AD-A119 253 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO-~ETC F/G 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELEC e
. DEC 81 R H STOKES ECTRONI=-ETC (L)
UNCLASSIFIED AFIT/GCS/EE/81D=16

AFIT/GCS/EE/81D-16

DESIGN OF A LOCAL COMPUTER NETWORK 4
FOK THE ROBINS AFB)
ELECTRONIC WARFARE DIVISION
ENGINEERING BRANCH LABORATORY

THESIS e
AIT/GCS/EE/815-16 Robert H. Stokes AR s T L
CIV USAF s .

R

Approved for public release; distribution unlimited,

AFIT/GCS/EE/81D-16

DESIGN OF A LOCAL COMPUTER NETWORK
FOR THE ROBINS AFB
ELECTRONIC WARFARE DIVISION !

ENGINEERING BRANCH LABORATORY

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University .

) ;
in Partial Fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering '

by

Robert H. Stokes, BSEE, MSA
CIvV USAF
Graduate Electrical Engineering

December 1981

Approved for public release; distribution unlimited.

N . P TSI S TENL Ot o e @ b oo g sl [T WPV

-

Preface

This work presents a design of a local computer mnetwork .Jor the
Electronic Warfare Division Engineering Branch Laboratory which I hope
will provide an engineering tool that wiil significantly reduce tne ill
effects caused by the reduced engineering manning levels currently
existing within the branch, The design is based upon techniques
developed by Tom DeMarco, and a network protocol model developed by the
International Standards Organization., I gratefully acknowledge the part
the above individual's and organization's techniques played in making my

task simpler,

I would like to express my appreciation to Mr, Fred Massey and Mr,
Steven Jones for their help in obtaining extenmsive documentation on the
Digital Equipment Corporation'’s network, DECnet, Phase II and Phase III
configurations at no cost to the govermment nor myself. I wish to thank
Dr. Gary Lamont and Major Walter Seward whose leadership as my research
advisors aftorted me valuable guidance and encouragement. Also, I thank
my reader, Captain James Moore for his constructive comments which
helped to improve the clarity of this thesis. 1In addition, I am
indebted to Mr, Joe Black and all the system lead engineers whom I
interviewed to determine the requirements of the Engineering Branch

Laboratory for a local computer network.

Finally, I wish to express my loving appreciation to my wife and
family whose 1love and understanding endured through this graduate

program, Robert H. Stokes

Contents
) Page

PrefaCCooonoo.!cloooc-o.oott.n.ooo.co.nc..ooto.c..-.cc.cocaooooo ii

List of Figures...........n........-.....-...................... vi
List of Tables....'......‘..‘............'....‘.....'...'....... vii

List of Acronyms and AbbreviationS.sesscecceccecescccceccescsnae viii
Ab‘tract..........l'.l‘II..ll'..'.I..'l..l.....‘.l.l.l.'.......l x

I. Introduction.......-.-...--...---..-.-..-..........--.-.... 1

Historical PerSpective........--...-...-.....-....-..-..
Background............-........-...-.............-......
Integrated Support StatioNicesceseccescosssccsssctsscancne
Objectlve of this Investigation....-..-......-...o......
Approach....---........--..............................-

Overview of the Thesis.....-................-....-.-....

o N

II. EWNET Functional Requirements.............-.......--..-... 13

. IntroductioMeseccesessecesssesscsassvosscascscscsveasorsesansene 13
Backgronnd........-.é....-.....o-..-........--..-....... 13

User Survey.....................-....................... 14

PIOjected Uses of EWNET eeeececocncsccncnoscccacssasnsncanse 16

User-Oriented Functional RequirementS.cicecescascsscssssse 18

Design‘Oriented Functional Requireﬂents'oo.coc-ccoac-.-o 23

Additional Functional Requirements..-----ottcn---c'n-o-n 26

Constraints on EWNET ceeevoosconsossansssancascanscosscncasne 26

s‘mar‘yl..........'C.........I....’l.'....l.........'..l 28

III. EWNET System Requirements..-.-.......-....-.-.....-....... 30

IntroductioNecececseessscsscoceoncsaseccsscsasscsscsesssase 30
System Hardware ConstraintSecescscecscssscsaccccscecsses 31

Topology............l.‘..'.‘........."............ 31
nost cmputers............'.‘............'......... 31
Nod@Beeesesseesssnnsscossncsaceaccccccssnansnsnnsns 32

Transmission MediuMesecececsonesveccscsvscscsoscsscee 33

Software specification Tools............c...-.........-. 33

;»
, iii

-
N o

IntroductioNecesescsesescscsoscsscsscossssessacnsnas
Structured Analysisooo-a.-oo.oon-c.c-o-ooco-oo-ooco

Ptotocol Hieratchies...........‘.l.l.l..................

IntroductioNececcoesssastcessecesosccsossscscsncccas
Physical Layeroooocooooot.no--acouo.oo-c--oooocooo.
Data Link Layer....-.........-.--o.................
Network Layer.........---..............-.-.....-.-.
Transport Layer............-.-.........-..-...--..-
Session Layer.-...-.-cooqo'oooe--ococo.ucocono-o-o.
Presentation Layer...........-.........-...........
Application Layer......-.....-.................-...

Structured Specification of the Protocol Requirements...

Context Diagram.............-.............-.......-
System Diagramnoono'otootaco.o--ocoo-ooc.-o.a---no.
Help User RequirementS--u..-.---.......-...-.-.....
Architecture Level Protocol RequirementS..sesecccees
Transport Level Protocol RequirementS.cseececccesece
Network Level Protocol RequirementSceceecccscaccccacs
Routing Alogrithm Requirements....,...--..-....-...
Data Link Level Protocol RequirementS.cceccescescoe
Phys? -al Level Protocol RequirementS..ececcscesanss

smry..............l'.lt.......OCOQOIIOC...ul.l..ll'l.
Iv. Design of EWNET....I.....CIl.."l..l.....'...l.....Cﬂ""l

IntroductioNeecssecessacesossssassacosccassssssssscssnsos
Hardware Design....-o.---..--...............o...........

TOPOIOEY....-oo--ouo-ooco-.coc-oo--ccooooocco.-.oo-
Eoets...............'....'......‘..................
Nodel....-....-..o-...................-............

Tranmission Hedium.....'.........ll.‘..l.ll......'

software Desisnl..l...I..l'l'..l...............'.......l

Page
33
34

37

37
39
39
39
39
39
39
40

40

81

81
81

i

Introduction...--..............-......-....-.......

DECNET ceeeeosastotancsscncescscasscsccsscacosssssss
DECNET Phase Ileeaessecssaceccesscsnacecsscosssscssse
DECNET Phase 0 0
EWNET Delign........o.---......-....-.....ou.......
Summary.....--...........-................-.........--..
Conclusions and Recommendations.....-.-...-.-.........-...
Conclusions..--.--..-....-...-.-......-.--..............
RecommendationsS,.ceeeseseocscasescoccosssccscocsanssoscacanse
Bibllography..........a................--...-..a-...............
Appendix A: User Sutvey Results..,........-..........-.-...-...
Appendix B: Electronic Warfare Engineering Branch
Laboratory Floor Layout DiagramS,.eeceesccesccnscses
Appendix C: Structured Specification...-...-....-....-.-.......

Appendix D: EWNET Design Profile...............a.c.....-...-...

Vita._ B AR R RN RN R R A RENE R A RN ENERRRRRNNNNENNNNNNENNENE ERNERENRNNN NN NENYN)

%

102
102
104
106

108

128
134
368

409

Li ¢ Fi

Figure

1 SISS Functional block diagrameecececesceaccecascssssscscnscasas
2 DFD ComponentBeessssesssccesacssssosasocssorssacsssssscssasnsans
3 IS0 0SI Network Architecture Model.seesecscesescsasaccssasae
4 Context DiagraMecececeaceccsscscsssrescessrscossssssascssasacss
5 EWNET Overview (Network Operation System) DFDecesceceaccaens
6 Execute EWNET Protocol at Primary Node (1.0) DFDueececconses
7 Execute Help Commands (1.2) DFDececcccccccsncasoosconnonnese
8 EWNET (Architecture) Overview DFDeececccececscocssscoscsocss
9 Execute Architecture Protocol at Primary Node (1.0) DFD.....
10 EWNET (Transport/Network) Overview DFDececececccccesscacoases
11 Execute Tramsport Protocol at Primary Node (1.0) DFD.ecevcsss
12 Execute Network Protocol at Primary Node (2.0) DFDivecsasces
13 EWNET (HDLC) Overview DFD.ecececrececcsccscnnsasocscssasnnnas
14 Execute HDLC Protocol at Primary Node (1.0) DFDusececvocsans
15 Basic EWNET TOPOlOgYeseceoec-saacascacessssacasnccsacnansana
16 Initial EWNET ConfiguratioN.ceecesecceccececccoeronscesrancona
17 EWNET Protocol Buildingeeecssocsccecscecscsscsscsscncancosaca
18 Host-to-Node / Node-to-Host Data FlOWesescssavosceassscssaacs
19 Node-to-Node Data FloWeeesoessssescscsscetecscsnssscranscacs
20 Host-to-Host Data FloWesesscosescocessscovacccascassesscsancs

vi

Page

35
38
41
44
45
47

54
60
64
638
72
77
82
87

90

98

99

List of Tagbles

Table

1 Projected uses of EWNET.ceeeosccocsorsassssscassccasscassaass
2 User-Oriented Functional RequirementS.ccescecscsssccscsccaces
3 Design-Oriented Functional RequirementS8..ecececeescccsssacas
4 ProtoCol LayerSecescceccccscascccscsesscssscsssasscsscveacss
5 Network Operating System Process Hierarchy..ceeseecesscecsccss
6 Architecture Level Protocol Process Hierarchy.eeeceveeesasoss
7 Transport Level Protocol Process Hierarchy.eeesesececescecascs
8 Network Level Protocol Process Hierarchy.ceusecesccesavesacs
9 Data Link Level Protocol Process Hierarchyeeeeseeocssacescsces

Page
19
24
26
42
42
48
56
66

73

ACK

ADD

AFLC

ARC

ARPANET

ATS

BPS

CCITT

DEC

DECNET

DFD

DNA

ECF

ECSAS

ELINT

EMI

EOF

EOS

EWNET
EWOLS
HOL
ISso

188

List of I | AD .

Acknowledge

Address

Air Force lLogistic Coumand

Area Reprogrammable Capability

Advanced Research Projects Agency Network
Advanced Threat Simulator

Bytes per Second

International Telephone and Telegraph Consultative Committee
Digital Equipment Corporation

Digital Equipment Corporation Network
Data Flow Diagram

Digital Network Architecture

Execute Command File

Electronic Countermeasures Signal Analysis System
Electronic Intelligence Gathering
Electromagnetic Interference

End of File

End of Stream

Erase

Electronic Warfare

Electronic Warfare Network

Electronic Warfare Open Loop Simulator
Higher Order Language

International Standards Organization

Integrated Support Station

viii

1Y

MIBF

MIR

MITR

NAK

OFP

0s1
PACKETNETS
RF

.RWR

SCF

SISS

SISS SPEC
SISS STUDY
SNA

STG

TEWS

UNIVAC-1108

WR-ALC

kilo
mega

Mean-Time-Between~-Failure
Mean-Time-To-Restore
Mean-Time~To-Repair

Negative Acknowledge

Operational Flight Program

Open Systems Interconnection
Public Packet Switching Networks
Radio Frequency

Radar Warning Receiver

Submit to Command File

Standard Integrated Support Station

Standardized Integration Support Station Sys. Spec.

Standardized Integration Support Station Sys. Study

IBM's Systems Network Architecture
Standard Threat Generator

Tactical Electronic Wartare System

Electronic Warfare Installation Host Computer

Warner Robins Air Logistic Center

ix

AFIT/GCS/EE/81D-16

N Abstract
N
/JA local computer for the Electronic Warfare Division Engineering
Branch Laboratory was designed around a commerically available and
supportable network configuration. The requirements for this network
were specified by interviewing the engineers associated with the

Engineering Branch Laboratory and then translating the functional

requirements into a detailed set of hardware and software system

Fr

requirements. Structured Analysis was used to produce a structured
specification for application, transport, network, and data 1link
protocol level requirements.<\Digital Equipment Corporation's 'DECnet’
3 Phase II and Phase III network configurations were combined together to
form this unique Electronic Warfare Network (EWNET). The node network .
. uses a loop topology with a star of up to seven hosts connected to each
node. The nodes are implemented using Digital Equipment Corporation's
PDP-11/70 computers. Initially, the network will include fourteen
Integrated Support Station computers which are either Digital
VAX-11/7808 or Digital PDP-11/34s. These computers will be connected to
the nodes using duplex fiber optic links supporting transmission rates
up to 1 Mbs., The Phase 1I DECnet protocol was selected to provide the .
file transfer and data transport protocols in conjunction with a basic
routing algorithm at each host, while the Phase III DECnet protocol was !
selected to provide these functions at a higher level in the nodes. The

selection of the above topology in conjunction with the described)

protocol structure keeps any one host from degrading the network if the
host should fail.. All Integrated Support Station common oft-line
functions, common databases, and commonly used support software tools
are hosted on the node cQ?puter for easy, universal access, allowing for

a degree of standardization,

xi

T Ty, 33 R it o

‘E.

& Wy

The purpose of this thesis investigation was to design a local

computer network for the Warner Robins Air Logistics Center (WR-ALC)
Electronic Warfare Division Engineering Branch. This network, named the
Electronic Warfare Network (EWNET), was first proposed in 1980, when the
numder of Integrated Support Stations in the Engineering Branch had
grown to nine. At this time, there were insufficient peripheral devices
plus engineering expertise to completely support existing and future
electronic warfare (EW) efforts. Local networks were becoming
invaluable aids to organizations and corporations similar in structure
to the EW Division. This was due to a desire to increase information
processing power without additional computers. Also, corporations were
finding that the shortage of electronic and software engineers was
causing project non~su§port to result since multi-system expertise
amoung existing engineers was becoming next to impossible to obtain.
Interest in both of the above areas plus the potential cost savings,
provided the impetus for the development of a local computer network for

the WR-ALC EW Division.

i ical P .

For the past decade, the field of Data Communications has been

rapidly changing, with important innovations emerging all the time. One

B

[
!
}
!

y 2R WY
)

s

recent development of wide ranging signiticance is the introduction of
several new techniques for short distance high speed local computer
networks. By definition, a local network is a data communication system
designed to interconmect computers and terminals over a restricted
geographical area, typically less than 2-kilometers in diameter (Ref.

4:18). A number of implications follow from this definition.

At a technical level, the problems involved in designing local
networks are not very different from those relating to long distance
networks such as the Advanced Research Projects Agency Network
(ARPANET) . However, the parameters are different. Since communication
is required only over a local region, the following observations can be

made.

-~ A more expensive communication medium, in terms of cost per
meter, can be used in a local network because the total cost of the
medium is likely to be small compared to installation and other

hardware and software costs,

-- Since a more expensive communication medium can be used, a
more powerful medium is possible, especially in terms of speed and
error performance. Thus the communication network and communication
medium represent 1less of a bottleneck to the system as compared to

geographical (global) networks.

-~ Since the communication network and transmission mediums are
no longer bottlenecks, transmission rates are higher, Delivery

rates and maximum delivery delays become shorter. The increased

bandwidth and shorter transmission distance of the communication
medium causes error rates to be reduced. Also, the short
transmission distance reduces the cost associated with

interconnecting terminal and computer equipment,

-- Since wide bandwidth mediums are cost eftective for use with
local networks, greater use of broadcast or multi-address
communications is possible. The wide bandwidth medium alleviates
the problem of channel contention where two or more transmitting

terminals overlap on the same channel (clash).

-- Local interface hardware and communication protocols can be
considerably simplified because there is no need to optimize
available communications bandwidth, since the inherent traffic
handling capacity of the network is so much greater than in a global

network.

-- The cost of interconnecting a device to a local network can
be reduced by the procedures of simplification (no longer need

central switching or control systems) and standardization,

Only recently have local networks been used extensively, therefore
no standardization exists., One of the most attractive possibilities for
standardization is the problem of a standard interface and associated
protocol, For example, the X.25 Protocol, which defines the interface

of a computer to a packet-switching network, has just recently become a

standard (Ref. 8:108). Additionally, one of the most often ignored

| S,

B

)

rm-v-r-m- Ve

problems when considering the design of a local network is the number of
levels of function-oriented protocols necessary to accomplish useful
work on the network. In order to be useful the ;ocal network must
support some form of data transport protocol, file transfer protocol,
and virtual terminal protocol, These protocols are necessary so that a
computer which was designed with one data and file format, and with a
particular terminal type in mind, can transfer data and files to other
computers in other formats, and accept information from foreign terminal

types (Ref. 4:26).

Finally, no standard local computer network exists. In the past,
most local computer networks available commercially were developed by a
firm to support their own systems, Foreign device interfacing was
accomplished through the development of an emulator to make the foreign
device appear at the interface as one of the manufacturer's own devices.
IBM's System Network Architecture (SNA) and the Digital Equipment
Corporation's Network (DECNET) are both examples of this type of network

(Ref. 1:3).

Recently developed by Xerox Corporation, the ETHERNET network
concept, utilizing contention-allocation mechanisms (packet collision
detection) and data packets on a logical channel, can interface a

hetergeneous set of computers together (Ref. 5:78).

Thus local computer networks have evolved from long-distance
networks to meet the needs of a local organization requiring internal

control of their own systems. The local network offers advantages not

T R WL L o

accessable to organizations in the past. Even though problems still

exists, several existing systems such as DECNET, SNA, and ETHERNET have
come a long way in providing a standard design. So it is from this
viewpoint that the development of EWNET took place. The following
sections give additional definitions and background necessary to

understand the EWNET design decisions.

Background

This investigation follows two studies performed by the Georgia
Institute of Technology Engineering Experiment Station Systems
Engineering Laboratory (Ref., 2,3). The Standardized Integration
Support Station System Study (SISS Study) was the final standardization
report which identified the need for the EWNET (Ref. 2:8-13). The
Standardized Integeration Support Station System Specification (SISS
Spec) was the final system specification that resulted in several
general theoretical concepts upon which the network design was based

(Ref. 3:41-43),

Both documents cover the EWNET in limited detail and essentially
state a reason for the network followed by a possible configuration.
The configuration presented in the SISS System Specification is based on
the author's personal preference and not on an actual study of the
Engineering Branch requirements., Therefore, additional work was
required before a design for EWNET could be developed and implemented in

the Engineering Branch Laboratory.

E T

L

Iptegrated Support Station

To correctly design a local computer network, the functions to be
supported by the network must be understood in context with the existing

support equipment,

Integrated Support Stations (ISS) are systems that support the
efforts required to provide software reprogramming and hardware update
prototyping for electromic warfare (EW) systems. An ISS 1s not used to

repair or test the numerous fielded EW systems of a given type.

An ISS is divided into two major parts. For convenience, these two
parts will be referred to as the ISS Development System and the ISS
Control System., One system controls the testing of an operational EW
system modified for laboratory use (Hot Mock-up). The other major
system supports the development of the software for the EW system. A

functional block diagram is shown in Figure 1 on page 8.

The ISS Development System supports reprogramming development for
the EW system Operational Flight Program (OFP) software. The facilities
provided for development include facilities to prepare OFP scftware for
the EW system and computers in the ISS, to support distribution of OFP
software to the field, to prepare test procedures for the EW system, and

to analyze results of EW system tests.

The ISS Control System provides supervisory control of the ISS,
automatic execution of EW system test including stimulus of the EW

system Hot Mock-up and response measurement system, an automatic test

and calibration of ISS stimulus and measurement equipment, and

communication facilities in the ISS and to the network of all ISSes and

other computers.

Each ISS interfaces with the Advanced Threat Simulator (ATS) and
the Electronic Warfare Open Loop Simulator (EWOLS) and the Electromnic
Countermeasures Signal Analysis System (ECSAS) for the purpose of
performing large scale tests of the supported EW system. The EWOLS or
ATS and ECSAS combination is a dense radio frequency (RF) signal

enviroment and analyzer, respectively (Ref. 3:4).

Each ISS has the capability to operate independent of the IS8
network and any common large scale computer. Therefore, an ISS is a
support station that is built around an advanced state-of-the-art
minicomputer with special internal interfaces to the Hot Mock-up to

control and monitor OFP software and flight hardware operation.

obiecti £ This I N

The objective of this investigation was to specity the design of
the EWNET in “sufficient” detail to obtain a network design that met the
Engineering Branch baseline need of a local resource sharing network
that is highly reliable, through built~in redundancy, and contains a
minimal amount of one-of-a~kind techmology. To arrive at this baseline

design, the following steps were followed:

1. Survey of user needs and requirements.

—r—————— e s o
~ - I L A A N . . e ol _
P
}
weadeq yoo1g [pUOT}OdUNG SSIS T 2undiy A
£
Sioms “ !
QR - _ &
SVSO)Y S1y .M
|
..
LUOL R L) ‘ i
i
"
R
\
duip(atd [t
aaEm] joy oINS Y dn-yoon ol snineis _
§818 wojshs M3 h
p— | P -
s1shjeay s . ' .
1591-1804 N !
t ¢ © |
, |
D— uoypjsaedasy
] bag i an; ynoaxa “
yEaY 1] 1890 - .
saosp T N 3 4_
duraeys-amyy — | 1
8818 Juamdo gasag ~ 183
r LYFLIEY a ui-jjing _
" !
. |
yawdoyanag [Jos (agadng |
3Jq8n] jog 3 SS1S i
$S18 _
{
{
Juomdajanag '
aqem)jug m
Jd40 st 01 .
swasAs Jusmdo|eaag smoy8ks joajun) _.
i

;'-‘l..'iiiiiii"'liiiilllll-r-— ———. '!!=llllll==5:;~~~ **‘“iiiillIIIIIIIIIIII.IIUF——'-|1!

2, Determination of user functional requirements.

’ 3. Translation of functional requirements into a system

specification through the use of Structured Analysis techniques

(Ref. 9:55-165). q
4, Development of the hardware design

5. Specification of the necessary protocol within a P

commercially available system software design and i

6. Evaluation of the Electronic Engineering Branch Laboratory

Host processor (UNIVAC-1108) off-line functions to determine if the 3

ek

functions can reside within the EWNET configurationm.

Approach .

The following approach was used in the design of EWNET. First, a
top-d¢wn development of the design was chosen. This allowed the design

to first address those levels closest to the user, thereby insuring that {

the design would be consistent with the user's requirements. Then the
lower levels of the design were developed to support the requirements of

the next higher levels.

Due to the size of the development effort, structured analysis and
design techniques were used in the approach to provide clear written
specifications and diagrams. Structured analysis and design techniques |

N

were chosen over other techniques since they provide unambiguous

[PEOTS

T e Tl e .

e

F X
v 14

kT -

information about a large design to those implementing it.

The first phase of the investigation consisted of researching the
literature and gaining a working knowledge of computer networks,
protocols, hardware interfaces, and the capabilities of the Engineering

Branch Laboratory ISSes.

Once a sufficient background had been obtained, a wuser interview
was designed and the ISS system lead engineers were interviewed. From
these interviews, a set of projected uses and functional requirements

were compiled and used to determine the system requirements.

The system requirements consist of both hardware requirements for
the topology, hosts, nodes, and transmission mediums, as well as
software requirements. Structured analysis was used to document the
software requirements (Ref. 9). Data flow diagrams and a data

dictionary were used to generate the structured specification.

The system requirements were then used to develop a hardware design
and a software design through the study and refinement of an existing
commerically available network configuration. The final stage of the
investigation included an evaluation of the Engineering Branch
UNIVAC-1108 functions (off-line support, backup, and databases) and the
resulting decisiom to delete the Branch requirement to perform the
UNIVAC-1108 functions on the UNIVAC-1108 computer, 1Instead, these
off-line functions will, in the future, be performed by the EWNET node

computers,

10

L

Overview of the Thesis

The structure of the thesis basically follows the approach that was

taken in the investigation.

Chapter II contains an analysis of the EWNET functional
requirements, Appendix A provides the supporting information including
the compilation of the results of the user interviews, ISS systems to be
supported by EWNET, a list of those interviewed, and their respective

areas of expertise.

Chapter III translates the functional requirements into hardware
and sottware requirements. Structured analysis is defined and data flow
diagrams are used throughout the chapter to support the written
description of the software requirements. Appendix B contains the floor
layouts of the location of the EW systems to be supported by EWNET with
tentative locations identified for the EWNET node computers. The
Georgia Institute of Technology proposed topology diagrams are included
in Appendix B to further clarify the £floor layouts (Ref. 2:10).
Appendix C contains the complete structured specitication in support of

the software requirements.

Chapter IV describes the design phases of EWNET. The design of the
hardware is specified, including the topology to be employed, the EW
systems to be included in the network, the nodes to be wused in the
network, and the transmission medium to be used., The software design is
described in terms of a commercially available network design. First,

the functional specification and requirements were used to select the

11

best commercially available network from a 1list of three existing
.? designs. Then the selected design was tuned to represent the exact
requirements of EWNET. Additionally, off-line host software was
allocated to the node processors. Finally, Appendix D contains the

actual software and hardware design in the format required by the

selected vendor, so that the Appendix D can be used as the document

necessary to procure the EWNET.

Chapter V summarizes this investigation and gives recommendations

for follow-on research efforts.

1I, EWNET Functional Requiremepts

Intreduction

This chapter specifies the functional requirements of EWNET,
First, the background of the requirements analysis is discussed,
including the reason it is important to conduct a thorough investigation
of the functional requirements. Then the content of the user survey
that was used to help determine the FWNET requirements is described.
Also included in this section is a description of how the survey was
conducted including personal observations about the survey contents.
The next section summarizes the projected uses of EWNET, followed by
sections summarizing user-oriented, design-oriented, and additional

functional requirements. Finally, EWNET comstraints not addressed by

the user survey are discussed.

Background

Possibly the most crucial step in designing a computer network 1is
the specification of the network requirements. Yet, this phase of
development was completely overlooked by both the SISS Study and the
SISS System Specification (Ref. 2,3). While it is possible to specity
many requirements that are generally desirable in a network, using this

approach without additional thought will result in a incomplete_and

inaccurate requirements specitications. This is due to the way local

13

computer networks vary from organization to organization (Ref. 4:18).

This is obvious from the many varied designs that presently exist in
industry. Also, not all requirements for a network have the same
weight, Due to time or money constraints, the network may not be able
to support all requirements. Some requirements add no value to the
network when considered for a particular organization's uses, Finally,
every organization is wunique and would have unique requirements for
'their' network. These unique requirements would be overlooked if we

only considered what is generally desired in a network.

User Survey

A systematic approach was needed to specify the requirements for
EWNET that would tailor it to the requirements of the Engineering Branch

Laboratory. Thus, a four-part user survey was designed.

In the first section, the users were asked what applications could
be served by EWNET from their utilization perspective. To aid the users
being interviewed, twelve common local network applications were listed
which the user could evaluate on a five-point scale from fOF-NO-USE' to
'VERY GOOD'. These applications included peripheral sharing amoung the
computers in the network, file accessing and transfers across the
network, sharing software tools on the network, accessing AUTODIN I,
accessing ARPANET, accessing the UNIVAC-1108 host installation computer,
using digital threat information generated from a central 1location,

monitoring Eglin AFB flight test in real time, doing distributed

14

e i e AN K o 0.1 e o i

processing, managing distributed databases, monitoring Eglin AFB flight
A’ test video, and providing fault tolerance for the EWNET. Finally, this

section asked the users to identify the applications that they felt

should be implemented first and to prioritize the applications in terms

of their personal needs with any related comments.

The second section asked the user to estimate the requirements from
their perspective for six basic network parameters. The user-oriented
parameters were throughput, response time, the user interface, security,
availability of the network, and ISS-to-ISS interaction. Each of the
subsections addressing a parameter had a number of queétions to aid the
user in evaluating the requirement for that parameter. Each user was
then asked to identify any other wuser-oriented parameters that might
influence EWNET's design. Finally, the second section concluded by |
having the user rate each of the six parameters on a five-point scale)

from 'DOES NOT APPLY' to '"MUST HAVE'. 1

The third section asked users to make any other comments that they 4

felt might help specify the requirements of EWNET.

The fourth section asked the general branch management to estimate
the design-oriented functional requirements of EWNET since no single

|
|
network management group existed within the Engineering Branch. Three i

basic network design-oriented parameters were listed. They were

flexibility, performance monitoring, and the availability of a

|

|

|

distributed processing language. As with the user-oriented parameters,)

)

1
each subsection contained a number of questions to help management to \
- <
3 o

4 15

L
i

Mowvw = '

evaluate the parameter. Management was also asked to identify other

design-oriented parameters and conclude the section by rating each of

the three parameters on a five-point scale from 'DOES NOT APPLY' to

'MUST HAVE',

The user's of EWNET were addressed as being the ISS system lead
engineers, section leaders, and the branch chief. The users were sent
the 'EWNET INTERVIEW' survey two weeks prior to the actual interviews
being conducted., This was done to give the users time to develop their

own questions about the survey.

Each user was interviewed for approximately fifty minutes using the
user survey forms sent to them two weeks prior., Personal intervievs
were selected to allow the user to completely understand the survey by
asking direct questions to the interviewer. Also, the interviewer was
able to help the user weigh his answers to the survey questions. The
response to the wuser interviews was excellent and the information
obtained was used to formulate the general requirements specitications

that follow.

Projected Uses of EWNET
The initial uses of EWNET as presented in The Standardized

Integration Support Station System Specification” are as follows (Ref.

1. Threat data access = access by every ISS to the Standard

16

Threat Database hosted on the Electronic Wartare Branch Host

Computer (UNIVAC-1108).

2, Hardware resource sharing = ability to use other ISS's

hardware through the use of the network,

3. Software resource sharing = ability of each ISS to use a

common depository of software tools.

4. Supplemental analysis = The ability of each ISS to perform
off-1line time~consuming supplemental analysis processing

(flight-test data reduction) on the Electronic Warfare Branch host

computer.,

5. Back-up processing = in the event of a complete ISS
computer failure, the ability to continue with EW support through ;
the use of the network and the Electronic Warfare Branch host
computer. Finally, the mnetwork will be used as one of the
instruments to bring about complete standardization of the)

Engineering Branch Laboratory.

The user survey results were used to determine the projected uses
of EWNET. The principal uses that were considered most beneficial were
in the area of resource sharing., Peripheral sharing, file access and !
transfer, software tool sharing, and access to the UNIVAC-1108 were
identified by all users as being of top-priority., Next in potential

benefits was the capability of executing job processes that can run

e

concurrently on different computers (distributed processing) and the

17

.:'lk,

T Y
v

capability to access and maintain distributed databases. Access to
ARPANET and to AUTODIN I through the use of EWNET was completely
rejected because the security of the Engineering Branch allowed no
external (outside immediate building area) gateways to the ISSes.
Access to Eglin AFB flight test data (digital and video) was looked upon
as a very nice capability but noc required for the immediate future due
to the cost incurred in obtaining a dedicated satellite plus encryptiom
and decryption devices, receivers, and transmitters. Access to a remote
digital threat generator was rejected because most ISSes already have a
local capability and those that do not are in the process of developing
this capability. Finally, the network is expected to support critical
functions, therefore, the users perceived that a need would arise for
the network to guarantee uninterrupted service to the ISSes through
redundancy and fault-tolerance. The projected uses of EWNET are

summarized in Table 1.

User-0ci | Fupctional Requi

The user's functional requirements were also obtained from the
survey. The throughput indicated by the users required the data rates
in the network to be a minimum of 1 million bits per second per
transmission link. Data rates between the Host computer and the other
computers in the network should be a minimum of 56,000 bits per second
per transmission link. Usage of the computers in the Engineering Branch
Laboratory will average between 6 to 10 hours per day with peaks of up

to 24 hours a day for all ISSes during ofticial OFP change exercises.

18

r——zw
1
f
[
i
!

SIS T -

—— e

These exercises are staggered

e —n e e W L ST D S P e R e R D e D D S S R P N TR O A e S D D G s W D S G D G W S G -

PROJECTED USE	VERY	GOOD	MEDIUM	LITTLE	NO
	Goop	I	USE	USE	
PERUPMERAL smARTNG 1 5 1 4	2 1 1 1 o				
FILE TRaWsFERS 1 8 1 2	1 1 1 1 1 1				
SOFTWARE TooL SEARING	8	3	1	o	o
AccEss 10 UNTvAC-1108	5	4 1 1 1 1 1 2			
AccEss To ARPANET 1 0 1 0 1 o 1 4 1 8					
accEss To AvTobIN T {1 (1	2 1 o 1 8				
THREAT cENERATOR 1 4 1 5 1 1	3 1 1 1				
FLIGHT TEST MONITOR	2 1 1	3 [3 @ 3			
DISTRIBUTED PROGESSING	2	3	4 1 3 1 o0		
DISTRIBUTED DATABASES	2	3	4	4 1 o	
{vose 11 12 1 3 1 21 & 1					
PAULT ToLERANCE	4 17 1 2 1 o I o				

Table 1 Projected Uses of EWNET (Composite of User Responses)

throughout each year and usually only two thirds of all 1ISSes are

affected. The ISS computers being affected by heavy usage at the

present time are listed below.

1. Harris 6024/4

2., VAX 11/780

19

3. PDP 11/34

4, Modcomp Classic
S. Data General Ellispe S$-230

These ISS computers are the presently used computers. Future
standardization plans (by 1984) require that all ISS host computers
will be one of the wmodels from the Digital Equipment Corporation

line of computers (Ref. 3:17-20).

The response time requirement was, of course, closely tied to the
throughput requirement. The requirement for response time was addressed
for three modes: interactive, file transfers, and echoing user inputs.
In the interactive mode, two to three seconds for 'simple' commands was
congidered to be satisfactory. For file transfers, the response time
was set to five minutes for a 32 Kbyte file. Also, each ISS wiil
require the ability to obtain and verify a copy of the Standard Threat
Database from an installation host computer through the network within
20 minutes. This was considered an acceptable tradeoft between user
requirements and the file accessing capabilities of the computers in the
Engineering Branch Laboratory. The echo response time was given as a
maximum of one-half second. This was to insure that the echos of the
user inputs did not interfere with their entering subsequent data at the
terminal keyboard. All response time requirements seemed consistent
with the results of psychological studies predicting satisfactory levels

of performance for the typical user (Ref. 6:322-323). An additional

requirement on the response time addressed comsistency in the response

times.

Other user interface requirements of equal importance included
error recovery, built-in-test, user 'help' command capabilities, and an
in-house distribution capability so that messages from one ISS to
another could be transmitted point-to-point. Also, a management
distribution capability was recommended. In this case a message would
be sent from someone at an ISS to perhaps a stand-alone terminal located
at a central management pnint., All users stressed the importance of
maintaining ISS independence from the network in case there was a
network-wide failure the individual ISSes could continue to function,
Finally, all users indicated that ISS-to-network accounting data would
be a requirement, especiaily if it would provide them with the number of

times their ISS was being externdally accessed over any given day.

Security was addressed from four perspectives. All users indicated
that 'Secret' data would be running on the network and on the ISSes.
Therefore, the concensus was that the network would require a design to
safeguard the processing of classitied data. The second aspect ‘of
security addressed was the requirement to protect files on the network
from unauthorized access or alteration. It is highly undesirable for
all ISSes to have unlimited access to all classified files without some
means of control and need-to-know establishment for the particular data,
Thus, file access restrictions were found to be a security requirement
for the network. A two element file password to protect this

need-to-know was suggested. And as & matter of security accountabilaty

21

.,-
4

it was suggested that the ISS/network interface accounting package

should record time, destination, and opassword of all <classified
recipients (each access). This would also be of benefit to audits of
ISS classified activity when problems arose. The third aspect of
security was related to the electromagnetic interference (EMI) generated
by the network mediums. All users indicated that fiber optic based
systems should be wused as the network medium, where possible, because
fiber optic based systems are less susceptible to EMI than systems using
traditional metallic connections. The f urth and £inal aspect of
security was access control to the network from outside the Engineering
Branch Laboratory. As discussed before, all users inaicated that such
gateways could not be allowed due to the restrictions placed on the ISS

internal security.

The availability of EWNET was defined to be the percentage of time
that the network provided the capabilities required by a particular user
as compared to the time that it was suppose to provide those
capabilities, This definition resulted in assessments ranging from 50
percent to 100 percent with 100 percent being the answer givem by almost
half of the users. The time periods that the network should be
available were identified as either normal duty hours (0800-1700) or
during times when emergency OFP changes would require duty to extend
beyond normal hours. The 90 percent availability 1level was finally
determined to be acceptable considering the network should be available
90 percent of a 24 hour day, leaving 10 percent of the 24 hour day for

maintenance downtime, This 90 percent availability level represents a

22

| , | j |

reasonable target for the system design,

ISS-to-ISS interaction was considered to be of minimual importance.
Most users felt that ISS-to-ISS interaction within a section (type of
ISS) would be beneficial but that external section interaction would not
be needed. This internal section ISS-to-ISS interaction directly
corresponds to the suggestion that ISS-to-ISS interaction take place

only around a node computer and/or with the installation host computer.

Other user-oriented requirements included a word processor
capability plus central network documentation located on a installation
host computer, A common network command language was also thought to be
important to minimize confusion., A real-time network capability where
one ISS tock complete control of the mnetwork when emergency changes
dictated it was suggested, Finally, for future consideration, a data
link to EW Elint sources, overflow / surge load handling (using another
1SS's terminals to operate your ISS), and selt-configuration through
periodic status checks of the network members were other suggestions
made but were felt to be of 1little immediate importance. Table 2

summarizes the user-oriented functional requirements.

