOMMAND then

Output INITIALIZELINK command
ELSE Input INITIALIZATIONONOTHEREND or INITIJAZATIONCOMPLETE then

Output STARTCOMMAND

314

PROCESS NAME: DECODE FUNCTIONS FIELD
PROCESS NUMBER: 1.5.2
PROCESS DESCRIPTION:
IF Input = RECEIVEDNODE_INITIALIZATION_PACKET with FUNCTIONS field set to

INTERCEPT then
Output RECEIVED_INTERUPT_INITIALIZATIONPACKET

ELSE Input = RECEIVED_NODE_INITIALIZATIONPACKET with FUNCTIONS field set to
NO_INTERCEPT then
Output RECEIVED_.NO_INTERCEPT_INITIALIZATIONPACKET

PROCESS NAME: DECODE INITIALIZATION PACKET
PROCESS NUMBER: 1.5.3
PROCESS DESCRIPTION:
IF Input STARTTYPE = 1 then

Output RECEIVED..NODE_INITIALIZATION_PACKET
ELSEIF Input STARTTYPE = 2 then

Output RECEIVED_NODE_VERFICATION_PACKET
ELSEIF Input STARTTYPE = 4 then

Output RECEIVEDCORRECT.PAS SWORD_COMMAND
ELSEIF Input STARTTYPE = 5 then

Output RECEIVEDINCORRECTPAS SWORD_COMMAND
ELSE Input STARTTYPE = 3 then Null

PROCESS NAME. GENERATE NODE INITIALIZATION PACKET VERIFY 0
PROCESS NUMBER: 1.5.4
PROCESS DESCRIPTION:
IF Input = STARTCOMMAND or VERIFYCLEAR flag then

Output NODEINITIALIZATION_VO_PACKET
ELSE Null

PROCESS NAME: DECODE REMAINING FIELDS
PROCESS NUMBER: 1.5.5
PROCESS DESCRIPTION:
IF Input = RECEIVEDINTERCEPTINITIALIZATION_PACKET then

Send required field values to INITIALPARAMETER_LIST
IF VERIFY field = 1 then

Output VERIFY-SET flag
ELSE output VERIrY_CLEAR flag

ELSE Null

PROCESS NAME: GENERATE NODE VERIFICATION PACKET
PROCESS NUMBER: 1.5.6
PROCESS DESCRIPTION:

315

I
IF Input - VERIFYSET then

Take OPERATORPASSWORDCOMMAND and
Generate and output NODEVERIFICATIONPACKET

ELSE Null

PROCESS NAME: GENERATE NODE INITIALIZATION PACKET VERIFY = 1
PROCESS NUMBER: 1.5.7
PROCESS DESCRIPTION:
IF Input = RECEIVED_NOINTERCEPTINITIALIZATIONPACKET then

Decode fields and place values in INITIALPARAMETERLIST and
Generate and output NODEINITIALIZATION.V1.PACKET

ELSE Null

PROCESS NAME: DECODE PASSWORD
PROCESS NUMBER: 1.5.8
PROCESS DESCRIPTION:
IF PASSWORD field of a RECEIVEDNODEVERIFICATION_PACKET contains the correct

password then
Output the password to the SATELLITENODEPARAMETERSTABLE and
Output CORRECT_PASSWORD_COMMAND

ELSE output INCORRECT_PASSWORDCOMMAND

PROCESS NAME: CODE INITIALIZATION PACKETS
PROCESS NUMBER: 1.5.9
PROCESS DESCRIPTION:
IF Input = NODEINITIALIZATION_V3_CKET, NODEVERIFICATION_PACKET, NODE_

INITIALIZATION_V1_PACKET, CORRECT_PASSWORDCOMMAND, or INCORRECT-
PAS SWORD_COMMAND then
Output as TRANSMITTEDTRANSPORT_INITIALIZATION_PACKET

ELSE Null

PROCESS "'AME: GENERATE CONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.1.1
PROCESS DESCRIPTION:
IF Input = CONNECTREQUEST command then

Output CONNECTINITIATEPACKET
ELSE Null

PROCESS NAME: DECODE CONTROL PACKET
PROCESS NUMBER: 1.6.1.2
PROCESS DESCRIPTION:

316

'1

IF Input MSGFLG = 00011000 then
Output RECEIVEDCONNECTINITIATEPACKET

ELSEIF Input MSGFLG = 00101000 then
Output RECEIVEDCONNECTCONFIRMPACKET

ELSEIF Input MSGFLG a 00111000 then
Output RECEIVEDDISCONNECT_INITIATEPACKET

ELSE Input MSGFLG = 01001000 then
Output RECEIVED_DISCONNECTCONFIRMPACKET

PROCESS NAME: DECODE CONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.1.3
PROCESS DESCRIPTION:
PASS SOURCE-NAME, SOURCEPROCESSIDENTIFICATION. DESTINATIONPROCESS_

IDENTIFICATION. REPLYIDENTIFIERS, ACCESSCONTROLINFORMATION, and
RMOTEPROCESS'tS_SEGMENTSIZE to the DIALOGUEPROCESS_TABLE

PASS SERVICES to the FLOWCONTROLPARAMETERS_TABLE
IF the follow..n$ errors apply then

Output a REJECTCONNECT flag
1. Resource allocation failure
2. Destination node does not exist
3. 4ode shutting down
4. Destination process does not exist
5. Invalid process name field
6. Destination process queue overflow
7. Too many connections to node
8. Too many connections to destination node
9. Access not permitted-unacceptable RQSTRID or PASSWORD

10. Unacceptable ACCOUNT information
11. Dialogue process aborted, timedout, or cancelled request
12. No path to destination node
13. Image data field too long

ELSE output an ACCEPTCONNECT flag

PROCESS NAME: DIALOGUE PROCESS EXTERNAL END
PROCESS NUMBER: 1.6.1.4
PROCESS DESCRIPTION:
IF Input = DISCONNECTREQUEST then

IF ACKDFILE value equals the LSFILE value then
Output a STOP flag

ELSE hold DISCONNECT-REQUEST
ELSE Null

PROCESS NAME: DECODE CONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.1.5
PROCESS DESCRIPTION:

317

7 7 -- ----

IF the following errors apply then
Output a REJECTCONFIRM flag

1. Segsize too small
2. Dialogue process aborted. timedout, or cancelled
3. DSTADDR logical link does not exist
4. Image data field too long

ELSE output an ACCEPTCONFIRM flag
Update the FLOWCONTROL_PARANETERSTABLE
Signal ADJACENT_NODEPARAMETERS that values are valid

PROCESS NAME: GENERATE CONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.1.6
PROCESS DESCRIPTION:
UPON successful reception of an ACCEPTCONNECT flag

Generate and output a CONNECTCONFIRM_PACKET using data in the DIALOGUE
PROCESS_TABLE

PROCESS NAME: GENERATE DISCONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.1.7
PROCESS DESCRIPTION:
IF Input = REJECTCONNECT then

Output a DISCONNECTINITIATE_PACKET with REASON as listed in process
1.6.1.3

ELSEIF Input = REJECTCONFIRM then
Output a DISCONNECT_INITIATE_PACKET with REASON as listed in process

1.6.1.5
ELSEIF Input = PERSISTENTERROR then

Output a DISCONNECTINITIATEPACKET reason: "Third party aborted the
logical link"

ELSEIF Input = STOP then
Output a DISCONNECTINITIATE_PACKET with reason: "Third party aborted
the logical link"

ELSEIF Input = ABORTCOMMAND then
Output a DISCONNECTINITIATEPACKET with reason: "Link aborted by
dialogue process

ELSEIF Input = INTERRUPTERROR then
Output a DISCONNECTINITIATE_PACKET with reason as listed in REASON table

ELSE Input = LINK_SERVICESERROR then
Output a DISCONNECTINITIATEPACKET with reason as listed in REASON table

PROCESS NAME: CODE CONTROL PACKETS
PROCESS NUMBER: 1.6.1.8
PROCESS DESCRIPTION:
IF Input = CONNECTNITIATE_PACKET, CONNECTCONFIRMPACKET,

DISCONNECTINITIATE-PACKET, or DISCONNECTCONIRMPACKET then

318

Output as TRANSMITTED_TRANSPORTCONTROLPACKET

ELSE Null

PROCESS NAME: DECODE DISCONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.2.1
PROCESS DESCRIPTION:
DECODE REASON field and

PASS to DIALOGUE..PROCESS
SHUT-DOWN the logical link

PROCESS NAME: DECODE DISCONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.2.2
PROCESS DESCRIPTION:
IF REASON field = -link aborted by dialogue process- then

Output REASON to DIALOGUEPROCESS and
Output an ABORT flag

ELSE Pass error reason to DIALOGUEPROCESS and
Output a NOABORT flag

PROCESS NAME: DIALOGUE PROCESS END
PROCESS NUMBER: 1.6.2.3
PROCESS DESCRIPTION:
IF Input = NOABORT then

IF ACKDFILE value = LS_FILE value then
Output STOPLINKNOW flag

ELSE hold NOABORT flag
ELSE Null

PROCESS NAME: GENERATE DISCONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.2.4
PROCESS DESCRIPTION:
IF Input = ABORT flag or STOP_LINKNOW flag then

Output a DISCONNECTCONFIRM_PACKET with reason: "Confirmation of
disconnect initiate
Output a STOPLINK command to shut down the physical link

ELSE Null

PROCESS NAME: DETERMINE ACKNOWLEDGE TYPE
PROCESS NUMBER: 1.7.1
PROCESS DESCRIPTION:
IF Input MSGFLG = 00000100 then

319

Output as RECEIVEDJ4ORMALDATAACKPACKETS
ELSE Input MSGFLG = 00010100 then

Output as RECEIVEDI/LACKPACKET

PROCESS NAME: DECODE DATA ACK PACKET
PROCESS NUMBER: 1.7.2
PROCESS DESCRIPTION:
DECODE ACKNUM field

IF = 1 then
Output associated value to ACK_DJFILE

ELSE = 2 then
Output associated value to DATA_NAK..FILE

PROCESS NAME: DECODE/L.ACKYACKET
PROCESS NUMBER: 1.7.3
PROCESS DESCRIPTION:
DECODE ACKNUMI field

IF = 1 then
Output associated value to the ACKI/LJFILE

ELSE = 2 then
Output associated value to the I/LNAK..FILE

PROCESS NAME: EXAMINE DSTADDR FIELD
PROCESS NUMBER: 1.8.1
PROCESS DESCRIPTION:
IF DSTADDR = ADJACENT_NODE.ADDRESS then

Output as ADJACENT.NODEPACKETS
ELSEIF INITIALIZATION_PACKETS then

Output as ADJACENTNODE.PACKETS
ELSEIF DSTADDR = NONADJACENTNODEADDRESS then

Output as NONADJACENT_NODEPACKETS
ELSE Input a CONNECTINITATEPACKET then

Output as NONADJACENTNODEPACKETS

PROCESS NAME: ADD RTHDR FIELD
PROCESS NUMBER: 1.8.2
PROCESS DESCRIPTION:
IF Input = NONADJACENTNODEPACETS then

Refer to DIALOGUE_PROCESSTABLE and
Extract DSTNODENAME
Output RTRDRPIONADJACENTNODEPACKETS

ELSE Null

320

PROCESS NAME: IS ROTING NECESSARY AND PRESENT
PROCESS NUMBER: 1.8,3
PROCESS DESCRIPTION:
IF Input DSTNODE name = the name of a satellite not adjacent to this node then

Output as NONADJACENT-ROUTPACKET
ELSE output as NONADJACENT_SATELLITEACKETS

PROCESS NAME: PASS TO CORRECT ADJACENT NODE
PROCESS NUMBER: 1.8.4
PROCESS DESCRIPTION:
IF Input = ADJACENT-NODE_.PACKETS or NONADJACENTSATELLITE.PACKETS then

Output as OUTGOINGSATELLITETRANSPORTPACKET
Output a TRANSMITPACKET command
Output a RECEIVE-PACKET command

ELSE Null

PROCESS NAME: CODE OUTGOING DIALOGUE MESSAGE
PROCESS NUMBER: 1.9
PROCESS DESCRIPTION:
IF Input = FLOWCONTROL._ERRORS, OUTGOINGDIALOGUEDATA_PACKET. RECEIVED_

INCORRECT..PAS SWORDCOMMAND, ERRO,.REAS ON, or TRANSIENT-ERROR..THRESHOLD_
COUNTER-OVERFLOW then
Output above as OUTGOING-DIALOGUEMESSAGE

ELSE Null

PROCESS NAME: SEND TO NETWORK PROTOCOL
PROCESS NUMBER: 1.10
PROCESS DESCRIPTION:
IF Input = OUTGOING_TRANSPORTROUTE_PACKET or NONADJACENTROUTEPACKET then

Output OUTGOINGNODETRANSPORTPACKET
ELSE Null

PROCESS NAME: DECODE MESSAGE TYPE
PROCESS NUMBER: 2.1
PROCESS DESCRIPTION:
IF Input a NETWORKJ1EADER then

Output as NETWORK_PACKET
ELSE Input ROUTE.HEADER then

Output as a ROUTING_PACKET

321

PROCESS NAME: CHECK R-HOP COUNT - 2
PROCESS NUMBER: 2.2

a PROCESS DESCRIPTION:
IF Input EOPCOUNT field is less than or equal to 2 then

Output VALID-ROUTINGPACKET
ELSE Null

PROCESS NAME: DECODE NETWORK HEADER
PROCESS NUMBER: 2.3
PROCESS DESCRIPTION:
IF Input NETWORK layer header destination field value relates to an adjacent

satellite node then
Output as INCOMINGNODETRANSPORT_PACKET after stripping off the network

header
ELSE output as NETWORKTONETWORKJPACKET

PROCESS NAME: INCREMENT HOP
PROCESS NUMBER: 2.4
PROCESS DESCRIPTION:
INCREMENT value in HOP COUNT field by I and

Output as HOPPED_ROUTINCPACKET

PROCESS NAME: UPDATE ROUTING TABLE IF NEW
PROCESS NUMBER: 2.5
PROCESS DESCRIPTION:
IF VALID_ROUTING_PACKET li£ie cost value is different from what is located in