Desigzn-0ri L F ional Requi

The design-oriented functional requirements included flexibility,
performance monitoring, and distributed processing language. The
flexibility requirement was addressed by asking management to describe

how they would see the network changing over the next five years. The

23

> > - - e - = . e e D e D e e - - - = -

| AREA | MUST | VERY | APPLY | MARGIN | NOT |
| | HAVE | APPLY | | APPLY | APPLY |
| TEROUGHPUT 1 3 1 7 1 3 1 o 1 o 1|
| mespowsE TDE 1 3 | 7 1 2 1 1 1 0 I
| USER INTERFACE | 8 1 4 1 2 | o 1 o |
| secoRry (12 1 o0 1 o 1 o 1 o 1
| avAmLaBILITY 1 s 1 & 1 4 1 o0 1 o 1
| 185-To-1ss INTERAGTION | 1 | 2 | 1 1 & | & |

- O L G - h R > P P D = e o e G TR S D TS G S S e YR = S S e G WD P e G R G A S

Table 2 User-Oriented Functional Requirements (Composite of User Responses)

response given by management was that more nodes and ISSes would be
added to the network. Management felt that it was very important for
EWNET to be easily reconfigurable with respect to adding additional
nodes and ISSes. Other changes mentioned included increased use of the
network for management functions, and a transition of the network
workload from predominantly file transfers to more interactive traffic,
All users expressed the concern that the network should start small with
limited capabilities and as new uses are identified as being valuable to
the organization, the changes could be implemented into the network with
minimum effort. Flexibility with respect to the topology. protocols,
and transmission medium was considered to be important only to the
extent of the changes necessary to these areas when additional nodes and

ISSes were added to the network.

The need for some form of performance monitoring capability was

expressed by management, but they felt that the limited knowledge on

24

L2 . antgl

their part would only confuse the matter. Generally, management felt
that accounting data should be available on the network plus node
statistics, a software monitor, and a way to detect network bottlenecks.
The requirement for a performance monitoring node was rejected,
management felt that to protect the network from slowdown that

pertormance monitoring should be done only on a demand basis.

The need for a distributed processing language has been a topic of
much discussion between the Air Force Logistic Command Headquarters and
the Electronic Warfare Branch at Robins AFB. The Embedded Computer
Standardization Program Office established 7 January 1981, as the single
Air Force Office responsible for the acquisition of software tools for
users of computers designed to MIL-STD-1750A (Instruction Set
Architecture) is to provide support to Air Force Logistic Command (AFLC)
to develop a Jovial J-73 compiler for the VAX 11/780 computer. This
office and Jovial J-73 will be used to assist the Air Force in the
transition from currently used higher order languages (HOL) to the
tri-service HOL of the future - ADA (Ref. 7:3). Due to the above,
management feels that all ISS host computers will be required to
implement Jovial J-73, Fortran, and eventually ADA programming languages
on the network host computers, ADA will become the distributed
prncessing language at WR-ALC., Table 3 lists how management ranked each
of the design-oriented functional requirements on a scale from 'DOES NOT

APPLY' to 'MUST HAVE'.

25

g
N
1
]

!
1
|
i

!

.

e P n T T YR T A D SR N R SR e En e G O A e e A e ST G e e e e e S S A e G e W A e

| AREA | MUST | VERY | APPLY | MARGIN | NOT |

	HAVE	APPLY		APPLY	APPLY
PERFORMANCE moRITORING	2	3	4	o	0
pisT, pRocEss Lavcuace 1 2	1 1 6 1 o 1 0o				
Fexmmoy (4 13 1 2 1 o0 1 o					

- - - - - - T . T Y R Y= v e e A Gy SE S G e e e S S G S s S fm = O e —e R G R S e e S

Table 3 Design-Oriented Functional Requirements (Composite of User Responses)

iditional F {onal Requi

The Third section of The user interview was used by wusers and
management alike to list additional requirements for the network. The
ability to find a file in the network that had been sent from one host
to another was felt to be an important requirement. The network being
used for general software development and the network implementation
being started with limited capabilities, planning for future growth,
were two requirements that were well accepted. Requirements such as
being able to initialize the network with an arbitary subset of nodes,
the location and number of nodes, and the number of ISSes per node were
areas where most users had no established opinions. As a final
requirement, management felt that the network access should be protected

through the use of a network password.

Constraints on EWNET
The network described in this thesis will be required to operate

successfully in an enviroment characterized by significant levels and

26

- g

amounts of electromagnetic interference (EMI). All network equipments,
systems, subsystems, and modules shall be able to perform as specitied
within the EMI enviroment while not permitting any performance
degradation or erroneous data and signals to be introduced. MIL-STD-461

should be used as a guidelire.

Additionally, the communication subsystem shall be capable of
reconfiguration to remove and add optional communication links and ISS
subsystems, control of different types of communication interface
hardware, and controlling different types of communication

configurations (Star, Ring, and Bus networks) simultaneously.

The physical layout of the ISSes plus nodes had to be addressed,
Appendix B gives the floor layout diagrams for the Engineering Branch
Laboratory with ISS and node locations identified. The maximum
ISS-to-node separation is 200 feet. The maximum node-to-node separatiom
is 300 feet since the Engineering Branch Laboratory is made up of three
floors of equipment. These figures will hold true in future EW

laboratory expansion efforts.

The des.gn goal for the mnetwork for Meam-Time-To-Restore (MIR)
should be determined. MTIR instead of Mean~Time-To-Repair (MTTR) is used
to indicate a return to an operational state for the network by
replacing major ‘'subsystems of the network. All software must be
thoroughly documented and the hardware should be designed for easy

modular replacement.

27

As & final constraint oan EWNET, network reliability will be
addressed in the design., History generally indicates there is improved
reliability where design goals are established prior to development
versus where reliability is a fallout of the system design. The
following are realistic design goals which address reliability (Ref.

10:15):

1. Failure of a particular node will mot render the network

inoperative.

2, Optional or alternative interconnection paths between nodes
can be established and assured if the primary or direct path is

inoperative.

3. Stored data will be preserved in spite of electrical

failure,

Summaxy

Due to the results obtained through the use of the user survey it
was possible to specify a comprehensive list of functional re&uirements
and estimate their relative importance. The aspects of resource sharing
was the most important use that the users wished to see implemented
first. User-interface and security were considered the most important
user-oriented functional requirements, while flexibility was considered
the most important design-oriented functional requirement. Finally,

EMI, communication subsystem, and physical layout considerations were

28

.

accessed, Appendix A contains a complete compilation of the user survey

results,

Chapter III documents the translation of the general functional
requirements identified by this chapter into more detailed system

specifications,

29

—_——— e - o e DT e W L L M e ot s s iin

S ————

»

Introduction

This chapter translates the gemeral functional requirements
identified in the last chapter into more detailed system specit.cationms.,
The first section of this chapter addresses the system hardware
requirements while the second section specifies the system software
requirements, The hardware system requirements addressed are the
network topologys, the host computers to be included in the network, the
selection of a suitable node computer for the network and the choice of
an appropriate transmission medium for the EWNET communication links,
The system software requirements are specified using DeMarco's
Structured Analysis technique (Ref. 9). A description of the
components of the technique is given and its use is justified. Then,
the structuring technique used to arrive at the proposed protocol
hierarchies is described (Ref. 11:10-21). Using the Structured
Analysis techniques described, the system software requirements are
specified at the defined protocol hierarchic levels. Finally, the

physical protocol specifications are stated.

The requirements specification was actually an iterative process. :
While some of the specifications found in this chapter could be derived
directly from the functional requirements, many actually followed from
design decisions made in the following chapter. These requirements

would then trigger new design decisions which might in turn wodity the

4 30

‘- : o A, a0 s v cadill

e

requirements specification further, What follows is the final results

of this iterative process.

Systen Hardware Constraints

The functional requirements of Chapter II were used to derive the
following detailed specifications of the hardware that was required for
EWNET. This was done by considering how the functional requirements of

the system place constraints on the system hardware. These constraints

were then used to derive the more detailed hardware specitications.

Iopology. The primary requirement for the topology was that the
topology had to be flexible, and must be easy to expand through the
addition of more hosts and nodes. Additionally, since availability was
of major concern, the topology had to contain built-in redundancy which
would not be degraded when one of the host (ISS) computers decided to
drop out of the network (voluntarily or involuntarily). The topology
also must not contain bottlemecks that will limit the throughput on the
network below the stated level or that will increase the response time
to an unacceptable high level due to queueing delays. The response time
requirement may also impact the topology by limiting the number of nodes
between any two host computers since the combined queueing delays may

increase the response time to an unacceptable level.

Host Computers, The requirements for the host (ISS) computers to
be included in EWNET was directly related to their need to access

centrally located databases, their level of standardization, and their

i1

peripheral power. EWNET must meet all standardization requirements

presently defined within the Engineering Branch Laboratory. Therefore,
the level of host computer sophistication and standardization must be as
defined in the Standardized Integration Support Station System
Specification”™ (Ref. 3). Finally, the usefulness of the network would
be enhanced, if those host computers used most often in the Engineering

Branch Laboratory were included in EWNET.

Nodes. The requirements for the nodes in the network also were
addressed, Since the host (ISS) computers must be able to drop out of
the network at anytime without degrading the network capabilities, the
host (ISS) computers can not act as the node computers. Therefore, all
node computers must be individual stand-alone computers that meet all
the standardization requirements defined in the ~Standardized
Integration Support Station System Specification” (Ref. 3). Because
EWNET is to be an off-the-shelf standardized local computer network, all
centrally located databases and backup ISS functions should be hosted on
a Standard Engineering Branch Computer (Ref. 3:16-21). Therefore, it
should be possible to combine the Engineering Branch Installation Host
Computer function with the EWNET Node Computer function, given a
sufficiently sophisticated computer. This implys that the node
computers must be capable of handling lower-level network protocols.
The nodes should contain their own set of peropherals to provide backup
peripheral capability for the ISSes plus to be used when accessing the
node computer directly. Furthermore, the mnode sﬁould have the

capability to collect performance monitoring statistics. Finally, a

32

compiler should be available for the node CPU so that the protocol

oY

software may be written in a higher order language., This would reduce
the magnitude of the implementation effort and enhance the

maintainability of the software.

Irapsmission Medium. There were several system requirements for

the transmission medium. First, it must support the data transmission
rates necessary to meet the throughput and response time requirements.
Second, it must provide reliable communication links to avoid degrading
throughput and response times, Otherwise, if a high percentage of
blocks of data required retransmission then both response time and

throughput would suffer. The same is true when forward error correction

is used and a high degree of redundancy is required (Ref. 12:202-208).
However, the primary constraint on the transmission medium is that it
must provide secure communications in conjunction with a high noise
immunity. Finally, the transmission medium should be easily re-routed

to allow the topology to be reconfigured with network growth.

of Specification Tool

Introduction, While the user surveys provided an excellent tool

for specifying the functional requirements for EWNET, and some of the

more hardware-related system requirements, a techmnique was required to

translate the EWNET functional requirements into system software

requirements, Techniques available for this task included DeMarco's

Structured Analysis Technique, SofTech's Structured Analysis and Design

Technique (SADT), IBM's Hierarchical Input-Process-Output (HIPO)
diagrams, and various problem statement languages (Ref. 9)., DeMarco's
Structured Analysis technique was chosen since it offered several
advantages over the other>methods. But before these advantages can be
understood, it will be necessary to understand the basic components of

the Structured Analysis technique.

Structured Analysis, Structured Analysis is a technique using data

flow diagrams (DFDs) and a data dictionary which uses Structured
English, decision tables, and decision trees to describe the DFDs., The
data flow diagram ia a graphic tool used to depict the logical flow of
data through a program or a system. The basic compoaents of a DFD are :
shown in Figure 2, page 35. The first component is the data flow. It
is a "pipeline” of other data flows and of data elements. The data
elements are the basic data types that car not be partitioned further
and sti1ll retain their meaning. The data flow / elements are identified
as the labeled arrows that connect the circles on the DFDg. The circles
on the DFDs are known as transforms (each identifying a function that
transforms data). Transforms convert input data flows to output data
flows and is the second component of the DFDs. The boxes represent any
mechanism by which informstion enters or leaves the system. Finally, :
files are the last componert and are repositories of information within
the system. They are depicted by stright lines. Access to and response

from a file is depicted by a pair of unlabeled arrows. The arrow to the {

file represents the search argument. The arrow from the file represents

retrieved information or status., The DFDs are layered starting with an ,

34

ik M g e e, ..o

sjuouodwo) (40 ¢ 2and1y

35

uu;::mL
WMy MO|4 eieQ uotjewaogug

oweN
ssa04d

uo fjeuto) ug meN Ko14 EIRQ

aweN Iy

L

overview DFD. The overview DFD is used to show on one page the major
processes required in a system, These processes normally must be broken
down to show the detailed processing requirements within each major
function. To understand the detail of a given process you should refer
to a DFD with the same numerical prefex as the process in question.
Each process on the “parent” diagram is a consolidation of the network
shown on the “child” diagrém. The partitioning of the processes
continues until the data flows entering and leaving a process consist of
only one data element each., At this point, a process description is
written for the process and the process is not expanded into a
lower-level diagram. The process descriptions, data flow and element
descriptions, and file descriptions for all the DFDs are compiled into

the data dictionary.

Using the above “working™ definition of Structured Analysis, it is
now possible to examine the advantages that Structured Analysis offers.
First, it was based upon the concept of partitioning. This facilitates
Top-Down analysis, as major user functions are decomposed into their
subfunctions. Thus, allowing the large and complex EWNET requirements
problem to be approached in an orderly manner rather than causing the
engineer to be overwhelmed by the vast amount of requirements to be
specified., Second, the data dictionary focuses on data flows rather
than on processes, resulting in clearly defined interfaces. Third, the
process definitions could be easily specified using Structured English,
a tool incorporated into Structured Analysis. Fourth, redundancy in the

Structured Specification is eliminated due to the organization

36

R

associated with the DFD / data dictionary combination. This made the

' task of waintaining the specification and changing it much easier.

Fifth, the data flow diagrams were a two-dimensional presentation of the

[requirements, thus presenting the structure in a much clearer manner

than would otherwise be possible using the traditional 1linegr and

| voluminous specification approach. Sixth, Structured Analysis

differentiated between the logical and the physical enviroment, thus 1
allowing the functional software requirements to be specitied without
being concerned about the actual hardware that would execute those

requirements, Finally, it was easier to spot inconsistencies and gaps

in the structured specification and to correct those deficiencies. The

major disadvantage was that it was time comsuming to generate the DFDs.

p 1 Hi b

Introduction, wnow that we have discussed the need for wusing
Structured Analysis in the specification phase, it becomes apparent that
a method would be required whereby the different software protocol
functions could be further layered to facilitate easier implementation.
In keeping with standardization efforts (worldwide), it was decided to

layer the protocols for EWNET using the International Standards

Organization (IS0) model for network protocols (Ref. 11:15-16). The
Reference model of Open Systems Intercomnection (0SI), as ISO calls it,
has seven layers as shown in Figure 3, page 38 (Ref. 11:16). They are

the physical 1layer, the data link layer, the network layer, the

transport layer, the session layer, the presentation layer, and the

37

[PPOW 2dn}0931YDdY HJOMIIN 1S0 0SI ¢ 2dndid

,-—.:2
(RN] v oison
Ve [URYRTATH| ad ’ peorsAy < v 1o sky % CEIET (X]]
[oanjadg e siyg
RN CHIX RUS T _‘Ir - LT L] e — e AU R g 44— ﬂ‘ —1 ¥ Rur) vl 2
[0 JOU4 JOUYDS [RUsa]~ [osojoag Yurp ejeg
yonoe,y Waom)oN et — — ¥ Haom yoN e — > Ndom jaN ‘Iﬁ‘ —1™ HAoM)ON £
0
U A YIOM N L]
Jdussay Jaodsuveayg B XK Jaodsunay v
adesson [TELEIY s — — T T T T TTTiobmyedg Goissag T T T T T — uo1s8ag [
adussan uorEqIIsaL) & e T e eReg T T T T | uorjequasaag 9
Jdusson .
||?u|8§l\ uogyeay jddy - = - .I_ﬂu:dr.ﬂ:ﬂ...un_l_.aq - —— " w0183 |ddy ¢ B
1ing 3o owey aake)
—d

.

application layer.

Physical Laver. This layer is concerned with transmitting raw bits

over a communication channel.

Data Link Laver, The task of the data link layer is to take a raw
transmission facility and transform it into a link that appears free of
transmission errors to the network layer. It accomplishes this task by
breaking the input data wup into data frames, transmitting the frames
sequentially, and processing the acknowledge frames sent back by the

receliver.

Network Layer, This layer determines the chief characteristics of
the host-to-node computer interface, and how packets, the units of

information exchange in layer 3, are routed within the subnet.

Iransport Laver, The basic function of this layer, 1is to accept

data from the session layer, split it up into smaller units, pass these
to the retwork layer, and ensure that the pieces all arrive correctly at

the other end,

Session Laver, The session layer is the user's interface into the
network., It is with this layer that the wuser must negotiate to

establish a connection with a process on another machine.

Presentation Layer. The presentation layer performs functions that

are requested sufficiently often to warrent finding a general solution

for them, rather than letting each user solve the problems.

39

Application Laver, This layer is used to control remote file

access, network access, and to manage any statistical functions on the

network.,

Finally, it should be noted that the session lager, presentation
layer, and the application layer are combined in several different ways
to form one or more high-level protocol layers not discussed here. This

is done depending on the individual system requirements.

S { Specificati ¢ the I] .

Context Diagram. The context data flow diagram shows the system
boundary and interface with the user, From Figure 4, page 41, it can be
seen that the network operating system must include everything between
the user input from a keyboard that is connected to a computer in the
network, to the response that the user receives at his display. Thus
the Network Operating System includes all the computer operating systems
in the network as well as all interface software and hardware required
to implement the network functional requirements, To initialize the
network, a configuration bootstrap process is also required, Table &
shows the layers of protocol that are defined in the set of DFDs that
follow. Table 5 describes the process hierarchy for the first set of

DFDs, the Network Operating System.

40

R

R

ata o

undade i

VX910

uoryeantdy puoy-aomyay

Avydung
Jas()

asundsiay-aasgy

Haom jan Sl omear) 408 -
100y FAYIIMITAZ IO N Haom o
wa) sAG
. o Jrogha
$ureaady prveen - ao5) P !
N 10M)IN ...:u.:

EFTIRE]

41

Table &
Protocol Layers
EWNET IS0 - 081
NETWORK OPERATING SYSTEM = ---v-~escvmcce-a-o- ARCHITECTURE PROTOCOL
------------------ PRESENTATION PROTOCOL
------------------ SESSION PROTOCOL
ARCHITECTURE PROTOCOL (DECNET) --===v=~cccacas--- ARCHITECTURE PROTOCOL
------------------ PRESENTATION PROTOCOL
------------------ SESSION PROTOCOL
TRANSPORT PROTOCOL (DECNET) = <=-==--evecocca—w-- SESSION PROTOCOL
------------------ TRANSPORT PROTOCOL
NETWORK PROTOCOL. = —emecreccncnmnc--- NETWORK PROTOCOL
DATA LINK PROTOCOL (HDLC) = ===c-cccmcaacecao- DATA LINK PROTOCOL
PHYSICAL PROTOCOL (RS-232-C) =—===co-cmcce—aoa-- PHYSICAL PROTOCOL

Table 5---Network Operating System Process Hierarchy

1,0 Execute EWNET Protocol at Primary Node

1.1 Determine Command Type

1.2 Execute Help Commands
1.2.1 Decode Help Command
1.2.2 Provide General Network Info
1.2.3 Provide Procedure for Transferring Files
1.2.4 Provide List of Active Hosts and Devices
1.2.5 Provide Network Startup Procedures

1.2.6 Code Help Responses

1.3 Execute Architecture Level Protocol
1.4 Execute Transport Level Protocol
1.5 Execute Network Level Protocol

1.6 Execute Link Level Protocol

1.7 Execute Physical Level Protocol

42

SRRV . T S JI R

1.8 Decode Protocol Responses

2.0 Execute EWNET Protocol at Secondary Node

System Diagram. The system diagram translates the key functional

requirements into the software requivements for the network operating
system as shown in Figures 5 and 6, pages 44 and 45, First, the user
command must be examined to determine whether it is a help command,
network command, or local command (1.1). If it is a help command, then
the appropriate help information must be output to the user. Depending
upon the Type of help command, this process may require access to the

Dialogue Process Table (1.2),

If the incoming command is a network command, then send it to the

correct protocol level to be implemented. If the command was to

transfer a file, then the Architecture Level Protocol will execute the
command (1.3). Else, if the command is to start or stop the network
then the Transport Level Protocol will execute the command (1.4). Once
the Architecture Level Protocol has been implemented for a file access
or transfer then the file plus the Architecture Protocol Header will be
sent to the Transport Level Protocol (1.4). The Transport Protocel will
determine if the file transfer or initialization request is for a
satellite node or a remote node. If the data is to go to a remote node
then the Transport Protocol Header is added to the packet and it is sent
to the Network Level Protocol for processing (1.5). The Network Level
Protocol adds routing information headers and sends it to the Data Link

Level Protocol (1.6)., Also, if the data to the Transport Level Protocol

43

e

. nmnmen s

(n*0) Wiq (wosAg Buljraadg YIOMIOIN) MBTALAAY JauUMy G sandty

L TNEN 1Y
Auwpuosag

et} ———

Aeyds yg-avyed ado- Kavpuooag

Jado-Adaepuodaeg

SIMOIRg- R tsAd-Burwesu) - Kavpuosag

T N -

spucwao)-anjcasdg-Lrewtag

apoN apoyN
Aaepundas Kavwiag
e jooojoud IV (paojoay
LANNY LaNN3
anoaxy ajpnoaxy

F4 § fonoe - (a1 sKd-Juiwoou | -Ade _,.a

A pds 10~ a0 qedadg-LAaewrag

: -

Jojeaxdg
Aaewyag

44

4

[t 1e} t1) OPON >.L5_:.—Ln_ 1B 1020300 JIUMY aNIdIXY 5} DL:.N_.._
¢ S - (e o Ay -duredng SRR EI-duradyng UERYUR N
13A]
Pt Ay .
EYLIRRTE) e .
anaaxy
apow e 01
Saepuaaoy 8) M- (221K) Tutwooug o aug-yuLg ;,,V
1wosuj /g0 s ;
S o sasuodsoy
fd &m to2030ad B (A5 1(-J0 000
Aw(Q AP0

(LU RLIRN]

45

[ELE Y}
WIOM) IN
3 ndaxy
[|

syayoseg-jandsueai-dutwoou]

1oonjoad
12a07]
ydudsue gy
2)noaxy

sj1agoeg-yaodsueag-duroding

syaan
Danyoaay iyoay

s oed -duwoouy

~auan a0y iyaay-dugod)no

1000 jouay

[ELT Y] spHEew) adhy
2401297 11110V p 100 2an 102 § 103 v 2 SPUTWGN - 40 1€ 1000
2 na9xy o1 eaady-a2an 309} 14aay EUTTREN N}
£ 108 |

purumo y- (R ao°y

is to be sent to a satellite node then send the data with the Transport

Level Protocol Header directly to the Data Link Level Protocol (1.6).
The Data Link Level Protocol then adds its own header and sends the
entire packet to the Physical Level Protocol (1.7), which transmits the
bit stream, Finally, the response that has been outputed from one of
the three processes must be transmitted back to the user as the network

response (1.8).

If the user command was a local command, then the command must be
routed internally to perform the required function. In all processes
listed in Figure 6, page 45, there is the possibility for errors to
develop, and thus, error messages must be generated in place of the

expected result.

Help User Requirements. The user help process may be specified

further by the lower-level DFD shown in Figure 7, page 47. The
transmitted help request must be <c¢lassified as either a general
information request, a file transfer information request, a list of the
active host and device names, or a protocol start information request
(1.2.1). If it is a general information request, then a menu selection
consisting of the available commands and their formats must be output
along with the formates for the more specific help requests (1.2.2). If
the transmitted help request is a file transfer information request,
then format for the transfer file commands must be output (1.2.3). If
the transmitted help request is a list of the active hosts and device
names request, then this list must be output by accessing the Dialogue

Process Table (1.2.,4). If the transmitted help request is a protocol

46

- :) i . el MG 4 ok it ... J

(40 (g° 1) sputwwon diag a3noaxy L aandirg

Sampa.aady
doyav g
Hdom o
Aoy

LA |

8ad1AM]
pie s)sof|
AALOY Jo s
JprAOa]
LA |

e ———

47

saosundsay
dyon

apoy

[ArA |

- puveeo) ~dia ~ Wa0om)aN
asuadsay ~ djoy 3|geL - ssI0ag - andogerg

8aftg
durasaysueay
q03 Janparodd
api Ao
£z

start information request, then the commands necessary to start, Stop,
and abort the session must be output (1.2.5). Finally, all help

responses are output to the user as a help response (1.2.6).

Architecture Level Protocol Requirements. The previous protocol

requirements were specified to implement the applications of obtaining
user help information and identifing network commands., The identifing
of the network commands process relies upon an architecture file
transfer mechanism which was treated as a primitive by this process. If
the DFD partitioning process had been followed as specitied by DeMarco,
then the partitioning of the file transfer mechanism would have been
duplicated several times, However, by defining the file transfer
mechanisms as primitives that are used by several processes, it was
possible to start a new set of DFDs for this mechanism without having to
duplicate them for each process. Table 6 shows the overall process
hierarchy for the Architecture Level Protocol DFDs. 1In the interest of
conservation of material, the detailed DFDs for the Architecture Level
are not included in the text, but are included in Appendix C, as are all

upper and lower-level DFDs for the entire software specitication.

Table 6---Architecture Level Protocol Process Hierarchy

1.0 Execute Architecture Protocol at Primary Node
1.1 Decode Architecture Packets
1.2 Decode Status Packets

1.2.1 Check for Errors

48

L 4

e SRS

1.3

1.4

1.2.2 Decode MACCODE Field

1.2.3 Decode Unsupported MICCODE Field
1.2.4 Decode Pending MICCODE Field
1.2.5 Decode Format MICCODE Field
1,2.6 Decode File MICCODE Field

1.2.7 Decode Sync MiCCODE Field

1.2.8 Decode Successful MICCODE Field

Generate Control Packets

1.3.1 Decode Control Type

1.3.2 Generate Control Connect Packet
1.3.3 Generate Control Seq-Get Packet
1.3.4 Generate Control Seq-Put Packet
1.3.5 Generate Control Key-Get Packet
1.3.6 Generate Control Key-Put Packet
1.3.7 Generate Control Add-Get Packet
1.3.8 Generate Conti..l Add-Put Packet
1.3.9 Code Get Fields

1.3.10 Code Put F.elds

1.3.11 Code Control Fields

Execute Startup Packets

1.4.1 Generate Configuration Packet
1.4,2 Check for Configuration Errors
1.4.3 Decode Configuration Fields

1.4.4 Generate Attributes/Access Packet

1.4,5 Generate Access/Erase/Rename Packet

49

1.5

1.6

1.7

1.4.6 Generate Access/ECF/SCF Packet

1.4.7 Generate Attributes Packet
1.4.8 Check for Acknowledge Errors
1.4.9 Check for Attributes Errors
1.4.10 Check for Access Errors
1.4.11 Decode Attributes Fields
1.4,12 Code Setup Errors

1.4,13 Code Setup Packets

Execute ACC/ACK Packets

1.5.1 Generate Access Packet

1.5.2 Decode Access Fields

1.5.3 Generate Access Complete Packet
1.5.4 Generate Acknowledge Packet
1,5.5 Check for Access Complete Errors
1.5.6 Decode CMPFUNC Fields

1.5.7 Generate ATTRIB/ACK Packet

Execute Control Packets
1.6.1 Decode Control Packet
1.6.2 Decode Connect Fields
1.6.3 Decode Get Fields

1.6.4 Decode Put Fields

Execute Continue Packets
1.7.1 Decide on Next Action

1,7.2 Decide on Required Action

50

1.7.3 Generate Continue Abort Packet

1.7.4 Generate Continue Skip Packet
1.7.5 Generate Continue Only Packet
1.7.6 Code Continue Packets

1.7.7 Generate Data Packet

1.7.8 Code Continue Errors

1.8 Code Architecture Packets
1.8.1 Start/Stop Timer
1.8.2 Code Working Packets
1.8.3 Generate Status Packets
1.8.4 Terminate Logical Link
1.8.5 Terminate Data Stream

1.8.6 Code File Packets
1.9 Check for Continue Error
2.0 Execute Architecture Protocol at Secondary Node
The Architecture Layer provides the network functions for the wuser
layer. Modules in this layer include network remote file access

modules, a remote file transfer utility, and a remote system lcader

module,

The use of the network remote file access modules and the remote

file transfer utility are limited to the following type of files:

1. Sequential - Each record’s position depends on the position

51

dfian,

f of the previous record. Records may not be processed in any other

t . order (Ref. 13:298).

2. Relative - Each record in the file has a unique identifying
number, its record number. Records may be accessed randomty by
specifying their record number in a control message (Ref.

13:298-299).

3., Direct/Indexed - These files have records organized
according to some classification method, usually an access key.
Within a particular key, the records are assumed to be sequential

(Ref. 13:299). 1

The reason for this is because it was felt that these three types

of files were the types projected to be most prevalent on the network.

Figure 8, page 53, iz the overview DFD for the Architecture Level
Protocol. Obviously, the most important function of the Architecture
Protocol is to transfer data to and from I/0 devices and mass storage
files independent of the I/0 structure of the system being accessed.
This implys that the protocol must be transparent to the files being
' transferred. From the network, it must appear as if the EWNET systems
support the Architecture Protocol Messages directly within their file
systems. The protocol must set up the conversation path for remote file
access, transferring data over the 1link and terminating the logical

link, The EWNET processes will implement the Architecture Protocol

using the Transport/Network Protocol and the network facilities for the

creation of the logical link and for flow control. Figure 9, page 54,

52

i _ o - . L _ . .
SO ST s~~~ . S+ P N OO T

(A MITALIAQ (DI IYDay) Joumy

Q aandi g

J_._
!

aoyetadg
Kavpunoog

spueao - ondo | v (g-Juiwosu - Lrepuaaag

spuvwyo;)- ondo 1g-durwog —Raewa,

,..‘\.
== BANYDD Yoy - apoN
“Aarpuosas-8uiwn uy

apoN
KLaepuonay
LGRSO X
AANTI | LYoy
2ynaoxg
e

|

uorand 1 juoy

A1~ paeg-Aaupuonag = apoN-Kaepuodag-Busod yng

‘(\m....:_ ECREENT S EEFTTENTY »

N perr fd g
[RLIte]
[N BN

spuewwo y-sngo ju 1g-du 1o ynp-Lawpuanag

WpoN
Aavweag
(LN URUY TS ¥
Adit ..—.« § mn?—».(
2inoaxy
1

T RIIN ERNTIL RS TTENIVERT Y
- Avunag-duiwooug

uoh)eangis jua)
A 4-1oeys-Kaverag

W= IINTIT LYY OPIN
~Kavwrag-duiodng

g0 € 1adg

spucwsn)-ondore vg-3u tod ing-A1umtdg

Lo

- .- -

- —— et ce——— b

R SRR, 2

ada (1) apoy Arewrag e [odo oy MY yasay 2INaaxy ¢ gand iy

¢ Y RITE Trearerh ivepgay

“IPON-A 1w ag- o 10d)0y

4oy ey

R LT BET FITRIY

apoy
81

Sqtoeg
10g Jun)
RAL ZETTRT.Y
LI |

[LSEIT TRvrtvivy tooay

-]
s payany QOJ\.W .ﬁe
- oy /a0y EVER) 2o A
(%nod.ay E.E.;.i«?;_a.va: 2 mooxy \3.5.4....\:...5;: .«‘ow....,m &
: T o
‘A

QRAE LT B (10 e ——

DAL~ 0a Yoy p s 1000y
S

[RBECRED 141 U Ay l
N AN - MTTTI05 R Bk

duaay
TRV
Q)
L RE
61

SR
RUTTTETIT
Fgtaaxy
P]

[EEEINE

APy

ERET

ERTL BTN
fogyuny
3aaxg

34

1R g-aan)y Y- IPON
|»L«l..~..nu5l:;5

3tartup-Errors

Start-Access

/ ey SOe G- anut juoy
’ ~PAA Y sy

L1 B
dnyae 15 7 P > 9
3anioxy (IS TN 13U0)-ag1d-gaeqgo SL TP
MMoRY .
- ...uﬂ._;!..:x,z_ . e IS-dny
-1 TEA ?:.J.wf...
Sparrad .:...Jz

— ———— Ill[l«‘fll"‘(l"

B L R Ty 100y

Sa0ua3-sme 1S/ 3409y

-

is the upper-level DFD for the Architecture Level Prctecol,

Once the link is established by the Transport Level Protocol, the
EWNET processes the exchange of Architecture Level messages to set up
the file access., These initial set up messages include configuration,
file, data mode, and format information., A data stream is then set up
to transfer data over the link. Data may be sent either to the
accessing node as in a retrieve operation or from it as in a store
operation, One control wmessage sets up the data stream for both
sequential and random access file transfer. After file transfer is
accomplished, additional Architecture Level messages terminate the data
stream, A disconnect request terminates the logical link., ‘Status
messages are returned if there are errors in the set up procedure, file

transfer, or termination.,

Iransport Level Protocol Requirements, The previocus protocol

requirements were specified to implement the applications of file
transfers on the network. These file transfer processes rely upon a
Transport Protocol (transferring mechanism) which was treated as a
primitive by these processes. Since the Transport Protocol 1is a
primitive that is used by several processes, it was possible, as with
the architecture protocol, to start a new set of DFDs for this mechanism
without having to duplicate them for each process. Table 7 shows the
overall process hierarchy for this set of DFDs, As with the

Architecture Level Protocol DFDs, only the upper-level DFDs will be

included in the text explaination for this protocol.

Table 7-~-Iransport Level Protocol Procesg Hierarchy

1.0 Execute Transport Protocol at Primary Node

1.1 Decode Route Header '{
1.1.1 Decode RTHDR Field i
1.1.2 Decode MSGFLG Field
1.1,3 Generate First Disconnect Confirm Packet

1.1.4 Examine Logical-Link Database

1.1.5 Pass to Satellite

1.2 Decode Packet Type

1.3 Execute Incoming Dialogue Message]

1.3.1 Execute Dialogue Segment
1.3.1.1 Decode Dialogue Message
1.3.1.2 Examine Adjacent Node Parameter and Decode
1.3.1.3 Break Dialogue Data into Segments
1.3.1.4 Examine Data Flow Control Parameters
1.3.1.5 Piggyback Data Acknowledge
1.3.1 6 Assign Segment Number Mod 4096
1.3.1.7 Load and Delete Data Memory
1.3.1.8 Check Data Retransmit

1.3.1.9 Code Data and I/L Packets

1.3.2 Execute I/L Packet
1.3.2.1 Examine Interrupt Flow Control Parameters
1.3.2.2 Generate Interrupt-Link Services Packet
1.3.2.3 Piggyback I/L Acknowledge

1.3.2.4 Code I/L Packet

56

1.3.2.5 Generate Data-Link Services Packet
1.3.2.6 Assign Packet Number Mod 4096

1.3.2.7 Load and Delete I/L Memory

1.4 Execute Data Packet

1.5

1.4.1 Determine Data Packet Type

1.4.2 Decode Datz ACKNUM Field

1.4.3 Decode Data Segment Number

1.4.4 Decode I/L Segment Number

1.4.5 Decode I/L ACKNUMI Field

l.4.6 Generate Data Acknowledge Packet

1.4.7 Generate Data Negative Acknowledge Packet
1.4.8 Load Receive Buffer until Full or LS
1.4.9 Generate I/L Negative Acknowledge Packet
1.4.10 Generate I/L Acknowledge Packet

1.4,11 Decode Valid I/L Packet

1.4.12 Code Acknowledge Packets

1.4.13 Code Data Packets

1.4,14 Decode Link Services Packet

Execute Startup Packet
1.5.1 Transition Link to On-Line Mode
1.5.2 Decode Functions Field

1.5.3 Decode Initialization Packet

1.5.4 Generate Node Initialization Packet Verify = 0

1.5.5 Decode Remaining Fields

57

bR bl Ttk S vk e &

1.5.6 Generate Node Verification Packet
' 1.5.7 Generate Node Initialization Packet Verify = 1
1.5.8 Decode Password

1.5.9 Code Initialization Packets

1.6 Execute Control Packet
1.6.1 Execute Connect Packet
1.6.1.1 Generate Connect Initiate Packet
1.6.1.2 Decode Control Packet
1.6.1.3 Decode Connect Initiate Packet
1.6.1.4 Dialogue Process External End

¥ 1.6.1.5 Decode Connect Confirm Packet

1.6.1.6 Generate Connect Confirm Packet
1.6.1.7 Generate Disconnect Initiate Packet

1.6.1.8 Code Control Packet

1.6.2 Execute Disconnect Packet

1.6.2.]1 Decode Disconnect Confirm Packet

1.6.2.2 Decode Disconnect Initiate Packet
1.6.2.3 Dialogue Process End

1.6.2.4 Generate Disconnect Confirm Packet .

1.7 Execute Acknowledge Packet :
1.7.1 Determine Acknowledge Type
1.7.2 Decode Data ACK Packet

1.7.3 Decode I/L - ACK Packet

58 ¢

— ' J
S _ s e AL D 1 11 * et i
[- - i T L ahtadede ¥ it Al - .

1.8 Execute Outgoing Transport Packets
1.8.1 Examine DSTADDR Field
1.8.2 Add RTHDR Field

1.8.3 Is Routing Necessary and Present

1.8.4 Pass to Correct Adjacent Node

1.9 Code Outgoing Dialogue Message

1.10 Send to Network Protocol

4,0 Execute Transport Protocol at Secondary Node

The overview DFD for the Transport Layer is shown in Figure 10,
page 60. Obviously, the most important function of this protocol is to
transmit data from the source host to the destination host. To
accomplish this function the Transport Protocol must retain primary

responsibility for:

1. Establishing, maintaining, and destroying communication
links between different user and network application program

modules.

2, Performing initialization between adjacent nodes.

3. Acknowledgement of all messages,

4, Detecting node and line failures,

In addition, the Transport Protocol will provide the facility for

two dialogue processes (typically, user-written or network application

59

———

- - - - ——
40 MOUAIAAQ (MdomiaN/jaedsued]) jpumiy 01 oand
1ospong-) dods IR BLUR]
a1 es-dugsoon -Laepu R— 1l RIUATERTSRRNTUINS (IR
..ﬂxz.....,.t‘ E A R T . A T SPON AdUsSoR-.ndo [t 1(1- JU10d JnO L
Kavwirag) °
. U juanjodg L joosogodyg
o PeN yodsuea PO
Aepuoaas N Laveay
3 pnaaxy
2gesSoN-enda (e g-du
Jayorg- jaodsaeay Apoy

~apon-durud ymp Kavwiay
Kaepuoans poan o 1 [6300dd
IR UYUN XY iy (A0 Waomyan

aodsuet B S . EE
.._I”S g h\4 =~ RADM JaN-DpON - Bu twoau] -£anpuasoy i VOIT=HIom T aN= PN - T tmnou] ‘/ ® .:“uxu
il iy
Y
¥ 1y 4= 10M aN-opoN- dured jno- Kaepuoaag 1IN G- W 10M | IN- PON-FU 0T IN0

60

modules residing at different nodes) to exchange information regardless

of their physical location within a network. This facility is referred

to as Logical Link Service (Ref. 12:127).

Logical Link Service allows a dialogue process to establish a
connection (called a logical link) to another dialogue process. Once
the logical link is established, each dialogue process may send data to
the other dialogue process via the logical link. When the dialogue is
complete, either dialogue process may request that the logical 1link be
disconnected. A logical 1link provides both guaranteed delivery (that
iss delivery of information to an area of storage accessable to the

destination process) and sequentiality.

Other network management activities performed by the Transport
Level Protocol are data flow control, node initialization, destination

node and process identification, and link failure handling.

To support the above functions the Transport Protocol must have two
types of messages that it uses. These are Data Messages and Control
Messages. Data Messages are also of two types: normal data messages
and interrupt messages. Normal data messages can be either an entire
message Oor a message segment. Interrupt messages carry small amounts of

information (high-priority information such as an alarm condition). ‘

Control Messages pass information between the Transport modules.

These messages are used for the following purposes:

1. Starting up and initializing nodes, }

61

2., Testing,

3. Establishing, maintaining, and terminating logical link

operation, and

4, Controlling the flow of data and interrupt messages on a

logical link.

The reason for the interrupt data commands is to allow long
transfering files to be interrupted for the transmission of the network
control commands. If this were not done, a long file transfer could
easily degrade the response time of a network command to an unacceptable

level.

This concept of interrupting file transfers requires that the
transmission medium be shared. Time Division Multiplexing (TDM) or
Frequency Division Multiplexing (FDM) could provide multiple paths
between any two hosts as could many topologies (Ref. 12). However,
since the throughput requirement might possibly grow greater than the
channel capacity between nodes on EWNET, FDM was thought to be the best
way to meet present and future response time requirements. Therefore,
it was decided that, sigge‘a large bandwidth transmission medium will be
used on EWNET and an i;itial high throughput would be required, a
Frequency Division Multiplexed Packet Switched Protocol would be
appropriate for the Transport Level Protocol. Due to the constraint of
developing a network for the Engineering Branch that would meet all

internal standardization requirements and be an off-the-shelt item, the

62

PP P PSRN

.t o~

Digital Equipment Corporation's DECNET Protocol was chosen for EWNET.
The DECNET Digital Network Architecture (DNA) model and its application
to the EWNET will be discussed in Chapter 4 of this thesis, Figure 11,

page 64, is the Transport Level Protocol high-level DFD for the EWNET,

The Transport Level Protocol is responsible for establishing and
destroying a logical 1link between dialogue processes. This is
accomplished via a set of control messages sent back and forth between
Transport modules. Once a logical link has been established, data may
be exchanged over the link, Information sent over the link can be: (1)
normal data -- that is, data segments or messages or (2) interrupt data.
Dialogue messages are usually sent as normal data segments over the

link.

Unless the message to be sent is small enough to be transmitted
through the network intact, the Transport Protocol will break up the
message into segments and transmit each segment individually. To ensure
proper data sequentiality and delivery, each Trangport module employs a
segment acknowledgement scheme., This scheme keeps track of data
segments sent and ascertains whether or not retransmission is necessary.
At any time during a dialogue exchange, the Transport Protocol will
allow either process/party to abort or terminate the conversation. When
the Transport Protocol has been properly notified to do so, it will

disconnect the logical link,

There are two data streams on a logical link. One stream contains

interrupt (for user high-priority information) and link service messages

63

Q4 (1) 9poN Adruwiad B J0d030dd jdodsueal aynoaxy 11 aundiyg

Vg~ paodsinea - opon-dinoedyng

i adussag-ando e ig-duiod ;ng 7
odes sy pusy

apo)
6°1

audo e
drodng

(LIS STINN]
H.1oMm) oN

uy

P =g noy— podSuEr - daTaa g

YOI (-W R B IUR T EN L N |

ot o

s poqor - jaodsuea p—apoN-dutwoou)

JaRou - Jaodsuna -2y L[[Ajus-Jutwooug

x
a
0
o
-
<
o
o
i
PRUN] 3
. IR B
MO |)aIry 5 . /o 8
—d2)tno) 2 'y /m <
a
~plosIdL 5 3 ©
~doaad 1 y / M
Yo isuvag M ; / g
3 »
2 b
ano “ janoed
H ¥ adpasouyoy
N iad Inoaxy
ﬂ. /A |
"
t
N\ u / purmmo)-paomssed-aoeaado
Janoe. purwo)-.1e)S-dujeaadp
dnyae g
aynoaxy
1O g-NEN-1/1
Jdussay
REVRUE] 19820 1-Y v -1/1 ando g
e 3o -veq Bk S— Auywoouy AdRRSIN-oNGu 8 (- ON 1 WO U]
L ondo e sa-Buiodng 2INDOXY 1R W -YuN-uR(] anaoxy
¢
yanan -y av-u juq !
T agorg-yaodsuray Apo.]
= a2 mg-dutod)ng
]
parodsaeay
ey TANaaq- [0dU0-M0{ 4
2noaxd }
o1 1R Y- R (-) todSUNa L -Pa §) TMSHT AL
——

e e e e s s e e

(for Tramnsport flow control); the other contains normal data messages,
' Each stream may be considered a subchannel on the logical link. On the
interrupt/link service subchannel, all messages are single Transport
segments, On the data subchannel, however, data messages are usually
broken up into segments., Transport segment acknowledgement is performed

independently for each subchannel.

When normal data (dialogue) messages are broken up into segments,
the transmit segment size parameter determines the size of these
segments. The value of the parameter is specified when the logical link
is established. In addition, transmitter and receiver subchannels must
be synchronized for all data message transmission. This is accomplished
at the transmitter using the interrupt/link service subchannel transmit
number and the data subchannel transmit number and at the receiver using

corresponding receive numbers. When a logical 1link connection is

established between two dialogue processes, these numbers are set to 1.

As Transport segments are transmitted and acknowledged over the logical

e e .

link, the appropriate numbers are incremented.

Operating at a level above the segment acknowledgement scheme is

B the flow control operation. Its purpose is to determine whether there

JP S

should be a permanent shift from the transmitter to the receiver in the
buffering of information. Four parameters are associated with flow
control: a data flow control switch (“open™ or “closed™); an interrupt

request count; a data request switch (segment”); and a data request

count. The receiver may control data flow by sending a link service
message that sets appropriate parameters. The receiver can request

;
|
I y

e didiank, . L euy .-

interrupt messages, stop data segment flow, allow data segment flow, and
request data by means of the segment request count. The transmitter
responds appropriately to the link service message of the receiver.
When the transmitter has data to send (either normal data or interrupt),
it examines the appropriate flow control parameters and request count
before sending the data. The receiver may reject segments for which it
does not have buffer space available by sending a negative

acknowledgement.

Network Level Protocol Reguirements, As with the Transport

Protocol, the Network Level Protocol is used by several processes and is
treated as a primitive by all other protocol levels. Table 8 shows the

overall process hierarchy for this set of DFDs.

Table 8---Network Level Protocol Process Hierarchy
2.0 Execute Network Protocol at Primary Node
2,]1 Decode message type
2.2 Check R-Hop Count = 2
2.3 Decode Network Header
2.4 Increment Hop
2,5 Update Routing Table If New
2,6 Determine Least Cost Link
2.7 Add Network Header
2,8 Send 0ld Values Out Over New Initislized Line

2.9 Check N-Hop Count = 2

66

AN e e

-

2.10 Update Network Header
2.11 Every Timer Interval Update Adjacent Line
2.12 Issue Correct Link Cost Over All Links

2.13 Send Packet Over Correct Line(s)

3.0 Execute Network Protocol at Secondary Node

The overview DFD for the network layer is shown in Figure 10, page
60. The most important function of this protocol is to implement what
is termed in the communication field a Datagram Service (Ref. 12:60).
A Datagram Servicz delivers packets on a ‘best effort” basis, That is,
the Ne:work Protocol makes no absolute guarantees against packets being
lost, duplicated, or delivered out of order. Rather, higher layers of
the EWNET Protocol structure provide such guarantees (Transport Level
Protocol). The Network Protocol selects routes based on network
topology and operator-assigned line costs, The Network Protocol
automatically adapts to changes in the network topology, for example, by
finding an alternate path if a line or node fails. This protocol does
not adapt to traffic loading: the amount of traffic on a channel does
not affect the Network Protocol's routing algorithms., Figure 12, page

68, is the Network Level Protocol DFD for the EWNET.

The Network Level Protocol is responsible for providing the

following functions:

1. Determines packet paths. A path is the sequence of

connected nodes between a source node and a destination node. If

M b

AU () OPON Admwiag v [0D0J0d | JAOM}IN 220X oY aangi 4

[BEBUNT] _...zl.ﬂ.zlw.._. paodiaeay,

. o) TWitod g

R RN Y TR Y]

Erpatn]

PARAA0)
EREENTS RN

WY ne)
RN]

R REFRY

9z

WS LN B L LRRTIAN)

payoeg-yaodsaea) “apon-Titoding

auty
pasiqei g
MON JOAQ IO
sl RA PO

puag
L]

1-oqeL-due phoy

sjuLry fIv
darag yso)
AL | Joaado)
anss]
ev'e

augy
juoaelpy ajepdy

anpeajt

HAOM)IN JRAG UL LY,
Jepds KtoA;
ayepdn ...,i
or'e ne

—azifeprying

mayn
31 algey,

Ve -puteuo - yu L -oL-) aodsara g

dur o
mu.p\m ajepdn
e
= 6 i
g
ot f
£ o -
o
N.M Yayor j-dut jnoyg-p i eA
.“-.w Zz- | qu)-Burnoy
B x
2
x
®
ot

duy
JuswaL U]
v'e

aporeg-dut ynoy-paddon

-ax;z._r—_g.ia

Jgapea) y .s;urr ,
Horse - AN-PON-dUIwoDdu |
Hrom)oN Y. -Y 1M)N TARIC - JIOM | AN~}
SpodNE I ENINE Y]
L7 e

4

more than one path exists for a packet, the Network Protocol

determines the best path.

2., Forward packets. If a packet is addressed to the 1local
node, the protocol forwards it up to the Transport Level Protocol
for disposition, If a packet is addressed to a remote node, the

protocol forwards it om to the next line in the path.

3. Manages the characteristics of packet paths. If a line or
node fails on a path, the Network Protocol finds an alternate path,

if one exists.

4, Periodically updates other Network Level modules. Other
Network Level modules are periodically updated so that all nodes in
the network are aware of any routing change (such as a line down or

a node coming up).

5. Limits the number of nodes a packet can vaisit. This

prevents old packets from cluttering the network.

There are two types of Network Protocol messages: data messages
and control messages, Data messages carry data from the Transport Level
Protocol. The Network Protocol adds a packet route header to the
Transport Level messages. Control messages exchange information between
Network Protocol modules in adjacent nodes to maintain the routing

tables.

69

Routing Algorithm Requirement. One of the constraints on the EWNET

design was that it start with a minimal set of capabilities while

retaining the flexiability to be expanded if future requirements demand
such an expansion, Therefore, the routing algorithm init:ally
implemented was relatively simple, while retaining the capability to be
expanded if the need arises, The routing algorithm consist of seven

processes that must be performed:

1. Decision. The decision process selects routes to each
destination 1in the network. It consist of a connectivity algorithm
that maintains path lengths, and a traffic assignment algorithm that
maintains path costs. Path length is the sum of the hops alcng a
path between two nodes. Line cost 1is a positive integer value
associated with using a line, and path cost is the sum of the line
costs along a path between two nodes. When a routing node recelves
a Routing Packet, the routing node executes tue two decision
algorithms, Executing both algorithms is required since a packet
might have a <choice of two paths, both having equal cost but less
hops required, or having equal hops required but less cost per line.
This execution results in updating the databases used to determine

packet routes,

2, Update. The update process constructs and rropagates
Routing Packets. The update process sends Routing Packets to

adjacent nodes as required by the decision process and periodically

to ensure the integrity of the routing databases.

3. Forwarding. The forwarding process supplies and manages
? the buffers necessary to support packet route-through to all

destinations.

4, Select. The select process performs a table 1look-up to
select the output 1line for the packet, If a destination is

unreachable, this process discards the packet.

5. Receive. The receive process inspects a packet's route

et

header, dispatching the packet to the appropriate Network Level or

Transport Level module.

< rn e, @ g b

6. Congestion Control. This implementation of the EWNET

Network Level Protocol does mnot perform any congestion control

functions upon the network.

7. Packet Lifetime Control. A 1loop detector prevents

excessive packet looping by discarding packets that have visited too

g

many nodes,

As the topology of EWNET evolves this simple adaptive routing
algorithm will require updating to a more complex distributed adaptive

routing algorithm (Ref. 11:235-237).

Data Link Level Protocol Requirements, This protocol 1level is

modeled after the High Level Data Link Control (HDLC) (Ref.

. 12:208-232), The overview DFD for this protocol 1level is shown in

Figure 13, page 72. Also, Table 9 shows the process hierarchy for this 3

T g
- - - -
(40 MILAIIAQ (DTIGH) IduMy €1 aandry
PN
Kavuwidg jv
[NSASREY: BN (1]
EYURRIS -
*J,
1 *)
[
?
"
o)
& 5.
@
. %
9, \
%, £
& <,
“ %
“ o
; @ £
ivu K \f
S s *
7 ", \
(4 ¥, o
Y S, o
T k) K/
) v -
¥ kR mv
% 2
%
¢
®
[LUTS N R T ch
sONLL)G)
anon vy k& o
P N ylwsteg) @e PON
Aampuooay T Aaewiayg
L9
L4
)
2
7
1 5
k) <
) 0
A ?
Wy
B R
AN <
A v
DAY] 7
b)
2o %
(A v
A
%
%
v
v

U-:.Z
Kepuoasag 1y
[CRUFLINE Ry Ti]]}
2)ndaxy
£

72

sl =

PRy

b

set of DFDs.

Table 9---Data Link Level Protocol Process Hierarchy

1.0 Decode HDLC Protocol at Primary Node

1.1 Decode and Sync Incoming Bit Stream
1.1.1 Check for and Rerove Pad Sequence
1.1.2 Check for Startup
1.1.3 Locate Two Consecutive Sync Bytes
1.1.4 Decode Packet Header

1.1.5 Check for QSYNC

1.2 Frame Secondary Incoming Packets

1.2.1 Check Header Length
1.2.2 Check BLRCK1
1.2.3 Check Data Length (Count)

1.2.4 Check BLKCK2

1.2.5 Check ENQ Header Length
1.,2.6 Check BLRCK3

1.2.7 Generate CRC Remainder

b o AR T g ad

1.2.8 Check Select Bit

1.3 Execute Incoming Control Packet
1.3.1 Decode ENQ Packet !
1.3.2 Set NAK Transmit Flag

' 1.3.3 Set Negative Acknowledge Flag, Reset Timer -

1.3.4 Check STRT Select Bit

ﬁ
73 i
|

1.3.5 Check STACK Select Bit

' 1.3.6 Check NUM Field to R
1.3.7 Set Acknowledge Flag, Reset Timer

1.3.8 Count Errors (NAK)

1.4 Execute Outgoing Control Packet
1.4,1 N=N+1, Reset Timer
1.4.2 Generate Negative Acknowledge Packet
1.4.3 Generate Start Packet
1.4.4 Generate Start Acknowledge Packet
1.4.5 Generate Acknowledge Packet
1.4.6 Generate REP Packet
1.4,7 Clear Negative Acknowledge Flag
1.4.8 If Initialization, then Pad Packet
1.,4.9 Clear Acknowledge Flag

1,4,10 Clear SREP Flag

1.5 Execute Data Packet
1.5.1 Process NUM Field

1.5.2 Process RESP Field

1.6 Execute Maintenance Packet
1.6.1 Generate Maintenance Mode Packets

1.6.2 Generate Maintenance Packet

1.7 Frame Primary Information Packets
1.7.1 Add 4 Sync Bytes to Packet if QSYNC

1.7.2 Count Data Field ADD BLKCK2 / Count \

I
% |
|

L

B

1.7.3 Add Remaining Header Fields

1.7.4 Set OSYNC Bit

1.7.5 Count Header Field and Add BLKRCK1

1.7.6 Piggyback Acknowledge Received: Set RESP

1.7.7 Check Modulo 256

1.7.8 Increment Packet Count

1.,7.9 Check Retransmit

1.7.10 Add 4 Sync Bytes to Data Packet if QSYNC / INIT.

1.7.11 Load and Delete Memory

1.8 Start Reply Timer
1.8.1 If STRT, STACK, or Data Packet then Start Timer
1.8.2 Reset Timer
1.8.3 Count Errors (Time)

1.8.4 Identify Timeout Packet

2.0 Transmit Bit Streams

3.0 Execute HDLC Protocol at Secondary Node

This layer of the EWNET Protocol Structure controls the operation
of the physical 1link, maintaining the integrity and sequentiality of
data trrmsmitted over a communication channel. This Data Link Protocol
is a byte-oriented link control procedure that operates in full-duplex
synchronous mode and supports point-to-point communications. This
protocol is concerned with the logical transmission of data grouped into

physical blocks known as data packets. The primary function of the

protocol being the exchange of these data packets while ensuring their

correctness. Each data packet is assigned a number to ensure proper
packet sequencing at the receiver. The numbering begins with number one
after initialization and is incremented by one (modulo 256) £or each
subsequent data packet. The receiver acknowledges the correct receipt
of data packets by returning the packet number as a response.
Acknowledgement of data packet n implies acknowledgement of all data
packets sent up to and including data packet n., Additionally, the Data
Link Protocol provides an envelop in which maintenance messages can be
sent for down-line loading, up-line dumping, loopback testing and
control of unattended remote systems, The protocol uses retransmission
to recover from errors., The error recovery mechanism uses timeouts and
control packets to resynchronize and trigger retransmission. Figure 14,
page 77, is the Data Link Level Protocol high-level DFD for EWNET,

low-level DFDs are supplied in Appendix C.

The Data Link Protocol uses three types of packets: data packets,
control packets, and maintenance packets. All data is sent over the
physical 1link in numbered data packets. Responses and control
information are returned within unnumbered control packets. In the
maintenance mode, the protocol provides a maintenance packet envelop for
boot strapping, dumping and 1link testing. The‘initial field of each

packet is a special ASCII character (SOH, ENQ, or DLE respectively).

The Data Link Level Protocol consist of three functional

components: Framing, Link Management, and Packet Exchange.

76

R R O

p1 Aand1
{

R BINER NI

(4 (1) opoN Adewitd 3B (0003044 J'IGH _23Nndaxd
<
L= OPON- KAV g- PO) fusiney,
woysAS Yiy
i i
!
audy pue FERY Y LY P TIRWETN |
apuaag 1p-durwoong-Arvwn. :

A Jutep
SN0y

OAIA-0F-WRAN|S-) Tg-dit0d np-Aavnagy

ERE BN
uorjensojug
Adewiagy
awna |
L0l

314-A

d4HS

gt

77

13deg-aTg-pries

s)aRoRy
durwooug
Kavpuonay

Wea g
e

1Maoud
vieq
Jndaxyd

L |

1 aeg
1043409
duwnoug
23n0axy
£

X BL
a1juny
ureding

anaaxg
v

Reug

Y uxum

RPN S

é
!
i
'

- e TP ——

Framing is the process of locating the beginning and end of a
packet at the receiving end of a link (Ref. 12:201-202). It requires
synchronization: locating a certain bit, byte or packet and then
operating at the same rate as the bit, byte, or packet. Framing is
achieved when data is synchronized at the bit, byte, or packet levels
(Ref. 12:330). Bit synchronization is done by the modems and
intertaces on the link. Byte synchronization involves locating the
proper 8-bit window in the bit stream., This is accomplished by a sync
character search. Packet synchronization is achieved by searching for
one of the three special starting bytes (SOH, ENQ, or DLE). After
achieving byte synchronization the packet synchronization is maintained
by counting out the fixed length headers, and, when required, the

variable length data, based on the count field supplied in the header.

The Link Management component controls the transmission and
reception on links connected to two or more transmitters and/or

receivers in a given direction (Ref. 12:122-129).

The Packet Exchange component transfers the data correctly and in
sequence over the 1link., Once framing is accomplished, this component

operates at the packet luvel, exchanging data and control packets.

The Data Link Protocol is a positive acknowledgement retransmission
protocol. For each data packet correctly received and passed to the
next level, a positive acknowledgement is returned on the 1laink,
notifying the transmitter of the correct receipt of the data packet. If

a data packet is incorrectly received, the data is not passed to the

78

-

user and the packet is not acknowledged. Eventually, the packet will be

retransmitted. For efficiency, the Data Link Protocol may transmit

several packets (up to 255) before requiring the acknowledgement of the

first one. This is called pipelining (Ref. 11:153-157). If the CRC
block check reveals a transmission error, the receiver returns a

negative acknowledgement.

The Data Link Protocol provides three types of counters for
recording and evaluating errors: Threshold counters, Cumulative
counters, and Background counters. Threshold counters are used to
detect persistent error conditions; Cumulative counters record overall
error statisticsj and Background counters provide a base on which to
evaluate performance, To determine a persistent error, the protocol
counts consecutive errors, notifying the user when a predefined

threshold value is reached.

Physical Level Protocol Requirements, The DECNET does not require

that any one physical level protocol be used (Ref. 13:300). Thus,
there were, only two requirements for the physical level protocol. It
had to be a widely recognized standard to minimize the difficulty in
adding new hosts to EWNET and it had to be compatible with the
transmission medium selected and the distances of transmission required.
Thus, if these requirements could be met then the Transmit Bit Streams

(2.0) process in the Data Link Level Protocol (Figure 13, page 72) could

be performed.

79

e YoM S e - -

Sunmary

This chapter has refined the hardware specifications and addressed
the software specifications for EWNET in detail. The software
specification was length: “ut, because of the partitioning and levels of
abstraction made possible through the use of Structured Analysis, if was
easier to comprehend than would otherwise be possible. The data
dictionary contains the explicit information on these specifications and
is included in Appendix C along with the high and low-level data flow
diagrams., These requirements formed the basic foundation for the
overall structural design approach taken in Chapter IV to design the

EWNET.

Introduction

The previous chapters determined the user functional requirements
and translated them into detailed hardware and structured software
specifications, In this chapter, the hardware requirements
specification was employed along with supporting background information
to develop the hardware design. The software for EWNET was also
designed by selecting the specification of a commerically available
network design (DECNET). As a part cf the software and hardware design,
Appendix D contains a complete EWNET Network Profile for use by the
Electronic Warfare Engineering Branch as a means of obtaining the
correct commerically available network configuration to meet their
present and future needs. This chapter also presents diagrams that
depict the exact interaction of the Host-to-Node network configuation

selected for the EWNET design.

Hardware Design

Topology, The topology shown in Figure 15, page 82, was chosen for
EWNET for two reasons. First, the basic loop architecture of the nodes
allows the initial routing algorithm to be “simple” since a message has
only two possible paths to its destination node. This gives the

Electronic Warfare Branch Laboratory the minimum operational

8l

Adoodoy, joumg o1sey 61 odndLy

il 9t IAl 81
LEOR 1S0H LUOH RRXUI]

IR
1son

61
Lson

(1)}

1801 /

(1]
40N

J
HUUN

]
440N

v
AGON

(124
Lson

6
Lsom

’ £ < 1
150n Lson 5ol 1501

L A L
1Lson Lson Lo

- e

capabilrty, as identified in the functional requirements, in the least
amount of development time; thereby, allowing additional time to
evaluate and develop a more sophisticated routing algorithm to handle
more complex future topologies. Second, to maintain a cost-effective
initial network, the loop network has only one more link between nodes
than a minimum spanning tree, since deleting one of the links, results
in a linear connection of the node computers. This linear connected
network then constitutes a minimum spanning tree since additional
node-link deletions would result in a non-connected network. As the
topology of EWNET expands to include an additional node computer, it
will no longer be possible to take advantage of the cost-effectiveness
derived from the minimum spanning tree concept, since the basic loop
architecture will be replaced by a topology which will give maximum

reliability and response time to the network.

The star topology connecting the hosts to the node was chosen for
several reasons. First, it minimizes the loop topology disadvantages of
increased response time and reduced reliability due to multiple node
computers connected in a single loop. Second, the topology given in
Figure 15, page 82, takes full advantage of the star configuration by
grouping around the same node those host that will interact the most
with each other. In this configuration, much of the traffic need only
pass through its entry node to the network., This decreases the average
response time on EWNET and decreases the amount of traffic transmitted
between nodes. However, reliability from the host's perspective is

decreased since the failure of a node can cause several hosts to lose

N

e ——

-
AD=A119 253 AIR FORgE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO=«ETC F/é 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECT -
’ DEC B1 R H STOKES ELECTRONI-=ETC(U)
UNCLASSIFIED AFIT/GCS/EE/81D=-16

A

.

access to the network. Also, there must be a greater transmission rate
between nodes than that between the hosts and the nodes. This is to
keep the nodes from acting aa bottlenecks and thereby decreasing
throughput to an unacceptable level. Finally, the star configuration
allows any host to be able to drop out of the network without adversely
aftecting the performance of the network. This meets the requirement,
that all ISSes must be able to operate completely independent from the

network without affecting the network.

Hosts., Fourteen hosts were chosen for the initial network
configuration. This number represents those EW systems within the
Electronic Warfare Engineering Branch Laboratory which will require the
greatest access to the network and which contain the most sophisticated
and powerful minicomputers. The following list of Hosts represents a
generous cross-section of the type systems which will require access to
the network (present and future).

1. F-15 Tactical Electronic Warfare System (TEWS) = Integrated
ISS System

2, EF-111A = Integrated ISS System
3. APR-38 = Fire control ISS System

4. Area Reprogrammable Capability (ARC) = EW system emulation

ISS System
5. ALQ-131 = Jammer ISS System
6. ALQ-155 = Jammer ISS System

7. ALQ-119 = Jammer ISS System
§. ALR-69 = Radar Warning Receiver (RWR) ISS System

9. EWOLS/ECSAS = Simulation and analysis systems respectively

{
¥

10. B~52 = Tail Warning ISS System

11. ALR-62 = RWR 1SS System

12, ALR-46 = RWR ISS System
13. Flight Line Test Sets (FLTS) = FLTS ISS System

14, ALQ-125 = Electronic Intelligence Gathering (ELINT) 1ISS
System

Bodes. Since there existed no requirement to be able to intermnally
modify the network protocols once the network was established, and due
to the standardization eftorts of the Electronic Warfare Engineering
Branch (Ref. 3), it was decided that the node computers used within the
network should be compatible with the standardized ISS computer and at
the same time be able to host the commercially selected software
protocol design., This resulted in the selection process for the node
computers being narrowed down to the Digital Equipment Corporation's
PDP-11 family of computers. There still remained the manragement
requested requirement that, if possible, the organizational Host
Processor (UNIVAC-1108) functions and the Network Routing Node functioms
be performed by the same computer(s). Therefore, it was decided that
the Network Node computers could easily perform the existing
organizational Host Processor functions if the node computers were of

sufficient sophistication.

The Digital Equipment Corporation's PDP-11/70 computer was selected
for the EWNET Node computers., It is of sufficient sophistication to
support all present and future organizational Host Processor functions

(Ref. 14:261-305), it meets all Electronic Warfare Engineering Branch

85

Laboratory standardization efforts (Ref. 3), and it supports the Phase
} ' IIT1 routing DECNET software (Ref., 15:67). As shown in Figure 16, page
87, there will initially be three PDP-11/70 node computers. The
division of functions for these computers other than network functions

is given below:
1. First Floor Node = Host all off-~line ISS backup assemblers.

2, Second Floor Node = Host all common ISS software tools and

common databases such as the organizational threat database.

3. Third Floor Node = Host all off-line ISS (Flight Test) data

reduction programs,

Iransmisgsion Medium. Due to the security and EMI requirements for

EWNET, as discussed in Chapter 3, all transmission links within the
network will use fiber optics. The optimum transmission rate for the
network, considering the throughput and respouse time requirements, was

1 mbps.

Appendix D contains further details concerning the hardware design

and Figure 16, page 87, shows the total hardware design.

Software Design
Introduction, The design of the software was accomplished through

the specification of a commercially available network design. The

Electronic Warfare Engineering Branch Management, acting in behalf ot a

86

A

“h

uorjeandjuo) joumy [erjtul 91 aundryg :
1 i ,-.x_\ SOWN) [y \ MV tar ysen
‘
2 o u.ﬁ\ sproukay Kedap \ SUaL G514 UE sl ,/MG:/
- oL/
2
W apon .
o At Jout 4
L ' ?x_\ nopty woy BE-HJAV fa) sop 7 188
o wuvt
v] u.x_\ Kauen qup \ VITI=4H iap o -
(s
=
s ”5\ pPrenogow A4qug \ -0V tay ason m
9 o \ sewoyL stuuNg \ Sel-0y a1 yson -
[P m.
*ﬂmd
9% wur, oz/11 V
2 b RS] 313182y uvag \ 611-01IV (1 yson ¥ quT 3poN ¢ 2 W
RTINS
TR puz
A\
'] iy oug \ sduruuag Laawg) \ 69—V dr isoi ot Wt
6 4 ova \ H3IPOIYIE-~2 10320 \ SVSI4/SIOMA UL dsol -
=
x a
b3
o1 oy u.x_\ a0 1aau) Koy \ ZS-B a1 asop &
1 1§ oag utyIN WIIN 29-WIV 4] (s o
I# Yu
17
oL/t £
¢t tf ouq Youws qog \ OL~UIV 01 YvOR AT E T4
19 i .,...x\ x0;) Aawn \ SUI4 sar pson
" M uc‘ doysg 33110 \ 821-0lv af won
R — .
[T aaqunn opon [}
i

then non-existing network management group, s8pecified that tne EWNET
design wmust be obtained from an existing, contract supportable,
commercially available network design that would meet all internal
standardization efforts and be as compatible as possible with existing
ISS standard computers. Considering these requirements the UDigital

Equipment Corporation's DECNET product was selected (Ref. 15:331-349).

DECNET. DECNET is the collective name for the set of software
products that extend various Digital Equipment Corporation operating
systems by enabling the user to interconnect these systems with each
other to form computer networks. DECNET Phase II products allow
point~to-point physical and logical connections. DECNET Phase III
products extend the logical connectivity through routing (Ref. 16:17).

Phase II and III products can be intermixed in the network.

In order to asatisfy widely varying applications, DECNET allows the
user to build networks from a wide range of systems and communications
components, DECNET allows the user to interconnect systems using serial
synchronous facilities, When configuring DECNET systems, both ends of
any givea link must use the same type of communications discipline

running at the same line speed (Ref. 15:331-339).

DECNET is implemented from a set of layered network protocols (ISO
0SI Model), each of which is designed to fulfill specific functions
within the network. Collectively, these protocols are known as the

Digital Network Architecture (DNA)(Ref. 16:Vol 1).

bl Ci i s i

DNA modules in a layer typically use the services of modules in the

layer immediately below. Some layers may contain more than one type of
module (as is the case in Phase II DECNET Protocols). Each module
specified by DNA operates as a black box”. That is, the operation
within the black box is transparent to other l;yers and to equivalent
modules in other nodes. The architecture does not define specitic code
for implementing modules. It only defines specific operations that the
modules must perform. The architecture specifies two kinds of

relationships between modules:

1. Interfaces. Interfaces are the relationships between

different modules that are usually in the same node.

2. Protocols., Protocols are the relationships between

equivalent modules that are usually in different nodes.

The architectur~ specifies common error reporting, operational
parameters, and counters that certain layers must maintain. This
standardization ensures that maintenance, error logging, and network
management can take place consistently. Finally, DNA is an open-ended
architecture. Future phases of DNA may model additional layers,
additional modules within existing layers, or alternative models for
certain layers. A brief description of DECNET Phase II and Phase III

architectures follows.

DECNET Phase II, Figure 17, Page 90, shows the building of

information for each layer of the DECNET Phase II DNA. Each protocol

Juip|ing 10003044 jouMmd L1 dundid

B UV F R L H TN [EILT I TR B HT R m
’
i 1 | 1 w
Japeay] s dapray aapualy |- aapeon dopogy FETRENT REN LR Japeayf daopea,
L LI viva uoyjuan jddy josun) duy ooy Huyg NRYH b TN viva uo e sy (ddy {odjuo) {oajua) Hur) TN |
AT NAOMYON wodsuea] CITH] [USTETATR] CALH] HAom)oaN uoissag { juodsueay ¢ jeq eyed
[
Jopuop FRICUET] dIPR I, Jakey
vivd uonjuol jddy ORI duy jnoy jaodsusal
HLOM Y IN jaodsuedy),
—_— e e e —————— e ——— e e —_—_— e —— e e ——_ —_—— ——— —————
1
Japuap Jopuoy aapeay| Jopuay aapeagt Japeay FEY Y
viva uotjuot (ddy [CNA LT jJodun) viva uotjuos jddy {o4u0J {oajuay EERTRWE S
HI0M) ON untssas [yvodsuea) HaumyjaN woissag § yandsueay LELEE] o
ﬂ =]
FEN\ IR aaprag aapray sapeay FEY LY
viva uoiyeat ddy o2 u0) vivd uotyuot|ddy 1os0) 1oajus)
HJOM)IN uuv18s0g : HIOMYON [TEY TS uo1EsIg
e e Y e e o e o aoken edeshua _ — — e — —_— —_— —— et e]
T T a0 uasfery aasp oy oy saake - _—
yidnoayy sasseq e se pappy Jo
Japeayl PIAcEI) ST uoleBIO)U] JIPOIY| Japeay aake|
viva ungyeay jddy viva uotyest fddy uo1jueay pddy
HIOM JON Naomyay)
viva vivad . -
SIBY
—p———
1090044
1audag

-
[B

L
{

layer present is defined as follows (Ref. 16): i3
|

' 1. User Layer. This layer contains all wuser-supplied y
functions, It is the highest layer in the Phase II DNA structure

(Ref. 16:Vol I),

2. Network Application Layer., This layer provides the network
functions for the user layer. Modules in this layer include network |
remote file access modules, a remote file transfer utility, and a
remote system loader module., The protocol used for remote file

access and file transfer is the Data Access Protocol (DAP)(Ref.

16:Vol II).

3. Network Services Layer, Thas layer provides a
location-independent communication mechanism for both the user layer
and the network application layer. Two network application modules 4

may communicate with each other by means of the network services 4

layer regardless of their network locations. The protocol wused i

between network service modules is the Network Services Protocol i

(NSP)(Ref. 16:Vol III).

4, Transport Layer. This layer provides a mechanism for the
network services layer to send a unit of data (a packet) from any
node in a network to any other node in the network. This layer,
while conceptually seperate from the network service layer, is
sufficiently simple in Phase II DNA that its specification is

encompassed by the NSP specification described above (Ref. 16:Vol

111).

- " i s il

5. Data Link Layer. This layer provides the transport layer
with an error-free communication mechanism between adjacent nodes.
The data link module specified for this layer implements the Digital
Data Communications Message Protocol (DDCMP),. The <functions
provided by this layer are independent of communication €facility

characteristics (Ref. 16:Vol IV).

6. Physical Link Layer. Modules in the physical 1link layer
manage the physical transmission of data over a channel. The
functions of modules in this layer include wmonitoring channel
signals, clocking on the channel, handling interrupts from the
hardware, and informing the data link layer when a transmission is
complete. Implementations of this layer encompass parts of device
drivers for each communications device as well as the communications
hardware itself. The hardware includes devices, modems, and lines.
In this layer, industry standard electrical signal specifications
such EIA RS-232-C or CCITT V.24 operate rather than protocols (Ref.

16:Vol V).

The services between modules in the physical 1link and data link
layers are less sophisticated than thoge provided by the transport layer
modules. The modules that reside in the physical 1link and data 1link
layer provide services for moving data from a given node to an adjacent
node only. The modules in the transport and higher layers provide
services for moving data from a given node to any other node in the

network.

92

T

' Y% 3
v v

e

DECNET Phase III, Figure 17, page 90, shows the building of

information as data passes through the Phase III DNA layers. Each of

the Phase III DNA layers are defined below:

l. User Layer. The user layer contains most wuser-supplied
functions, It also contains the Network Control Program, a network
management module that gives system managers access to lower layers

to control and observe the network from a terminal (Ref. 17:Vol I).

2, Network Management Layer. Modules in the network
management layer provide user control of and access to operational
parameters and counters in lower layers. Network management also
performs down-link loading, up-line dumping, and test functions. In
addition, the network management performs event logging functions.
This layer is the only one that has direct access to each lower

layer. The protocols for this layer are (Ref. 17:Vol II):

A, Network Information and Control Exchange (NICE)
Protocol. This is used €for triggering, down-line loading,
up~line dumping, testing, reading parameters and counters,

setting parameters, and zeroing counters.

B. Event Logger Protocol. This is used for recording
significant occurances in lower layers. An event could result
from a line coming up, a counter reaching a threshold, a node

becoming unreachable, and so on,.

93

: ’ i it o AR 3 e e 's",:_gmﬁ_nmhw—h.m_) . i -

ey

Bl T LR
JONSR

3. Network Application Layer. The network application layer
provides generic services to the wuser layer. Services include
remote file access, remote file transfer, and resource managing
programs, This layer contains both user- and Digital-supplied
modules. The following wmodules execute simultaneously and

independently in this layer (Ref. 17:Vol III):

A. Data Access Protocol (DAP). This is used for remote

file access and transfer,

B. Loopback Mirror Protocol., This 1is used for network

management logical link loopback tests.