ROUTINGTABLE_2 link cost value for the particular link then
Update to the correct ROUTINGTABLE_2 value
Calculate and update 1-2-3, 2-3-1, and 3-1-2 valuez if possible

ELSE Null

PROCESS NAME: DETERMINE LEAST COST LINK
PROCESS NUMBER: 2.6
PROCESS DESCRIPTION:
FROM the OUTGOINGNODETRANSPORTPACKET RTHDR field use the NODENAME to

Determine the least cost link
Output TRANSPORT-PACKET

ELSE Null

PROCESS NAME: ADD NETWORK HEADER

322

PROCESS NUMBER: 2.7
PROCESS DESCRIPTION:
IF Input = TRANSPORT-PACKET then

Add network layer header and
Send out as TRANSPORTTONETWORKPACKET. HOP = 1

ELSE Null

PROCESS NAME: SEND OLD VALUES OUT OVER NEW INITIALIZED LINE
PROCESS NUMBER: 2.8
PROCESS DESCRIPTION:
IF node senses that initialization just took place over a new routing line
then

IF ROUTINGTABLE_2 has existing values then
Generate and output OLDROUTINGPACKETS

ELSE Null
ELSE Null

PROCESS NAME: CHECK N-HOP COUNT = 2
PROCESS NUMBER: 2.9
PROCESS DESCRIPTION:
IF Input HOPS field is less than or equal to 2 then

Output as VALIDNETWORKTONETWORKPACKET
ELSE Null

PROCESS NAME: UPDATE NETWORK HEADER
PROCESS NUMBER: 2.10
PROCESS DESCRIPTION:
IF Input = VALIDJETWORKTONETWORKPACKET then

Compare existing destination code in the network header against the line
cost in ROUTING_TABLE_2 then
Output over the correct ROUTINGLINE

ELSE Null

PROCESS MANE: EVERY TIMER INTERVAL UPDATE ADJACENT LINE
PROCESS NUMBER: 2.11
PROCESS DESCRIPTION:
AT the end of every preset timer interval

check ROUT INGTABLE.2
IF values present then

Output ADJACENTJNODEROUTINGPACKETS on all routing links.
HOP = I

ELSE Null

323

PROCESS NAME: ISSUE CORRECT LINK COST OVER ALL LINKS
PROCESS NUMBER: 2.12
PROCESS DESCRIPTION:
IF Input = STOP-LINK command or INITIALIZELINK command then refer to ROUTIN_

TABLE-I and get the cost associated with the specific link.
Generate and output INITIALROUTE-PACKET

ELSE Null

PROCESS NAME: SEND PACKET OVER CORRECT LINE(S)
PROCESS NUMBER: 2.13
PROCESS DESCRIPTION:
IF Input = INITIALROUTE-PACKET, VALIDNETWORK-PACKET, HOPPEDROUTI ...PACKET,

ADJACENTNODEROUTINGPACKET, OLD_ROUTING_PACKETS, or TRANSPORTTO0_
NETWORK-PACKET then
Output it as a OUTGOINGNODENETWORKPACKET

ELSE Null

PROCESS NAME: EXECUTE NETWORK PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 3.0
PROCESS DESCRIPTION:
USE the established ROUTING ALGORITHM to route packets from SECONDARYINCOMING

-NODENETWORKJPACKET to SECONDARY-INCOMING-NODE-TRANSPORTPACKET or
SECONDARYOUTGOING-NODENETWORKJPACKET. Also route packets from
SECONDARYOUTGOINGTRANSPORT..PACKET to SECONDARY_OUTGOING_NODENETWORK_
PACKET. Routing packets are generated internally to keep all routing
tables up-to-date.

PROCESS NAME: EXECUTE TRANSPORT PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 4.0
PROCESS DESCRIPTION:
USED to take a SECONDARYINCOMINGDIALOGUE_MESSAGE or SECONDARY_INCOMING_

NODE-TRANSPORTPACKET or SECONDARYINCOMINGSATELLITETRANSPORTPACKET
and create the necessary envelope for accurate interprocess communication
Outputs can be SECONDARY_OUTGOINGTRANSPORTPACKET or SECONDARY_OUTGOING_
NODETRANSPORTPACKET or SECONDARYOUTGOINGDIALOGUE_MESSAGE.

324

DATA DICTIONARY

FOR LINK LEVEL (L) PROTOCOL

contents
Page

Data Element / Flow Descriptions.. 326
File Definitions 352

Process Specifications.. 356

325

DATA FLOW NAME: ABUTTED-PACKET
ALIASES: FOLLOWON..PACKET

SYNC-PACKET
LINK-PACKETS

COMPOSITION:
SEE ALIASES

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA FLOW NAME: ACK..PACKET
ALIASES: RECEIVEDACKPACKET
COMPOSITION:

ACKPACKET = ENQ + ACKTYPE + ACKSUB + FLAGS + RESP
FILL + ADDR + BLKCK3

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKET LAYER

DATA ELEMENT NAME: ACKSUB
ALIASES: NONE
VALUES AND MEANINGS:

ACK SUBTYPE = 00000000
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: ACKTYPE
ALIASES: NONE
VALUES AND MEANINGS:

ACK PACKET TYPE VALUE = 00000001
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: ADDR
ALIASES: NONE
VALUES AND MEANINGS:

ALWAYS EQUALS 1
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: AGREE
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO ISSUE AN ACKPACKET SINCE THE LAST
SEQUENTIAL NUMBERED DATA PACKET SENT AGREES WITH THE
NUMBER OF THE LAST SEQUENTIAL PACKET RECEIVED.

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

326

DATA ELEMENT NAME: BLKCK1
ALIASES: NONE
VALUES AND MEANINGS: THE BLOCK CHECK ON THE NUMBERED PACKET HEADER. IT IS

COMPUTED ON SOB THROUGH ADDR USING THE CRC-16 POLYNOMIAL(X-16 + X-15 + X-2 + 1). BLKCKI IS INITIALIZED TO ZERO

PRIOR TO COMPUTATION AND TRANSMITTED X 15 BIT FIRST. ON
RECEPTION THE INCLUSION OF BLKCK1 IN THE COMPUTATION WILL
RESULT IN A ZERO REMAINDER OR CRC IF NO ERRORS EXIST.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: BLKCK2
ALIASES: NONE
VALUES AND MEANINGS:

THE BLOCK CHECK ON THE DATA FIELD. COMPUTED ON THE DATA
FIELD ONLY USING THE TECHNIQUE DESCRIBED FOR BLKCK1.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: BLKCK3
ALIASES: NONE
VALUES AND MEANINGS:

THE BLOCK CHECK ON THE CONTROL PACKET. BLKCK3 IS
COMPUTED ON FIELDS ENQ THROUGH ADDR USING THE TECHNIQUE
DESCRIBED IN BLKCK1.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: CLEAR
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO CLEAR THE SNAK FLAG FILE OR THE SACK FLAG
FILE OR THE SREP FLAG FILE

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: COUNT
ALIASES: NONE
VALUES AND MEANINGS:

SPECIFIES THE NUMBER OF BYTES IN THE DATA FIELD. A VALUE
OF 0 IS NOT ALLOWED.

NOTES: ALL LINK LAYERS

327

.i- -. - . . .I Ii ".l .. . = i l d ,

I
DATA FLOW NAME: COUNTEDLINK.DATAPACKET
ALIASES: < 256..LINK-PACKET

RETRAN SMITTEDPACKETS
NOSYNC-PRIMARY-TO-SECONDARY..DATAPACKET

COMPOSITION:
COUNTED.LINK.DATAPACKET = LINK.DATA_PACKET + RESP + NUM

NOTES: FRAE PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: DATA
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBERED PACKED DATA FIELD. THIS FIELD IS TOTALLY
TRANSPARENT TO THE PROTOCOL AND HAS NO RESTRICTIONS
EXCEPT TO CONTAIN THE NUMBER OF BYTES SPECIFIED IN THE
COUNT FIELD.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: DISABLELINK
ALIASES: NONE
VALUES AND MEANINGS:

DISCONNECTS THE DRIVER FROM THE LINK PROTOCOL.
NOTES: START REPLY TIMER LAYER

DATA ELEMENT NAME: DISAGREE
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG PLUS THE NUMBER OF THE LAST SEQUENTIAL PACKET THAT
WAS RECEIVED. USED TO ISSUE A NAKPACKET SINCE THE LAST
SEQUENTIALLY NUMBERED DATA PACKET SENT DID NOT AGREE WITH
THE LAST SEQUENTIAL PACKET RECEIVED.

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: DLE
ALIASES: NONE
VALUES AND MEANINGS:

MAINTENANCE PACKET IDENTIFIED 10010101
NOTES: ALL LINK LAYERS

328

DATA FLOW NAME: DLEPACKET
ALIASES: VALIDDLEPACKET

TRAN SMIT.DLEPACKET
COMPOSITION:

DLEPACKET = DLE + COUNT + FLAGS + FILL + FILL + ADDl R
BLKCK1 + DATA + BLKCK2

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER
FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE MAINTENANCE PACKET LAYER

DATA ELEMENT NAME: ENABLE-LINK
ALIASES: NONE
VALUES AND MEANINGS:

CONNECTS THE DRIVER TO THE LINK PROTOCOL
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: ENQ
ALIASES: NONE
VALUES AND MEANINGS:

UNNUMBERED CONTROL PACKET IDENTIFIER = 00000101
NOTES: ALL LINK LAYERS

DATA FLOW NAME: ENQPACKET
ALIASES: VALIDENQOPACKET

VALIDCRCENQPACKET
VALIDLENGT-ENQIEADER

COMPOSITION:
ENQ.PACKET = ENQ + TYPE + SUBTYPE + FLAGS + RCVR +

SNDR + ADDR + BLKCK3
NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE INCOMING CONTROL PACKET LAYER

DATA FLOW NAME: ENQ/DLESYNCPACKET
ALIASES: QSYNCENQ/DLEPACKET
COMPOSITION:

ENQ/DLESYNC..PACKET 4{SYNC} + TRANSMITDLEPACKET
I PAD/STRTPACKET
MOPPACKET
REP-PACKET
STACK..PACKET
ACKPACKET
NAKPACKET

329

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: ENTERMAINTENANCEMODE
ALIASES: NONE
VALUES AND MEANINGS:

CHANGE FROM ON-LINE MODE TO OFF-LINE MAINTENANCE MODE
NOTES: EXECUTE MAINTENANCE PACKET LAYER

DATA ELEMENT NAME: FILL
ALIASES: NONE
VALUES AND MEANINGS:

FILL BYTE WITH VALUE OF 0
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: FLAGS
ALIASES: NONE
VALUES AND MEANINGS:

LINK FLAGS TO CONTROL OWNERSHIP AND PACKET

SYNCHRONIZATION
BIT 0 = QUICK SYNC FLAG - QSYNC
BIT 1 = SELECT FLAG = OWNERSHIP (MUST BE PRESENT ON DLE

AND ENQ PACKETS, DON'T CARE IN
SOiPACKET).

NOTES: ALL LINK LAYERS

DATA FLOW NAME: FOLLOWONPACKET
ALIASES: SYNCPACKET

ABUTTED-PACKET
LINK-PACKETS

COMPOSITION:
FOLLOWON.PACKET = SOH-PACKET I

I DLEPACKET I
I ENQPACKET I

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA FLOW NAME: FRAMING-ERRORS
ALIASES: NONE
COMPOSITION:

FRAMING-ERRORS = T-HEADEFORMATERROR

330

I INVALIDJDATALENGTH 1
I INVALIDDLEPACKET I
I INVALID..BLKCK1 I
I INVALIDBLKCK2 I
I INVALIDBLKCK3 I

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: HEADER.FORMATERROR
ALIASES: NONE
VALUES AND MEANINGS:

FLAGS AN INCORRECTLY RECEIVED HEADER..LENGTH FIELD. AN
NAKPACKET IS GENERATED.

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE CONTROL INCOMING PACKET LAYER

DATA ELEMENT NAME: IDENTIFY
ALIASES: NONE
VALUES AND MEANINGS:

USED TO PASS A SET OR CLEAR CONDITION FROM SNAK FLAG FILE
OR SACK FLAG FILE OR SREP FLAG FILE TO THE ASSOCIATED
GENERATE PROCESS.

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER

DATA ELEMENT NAME: INCREMENTR
ALIASES: NONE
VALUES AND MEANINGS:

NEW VALUE OF R (HIGHEST SEQUENTIAL DATA MESSAGE RECEIVED)
USED TO UPDATE THE RFILE AND TRIGGER THE SENDING OF AN
ACKJPACKET.

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: INITIALIZATION-COMPLETE
ALIASES: NONE
VALUES AND MEANINGS:

RESPONSE TO INITIALIZE...-LINK COMMAND
NOTES: EXECUTE INCOMING CONTROL PACKETS LAYER

DATA ELEMENT NAME: INITIALIZATIONONOTHER.END
ALIASES: NONE

331

VALUES AND MEANINGS:
THE OTHER END HAS BEEN INITIALIZED, HALT PROTOCOL.