4, Session Control Layer. The session control layer defines
the system-dependent aspects of logical link communication. Session
control functions include name to address translation, process
addressing, and process activation and access control. The module
at this level is called the Session Control Protocol (Ref. 17:Vol

V).

5. Network Services Layer. The network services layer is
responsible for the system-independent aspects of creating and
managing logical links for network users. The Network Services
Protocol (NSP) module performs data flow control, end-to-end error
control, and the segmentation and reassembly of us.r messages (Ref.

17:Vol V).

94

-_— S T TN * SR Ot SNIIEE TR Pwer e . S %, 9

T VP TP NN

A L e Ay

6. Transport Layer. Modules in the transport layer route user
data, contained in packets, to its destination. The Transport
Protocol module also provides congestion control and packet lifetime

control (Ref. 17:Vol VI).

7. Data Link Layer. This is DDCMP as described previously for

Phase II DNA (Ref. 17:Vol VII).

8. Physical Link Layer. This module is the same as described

previously for Phase II DNA (Ref. 17:Vol VIII).

The three higher layers each interface directly with Session
Control for logical link services. Each layer interfaces with the layer
directly below to use its services. The User Layer interfaces directly
with the Network Application Layer as well. In addition, Network
Management modules interface with each lower layer directly for access
and control purposes. Finally, Network Management interfaces directly
with the Data Link Layer for service functions that do not require

logical links.

EWNET Design. The primary purpose of a network is to pass data
from a source in one node to a destination is another. Because EWNET is
designed around the Phase II and III DNA structure, it is important to
understand how data £flows through the DNA layers and between EWNET
nodes, Data traveling from one node in a network to another passes from
a source process in the wuser layer down through each layer of the

appropriate-phase DNA hierarchy of the source node or host before being

95

transmitted across a line. If the destination node or host is not

adjacent, the data must then travel up to the Transport Layer of the
adjacent node, where it is routed (or switched), sent back down through
the two lower layers, and transmitted across the next line in the path,
The data keeps traveling in this manner until it reaches its destination
node or host. At this node or host, the data passes up the hierarchy of

layers to the destination process.

All hosts attached to EWNET will contain Phase II DNA software,
while all EWNET nodes will contain Phase III DNA software. This
configuration is appropriate for EWNET since the use of Phase II DNA
software in the hosts will reduce the amount of network software that
must be present (homogeneous network) in the host. This satisfies the
requirements that the hosts (ISS computers) contain the least amount of
network software possible; and that host should not be allowed to
perform routing functions. Since the EWNET nodes are the center of the
star topology, they will be required to perform network packet Trouting
and thus will require the Phase III DNA software, Figures 18, 19, and

20 on pages 97, 98, and 99, are the data flow graphs for EWNET.

Summary

This chapter has translated the hardware and software requirements
into a commercially available system design. The hardware design

specifies the topology to be used, the hosts to be included, the

%

g T

MO BYed }SOH-03—3PON/YSOl-03—}S0l

viva

SaPEap YU g

viva

dopray
W oy

vivy

viva

poAcway
Aaptogf et v e

Cyuanelpy-uon aaw apoy
PHUR SO)1 NaguL NuE) Sy

aapraj
|od)

yaodsueay

L

ui'py auav opoN puu
1504 31 (N0 voqul Jui 1Yy

Japea
LALLM
g

Jake|

HA0M JON

Jaky

Jaodsaea),

Jaku'|

Jaodsueay,

YL dAoyy

wa3hwy IV

g1 aandig

97

L s iy v

MOT4 BB 9PON-03-3pON 61 3Jand1y

FRTIRT] Aapezag) dapeay dopeal Jape.af Joapual
Ny vivy i) Buy iy ury viva fesun) a1
I aodsuea g vy yaodsueay o e
KRTIUINT dapuoly Japuay dakeg
el vivil iy oy e Bur ejuqg
LI LD
Japnoy ._..‘-—:7.:
vivag [CNETIDRY Jdaprapy vivd Loa o) dapea]l FETCH
aodsusay But oy Jdodsueat dutynog juaoel’py aaw Juinoy
sopuN oMy Jt
Ajup yuy) siyy axey
{ _
Japeoa)| Japea]
viva (od vy viva oajuo] 2ake’y
yJodsueay o PY-UoN 3ae SOpUN oMl Jdodsuea yuodsueay
31 Aguo ju1p syl aneL
aakey
yaodswmag
viva viva ayl aaogy
saakep |1y
W oapen W oapoN
.
A a4

R N S

98

PG o S bl Tttt

:

— - Lo T T LI T T T e
MOTJd ®ye(q 3}SOH-03-1SOH 02 aundiy

KR dapudty dapeagl

Y viva viva | viva jotquo) Ry

LA LRLU) wuq eng Jaodsuea), ejeq

4 !
ERTUTRY] REN DS dapua) Japea)
wuri vava vivy toajuod]| Burynoy Kut aakeg
mjug Jandsuea), eyeq Rui] ¥jeq
gapuay Japeal Jopeayy .
viva toayuay | durynoy vive todjuagf oPeN ok y
Jaodsueay Juodsuedy 1 noy WJUM JON
1 f
dopea|
vava (o) vava dopuall Japeal
Faodsueayg apoN ames 3o viva _.M,...:cu viva a—-“.r::cu c...bu»c.-
sayL[1aleS adE NSO wodsusag Jdodsunay jerodsuvay
3V KQuo yutq sy aneq
Jakey yaudsueay
ayy aavyy
Yivd viva saake’] (udo0juagd 11V
[{ AR LT] W Asol
W apon

¥ 3IpoN

99

» -y
»

by

specific node to use, and the transmission medium to be used for each
EWNET 1link. Each of these design decisions is based upon the
requirements analysis and supported by background data gained from
researching the various design options, The software design is based
upon the structured specification in Appendix C and was derived
primarily by studing the commercially available network products such as
IBM's SNA, Xerox's ETHERNET, and Digital's DECNET, Once the network
product best suited to EWNET functional requirements was chosen, further
refinement of the commerically available network product was required to
fine tune the network configuration to the EWNET requirements. The
Digital Equipment Corporation's DECNET was chosen and refined because it
best suited EWNET's functional requirements and because the DECNET was
designed around the X.25 communications protocol (Ref. 15:348).
Additionally, DECNET is completely supported by the Digital Equipment
Corporation's Internets product (Ref., 15:340-349). The Internet
products are data transfer facilitators (not hardware emulators) that
provide mechanisms for interchanging data with IBM's SNA protocol
structure and remote batch workstation, UNIVAC's remote UN1004/NTR
batch, and CDC's interactive MUX200 batch. Finally, Digital Equipment
Corporation is in the process of implementing Packetnets (public packet
switching networks) based on the X.25 protocol throughout Canada, the
United States, and France; and initial local computer DECNET networks
are being designed by Digital Equipment Corporation that will be based

entirely upon the ETHERNET concept.

Due to the above discussion it is apparent that Digital Equipment

100

’*:: - ‘ i e e er———— ”W"MT

Corporation's DECNET is not just another network design; is is a ’ %
) complete networking concept which allows future growth as technological ?
i

advances are made.

The complete structured design of EWNET is contained in the Network i

Profile located in Appendix D (Refs. 18;19). Appendix D was included

as a tool to be used by the EWNET Management group in the procurement of
the EWNET. Appendix D was written in the exact format required by the
Digital Equipment Corporation, but does not contain all data necessary
to procure the network at this time since this thesis study was i
concluded before complete information on all hosts became available (had %

not been procurred).

This chapter allocated all off-line host software modules to

particular node processors in the network.

PR

101

Conclusions

This investigation, the development of EWNET, was based upon the
actual requirements of the Electronic Wartare Engineering Branch
Laboratory. The user interviews were used both to determine what the
exact user requirements were and to provide a vehicle to document these

requirements. From these user identified requirements the functional

requirement specifications of EWNET were determined.

The EWNET functional requirement specifications were broken down
into the hardware specification and the software structured
specification. This portion of the investigation was the most
time-consuming. The ©process of determining these specitications
required that iterative design decisions be made as the specificatioms

evolved.

The time spent developing the functional requirement specifications
proved to be worthwhile once the design phase was started. Because of
the amount of partitioning that had to be done to arrive at the
specification level, the design proved to be straightforward. The
evaluation and selection of a commercially available network product and
the tuning of this network configuration lead to a network design that

was unique with respect to the EWNET functiomal requirements.

The network was designed in such a way to minimize the amount of

|

protocol software residing in each ISS so that minimum effect would be
felt by each ISS at implementation time. The Engineering Branch Host f
Computer functions and the EWNET functions were combined to eliminate -
the need for virtual terminal protocols. The most difficult portion of
the investigation concerned the vast amount of information existing on

network designs, forcing extensive reading on the part of the author.

The implementation and testing of the EWNET configuration is in i
process at the Electronic Warfare Division, Robins AFB, Georgia. The
implementation is proceeding in steps; each star configuration is being
set up and tested before the core loop configuration will be added. i
This approach is giving the ISS 1lead engineers time to familiarize

themselves with the benefits of using the network.

Recent news from Robins AFB indicates that the EWNET is already 3

proving to be a valuable tool to the Electronic Warfare Division; the
time spent in obtaining databases from other similar ISSes has been
significantly reduced, thereby freeing up valuable time for engineers to

perform other task,

In summary, through the user interviews, Structured Analysis

techniques, and Structured Design techniques, a top-down design of EWNET
was achieved., All primary requirements of the Electronic Wartare
Engineering Branch Laboratory for file transfer capability, resource
sharing and ISS independence have been met in the design. The

structured approach allowed the interfaces between the layers of

protocol to be clearly defined and together with the functional

103

f requirement specifications allowed the selection of an appropriate

1 commercially available network product to be signigicantly simplified,

leaving only network enhancements to be considered in follow-on

investigations.

L Recommendations

Because the selection of a design for EWNET was limited to a

commercially available network design which is already in the
implementation and vesting phases, follow-on investigations will be
limited to enhancements to the EWNET. The exact enhancements and
specific task involved which the Engineering Branch Laboratory would be

interested in are listed below:

1. Data link to Eglin AFB, FL, Math Laboratory.
a., Determine best approach (satellite or landline).
b, Develop and implement the necessary virtual terminsl
protocol.
2, Standardize all outputs from the nretwork into one format.
3. Automate all 1SS and EWNET documentation.

4, Implement a network command terminal capability so that

standalone terminals can be added to the network.

104

S5e Evaluate DECnet statistical network data and make

T? recommendations for additional capability (i.e., software monitors,

hardware monitors, or standalome statistics collecting node). .

6. Evaluate the EWNET routing algorithm when the network grows

to include an additional node.
a, Design new algorithm
¢ b. Test algorthim using a simulation of the EWNET :

¢. Implement new algorithm

A simulation for an AFLC Bulk Data Network has been formulated in

apere:

another research project at the Air Force Institute of Technology (Ref.
20). This simulation was written by a fellow Robins, AFB employee using f
Pascal to represent a specified network design. But, in conversations
; with the simulation author, it was determined that slight modifications |
(packet length, etc.) could result in the tailoring of the simulation to
represent the EWNET cofiguration., This simulation could then be hosted
on any of the computers within the Engineering Branch Laboratory and act
as a valuable testing tool in the evaluation of future enhancements to
the EWNET. Finally, it is suggested that extensive study and evaluation

of the DECnet-ETHERNET concept be undertaken once the Digital Equipment

Corporation makes the documentation available. The study should focus

on the advantages to the Engineeri-g Branch Laboratory of implementing

this protocol structure on EWNET.

.

Adha

F X2 2%
"

|

4

l. Hobart, William C. Design of a Local Computer Network for the

Thesis. Wright-Patterson AFB, Ohio: School of Engineering, Air Force
Institute of Technology, March 1981.

2. Vogler, F. H, and J. A, Copland.
i —Station System Study. Georgia

Institute of Technology Study. Engineering Experiment Station, Altanta,
Georgia, May 1980.

3. Georgia Institute of Technology, Engineering Experiment Station,
Systems Engineering Laboratory. i i

_Station System Specification. Altanta, Georgia, 1980.

4, McQuillan, John M. “Local Network Architecture”, Computer Desigm,
4:18 - 26 (May 1981).

5., Dineson, Mark A. “Broadband Local Networks Enhance Communication

Design™, Electropic Design News, 12: 77 - 85 (March 1981).

6. Martin, James. Degign of Man-Computer Dialogues. Englewood Cliffs,
N. J. : Prentice-Hall, Inc., 1973.

7. . . s
Wright-Patterson AFB, Ohio. 1 April 198l.

8. Levy, Walter A. “Too Many Networks, Not Enough Gateways ,
Mini-Micro Systems. 9 : 104 - 109, (September 1980).

9. Weinbery, Victor. Structured Apalysis. New York, N. Y.
Yourdon, Inc., 1979.

10. TRW Defense and Space Systems Group.
=== . Redondo

Beach, Califormia, April 1981.

11. Tanenbaum, Andrews. Computer Networks. Englewood Clitfs, New

106

[

Yersey: Prentice-Hall, Inc., 1981,

12. Davies, D. W., D. L. A. Barber, W. L. Price, and C, M.

Solomonides. Computer Networks and Their Protocols. New York, N. Y.:
John Wiley and Sons Ltd., 1979,

13. Digital Equipment Corporation, VAX 11 Software Handbook.
Description of VAX-11/780 Software. Digital's Sales Support Literature
GrOup. 19800

14, Digital Equipment Corporation. PDP 11 Processor Bandbook.
Description of PDP-11/04/24/34A/44/70 Processors. Digital's Sales
Support Literature Group, 1981,

15. Digital Equipment Corporation, PDP 11 Software Handbook.
Description of PDP-11 Software Products., Digital's Sales Support
Literature Group, 1980-8l.

16, Digital Equipment Corporation. Digital Network Architecture II

: . Description
of the Digital Network Architecture - Phase II Implementation of All
Protocol Layers. Digital's Sales Support Literature Group, 1980.

17. Digital Equipment Corporation. Digital Network Architecture JII
P Ls {£3 : . Yol L. ILs IIl. IV. V. VI. VII I
_VIII. Description of the Digital Network Architecture - Phase III
Implementation of all Protocol Layers. Digital's Sales Support

Literature Group, 1981,

18. Digital Equipment Corporation. Peirpheral Handbook. Descriptions
of all Peripheral Equipment Manufactured by the Digital Equipment

Corporation. Digital’s Sales Support Literature Group, 198l.

19, Digital Equipment Corporation.

Temminals and Communications Handbook. Descriptions of all the

Terminals and Interface Products Manufactured by the Digital Equipment
Corporation. Digital's Sales Support Literature Group, 1980.

20. Stewart, Stephen. Simulation of the AFLC Bulk Data Network. MS

Thesis, Wright-Patterson AFB, Ohio: School of Engineering, Air Force
Institute of Technology, December 1981.

ﬂ_“wﬁwﬂ,. -

abiica

Appendix A

User Interview Results

This appendix contains a compilation of the results of the user

interviews that were conducted in the requirements analysis phase of the

investigation at Robins AFB, Georgia on 10, 11, and 12 June 198l. These

results provided the basis for the specification of the EWNET functional

requirements in Chapter II.

Letter Requesting IntervieW.eesssescosasccesaocscacsonsscrsansnscossssas
Interviewecesevesssssasoscssosasssnssassscossescsssaasssssssasnssassaas
Projected UsSeSecesesscsasossnssnsssesensssssascsnsscscosssasnscase
Functional Requirements 0f EWNET..eececescescocacsoscrsacasasncoe
Other CoOmMMENntS.evecsecrsossovscscassasssssnsrsscnsassasccsasncsssass
Design-Oriented Functional RequirementS..csccesccacescascsasaces

List of Users who were Interviewed...............-...--.........

108

Page
109
11
113
115
121
122

127

To: MMRR (Mr. Joe Black)

Subject: AFIT Thesis : Electronic Warfare Local Computer Network
(EWNET)

From : AFIT/ENE (Mr. Robert H.Stokes, Box 4083)

1. Attached you will find 25 copies of the interview I am using to

; obtain data necessary to design the Electronic Wartare Engineering
: Branch Local Computer Network (EWNET).

2. These copies are provided for distributiom to yourself and the MMRR
sections listed below:

1. MMRRA
2. MMRRC i
3. MMRRI

4, MMRRV

5. MMRRW (Info Copy Omly)
6. MMRRF (Info Copy Only)

I wish each section chief to retain a copy and send the extras to the
following system lead engineers:

1. AN/ALR-46

2. AN/ALR~62

3. AN/ALR-69
4, AN/ALQ-119
5. AN/ALQ-125 'ﬁ
6. AN/ALQ-131
7. AN/ALQ-155
8. AN/APR-38

90 3-52

10. F~15 TEWS

i A 109

h ‘ m: . BESNRISER= S e R

L e) e —— HOSI. - v "1"

11. EF-111A

12. FLTS

13. EWOLS/ECSAS

14, UNIVAC-1108

15. Engineering Branch Standardization Group

Plus any systems the section chiefs feel should be included in this
list. Feel free to make additional copies of the interview if the need

arises,

3. Each system engineer should review the EWNET interview, answering
those questions that are self explanatory, within the next two weeks. I
will be arriving at WR-ALC on the morning of 10 June 1981, and will be
available to interview each system engineer and to answer questions
about the interview portions that are not self explanatory. I will only
be able to spend 3 days at WR-ALC before returning to Ohio. Therefore,
I hope that the two weeks before I arrive will be ample time for all
users to review the interview and be prepared for my arrival(. In the
interest of expediency, I would appreciate it if each section chief
would query the system engineers in his command and meet with tne other
section chiefs to setup an interview schedule for me. I think it will
take approximately 50 minutes per interview if each system lead engineer
is interviewed separately., If the section chief wishes, I <can be
prepared to interview all system lead engineers in his section at one .
time in a group discussion, The interview schedule should be delivered

to Mr, Black's office COB Tuesday 9 June 1981, for immediate pickup by

Mr. Stokes on the morning of 10 June 1981,

4. I am fully aware of the limited time and resources at your disposal
and hope that what I have requested will not cause undue hardships on
anyone., I only wish to design a network that will meet everyone's needs
within the Engineering Branch, while providipng the maximum feasable
support for the ISSes. I can only obtain this goul if I have your help,
without it I must rely on my own limited knowledge of all the system
requirements. Your efforts in this area are much appreciated.

Robert H. Stokes
MSEE Computer Systems

EWNET INTERVIEW

Introductory Narrative

I am in the Preliminary design phase of the Electronic Wartare
Branch Local Computer Network (EWNET) and am attempting to determine the
uses envisioned for EWNET as well as all functional requirements
associated with it. Therefore, I would appreciate any help that you can
give me in determining these requirements. Hopefully, the questions
that I have prepared in the interview outline will provide a framework

within which you can communicate your ideas to me in this area.

The interview is divided into four sections. The first section
lists typical uses of local computer networks, asks you to evaluate the

benefits of having the capability for each use on EWNET, and then asks

you to specify which uses you would like to see implemented first. The
second section lists some of the functional requirements that must be
determined and asks specific questions dealing with each of these
requirements. At the end of this section, you will be asked to rate
each of the functional requirements on a scale from ~DOES-NOT-APPLY" to
"MUST HAVE”, The third section requests that you express any ideas that
you have concerning EWNET that were not expressed by your responses to
the questions in the first two sections. Finally, the fourth section !
contains questions related to design-oriented requirements and deals

with network management. Users are not required to answer these i

questions, only section and branch management need respond, although all

111

inputs will be appreciated.

Name of the Person Interviewed
Date of Interview

EW System Represented

Section I ¢ Projected Uses of EWNET

A,

Resource Sharing

1. Peripheral Sharing = capability to access network from any

terminal and access any peripheral in the network from any host.,

2. File Access and Transfer = capability to transfer files
between the devices and the hosts with all file restructuring

transparent to the user.

3. Software Tool Sharing = capability to access programs,
compilers, cross-assemblers, and utility routines anywhere in the

network for the user's program.

4., Access To ARPANET = capability to access ARPANET from any

terminal.

5. Access to AUTODIN I = capability to access AUTODIN I from

any terminal.

6. Access To UNIVAC-1108 = capability to access the

UNIVAC~1108 from any terminal,

112

7. Threat Generator = capability to use digital threat

information generated from a central location.

8. Flight Test Monitor = capability to monitor Eglin AFB

flight test in real fime. *¥*

B. Distributed Processing = capability of executing job processes that
can run concurrently on different computers.

C. Distributed Databases = capability to access and maintain databases
that are distributed across several computers in the network (Central
Threat Database).

D. Video = capability to monitor Eglin AFB test video (ground and
in-flight). **

E. Fault-Tolerance = capability to provide a more graceful degradation

of user service when a network failure occurs.

113

b, &y

F. Rate the Above Projected Uses.

- - s " D Y D D D A TR G s e P s D s e D s U R R P L e L G AR TR R D G S R G ST A AT G A P D D P e W G G W v W

| PROJECTED USES | VERY | GOOD | MEDIUM | LITTLE | NO |
| | cooD | ! | USE | USE |
| PERIPHERAL sHARING s 4 oz 1 1 10|
PILE TRaNsFERS	8 1 21 1 1 1 10			
SOFTWARE TOL smARING	8	3 1 1 1 o0	0	
ACCESS TO THE UNIVAC-108	5	4	1 1 1	2
accEss ToavToDIN T) 1 1 11 2 1 o 1 8				
Access To areANET 1 o0 1 o0 1 o 1 4 1 81				
THREAT GENERATOR	4	s 1 1 1 3 111		
FLIGAT TEST MoniToR [2	1 1 3 1 3 I 31			
DISTRIBUTED PRocESSING	2	3	4 1 3 1 0	
DISTRIBUTED DaTABASES	2	3	4 1 4 1 0	
R N N N				
PavLT-ToLERANGE) 41 71 2 1 o 10				

- - e - D En - G e S Y S W S O A s R e Sm R R fu D G A S G e S e WP T D G G N e e T e e e e W .

(Composite of User Responses)

G. What group of things would you like to see implemented first?

1. Peripheral Sharing 4

2., Software Tool Sharing___ 1

3. File Transfer_ _ __1

4, UNIVAC-1108 Access

S. Distributed Processing___.1

114

A

H. Prioritize the above group of uses with related comments:

l. File Transfers

2. Software Tool Sharing

3. Access to the UNIVAC-1108 -~ Backup of ISSes, Common

Databases, and Off-Line Processing,

4, Peripheral Sharing - Critical peripherals such as plotters

and printers,

5., Fault Tolerance - NRo support from DECNET,

6. Threat Generator

7. Rest of List in any order.

%% Intertace to Eglin AFB TM-Stations and Math Lab has not been defined,

Possible satellite link to Eglin AFB is being considered.

Section II : Functional Requirements of EWNET

A, User-Oriented Requirements

1. Throughput

A. What computer / models do you envision using with

your ISSes over the next 5 years?

B. What will be the average utilization in hours per day?

115

I s 5« o+ e ’

o d

4
¥
. »

’

c.

2.

What will be the maximum utilization in hours per day?

COMPUTER NORMAL USAGE MAXIMUM USAGE
UNIVAC-1108 8 24

VAX 11/780 6 12

VAX 11/780 4 7

VAX 11/780 7 8

VAX 11/780 10 24

VAX 11/780 5 8

VAX 11/780 8 24

VAX 11/780 8 24

VAX 11/780 8 12

VAX 11/780 5 12

PDP 11/34 6 12

PDP 11/34 6 24

PDP 11/34 6 24

PDP 11/34 8 12

D. G. ECLISPE 5 12 | TEMPORARY
HARRIS 6024/4 4 24 | TEMPORARY

Response Time

Do you forsee any projected uses of the network that

requires that the response time of the network to a set of

commands not exceed some threshold?

3.

YES--Fast enough so no data is lost to a low sampling rate.

YES--Response time due to resource conflict should never
exceed 5 seconds,

YES--Interactive terminals = 5 seconds.

YES--Interactive terminals < 1 second.

YES~~File transfer ISS-to-ISS < 5 minutes.

User Interface

116

A, Would symbolic device accessing be desirable?

R S ey

»
T TR

’ (Making the actual host that an 1/0 device is connected

to transparent to the user.)

YES=-----~ =~ 13
NO------ ~—--- 0
OPTION-----=~ 4

B. Should the same be done for software tools?

YES~----~- -~ 13
NO-=~-==-~=-=- 0
OPTION------=- &

C. Do you forsee the need for ISS / network interface

accounting data?

|
YES~=~==~=m=- 11 *

P
L 3 |
NOTE:

Number of times the ISS is externally accessed. |4
D. What other features should the network present

to the user?

Built-in-teSt=-~-=eccecccmcececcacacc—van 1
User prompts and 'help' routineg-=~------ 3
1SS independence-=-~-~-v-=secmceccaceama- 13

In-house distribution

}: 117

Point-to~point-=-=--s-=-cccccocoao 3

' Broadcast-------- Seserseceeeeeee- 1

4, Security

A. Do you forsee the running of classitied data or

programs on the network, and if so at what

classification? 3
YES---=-==-n-monu 14

b
NO--======- R 0

SECRET

B. Do you forsee the need to protect databases on ¥

the network from unauthorized access? :

YES--=-===- ~m———- 14
NO--=-==-~=~- ~mmme- 0
COMMENT :

2 Element-password to protect need-to-know
Security accountability = if the net could
record time, destination, and password of
classified receiptents, then would be a benefit

to audits of activity when problems arise.

5. Availability

A, What is the minimum percentage of time that you

118

feel that the network should be available? ;

' B. What is the reason for giving the above ,
availability?
100 Z=-=-~ 6 (0800-1700 hours + emergency changes 5

day work week)

99.9 Z----1

95 Z----- 2 (24 hour day, downtime = 5 %) ;
90 Z----- 1 (network required for full ISS capability)
50 7-----2

C. Special consideration for availability: Emergency

changes should have priority when field support is

required, nothing should get in the way.

6. ISS Interaction

How and why do you envision ISS-to-ISS interaction?

1. Internal to section only-==-==-=csw-c--rec--= 5
2. No external / limited external---=---=<<-c-- 10
3. Interaction with simulation & analysis------ 1
4, Interaction with Flight Line Tests Sets----- 1

7. Other User~Oriented Requirements?

1. Common network command language----===---===- 2

2. Central documentatiopn-~=-----c-ec-e-cccoacc-- 2

3. Word-processor-=~--==-s----sc-s-cmoos-coo-coooe 5
119

A - A a m*—hmmﬁ.- PR

4,

5.

Data link to Elint sourceg--==--===-c-c-coc--
Overflow / surge load handling-----=---------
(Using another ISS's terminals
to operate your own ISS)
Self-configuring through periodic
status checks of the network members----=-----
Real~time capabitity where one

ISS takes complete control of network--------

120

B. How would you rank the functional requirements for the above areas?

| AREA | NOT | MARGIN | APPLY | VERY | MUST |
| | APPLY | | | APPLY | HAVE |
| teRovcEPLT 1 o0 1 o 1 31 7.1 3.1
| ImeeovssToe 1 0 1 1 1 21 711 3|
§ | USER INTERFACE)) | 0 l““(-)-“; -"; T- : ! “8 I
| secorte 1 o0 1 o | o1 o1 12 |
| avamasire 1 o0 1 o | 41 &1 5 I
| 1ss-To-1ss INTERACTION | | 4 1 4 1 1 1 2 1 1 1

(Composite of User Responses)

Section III ¢ Other Comments

What other comments or suggestions do you have concerning the

projected uses and/or functional requirements of EWNET?

1. The network software must be interrupt-driven. (Undecided)

2. It would be nice to be able to interrogate the network to

find a file that was sent. (6)

:
i
|
L

3. The network should not be used for general software

development. (4)

4, It should be easy to initialize the network with an

arbitrary subset of the nodes available on the network. (4)

121

-— SN PR _ e I T R U et o

5. The number of nodes and their locationms should be

' addressed. (4)

6. The number of ISSes per node should be addressed. (4)
7. Fiber optics should be used for the interface cables. (4)

8. The network must be designed for a high level of
interaction for future growth but must be capable of implementation

with very limited capabilities. (13)

Section IV : Design-Oriented Functional Requirements

The following requirements are not user-oriented and should be
answered by section and branch management. Section and branch
management are being asked to answer the questions in this section since
no single network management group presently exists within the
Engineering Branch.

Management Title

A, Design-Oriented Requirements
1., Flexibility
A. What changes do you see being made to the network

during the next few years?

1. More hosts and devices being added--~-~~~-v-c-e=- 6

L

A 122

1
2. Being used more for non-EW purposeg-=~--===~==---- 3
3. Workload changing from mainly file transfers----- 3
4, More software development systems added--=~~~----- 5
5. Expanded use of on-line threat database---=--=--- 1
6. Usage expansion as value is identified--~~~-~=--- 1

B. How important do you feel it is for EWNET to be

easily reconfigurable with respect to the following?

" - B = =L > - Y e - > =y = - = A - S Gn = O G Sy G e e T e R W .

g | NETWORK SUBCOMPONENTS | VERY | SOME | NOT |
‘ | NEW COMPUTERS AND DEVICES [7 | 3 | 0 |
| v ToroLoctss | 2 1 3 1 5 |
| wew pRoTocoLs L 2 1 2 1 6 |
| N TRANSMISSION MEpioH | 2 | 3 | 5 |
| SERAL-TO-PARALLEL | 1 1 7 | 2 |

(Composite of User Responses)

2. Per ormance Monitoring

What performance monitoring capabilities should

EWNET have?
1. Collect accounting data--=~-------~-~-w--]
2. Collect node statisticg-==~-=r-=r~==-===-= 7
3. Hardware monitors----r=-----c------so-co- 1
4., Software monitors---=------=---c----=---< 7

123

Lo R RN AN i e ™

5. Monitor network bottlenecks---==~-===-c--- 9
6. Monitor network status~-~---~---~ce-cec-- 9
7. Performance monitoring node-~~-~=---=--- 3
NOTE:

To protect from network slowdown must be on demand

basis only.
3. Distributed Processing Language
What language(s) would you like to see implemented on
all or most of the hosts if a distributed processing

capability is implemented?

1. Jovial J-73=-==w=---~ 4
2. Pascal=—=-==cmcca=eo 3
3. ADA~~w--mmmccmeeanes 10
4, Fortran----=-—====--- 6
5. Bagsig-m=~~c=wocea-ao 5
NOTE:

ADA has powerful control structures for distributed

processing.
4., Other Design-Oriented Requirements
Are there any other design oriented requirements that

should be addressed?

1. System should contain dual pass~word access.

124

2., Infinite queue detection

How would you rank the functional requirements for the above areas?

P X T L T ¥ e i e e e L. L LT R R P Y T L L P R L T L

| AREA | NOT | MARGIN | APPLY | VERY | MUST |

| APPLY | APPLY | | APPLY | HAVE |
|rexmsrioze 1 0 L0 1 2 1 3 1 4|
| PERFORMANCE MONITORING 1 0 | 0 1 & 1 3 | 2 |
| DIST. PROCESS LANGUAGE 1 o0 1 0 1 6 | 1 1 21

- - - - . D e e S = A = e e = S S R D T = R S W e SR e 3 S R me En W N v G e e

(Composite of User Responses)

General Comments

Al Richardson: 1 see the host processor group
handling the nodes and documentation, word processing,
backup requirements for all ISSes connmected to the
network. The software common tools and the database
must be resident at nodes common to all systems. The
EWOLS and ECSAS systems must be able to operate through
the network from any CRT terminal and not interfere
with ISS operation”.

Evervone: “Don't want own ISS tied up by someone

125

else., Each ISS should process its own jobs first

before servicing anyone else”.

Mapagement: ~If it is possible, we world like to see the
functions performed by the UNIVAC-1108, performed by the

Network Node Computers.

126

Sec

Mr.
Mr.
Maj
Mr,
Mr,
Mr.
Mr,
Mr,
Mr.
Mr.
Mr.
Mr.
Mr.
Mr.

Mr.

Mr,
Mr.
Mr.
Mr,

Mr.

tion V : List of Users Who were Interviewed

USER'S NAME

Joe Black

John LaVecchia
. Al Richardson

Russell Decote

Jerry Nachreiner

Don Schroeder
Art Daum

Bobby McDonald
Dean DeLaigle
Dennis Thomas
H. J, Hildreth
Jerry Reynolds
Hal Maney

Gary Cox

Bert Goble

Tom Ridout

Tom Batterman
Phil Oliver
Bob Smock
John Louth

N. Mitin

Harry Jennings

EW SYSTEM CONTROLLED
Electronic Wartare Branch Chief
Simulation & Analysis Chief
Unit Chief
Standardization
ECSAS
EWOLS
UNIVAC-lldS
Jammer Section Chief
ALQ-119 Unit Chief
ALQ-155
Integrated Sys. Section Chief
F-15 TEWS
EF-111A Unit Chief
USM-464 (FLIS)

APR-38

APR-38

RWR Sys. Section Chief
ALR-46 Unit Chief
ALR-46

ALR-46

ALR-62

ALR-69 Unit Chief

127

OFFICE SYMBOL

MMRR
MMRRA
MMRRAA
MMRRAA
MMRRAA
MMRRAA
MMRRAH
MMRRC
MMRRCB
MMRRCC
MMRRI
MMRRIA
MMRRIC
MMRRIC
MMRRIT
MMRRIT
MMRRV
MMKRVA
MMRRVA
MMRRVA

MMRRVB

MMRRVC

Appendix B
Electronic Warfare Engineering Branch Laboratory Floor Layout Diagram

and Topology Structure

This appendix contains a floor layout diagram of the Electronic
Wartare Engineering Branch Laboratory at Robins AFB, Georgia. The
location of all ISS computers with semi~permanent locations are shown as
well as the proposed locations of the EWNET node computers. Finally,
the computer links (topology) that were initially proposed by the
Georgia Imstitute of Technology to connect the node computers are shown

(Refc 2:10)0

Page
First Floor LayOUteseesceosescacanosnsssecsecossssssasosacssssccansssnsssas 129
Second FloOr LayOUl.ececessesosaccsacevsoscecsascasssvssncssssssssessssssss 130
Third Floor LayoOutececeoccecsosovoossoscososcesscnsssssssacssasssssssssssssss 131
Proposed Georgia Tech Topology 1 StrucCtUr@ecescecscscessacssccssscnsaes 132

Proposed Georgia Tech Topology 2 StruCtUr@eesecsssescccccccscnsecesssase 133

128

e

i

7//////
~ EF_111A ISS

SW

228 fect

222 2

VAX_11/780 7@
/
| |£..2
L~ Ve
F-15 -
o ;TEWS e
< [aRC IsS <] pOP-11/34 FISS ;
NORTH e A e -
» - 7
C 2
r----- E—— | v’ //
; 7
-] ‘/:/2///’
VAX~11/780

L

HARRIS-6024/4

iy s]]

113 feet 4

t

129 Figure 1-B 1" Floor Layout

y 'y

NORTH

-

L R onumm——y ——
W
- ALQ- ’/‘
L~ s
L~ 131 7]
Z 7z
2
L~ //
//'/
VAX-11/780
t
1 E
2
e o}
™
/ (81
; EWOLS/ECSA S
; v
; VAX-11/780
//
| = --—-ﬂ e——— anasse—
ALQ-119 L
- ALQ-
SASE 3 Q
L 119
//// -
/
ELLISPE $-230 o
VAX-11/780
-
| L 1 . |
$- 113 feet '4
130 Figure 2-B.2 " Floor

Layout

north

L~ ALR-62
” 6

ZVAX-11/780

e

Ao

e
e
S

]

o o

PDP-11/34

‘e
%Lo-lzs//é

//////

MODCOMD CLASSIC

228 (eet

113 feet

131 Figure 3-33rd Flour Layout

-

B-52 ALR-62 ALR-46 FLTS ALQ-125
PDP-11/34 VAX-11/78 VAX-11/780 PDP-11/34 PDP-11/34
.
379 FLoOR NODE
i
ALQ-131 ALQ-155 EwoLS/ECcsas] JALr-69 ALQ-119 ’

L fvax-11/780 vax-11/780] Jvax-1i/780) Qvax-11/780 VAX-11,780 *
!
!
, 4
j

15% FLOOR NODE 2"? £100R NODE

APR-38

F-15 TEWS ARC EF-111A UNIVAC-1104

ARRIS~-6024
/4

VAX-11/780

PDP-11/34 VAX-11/780

ry

132 Figure 4-B Topology Structure

b o . . i e

PDP-11/34

*;T

/L____.-

Foori/s: |

PDP-11./34

PDP-11/34

37 FLOOR NODE

VAX-11/780

i

VAX-11/780
r- VAX~-11/780
e /
o
- “é T ___lvax-11/780
i =
[} o~ \
o
< S
> = \\\\\\\\\\\\\\\\\\\ VAX-11/780
Yt e}
=)
= N
\ VAX-11/780
VAX-11/780
5] VAX-11,780
[
S
=
=
g
- VAX-11/780
fae
-
n
hd PDP-11/34
. H\RRIS-6024/

4

133 Figure 5-B

Topology Structure

430

Appendix C

Structured Specification

This appendix contains the structured specification of the software
requirements for EWNET, First, the complete set of data flow diagrams
is included. These are followed by the data dictionaries for the
high-level protocol (user-level), the architecture-level protocol, the

transport/network-level protocol, and the link-level protocol.