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER

DATA ELEMENT NAME: INITIALIZE-LINK
ALIASES: NONE
VALUES AND MEANINGS:

INITIALIZE THE PROTOCOL AND START THE DATA LINK
NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER

DATA FLOW NAME: INITIAL-PACKET
ALIASES: NONE
COMPOSITION:

INITIAL-PACKET = 2{SYNC)8 + I SOHPACKET I
I DLEPACKET I
I ENQPACKET I

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA ELEMENT NAME: INVALID.BLKCKI
ALIASES: NONE
VALUES AND MEANINGS:

FLAGS AN INCORRECTLY RECEIVED SOH/DLE HEADER. AN NAK_
PACKET IS RETURNED TO THE TRANSMITTER.

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: INVALIDBLKCK2
ALIASES: NONE
VALUES AND MEANINGS:

FLAGS AN INCORRECTLY RECEIVED DATA FIELD. AN NAKPACKET
IS GENERATED.

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: INVALIDBLKCK3
ALIASES: NONE
VALUES AND MEANINGS:

FLAGS AN INCORRECTLY RECEIVED ENQ.HEADER. AN NAK..PACKET
IS GENERATED.

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

332

't

EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: INVALIDDATAJLENGTH
ALIASES: NONE
VALUES AND MEANINGS:

FLAGS AN INCORRECTLY RECEIVED DATA LENGTH FIELD. AN NAK_
PACKET IS GENERATED.

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: INVALID..DLEPACKET
ALIASES: NONE
VALUES AND MEANINGS:

FLAGS A NON-SELECTED TRANSMISSION OWNERSHIP CONTROL BIT
WHEN IN THE MAINTENANCE MODE

NOTES: FRAME SECOUiDAY INFORMATION PACKETS LAYER
EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: INVALID..PACKETS
ALIASES: NONE
VALUES AND MEANINGS:

FLAG USED TO TRANSMIT AN NAKPACKET OBTAINED FROM
RECEPTION OF AN:

1. INVALIDBLKCK1
2. INVALIDBLKCK2
3. INVALID..BLKCK3
4. PACKETNONABUT

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: INVALIDSTACK-PACKET
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG USED TO TRANSMITTER TO SEND OUT A NAK.,PACKET SINCE
THE SELECT BIT WAS NOT SET IN THE RECEIVEDSTACK-PACKET
RESULTING IN THE RECEPTION OF A BAD STACK-PACKET.

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: INVALIDSTRTPACKET
ALIASES: NONE
VALUES AND MEANINGS:

333

A FLAG TO THE TRANSMITTER TO SEND OUT A NAK.PACKET SINCE
THE SELECT BIT WAS NOT SET IN THE RECEIVED-STRTJPACKET
RESULTING IN THE RECEPTION OF A BAD STRT.PACKET.

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA FLOW NAME: LINKANDMODEMCONTROL
ALIASES: NONE
COMPOSITION: LINKANDJMODEM-CONTROL = IDISABLE.LINK-

I ENABLE-LINK I

NOTES: START REPLY TIMER LAYER

DATA FLOW NAME: LINKDATA.PACKET
ALIASES: NONE
COMPO SI TION:

LINKDATAPACKET
=

I TRANSPORT PROTOCOL + BLKCK2 + ADDR + BLKCK1 + COUNT + SO FLAGS
I TRANSPORT PROTOCOL + BLKCK2 + ADDR + BLKCK1 + COUNT + SOB

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: LINK-PACKETS
ALIASES: ABUTTED-PACKET

SYNC.PACKET
FOLLOWON..PACKET

COMPOSITION:
SEE ALIASES

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: LOCALLY_-GENERATEDCRC._REMAINDER
ALIASES: NONE
VALUES AND MEANINGS:

A SIXTEEN BIT SEQUENCE THAT IS THE REMAINDER AFTER
DIVISION OF THE VALID..LENGTHSOH/DLEHEADER. VALID.
LENGTH-.DATA, OR VALIDLENGT-._ENQHEADER BY THE CRC
POLYNOMIAL.

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NANE: LONG-DATA-COUNT

334

it

ALIASES: SHORT..DATACOUNT
COMPOSITION:

LONGJDATACOUNT = TRANSPORT PROTOCOL + BLKCK2 + ADDR +
1." SOB + COUNT

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: MODEM-FAILURE
ALIASES: NONE
VALUES AND MEANINGS; A NOTIFICATION FROM THE DRIVER THAT THE MODEM/LINK HAS

FAILED.
NOTES: START REPLY TIMER LAYER

DATA FLOW NAME: MOP-PACKETS
ALIASES: NONE
COMPOSITION:

MOP-PACKETS -PARAMETER-LOADWITHTRANSFERADDRESS
MEMORYLOADWITH_TANSFERJADDRESS
REQUEST.HEMORYDUMP
ENTER.MJP.MUDE
REQUEST-PROGRAM
REQUESTMEMORYJLOAD
MOPJI)DERUNNING
MEMORY-DUMPDATA
LOOPBACKTEST
MEMO RY_.LOAD_WITOUTTRANSFERADDRESS

NOTES: EXECUTE MAINTENANCE PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: NAK-PACKET
ALIASES: RECEIVEDNAK..PACKET
COMPOSITION:

NAK.,PACKET = ENQ + NAKTYPE + REASON + FLAGS + RESP +
FILL + ADDR + BLKCK3

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKET LAYER

DATA ELEMENT NAME: NAK-TRANSMIT.FLAG
ALIASES: SET-STARTUP

RESYNC
VALUES AND MEANINGS:

A FLAG USED TO SET THE CORRESPONDING BIT IN THE STARTUP-

335

FLAG.FILE.
NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: NAKTYPE
ALIASES: NONE
VALUES AND MEANINGS:

NAK PACKET TYPE 00000010
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: N=EVEN
ALIASES: NONE
VALUES AND MEANINGS:

WHEN N (COUNTER) IS AN EVER NUMBER AND THE TRANSMITTER
RECEIVES A VALIDSTRT._PACKET, THEN RETURN A STACK-PACKET.

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER

DATA ELEMENT NAME: N=ODD
ALIASES: NONE
VALUES AND MEANINGS:

WHEN N (COUNTER) IS A ODD NUMBER AND THE TRANSMITTER
RECEIVES A VALIDSTRT_.PACKET, THEN RETURN A STRTPACKET.

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER

DATA FLOW NAME: NOHEADERDATAPACKET
ALIASES: NONE
COMPOSITION:

NOHEADER_.DATA.PACKET = TRANSPORT PACKET + BLKCK2 + COUNT

NOTES: FRAMING PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: NOSYNCPRIARYTOSECONDARY_.DAT&PACKET
ALIASES: COUNTED.LINK.DATAPACKET

< 256_LINK_.PACKET
RETRANSMITTED-PACKETS

COMPOSITION:
SEE ALIASES

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: NUM

336

ALIASES: NONEVALUES AND MEANINGS:
USED TO DENOTE THE NUMBER OF THIS DATA PACKET, WHEN USED
WITH REP-PACKET IT IS THE NUMBER OF THE LAST SEQUENTIALLY
NUMBERED DATA PACKETS SENT. THIS IS COMPARED AGAINST THE
NUMBER OF THE LAST SEQUENTIAL PACKET RECEIVED AND RESULTS
IN EITHER AN ACK BEING RETURNED IF THEY AGREE OR A NAK IF
THEY DO NOT,

NOTES: ALL LINK LAYERS
START REPLY TIMER LAYER

DATA ELEMENT NAME: PACKET-NONABUT
ALIASES: NONE
VALUES AND MEANINGS:

FLAG INDICATING THAT THE LAST TWO MESSAGES RECEIVED DID
NOT ABUT AND THE TRANSMITTER SHOULD BE NOTIFIED TO
RETRANSMIT.

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: PERSISTENT-ERROR
ALIASES: NONE
VALUES AND MEANINGS:

AN ERROR HAS OCCURRED FROM WHICH RECOVERY IS NOT
POSSIBLE.
THIS ERROR IS: 1. 7 CONSECTATIVE RESPONSES

2. TIMER EXPIRATIONS
NOTES: START REPLY TIMER LAYER

DATA FLOW NAME: PAD/STRTJPACKET
ALIASES: NONE
COMPOSITION:

PAD/STRT..PACKET = I 11111111 + STRTPACKET I
I STRT_PACKET I

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: PHYSICALTOLINK'PACKETS
ALIASES: NONE
COMPOSITION:

337

PHYSICAX..TOLINK..PACKETS = (2(SYNC18) + ISOR-PACKET
IDLE.YACKET
IENQ-.PACKET

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA FLOW NAME: PIGGYBACKED...LINK-.DATA-PACKET
ALIASES: NONE
COMPOSITION:

PIGGYBACKED-.LINK-DATA-PACKET =LINK_..DAT&_PACKET + RES
NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: PRIMARY-JNCOMING-.BIT-.STREAM-yROM-DRIVER
ALIASES: PRIMARY-OUTGOING-.BIT..STREAL.TO...DRIVER

SECONDARY...OUTGOING-.BIT..STREAX-TO..DRI VER
SECONDARY...INCOMING.BIT-.STREAILFROM-DRIVER

COMPOSITION:
PRIMARY..INCONING.BIT...STREA1YRO-DRIVER = (11111111)+

(2tSYNCI8) + ISOEJPACKETI-
I DLE...ACKETI
IENQJPACKET

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER
OVERVIEW LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAM: PRIM RY...OUTGOINGBITSTREA-TODRIVER
ALIASES: PRIMARY-NCOMING..BIT..STREAMLFROK..DRIVER

SECONDARY-.INCOMING..)IT-STREMPROM..DRIVER
SECONDARY-.OUTGOING...BIT-.STREAM-TO...DRIVER

COMPOSITION:
SEE ALIASES

NOTES: OVERVIEW LAYER
EXECUTE RDLO ?ROTOCOL AT PRIMARY NODE LAYER
START REPLY TIMER LAYER

DATA FLOW NAME: PRIM&kRY...TO..SECONDARY...DATAACKET
ALIASES: NONE
COMPOSITION:

PRIMARY...TO...SECONDARY-J)ATA-.PACKET =(2 (SYNC 18) +LINK-.
DATAPACKET + RESP + NUM

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

338

START REPLY TIMER LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: PRIMARYTOSECONDARYCONTROL-PACKET
ALIASES: NONE
COMPOSITION:

PRIMARY-TO-SECONDARY-CONTROLPACKET = 1-PAD/STRT._PACKET-
I NAKPACKET
I STACK-PACKET
I ACKJPACKET
I REP-PACKET

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: PRIMARYTOSECONDARYMAINTENANCE..PACKET
ALIASES: NONE
COMPOSITION:

PRIMARYTOSECONDARYMAINTENANCEPACKET =

"TRANSMIT..DLEPACKET-1
I MOP-PACKETS

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: QSYNC
ALIASES: NONE
VALUES AND MEANINGS:

QUICK SYNC FLAG, USED TO NOTIFY THE RECEIVER THAT THE
NEXT PACKET WILL NOT ABUT THIS PACKET, AND
RESYNCHRONIZATION SHOULD FOLLOW THIS PACKET.

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: QSYNC..DATA.PACKET
ALIASES: NONE
COMPOSITION:

QSYNC_.DATAPACKET m TRANSPORT PROTOCOL + BLKCK2 + ADDR +
COUNT + SOR + FLAGS

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: QSYNCENQ/DLEPACKET
ALIASES: ENQ/DLESYNCPACKET

339

COMPOSITION:
SEE ALIASES

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: RCVR
ALIASES: NONE
VALUES AND MEANINGS:

CONTROL PACKET RECEIVER FIELD. USED TO PASS INFORMATION
FROM THE DATA PACKET RECEIVER TO THE DATA PACKET SENDER.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: REASON
ALIASES: NONE
VALUES AND MEANINGS:

NAK ERROR REASONS
1. ERROR DUE TO TRANSMISSION MEDIUM

000001 = HEADER BLOCK CHECK ERROR
000010 = DATA FIELD BLOCK CHECK ERROR
000011 = REP RESPONSE

2. ERROR DUE TO COMPUTERS/INTERFACE
001000 = BUFFER TEMPORARILY UNAVAILABLE
001001 = RECEIVE OVERRUN
010000 = PACKET TOO LONG
010001 = PACKET HEADER FORMAT ERROR

NOTES ALL LINK LAYERS

DATA FLOW NAME: RECEIVEDACKJPACKET
ALIASES: ACKPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE DATA PACKET LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVEDAKPACKET
ALIASES: NAKPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE DATA PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

340

Li

DATA FLOW NAME: RECEIVED.PRIMARYNODETRANSPORTPACKET
ALIASES: RECEIVEDSECONDARYNODETRANSPORT-PACKET
COMPOSITION:

SEE ALIASES
NOTES: OVERVIEW LAYER

DATA FLOW NAME: RECEIVEDREPPACKET
ALIASES: REP..PACKET
COMPOSITION:

SEE ALIASES

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA FLOW NAME: RECEIVEDSECONDARYNODETRANSPORTPACKET
ALIASES: RECEIVEDPRIMARY-NODE-TRANSPORTPACKET
COMPOSITION:

RECEIVEDSECONDARYNODETRANSPORTPACKET = TRANSPORTTO_
LINK...DATAPACKET

NOTES: OVERVIEW LAYER

DATA FLOW NAME: RECEIVEDSTACK..YACKET
ALIASES: STACKPACKET

VALIDSTACKPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

START REPLY TIMER LAYER

DATA FLOW NAME: RECEIVEDSTRTPACKET
ALIASES: STRT-PACKET

VALIDSTRT.PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

START REPLY TIMER LAYER

DATA ELEMENT NAME: RECEIVE-PACKET
ALIASES: NONE
VALUES AND MEANINGS:

TRANSPORT PROTOCOL SUPPLIES A POOL OF BUFFERS TO THE LINK

341

PROTOCOL.
NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: REP_PACKET
ALIASES: RECEIVEDREP-PACKET
COMPOSITION:

REP_PACKET = ENQ + REPTYPE + REPSUB + FLAGS FILL +
NUM + ADDR + BLKCK3

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER

DATA ELEMENT NAME: REPSUB
ALIASES: NONE
VALUES AND MEANINGS:

REP SUBTYPE = 00000000
NOTES: ALL ',INK LAYERS

DATA ELEMENT NAME: REPTYPE
ALIASES: NONE
VALUES AND MEANINGS:

REP PACKET TYPE 00000011
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: RESET-SIGNAL
ALiASES: NONE
VALUES AND MEANINGS:

A FLAG TO THE TIMER TO RESET SINCE A POSITIVE ACKNOWLEDGE

HAS BEEN RECEIVED.
NOTES: START REPLY TIMER LAYER

DATA ELEMENT NAME: RESET-STARTUP
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG TO THE STARTUPFLAGFILE TO CLEAR THIS FILE.

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA ELEMENT NAME: RESP
ALIASES: NONE
VALUES AND MEANINGS:

342

I

USED TO ACKNOWLEDGE CORRECTLY RECEIVED PACKETS (THE
PIGGYBACKED ACK). THE NUMBER REPRESENTS THE LAST
CONSECUTIVE CORRECTLY RECEIVED PACKET RECEIVED FROM THE
ADDRESSED NODE BY THE NODE TRANSMITTING THIS PACKET. IT
IMPLYS THAT ALL UNACKNOWLEDGED PACKETS BETWEEN THE ONE
ACKNOWLEDGED IN THE LAST RESP FIELD RECEIVED AND THE ONE
ACKNOWLEDGED BY THIS RESP FIELD (MOD 256), HAVE BEEN
RECEIVED CORRECTLY. WHEN USED IN A NAKPACKET. USUALLY
IMPLYS SOME ERROR IN A PACKET WITH NUMBER RESP + 1 OR
BEYOND.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: RESYNC
ALIASES: NAKTRANSMITFLAG

SETSTARTUP
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA FLOW NAME: RETRANSMITTED-PACKETS
ALIASES: COUNTEDLINKDATAPACKET

< 256_..LINK-PACKET
NOSYNCPRIMARYTO..SECONDARYDATAPACKET

COMPOSITION:
SEE ALIASES

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: SECONDARYINCOMINGBITSTREAMFROM.DRIVER
ALIASES: PRIMARY-INCOMING_BITSTREAMFROM._DRIVER

PRIMARYOUTGOING_BITSTREALTODRIVER
SECONDARYOUTGOING_BITSTREA}_TO.DRIVER

COMPOSITION:
SEE ALIASES:

NOTES: OVERVIEW LAYER

DATA FLOW NAME: SECONDARY-OUTGOINGBITSTREAMTODRIVER
ALIASES: PRIMA.RYINCOMING_BITSTREA-_FROM-_DRIVER

PRIMARYOUTGOING_BITSTREAMITO-DRIVER
SECONDARYINCOMINGBITSTREAM.FROM.DRIVER

COMPOSITION: SEE ALIASES
NOTES: OVERVIEW LAYER

343

DATA ELEMENT NAME: SET
ALIASES: NONE
VALUES AND) MEANINGS:

A FLAG TO SET COUNTERS, SNAK FLAG FILE OR SACK FLAG FILE.
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: SET-STARTUP
ALIASES: NAK TRANSMITUFLAGI RESYNC

VALUES AND MEANINGS: S A

SEE ALIASES
NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA FLOW NAME: SHORTDATA-COUNT
ALIASES: LONGDATACOUNT
COMPOSITION:

SEE ALIASES
NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: SNDR
ALIASES: NONE
VALUES AND MEANINGS:

CONTROL PACKAT SENDER FIELD. USED TO PASS INFORMATION
FROM THE DATA PACKET SENDER TO THE DATA PACKET RECEIVER.NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: SOB
ALIASES: NONE
VALUES AND MEANINGS:

THE NUMBERED DATA MESSAGE IDENTIFIER 10000001
NOTES: ALL LINK LAYERS

DATA FLOW NAME: SOB-PACKET
ALIASES: VALIDSOHPACKET
COMPOSITION:

SORPACKET = SOB + COUNT + FLAGS + RESP + NUM . ADDR +
BLKCKI + DATA + BLKCK2

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER
FRAME S!CONDARY INFORMATION PACKETS LAYER

344

DATA FLOW NAME: STACK-PACKET
ALIASES: VALIDSTACK-PACKET

RECEIVEDSTACK-PACKET
COMPOSITION:

STACKPACKET = ENQ + STCKTYPE + STCKSUB + FLAGS + FILL +
FILL + ADDR + BLKCK3

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: START
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG TO THE LOAD AND DELETE MEMORY PROCESS TO TRIGGER
THE SENDING OF RETRANSMITTEDPACKETS,

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: STARTUP
ALIASES: NONE
VALUES AND MEANINGS:

A FLAG TO THE -CHECK FOR STARTUP- PROCESS TO SET OR CLEAR
THE STARTUP BIT.

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA ELEMENT NAME: STCKSUB
ALIASES: NONE
VALUES AND MEANINGS:

STACK SUBTYPE = 00000000
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: STCKTYPE
ALIASES: NONE
VALUES AND MEANINGS:

STACK PACKET TYPE = 00000111
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: STOP.LINK
ALIASES: NONE
VALUES AND MEANINGS:

345

' ."l4

HALT THE PROTOCOLNOTES: START REPLY TIMER LAYER

DATA FLOW NAME: STRTPACKET
ALIASES: VALIDSTRTPACKET

RECEIVED-STRT.PACKET
COMPOSITION:

STRT..ACKET = ENQ + STRTTYPE + STRTSUB + FLAGS FILL +
FILL + ADDR + BLKCK3

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: STRTSUB
ALIASES: NONE
VALUES AND MEANINGS:

STRT SUBTYPE = 00000000
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: STRTTYPE
ALIASES: NONE
VALUES AND MEANINGS:

STRT PACKET TYPE = 00000110
NOTES: ALL LINK LAYERS

DATA FLOW NAME: SUBTYPE
ALIASES: NONECOMPOSITION:

SUBTYPE = (ACKSUB) + (REPSUB) + (STRTSUB) + (STCKSUB)]NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: SYNC
ALIASES: NONE
VALUES AND MEANINGS:

SYNCHRONIZATION BYTE, THE OCTET 10010110
NOTES: OVERVIEW LAYER

DATA FLOW NAME% SYNC-PACKET
ALIASES: FOLLOWONPACKET

ABUTTEDPACKET

346

LINK-PACKETS
COMPOSITION:

SEE ALIASES
NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

DATA FLOW NAME: TIMEOUT
ALIASES: NONE
COMPOSITION:

TIMEOUT = INCRE4ENT ERROR COUNTER + 1 TIMEOUTDATA
TIMEOUTSTRT
TIMEOUT-STACK

NOTES: START REPLY TIMER LAYER

DATA ELEMENT NAME: TIMEOUT..DATA
ALIASES: NONE
VALUES AND MEANINGS:

AN ACKNOWLEDGEMENT TO DATA PACKET IS HELD UP AND RESULTS
IN THE REPLY TIMER EXPIRATION CAUSING A TIMEOUT SIGNAL
TO TRIGGER THE SENDING OF A REP.PACKET.

NOTES: START REPLY TIMER LAYER.

DATA ELEMENT NAME: TIMEOUTSTACK
ALIASES: NONE
VALUES AND MEANINGS:

AN ACKNOWLEDGEMENT TO A STACK-PACKET IS HELD UP AND
RESULTS IN THE REPLY TIMER EXPIRATION CAUSING A TIMEOUT
SIGNAL TO TRIGGER THE SENDING OF A STACK-PACKET.

NOTES: START REPLY TIMER LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER

DATA ELEMENT NAME: TIMEOUT-STRT
ALIASES: NONE
VALUES AND MEANINGS:

AN ACKNOWLEDGEMENT TO A START PACKET IS HELD UP AND
RESULTS IN THE REPLY TIMER EXPIRATION CAUSING A TIMEOUT
SIGNAL TO TRIGGER THE RESENDING OF A STRTPACKET.

NOTES: START REPLY TIMER LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER

DATA ELEMENT NAME: TRANSMITCOMPLETE

347

ALIASES: NONE
VALUES AND MEANINGS:

A NOTIFICATION TO THE LINK PROTOCOL ONCE TRE DRIVER HAS

COMPLETED A PREVIOUS TRANSMITABLOCK COMMAND

NOTES: START REPLY TIMER LAYER

DATA FLOW NAME: TRANSMIT..DLE.PACKET
ALIASES: DLE.PACKET

VALID-DLEJACKET

COMPOSITION: SEE ALIASES

NOTES: EXECUTE MAINTENANCE PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: TRANSIENT.ERROR-THRESHOLDCOUNTEROVERFLOW

ALIASES: NONE
VALUES AND MEANINGS:

ERROK..THRESHOLD COUNTER OVERFLOW DUE TO

1. MAKS RECEIVED
2. ERRORS THAT CAUSE NAKS TO BE SENT

THIS COMMAND AUTOMATICLY CLEARS THE TRESHOLD.COUNTER

WHEN THE NUMBER OF ERRORS RECORDED EQUALS 7.

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA ELEMENT NAME: TRANSMITA. BLOCK

ALIASES: NONE

VALUES AND MEANINGS:
PASS A BLOCK TO THE DRIVER FOR TRANSMISSION.

NOTES: START REPLY TIMER LAYER

DATA ELEMENT NAME: TRANSMIT-YACKET
ALIASES: NONE
VALUES AND MEANINGS:

GIVE A PACKET TO LINK PROTOCOL FOR TRANSMISSION#

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: TRANSMITTED.PRI1ARY-NODE-TRANSPORTPACKET
ALIASES: TRANSMITTED.SECONDARYNODETRANSPORT-PACKET
COMPOSITION:

SEE ALIASES

NOTES: EXECUTE DATA PACKET LAYER

348

OVERVIEW LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: TRANSMITTED-SECONDARY-NODE-TRANSPORT-PACKET
ALIASES: TRANSMITTED-PRIMARY-NODETRANSPORTPACKET

! COMPO SIT 101: TRANSMITTED-SECONDARY-NODETRANSPORT.PACKET
VALIDSOH..
PACKET

NOTES: OVERVIEW LAYER

DATA ELEMENT NAME: TRANSPORTTOLINK..DATA-PACKET
ALIASES: NONE
VALUES AND MEANINGS:

ANY TRANSPORT PACKET
NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

DATA FLOW NAME: TYPE
ALIASES: NONE
COMPOSITION:

TYPE = IATCKTYPEI
I STRTTYPE I
I REPTYPE I
I NAKYPE I
I ACKTYPE I

NOTES: ALL LINK LAYERS

DATA FLOW NAME: VAID-CRCENQPACKET
ALIASES: ENO-PACKET

VALIDENQ.PACKET
VALID..LENGTI-ENQ.EADER

COMPOSITION:
SEE ALIASES

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NAME: VALIDCRCSO/DLE-PACKET
ALIASES: VALID..LENGTHISOH/DLENEADER

VALIDSOR/DLE1EADER
VAID-LENGT..DATA

COMPOSITION:

349

I -•

VALIDCRCCRCDLEPACKET =

SI SOB + COUNT + FLAGS + RESP + KUM + ADDR + BLKCK1 + DATA BLKCK2
DLE + COUNT + FLAGS + FILL + FILL + ADDR + ELKCKI + DATA + BLKCK2 I

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NAME: VALID...DLEPACKET
ALIASES: DLE._PACKET
COMPOSIT ION:

SEE ALIASES
NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE DATA PACKET LAYER

DATA FLOW NAME: VALIDENOLPACKET
ALIASES: ENQ.PACKET

VALIDCRC-ENQPACKET

VALID-LENGTHENQEADER
COMPOSITION:

SEE ALIASES
NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

DATA FLOW NAME: VALIDLENGTHDATA
ALIASES: VALID..CRC.SOH/DLEPACKET

VALID_.LENGTH_SOH/DLEPACKET
VALIDSOH/DLE_HEADER

COMPOSITION:
SEE ALIASES

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NAME: VALID.LENGTHENQHEADER
ALIASES: ENQPACKET

VALIDENO.PACKET
VALIDCRC-EN0_PACKET

COMPOSITION:
SEE ALIASES

NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NAME: VALID-LENGTRSOH/DLE..EADER
ALIASES: VALIDCRCSOH/DLE.HEADER

350

AL -_7

VALIDLENGTH-DATA
COMPOSITION:

SEE ALIASES
NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NAME: VALIDSOH/DLE.HEADER
ALIASES: VALIDCRCSOH/DLEPACKET

VALIDLENGTDATA
VALIDJLENGTHSOR/DLE.HEADER

COMPOSITION: SEE ALIASES
NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

DATA FLOW NAME: VALIDSORPACKET
ALIASES: SOB-PACKET
COMPOSITION:

SEE ALIASES
NOTES: FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE DATA PACKET LAYER

DATA FLOW NAME: VALIDSTACK_PACKET
ALIASES: STACK_PACKET

RECEIVEDSTACKPACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

DATA FLOW NAME: VALIDSTRT-PACKET
ALIASES: STRTPACKET

RECEIVEDSTRT_PACKET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

DATA FLOW NAME: < 256_LINK.PACKET
ALIASES: COUNTED_LINKDATAPACKET

RETRANSMITTEDPACKETS
NOSYNCPRIMARYTOSECONDARY_.DATAPACKET

COMPOSITION:
SEE ALIASES

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

351

U.