Data Flow Diagrams for User Level ProtoCOl.cecsseacecsosscesssosacssoansa
Data Flow Diagrams for Architecture Level ProtocOl.ivesssecscsccsceocens
Data Flow Diagrams for Transport/Network Level Protocol..ceccecesessecs
Data Flow Diagrams for Data Link Level ProtocOliccseescsecscsccsccccses
Data Dictionary for User Level ProtoCOl.ceevesccsccscsssssosacsssscccns
Data Dictionary for Architecture Level ProtocOl.icecceccccoccccsscccsass
Data Dictionary for Transport/Network Level ProtocOlesecesssecesscscsss

Data Dictionary for Data Link Level Protocol.cececsccesscsssccsssccnsss

134

Page
135
139
149
164
175
190
256

325

RS -

* S ————— -

Contents

Page
EWNET Overview (Network Operating System) DFDeevesnvsoscsccccnsanssscsane 136
Execute EWNET Protocol at Primary Node (1) DFDivecccccecscscccsasanavee 137

Execute Help Comands (1.2) DFDC...C.....l.".‘l....ll."....l.OIllI... 138

135

(0°0) @iq (woysAy Furjeaody SMAOMIIN) MATALDAQ JIUMY T-D) ddandiy

Jo yeaadp
Aaupuoaag

—

Aujds rg-ao e,

lo-Kaepuanag

apuN
Aaepuoosag

JLANMI
2)nvaxy
2

FLITRLITINE

SN L= |RILEAY G- Butmooug-Kaepuonag

>|‘! spurswo)-so0yeiadg-Lresiag

apuN
Aawwrag
W jesnjoad duieaady
LANMY faewiaq
Inaaxy

syayou g jearskyi-du

LRSI g N

Ke (ds1g-a0qea2dp-Kave s ag »

136

adad (1) IPON >.,::=_c_; 1R {OD0)0d JOUMT]T DNDAXY §-) of:_.u_,._

spaong- (eosAyg Hued g Loy} " TR rEduteding MRURUS
RSy : ._..\.r.u_..
BT qurg
_ NRLIRAS] 9 _:.‘r.x.._
- I o1
» . S
f Aaupunsag spoyor - pearSg)- Yutuaoug RRLER: Rar k. KEN J,«J
|~_:_E....=; 5
S OO uodsoy
§ {02004 F1ds (l-d01v.10d0
apunag

t~
L1
joanjod) —
[RARS sk g-Jaodsuea - du Twoou) (o030,
PAGTRRIY poaay
anoaxy yaodsaeag
§ 1 RILIBRES]
syajon - rodsusa g -durod yng vy
)
w FRRNRUN
3 . -~
1 . ; DN YDAy -
S 1oRd ~dutwoongy TR
] —aan oy nyoay-dureding :
M . {nonyaay
w 1 [ELEN] spRewwo] B UYY
EXUFRSIRITRNTY & —— P 2 - ——
2 naaxy adp-aanyoapiyaay L yaq SpuTemo)-Ja0;e23d0
M £ "t)
puULIwo)— | 1507
*
' v - ;
el

aJ1a (z°1) spuewwon dyep IINOIXF -) asund

[N IR
dujaey
Hedvm paN
R RYINN]

Gou

Na.n
—-::

A

n
DALYV O R
apraag,y

sosnuodsay

-
-

Jdjon
apo)
9z

asundsoy - dyap apqe) - suaooa - andujeiq puewwo) ~djo) - yaomiaN

Yuraaajsuea),
do g aanpadng g
apraoag
LA |

o —:_
A0 o
[LERIIRT
LA
et

138

Page

EWNET (Architecture) Overview DFDiceecesscscscaceacscseacsccossocassasas 140
Execute Architecture Protocol at Primary Node (1) DFDeccvecccecsccccnaes 141
Decode Status Packets (I1.2) DFDuvececccacascscscsosasessanscascascacsseee 142
Generate Control Packets (1.3) DFDicecesescssscscosssscnsoscosscscncaces 143

Execute Stal‘tup Packets (1.4) DFDQ...‘..'.l.'..lI.C.‘l..l.....l-........ 144

) ke e b ik B ks mamwaamens e e

Execute ACC/ACK PaCketS (1.5) DFD....OOl...toc.l.ool.ootn...coal..c.occ. 145 ;

i

Execute Control Packets (1.6) DFD...I.I‘..l'I..'.'......I'.'..ll......'. 146 é

"

Execute Continue Packets (107) DFD.'I."..l..I'...'C...Q.....CQ.'.‘....I 147 i
Code Atchitectute Packets (1.8) DFD..Q....‘..l'..l.......l....llll".... 148

!

139

(A MOTAIDAQ (DUN}IIYIYDAY) JaUMH p-) dundiy

spureso -ando e q-duimesu -Aaepuoaay

FIOTIRBN N
Kaepunoag

n.;
- AN} IYdIY=-IPON
~Kaepuovag-dumoou)

SpuN
Lavpuosag
e [nonjody
EXUFREFRTTRNTY

2 ndoxy
z

CREL ECARE N L EE RS TTEN Y Kt
= apon-Kaepuodag~-dured jng
P p 1od)

nonwand oy
=01 4-)08)5 -Asepuaaag

spucuro)--ando (e tg-Jurodino-Laupuodos

51 00N ad|
19401
RRL SIUINT)

"

sSpurwo - anda ¢ _alu: _l:..z._uh.:.l_.-._

apoN
Kaewtag
(LN AT FTIS
AN IYIAY
2 nd0x3
1

DY [2INT I IYIAY - PO,
- Kavwiag-duiwoduy

FOY I [- 2dNIAY 1 YOIV -OpON
~Kawrag-durtodng

UoIRINI T uo)
LR FER BLAT S W T N]

spuewwo)-ando)e1q-sutodyng-Aaewiag

a0yedadg
Kavmiag

140

e —— i ——— ——

- B vt .o e ST

* v

U4t (1) apoN Aavwya,y e

D000 24N D0} tyoay 2INvaxyg
- bR SLNERNTY Yy 1y~ ay

|...:.zlﬁ.=.l_,...‘u:_.:u.:c

5-) aandr,

T A ITr—am aryiy——

AN N ST LAV o 17 R

Jorag
RUTTRYTTEN

Joy
w1ayong ..,,...z:
[NTTUR] o—

S)naaNy

FoRang- 19n-poataaay

ESEE KN
104)uny
2 nooxg

Sjanouy

s Joyoe,g u
ANaay yogy LR 7R
apas Aua::&u_:;!:au<lvb>.....,..;z 2maaxy

81

141

B)aYI8d~Ianjoay Y22y~ apon
uacsl_gmnu:_lcoc_

8195 0ug

4
ped
o
il
H
7
73
o
-
e
*
%«.
&
o
dnjae,g

a3 nduny Honeandyjuoy-ag ta-3reg-Kiemyag
LY EDRUN Jonoed v

1od ey _afpa(raoy

21easu0p

—panteoad-PY 1eA
(4] .

Slanoey
myeys
apooxg

[]

bdudag-snye g, Ta0qy

A~

(40 (@71) S19YIR SNYES Apoaa(

———- o e e

9-0 oundiy

. eee—————————

UM - SUAG - oA |00y

2 NN S-NAG - ponay

w e ulg-poaal W

duo)/ day-kC-paaraony

¥ay-sulg-parciaay

Ul a0))-nkg=poat)

* S O S A

F1yuod-ouks-pratansy

2 SNIE S ERIO J-PasTIDY

b 44

LAL(iS BI-PIRTT

|

Jao)/ o0y - JREd0 J-paAT

3

HOV-JeMAO4-PIALTIDIY
[JU0) CEIO J-PIAT oD
o) - JeRIT{-PTYATS

STadIY- 1ORIUA-PaAlD

Q1) IV~ JeNanJ-pPaatoaon

TY JUOD- JRRIOJ-PIATIIIY

JH K- |VE@A0 {~pAATaIIY

z snye)s-yeddnsug-paataoay

u)eq- joddnsun-~paAvooay

NSUN-PIA 1300l

Yoy-ydoddnsu-paaronay

102 U0 - A0dUN S Un-PaATIIT

anu o)~ yanddnsap-—paatanay

S5000y- JAnddnSu-paa T 03]

12} y- Joddnsun-paatanay

b JIAT Liitd

d1juod-130ddngi-paal aday

D8 (M- A00AASUN-PIA T390

Spavhaaay

-

A= Pra ooy

Pi2y
apoy Iy
RITY.CH
aposag
e

)

Jnou L-pastaasy

SAAIF~I | 1 4-PAAI2IOY

IPOININ

yewao4
EltURD (]
AN |

1803 g-ut-uon jeaadp
~panrtanay

PLavd
aposoiy
pajaoddnsug

A RaK]
ETTTART]' |
[LEEERBANTY
aprernw)

Ppiord
apINIKN
RARE]
apoowy
|

piaty
apoan i

aposog
vty

SPODN
£°e

§;
e
(RN
LN
r‘G

.-: N

: Py

T v

S %
Thaay S35y
SnyeygTs
_4.,73.,5.-003. Platd
.dﬂ:uu.‘wt
Y apua
ThaA Al
ere et zee
3
AN
,.,16,—
-
<15
=

IEL R
~snye|s
poatanay-p1yea

LRONN L]
au) ST e =P IATINY
L EEs)
1°¢°1

RSN RIS Ta (RYSE LR

)

s

142

A (£°1) $19)dud (04110 INADUID =) and iy

VoROud
- —...—.—::u

IR
1d- PPy
[KLY FYIITNY

BELNRIIEN]
L2 |

“oeY
v wd
N 1oy
1N-ppv
§OM Joaes)
N ERL N RITRS
¥ e
& A\l 2°€°1
,..4/3
[EY RUS]
- Aay
(KR FTUTAY
EYUNRITEL)
[RE B 9'¢
=30z ON
AELECY]
Von-Ko% rd-A2y
fod g0 Wy
s EFLREITRTY
R V2D W PO
Vonona e
g-bag }
1043) =Koy
jang
ooy yon-Ka
1a9-bag =)1
[eaguend
3)jranuan
£c puaddy
“tig-bagy
A FLRTY
TRy 04 U0~ 1 EWIG §-panT 20y
yaamny adhy
RE4 Batl} Libid b B4 4
wajue)y aS U,
..."...........u 199-bag reaied ~pan1aray-piliea
— ey . - 1937000~ SRS -panr L 200y

et et

FIIUUD G~ IR]G [oajun)-yaoddnsun-paatasay

143

;
bl
1
i
A0 (1) sI9oeg dnjae)s o noaxy 8- dandig
—
“ -.-&.v-w._lf.wu... 1) 1<b—1.->_.—.v..=l—-_. —-m> Aln:/‘
sta0y 1948 (J-55000Y-PIATIIIY K
RURTEN NI B) _d.._...-l IRITESIRES B BAT |
-t 5 A0DE- DIV =PUATaDY
- w40 1ag-dn jug O oy ALY .
sdoady Yo nd
du oy —2IV/QIaY-pPAAIIIIY 3
Py ~q1. K404 |
vt Hhvey samyid Iy |
My FIY) m
spyata poayong-sa Ry e} L AR FOYIEG- S NG LI JY-PIAI BN ﬂ
SOy —pPaAatadald-plIeA 6°v1 p
45200y -)IE S .._:......:

TR d0AL - W/ Q1IN s

~NY/qLa}IV-pastaany

3 [FORNY | |
-c SJIOSIY-YIW-PaAtaady M / * nu«.a—l::x.z)
-t da g
FORIVG— HIP A FMOURIV-PIATIDY-P Y [BA ,M
jaymg “. =
—JUpI | MOUYIY-PIALIINY —
[R& B2 E
405/4014 TITPIRTINY 4
mmmu..é Joyney
3 jedsuay EEAUULERR) v V= SUAT=pSATIUIY
9Vl ERUXFIIED]
vy qQ1d 1 1¥- JJodonsun—-paAt 27
19omy g p\C))
\ IR R SOXT | 1314 sJdentay -
oy EEERE Y ﬁw.'ﬁ.» .)
/1Ay 2jedauad 7 AN g-unjend 1Jrod-paatanay
) L A ‘
3 1urd ..4\359994
— o et L L1y T
splatd Tonoud ARPEE SriaoM
ol yeand juo) -pen \.,nl._cm\ﬁ ’
1900,y apunay rerER KT o
s5I00Y bt . nr:.i\ai-c
19Y 0%, -85 ID0Y VEO L INE 517 3 ! S 0
EYLNEUE ,-.,:.“n._ STYU0- .
YO0, [~ 3P A [MOUND oy LT —_ uoyjeand i yuo)y
199 pPay NV L A% A | =91 upy 53 3 ajedoudn LRI TPRIa4-pantasay
194N IY/ Q1A VY R L2 BUACU S LALL I N TETR) et SRR S 2D

T J=2 39 [JEo)-35300y n

un&....m S

INOINTL-PIATI DY

—

[
#
3
(tadd (G 1) syayaed HIy/00V AINNIXY 6-) ,u,-:u_,._ _
- FTRIT -0 [00 - RHaoy-paAT o] : R
w gy -
FREBRRIVANTIF] H
¢ PREIR} HOV- \VeIT4-paAl 2908 '
i R t
g '
3 T
M oy nr '
“ I 1507 Yoy -paoatanay dilpa mouyay - : :
: sprotd — ETLINSTTAT) i
wun yduy Josgarg-adpa mouyoy PRV ~ :
-
{asuadsayg)deadoy-poaraaay \ “ A‘
v “ 1
‘el duoy/ooy-1a0ddnsip-paatasay \
1oy 4
2y qdun) J0T-pIATIIY :
FEERRIY i~
IUNEITRY) VIR G- JIOQY-INULTUI I -PRATIIY |
g1 _
TR -2)3 [dwoe)-S50y * (28an, g)dwoa oy «) !
pebe .
1l el chn e . .
1
t
(503)dwr o0y
[E BEN]
LB g ;
/avanw \
2194300 .
'8
JINORG-SSAIDY-PIA LAY -PLICA
I 1 4-pammn))- Se- | tayng _ 4
'
i
!
yoagomg
S8y :
VoYM J-KHAIIY EYLR EITRYY h S5 |ARIS _
ety)
sxaday- Janddnsun-paatarag
EXE I EEIERE] Lk

i e ——

a40 (97 1) syanorg

JOAIU0) 2IN0IXY

o1-0 auandiy

YORIR G- N I-PPY-PaALDIOY

oo - ng-hag-paaransay

VRO |-) ID-pPY-PIALIDAY

JaY IR~ 19D-DOG-PaALdIIY

splaty
nd

apoay|

Vet

wpiatd
99

apoaag

£°9°1

VIO - §AD-PIAT I

[EXRCX]

SJOJIF- | OFPOJ-PIAT a0

19428 J- [0AJUO)-PIAL IIIY

I s

P

146

[T v

U (L7 T) $3I9OBJ Snuijuo) 23ndaxy 11-) dand iy

sy
v IRV ERYR N
- TIRRAT-NT
-
ind uan jeaadg-nge
T | F4-purERG Y -5E-) Iugng
FIROR - U -PPV- POA L a9l :
(purusn y) duo 1oy Mooy {
podtubayg FOARRITING AP AT i
t3er — .
— ap1owl 13408 4- \nd-hag-paaiaaay :
AL e g
:_:—\—.:‘ (A AN Dl td-€\HA-poAtanad
. IR Rt (RERUN] \,w/,>mu.
. wnaaa Kjuy _:v_;
—anug o) andg yue) a0 SAOANE-I | L 4-PIATIIIY
3)e.a0usy)

A
e \ <

a1 g-wjeg-eon B

soLl

! dog,. t~
Iagouy LLJQ vy, <t
diyg iy Yy s20.443 ﬂ UL 110)- PRS- PAAT30Y —
-.-:=m yues) .-:.-. JLILEN]
ajraonan dod-d 15— 0) apu) N‘Ld BULTUON- BI04 PIALHIIH
— /LY d

GdTq- IO -anu L We)

a n ut jued-Jaoddusup-paniaaay

1R 4~ 100 PPV-PAALaDIY

: -4 yaoeg
i Voqaeg-e g yIngy wogyay

anuy o) yxon
) yosgory aj9a0uay s - _ ne
.. v erart] 3 U]~ faoqy: \aa.:.,_ apraon 2380 }20d0NSUQ -PIAL 2DIY
; apraauan TSoRIaE0 1 FLIERL ACFE ETYERE
¢ L L1

ooV

3y
(prrown)) e pea-oukS—pansanoy

\\.\n\.\l\\\i v
ey ‘

.. .
S L ~A UG- U JUOI-PIAL
5.&..,.v—:._mw.eu.‘..nl?,;-o?d-—

FAnag- ot
JVdwanov

()

pomr—
e 2
-—g—.
ang.

AL (87 1) S1MORY AN IYILY PO 71-0 2andiy

NIy RARL R

LB LA F SR LA e A

Ha0.00]- Tt

T TS TINAST

o S0 HIS- [VIO -PIAT I I0H

JOILF- SR JE-PIACIDIY

EARE |
apo)
4y

= 00) 1 aay - apoy-Kavu L #upod g

1sanboy
el RAHITER LA T (]

A

Huty
#0180y
EXLATUNETR

Vet

TSIV
-MaN

RN

Sjapou;
= dugsan,

weaa 18
ving
PRI TREY)

G 8y

Naunostiig

Ssad8odg-ug-no1 eaado

ALALA ALC Bl 0 BB LA R0 O i LY

Sa0a3- 9| V4

103

saodr-dnyog

¢ SIS INSY

SA0TdF~ | M JUO)- PIALIIIY

syanaey a0t ¢- (duaaajui-snutjue)

duiaom
.~ﬂu=b

TR

148

59y 0ed-81e0

sjayoed-dnag

(esunduay) dworny-paatasay

(04 Waxeay - paatasay

WAGUYUR- DUAG~PA ALY

I35 W= PMLOA-PIA 1IN

28 tW- paoddnsun-pastasoy

yoowt) 71amis

Jomy
doys

"8

g3anong-dn1an jS-paA 1A

Contents

EWNET (Transport/Network) Overview DFDe..cceceeccescesssccactscsancacssas
Execute Transport Protocol at Primary Node (1) DFDecsceccecssascccscscscs
Decode Route Header (1.1) DFDeveccecccoocecasscasansscosascacassscacnnns
Execute Incoming Dialogue Message (1.3) DFDuvcecseccascacsosacsccscancas
Execute Dialogue Segment (1.3.1) DFDeeesccncecscsorsosonsoacsascsosoansae
Execute I/L Packet (1.3.2) DFDicccccecscoancessacasascssoacsassssavosans
Execute Data Packet (1.4) DFDuvvvsssrsssnnsensssesssacsosssscsacssascassse
Execute Startup Packet (1.5) DFDicecscscescocsoascscscsssscceasssscscssasn
Execute Control Packet (1.6) DFDuseccescesscsssossscosasoscssnsesscsassns
Execute Connect Packet (1.6.1) DFDsccsvrcaccascocesssscnsnnsncsaassassas
Execute Disconnect Packet (1.6.2) DFDusucecscscsccscassscssscassscascans
Execute Acknowledge Packet (l.7) DFDicecessvcscocasccossnsasensssnssssne
Execute Outgoing Transport Packets (1.8) DFDecevecscsscascscaccsssnssses

Execute Network Protocol at Primary Node (2) DFD.ceseccsocsscoconcnsacns

149

e h . . Lol Lo et eSS " ivte | .t tm e

Page

150
151
152
153
154
155
156
157
158
159
160

161

AU MITATIAD (HTOM}IN/ JdodsuraL) 1auMy ¢1-) 2uandiy
o podsusa)
-] fa peS=idniun -Aaepusaag
OW- N30 % 1- duTong-Aepuo. JPUN apoN DduEsop—angu ¥ [(-dutod }no =
’ ’ Kaepuoing
B (000 joay ApoN
RIS Jaodsueay °°

Aavpuoosag

ajndaxy

apoN
Aaepuooag
e —:.-: [}
jadsuea)
anaaxy

/

| 53 Balt]
Naum JaN-opoN - Ju twoeou | -Kaepiuoag

Y

1= d0M LN apoN-8u 108 ing- Karpueday

ronnjoug
[9a0)
yury

Krvwrad

yoyaeg— jaodsuea]
~apoN-Burodng

YRR Y-N.10m) AN-DpON-Butwodu] T\

adessol-ongo | ¢ (- dutwodu|

W jesojord

194 W -).t0m L aN=apoN- T 1 a3 In0

pon
Kaewiay

WIOM) ON
ERURES &)
4

150

UAQ (1) 9PON Advwidd e (090104 Jdodsura), 23nosaxqg

vi-0 aandiy

v pun-diiad)

RN

[e L TR I BTN KRS T IR AT

o
ot e g
duindng

apoY)
[

T 259y

-Nas

i

oo
[0)y
aihoany

MO | E2AQ
=dapunn)
=P oysadgL
~dasauay
AL

RIS

—o3N0g-3ua08| PRUON
MIe4-8ieg-I40dSURL

\ I N I B B I T

ay e _:‘._\\\g\—?.sﬁ.;u

TOpUNT W

N\ |

pueIwo)-paomEsE G- jesady

Yo
dnyae g
dParaxy

s

-.-v—.:mn—
FRE HUNTL S 1/7] vl
s p-durod jng RALRALE]

v

E::s,—
§ooR W - prodsinea g 6,_3,,
= a)rgous-duiedng Faue sV

PR~ e j§-do jedady

VORI HEN- T

TN HIV—T/1

L OR |-y eN-v e u

POR Y DY-R e

adusson
andoeiq
duwoon)
Jnaaxy
£

apa)y-50

duvod jng
ESLRNY]

SAOAAR— |03 0)-]0] §

f-e - yaodsuea -payyreEsoiag,

2.0 - apoN-da 1o

FaRang- g

PR d- paodsueal -2 {12 RG-duiwoouy

em———

151

e

2INOY OPod3(¢I-) And1

\

PN W L JUO - 0S|

) oo g
pud

nian

ERNNESTIY YT

a9
vt

[HIL T 1

pastubay
- Jrauunas g

RN RN

~privAng

P ar - paedsmea)
—a) NG RA

SRS R PY V- P TVA

PLatd
RAERN]
apoas
A |

S MU - OPON =)] O G

—appv g O

sonor - raodsuea - poN-duTwndu]

FEL BN B RO ESIINN
~ayt((o ies-duiwoou)

152

o Ay

Flow={Ontr,.-Parameters

Data-Ack-Packe*

Data-Nak-Packet

Ack-D=F:le

Link-IneAccessabie

2213-F Jw-Error P
i

Overator-Srar<-Commara

Incom:ng=Diaicgue-Messgge

PR

caLTi 133
EXEC‘.:!‘.’ i————’
Diagogue AbOP® < Jmmar o
Segment bt
jacprs a\nde . Da stpre jsconnecs-Regyec* P
o -_R -
y §
Segment-Count
Zncoming-Diaiogue-Interrupt
N
N 1
~ A 1
LY
N
[
\‘.' - L3
,\\
B
S/
N
1.3.2
L3=Code Execuyte Interrupt-F.ow-Error
'L »
Packet

Ack-l L-File

1/L~Ack-Packe*

I’_L-Nak=Packet

Figure C-16 Execute Incoming Dialogue Message (i.3) DFD

153

aid (1-°¢°1) yuswdng andojeiq

23N0dXy L1-D 2uandiy

YEOY Pow -~
RROTTIY]
yoowiag
ud 1sny
L 2 R |

(L e A THT S W S TR ¥ et TN]

RARE A}

uow pay
- paodsaea),
e juno)

|J

D 4-UN- g

K.rowoy prusue g oy

" g

EYEYEY] N .v...”_
puw proy A2
e g et

v g

DY) IWSUES oy

S A-G-Hoy

oUNN-EVe()

-~

BINE EIER YL TAY]

sypaqong

N pur v
apoy

[B S §

€ [~ K52 N~ ondo (1]

CEFYRITINIIN |

Wdp o mouy
o

1Kdd
RN R |

suawiday

[y Wouilag-ndo pevg-Tuiwonny

MO 4 e

EUTR L]

andogeqg
yeaug

[Sl B VA |

ejeg-andojerg
—duimnong

A0AId-Mo | {-B gy

1mo)-yuawdag

aposag
pue
AayomRee) apoy
Juode(py
Auluexy

! §

SAA WA G- [Od)00)-MO | 4

D{YBSHIIOBU-RUL'] A A e |

[EY RUN
-miuje g -duiwosag

-
ha s ANbay— 20 s T
-~—— PUCWBO - yAoqy adwssay
yagoR - uq andloe 39essaN-an80] € 1(-Jui1woou
T - PHNWED)~ P IOMS S-S0 ¥) apooad M 16ta-durmoual
— - Ty L0 B |

4

15anhay- yoounoy
S OPOR- AU TULER-d 1]

VYIR=1/ 1 -po) TS

VNS 1/ T-p T e

Apqul-puremo)-gutj-of - jaodsurag

e s g .

154

I

(140 (Z2°€° 1) 19Yd8yq 'I/1 °IN2dXy g1~ dand 14

)

[B3R 17 1-pajyiusund)

) sy
RITA It

~ FREUR]

L RS M |

Ve]

IR BRI LR Kaowow
71
IR R}
pue peo|
PR S |

IR EHTARS B
[EEEE VA Re B yagory
PERTYWE'S

F N BTN

2 jedauan

LA |

LOMON '}/

a14-HEN-11/) IPEIESE

L DU V| o)- (Uowdt
— ptodsanay,

~pajunny T— 1 tWSUea],

31qQUL-SSa00L |- RO I(]

155"

Y608 pol

Jagquny Joyorg

Joyauny 201A208 AUy
ud 1y Ydnaaayug
9z ajeaauan

[AR A Wl |

dnaaajui-ando | v 1g-3u 1meou;

apoe o . ERFSRTINLSY
:..“\3_.._ adpa pmouy oy Jayang Joaguan mopa
o 19908 - ydnagoqug /1 —jdnsaajug- paodsimay, dnagayug
. po. ~yaodsieag -pogoeqdd 1 g yoeykddd A
| A W | et &

172°¢"1

S0 | WMBIC - [XJUOI-MO [4

UAG (P°1) 1aong mieg 23noaxd 61-) dandiy

1oaay - dne g

(B BIN]
N PUIvA
AP
t

TG~ 1/ 1~ [eA

aanmngy
Prowd oy [BUNEUATH |
RN EREEERITWE S [N] 1 — prodsinrag,
gy RILUB R} —paataaan -
IR RUN] 4 Aipa morjoy P21
S ALIE it o 71 3
apudag ERURBITRY) ,
vy (L2 0N 2 | |
341/ 1-paAatanoy
EXRYR, X UARE DN oj-mog g S o
adpamouyoy s W
spang EYNRLT:ETY] Ry i
3 . ©O
wynq 171 e ©
apo)y 2 praonsn aurwaayag v
trpct 7 6P 1 N
Ja—y u.\..w. ~ [B 2 |
and yoed-eed ::..s il
—ondoe-durad ng
SAD JOWRAR Q- [Od JUO)-M0 | 4 o
[N LY R
11untaayny (&
ETSERI
ﬁ.“/ " L} —
3 r Joxpmnmy
6 aond 8°pt yuawdag-v pe(- | RWAON-P1jEA Juomdag g .
\ \ —a9) Jng-oN eyvqg
apoi

[A |

1ayang
It jedon
wieq
ESUNRITRYY piat4
L°v 1 L Uh Bl
spaxoug ejeq
. apuaag
FECREEL R LIS B aao“__.“w.s.z ~.. v
aodsurd g -payyiesusay,
i Pt [A RS A |

aprg-q-pastaaay

Joyany
adpamouyoy
ey
BRLUNBITEL]
9y 1

- LR BT ¥

VB

ageL-ssasoag-ondoeig 3| rg-yuN-vIng

a4d (67 1) 19yoed dnjaeg ojnooxy

0c-) adndiy

EENRITRITE B RN

) - PaOM Y

apuaag
8°4°1

..s.:._lﬂ. VA= GPUN~PIA LYY

PHEWGG - P AOMSSE]
- aaan)

(B4 R BRI LR L AR N NN
= pdodsura-pa oy

[BN
MOz Yoy
apoaay
[|

ozt 1Ul

S0 JOWH L - aPON- el py

gy
vl::_..sw_ ICERIL]
-3IPON

A |

Fpoavaaay

,..\/ IS i-doneae - ey g
\:~
‘1
-y
\..\\
Y
~
da,
;{.J
[/
clc.e
“hy
1,
",
* &
TR CUBTTRZITTTTO
- 1aodseuat-po)y 1wsueg) s1%aey
uonvel eyt ! :_,EL/::. e ._.”_:N_..._
i ~ ne 1177
.MCU ﬂ. u&.-..&.w::u 3\. & iy 0—.:.90“
6°g" ~p. !
! 3 Mgy g
-
<
&
o
5
apon
U Up uy
. puCweo)-jaeis-doyeaady
1 N1}
iusa.u oY sy,
1Yoed s
Ut ey giaan
2pON . pul
a jeaauan P Kytaon 210 [duoy ~A 34 30-uQ Hut
i
961 (BRI —uot sy —ungqEzs 13101 —az1[Riyuy
PHUBWEO)~ pIOMSSE, - J0 yraadg UCIRL AR RRYI SRR
apoy 2{qe L -pueweo - 1200 SUBD) -0 ~Yu§ ']
ap { 4
RECFE IR
v'GTy

FMIRA-AA-UO L IEZ L[1] fU-apoN

Jlqe L -puesmo)-Jui-uvl- yaodsiway

157

.

ORI

ey

AU (97 1) 194oInd |oajun) IINIIXY 1c-) ,J,:._.ud.,._

d BIERUNRE]
P
o @
fet a i
n 0 3 H
In n - !
&} 0 <
=]] o |
Bl - Qa
o o] -
@ =]
4 a =
t] w
o o
o »e o
3 0 3
o 3
- o @
3 0
3 o+
i @ 1
S I
GECRT 3 .
= & = ~
y o .
1 w -P.«Q
. o
3 1% b
2114-81 L (8 —
[x
el o
X (ad
i
taj
2LA-A-NOY
IR Y- [odin)-JdodsurL L -paat 30ay
FI G- [0d | GO~ JIOASURIF -} | (MSUEdL aoed
102ut0) 1sanbaj-) 2auunds 1)
2 naaxy -t
UCWHO)~ ¢
101 [d-Ja0qy .
Sanbay-Ja0unn;
agri-8sasoag-andojoig ’ o i
IOXTIT=TENIISTUY
S) SWRAR - [0 }510.)-M0 | §
SOAIG-SIDTALIS-HUT'|
S.40 | MRICY-IPON-D) 1 | [P IRS
SADFAIE J-IPON-JUIOR{ Py
v . 1
—d

(AG (1°9° 1) 19Yded 193uu0) aIndaxXy gg-) Ad4ndiy

S EAY | aPoN- psou Py

- pdaooy

Jodad
U S ESIIN

USRS
1942 d-[02710)

EELELN]
gLty

Jaumnas1q
FYLNEIEL
P20 0 2}

2 e L-prewio)= pamisuRa Lol -yt
- podSURIL-PIA TIIIY

puy ajua-st
[ews.yxy
EEABTNN]
andujvig =T
[SR] ~
> o
Sr3
~. B
o~
y <
&2
o{td-a-§v A
N O
o
o 3
<8
HOSUGY \1

120 - ol ay
1Ry

PESRLY]
" jue) ERLAREL
122uu0) Youuc. - 3dand yoauua) WRE s —
2 jmLanuaIn 1 > v apo3ag (FER A TN A ONE T =T]
9 19"} e el
.:c-..s.:au..
N
M= Tor5 o ysanbayg-3dauun)
aymegiug
0y

Trai-d aanun)

\\\«\Aﬂ:—u:.?gs_.

543 JIMIE 4-IpoN- (el py

a1] IMILIY - HPON-I } T | {4

159

- —
————

(40 {T79° 1) 19MORJ 100UNoDS I 0INDIXY ¢5-) dandry

Py
SHIDOAY
andujeng

—.v& e
WAL IUo)
1 2QHHIDS -:
RPN BITREN

vzron

T JUO=T3000I81(]

RICTIATY

160

UM}
dyg

I (Yu-ss0ag-ondayrig

jooed
ey
U0 _A_
apurag
“z°9%)

~PUBWKO - § -0 -JaodsSuea) FIAINOBG-I P IU] = }IIUUOIS Td-PIALaday

2

[RUN
witjuo)
prauseaN 1
apaaag
12791

[RL RUNE NERTT SR RTINS B RYSE R Y]

l‘\‘]..l.:ﬂmﬂ.ﬂuh:....u

"uwuu1-,,. T ‘ e

(40 (L°1) 194ord 28pajMowmdy ajnaaxy pg-) dandiy

-

CARE R LI VA

RIRE R VA bl B

jaRaty

Hw - il
apoa.y]
£27

1%oud

\\

EARE Rt Ll e A

21 t4-0-Yoy

oy
vjeq
apuaag
(AN AN |

adk),
adpajrouyoy YT J-30p 3 [MUY
MW —jaodsuea [-paataaay

LA}

161

s

a.da (g°1) siayoed raodsur

a4, durodyng a3nooaxy

4g=) Mandi g

Juasaag

ORI G-0 oy - puaoul puuoy
dunoy
Si
€81

luaa'?PBuoN-HGHLH

Siay dvd=3poN-

praty

N
rev

c°8°1

[BYRUN T

IR AU
e
A ’2\:: — passdsuveg
S
oV
3
\A,u N
Bl
w7
»
%
.
13
Q
]
3
"
1)
2z
5
.
o
1
o
o
AIGE L- S 5000 |- N0 | ¥ ¢4
Pty
uaavisd
aujwexy
[D28 3
Toenntl
peey pent?
.\é:._mw.__..J :

—PrAL DD,

QU - pPURERO)= YU L]-o] - aodsueay

162

19 IE-2apa Mooy - Jdodsuv.a i -pa | lesaray

N - 100 juo)-Jdodsma g ~pa)) 1esuka
TR

~uovjezijrjtuj- jaodsuedag-pay) lesma g

1ORORJ-BI T JUG)—) INROINIA-I82T

S

e

w —— " . " - D " P >
K]
3
M.M
b
dA (C) ApON >.,_:E_c_ﬂ_ 121020700 JIOMFOIN IINIIXY 9z-) .J,_:u_.m
FORI - HAOM -0 - yaodsueap
- Fii109 v,
AN - N PON—
TN - RIOM - pON-Bu g} (syaut 1
} Lt quLp st
daAY Jayor,) [} t - YRTER =
m .“ Py paad sueay ouIy 3928 - e sura - apoN=Furod |00
" 9°c
[)
4@.,@;
& &,
> %
Al 30 AN]
-2yl ~dut noy & “ paztjerIug -
4 MON DA U
.uoo SN JUA Pl
» .
puay
A
-%.4
L NN T &
AAL IS0)
WH) 2ada0) =
s
2z sugl)
aapeay Jusoelpy 2 jepdi m
NaoM N [CINESTIF I TN
wut aqepdiy £anag
il - or’e e
-do)e
~azifery MmN
J1 3quey
._n—a._.‘v:ﬂ.‘cwns:_._l:._.l.L:av.:ag,_. et u:_..::._
Mh., ajupdp
3
ao sz
55
e X1
.ﬂm 1 1aRoRg-Buy ynoy-piiea .
g Z2-a|qul-duljnoy
2
=
a
+
doy
U EXRIT]
voyamrg-durynoy-paddoy v'e
.,.:—QF. =31
Lt | :x..azl.h:__..:x..i
aapual adky 4
WAomy N VANV AN adnssom 3998 - JOM DN = AP ON - B IO |
apaaag apaa]
£ e
.M

EWNET (HDLC) Overview DFDeseecscscoseancacscatceossssrsnssanasssascoseaace
Execute HDLC Protocol at Primary Node (1) DFDueeecescveccscascsossanaans
Decode and Sync Incoming Bit Stream (l1.1) DFDiveescesscccncasascscascans
Frame Secondary Information Packets (1.2) DFDuiceececscncsvasaasascscsaaas

Execute Incoming Control Packet (1.3) DFDucesscocssaccssassssnscasasoans

Execute Outgoing Control Packet (1.4) DFD.vseccsesosssssnsnsosnscsnacane

ExeCUte Data Packet (1'5) DFDO.....l.l.l...'C..l’l..l!‘l.l...l..!Cl'.ll.

Execute Maintenance Packet (1.6) DFDeecececcccsccassescsasssonessssassans
Frame Prlmary Infomation Packets (1.7) DFDeecececscscnccaasosctscenaasas

Start Reply Timer (1.8) DFD......‘..Il.l'Ottlll.l.'ll.'lolddlll(..'.!ll.