FILL DvnIpTTION (W

FILE OR DATABASE NAME: AJILE
ALIASES: NOla
COMPOSITION*. THE NUMBER OF THE HIGREST SEQUENTIAL DATA MESSAGE THAT

HAS BEEN ACKNOWLEDGED TO THIS STATION. RECEIVED IN THE

RESP FIELD OF DATA.JACKETS. ACI(ACKETS, AND NA.-

PACKETS.

ORGANIZATION: SINGLE OCTET

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE DATA PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS
LAYER

START REPLY TIMER LAYER

FILE OR DATABASE NAME: HOLDTABLE

ALIASES: NONE

COMPOSITION:
HOLD-TABLE = LINKDATAPACKET

ORGANIZATION: VARIABLE-LENGTH OCTET

NOTES: FRAME PRIMAY INFORMATION PACKETS LAYER

FILE OR DATABASE NAME: LINKTOPHYSICALCOMMAND-TABLE

ALIASES: NONE
COM4POSIT ION:

LINKTOPHYSICAL-COMANDTABLE
(LINK-)ND..ODEM CONTROL) +

(TRANSMIT..A.BLOCK)

ORGANIZATION: 20-BIT TABLE

NOTES: START REPLY TIMER LAYER

FILE OR DATABASE NAME: LINKTOTRANSPORTCOMMANDTABLE

ALIASES: NONE
COMPOSITION%

LINKTO_TRANSPORTCOMMANDTABLE
= (PERSISTENTERROR) +

(TRANSIENT-ERROR-THRESHOLD-COUNTEROVERFLOW)
+

(INITAL IZATIONONOTHER.END) +

(INITIALIZATION-COMPLETE)

ORGANIZATION: 4-BIT TABLE

NOTES: EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER
START REPLY TIMER LAYER

FILE OR DATABASE NAME: MEMORY

352

ALIASES:• NONE

COMPOSITION:
STANDARD COMPUTER MEMORY, ALL DATA PACKETS SENT ARE
RECORDED IN MEMORY AND WHEN A VALID ACKNOWLEDGE IS
RECEIVED THEY ARE DELETED.

ORGANIZATION: VARIABLE LENGTH 8-BIT-BYTE WORDS
NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

FILE OR DATABASE NAME: PHYSICALTOLINKCOMMANDTABLE
ALIASES: NONE
COMPOSITION:

PHYSICAL-TO-LINKCOMMANDTABLE (TRANSMIT-COMPLETE) +
(MODEM-FAILURE)

ORGANIZATION: 2-BIT TABLE
NOTES: START REPLY TIMER LAYER

FILE OR DATABASE NAME: RFILE
ALIASES: NONE
COMPOSITION:

THE NUMBER OF THE HIGHEST SEQUENTIAL DATA PACKET
RECEIVED AT THIS STATION. SENT IN THE RESP FIELD
OF DATA-PACKETS. ACK-PACKETS, AND NAK-PACKETS AS
ACKNOWLEDGEMENT TO THE OTHER STATION.

ORGANIZATION: SINGLE OCTET
NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE DATA PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

FILE OR DATABASE NAME: SACK
ALIASES: NONE
COMPOSITION:

THIS FLAG IS SET WHEN EITiHER THE R-FILE IS INCREMENTED
MEANING A NEW SEQUENTIAL DATA PACKET HAS BEEN RECEIVED
WHICH REQUIRES AN ACK REPLY. THE SACK FLAG IS CLEARED
WHEN SENDING EITHER A DATA PACKET WITH THE LATEST RESP
FIELD INFORMATION, OR AN ACK WITH THE LATEST RESP
FIELD INFORMATION.

ORGANIZATION: SINGLE-BIT VARIABLE
NOTES: EXECUTE EDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

353

FILE OR DATABASE NAME: SNAK
ALIASES: NONE

COMPOSITION: THIS FLAG IS SET WREN A RECEIVE ERROR OCCURS THAT

REQUIRES A NAK REPLY. IF IS CLEARED WREN A. NAK PACKET

IS SENT WITH LATEST RESP INFORMATION. ADDITIOM LLY

A NAK REASON VARIALBE IS SET IN THE PILE.

ORGANIZATION: OC

FILE OR DATABASE NAME: SREP

ALIASES: NONE

COMPOSITION: TIS FLAG IS SET WHEN A REPLY TIMER EXPIRES IN THE

RUNNING STATE AND A REP SHOULD BE SENT. IT IS CLEARED

WHEN AN REP.PACKET IS SENT.

ORGANIZATION: SINGLE-BIT VARIABLE

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

START REPLY TIMER LAYER

FILE OR DATABASE NAME: STARTUPFLAG-FILE

ALIASES: NONE

COMPOSITION:
A FLAG THAT IS SET WHEN

1. STARTUP-PAD SEQUENCE IDENTIFIED

2. TO LOCATE THE NEXT PACKET AFTER A NAK_
PACKET IS SENT.

3. TO LOCATE THE NEXT PACKET AFTER A QSYNC_

PACKET IS SENT.

THE FLAG IS CLEARED ON THE RECEPTION OF A NORMAL

(NO.P.AD SEQUENCE) PACKET.

ORGANZATION• SINGLE-BIT VARIABLE

NOTES: DECODE AND SYNC INCOMING BIT STREAM LAYER

FILE OR DATABASE NAME: T..YILE

ALIASES: NONE

COMPOSITION:
THE NUMBER OF THE NEXT DATAPACKET TO BE TRANSMITTED.

WHEN SENDING NEW DATA-PACKETS, T WILL HAVE THE VALUE

V + 1. WHEN RETRANSMITTING, T WILL BE SET BACK TO

A + 1 AND WILL ADVANCE TO V + I.

ORGANZATION : SINGLE OCTET

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

354

FRAME PRIMARY INFORMATION PACKETS LAYER

FILE OR DATABASE NAX: TRANSPORTTO_LINK_COMMANDTABLE
ALIASES: NONE
COMPOSITION:

TRANSPORT_TO_LINKCOMMANDTABLE = (STOP..LINK) +
(INITIALIZE-LINK) + (RECEIVE-PACKET) +

(TRANSMITPACKET) +
(ENT ERMA INT ENAC E..ODE)

ORGAIZATION:
5-BIT TABLE

NOTES: START REPLY TIMER LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER
EXECUTE MAINTENANCE PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

FILE OR DATABASE NAME: VFILE
ALIASES: NONE
COMPOSITION:

THE NUMBER OF THE HIGHEST SEQUENTIAL DATA-PACKET
TRANSMITTED BY THIS STATION. SENT IN THE NUM FIELD
OF REP-PACKETS. V IS THE NUMBER ASSIGNED TO THE LAST
USER TRANSMIT REQUEST WHICH HAS BEEN TRANSMITTED
(SENT IN THE NUM FIELD OF THAT DAT PACKET).

ORGANIZATION: SINGLE OCTET
NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

355

Lit

PROCESS NAME: CHECK FOR AND REMOVE PAD SEQUENCE

PROCESS NUMBER: 1.1.1
PROCESS DESCRIPTION*.
IF lllll"o 0010110101l0110 is encountered then

Delete the 11111111
Output a SETSTARTUPPLG
Output next consecutive bytes

ELSE output the next consecutive
bytes

PROCESS NAME: CHECK FOR STARTUP

PROCESS NUMBER: 1.1.2

PROCESS DESCRIPTION:
IF STARTUP flas set then

Output next packet as INITIALPACKET

Reset STARTUP
ELSE output next packet as

FOLLOWON-PACKET

PROCESS NAME: LOCATE TWO CONSECUTIVE SYNC BYTES

PROCESS NUMBER: 1.1.3

PROCESS DESCRIPTION:

STRIP off all sync bytes

Output remaining bytes as SYNCPACKETS

PROCESS NAME: DECODE PACKET READER

PROCESS NUMBER: 1.1.4

PROCESS DESCRIPTION:
IF first byte

= 10000001 then

Output ABUTTEDPACKET (SOI--PACKET)

ELSEIF first byt,
= 00000101 then

Output ABUTTED_PACKET (ENQ._PACKET)

ELSEIF first byte = 10010000 then

Output ABUTTED-PACKET (DLE..PACKET)

ELSE output PACKETNON..AUT

PROCESS NAME: CHECK FOR QSYNC

PROCESS NUMBER: 1.1.5
PROCESS DESCRIPTION:
IF 23rd bit set then

Output RESYNC to set STARTUPLAGILE

Output SO,
DLE, or ENOPACKET

ELSE output SO, DLE, or ENCLPACKET

356

PROCESS NAME: CHECK HEADER LENGTH
PROCESS NUMBER: 1.2.1
PROCESS DESCRIPTION:
IF SOR_PACKET or DLE..PACKET headers are less than 48 bits long then

Output HEADERFORMATERROR
ELSE output VALID.LENGTHSOH/DLEREADER

PROCESS NAME: CHECK BLKCK1
PROCESS NUMBER: 1.2.2
PROCESS DESCRIPTION:
IF the BLKCK1 and the LOCALLY._GENERATEDCRC__REMAINDER are equal then

Output VALID_LENGTHSOH/DLE_HEADER as a VALIDSOH/DLEHEADER
ELSE output as a INVALIDBLKCKI

PROCESS NAME: CHECK DATA LENGTH (COUNT)
PROCESS NUMBER: 1.2.3
PROCESS DESCRIPTION:
IF SOH_PACKET or DLEYACKET data fields are less than the value recorded in

the COUNT field then
Output VALIDSOH/DLE.HEADER as an INVALID_.DATA_LENGTH

ELSE output as a INVALID_LENGTHDATA

PROCESS NAME: CHECK BLKCK2
PROCESS NUMBER: 1.2.4
PROCESS DESCRIPTION:
IF the BLKCK2 and the LOCALLY_.GENERATEDCRCREMAINDER are equal then

Output VALIDLENGTHDATA as a VALID_CRC_SOH/DLE_.PACKET
ELSE output as a INVALID.BLKCK2

PROCESS NAME: CHECK ENQ HEADER LENGTH
PROCESS NUMBER: 1.2.5
PROCESS DESCRIPTION:
IF ENOPACKET header is less than 48 bits long then

Output HEADERFORMAT_ERROR
ELSE output as VALID_LENGTH_EN(_HEADER

PROCESS NAME: CHECK BLKCK3
PROCESS NUMBER: 1.2.6
PROCESS DESCRIPTION:

357

r -..

IF the BLKCK3 and the LOCALLYGENERATED_CRCREMAINDER are equal then
Output the VALIDLENGTR.ENQHEADER as VALIDCRCENQ_PACKET

ELSE output INVALID.BLKCK3

PROCESS NAME: GENERATE CRC REMAINDER
PROCESS NUMBER: 1.2.7
PROCESS DESCRIPTION:
APPEND 16 zeros after the header or data protion of the packet (VALID_LENGTH_

SOH/DLEHEADER, VALIDLENGTHDATA, VALIDLENGTHENQJHEADER)
TAKE the string of bits conqtructed and at each bit as the coefficient

of a term of a ploynomial with the of the first byte eng the

coefficient of the highest order polynomial term. The highest order

term is A * X ** 63 for a header block and A * X ** (8 * (count) +
15) for a data block where A is the least significant bit of the

first byte of the header or data. The lowest order term is 0 *

X ** 0 for both cases.
DIVIDE the constructed polynomial by the CRC-16 polynomial X ** 16 +
X ** 15 + X ** 2 + I modulo 2, obtaining a quotient that is
discarded and the 16-bit remainder.

TRANSMIT the remainder as the LOCALLY_GENERATED_CRC_REMAINDER

PROCESS NAME: CHECK SELECT BIT
PROCESS NUMBER: 1.2.8
PROCESS DESCRIPTION:
SEPARATE VALIDCRC_SOH/DLEPACKET into VALIDSOR-PACKET and VALIDDLE_PACKET

IF VALID_DLEPACKET select bit not set then
Output INVALID_DLEPACKET

ELSE output VALIDDLEPACKET

Output VALIDSOHPACKET
Output VALID_CRCENQPACKET as VALID_ENQ_PACKET

PROCESS NAME: DECODE ENQ PACKET

PROCESS NUMBER: 1.3.1
PROCESS DESCRIPTION:
IF TYPE equal 00000001 then

Output RECEIVED-ACKPACKET
ELSEIF TYPE equal 00000010 then

Output RECEIVEDNAK PACKET

ELSEIF TYPE equal 00000011 then
Output RECEIVEDREP PACKET

ELSEIF TYPE equal 00000110 then

Output RECETVEDSTRTPACKET
ELSE output RECEIVEDSTACKPACKET

358

L A I

PROCESS NAME: SET NAK TRANSMIT FLAG
PROCESS NUMBER: 1.3.2
PROCESS DESCRIPTION:
IF Input = IMVALIDBLKCK1, INVALIDBLKCK2 INVALIDBLRCK3, or PACKET_.OI_

ABUT then
Output a NAKTRANSMIT.Fy1AG and

Output an INVALID_PACKETS flag

ELSE Null

PROCESS NANE: SET NEGATIVE ACKNOWLEDGE FLAG, RESET TIMER

PROCESS NUMBER: 1.3.3

PROCESS DESCRIPTION:

IF Input z HEADERFORMAT_ERROR, INVALIDDATALENGTH, INVALIDDLEPACKET.