Wi o

164

Page
165
166
167
168
169

170

173

174

U MOLAIIAG (JIAH) Y3UMH 20— dandiyg

oy

“ewyaimpn-

W
165

ApPON %
Kavpuoaag
ﬂ.
x
2
12\
\
&
2
K
Y (>
£
% 2
K ()
Wy %
R
o \p:
[TAA]
A
v \2
A
i
e

SIPON
Kaepuoong gy
[y
BELIRDE Y
N

I~

ARG o

(A0 (1) dpoN Aavutag e

Q5—) adndiy
g

4

ERIREN|

(o200ad4 VAl

- o

- EEY R EIT R TR ETOE Y

M=) tod S - apan- A aeB L E-pa g)ty

EYTTER ! (VARTY: TR STTINR]

LaNoed=31C=pt ey

%)

- 23 BILEER

5 LR EEE

® a e

3 oA

e ',

< Y

'y Ve,

-

'

-

o

r

o

v

7 - o T
3] XTI
& STTH-A L
23
&
i
v
&
2]
x AANS
‘" r

AaALA(-WOS g Wag)G
pg-duteonnj-Lavasag

apoaay

(ELR
1eduny
Butwoong
anaaxy
£t

166

R —

@1a (17 1) weaays g duiwoou] dukg pue opodod 6g-) aandig
CERY. S TRRTTYY
<5
14
‘/.U.’\.Jé
-
MY -HON - Y arg
FRTITE
Joqorg yojoedg-e) iug
apoaaq
v //
?QUJ
4 Uy
iO? “liag dnyaeiyg
A) Jogq .W
44 EELUR] =
o~ B 't
K &
\%
<28
- “SH
yoRoe J-DNd lgh A/)bs.um
—y——— =5 d04
TIEG-T 10 ¥oou
i YoNORI-HOS st S309akg-Ru 1y
suhksop —ug-tearslyg
aduonbag pey
aaowA puy
a0y n
e !
e T dnjaws- 108 x,.VE.....
LI B |
2
{1
.x/nvs\
N
L)
Yy —_—
‘s de {4~ Msuuai-qey

-

(SR

TT1) SI0NOBR(U0 1 RWIO U]

Aaepuonng swedy

0¢-0 sandi g

-———— —
1HI-T I -p L,

1ORICE-HOS P [CA

VORI I-ONI-P | |BA

[R11{UN})
iy _
N“u_u._.... ®1e(-yjdua-pi jua
| A |
(A R L Wy
—prigAt

weg-prieang

AR H-p LAy

\

FROTTE R R R
-pajesauay-A| oo

JIPRIH-ATU/HUOS-P L [RA

Y yduary
anpeay
buy yoay,
e eh -
e A
Ty AT

- 1_"..:\

ILREIL
Hoon)
[A |

Mg
-prAng

yrduat
aapeay
LELUR]
et

RE2 BLA K

1aNoRd-3d

IMoed-Hos

v Tl

PO RUARONNII ey Wt <o < A e S

A R T ankT o B

C i e g

168

2noaxy 1¢-D aandig

. Vo8
yory
FECINE
Lyasay ‘degy
adpa Mooy
] 198
: icu cee
A et
AN
\::m/ e
g
-
g

1O LULS-PT [BA

MO | JEIAQ-AD PN
SPIOS YL JOLIY~ JUd T HUR |

(eN)
ENTOVRY |
Hmoy
LA | 198

AquL-puveso)- jaodsuea g -o =Ry
g

440 (£°1) 19984 [oduo)d Fuiwonu]
—

a— Ty IR pas oo]

- 1BV oA a0 l

T
H-owaa U IELEU]
s
1"s°y

(BERCX IS
—pUang

Jouty

A B DREPIT

YR Y- 9 ja-pI jeAu]

aarquday

yasayttle gy
adps (mouyoy

YTBUST-E18(-PVIEAl

RUNNIERLC NITEE IR i 1]

TQV-0aR=TIx 7 J

T TP ITeAuT

198
St Wl §
LR BN
—plieaug
dagq
rusuvag
yeR
198
(A8 N |

2R H-prIBAY]

-l

de -y rwsued)-qeN

X TH=P T TeAuT

% S S

ek

)

s

169

Ry

ddd (F*1) o4oed joajuo) durodying anoaxy gg-) aundly
e —
—— .
RUSTINY Ajpuopg B)
[URYIRY
A1 puopy
“
— - yoRor—doyg ey 1o%oed
Jdpamouyoy agdpapmouyay :
RUNTR [EXRUNES B EXLNETEN] :
611 ¢ bt :
!
{
- Fon ea-AV N -
_ —_- YT T [R2 Rl AT 15— no Wt]
;- FPTTEITTETS agpa [mouy oy
s °
PHA— 0110~ 0= 10T 2] L)1 .:M..._”,..,_E uoAg N 1~
—t
AL
19534 > " |
LUINERTIRRE L] LeN-N 194284 18-PLIYA |
Jaqoud LR AR}
@ [4u] -pueesno)-u-)-oL- jaodsueay ped uoyL yoynoud ag0-N !
LR TPAS L ABYIN § aeys
3 LR AR R b apednusn
v £Vl .
1Y~ 1418/ ped I41S-noawty
yaRo8rd
adpa (nouoy
AN aaryrdoN
-ng- : Tanovd w FSURLLE] _
1 9Y IR -y Zpet |
du g
adpoymmmyoy —_ Kyryuapg
aaryndon / i
aua|) A
Lrt L
AR E e |
Rueus i
{
!
]
<
v ¥

e e m——c 4, — . N ’ *

aAdd (7 1) 194dud eByeqg a3noaxy ¢g-3 aandrg

1

IINORY-HUN-PAIALIDIY

Piatd Yiduai-virg-pleaus
- 13081 10dSURAL- ApON-AdvETAg-Ppal | TISUC] dsoy

SEId JONOEA-HAY-PIAT I ~

261 — A

"~ |

o
2
L)
)
QI
b
)
A T4~V &\
[J
4
Pty .
. 3 MJ~HOS-PTIEA
¥$a004d
1's°y
- .:.‘E.s.-.:.—
gl

Atd-u

(.1d

{9° 1) 1930BJ AJURUNJUIRK 2)NdaxXy pe-) dand 1

|

PRI 10— rwsa),

|

syopou-doy

[ROTRI
DL [R

ERRY RN

opon
sourny jureN
ERURE

APOR—ADURUI JUI - YU

2| quL-prewse)~yut’)-oj~sedsueay

10e S~ MG-p Y RA

172

[ENPELS 1 IOy

oy

ada (2-1)

Spooe g uorjewdoyul Adewtdyd awed

Gg~D 2undry

188U Y
LESLR]
6Ll

-nl-Karwyag

BENECE LY W I GREIY

PR g-y

Kaoway 1104 ig
219156 PPV puv aapeay

| P34 Ja9ped) duruyvuoy
—z._a. ﬂ.:. 1 Juno) mo)-w jeg-duog PPV
e AR | £°20y

EFE TR
~p3lltwsueaiay

Kaowoy

Ty /2uhsh
31 ayoug
vieq o) sa14y
auks ¢ ppv
oyeLy

FaRg- o (/- vk

SIEL-p ot

S BUM BRI]
—yut-payoeyfddy

F) -HIIN - PR T

duay
$28Ipaar oy
adpa jmouyay
Nwghddg
L DA |

Juno)/ N g
Ppv

19RO |-e (]~ dIpRIYON

Yonow

4-ouks= u/bud

piatd eeg JanoR-eR(-quU]~oy - Yaodsimeay
Juno)

'L

Jamoug
~aA1a00Y

2 |geL-putEme - YU U j-o - jaodsuea),

TaEg-Ton

19 W=D (0= tesnna

Suhks0 31 MA

10408 1Y

apou-d.
su)kg ks ¥ 1IN -doy

ppv
e

REL B ¥ S TETIETS

1Y Ied-311S/ped

I RIEEY
TSI

kg

173

1 (8°1) aouwry Apdoy (ae3s 9¢-) Handiy

Ot pues)Wy - (RIy- U |

1 {

R [H- V-) TWs

11

SR L-PUeO - (RO LAY -0 -]

3GV L -pUEENO)= YU T 1-0]~ JJodsued |

I Ye L-puvenn)d- jaodsura L -oL-qur)

i AIALA-ug~weaa) §-) 19-Buted jng- Lavwiay
L~
REUTNE
—— WOETS= woout | - Tng uayy
- - ooy) ...:_aa.. ..3.:_ ﬁ TN I J—C JEQ-AIRPUIDIG -0 1~ A TCw T ag
.,.,.WI;.-.:.JE_._. .h.: opg JoowiL dotou st g
PP) 3
Vel 7—'@&\‘ yayorg-atq/bug-oulgh
(puyL)
ERUNNY]
unoy
£9°1 v
|eudis
ayardwoey —auoy
- prusueay
NIT¥ N
-y stsaag
EXUTRTTF
~atap
FEIR 1RGNN S-PIALAIIY
JELEY]
2 8t I G- AIS-PIAVIDIY

2 jqeL-puBEtO)-Y1t) -0 L= [2D1sAyy

altd-v

174

-y

DATA DICTIONARY

FOR USER LEVEL (U) PROTOCOL

Page
Data Element / Flow DeSCriptiONSecesccscescsavscsaccessscscsccacsscsscae 176
File Definitions......'.'......'...'.."I..Il'..‘..ll....'l.'.'.'.'l..ll 1%

PI‘OCESS Specificationt‘.oolcaot0.00..tol.-oooolt.uc.ccun.t....n-Qccuco-l 187

175

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSTION:

NOTES:

ABORT_COMMAND
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

ARCHITECTURE_OPERATION_COMMANDS
NONE

ARCHITECTURE_OPERATION_COMMANDS = PRIMARY START_FILE_
CONFIGURATION
EXECUTE EWNET PROTOCOL AT PRLMARY NODE LAYER

CONNECT_REQUEST
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
EXECUTE TRANSPGRT LEVEL PROTOCOL

DISCONNECT_REQUEST
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL

PROTOCOL.
EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

DLE_PACKET
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL,
EXECUTE LINK LEVEL PROTOCOL LAYER

ENQ_PACRET
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE LINK LEVEL PROTOCOL LAYER

176

DATA FLOW NAME: ERROR_REASON

ALTASES: NONE

COMPOSITION:
REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.,

NOTES: EXECUTE TRANSPORT PROTOCOL LAYER

DATA ELEMENT NAME: FILE_TRANSFER_INFORMATION
ALIASES: NONE
VALUES AND MEANINGS:
A FLAG USED TO OBTAIN PROCEDURES FOR TRANSFERRING FILES.
NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW NAME: FILE_TRANSFER_PROCEDURE
ALIASES: NONE
COMPOSITION:

FILE_TRANSFER_PROCEDURE = TABLE OF NECESSARY ACTIONS AND
COMMANDS DEPENDING ON FILE_
TRANSFER_TYPE (SEQUENTIAL, KEY,
OR DATA FILE ADDRESS). 1

NOTES: EXECUTE HELP COMMANDS LAYER

DATA FLOW MNAIE: FLOW_CONTROL_ERRORS

ALIASES: NONE

COMPOSITION:
REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.,

NOTES: EXECUTE TRANSPORT PRCTOCOL LAYER

DATA ELEMENT NAME: GENERAL_INFORMATION
ALIASES: NONE
VALUES AND MEANINGS:
A FLAG USED TO OBTAIN GENERAL NETWORK INFORMATION.

NOTES: EXECUTE HELP COMMANDS LAYER .

DATA FLOW NAME: HELP_RESPONSE

ALIASES: NONE

COMPOSITION: —_ —]
FILE_TRANSFER_PROCEDURE |

HELP_RESPONSE = |
| MENU_SELECTION |

177

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

| NETWORK_CONFIGURATION |

| STARTUP_PROCEDURE |
EXECUTE HELP COMMANDS LAYER
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

INCOMING_ARCHITECTURE_PACKETS
OUTGOING_ARCHITECTURE_PACKETS

INCOMING_ARCHITECTURE_PACKETS = INCOMING_PRLMARY_NODE__
ARCHITECTURE_PACKETS
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

INCOMING_LINK_PACKETS
PRIMARY_IMCOMING_PHYSICAL_PACKRETS
IMCOMING_PHYSICAL_PACKETS
OUTGOING_PHYSICAL_PACKETS
OUTGOING_LINK_PACKETS
SECONDARY__INCOMING_PHYSICAL_PACKETS

INCOMING_LINK_PACKETS = (11111111) + (2{SYNC}8) +

1 SOH_PACKET |

| DLE_PACKET |
| ENQ_PACKET |

- -

EXECUTE EWNET PROTOCOL AT PRLMARY NODE LAYER

INCOMING_NODE_NETWORK_PACKET
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
EXECUTE NETWORK LEVEL PROTOCOL

INCOMING_PHYSICAL_PACKETS
INCOMING_LINK_PACKETS
OUTGOING_PHYSICAL_PACKETS
PRIMARY_INCOMING_PHYSICAL_PACKETS
OUTGOING_LINK_PACKETS
SECONDARY_INCOMING_PHYSICAL_PACKETS

SEE ALIASES

178

L SNV T——"-Y ‘

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

INCOMING_PRIMARY NODE_ARCHITECTURE_PACKETS
NONE

REFER TO DATA DICTIONARY FOR ARCHITECTURE LEVEL PROTOCOL.
EXECUTE ARCHITECTURE LEVEL PROTOCOL

INCOMING_SATELLITE_TRANSPORT_PACKET
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCCL.
EXECUTE TRANSPORT LEVEL PROTOCOL

INCOMING_TRANSPORT_PACKETS
OUTGOING_TRANSPORT_PACKETS

INCOMING_TRANSPORT_PACKETS = INCOMING_SATELLITE_TRANSPORT_

PACKET
EXECUTE EWNET PROTOCOL AT PRLMARY NODE LAYER

LIST_OF_ACTIVE_HOST_AND_DEVICE_NAMES
NONE

A FLAG USED TO OBTAIN THE CURRENT NETWORK CONFIGURATION.
EXECUTE HELP COMMANDS LAYER

LOCAL_COMMAND
NONE

LOCAL_COMMAND = ALL LOCAL COMPUTER COMMANDS,
EXECUTE EWNET PROTOCOL AT PRLMARY NODE LAYER

MENU_SELECTION
NONE

MENU_SELECTION = | LIST_OF_ACTIVE_HOST_AND_DEVICE_NAMES |

179

AD-AL19 253 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO=~ETC F/g 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECTRONI==ETC(U)
" DEC 81 R H STOKES .
UNCLASSIFIED AFIT/GCS/EE/81D=16

: &

NCTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

| FILE_TRANSFER_INFORMATION
| PROTOCOL_STARTUP_INFORMATION

EXECUTE HELP COMMANDS LAYER

NETWORK_CONFIGURATION
NONE

NETWORK_CONFIGURATION = ALL DATA IN THE DLALOGUE_PROCESS_

TABLE.
EXECUTE HELP COMMANDS LAYER

NETWORK_HELP_COMMAND
NONE

NETWORK_HELP_COMMAND =

| LIST_OF_ACTIVE_HOST_AND_DEVICE_NAMES |

| FILE_TRANSFER_INFORMATION
| GENERAL_INFORMATION
| PROTOCOL_START_INFORMATION
EXECUTE HELP COMMANDS LAYER
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

OPERATOR_COMMANDS
PRIMARY_OPERATOR_COMMANDS
SECONDARY_OPERATOR_COMMANDS

OPERATOR_COMMANDS = | ARCHITECTURE_OPERATION_COMMANDS
| TRANSPORT_OPERATION_COMMANDS
| LOCAL_COMMAND
| NETWORK_HELP_COMMANDS

EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

OPERATOR_DISPLAY
PRIMARY_OPERATOR_DISPLAY
SECONDARY_OPERATOR_DISPLAY

SEE ALIASES
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALTASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

OPERATOR_PAS SWORD_COMMAND
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

OPERATOR_START_COMMAND
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
EXECUTE TRANSPORT LEVEL PROTOCOL LAYER

OUTGOING_ARCHITECTURE_PACKETS
INCOMING_ARCHITECTURE_PACKETS

SEE ALIASES
EXECUTE EWNET PROTOCOL AT PRLMARY NODE LAYER

OUTGOING_LINK_PACKETS
INCOMING_LINK_PACKETS
PRIMARY_INCOMING_PHYSICAL_PACKETS
INCOMING_PHYSICAL_PACKETS
OUTGOING_PHYSICAL_PACKETS
SECONDARY_INCOMING_PHYSICAL_PACKETS

SEE ALIASES
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

OUTGOING_NETWORK_PACKETS
INCOMING_NETWORK_PACKETS

SEE ALIASES
EXECUTE EWNET PROTOCOL AT PRLIMARY NODE LAYER

OUTGOING_PRYSICAL_PACKETS
INCOMING_LINK_PACKETS
PRIMARY_INCOMING_PHYSICAL_PACKETS

181

U NP

" COMPOSITION:

NOTES:

DATA FLOW NAME:

ALIASES:
COMPOSITION:

NOTES:

ALIASES:

COMPOSITION:

NOTES:

ALTASES:
COMPOSITION:

NOTES:

ALIASES:

COMPOSITION:

NOTES:

ALIASES:

DATA FLOW NAME:

DATA FLOW NAME:

DATA FLOW NAME:

DATA ELEMENT NAME:

INCOMING_PHYSICAL_PACKETS
OUTGOING_LINK_PACKETS
SECONDARY_INCOMING_PHYSICAL_PACKETS

SEE ALIASES
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

OUTGOING_TRANSPORT_PACKETS
INCOMING_TRANSPORT_PACKETS

SEE ALIASES
EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

PRIMARY_INCOMING_PHYSICAL_PACKETS
SECONDARY_INCOMING_PHYSICAL_PACKETS
INCOMING_PHYSICAL_PACKETS
OUTGOING_PHYSICAL_PACKETS
INCOMING_LINK_PACKETS
OUTGOING_LINK_PACKETS

SEE ALIASES
OVERVIEW LAYER

PRIMARY_OPERATOR_COMMANDS
OPERATOR_COMMANDS
SECONDARY_OPERATOR_COMMANDS

SEE ALIASES
OVERVIEW LAYER

PRIMARY_OPERATOR_DISPLAY
OPERATOR_DISPLAY
SECONDARY_OPERATOR_DISPLAY

PRIMARY_OPERATOR_DISPLAY = !_'rmsponr_mspx.n_coumns
| RELP_RESPONSE

!
I
OVERVIEW LAYER

PRIMARY_START_FILE_CONFIGURATION
NONE

182

- -

r“* a——
. i

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

REFER TO DATA DICTIONARY FOR ARCHITECTURE LEVEL PROTOCOL.
EXECUTE ARICHITECTURE LEVEL PROTOCOL LAYER

PROTOCOL_START_INFORMATION
NONE

A FLAG USED TO OBTAIN STARTUP PROCEDURES,
EXECUTE HELP COMMANDS LAYER

RECEIVED_INCORRECT_PAS SWORD_COMMAND
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
EXECUTE TRANSPORT PROTOCOL LAYER

SECONDARY_INCOMING_PHYSICAL_PACKETS
INCOMING_LINK_PACKETS
PRIMARY_INCOMING_PHYSICAL_PACKETS
INCOMING_PHYSICAL_PACKETS
OUTGOING_PHYSICAIL_PACKETS
OUTGOING_LINK_PACKETS

SEE ALIASES
OVERVIEW LAYER

SECONDARY_OPERATOR_COMMANDS
OPERATOR_COMMANDS
PRIMARY_OPERATOR _COMMANDS

SEE ALIASES
OVERVIEW LAYER

SECONDARY_OPERATOR_DISPLAY
PRIMARY_OPERATOR_DISPLAY
OPERATOR_DISPLAY

SEE ALIASES
OVERVIEW LAYER

e

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW RAME:
ALTASES:
COMPOSITION:

SOH_PACKET
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE LINK LEVEL PROTOCOL LAYER

STARTUP_PROCEDURES
NONE

STARTUP_PROCEDURES = A TABLE THAT CONTAINS ALL COMMANDS
AND ACTIONS UF A NETWORK STARTUP,
EXECUTE HELP COMMANDS LAYER

SYNC
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE LINK LEVEL PROTOCOL LAYER

TRANSPORT_DISPLAY_COMMANDS
NONE

TRANSPORT_DISPLAY_COMMANDS =
l—nzcnvan_mcoxxzcr_msswoxn_comnn |
| ERROR_REASON |
| FLOW_CONTROL_ERRORS]

EXECUTE NETWORK PROTOCOL AT PRLMARY NODE LAYER

TRANSPORT_OPERATION_COMMANDS
NONE

TRANSPORT_OPERATION_COMMANDS =
| OPERATOR_PASSWORD_COMMAND
| OPERATOR_START_COMMAND
| ABORT_COMMAND
| DISCONNECT_REQUEST
| CONNECT_REQUEST

SR) » Hiisaiicl) . . ‘, u{v‘j

R O

NOTES: EXECUTE EWNET PROTOCOL AT PRIMARY NODE LAYER

!
’ [
& |
v
P
|
p
4
4
4
3 3
3 3
i .
i
i
§
£

185

FILE OR DATABASE NAME: DIALOGUE_PROCESS_TABLE

ALIASES: NOKE

COMPOSITION: ;
REFER TO DATA DICTIONARY FOR THE TRANSPORT/NETWORK
LEVEL PROTOCOL. :

NOTES : EXECUTE HELP COMMANDS LAYER

PROCESS NAME: DETERMINE COMMAND TYPE

PROCESS NUMBER: 1.1

PROCESS DESCRIPTION:

IF USER_COMMAND contains NETWORK_ID and COMMAND_FIELD = TRANSFER_COMMAND then
Output command as ARCHITECTURE_OPERATION_COMMANDS

ELSEIF USER_COMMAND contains NETWORK_ID and COMMAND_FIELD = LOGICAL_LINK_
ESTABLISHMENT then
Output command as TRANSPORT_OPERATION_COMMANDS
ELSEIF USER_COMMAND contains NETWORK_ID and COMMAND_FIELD = HELP then

Output command as NETWORK_HELP_COMMAND
ELSE output command as LOCAL_COMMAND

PROCESS NAME: . DECODE HELP COMMAND

PROCESS NUMBER: 1.2.1

PROCESS DESCRIPTION:

IF NETWORK_HELP_COMMAND contains HELP_FIELD = General information then
Output GENERAL_INFORMATION Flag

ELSEIF NETWORK_HELP_COMMAND contains HELP_FIELD
Output FILE_TRANSFER_INFORMATION Flag ’

ELSEIF NETWORK_HELP_COMMAND contains HELP_FIELD
Output PROTOCOL_START_INFORMATION

ELSE output LIST_OF_ACTIVE_HOST_AND _DEVICE_NAMES Flag

File transfer then

Start then

PROCESS NAME: PROVIDE GENERAL NETWORK INFO
PROCESS NUMBER: 1.2.2
PROCESS DESCRIPTION:
IF Input = GENERAL_INFORMATION Flag then
Output MENU_SELECTION

ELSE Null
PROCESS NAME: PROVIDE PROCEDURE FOR TRANSFERING FILES
PROCESS NUMBER: 1.2.3

PROCESS DESCRIPTION:

IF Input = FILE_TRANSFER_INFORMATION Flag then
Output FILE_TRANSFER_PROCEDURE

ELSE Null

PROCESS NAME: PROVIDE LIST OF ACTIVE HOSTS AND DEVICES

187

PROCESS NUMBER: 1.2.4
PROCESS DESCRIPTION:
IF Taput = LIST_OF_ACTIVE_HOST_AND_DEVICE_NAMES Flag then
Extract from DIALOGUE_PROCESS_TABLE and
Output NETWORK_CONFIGURATION

ELSE Null
PROCESS NAME: PROVIDE NETWORK STARTUP PROCEDURES
PROCESS NUMBER: 1.2.5

PROCESS DESCRIPTION:
IF Input = PROTOCOL_START_INFORMATION Flag then
Output STARTUP_PROCEDURES

ELSE Null
PROCESS NAME: CODE HELP RESPONSES
PROCSS NUMBER: 1.2.6

PROCESS DESCRIPTION:
IF Input = MENU_SELECTION, FILE_TRANSFER_PROCEDURES, NETWORK_CONFIGURATION,
or STARTUP_PROCEDURES then
Output as HELP_RESPONSE

ELSE Null
PROCESS NAME: EXECUTE ARCHITECTURE LEVEL PROTOCOL
PROCESS NUMBER: 1.3

PROCESS DESCRIPTION:

EXECUTE the necessary processes to provide standardized formats and procedures
for accessing and passing data between a user process and a file system
existing in a network enviroment.

PROCESS NAME: EXECUTE TRANSPORT LEVEL PROTOCOL

PROCESS NUMBER: 1.4

PROCESS DESCRIPTION:

EXECUTE the necessary processes to create an interprocess communication
mechanism amoung the network nodes. It is concerned with the set of
services provided and management within the network.

PROCESS NAME: EXECUTE NETWORK LEVEL PROTOCOL

PROCESS NUMBER: 1.5

PROCESS DESCRIPTION:

EXECUTE the processes necessary to control the routing of packets within the
communication network.

' PROCESS

PROCESS
PROCESS

EXECUTE
will ensure a reliable data communication path between nodes of an network,

NAME : EXECUTE LINK LEVEL PROTOCOL

NUMBER: 1.6

DESCRIPTION:

the processes necessary to provide a data link control procedure that

PROCESS NAME: EXECUTE PHYSICAL LEVEL PROTOCOL

PROCESS NUMBER: 1.7

PROCESS DESCRIPTION:

EXECUTE the interface processes necessary to deliver a bit stream from one node
to another.

PROCESS NAME: DECODE PROTOCOL RESPONSES

PROCESS NUMBER: 1.8

PROCESS DESCRIPTION:

DELIVER individual TRANSPORT_DISPLAY_COMMANDS to the operator as
OPERATOR _DISPLAY

PROCESS NAME: EXECUTE EWNET PROTOCOL AT SECONDARY NODE

PROCESS NUMBER: 2.0

PROCESS DESCRIPTION:

EXECUTE the architecture protocol, transport protocol, network protocol, link

| protocol, and physical protocol established for the EWNET.

e

189

e DT

J SN SO,

sl

DATA DICTIONARY

FOR THE ARCHITECTURE LEVEL (A) PROTOCOL

Page
Data EIQEEnt/Flow Descriptions...u...u..............-............... 191
File Definitions......l'....'.‘......‘......‘......‘....'..'...'..‘..‘.. 239 l’

Process Specificationlo.l.Ouclil.ouﬂ'...‘..oc‘lo.clluc'vilc“td‘ct‘c'cc' 240

TN R i e i oy e A i Bpa

DATA_FLOW_NAME ;
ALIASES:
' COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

ABORT/STATUS_ERRORS

NONE

ABORT/STATUS_ERRORS = _RECEIVED_UNSUPPORT_STATUSZ—T

RECEIVED_FORMAT_STATUS2 |

RECEIVED_SYNC_STATUS2 [
]

RECEIVED_FORMAT_MISC !

RECEIVED_SYNC_UNKNOWN I

EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

I
I
[
[RECEIVED_UNSUPPORT_MISC
|
[

ACC/ECF/SCF_PACKET
NONE

ACC/ECF/SCF_PACKET = I—-ACCESS(ECF)_PACKET_I-
| ACCESS(SCF)_PACKET |

EXECUTE STARTUP PACKETS LAYER

ACCEPT_CONFIRM
NONE

A FLAG FROM THE TRANSPORT PROTOCOL IMPLYING THAT THK
CONNECT_CONFIRM PACKET HAS BEEN RECEIVED AND THE " OGICAIL_
LINK ESTABLISHED.

EXECUTE STARTUP PACKETS LAYER,

EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

ACC/ER_PACKET
NONE

ACC/ER_PACKET = TACCESS(ERASE)_PACKET_T
| ACCESS(RENA}™)_PACKET|

EXECUTE STARTUP PACKETS LAYER

ACCESS_COMPLETE_PACKET
RECEIVED_ACCESS_COMPLETE_PACKET
VALID_RECEIVED_ACCESS_COMPLETE_PACKET
RECEIVED_ACCOMP(COMMAND)
RECEIVED_ACCOMP(PURGE)

191

e R AR BT 2. s A A s

P ‘mﬂv_ ———— ‘

COMPOSITION:

DATA FLOW NAME:

COMPOSITION:

DATA FLOW NAME:

COMPOSITION:

DATA FLOW NAME:

COMPOSITION:

DATA FLOW NAME:

RECEIVED_ACCOMP{RESPONSE)
RECEIVED_ACCOMP(EOS)

ACCESS_COMPLETE_PACKET = OPERATOR + TYPE=7 + CMPFUNC + FOP
EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

ACCESS(ECF)_PACKET
ACCESS_PACKRET
ACCESS(ERASE)_PACKET
ACCESS(RENAME)_PACKET
ACCESS(SCF)_PACKET
RECEIVED_ACCESS_PACKET
VALID_RECEIVED_ACCESS_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

ACCESS(ERASE)_PACKET
ACCESS_PACKET
ACCESS(RENAME) _PACKET
ACCESS(ECF)_PACKET
ACCESS(SCF)_PACKET
RECEIVED_ACCESS_PACKET
VALID_RECEIVED_ACCESS_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

ACCESS_PACKET
RECEIVED_ACCESS_PACKET
VALID_RECEIVED_ACCESS_PACKET
ACCESS(ERASE)_PACKET
ACCESS(RENAME) _PACKET
ACCESS(ECF)_PACKET
ACCESS(SCF)_PACKET

ACCESS_PACKET = OPERATOR + TYPE=3 + ACCFUNC + ACCOPT +
FILESPEC + FAC + SHR

EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

ACCESS(RENAME)_PACKET

192

T S U RO

ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:

ACCESS_PACKET
ACCESS(ERASE)_PACKET
ACCESS(SCF)_PACKET
ACCESS(ECF)_PACKET
RECEIVED_ACCESS_PACKE.
VALID_RECEIVED_ACCESS_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

ACCESS(SCF)_PACKET
ACCESS_PACKET
ACCESS(ERASE)_PACKET
ACCESS(RENAME) _PACKET
ACCESS(ECF)_PACKRET
RECEIVED_ACCESS_PACRET
VALID_RECEIVED_ACCESS_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

ACCFUNC
NONE

THE REQUEST CODE SPECIFYING THE OPERATION TO BE PERFORMED
SUCH AS: OPEN FILE, CREATE FILE, RENAME FILE, ERASE
FILE, DIRECTORY LIST, SUBMIT AS COMMAND FILE, AND EXECUTE
COMMAND FILE.

ALL ARCHITECTURE LAYERS

ACCOMP(COMMAND)
ACCOMP(PURGE)

A FLAG USED TO INDICATE THE END OF A DATA STREAM, PLUS A
POSSIBLE ABORT, PLUS THE REQUESTING OF THE END OF THE
LOGICAL LINK. GENERATES THE APPROPRIATE ACCESS_COMPLETE_
PACKET

EXECUTE ACC/ACK PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

ACCOMP(EOS)
NONE

193

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSLTION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

A FLAG USED TO INDICATE THE END OF A DATA STREAM REQUEST.
GENERATES AN ACCESS_COMPLETE_PACKET,

EXECUTE ACC/ACK PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

ACCOMP(PURGE)
ACCOMP(COMMAND)

SEE ALIASES

EXECUTE ACC/ACK PACRETS LAYER

EXECUTE CONTINUE PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

ACCOPT
NONE

ACCESS OPTIONS:

l. A RECORD MAY BE SKIPPED OR REPEATED AS SPECLFIED BY
THE CONTINUE PACKET. I/0 ERRORS ARE NOT FATAL.

2. IF SET, A STATUS PACKET WILL BE RETURNED FOLLOWING
EACH RECORD SENT TO THE ACCESSED PROCESS IN THE
RECORD ACCESS MODE,

3. 1IF SET, RETURN A STATUS PACKET WITH EACH RECORD
RETRIEVED FROM AN ACCESSED SYSTEM. THE STATUS
PACKET SHOULD PRECEDE THE DATA PACKET SO THAT IT IS
POSSIBLE TO BLOCK THE TWO INTO ONE PACKET. WHEN A
USER REQUIRES A RECORD FILE ADDRESS TO BE RETURNED,
THIS OPTION IS USED.

ALL ARCHITECTURE LAYERS

ACKNOWLEDGE_PACKET
VALID_RECEIVED_ACKNOWLEDGE_PACKET
RECEIVED_ACKNOWLEDGE_PACKET

ACKNOWLEDGE_PACKET = OPERATOR + TYPE=6

EXECUTE ACC/ACK PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

ADD_GET_PACKET
RECEIVED_ADD_GET_PACKET

194

P

A

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

ADD_GET_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + REY + ROP
GENERATE CONTROL PACKETS LAYER

ADD_PUT_PACKET
RECEIVED_ADD_PUT_PACKET

ADD_PUT_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + KEY + ROP
GENERATE CONTROL PACKETS LAYER

ALQ
NONE

THIS FIELD SPECIFIES THE ALLOCATION QUANTITY. FOR FILE
CREATION, IT SPECIFIES THE INLTIAL SIZE OF THE NEW FILE.
THE ACTUAL SIZE OF THE NEW FILE IS RETURNED IN THIS FIELD.
ALL ARCHITECTURE LAYERS

ATTMENU
NONE

SPECIFIES WHICH OF THE ATTRIBUTES FIELDS WILL BE PRESENT IN
THE MAIN ATTRIBUTES PACKET.
ALL ARCHITECTURE 1AYERS

ATTRIB/ACC_ERROR
NONE

A FLAG USED TO NOTIFY THE ACCESS CHECK PROCESS THAT ON A
RECEIVE OF A ATTRIB/ACC_PACKET THE ATTRIBUTES PORTION OF

THE PACKET WAS IN ERROR,
EXECUTE STARTUP PACKETS LAYER

ATTRIB/ACC_PACKET
RECEIVED_ATTRIB/ACC_PACKET

ATTRIB/ACC_PACKET = ATTRIBUTES_PACKET + ACCESS_PACKET
EXECUTE STARTUP PACKETS LAYER

195

TS AR)

!
'
!

DATA ELEMENT NAME:
;? ALIASES:
' VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

ATTRIB/ACK_ERROR
NONE

A FLAG USED TO NOTIFY THE ACKNOWLEDGE CHECK PROCESS THAT
ON A RECEIVE OF A ATTRIB/ACK_PACKET THE ATTRIBUTES PORTION
OF THE PACKET WAS IN ERROR.

EXECUTE STARTUP PACKETS LAYER

ATTRIB/ACK_PACKET
RECEIVED_ATTRIB/ACK_PACKET {4

ATTRIB/ACK_PACKET = ATTRIBUTES_PACKET + ACKNOWLEDGE_PACKET
EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

ATTRIBUTES_PACKET
RECEIVED_ATTRIBUTES_PACKET
VALID_RECEIVED_ATTRIBUTES_PACKET

ATTRIBUTES_PACKET = OPERATOR + TYPE=2 + ATTMENU +
(DATATYPE) + (ORG) + (RFM) + (RAT) +
(BLS) + (MRS) + (ALQ) + (BKS) + (FSz) +
{MRN) + (RUNSYS) + (DEQ) + (FoOP) "4

EXECUTE STARTUP PACKETS LAYER .

BKS
NONE

BUCKET SIZE. USED ONLY FOR ACCESS TO RELATIVE FILES,
ALL ARCHITECTURE LAYERS

BLS
NONE

PHYSICAL BLOCK SIZE.
ALL ARCHITECTURE LAYERS

BUFSIZE
NONE

196

ROTES:

DATA ELEMENT NAME:
ALIASES:
VALUxS AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

THE MAXIMUM BUFFER SIZE OF THE SENDING SYSTEM ALLOCATED FOR
PACKET EXCHANGE, THE TWO SPEAKING PROCESSES WILL USE THE
LESSER OF THE TWO BUFFER SIZES AS THE MAXIMUM SIZE. IF A
SYSTEM HAS AN UNLIMITED BUFFER SIZE, IF SENDS A 0 AND THE

TWO SYSTEMS WILL USE THE NONZERO BUFFER S1ZE AS THE MAXIMUM.

ALL ARCHITECTURE LAYERS

CMPFUNC
NONE

ACCESS COMPLETION FUNCTIONS SUCH AS:

1. TERMINATE ACCESS

2. RESPONSE

3. PURGE

4, END_OF_STREAM (EOS)
ALL ARCHITECTURE LAYERS

CONFIGURATION_PACKET
RECEIVED_CONFIGURATION_PACKET
VALID_RECEIVED_CONFIGURATION_PACKET

CONFIGURATION_PACKET = OPERATOR + TYPE=1 + BUFSIZE +

OSTYPE + FILESYS + VERSION + SYSCAP
EXECUTE STARTUP PACKETS LAYER

CONFUNC
NONE

THIS FIELD IS USED TO SPECIFY THE RECOVERY ACTION TO BE
TAKEN. 1. TRY AGAIN

2, SKIP

3. ABORT
ALL ARCHITECTURE LAYERS

CONNECT_PACKET
RECEIVED_CONNECT_PACKET

CONNECT_PACKET = OPERATOR + TYPE=4 + CTLFURC + (CTLMENU) +

(RAC) + (KEY) + (ROP)
GENERATE CONTROL PACKETS LAYER

197

DATA FLOW NAME: CONT INUE_ABORT_ERROR
ALIASES: CONTINUE_SKIP_ERROR

' CONTINUE_ONLY_ERROR
COMPOSITION:

CONTINUE_ABORT_ERROR = -I_RECEIVED_UNSUPPORT_CONTINUE_I.
| RECEIVED_FORMAT_CONTINUE |
| RECEIVED_SYNC_CONTINUE |

NOTES: EXECUTE CONTINUE PACKETS LAYER
DATA FLOW NAME: CONTINUE_ABORT_PACKET
ALIASES: CONTINUE_ONLY_PACKET

CONTINUE_SKIP_PACKET
RECEIVED_CONTINUE_ABORT_PACKET
RECEIVED_CONTINUE_ONLY_PACKET
RECEIVED_CONTINUE_SKIP_PACKET

COMPOSITION:
SEE ALIASES
NOTES : EXECUTE CONTINUE PACKETS LAYER
DATA FLOW NAME: CONTINUE/DATA_PACKET ij
ALIASES: NONE)
COMPOSITION:
; CONTINUE/DATA_PACKET = CONTINUE_INTERRUPT_PACKET + DATA_ }
PACKET ;
‘g NOTES : EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER !
é i
DATA FLOW NAME: CONT INUE_ERRORS !
ALTASES: NONE :
COMPOSITION: — _ |
CONTINUE_ERRORS = | RECEIVED_UNSUPPORT_CONTINUE | i
] | RECEIVED_FORMAT_CONTINUE | !
| RECEIVED_SYNC_CONTINUE !
| RECEIVED_UNSUPPORT_MISC |
| RECEIVED_FORMAT_MISC |
| RECEIVED_SYNC_UNKNOWN |
NOTES: EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER
DATA FLOW NAME: CONT INUE_INTERRUPT_PACKET
i ALIASES: RECEIVED_CONT INUE_PACKETS)
! COMPOSITION: :

'y
v ¥

198

2

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES :

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITTION:

NOTES:

DATA ELEMENT NAME:

CONTINUE_INTERRUPT_PACKET = CONTINUE_ABORT_PACKET +
CONTINUE_SKIP_PACKET +
CONTINUE_ONLY_PACKET

EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

CONTINUE_ONLY_ERROR
CONT INUE_ABORT_ERROR
CONTINUE_SKIP_ERROR

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER

CONTINUE_ONLY_PACKET
CONTINUE_ABORT_PACKET
CONTINUE_SKIP_PACKET
RECEIVED_CONTINUE_ABORT_PACKET
RECEIVED_CONTINUE_SKIP_PACKET
RECEIVED_CONTINUE_ONLY_PACKET

CONTINUE_ONLY_PACKET = OPERATOR + TYPE=5 + CONFUNC
EXECUTE CONTINUE PACKETS LAYER

CONTINUE_SKIP_ERROR
CONTINUE_ABORT_ERROR
CONTINUE_ONLY_ERROR

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER

CONTINUE_SKIP_PACKET
CONTINUE_ONLY_PACKET
CONTINUE_ABORT_PACKET
RECEIVED_CONTINUE_ABORT_PACKET
RECEIVED_CONTINUE_ONLY_PACKET
RECEIVED_CONTINUE_SKIP_PACKET

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER

CONTINUE_WITH_BAD_RECORD

199

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

NONE

A FLAG USED TO INDICATE THAT THE BAD RECORD SHOULD BE LEFT
AS IS AND CONTINUE RECIEVING RECORDS.
EXECUTE CONTINUE PACKETS LAYER

CONTROL_PACKET
RECEIVED_CONTROL_PACKET

CONTROL_PACKET = | CONNECT_PACKET |
| GET_PACKET |
| PUT_PACKET |
GENERATE CONTROL PACRETS LAYER
CODE ARCHITECTURE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

CTLFUNC
NONE

SPECIFIC CONTROL INFORMATION:
1., GET RECORD
2., CONNECT
3. UPDATE
4, PUT RECORD
5. DELETE
6. REWIND
ALL ARCHITECTURE LAYERS

CTLMENV
NONE

INDICATES OPTIONAL FIELDS ARE PRESENT.
ALL ARCHITECTURE LAYERS

DATA
FILE_DATA

THE FILE DATA BEING TRANSFERRED. THIS FIELD IS TOTALLY
TRANSPARENT AND USES ALL 8-BITS OF EACH BYTE.
EXECUTE CONTINUE PACKETS LAYER

DATA FLOW NAME: DATA_ERRORS
' ALIASES: NONE
COMPOSITION: — —
DATA_ERRORS = | RECEIVED_UNSUPPORT_DATA |
| RECEIVED_FORMAT DATA |
| RECEIVED_SYNC_DATA |
| RECEIVED_UNSUPPORT_MISC |
| RECEIVED_FORMAT_MISC !
| RECEIVED_SYNC_UNKNOWN |
NOTES: EXECUTE CONTINUE PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER ‘ L

DATA FLOW NAME: DATA_PACKET
ALIASES: RECEIVED_DATA_FILE
COMPOSITION:

DATA_PACKET = OPERATOR + TYPE=8 + RECNUM + FILEDATA
NOTES: EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA ELEMENT NAME: DATA_TYPE : !
ALIASES: NONE ‘
VALUES AND MEANINGS:
THE TYPE OF DATA BEING TRANSFERRED, DEFAULT TO IMAGE.
THIS FIELD IS VERY IMPORTANT FOR FILE/RECORD RETRIEVAL.
MANY FILE SYSTEMS DO NOT EXPLICITLY STORE WITH THE FILE *
ATTRIBUTES, INFORMATION AS TO WHETHER THE FILE CONTAINS
ASCII, EBCDIC, OR IMAGE DATA., THEREFORE, THE CONTENTS
OF A FILE ARE INTERPRETED ACCORDING TO THE DATA TYPE
SUPPLIED BY THE USER.
IMAGE IS THE MODE WHERE NO CODE SET IS SPECLFIED. IT IS A
FORMAT FOR SENDING 8-BIT QUANTITIES WITHOUT SPECIFYING ANY
CODE REPRESENTATION. THE ACTUAL DATA MAY BE ASCII, OR
BINARY. IT IS UP TO THE USER PROCESS TO DETERMINE HUW TO
USE THE DATA.
NOTES: ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: DEQ
ALIASES: NONE
VALUES AND MEANINGS:

FILE EXTENSION QUANTUM SIZE IN VIRTUAL BLOCKS, WHICH IS THE
AMOUNT OF SPACE, IN BLOCKS, ADDED TO THE FILE EACH TIME THE
FILE IS IMPLICITLY EXTENDED.