INVALID_STRTPACKET. INVALIDSTACK_PACKET. DISAGREE, or INVALIDPACKETS

flkg then
Output a SET flag to SNAKFILE and to COUNTERRORS_PROCESS

Reset REPLY TIMER
ELSE Null

PROCESS NAME: CHECK STRT SELECT BIT

PROCESS NUMBER: 1.3.4

PROCESS DESCRIPTION:
IF RECEIVEDSTRT_PACKET select bit set then

Output VALID_STRT_PACKET
ELSE output INVALIDSTRTPACKET

PROCESS NAME: CHECK STACK SELECT BIT

PROCESS NUMBER: 1.3.5

PROCESS DESCRIPTION:
IF RECEIVEDSTACK-PACKET select bit set then

Output VALID.STACKPACKET
ELSE output INVALIDSTACKPACKET

PROCESS NAME: CHECK NUM FIELD TO R

PROCESS NUMBER: 1.3.6

PROCESS DESCRIPTION:
IF RECEIVED_REP_PACKET NUM field value equal

to the current RFILE value then

Output AGREE

ELSE output DISAGREE

359

PROCESS NAME: SET ACKNOWLEDGE FLAG, RESET TIMER
PROCESS NUMBER: 1.3.7
PROCESS DESCRIPTION:

IF Input = AGREE, INCREMENTR, or VALID_STACKPACKET then
Output a SET flag to SACK-FILE

ELSE Null

PROCESS NAME: COUNT ERRORS (NAK)
PROCESS NUMBER: 1.3.8
PROCESS DESCRIPTION:
INCREMENT counter on SET input

IF counter = 49 then
Output TRANSIENT_ERROR_THRESOLDCOUNTEROVERFLOW
Reset counter to 0

ELSE Null

PROCESS NAME: N=N+1
PROCESS NUMBER: 1.4.1

PROCESS DESCRIPTION:
OUTPUT N % ODD when

Reception of INITIALIZE..LINK (N=1)
Reception of VALIDSTRTPACKET (N=ODD)

OUTPUT N z EVEN when
Reception of VALID_STRTPACKET (N=EVEN)

PROCESS NAME: GENERATE NEGATIVE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.2
PROCESS DESCRIPTION:
IF SNAK_FILE set then

Output NAKPACKET of the following format: ENQ i NAKTYPE + REASON +
FLAG' + RESP + FILL + ADDR +
BLKCK3

ELSE Null

PROCESS NAME: GENERATE START PACKET
PROCESS NUMBER: 1.4.3
PROCESS DESCRIPTION:
IF N = ODD or TIMEOUTSTRT is inputed then

Output STRTPACKET of the following format: EN + STRTTYPE + STRTSUB +

FLAGS + FILL + FILL + ADDR +BLKCX3
ELSE Null

360

PROCESS NAME: GENERATE START ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.4
PROCESS DESCRIPTION:
IF N = EVER or TIMEOUT_STACK is inputted then

Output STACKPACKET of the following format: ENQ + STCKTYPE + STCKSUB +
FLAGS + FILL + FILL + ADDR +
BLKCK3

Once STACK_PACKET is transmitted then
Output INITIALIZATIONONOTHER_END flag

ELSE Null

PROCESS NAME: GENERATE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.5
PROCESS DESCRIPTION:
IF SACK_FILE is set then

Output as ACKPACKET of the following format: ENQ + ACKTYPE + ACKSUB +
FLAGS + RESP + FILL +
ADDR + BLKCK3

ELSE Null

PROCESS NAME: GENERATE REP PACKET
PROCESS NUMBER: 1.4.6
PROCESS DESCRIPTION:
IF SREPFILE set then

Output an REPPACKET of the following format: ENQ + REPTYPE + REPSUB +
FLAGS + FILL + NUM +
ADDR + BLKCK3

ELSE Null

PROCESS NAME: CLEAR NEGATIVE ACKNOWLEDGE FLAG
PROCESS NUMBER: 1.4.7
PROCESS DESCRIPTION:
UPON transmission of a NAKPACKET

Output flag to clear the SNAK.FILE

PROCESS NAME: IF INITIALIZATION THEN PAD PACKET
PROCESS NUMBER: 1.4.8
PROCESS DESCRIPTION:
IF Input is INITIALIZELINK then

Add PAD SEQUENCE (11111111) to STRTPACKET

361

ELSE pass STRTPACKET as is

PROCESS NAME: CLEAR ACKNOWLEDGE FLAG
PROCESS NUMBER: 1.4.9
PROCESS DESCRIPTION:
UPON transmission of a ACK_PACKET

Output flag to clear the SNAK-FILE

PROCESS NAME: CLEAR SREP FLAG
PROCESS NUMBER: 1.4.10
PROCESS DESCRIPTION:
UPON transmission of a REPPACKET

Output flag to clear the SREPFILE

PROCESS NAME: PROCESS NUM FIELD
PROCESS NUMBER: 1.5.1
PROCESS DESCRIPTION:
SET R = NUM field value

Output R value as INCREMENT_R to RFILE
Output VALIDSOHPACKET

PROCESS NAME: PROCESS RESP FIELD
PROCESS NUMBER: 1.5.2
PROCESS DESCRIPTION:
IF RESP field value from a VALIDSOH PACKET or RECEIVED_.ACKPACKET or INVALID_

DATA-LENGTH or RECEIVEDNAKPACKET is greater than A_FILE value then
SET A = RESP field value
Output VALIDSOHPACKET as TRANSMITTED_PRIMARYNODETRANSPORT_.PACKET
Output a value to A_FILE

ELSE output VALIDSOHJPACKET as TRANSMITTED_PRIMARY_NODETRANSPORTPACKET

PROCESS NAME: GENERATE MAINTENANCE MODE PACKETS
PROCESS NUMBER: 1.6.1
PROCESS DESCRIPTION:
UPON reception of a VALID.DLEPACKET

Start maintenance operation protocol which issues MOP.PACKETS

PROCESS NAME: GENERATE MAINTENANCE COMMAND
PROCESS NUMBER: 1.6.2

362

PROCESS DESCRIPTION:
OUTPUT a TRANSMITDLEPACKET on input of an ENTER_MAINTENANCEMODE_COMMAND

with the following format: DLE + COUNT + FLAGS + FILL + FILL + ADDR +
BLKCKI + DATA + BLKCK2

PROCESS NAME: ADD 4 SYNC BYTES TO PACKET IF QSYNC
PROCESS NUMBER: 1.7.1
PROCESS DESCRIPTION:
IF QSYNC set in last packet then

Add 4 SYNC bytes to the following packets depending on which is the next
packet to arrive: NAK_.PACKETS, ACKPACKET, REP-PACKET, MOP-PACKET,
TRAN SMIT_DLEPACKET

Reset QSYNC bit once the 4 SYNC bytes have been added to the appropriate
packet

Add 4 SYNC bytes to the following packets at all times: STACK_PACKET.
and STRT_PACKET

Output ENQ/DLESYNC..PACKET
ELSE add 4 SYNC bytes to the following packets at all times: STACKPACKET,

and STRT.PACKET
Output ENQ/DLE.SYNC..PACKET

PROCESS NAME: COUNT DATA FIELD ADD BLKCK2 AND COUNT
PROCESS NUMBER: 1.7.2
PROCESS DESCRIPTION:
IF TRANSMIT-PACKET and RECEIVE-PACKET present then

Accept incoming TRANSPORT_TO_LINKDATA.PACKET
Determine the number of bits in the TRANSPORTTOLINKDATA_PACKET
Put this number in the count field and use it to
Generate BLKCK2
Output NOREADERDATA.PACKET

ELSE Null

PROCESS NAME: ADD REMAINING HEADER FIELDS
PROCESS NUMBER: 1.7.3
PROCESS DESCRIPTION:
TO NOREADERDATA_PACKET add ADDR field. NUM field, FLAGS field, RESP field.

and SOB field
IF COUNT field is less than or equal to 4 SYNC bytes then

Output SHORT_DATACOUNT
ELSE output LONGPATACOUNT

PROCESS NAME: SET QSYNC BIT
PROCESS NUMBER: 1.7.4

363

PROCESS DESCRIPTION:
IF Input is PAD/STRT_PACKET or STACK_PACKET then

Set select bit and
* Output QSY1C_ENQ/DLEPACKET

Output QSYNC
ELSEIF Input is SHORT-DATACOUNT then

Set select bit and
Output QSYNCDATA.PACKET

ELSE output QSYNCENQ/DLEPACKET

PROCESS NAME: COUNT HEADER FIELD AND ADD BLKCK1

PROCESS NUMBER: 1.7.5
PROCESS DESCRIPTION:
TO LONGDATACOUNT and QSYCNC_DATA_PACKET add BLKCK1

Output LINKDATAPACKET

PROCESS NAME: PIGGYBACK-ACKNOWLEDGE RECEIVED, SET RESP
PROCESS NUMBER: 1.7.6
PROCESS DESCRIPTION:
ADD TFILE value to LINKDATA-PACKET

Clear SACK_FILE
Output PIGGYBACKLINKDATA.PACKET

PROCESS NAME: CHECK MODULO 256
PROCESS NUMBER: 1.7.7
PROCESS DESCRIPTION:
IF -255 - (A + 1 - V) < 1 and HOLDTABLE contains data packet entries then

Read off and delete first data packet entry from top of table.
Output as <256_LINKYACKET

ELSEIF I < (A + I - V) < 256 and HOLDTABLE contains data packet entries then
Read off and delete first data packet entry from top of table
Output as <256_LINKPACKET

ELSEIF -255 < (A + 1 - V) < 1 or I c (A + 1 - V) < 256 then
Output PIGGYBACKEDLINKEDDATAPACKET as <256-LINKPACKET

ELSE output PIGGYBACKEDLINKEDDATA_PACKET to bottom of HOLD_TABLE

PROCESS NAME: INCREMENT PACKET COUNT
PROCESS NUMBER: 1.7.8
PROCESS DESCRIPTION:
IF V < 256 then

V=V+l
T=V+1

Assign NUM = V

364

Output COUNTEDLINK_DATAPACKET
Update VFILE and TFILE

ELSE V = 1
T =2
Assign NUM = V
Output COUNTED_LINK.DATAPACKET
Update V_FILE and TFILE

PROCESS NAME: CHECK RETRANSMIT

PROCESS NUMBER: 1.7.10
PROCESS DESCRIPTION:
IF T - V = 1 then

Output COUNTED_LINK_DATA_PACKET to NOSYNC_PRIMRY..TO_SECONDARY..DATA.
PACKET

ELSE output START flag

PROCESS NAME: ADD 4 SYNC BYTES TO DATA PACKET IF QSYNC OR INIT
PROCESS NUMBER: 1.7.11
PROCESS DESCRIPTION:
IF Input is a QSYNC flag or VFILE value of I or the first packet of the

RETRANSMITPACKETS then
Add 4 SYNC bytes and
Output as PRIMARY_TO_SECONDARYDATA_PACKET

ELSE output as PRIMARY_TO_SECONDARY.DATA..PACKET

PROCESS NAME: LOAD AND DELETE MEMORY
PROCESS NUMBER: 1.7.12
PROCESS DESCRIPTION:
IF COUNTEDLINKDATAPACKET NM field value is greater than the A_FILE value

then
Load COUNTEDLINKDATA_PACKET to MEMORY

ELSEIF RFILE value is same as a recorded COUNTEDLINKDATA_PACKET then
Delete all COUNTEDLINKDATA_PACKETS in MEMORY with NUM file values

less than or equal to the new RFILE value
ELSE receive a START flag then

Output all recorded COUNTLINK._DATA_PACKETS as RETRANSMITTEDPACKETS

PROCESS NAME: IF STRT. STACK. OR DATA_PACKET THEN START TIMER

PROCESS NUMBER: 1.8.1
PROCESS DESCRIPTION:
IF Input = QSYNCENQ/DLEPACKET, STRT-PACKET. or STACK_PACKET then

Start TIMER
Send LINK_AND_WODEM_CONTROL ENABLE_.LINK

365

Send a block to the driver through the use of the TRANSMITA.._BLOCK_
COMMAND, it will be outputted as PRIMARYOUTGOINGBITSTREAM_TO_
DRIVER

ELSEIF Input = PRIMARYTOSECONDARYDATAJPACKET then
Start TIMER
Send LINK_ANDMODEM-CONTROL = ENABLE LINK
Send a block t the driver through the use of the TRANSMITABLOCK_

COMMAND, it will be outputted as PRIMARYOUTGOINGBITSTREAMTO_
DRIVER

Send PRIMARY_TOSECONDARYDATA_PACKET NUM value to reset TIMER process
ELSEIF Input = RESETSIGNAL then

Reset the TIMER
ELSEIF TIMER times out the

Output TIMEOUT
ELSE Input = STOPLINK then

Send last PRIMARYOUTGOINGBITSTREAMTO..DRIVER packet with an ENABLE

LINK then
Send a DISABLELINK to the driver

PROCESS NAME: RESET TIMER
F OCESS NUMBER: 1.8.2
PROCESS DESCRIPTION:
IF Input new AFILE value then

Compare with last recorded NUM value
IF equal then

Reset TIMER
ELSE Null

ELSEIF Input is RECEIVED_STRTPACKET then
Reset TIMER

ELSE Input is RECEIVEDSTACKPACKET then
Reset TIMER

PROCESS NAME: COUNT ERRORS (TIME)
PROCESS NUMBER: 1.8.3
PROCESS DESCRIPTION:
EACH time a TIMEOUT occurs then

Increment COUNTER
IF COUNTER = 7 then

Output PERSISTENTERROR
Reset COUNTER

ELSE Null

PROCESS NAME: IDENTIFY TIMEOUT PACKET
PROCESS NUMBER: 1.8.4
PROCESS DESCRIPTION:

366

IF TIMEOUT due to DATAPACKET then
Output TINEOUTDATA

ELSEIF TIMEOUT due to STRT.YACKET then
Output TIMEOUTSTRT

ELSE output TIMEOUTSTACK

PROCESS NAME: TRANSMIT BIT STREAMS
PROCESS NUMBER: 2.0
PROCESS DESCRIPTION:
USE the PHYSICAL LEVEL PROTOCOL to transmit the PRIMARY OUTGOING BIT STREAL

TO_DRIVER to the SECONDARY NODE and the SECONDARY UTGOING_.YIT_.TREAML
TODRIVER to the PRIMARY NODE.