ALL ARCHITECTURE LAYERS

201

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

o o

DISCONNECT
NONE

A FLAG USED TO INDICATE TERMINATION OF THE LOGICAL LINK.
CODE ARCHITECTURE PACKETS LAYER

DISCORNECT_REQUEST
NONE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL
PROTOCOL.
CODE ARCHITECTURE PACKETS LAYER

EOF
RECEIVED_EOF

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

EXECUTE_ERRORS
NONE
EXECUTE_ERRORS = T—bPERATION_IN_rROGRESS—T
| FILE_ERRORS |
| SUCCESSFUL_OPERATION |
| EOF |
| DATA_ERRORS |
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER ;i
i
1
FAC t
NONE ‘

!
|
FILE ACCESS OPERATIONS A USER REQUIRES. 5
ALL ARCHITECTURE LAYERS

i

FLAGS

202

“—————-——N

& va
A

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

NONE

THE PACKET FLAGS SUCH AS:
1. STREAM IDENTIFICATION FIELD PRESENT
2. LENGTH FIELD PRESENT
3. EXTENSION PRESENT

ALL ARCHITECTURE LAYERS

FILE_DATA
DATA

SEE ALIASES
ALL ARCHITECTURE LAYERS

FILE_ERRORS
RECEIVED_FILE_ERRORS

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

FILESPEC
NONE

THE FILE SPECIFICATION IN THE FORMAT REQUIRED BY THE
REMOTE NODE.
ALL ARCHITECTURE LAYERS

FILESYS
NONE

FILE SYSTEM TYPE OF THE FILE SYSTEM BEING USED BY THE
PROCESS SENDING THIS MESSAGE.
ALL ARCHITECTURE LAYERS

FIRST_ATTRIB_FLAG
NONE

A FLAG SET WHEN THIS NODE IS THE ONE GENERATING THE FIRST

ATTRIBUTES PACKET.
EXECUTE STARTUP PACKETS LAYER

203

d

»

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

FIRST_CONFIG_FLAG
NONE

A FLAG SET WHEN THIS NODE IS THE ONE GENERATING THE FIRST
CONFIGURATION_PACKET.
EXECUTE STARTUP PACKETS LAYER

FOP
NONE

FILE ACCESS OPTIONS A USER REQUIRES SUCH AS REWIND, OPEN,
REWIND ON CLOSE, OR POSITION MAGNETIC TAPE, ETC,
ALL ARCHITECTURE LAYERS

FSZ
NONE

SIZE OF THE FIXED PART OF VARIABLE LENGTH RECORDS WITH
FIXED CONTROL FORMAT.
ALL ARCHITECTURE LAYERS

GET_PACKET
RECEIVED_GET_PACKET

GET_PACKET = | ADD_GET_PACKET |
| KEY_GET_PACKET |
| SEQ_GET_PACKET |

GENERATE CONTROL PACKETS LAYER

INCOMING_PRIMARY NODE_ARCHITECTURE_PACKETS
INCOMING_SECONDARY_ NODE_ARCHITECTURE_PACKETS

INCOMING_PRIMARY_ NODE_ARCHITECTURE_PACKETS =

| RECEIVED_STATUS_PACKET
| RECEIVED_STARTUP_PACKET

| RECEIVED_ACCESS_COMPLETE_PACKET |
I
I
| RECEIVED_CONTINUE_ABORT l

204

PR

NOTES:

DATA FLOW NAME:
ALTIASES:
COMPOSITICN:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALIASES:
COMPOSLTION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

ACCEPT_CONFIRM
RECEIVED_CONTINUE_ONLY_P?ACKET
RECEIVED_CONTINUE_SKIP_PACKET

RECEIVED_CONTROL_FILE

DISCONNECT_CONFIRM_VERSION
EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER
OVERVIEW LAYER

|
|
|
| RECEIVED_DATA_FILE
|
|

INCOMING_SECONDARY_NODE_ARCHITECTURE_PACKETS
INCOMING_PRIMARY_NODE_ARCHITECTURE_PACKETS

SEE ALIASES
OVERVIEW LAYER

KEY
NONE

RELATIVE FILES
INDEXED FILES RECORD KEY

DIRECT FILES RECORD KEY

RECORD FILE ADDRESS:

ACCESS MODE = RECORD FILE ADDRESS
BLOCK MODE ACC = VIRTUAL BLOCK NUMBER
ALL ARCHITECTURE LAYERS

RECORD NUMBER

KEY_GET_PACKET
RECEIVED_KEY_GET_PACKET

KEY_GET_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + XEY + ROP
GENERATE CONTROL PACKETS LAYER

KEY_ . PUT_PACKET
RECEIVED_KEY_PUT_PACKET

KEY_PUT_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +

RAC + KEY + ROP
GENERATE CONTROL PACKETS LAYER

205

rer e Yt

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

LENGTH
NONE

DENOTES THE LENGTH OF THE OPERAND FIELD (NUMBER OF 8-BIT
BYTES).
ALL ARCHITECTURE LAYERS

MRN
NONE

MAXIMUM RECORD NUMBER FOR A FILE,
ALL ARCHITECTURE LAYERS

MRS
NONE

THE LENGTH OF EACH FILE RECORD IN NUMBER OF BYTES. FOR
VARIABLE_LENGTH RECORDS, THIS FIELD SPECLFIES THE MAXIMUM
RECORD SIZE, WHEN THE ACCESSED PROCESS RECEIVES THE MRS
(MAXIMUM RECORD SIZE), IT MUST CHECK IT AGAINST; THE LENGTH
OF ITS BUFFER. IF THE BUFFER WILL NOT ACCOMMODATE THIS
SIZE RECORD, THE ACCESSED PROCESS SHOULD RETURN ITS BUFFER
SIZE.

ALL ARCHITECTURE LAYERS

NEW_ACCESS
NONE

A INTERNAL FLAG USED TO START A NEW DATA STREAM ACCESS ONCE
AN (LD FILE TRANSFER IS COMPLETE.

EXCLCUTE STARTUP PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

OPERAND
NONE

THE INFORMATION FIELD OF THE PACKET. IT IS DEPENDENT ON THE

TYPE FIELD.
ALL ARCHITECTURE LAYERS

206

DATA ELEMENT NAME:
1' ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

W

OPERATION_IN_PROGRESS
RECEIVED_PENDING_STATUS
RECEIVED_OPERATION_IN_PROGRESS

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

OPERATOR
NONE

OPERATOR = TYPE + FLAGS + (STREAMID) + (LENGTH) + (OPERAND)
ALL ARCHITECTURE LAYERS

ORG
NONE

ATTRIBUTES OF THE FILE BEING ACCESSED. DEFAULT = SEQUENTIAL.
ALL ARCHITECTURE LAYERS

OSTYPE
NONE

OPERATING SYSTEM TYPE
ALL ARCHITECTURE LAYERS

OUTGOING_PRIMARY_NODE_ARCHITECTURE_PACKETS
OUTGOING_SECONDARY NODE_ARCHITECTURE_PACKETS

OUTGOING_PRIMARY_ NODE_ARCHITECTURE_PACKETS =

1 DISCONNECT_REQUEST |
| WORKING_PACKETS |
| STATUS_PACKETS [

OVERVIEW LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRiMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

OUTGOING_SECONDARf_NODE_ARCHITECTURE_PACKETS
OUTGOING_PRIMARY_NODE_ARCHITECTURE_PACKETS

207/
{

-

[O

TR

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

SEE ALIASES
OVERVIEW LAYER

PRIMARY_INCOMING_DIALOGUE_COMMANDS
SECONDARY_INCOMING_DIALOGUE_COMMANDS

PRIMARY_INCOMING_DIALOGUE_COMMANDS =
1 OPERATOR_PASSWORD_COMMAND |
| OPERATOR_START_COMMAND |
| ABORT_COMMAND [
| CONNECT_REQUEST |

OVERVIEW LAYER

PRIMARY_START_FILE_CONFIGURATION
SECONDARY_START_FILE_CONFIGURATION

THIS IS A COMMAND FROM THE OPERATOR TO START THE FILE_
TRANSFER PROTOCOL BY ISSUING A CONFIGURATION_PACRET.
OVERVIEW LAYER

EXECUTE ARCHITECTURE PROTCCOL AT PRLMARY NODE LAYER
EXECUTE STARTUP PACKETS LAYER

PRIMARY_OUTGOING_DIALOGUE_COMMANDS
SECONDARY_OUTGOING_DIALOGUE_COMMANDS

PRIMARY_OUTGOING_DIALOGUE_COMMANDS =

| RECEIVED_INCORRECT_PASSWORD_COMMAND |
| FLOW_CONTROL_ERRORS !
| OUTGOING_DIALOGUE_DATA_PACKET !
| ERROR_REASON |
= OUTGOING_DIALOGUE_MESSAGE

REFER TO DATA DICTIONARY FOR TRANSPORT/NETWORK LEVEL

PROTOCOL,

OVERVIEW LAYER

PURGE/ABORT_INTERRUPT
NONE

208

i e v —naamea o

A FLAG USED TO INDICATE THAT A CONTINUE_ABORT_PACKET SHOULD

BE GENERATED AND OUTPUTED AFTER THE GENERATION OF AN A
' ACCOMP(PURGE)_PACKET OR ACCOMP(COMMAND)_PACKET,
NOTES: EXECUTE CONTINUE PACKETS LAYER
DATA FLOW NAME: PUT_PACKET
ALIASES: RECEIVED_PUT_PACKET
COMPOSITION: —_— —_—
PUT_PACKET = | SEQ_PUT_PACKET |

| REY_PUT_PACKET |
| ADD_PUT_PACKET |

NOTES: GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: RAC ‘
ALTASES: NONE ‘
VALUES AND MEANINGS: ‘
SETS THE ACCESS MODE:

1., SEQUENTIAL RECORD ADDESS

2., KEYED ACCESS

3. ACCESS BY RECORD FILE ADDRESS

4, SEQUENTIAL FILE ACCESS '

5. ACCESS BY VIRTUAL BLOCK NUMBER

6. BLOCK MODE FILE TRANSFER ‘
NOTES : ALL ARCHITECTURE LAYERS

DATA ELEMENT NAME: RAT i
ALIASES: NONE
VALUES AND MEANINGS:

INFORMATION ABOUT THE ATTRIBUTES OF THE INDIVIDUAL RECORDS

SUCH AS TYPE OF CARRAGE CONTROL, LINE FEED, ETC.

NOTES : ALL ARCHITECTURE LAYERS

'% ,
DATA FLOW NAME: RECEIVED_ACCESS_COMPLETE_ERRORS !
ALIASES: NONE
COMPOSITION:

RECEIVED_ACCESS_COMPLETE_ERRORS =

T RECEIVED_UNSUPPORT_ACC/COMP |
| RECEIVED_FORMAT_ACC/COMP |
| RECEIVED_SYNC_ACC/COMP |
| |
| I

RECEIVED_UNSUPPORT_MISC
RECEIVED_FORMAT_MISC

.- 209

<4
.
A]

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES :

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA_FLOW_NAME:
ALIASES:

| RECEIVED_SYNC_UNKNOWN |

EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_ACCESS_COMPLETE_PACKET
ACCESS_COMPLETE_PACKET
VALID_RECEIVED_ACCESS_COMPLETE_PACKET
RECEIVED_ACCOMP(COMMAND)
RECEIVED_ACCOMP(PURGE)
RECEIVED_ACCOMP(RESPONSE)
RECEIVED_ACCOMP(EOS)

SEE ALIASES
EXECUTE ACC/ACK PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_ACCESS_PACKET
ACCESS_PACKET
VALID_RECEIVED_ACCESS_PACKET
ACCESS(ERASE)_PACKET
ACCESS(RENAME) _PACKET
ACCESS(ECF)_PACKET
ACCESS(SCF)_PACKRET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

RECEIVED_ACCOMP{COMMAND)
ACCESS_COMPLETE_PACKET
RECEIVED_ACCESS_COMPLETE_PACKET
VALID_RECEIVED_ACCESS_COMPLETE_PACKET
RECEIVED_ACCOMP(PURGE)
RECEIVED_ACCOMP(RESPONSE)
RECEIVED_ACCOMP(EOQS)

SEE ALIASES
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_ACCOMP(EOS)
ACCESS_COMPLETE_PACKET
RECEIVED_ACCESS_COMPLETE_PACKET
VALID_RECEIVED_ACCESS_COMPLETE_PACKET

210

e e

S D,

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTIASES:

RECEIVED_ACCOMP(COMMAND)
RECEIVED_ACCOMP(PURGE)
RECEIVED_ACCOMP(RESPONSE)

SEE ALIASES
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_ACCOMP(PURGE)
ACCESS_COMPLETE_PACKET
RECEIVED_ACCESS_COMPLETE_PACKET
VALID_RECEIVED_ACCESS_COMPLETE_PACKET
RECEIVED_ACCOMP(COMMAND)
RECEIVED_ACCOMP(RESPONSE)
RECEIVED_ACCOMP(EOS)

SEE ALIASES
EXECUTE ACC/ACK PACRETS LAYER

RECEIVED_ACCOMP(RESPONSE)
ACCESS_COMPLETE_PACKET
RECEIVED_ACCESS_COMPLETE_PACKET
VALID_RECEIVED_ACCESS_COMPLETE_PACKET
RECEIVED_ACCOMP(COMMAND)
RECEIVED_ACCOMP(PURGE)
RECEIVED_ACCOMP(EOS)

SEE ALIASES
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_ACC_ERRORS
NORE

RECEIVED_ACC_ERRORS =

RECEIVED_FORMAT_MISC
RECEIVED_SYNC_ACCESS
RECEIVED_SYNC_UNKNOWN

EXECUTE STARTUP PACKETS LAYER

RECEIVED_ACK_ERRORS
NONE

211

| RECEIVED_UNSUPPORT_ACCESS
| RECEIVED_UNSUPPORT_MISC

| RECEIVED_FORMAT_ACCESS
|
|
|

P au

a4 "

L ¥ 4

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

RECEIVED_ACK_ERRORS =

RECEIVED_SYNC_ACK
RECEIVED_SYNC_UNKNOWN

EXECUTE STARTUP PACKETS LAYER

RECEIVED_ACKNOWLEDGE_PACKET
ACKNOWLEDGE_PACKET

VALID_RECEIVED_ACKNOWLEDGE_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

RECEIVED_ADD_GET_PACKET
ADD_GET_PACKET

SEE ALIASES

EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_ADD_PUT_PACKET
ADD_PUT_PACKET

SEE ALIASES

EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_ATTRIB/ACC_PACKET
ATTRIB/ACC_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

RECEIVED_ATTRIB/ACK_PACKET
ATTRIB/ACK_PACKET

SEE ALIASES

212

: o o SR Gl e RN et ottt s cn

| RECEIVED_UNSUPPORT_MISC
| RECEIVED_UNSUPPOET_ACK
| RECEIVED_FORMAT_ACK

| RECEIVED_FORMAT_MISC
|
|

NOTES: EXECUTE STARTUP PACKETS LAYER

DATA FLOW NAME: RECEIVED_ATTRIB_ERRORS
ALIASES: NONE
COMPOSITION:

RECEIVED_ATTRIB_ERRORS = | RECEIVED_UNSUPPORT_ATTRIB |
RECEIVED_FORMAT_ATTRIB |
RECEIVED_SYNC_ATTRIB |
|
RECEIVED_FORMAT_MISC |
|

|
|
|
| RECEIVED_UNSUPPORT_MISC
|
| RECEIVED_SYNC_UNKNOWN

NOTES: EXECUTE STARTUP PACKETS LAYER
DATA FLOW NAME: RECEIVED_ATTRIBUTES_PACKET
ALTASES: ATTRIBUTES_PACKET
VALID_RECEIVED_ATi:IBUTES_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER :
i
DATA FLOW NAME: RECEIVED_DATA_FILE .
ALIASES: DATA_PACKET
COiPOSITION:
SEE ALIASES
NOTES ¢ EXECUTE CONTINUE PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
DATA FLOW NAME: RECEIVED_CONFIG_ERRORS
ALTASES: NONE
COMPOSITION: — —
RECEIVED_CONFIG_ERRORS = | RECEIVED_UNSUPPORT_CONFIG | ‘
| RECEIVED_FORMAT_CONFIG ! |
| RECEIVED_SYNC_CONFIG | !
| RECEIVED_UNSUPPORT_MISC | 1
| RECEIVED_FORMAT_MISC | ;
| RECEIVED_SYNC_UNKNOWN |]
NOTES: EXECUTE STARTUP PACKETS LAYER L
i
DATA FLOW NAME: RECEIVED_CONFIGURATION_PACKET
4
4> 213

|
|
|
|

ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:

CONFIGURATION_PACKET
VALID_RECEIVED_CONFIGURATION_PACKET

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

RECEIVED_CONNECT_PACKET
CONNECT_PACKET

SEE ALIASES
EXECUTE CONTROL PACKETS LAYER

RECEIVED_CONTINUE_ABORT_PACKET
CONTINUE_ONLY_PACKET
CONTINUE_ABORT_PACKET
CONTINUE_SKIP_PACKET
RECEIVED_CONTINUE_ONLY_PACKET
RECEIVED_CONTINUE_SKIP_PACKET

SEE ALIASES
EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_CONTINUE_ONLY_PACKET
CONTINUE_ONLY_PACKET
CONTINUE_SKIP_PACKET
CONTINUE_ABORT_PACKET
RECEIVED_CONTINUE_SKIP_PACKET
RECEIVED_CONTINUE_ABORT_PACKET

SEE ALIASES

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_CONTINUE_PACKETS
CONTINUE_INTERRUPT_PACKET

SEE ALIASES
EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

RECEIVED_CONTINUE_SKIP_PACKET

214

PR S B

L

ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES

CONTINUE_ONLY_PACKET
CONTINUE_ABORT_PACKET

CONT INUE_SKIP_PACKET
RECEIVED_CONTINUE_ABORT_PACKET 1
RECEIVED_CONTINUE_ONLY_PACKET ’

SEE ALIASES
EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_CONTINUE_STATUS
NONE x

RECEIVED_CONTINUE_STATUS =]
| RECEIVED_OPERATION_IN_PROGRESS
| RECEIVED_SUCCESSFUL_OPERATION
| RECEIVED_SYNC_DATA
| RECEIVED_FORMAT_DATA
| RECEIVED_UNSUPPORT_DATA
| RECEIVED_FILE_ERRORS

EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

—-_—_._.-_.l

RECEIVED_CONTROL_ERRORS Y

NONE

RECEIVED_CONTROL_ERRORS = | RECEIVED_UNSUPPORT_CONTROL |
| RECEIVED_SYNC_CONTROL |
| RECEIVED_FORMAT_CONTROL |

| RECEIVED_UNSUPPORT_MISC]

| RECEIVED_FORMAT_MISC |

| RECEIVED_SYNC_UNKNOWN |

EXECUTE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

EXECUTE CONTROL PACKETS LAYER

CODE ARCHITECTURE PACKETS LAYER 1

RECEIVED_CONTROL_PACKET
CONTROL_PACKET

SEE ALIASES
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTROL PACKETS LAYER

215

DATA FLOW NAME:

COMPOSITION:

DATA ELEMENT NAME:

VALUES AND MEANINGS:

DATA ELEMENT NAME:

VALUES AND MEANINGS:

DATA FLOW NAME:

COMPOSITION:

DATA ELEMENT NAME:

VALUES AND MEANINGS:

r—- P ——— e T et e Y ———e.

§

RECEIVED_CONTROL_STATUS
NONE

RECEIVED_CONTROL_STATUS = I—-RECEIVED_UNSUPPORT_CONTROL-—I
| RECEIVED_FORMAT_CONTROL |
| RECEIVED_SYNC_CONTROL |

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_EOF
EOF

RECEIVED END-OF-FILE SUCCESSFULLY.
DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_FILE_ERRORS
FILE_ERRORS

1. ERRORS THAT OCCUR BEFORE A FILE IS SUCCESSFULLY
OPENED.

2. ERRORS THAT OCCUR AFTER OPENING A FILE AND BEFORE
CLOSING THAT FILE.

3. ERRORS ASSOCIATED WITH TERMINATING ACCESS TO A FILE.

DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

RECEIVED_FILE_STATUS
NONE

RECEIVED_FILE_STATUS = T_RECEIVED_FILE_ERRORS_T
| RECEIVED_TIMEOUT |

DECODE STATUS PACKETS LAYER

RECEIVED_FORMAT_ACC/COMP
RECEIVED_FORMAT_MISC

SEE ALIASES

DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

216

e A IR 7 s o M ke e

PERTE

DATA ELEMENT NAME: RECEIVED_FORMAT_ACCESS
ALIASES: RECEIVED_FORMAT_MISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_ACK

ALIASES: RECEIVED_FORMAT_MISC

VALUES AND MEANINGS:
SEE ALIASES

NOTES: DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_ATTRIB
ALIASES: RECEIVED_FORMAT _MISC
VALUES AND MEANINGS:

SEE ALIASES

NOTES: DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_CONFIG
ALIASES: RECEIVED_FORMAT_MISC
VALUES AND MEANINGS:
SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_CONTINUE
ALIASES: RECEIVED_FORMAT_MISC
VALUES AND MEANINGS:
SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_CONTROL

217

o L d s

B v ias R e oMt e .

ALIASES: RECEIVED_FORMAT_MISC
VALUES AND MEANINGS:
' SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER
L GENERATE CONTROL PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_DATA

ALTASES: RECEIVED_FORMAT_MISC

VALUES AND MEANINGS:
SEE ALIASES

NOTES : DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_FORMAT_MISC
ALIASES: RECEIVED-FORMAT_CONFI1G
RECEIVED-FORMAT_ATTRIB .
RECEIVED-FORMAT_ACCESS
RECEIVED_FORMAT_CONTINUE
RECEIVED_FORMAT_CONTROL
RECEIVED_FORMAT_ACK
RECEIVED_FORMAT_ACC/ACK
RECEIVED_FORMAT_DATA
RECEIVED_FORMAT_STATUS2
VALUES AND MEANINGS: .
1. ERROR IN PARSING THE PARTICULAR PACKET.
2. FIELD OF THE PARTICULAR PACKET IS INVALID (e.g., BITS
THAT AR% MEANT TO BE MUTUALLY EXCLUSIVE ARE SET, AN
UNDEFINED BIT IS SET, A FIELD VALUE IS OUT OF RANGE
OR AN ILLEGAL STRING IS IN A FIELD).
NOTES: DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

DATA FLOW FAME: RECEIVED_FORMAT_STATUS

ALTASES: NONE

COMPOSITION: —_ —
RECEIVED_FORMAT_STATUS = ' RECEIVED_FORMAT_MISC

I
RECEIVED_FORMAT_ACC/COMP |
RECEIVED_FORMAT_CONFIG |
RECEIVED_FORMAT _ATTRIB |
RECEIVED_FORMAT_ACCESS |
RECEIVSD_FORMAT_CONTINUE |
RECEIVED_FORMAT CONTROL |
RECEIVED_FORMAT_ACK |
RECEIVED_FORMAT_DATA |
RECEIVED_FORMAT_STATUS2 |

218

i
4
|
e
|

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:

VALUES AND MEANINGS:

NOTES:

DECODE STATUS PACKETS LAYER

RECEIVED_FORMAT_STATUS2
RECEIVED_FORMAT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

RECEIVED_GET_PACKET
GET_PACKET

SEE ALIASES
EXECUTE CONTROL PACKETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_KEY_GET_PACKET
KEY_GET_PACKET

SEE ALIASES
EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_KEY_PUT_PACKET
KEY_PUT_PACKET

SEE ALIASES

EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_OPERATION_IN_PROGRESS
RECEIVED_PENDING_STATUS
OPERATION_IN_PROGRESS

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

S A

iy VT T

DATA ELEMENT NAME:
ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

RECEIVED_PENDING_STATUS
RECEIVED_OPERATION_IN_PROGRESS
OPERATION_IN_PROGRESS

STATUS MESSAGE INDICATING THAT PAST SENT DATA PACKETS ARE
BEING STORED/APPENDED, ETC., AND THAT ALL IS WELL.
DECODE STATUS PACKETS LAYER

RECTIVED_PUT_PACKET
PUT_PACKET

SEE ALIASES
EXECUTE CONTROL PACKETS LAYER
EXECUTE ARCEITECTURE PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_SEQ GET_PACKET
SEQ_GET_PACKET

SEE ALTASES
EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_SEQ PUT_PACKET
SEP_PUT_PACKET

SEE ALIASES
EXECUTE CONTROL PACKETS LAYER
EXECUTE CONTINUE PACRETS LAYER

RECEIVED_STARTUP_PACKETS
NONE

RECEIVED_STARTUP_PACKETS =
T-RECEIVED_CONFIGURATION_PACKET !
] RECEIVED_ACKNOWLEDGE_PACKET |
| RECEIVED_ATTRIB/ACK_PACKET |
| RECEIVED_ATTRIBUTES_PAGKET I
| RECEIVED_ATTRIB/ACC_PACKET |
| RECEIVED_ACCESS_PACKET]

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

CODE ARCHITECTURE PACKETS LAYER

220

Py

?

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

RECEIVED_STARTUP_STATUS

NONE

RECEIVED_STARTUP_STATUS = |
| RECEIVED_SYNC_CONFIG
| RECEIVED_FORMAT_CONFIG
| RECEIVED_UNSUPPORT_CONFIG
| RECEIVED_FORMAT_ATTRIB
| RECEIVED_FORMAT_ACCESS
| RECEIVED_UNSUPPCRT_ATTRIB
| RECEIVED_SYNC_ATTRIB
| RECEIVED_UNSUPPORT_ACCESS
| RECEIVED_SYNC_ACCESS
| RECEIVED_FORMAT_ACC/COMP
| RECEIVED_SYNC_ACC/COMP
| RECEIVED_UNSUPPORT_ACK
| RECEIVED_SYNC_ACK
| RECEIVED_FORMAT_ACK
| RECEIVED_EOF
| RECEIVED_TIMEOQUT

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_STATUS_ERROR
NONE

| RECEIVED_FORMAT_STATUS
| RECEIVED_SYNC_STATUS

DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PROTOCOL AT PRLMARY NODE LAYER

RECEIVED_STATUS_ERROR = T—kECEIVED_UNSUPPORT_STATUS-T
|
I

RECEIVED_STATUS_PACKET

VALID_RECEIVED_STATUS_PACKET
RECEIVED_SUCCESSFUL_STATUS
RECEIVED_UNSUPPORT_STATUS
RECEIVED_PENDING_STATUS
RECEIVED_FORMAT_STATUS
RECEIVED_SYNC_STATUS

| RECEIVED_FILE_STATUS

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_STATUS_PACKET =

221

RECEIVED_UNSUPPORT_ACC/COMP

|
4
é

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES ¢

e B

ALTASES:
COMPOSITION:

NOTES:

ALIASES:

NOTES :

ALTASES:

NOTES :

ALIASES:

NOTES:

DATA FLOW NAME:

DATA ELEMENT NAME:

VALUES AND MEANINGS:

DATA ELEMENT NAME:

VALUES AND MEANINGS:

DATA ELEMENT NAME:

VALUES AND MEANINGS:

DECODE STATUS PACKETS LAYER

RECEIVED_SUCCESSFUL_OPERATION
SUCCESSFUL_OPERATION

RETURNS INFORMATION THAT INDICATES SUCCESS. USED WHEN
PERFORMING RECORD-STORE ACTIONS.

DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_SUCCESSFUL_STATUS
NONE

RECEIVED_SUCCESSFUL_STATUS =

1 RECEIVED_SUCCESSFUL_OPERATION |
) RECEIVED_EOF I

DECODE STATUS PACKETS LAYER

RECEIVED_SYNC_ACC/COMP
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_SYNC_ACCESS
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACRETS LAYER

RECEIVED_SYNC_ACK
RECEIVED_SYNC_UNKNOWN

SEE ALIASES

DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

222

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES ¢

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

RECEIVED_SYNC_ATTRIB
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

RECEIVED_SYNC_CONFIG
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

RECEIVED_SYNC_CONTINUE
RECEIVED_SYNC_UNKNOWN

SEE ALIASES

DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_SYNC_CONTROL
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
GENERATE CONTROL PACKETS LAYER

RECEIVED_SYNC_DATA
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

RECEIVED_SYNC_STATUS
NONE

RECEIVED_SYNC_STATUS = | RECEIVED_SYNC_CONFIG

223

!

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

RECEIVED_SYNC_ATTRIB |
RECEIVED_SYNC_ACCESS |
RECEIVED_SYNC_CONTROL |
RECEIVED_SYNC_CONTINUE |
RECEIVED_SYNC_ACK [
RECEIVED_SYNC_ACC/COMP |
RECEIVED_SYNC_DATA |
RECEIVED_SYNC_STATUS2 |
RECETVED_SYNC_UNKNOWN |

DECODE STATUS PACKETS LAYER

— ——— — — — — ——

RECEIVED_SYNC_STATUS2
RECEIVED_SYNC_UNKNOWN

SEE ALIASES
DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

RECEIVED_SYNC_UNKNOWN
RECEIVED_SYNC_CONFIG
RECEIVED_SYNC_ATTRIB
RECEIVED_SYNC_ACCESS
RECEIVED_SYNC_CONTROL
RECEIVED_SYNC_CONTINUE
RECEIVED_SYNC_ACK
RECEIVED_SYNC_ACC/COMP
RECEIVED_SYNC_DATA
RECEIVED_SYNC_STATUS2

THE PARTICULAR PACKET WAS RECEIVED OUT OF SYNCHRONIZATION.
DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

RECEIVED_TIMEOUT
TIMEQUT

A STATUS PACKET INDICATING THAT THE ACCESSED SYSTEM (NODE)
RECEIVED A CONFIGURATION, ACCESS ATTRIBUTES, OR ACCESS_
COMPLETE_PACKET AND HAS NOT RECEIVED THE APPROPRIATE
PACKETS TO RESET THE TIMER. OR THE ACCESSED SYSTEM HAS
RECEIVED A ACCESS_COMPLETE(RESPONSE) BUT AFTER A SUITABLE
AMOUNT OF TIME NO OTHER COMMAND IS RECEIVED. WHEN A
TIMEOUT IS SENT THE LOGICAL LINK IS ALSO TERMINATED.
DECODE STATUS PACKETS LAYER

224

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:

EXECUTE STARTUP PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_UNSUPPORT_ACC/COMP
RECEIVED_UNSUPPORT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_UNSUPPORT_ACCESS
RECEIVED_UNSUPPORT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_UNSUPPORT_ACK
RECEIVED_UNSUPPORT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE ACC/ACK PACKETS LAYER

RECEIVED_UNSUPPORT_ATTRIB
RECEIVED_UNSUPPORT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

RECEIVED_UNSUPPORT_CONFIG
RECEIVED_UNSUPPORT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
EXECUTE STARTUP PACKETS LAYER

RECEIVED_UNSUPPORT_CONTINUE

225

ALIASES: RECEIVED_UNSUPPORT_MISC
VALUES ARD MEANINGS:

' SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_UNSUPPORT_CONTROL
ALIASES: RECEIVED_UNSUPPORT_MISC
VALUES AND MEANINGS:
SEE ALIASES :
NOTES: DECODE STATUS PACKETS LAYER ‘
GENERATE CONTROL PACKETS L4YER '

DATA ELEMENT NAME: RECEIVED_UNSUPPORT_DATA
ALTIASES: RECEIVED_UNSUPPORT_MISC
VALUES AND MEANINGS:

SEE ALIASES
NOTES : DECODE STATUS PACKETS LAYER
EXECUTE CONTINUE PACKETS LAYER

DATA ELEMENT NAME: RECEIVED_UNSUPPORT_MISC
ALIASES: RECEIVED_UNSUPPORT_CONFIG
RECEIVED_UNSUPPORT_ATTRIB j
RECEIVED_UNSUPPORT_ACCESS
RECEIVED_UNSUPPORT_CONTINUE
RECEIVED_NSUPPORT_CONTROL
RECEIVED_UNSUPPORT_ACK
RECEIVED_UNSUPPORT_ACC/COMP
RECEIVED_UNSUPPORT_DATA
RECEIVED_UNSUPPORT_STATUS2
VALUES AND MEANINGS:
THIS IS USED WHEN AN UNSUPPORTED BIT/FIELD OR A FIELD/
VALUE, FOR A PARTICULAR PACKET TYPE, IS ENCOUNTERED WHICH
A PARTICULAR IMPLEMENTATION DOES NOT SUPPORT.
NOTES: DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER f

DATA FLOW NAME: RECEIVED_UNSUPPORT_STATUS ,
ALIASES: NONE |
COMPOSITION: _ _ :

RECEIVED_UNSUPPORT_STATUS = | RECEIVED_UNSUPPORT_CONTINUE | }

| RECEIVED_UNSUPPORT_MISC I !
| RECEIVED_UNSUPPORT_CONFIG I ’

226

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUVES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES ¢

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:

RECEIVED_UNSUPPORT_ATTRIB |
RECEIVED_UNSUPPORT_ACCESS |
RECEIVED_UNSUPPORT_CONTROL |
RECEIVED_UNSUPPORT_ACK |
RECE IVED_UNSUPPORT_ACC/COMP |
RECEIVED_UNSUPPORT_DATA |
RECEIVED_UNSUPPORT_STATUS2 |

DECODE STATUS PACKETS LAYER

RECEIVED_UNSUPPORT_STATUS2
RECEIVED_UNSUPPORT_MISC

SEE ALIASES
DECODE STATUS PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

RECNUM
NONE

THIS FIELD IS USED TO SEND THE RECORD NUMBER WHEN ACCESSING
RELATIVE FILES., FOR RANDCM STORE, THIS FIELD WILL CONTAIN
THE RECORD NUMBER, WHEN IN THE BLOCK MODE, THIS FIELD
WILL CONTAIN THE VIRTUAL BLOCK NUMBER.