PROCESS NAME: EXECUTE HDLC PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 3.0
PROCESS DESCRIPTION:
USE the LINK LEVEL PROTOCOL to transmit an error free SECONDARY_INCOMINGBIT_

STREAM..FROH_DRIVER to the SECONDARY NODE and to transmit an error free
RECEIVED-SECONDARY_NODETRANSPORT_PACKET to the PRIMARY NODE.

367

L.. .. |IiiIl - "

D

Electronic Warfare Network (EWNET) Profile

This appendix contains a compilation of the EWNET hardware and

software design features using a format required for use by the Digital

Equipment Corporation.

Contents

Page

General Information 0.. 369

Link Descriptions ..@..............o...... . 0.......... 0............... 374

Host Descriptions- 0............. 391

Node Descriptions *....... 405

Peripheral Descriptions 408

368

Electronic Warfare Network (EWNET) Profile

for

Robins APB, Georgia

18-DEC-81

Revision 1

Developed by: Robert H. Stokes

Approved by:

369

Network Profile

*Customer Information~

Robins AFB

c/o Mr. Joe Black

WR-AlC / M14RR

Robins Air Force Base, Georgia 31098

Customer Network Manager: Mr. Roger Boan

Location: Robins Air Force Base

Digital Account Management"

Account Manager: Steven Jones

Software Specialist: Jim Bell

Office: ATD 2

District Software Manager: Ed Converse

.Application Information~

The network will be used in an application doing task-to-task

communication, peripheral sharing, and file transfers as described in

AFIT Thesis -Design of a Local Computer Network for the Robins AFB,

Electronic Warfare Division Engineering Branch Laboratory~ by Robert H.

Stokes. There exist special modifications to DECnet in this application

which constitutes overall functionality constraints and critical

factors.

370

"Potential Problem Areas*

Does proposed network cross area, region, district, or branch

boundaries?

NO

Are any phased installation / warranty problems foreseen?

NO

Any network-related special purpose hardware or software involved?

YES

Fiber optic link and modems for high speed and bandwidth

"Overall Description"

Digital Supplied Customer Supported

Responsible Product Line: GSG

Other Product Lines: None

Numler of Nodes: 14 Phase II

3 Phase III

Maximum number of links on any node: 7

Operating systems: VMS

RSX-11M

371

A0-A119 253 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO -ETC F/G 9i2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECTRONI -ETC(U)
DEC 81 R H STOKES

UNCLASIFIED AFIT/GCS/EE/SA1016 NL71 sofllMEMNONMENEMflf

iMMhhMMhhMhmu
tmhhhh82m

A Present Future
YS NO YES N0

Telehoe Aces

BatchCommnd Fle Sbmis 372

#4~ ~ Q 4 ~#

c A

LL

.42

ok
- -- - - - -~ ~ 373a

T.ink Deoirption

Link Number: 1

Node Name: First Floor Node Linked to Node Name: ARC
Interface: DMCII-AR Interface: DNC11-AR

DMC 11-lL4 DKC 11 -MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operat'.ug System: RSX-11M
Line Speed: 1M Baud

Link Characteristics-

Serial Synchronous Full-Duplex Local

-Expected Data Throughput"

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 Bytes
Expected Line Utilization: 50%

DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X

File Transfer X

File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X

Network Command Terminals (Homogeneous) X

Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X

Auto-Dial Telephone X X

Multidrop DDCMP X X
Routing X
Adaptive Routing X X

374

Link Daeerini

Link Number: 2

Node Name: First Floor Node Linked to Node Name: F-15 TENS
Interface: DMC11-AR Interface: DMC11-AL

DMC11-MA DMC11-I4A
Bootstrap: Bootstrap:
Operating System: RSX-I1M Operating System: VMS
Link Speed: iM baud

-Link Characteristics-

Serial Synchronous Full-Duplex Local

-Expected Data Throughput-

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50%

DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (hetergeneous) X
Auto-Ansver Telephone X X
Auto-Dial Telephone X X
ultidrop DDC1P X X

Routing X
Adaptive Routing X X

375

Link Dnasrit ion

Ilk* Link Number: 3

Node Name: First Floor Node Linked to Node Name: APR-38
Interface: DMCI1-AR Interface: DMC11-AL

DMC1 1-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: IM baud

-Link Characteristics-

Serial Synchronous Full Local

"Expected Data Throughput-

Average: 1M baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

"DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-toTask X
File Transfer X
File Access K
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X K
Network Command Terminals (hetergeneous) X
Auto-Answer Telephone X K
Auto-Dial Telephone X X
Multcidrop DDCMP X X
Routing K
Adaptive Routing X I

376

Link Donemertion

Link Number: 4

Node Name: First Floor Node Linked to Node Name: EF-1llA
Interface: DMC11-AR Interface: DMCl1-AL

DKCl 1-4A D14C11-MA
Bootstrap: Bootstrap:
Operating System: RS-ilM Operating System: VMS
Link Speed: 1M baud

-Link Characteristics-

Serial Synchronous Full-Duplex Local

Expected Data Throughput-

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

"DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (letergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCHMP X K
Routing X
Adaptive Routing X K

(' 377

I_ - :

Li~nk Domerfatitin

link lumber: 5

lode lame: Second Floor Node Linked to lode lame: ALQ-131
Interface: DNfC11-AR Interface: DKCII-hL

DHCI 1-NA DMII -NA
Bootstrap: Bootstrap:

.1Operating System: R81-ilK Operating System: VMS
Link Speed: iN baud

Link Characteristics

Serial Synchronous Full-Duplex Local

-Expected Data Throughpu-

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization-* 50 Z

_DECnet Functionality to be Used-

Present Future
YES N0 YES NO

Task-to-Task X
File Transfer X
File Access X
Batch /Command File Submission X
Batch ICommand File Execution X
Down-Line System Loading
Down-Line Task Loading x
Networx Command Terminals (Homogeneous) X
Network Comand Terminals (Netergeneous) X
Auto-Answer Telephone X
Auto-Dial Telephone X
Hultidrop DDCNP X
Routing X
Adaptive Routing I

* - 378

Link Deaseription

4 APLink Number: 6

Node Name: Second Floor Node Linked to Node Name: ALQ-155
Interface: DMCl1-AR Interface: DMCI1-AL

DNC11-MA DMC11-M&
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: IM baud

-Link Characteristics-

Seria' Synchronous Full-Duplex Local

Expected Data Throughput"

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: s0 Z

DECnet Functionality to be Used"

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X X

379

- " " " - " -.. " ". - 4 --.- .

Link Dsseriptio

Link Number 7

Node Name: Second Floor Node Linced to Node Name: ALQ-119
Interface: DMCII-AR Interface: DMCl1-AL

DIC11-NA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS

-Link Characteristics-

Serial Synchronous Full-Duplex Local

-Expected Data Throughput-

Average: IM baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

"DECnet Functionality to be Used-

Present Future

YES NO YES NO
Task-to-Task X
File Transfer X
File Access X

Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Teruinals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Nultidrop DDCMP X X
Routing X
Adaptive Routing X X

*30

I ________ _________________

Link lescripIlion

4,

Link Number: 8

Node Name: Second Floor Node Linked to Node Name: ALR-69
Interface: DMC11-AR Interface: DMCI1-AL

DMC11-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: 1M baud

Link Characteristics~

Serial Synchronous Full-Duplex Local

Expected Data Throughput~

Average: 1M baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X X

381

'I

L_ nk D~stertntein

Link Number: 9

Node Name: Second Floor Node Linked to Node Name: EWOLS / ECSAS
Interface: DMC11-AR Interface: DMCII-AL

DMC1 1-MA DMCI1-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: IM baud

-Link Characteristics-

Serial Synchronous Full-Duplex Local

-Expected Data Throughput"

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

DECnet Functionality to be Used"

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Retergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X X

382

Link asueription

Link Number: 10

Node Name" Third Floor Node Linked to Node Name: B-52
Interface: DMCI-AR Interface: DMC11-AR

DXCI1-MA DMCI I-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: RSX-11M
Link Speed: 1M baud

Link Characteristics"

Serial Synchronous Full-Duplex Local

"Expected Data Throughput"

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

"DECnet Functionality to be Used"

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X X

383

1|

Link Dascrintion

Link Number: 11

Node Name: Third Floor Node Linked to Node Name: ALR-62
Interface: DMC11-AR Interface: DMC11-AL

DMC1 1-MA DMC1 1-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: 1M baud

"Link Characteristics~

Serial Synchronous Full-Duplex Local

Expected Data Throughput-

Average: iM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

DECnet Functionality to be Used"

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Hultidrop DDCMP X X
Routing X
Adaptive Routing X X

384

Link DAnri ption

Link Number: 12

Node Name: Third Floor Node Linked to Node Name: ALR-62
Interface: DMCl1-AR Interface: DMCl1-AL

DMCI1-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: 1M baud

"Link Characteristics-

Serial Synchronous Full-Duplex Local

Expected Data Throughput"

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

"DECnet Functionality to be Used-

Present Future

YES NO YES NO
Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Don-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Retergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
nultidrop DDCMP X X
Routing X
Adaptive Routing X X

385

Link fleseript ions

4)' Link Number: 13

Node Name: Third Floor Node Linked to Node Name: FLTS
Interface: DMCl1-AR Interface: DMCl1-AR

DMC11-MA DMC1 1-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: RSX-11
Link Speed: 1M baud

-Link Characteristics-

Serial Synchronous Full-Duplex Local

Expected Data Throughput-

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

"DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Retergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X X

386

Link Dascripltin

Link Number: 14

Node Name: Third Floor Node Linked to Node Name: ALQ-125
Interface: DMC11-AR Interface: DCli-AR

DMC1 1-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-1114 Operating System: RSX-1114
Link Speed: 114 baud

-Link Characteristics-

Serial Synchronous Full-Duplex Local

Expected Data Throughput-

Average: 114 baud
Peak: 114 baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 Z

DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Ansver Telephone X X
Auto-Dial Telephone X X
Multidrop DDCMP I X
Rout ing X
Adaptive Routing X X

387

Link Dnmription

Link Number: 15

Node Name: Third Floor Node Linked to Node Name: Second Floor Node
Interface: DMC11-AR Interface: DMC11-AR

DMC1I-MA DMCI1-MA
Bootstrap: Bootstrap:
Operating System: RBZ-II Operating System: RSX-11l

Link Speed: IM baud

Link Characteristics-

Serial Synchronous Full-Duplex Local

Expected Data Throughput"

Average: IM baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 100 2

"DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
AutoDial Telephone X X
Multidrop DDCNP X X
Routing X
Adapt ive Routing X

388

Link Dager tiuo

Link Number: 16

Node Name: Second Floor Node Linked to Node Name: First Floor Node
Interface: DMC11-AR Interface: DMC11-AR

DMC1 1-MA DMCI1-M&
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: ESX-IIM
Link Speed: IM baud

-Link Characteristics-

Serial Synchronous Full-Duplex Local

Expected Data Throughput-

Average: IN baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 100 Z

"DECret Functionality to be Used"

Present Future

YES NO YES NO
Task-to-Task X
File Transfer X

File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
DownLine Task Loading X
Network Command Terminals (Homogeneous) X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCNP X X
Routing X
Adapt ive Routing X

389

Link Doseription

Link Number: 17

Node Name: First Floor Node Linked to Node Name: Third Floor Node
Interface: DMCll-AR Interface: DMC11-AR

DMCII-MA DKCII-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: RSX-11M
Link Speed: IN baud

Link Characteristics-

Serial Synchronous Full-Duplex Local

-Expected Data Throughput-

Average: IN baud
Peak: IN baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 100 %

"DECnet Functionality to be Used-

Present Future
YES NO YES NO

Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto-Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X

390

Host Name: ARC Host number: 3

Location: Robins AFB
Expected Date On-Line: 1983

Operating System: RSX-11M DECnet Versions 3.0

Languages Supported: Fortran and Pascal
Other Layered $/W Products:

A/D Scanning? NO

D/A ConversionT NO
Graph ics? NO
27 80,3780 .ESP.3271 ,SNA? NO

Other Interrupt Intensive S/W? NO

CPU: PDP-11/34 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
3 VT-100 9600 baud

Other Peripherals:
Number Type

1 DR-11
1 LA-120
1 TJE-16
1 RJM-02
1 LP-11

Total Number of Links? 1

Total Throughput: (Bits/Second)IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 Z

-Host Application-

This host will use DECnet for all uses listed as applicable under

Link Description 1.

391

t i

" gHot De~ition

Host Name: F-15 TEWS Host Number: 2
Location: Robins AFB
Expected Date On-Line: Jan 1982

Operating System: VMS DECnet Version: 1.3

Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? YES
D/A Conversion? YES
Graphics? YES
27 80,3780 HASP,3271,SNA? NO
Other Interrupt Intensive S/W? YES

CPU: VAX-11/780 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
8 VT-100 9600 baud
1 VT-125 9600 baud

Other Peripherals:
Number Type

1 DR-11
1 LP-11
1 TEE-16
2 REM-03
1 LA-120

Total Nlumber of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet? 50 %

-Host Application

This host will use DECnet for all uses listed as applicable under

Link Description 2.

392

I VI I.LV _ _

Rnsr D~neription

Host Name: APR-38 Host Number: 3
Location: Robins AFB
Expected Date On-Line: Sept 1982

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? YES
D/A Conversion? YES
Graphics? YES
27 80,3780 HASP.3271.SNA? NO
Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
8 VT-100 %00 baud
1 VT-125 %00 baud

Other Peripherals:
Number Type
1 DR-11
1 LP-11
1 TEE-16
2 REM-03
1 LA-120

Total Number of Link? 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet? 50 Z

-Host Application-

This host will use DECnet for all uses listed as applicable under
Link Description 3.

393

4-

Host Daneritntion

Host Name: EF-111A Host Number: 4
Location: Robins AFB
Expected Date On-Line: Dec 1982

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? YES
D/A Conversion? YES
Graphics? YES
27 80.3780 .HASP.3271 ,SNA? NO
Other Interrupt Intensive S/W? YES

CPU: VAX-11/780 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
4 VT-100 9600 baud
1 VT-125 9600 baud

Other Peripherals:
Number Type
1 DR-11
1 LP-11
2 TEE-16
2 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Seconds)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

-Host Application-

This host will use DECnet for all uses listed as applicable under
Link Description 4.

394

Rost Description
Host Name: ALQ-131 Rost Number: 5
Location: Robins AFB
Expected Date On-Line: 15-Jun-81

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780.,ASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes HOS

Terminals: Number Type Speeds
8 VT-100 9600 baud

Other Peripherals:
Number Type

1 DR-11
1 LP-11
1 TEE-16
1 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 Z

-Host Application~

This host will use DECnet for all uses listed as applicable under
Link Description 5.

395

Host Doneription
Hoat Name: ALQ-155 Host Number: 6
Location: Robins AFB
Expected Date On-Line: 15-Jun-81

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics NO
2780,3780jASP,3271.SN&? NO
Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
6 VT-100 9600 baud

Other Peripherals:
Number Type
I DR-i
1 LP-11
1 TEE-16
1 REM-03
1 LA-120

Total Number of Links? 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

-Host Application~

This host viii use DECnet for all uses listed as applicable under
Link Description 6.

39
396

Rost Description

Host Name: ALQ-119 Host Number: 7
Location; Robins AFB
Expected Date On-Line: 1983

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80,37 80 HASP 327 1,SNA? NO
Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
4 VT-100 9600 baud

Other Peripherals:
Number Type

1 DR-11
1 LP-11
1 TEE-16
1 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 Z

Host Application-

This host will use DECnet for all uses listed as applicable under
Link Description 7.

397

Host fseription

Host Name: ALR-69 Host Number: 8
Location: Robins AFB
Expected Date On-Line: Jan 1982

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80.37 80,HASP,327 1,S A? NO
Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
4 VT-100 9600 baud

Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 LP-11
1 TEE-16
2 REM-03

Total Number of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Exp.-ted CPU Utilization by DECnet: 50 %

Host Application~

This host will use DECnet for all uses listed as a-plicable under
Link Description 8.

398

Host Dascri"tion

Host Name: EWOLS/ECSAS Host Number: 9

Location: Robins AFB
Expected Date On-Line: 15-Jun-81

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal

Other Layered S/W Products:
A/D Scanning? NO
D/A Conversion? NO

Graphics? NO
2780,3780,HASP,3271,SNA? NO

Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes fOS

Terminals: Number Type Speeds
22 VT-100 9600 baud

Other Peripherals:
Number Type

1 LP-11
6 DR-11
1 TEE-16
2 REM-03
1 LA-120

Total Number of Links: I

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

"Host Application-

This Host will use DECnet for all uses listed as applicable under

Link Description 9.

399

Rost Descripti o

Host Name: B-52 Rost Number: 10
Location: Robins AFB
Expected Date On-Line: 1983

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80.37 80.HASP.327 1,SNi? NO
Other Interrupt Intensive S/W? NO

CPU: PDP-11/34 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
2 VT-100 9600 baud

Other Peripherals:
Number Type
1 DR-11
1 LP-11
1 TJE-16
1 RJM-02
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 Z

"Host Application-

This host will use DECnet for all uses listed as applicable under
Link Description 10.

400

Was~ b"D.seript n

Host Name: ALR-62 Host Number: 11
Location: Robins AFB
Expected Date On-Line: Dec 1981

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/V Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780.HASP.3271,SNA? NO
Other Interrupt Intensive S/W? NO

CPU: VAX-11/780 Main Memory: 1024 K bytes MO

Terminals: Number Type Speeds
6 VT-100 9600 baud

Other Peripherals:
Number Type
1 DR-11
1 LP-11
1 TEE-16
1 REH-03
1 LA-120

Total Number of Links: I

Total Throughput: (Bits/Second)
IN OUT

Avert.ge: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 2

-Host Application-

This host vill use DECnet for all uses listed as applicable under
Link Description 11.

401

last Doserilfpn

Host Name: ALR-46 Rost Number: 12
Location: Robins AFB
Expected Date On-Line: Feb 1982

Operating System: VMS DECuet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? YES
27 80.37 80 ,HASP.3 271 ,sNA? NO
Other Interrupt Intensive S/W? NO

Terminals: Number Type Speeds
6 VT-100 9600 baud
2 VT-125 %00 baud
I TE-4027 9600 baud

Other Peripherals:
Number Type

I DR-11
1 LP-11
I TEE-16
2 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 X 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

"Host Application-

This host vill use DECnet for all uses listed as applicable under
Link Description 12.

402

Rnat fl..eritiot

Host Name: FLTS Host Number: 13
Location: Robins APB
Expected Date On-Line: Sept 1982

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80.37 80 .HASP,3 271. SA? NO
Other Interrupt Intensive S/W? NO

CPU: PDP-11/34 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
4 VT-100 9600 baud

Other Peripherals:
Number Type
1 DR-ll
1 LA-120
1 TJE-16
1 RJM-02
1 LP-11

Total Number of Links: 1

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 Z

-Host Application"

This host vill use DECnet for all uses listed as applicable under
Link Description 13.

403

lNOsf D).heripk:ionl

Host Name: ALQ-125 Host Number: 14
Location: Robins AFB
Expected Date On-Line: Nov 1981

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80.37 80 RASP. 3 271. SNA? NO
Other Interrupt Intensive S/W? NO

CPU: PDP-11/34 Main Memory: 1024 K bytes MOS

Terminals: Number Type Speeds
4 VT-100 9600 baud

Other Peripherals:
Number Type

I DR-I
1 IA-120
1 TJE-16
1 RJM-02
1 LP-II

Total Number of Links: 1

Total Throughput: (Bits/Second)
iN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

"Host Application-

This host will use DECnet for all uses listed as applicable under
Link Description 14.

4
404

I _.__ _ _ _ _ _ _ _ _ _ - -

Nad. serition

Node Name: First Floor Node Node Number: 1
Location: Robins AFB
Expected Date On-Line: 1983

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics NO
27 80.3780.RASP,3271 .SNA? NO
Other Interrupt Intensive S/W? NO

CPU: PDP-11/70 Main Memory: 2048 K bytes MOS

Terminals: Number Type Speeds
2 VT-100 9600 baud

Other Peripherals:
Number Type

1 DR-11
1 LA-120
1 LP-11
3 RWM-02

Total Number of Links: 3

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 100 %

"Node Application-

This node vill use DECnet for all uses listed as applicable under
Link Description 15. plus act as an EWNET Routing node.

405

Nod. boieri tion

Node Name: Second Floor Node Node Number: 2
Location: Robins AFB
Expected Date On-Line: 1983

Operating System: RSX-llM DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80,37 80,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO

CPU: PDP-11/70 Main Memory: 2048 K bytes MOS

Terminals: Number Type Speeds
2 VT-100 %00 baud

Other Peripherals:
Number Type

1 DR-11
1 LA-120
I LP-11
3 RWM-03

Total Number of Links: 3

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 100 Z

"Node Application-

This node will use DECnet for all uses listed as applicable under
Link Description 15, plus act as an EMET Routing node.

406

Nno. Doeription

Node Name: Third Floor Node Node Number: 3
Location: Robins AFB
Expected Date On-Line: 1983

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/V Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80.37 80 RASP,3 271 ,SNA? NO
Other Interrupt Intensive S/W? NO

CPU: PDP-11/70 Main Memory: 2048 K bytes MOS

Terminals: Number Type Speeds
2 VT-100 %00 baud

Other Peripherals:
Number Type
1 DR-11
I LA-120
1 LP-11
3 RWM-03

Total Number of Links: 3

Total Throughput: (Bits/Second)
IN OUT

Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 100 %

Node Application-

This node will use DECuet for all uses listed as applicable under
Link Description 15. plus act as an EWNET Routing node.

S~ 407

Pagipheral Demcription (Ref. 3:18-20)

VT-100 = Standard CRT with Advance Video
VT-125 - Graphics CRT
TE.-4O27 = Graphics CRT
LA-120 : 180 Character Hard-Copy Terminal
RJM-02 - 67 N byte Freestanding Disc, Controller, and Drive

PDP-11/34
RWM-03 - 67 M byte Freestanding Disc, Controller, and Drive

PDP-11/70
REM-03 - 67 M byte Freestanding Disc, Controller, and Drive

VAX-11/780
TEE-16 - 800/1600 BPI. 45 IPS, 9 Track }ag Tape Controller and

Drive. VAX-11/780
TJE-16 - 800/1600 BPI, 45 IFS. 9 Track Mag Tape Controller and

Drive. PDP-11/70 and PDP-11/34
LP-I - 600 LPM Line Printer
DR-I - DMA Unibus Interface

Lt

408

IA_

Mr. Robert H. Stokes was born on November 2, 1948. in Athens.
Tennessee. In 1967. he graduated from McMinn Central High School in
Englevood. Tennessee. He served with the United States Air Force as a
communications specialist in Europe and was honorably discharged in
1972. He attended the Tennessee Technology University from which he
received a Bachelor of Science in Electrical Engineering degree in 1975.
Following graduation, he accepted employment with the Electronic Warfare
Division of the United States Air Force as a civilian electronic
engineer working on the F-15 and F-4E Tactical Electronic Warfare
Systems. Between June 1977. and December 1978. he attended Georgia
College and in December of 1978. he received a Master of Science in
Adminstration degree. He entered the Air Force Institute of T~chnology
in June 1980.

Perminate address: Highway 411. South
Etowah, Tennessee 37331

409

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data entered),

REPORT DOCUMENTATION PAGE READ INSTRUCINONS
1. REPORT NUM9ER 2. GOVT ACCESSION NO, 3-R.ECIPIENT;S CATALOG NUMBER

AFIT/GCS/EE/81D-16 _.e
4. TITLE (and Subtitle) TYPE OF REPORT I PERIOD COVERED

DESIGN OF A LOCAL COMPUTER NETWORK
FOR THE ROBINS AFB MS Thesis
ELECTRONIC WARFARE DIVISION 6. PERFORMING OG. REPORT NUMBER

ENGINEERING BRANCH LABORATORY
7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Robert H. Stokes, Civ, USAF
S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS
Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, OH 45433

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

December 1981
Air Force Institute of Technology (AFIT/EN) 13. NUMBER OF PAGES
Wright-Patterson AFB, OH 45433 423

14. MONITORING AGENCY NAME & AODRESS(t different from Controtling Office) IS. SECURITY CLASS. (of this report)

1So. DECLASSIFICATIONi DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

I. SUPPLEMENTARY NOTES Dean for ' osearch anc

Approved for public release; IA9 0-n LO-17 Professional Develop -ent
. " Air Force Institute of Technolog- (ATC)

8 'SEP 1982 Direr ae-Puu. ic- A~fairs Wright-Patterson AFB, Ok 454

IS. KEY WORDS (Conetinue an reverse side It necessrp ed Identify by block number)

Local Computer Network
X.25 Protocol
Computer Interfaces
DECNET Protocol

20. ABSTRACT (Contlnue on reverse side Ii nocea.y amd Identify by block number)

See reverse

OD 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Doest Fe(..d)

Continuation of Block 20

A local computer for the Electronic Warfare Division Engineering Branch

Laboratory was designed around a commercially available and supportable network

configuration. The requirements for this network were specified b!, interviewing

the engineers associated with the Engineering Branch Laboratory and then

translating the functional requirements into a detailed set of hardware and

software system requirements. Structured Analysis was used to produce a

structured specification for application, transport, network, and data link

protocol level requirements. Digital Equipment Corporation's 'DECnet" Phase II

and Phase III network configurations were combined together to form this unique

Electronic Warfare Network (EWNET). The node network uses a loop topology with

la star of up to seven hosts connected to each node. The nodes are implemented

using Digital Equipment Corporation's PDP-I/70 computers. Initially, the net-

work will include fourteen Integrated Support Station computers which are either

Digital VAX-1l/780s or Digital PDP-1I/34s. These computers will be connected to

the nodes using duplex fibier optic links supporting transmission rates up to

1 Mbs. The Phase II DECnet protocol was selected to provide the file transfer

and data transport protocols in conjunction with a basic routinq algorithm at

each host, while the Phase III DECnet protocol was selected to provioe these

functions at a higher level in the nodes. The selection of the above topology

in conjunction with the d'scribed protocol structure keeps any one host from

degrading the network if the host should fail. All Integrated Support Station

common off-line functions, common databases, and commonly used support software

tools are hosted on the node computer for easy, universal access, allowing for

a degree of standardization.

.. CLASIFITT O
SECiRITY CLASS1FICAT|0% OF T--e PAGE

"t '
4

e
" Data Entered)