ALL ARCHITECTURE LAYERS

RESEND_INFO
NONE

A FLAG TO INDICATE THAT THE BAD RECORD SHOULD BE RESENT

AND THEN CONTINUE ON UNTIL ECF.
EXECUTE CONTINUE PACKETS LAYER

RFA
NONE

USED TO RETURN THE RECORD FILE ADDRESS OF THE RECORD TO
WHICH THIS STATUS PACKET APPLIES,
ALL ARCHITECTURE LAYERS

RFM

227

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

NONE

FORMAT OF THE RECORDS BEING TRANSFERRED.
ALL ARCHITECTURE LAYERS

ROP
NONE

OPTIONAL RECORD PROCESSING FEATURES SUCH AS POSITION OF
EOF.
ALL ARCHITECTURE LAYERS

RUNSYS
NONE

NAME OF THE RUN-TIME SYSTEM ENVIROMENT REQUIRED TO EXECUTE
THE CODE CONTAINED IN THE FILE. THIS FIELD IS USEFUL TO]
TO OPERATING SYSTEMS THAT CAN EMULATE OTHER OPERATING
SYSTEM ENVIROMENTIS,

ALL ARCHITECTURE LAYERS

SECONDARY_INCOMING_DIALOGUE_COMMANDS
PRIMARY _INCOMING_DIALOGUE_COMMANDS

SEE ALIASES
OVERVIEW LAYER

SECONDARY_OUTGOING_DIALOGUE_COMMANDS
PRIMARY_OUTGOING_DIALOGUE_COMMANDS

SEE ALIASES
OVERVIEW LAYER

SECONDARY_START_FILE_CONFIGURATION
PRIMARY_START_FILE_CONFIGURATION

SEE ALIASES
OVERVIEW LAYER

228

"l.---"'-"'-'-lIllIll--.-Illl-lllIIlIlIlll--lI..lIl'llIllllllIl.lll'luu-u-q-g.--:;

4_'
d»

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

A _

SECOND_ATTRIB_FLAG
NONE

A FLAG USED TO INDICATE THAT THIS NODE HAS NOT PREVIOUSLY
ISSUED AN ATTRIBUTES PACKET BUT HAS RECEIVED ONE.
EXECUTE STARTUP PACKET LAYER

SECOND_CONFIG_FLAG
NONE

A FLAG USED TO INDICATE THAT THIS NODE HAS NOT PREVIOUSLY
ISSUED A CONFIGURATION_PACKET BUT HAS RECEIVED ONE,
EXECUTE STARTUP PACKET LAYER

SEQ_GET_PACKET
RECEIVED_SEQ_GET_PACKET

SEQ_GET_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + ROP
GENERATE CONTROL PACKETS LAYER

SEQ_PUT_PACKET
RECEIVED_SEQ PUT_PACKET

SEQ_PUT_PACKET = OPERATOR + TYPE=4 + CTLFUNC + CTLMENU +
RAC + ROP
GENERATE CONTROL PACKETS LAYER

SETUP_ERRORS
NONE

SETUP_ERRORS = | RECEIVED_ACCESS_COMPLETE_ERRORS |

| RECEIVED_CONFIG_ERRORS |

| RECEIVED_ACK_ERRORS [

| RECEIVED_ATTRIB_ERRORS |

| RECEIVED_ACC_ERRORS !
EXECUTE STARTUP PACKRETS LAYER
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
CODE ARCHITECTURE PACKETS LAYER

229

_H,‘;_J_&mﬁd*I:;i"

. = o= =

p

DATA FLOW NAME:
ALIASES:
' COMPOSITION:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES

DATA ELEMENT NAME:

ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

SETUP_PACKETS

NONE

SETUP_PACKETS = ACCESS_COMPLETE_PACKEf—T
ATTRIB/ACK_PACKET |
ACKNOWLEDGE_PACKET |

I

ATTRIB/ACC_PACKET |
ACC/ER_PACKET |
ACC/ECF/SCF_PACKET i
ATTRIBUTES_PACKET |

EXECUTE STARTUP PACKET LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

CODE ARCHITECTURE PACKETS LAYER

I
I
|
’ ACCESS_PACKET
I
I
l

SHR
NONE

OPERATIONS SHARED WITH OTHER USERS.
ALL ARCHITECTURE LAYERS

SKIP_INFO/CONTINUE
SKIP_REC/CONTINUE

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER

SKIP_REC/CONTINUE
SKIP_INFO/CONTINUE

A FLAG USED TO INDICATE THAT THE BAD RECORD SHOULD BE

SKIPPED OVER AND THE REMAINING RECORDS PROCESSED.
EXECUTE CONTINUE PACKETS LAYER

START_ACC/COMP
START_ER/ECF_COMP

SEE ALIASES
EXECUTE ACC/ACK PACKETS LAYER

230

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:

START_ACC_ECF
NONE

A FLAG USED TO START GENERATION OF AN ACCESS(ECF) OR
ACCESS(SCF) PACKETS.
EXECUTE STARTUP PACKETS LAYER

START_ACC_ER
NONE

A FLAG USED;TO INDICATE THE GENERATION OF AN ACCESS(ERASE)
PACKET, OR ACCESS(RENAME) PACKET.
EXECUTE STARTUP PACKETS LAYER

START_ACCESS
NONE

A FLAG USED TO INDICATE THAT THE LAST ATTRIBUTES PACKET
HAS BEEN RECEIVED AND A ACCESS PACKET CAN NOW BE GENERATED
AND OUTPUTTED,

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER

START_ATTRIB/ACC
NONE

A FLAG USED TO INDICATE THE GENERATION OF A ATTRIBUTES/
ACCESS PACKET (ATTRIB/ACC_PACKET).
EXECUTE STARTUP PACKETS LAYER

START_ACK
NONE

A FLAG USED TO START THE GENERATION OF AN ACKNOWLEDGE_

PACKET.
EXECUTE ACC/ACK PACKETS LAYER

START_ADD_GET
NONE

231

VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES ¢

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

A FLAG USED TO START THE GENERATION OF A CONTROL ADD_GET_
PACKRET.
GENERATE CONTROL PACKETS LAYER

START_ADD_PUT
NONE

A FLAG USED TO START THE GENERATION OF A CONTROL ADD_PUT_
PACRET.
GENERATE CONTROL PACKETS LAYER

START_ATTRIB/ACK
NONE

A FLAG USED TO START THE GENERATION OF AN ATTRIB/ACK_PACKET,.
EXECUTE ACC/ACK PACRETS LAYER

START_ATTRIBUTES
NONE

A FLAG WHICH IS ISSUED WHEN FIRST_CONFIGURATION_FLAG IS
SET AND WE RECEIVE A CONFIGURATION PACKET., 1IT STARTS
GENERATION OF THE FIRST ATTRIBUTES_PACKET.

EXECUTE STARTUP PACKETS LAYER

START_CONNECT
NONE

A FLAG USED TO START THE GENERATION OF A CONTROL_CONNECT_
PACKET.
GENERATE CONTROL PACKETS LAYER

START_CONNECT_ACK
NONE

A FLAG MEANING THAT A VALID CONTROL_CONNECT_PACKET HAS
BEEN RECEIVED, THEREFORE ISSUE AN ACKNOWLEDGE_PACKET.
EXECUTE ACC/ACK PACKETS LAYER

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER
EXECUTE CONTROL PACKETS LAYER

232

PR Lo e R T T A Sn M it

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALTASES:
COMPOSITION:

START_ER/ECF_COMP
START_ACC/COMP

A FLAG USED TO START THE GENERATION OF AN ACCESS_COMPLETE_
PACKET.
EXECUTE ACC/ACK PACKETS LAYER

START_KEY_GET
NONE

A FLAG USED TO START THE GENERATION OF A CONTROL KEY_GET_
PACKET.
GENERATE CONTROL PACKETS LAYER

START_KEY_PUT
NONE

A FLAG USED TO START THE GENERATION OF A CONTROL KEY_PUT_
PACKET.
GENERATE CONTROL PACKETS LAYER

START_SEQ_PUT_APPEND
NONE
i
A FLAG USED TO START THE GENERATION OF A CONTROL SEQ_PUT_
PACKET. 4
GENERATE CONTROL PACKETS LAYER

START_SEQ GET
NONE

A FLAG USED TO START THE GENERATION OF A CONTROL SEQ_GET_

PACKET.
GENERATE CONTROL PACKETS LAYER

STARTUP_ERRORS
NONE

233

s eiaatsi.

w._‘_..._,
] Y -

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

STARTUP_ERRORS = RECEIVED_ACCESS_COMPLETE_ERRORS
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

STARTUP_PACKETS
NONE

STARTUP_PACKETS = | ACCESS_COMPLETE_PACKET |
| ATTRIB/ACK_PACKET |
| ACRNOWLEDGE_PACKET |
| ACCESS_PACKET |

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

STATUS_PACKETS
NONE
STATUS_PACKETS = | RECEIVED_CONTROL_ERRORS |
| RECEIVED_UNSUPPORT_STATUS? |
| RECEIVED_FORMAT_STATUS2]
| RECEIVED_STATUS_ERROR |
| SETUP_ERRORS |
| EOF |
| FILE_ERRORS |
| SUCCESSFUL_OPERATION |
| OPERATION_IN_PROGRESS |
= QPERATOR + TYPE=9 + STSCODE + RFA +
RECNUM + STV
CODE ARCHITECTURE PACKETS LAYER

STREAMID
NONE

THE STREAM IDENTIFICATION FIELD. THIS FIELD IS USED TO
ALLOW A SINGLE USER TO HAVE MULTIPLE DATA STREAMS IN USE
FOR A SINGLE OPEN FILE, ALL DATA STREAMS USE THE SAME
LOGICAL LINR (MULTIPLEX ON THE STEAMID NUMBER).

ALL ARCHITECTURE LAYERS

STSCODE
NONE

STATUS FIELD = MACCODE = THE MACRO OR FUNCTIONAL GROUP

234

ee———

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

e

REASON FOR THE ERROR.
MICCODE = THE SPECIFIC REASON FOR THE ERROR.
ALL ARCHITECTURE LAYERS

STV
NONE

SECONDARY STATUS, USED TO RETURN SECONDARY STATUS
INFORMATION SUCH AS DEVTCE ERROR CODES, ETIC.
ALL ARCHITECTURE LAYERS

SUBMIT_AS_COMMAND_FILE
NONE

REQUEST IN THE ACCESS_PACKET THAT REQUESTS THAT A STORE
OPERATION BE DONE ON TRE DATA THAT FOLLOWS IN A TEMPORARY
FILE AND THAT THIS FILE BE SUBMITTED TO A BATCH-TYPE
FACILITY UPON ACCESS COMPLETION. THE FILE WILL BE DELETED
FOLLOWING EXECUTION BY THE BATCH FACILITY. THE FILE IS
TRANSFERRED USING SEQUENTIAL FILE STORAGE.

EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

SUCCESSFUL_OPERATION
RECEIVED_SUCCESSFUL_OPERATION

SEE ALIASES
EXECUTE CONTINUE PACKETS LAYER
CODE ARCHITECTURE PACKETS LAYER

SYSCAP
NONE

GENERIC SYSTEM CAPABILITIES SUCH AS;
1. SUPPORTS SEQUENTIAL FILE ORGANIZATION
2., SUPPORTS RELATIVE FILE ORGANIZATION
" 3. SUPPORTS FILE PREALLOCATION
4, SUPPORTS SEQUENTIAL FILE ACCESS
5. SUPPORTS RANDOM ACCESS BY RECORD NUMBER
6. SUPPORTS RANDOM ACCESS BY VIRTUAL BLOCK NUMBER
7. SUPPORTS APPEND TO FILE ACCESS
8. SUPPORTS COMMAND FILE SUBMISSION AND/OR EXECUTION
9. SUPPORTS MULTIPLE DATA STREAMS
10, SUPPORTS STATUS RETURN AND

235

o B L ol el e, hderac. o

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:

11. SUPPORST BLOCKING OF PACKETS
ALL ARCHITECTURE LAYERS

TIMEOUT
RECEIVED_TIMEOUT

SEE ALIASES
CODE ARCHITECTURE PACKETS

TYPE
NONE

THE TYPE OF PACKET. REFER TO EACH INDIVIDUAL MESSAGE
FOR ITS TYPE.
ALL ARCHITECTURE LAYERS

VALID_RECEIVED_ACCESS_COMPLETE_PACKET
ACCESS_COMPLETE_PACKET
RECEIVED_ACCESS_COMPLETE_PACKET
RECEIVED_ACCOMP(COMMAND)
RECEIVED_ACCOMP(PURGE)
RECEIVED_ACCOMP(RESPONSE)
RECEIVED_ACCOMP(EOS)

SEE ALIASES
EXECUTE ACC/ACK PACRETS LAYER

VALID_RECEIVED_ACCESS_PACKET

ACCESS_PACKET

RECEIVED_ACCESS_PACKET

ACCESS(ERASE)_PACKET

ACCESS(RENAME) _PACKET

ACCESS(ECF)_PACKET

ACCESS(SCF)_PACKET .

SEE ALIASES
EXECUTE STARTUP PACKETS LAYER

EXECUTE ACC/ACK PACKETS LAYER ‘
EXECUTE ARCHITECTURE PROTOCOL AT PRIMARY NODE LAYER

VALID_RECEIVED_ACKNOWLEDGE_PACKET

236

ALIASES: ACKNOWLEDGE_PACKET
RECEIVED_ACKNOWLEDGE_PACKET
' COMPOSITION:
SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER

GENERATE CONTROL PACKETS LAYER

DATA FLOW NAME: VALID_RECEIVED_ATTRIBUTES_PACKET
ALTASES: ATTRIBUTES_PACKET
RECEIVED_ATTRIBUTES_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER
DATA FLOW NAME: VALID_RECEIVED_CONFIGURATION_PACKET
ALTASES: CONFIGURATION_PACKET
RECEIVED_CONFIGURATION_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE STARTUP PACKETS LAYER
DATA FLOW NAME: VALID_RECEIVED_STATUS_PACKET
ALIASES: RECEIVED_STATUS_PACKET
COMPOSITION:
SEE ALIASES
NOTES: DECODE STATUS PACKETS LAYER

DATA ELEMENT NAME: VERSION
ALIASES: NONE
VALUES AND MEANINGS:

A FIELD IDENTIFYING THE PROTOCOL AND SOFTWARE VERSION

NUMBERS.
NOTES : ALL ARCHITECTURE LAYERS
DATA FLOW NAME: WORKING_PACKETS
ALTASES: NONE
COMPOSITION: —
WORKING_PACKETS = | SETUP_PACKETS
| DATA_PACKETS
| CONTROL_PACRETS
| CONTINUE_INTERRUPT_PACKET
4 » 237

——__.l

- --

' NOTES: CODE ARCHITECTURE PACKETS LAYER

g e

238

e A R~ ey Y Nrenann

A

o SRR AT, T SRPIE e S

FILE OR DATABASE NAME

ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

LOCAL_DATA_FILE
NONE

THE MEMORY USED TO READ, WRITE, AND DELETE FILES AT
THIS NODE,

STANDARD MEMORY

EXECUTE CONTINUE PACKETS LAYER

239

w——— oo e —1!'r“m-ur11‘
BPROCESS SPECIFICATION (A)
PROCESS NAME: DECODE ARCHITECTURE PACKETS
PROCESS NUMBER: 1.1

PROCESS DESCRIPTION:
IF Input type code = 9 then

Qutput as RECEIVED_STATUS_PACKET
ELSEIF Input type code = 8 then

Output as RECEIVED_DATA_FILE
ELSEIF Input type code = 7 then

Output as RECEIVED_ACCESS_COMPLETE_PACKET
ELSEIF Input type code = 1, 2, 3, or 6 then

Output as RECEIVED_STARTUP_PACKETS
ELSEIF Input type code = 5 then

Output as RECEIVED_CONTINUE_PACKETS
ELSEIF Input type code = &4 then

OQutput as RECEIVED_CONTROL_PACRETS
ELSE output as ACCEPT_CONFIRM

PROCESS NAME: CHECK FOR ERRORS
PROCESS NUMBER: 1.2.1
PROCESS DESCRIPTION:
ON a RECEIVED_ STATUS_PACKET
IF errors exist in packet then
Output as RECEIVED_STATUS_ERROR
ELSE output as VALID_RECIEVED_STATUS_PACKET

PROCESS NAME: DECODE MACCODE FIELD
PROCESS NUMBER: 1.2.2
PROCESS DESCRIPTION:
IF Input MACCODE value = 0 then

Qutput as RECEIVED_PENDING_STATUS
ELSEIF Input MACCODE value =1 then

Output as RECEIVED_SUCCESSFUL_STATUS
ELSEIF Input MACCODE value = 2 then

Output as RECEIVED_UNSUPPORTED_STATUS
ELSEIF Input MACCODE value = 4 then

Output as RECEIVED_FILE_STATUS
ELSEIF Input MACCODE value = 5 then

Output as RECEIVED_FORMAT_STATUS
ELSE Input MACCODE value = 6 then

Output as RECEIVED_SYNC_STATUS

240

DR T S S SN

PROCESS NAME: DECODE UNSUPPORTED MICCODE FIELD
' PROCESS NUMBER: 1.2.3
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then
Output as RECEIVED_UNSUPPORT_MISC
ELSEIF Input MICCODE value = 1 then
Output as RFCEIVED_UNSUPPORT_CONFIG
ELSEIF Input MILCODE value = 2 then
Output as RECIEVED_UNSUPPORT_ATTRIB
ELSEIF Input MICCODE value = 3 then
Output as RECEIVED_UNSUPPORT_ACCESS g
ELSEIF Input MICCODE value = 4 then
Output as RECEIVED_UNSUPPORT_CONTINUE
ELSEIF Input MICCODE value = 5 then
Output as RECEIVED_UNSUPPORT_CONTROL
ELSEIF Input MICCODE value = 6 then
Output as RECEIVED_UNSUPPORT_ACK
ELSEIF Input MICCODE value = 7 then !
Output as RECEIVED_UNSUPPORT_ACC/COMP
ELSEIF Input MICCODE value = 8 then
Output as RECEIVED_UNSUPPORT_DATA
ELSE Input MICCODE value = 9 then
Output as RECEIVED_UNSUPPORT_STATUS2

PROCESS NAME: DECODE PENDING MICCODE FIELD
PROCESS NUMBER: 1.2.4
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then
Output as RECEIVED_OPERATION_IN_PROGRESS

ELSE Null
PROCESS NAME: DECODE FORMAT MICCODE FIELD
PROLESS NUMBER: 1.2.5

PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then .
Output as RECEIVED_FORMAT_MISC .
ELSEIF Input MICCODE value = 1 then |
Output as RECEIVED_FORMAT_CONFI1G \
ELSEIF Input MICCODE value = 2 then
Output as RECEIVED_FORMAT_ATTRIB !
ELSEIF Input MICCODE value = 3 then
Output as RECEIVED_FORMAT_ACCESS
ELSEIF Input MICCODE value = 4 then
Output as RECEIVED_FORMAT_CONTINUE
ELSEIF Input MICCODE value = 5 then
Output as RECEIVED_FORMAT_CONTROL

241

ELSEIF Input MICCODE value = 6 then

3 Output as RECEIVED_FORMAT_ACK

] ' ELSEIF Input MICCODE value = 7 then

Output as RECEIVED_FORMAT_ACC/COMP

ELSEIF Input MICCODE value = 8 then
Output as RECEIVED_FORMAT_DATA

ELSE Input MICCODE value = 9 then
Output as RECEIVED_FORMAT_STATUS2

PROCESS NAME: DECODE FILE MICCODE FIELD
PROCESS NUMBER: 1.2.6
PROCESS DESCRIPTION:
IF Input MICCODE value = Q then
Output as RECEIVED_FILE_ZRRORS
ELSE Input MICCODE value = 1 then
Output as RECEIVED_TIMEQUT

PROCESS NAME: DECODE SYNC MICCODE FIELD
PROCESS NUMBER: 1,2,7
PROCESS DESCRIPTION:
IF Input MICCODE value = 0 then
Output as RECEIVED_SYNC_CONFIG
ELSEIF Input MICCODE value =]l then
Output as RECEIVED_SYNC_ATTRIB
ELSEIF Input MICCODE value = 2 then
Output as RECEIVED_SYNC_ACCESS
ELSEIF Input MICCODE value = 3 then
Output as RECEIVED_SYNC_CONTROL
ELSEIF Input MICCODE value = 4 then
Output as RECEIVED_SYNC_CONTINUE
ELSEIF Input MICCODE value = 5 then
Output as RECEIVED_SYNC_ACK
ELSEIF Input MICCODE value = 6 then
Output as RECEIVED_SYNC_ACC/COMP
ELSEIF Input MICCODE value = 7 then
Output as RECEIVED_SYNC_DATA
ELSEIF Input MICCODE value = 8 then
Output as RECEIVED_SYNC_STATUS2
ELSE Input MICCODE value = 9 then
Output as RECEIVED_SYNC_UNKNOWN

PROCESS NAME: DECODE SUCCESSFUL MICCODE FIELD
PROCESS NUMBER: 1.2.8

PROCESS DESCRIPTION:

IF Input MICCODE value = 0 then

242

e Mk i A" A e —

L

-

Output as RECIEVED_EOF
ELSE Input MICCODE value = 1 then
Output as RECEIVED_SUCCESSFUL_OPERATION

PROCESS NAME: DECODE CONTRQL TYPE

PROCESS NUMBER: 1.3.1

PROCESS DESCRIPTION:

IF Input = VALID_RECEIVED_ACKNOWLEDGE_PACKET and connect flag is not set then
Output a START_CONNECT

Set the connect flag

ELSEIF Input = VALID_RECEIVED_ACKNOWLEDGE_PACKET and connect flag is set then

Generate the following outputs according to the file process to be

performed:
Reset the connect flag
FILE-PROCESS OUTPUT
Sequential file storage START_SEQ_PUT_APPEND
Sequential file append START_SEQ_PUT_APPEND
Sequential file retrieval START_SEQ_GET
Keyed record retrieval START_KEY_GET
Record file address retrieval START_ADD_GET
Keyed record storage START_KEY_PUT
Record file address storage START_ADD_PUT
Submit as command file START_SEQ_PUT_APPEND

ELSE Input = STATUS_PACKET then
Output above start command depending on the value passed in the Scatus_
Packet MACCODE, MICCODE field combination

PROCESS NAME: GENERATE CONTROL CONNECT PACKET
PROCESS NUMBER: 1.3.2
PROCESS DESCRIPTION:
IF Input = START_CONNECT then
Output CONNECT_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTROL SEQ~GET PACKET
PROCESS NUMBER: 1.3.3

PROCESS DESCRIPTION:

IF Input = START_SEQ GET then
Output SEQ_GET_PACKET

ELSE Null

243

PROCESS NAME: GENERATE CONTROL SEQ-PUT PACKET
PROCESS NUMBER: 1.3.4
PROCESS DESCRIPTION:
IF Input = START_SEQ PUT_APPEND then
Output SEQ_PUT_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTROL KEY~GET PACKRET
PROCESS NUMBER: 1.3.5

PROCESS DESCRIPTION:
IF Input = START_KEY_GET then
Output KEY_GET_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTROL KEY-PUT PACKET
PROCESS NUMBER: 1.3.6

PROCESS DESCRIPTION:
IF Input = START_KEY_PUT then
Output KEY_PUT_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTROL ADD-GET PACKET
PROCESS NUMBER: 1.3.7

PROCESS DESCRIPTION:
IF Input = START_ADD _GET then
Output ADD_GET_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTROL ADD-PUT PACKET
PROCESS NUMBER: 1.3.8

PROCESS DESCRIPTION:
IF Input = START_ADD_PUT then
Output ADD_PUT_PACKET

ELSE Null
PROCESS NAME: CODE GET FIELDS
PROCESS NUMBER: 1.3.9

PROCESS DESCRIPTION:

IF Input = SEQ_GET_PACKET, REY_GET_PACKET, or ADD_GET PACKET then
Output as GET_PACKET

ELSE Null

244

PROCESS NAME: CODE PUT FIELDS

PROCESS NUMBER: 1.3.10

PROCESS DESCRIPTION:

IF Input = SEQ_PUT_PACKET, KEY_PUT_PACKET, or ADD_PUT_PACKET then
Output as PUT_PACKET

ELSE Null
PROCESS NAME: CODE CONTROL FIELDS
PROCESS NUMBER: 1.3.11

PROCESS DESCRIPTION:
IF Input = GET_PACKET or PUT_PACKET then
Output as CONTROL_PACKET

ELSE Null
PROCESS NAME: GENERATE CONFIGURATION PACKET
PROCESS NUMBER: 1.4.1

PROCESS DESCRIPTION:
IF Input = PRIMARY_START_FILE_CONFIGURATION and ACCEPT_CONFIRM or input =
PRIMARY_START_FILE_CONFIGURATION and NEW_ACCESS then
Output CONFIGURATION_PACKET and
Qutput FIRST_CONFIG_FLAG
ELSE Input = RECEIVED_SYNC_CONFIG, RECEIVED_TIMEOUT, RECEIVED_FORMAT_CONFIG,
RECEIVED_UNSUPPORT_CONFIG, RECEIVED_FORMAT_ATTRIB, RECEIVED_FORMAT_
ACCESS, or SECOND_CONFIG_FLAG then
Output CONFIGURATION_PACKET

PROCESS NAME: CHECK FOR CONFIGURATION ERRORS
PROCESS NUMBER: 1.4,2
PROCESS DESCRIPTION:
IF Input contains errors then
Output RECEIVED_CONFIG_ERRORS
ELSE output VALID_RECEIVED_CONFIGURATIQN_PACKET

PROCESS NAME: DECODE CONFIGURATION FIELDS

PROCESS NUMBER: 1.4.3

PROCESS DESCRIPTION:

IF Input SYSCAP value = ERASE or RENAME then
Output START_ACC_ER flag

ELSEIF Input SYSCAP value = EXECUTE_COMMAND_FILE or SUBMIT_COMMAND_FILE then
Output START_ACC_ECF flag

245

—— - * U e ' . i S nTi L e Wb e o

ELSEIF FIRST_CONFIG_FLAG is set and BUFSIZ is large enough then
Output START_ATTRIB/ACC flag
Reset FIRST_CONFIG_FLAG
ELSEIF FIRST_CONFIG_FLAG is set and BUFSIZ is small then
Output START_ATTRIBUTES flag
Reset FIRST_CONFIG_FLAG
ELSE FIRST_CONFIG_FLAG is not set then
Output a SECOND_CONFIG_FLAG

PROCESS NAME: GENERATE ATTRIBUTES/ACCESS PACKET

PROCESS NUMBER: 1.4.4

PROCESS DESCRIPTION:

IF Input = START_ATTRIB/ACC or RECEIVED_TIMEOUT then
Output a ATTRIB/ACC_PACKET

ELSE Null
PROCESS NAME: GENERATE ACCESS ERASE, RENAME PACKET
PROCESS NUMBER: 1.4.5

PROCESS DESCRIPTION:

IF Input = START_ACC_ER or RECEIVED_TIMEOUT and ERASE is indicated then
Output an ACC/ER_PACKET to erase

ELSE Input = START_ACC_ER or RECEIVED_TIMEOUT and RENAME is indicated then
Output an ACC/ER_PACKET to rename

PROCESS NAME: GENERATE ACCESS ECF/SCF PACKET

PROCESS NUMBER: 1.4.6

PROCESS DESCRIPTION:

IF Input = START_ACC_ECF/SCF or RECEIVED_TIMEOQUT and ECF is indicated then
Output an EXECUTE_COMMAND_FILE ACC/ECF/SCF_PACKET

ELSE Input = START_ACC_ECF or RECEIVED_TIMEOUT and SCF is indicated then
Output a SUBMIT COMMAND FILE ACC/ECF/SCF_PACKET

PROCESS NAME: GENERATE ATTRIBUTES PACKET
PROCESS NUMBER: 1.4.7
PROCESS DESCRIPTION:
IF Input = START_ATTRIBUTES then
Output FIRST_ATTRIB_FLAG
Output ATTRIBUTES_PACKET
ELSEIF Input = SECOND_ATTRIB_FLAG then
Output ATTRIBUTES_PACKET
ELSE Input = RECEIVED_UNSUPPORT_ATTRIB, RECEIVED_SYNC_ATTRIB, or RECEIVED_
TIMEOUT then
Output ATTRIBUTES_PACKET

Reset FIRST_ATTRIB_FLAG |

PROCESS NAME: CHECK FOR ACKNOWLEDGE ERRORS

PROCESS NUMBER: 1.4.8

PROCESS DESCRIPTION:

IF Input = RECEIVED_ACKNOWLEDGE_PACKET and no errors exist then
Output VALID_RECEIVED_ACKNOWLEDGE_PACKET

ELSEIF Input = RECEIVED_ACKNOWLEDGE_PACKET with errors then
Output RECEIVED_ACK_ERRORS

ELSEIF Input = RECEIVED_ATTRIB/ACK_PACKET and errors exist then
Output RECEIVED_ACK_ERRORS

ELSEIF Input = RECEIVED_ATTRIB/ACK_PACKET and no errors exist and ATTRIB/ACK_
ERROR_FLAG is not set then

Output VALID_RECEIVED_ACKNOWLEDGE_PACKET
ELSE ATTRIB/ACK_ERROR_FLAG is set then null

PROCESS NAME: CHECK FOR ATTRIBUTES ERRORS

PROCESS NUMBER: 1.4,9

PRCCESS DESCRIPTION:

IF Input = RECEIVED_ATTRIBUTES_PACKET and no errors exist then
Output VALID_RECEIVED_ATTRIBUTES_PACKET

ELSEIF Input = RECEIVED_ATTRIBUTES_PACKET and errors exist then
Output RECEIVED_ATTRIB_ERRORS

ELSEIF Input = RECEIVED_ATTRIB/ACK_PACKET and errors exist then
Qutput ATTRIB/ACK_ERROR flag
Output RECEIVED_ATTRIB_ERRORS

ELSEIF Input = RECEIVED_ATTRIB/ACC_PACKET and errors exist then
Output ATTRIB/ACC_ERROR flag
Output RECEIVED_ATTRIB_ERRORS :

ELSE Input = RECEIVED_ATTRIB/ACK_PACKET or RECEIVED_ATTRIB/ACC_PACKET and
no errors exist then null

PROCESS NAME: CHECK FOR ACCESS ERRORS
PROCESS NUMBER: 1.4.10
PROCESS DESCRIPTION:
IF Input = RECEIVED_ACCESS_PACKET with no error then
Output VALID_RECEIVED_ACCESS_PACKET
ELSEIF Input = RECEIVED_ACCES_PACKET with errors then
Output RECEIVED_ACC_ERRORS
ELSEIF Input = RECEIVED_ATTRIB/ACC_PACKET with no errors and ATTRIB/ACC_ERROR
flag is not set then
Output VALID_RECEIVED_ACCESS_PACKET
ELSEIF Input = RECEIVED_ATTRIB/ACC_PACKET with errors and the ATTRIB/ACC_ERROR
flag is not set then
Output RECEIVED_ACC_ERRORS '

247 a

ELSE Input = ATTRIB/ACC_ERROR then null

PROCESS NAME: DECODE ATTRIBUTES FIELDS
PROCESS NUMBER: 1.4.11
PROCESS DESCRIPTION:
IF Input = VALID_RECEIVED_ATTRIBUTES_PACKET and FIRST_ATTRIB_FLAG is not set
then
Output SECOND_ATTRIB_FLAG
ELSE Input = VALID_RECEIVED_ATTRIBUTES_PACKET and FIRST_ATTRIB_FLAG is set
then
Output START_ACCESS
Reset FIRST-ATTRIB_FLAG H

PROCESS NAME: CODE SETUP ERRORS

PROCESS NUMBER: 1.4,12

PRCCESS DESCRIPTION:

IF Input = RECEIVED_CONFIG_ERRORS, RECEIVED_ACK_ERRORS,
RECEIVED_ATTRIB_ERRORS, RECEIVED_ACC_ERRORS, or RECEIVED_ACCESS_
COMPLETE_ERRORS then

Output as SETUP_ERRORS

ELSE Null
PROCESS NAME: CODE SETUP PACKETS .
PROCESS NUMBER: 1.4.13

PROCESS DESCRIPTION:
IF Input = ACCESS_COMPLETE_PACKET, ATTRIB/ACK_PACKET, ACKNOWLEDGE_PACKET,
ACCESS_PACKET, ACC/ER_PACKET, CONFIGURATION_PACKET, ACC/ECF/SCF_
PACKET, ATTRIB/ACC_PACKET, or ATTRIBUTES_PACKET then
Output as SETUP_PACKETS

ELSE Null
PROCESS NAME: GENERATE ACCESS PACKET
PRNCESS NUMBER: 1.5.1

PROCESS DESCRIPT:ON:
IF Input = RECEIVED_TIMEOUT, RECEIVED_UPSUPPORT_ACCESS, RECEIVED_SYNC_ACCESS,
or START_ACCESS then
Output ACCESS_PACKET
ELSE Null

PROCESS NAME: DECODE ACCESS FIELDS 4

248

i -

SIS 2o

!
.

PROCESS NUMBER: 1.5.2
PROCESS DESCRIPTION:
IF Input ACCFUNC value = open or create AND ATTRIB/ACC_PACKET was received
then
Output START_ATTRIB/ACK flag
ELSEIF Input ACCFUNC value = open or create and ATTRIB/ACC_PACKET was not
received then
Output START_ACK flag
ELSEIF Input ACCFUNC value = rename, erase, or execute command file then
Output START_ER/ECF_COMP flag
ELSEIF Input ACCFUNC value = directory-list then
Output START_ACC/COMP flag
ELSE Input ACCFUNC value = submit command file then
Output SUBMIT_AS_COMMAND_FILE

PROCESS NAME: GENERATE ACCESS COMPLETE PACKET

PROCESS NUMBER: 1.5.3

PROCESS DESCRIPTION:

IF Input = START_ER/ECF_COMP, START_ACC/COMP, RECEIVED_ACCOMP(COMMAND),
RECEIVED_ACCOMP(PURGE), or RECEIVED_ACCOMP(PURGE) in conjunction
with a RECEIVED_CONTINUE_ABORT_PACKET then

Generate and Output an ACCESS_COMPLETE_PACKET(RESPONSE)
ELSEIF Input = ACCOMP(EOS) then
Output an ACCESS_COMPLETE_PACKET(EOS)
ELSEIF Input = ACCOMP(COMMAND) or RECEIVED_EOF then
Output an ACCESS_COMPLETE_PACKET(COMMAND)
ELSEIF Input = ACCOMP(PURGE) then
Output an ACCESS_COMPLETE_PACKET(PURGE)
ELSE Input = RECEIVED_FORMAT_ACC/COMP, RECEIVED_UNSUPPORT_ACC/COMP, RECEIVED_
SYNC_ACC/COMP, or RECEIVED_TIMEOUT then
Output the appropriate ACCESS_COMPLETE_PACKET

PROCESS NAME: GENERATE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.5.4
PROCESS DESCRIPTION:
IF Input = RECEIVED_TIMEOUT, START _CONNECT_ACK, RECEIVED_U..SUPPORT_ACK,
RECEIVED_SYNC_ACK, RECEIVED_FORMAT_ACK, or START_ACK then
Output an ACKNOWLEDGE_PACKET

ELSE Null
PROCESS NAME: CHECK FOR ACCESS COMPLETE ERRORS
PROCESS NUMBER: 1.5.5

PROCESS DESCRIPTION:
IF Input = RECEIVED_ACCESS_COMPLETE_PACKET with no errors then
Output a VALID_RECEIVED_ACCESS_COMPLETE_PACKET

249

ELSE Input = RECEIVED_ACCESS_COMPLETE_PACKET with errors then
Output a RECEIVED_ACCESS_COMPLETE_ERRORS

PROCESS NAME: DECODE CMPFUNC FIELDS

PROCESS NUMBER: 1.5.6

PROCESS DESCRIPTION:

IF Input CMPFUMC value = terminate then
Output RECEIVED_ACCOMP(COMMAND)

ELSEIF Input CMPFUNC value = response then
Output RECEIVED_ACCOMP(RESPONSE)

ELSEIF Input CMPFUNC value = end of stream then
Output RECEIVED_ACCOMP(EOS)

ELSE Output RECEIVED_ACCOMP(PURGE)

PROCESS NAME: GENERATE ATTRIB/ACK PACKET

PROCESS NUMBER: 1.5.7

PROCESS DESCRIPTION:

IF Input = RECEIVED_TIMEOUT or START_ATTRIB/ACK then
OQutput a ATTRIB/ACK_PACKET

ELSE Null
PROCESS NAME: DECODE CONTROL PACKET
PROCESS NUMBER: 1.6.1

PROCESS DESCRIPTION:
IF Input = RECEIVED_CONTROL_PACKET with errors then
Output RECEIVED_CONTROL_ERRORS
ELSEIF Input CTLFUNC value = connect then
Output RECEIVED_CONNECT_PACKET
ELSEIF Input CTLFUNC value = get then
Output RECEIVED_GET_PACKET
ELSE Input CTLFUNC value = put, delete, update, or rewing then
Output RECEIVED_PUT_PACKET

PROCESS NAME: DECODE CONNECT FIELDS
PROCESS NUMBER: 1.6.2
PROCESS DESCRIPTION:
IF Input + RECEIVED_CONNECT_PACKET then
Decode the fields and
Output a START_CONNECT_ACK flag
ELSE Null

250

PROCESS NAME: DECODE GET FIELDS
PROCESS NUMBER: 1.6.3
PROCESS DESCRIPTION:
IF Input RAC field = sequential file access or sequential record access or
block mode file transfer then
Output RECEIVED_SEQ_GET_PACKET
ELSEIF Input RAC field = keyed access then
Qutput RECEIVED_KEY_GET_PACKET
ELSE Input RAC field = access by record file address then
Output RECEIVED_ADD_GET_PACKET

PROCESS NAME: DECODE PUT FIELDS
PROCESS NUMBER: 1.6.4
PROCESS DESCRIPTION:
IF Input RAC field = sequential file access or sequential record access or
block mode file transfer then
Output RECEIVED_SEQ_PUT_PACKET
ELSEIF Input RAC field = keyed access then
Output RECEIVED_KEY_PUT_PACKET
ELSE Input RAC field = access by record file address then
Output RECEIVED_ADD_PUT_PACKET

PROCESS NAME: DECODE ON NEXT ACTION
PROCESS NUMBER: 1.7.1
PROCESS DESCRIPTION:
IF Input = RECEIVED_SEQ_GET_PACKET or RECEIVED_KEY_GET_PACKET then
Send out the data in the correct format
ELSEIF Input = RECEIVED_ADD_GET_PACKET then
Send out the data one record at a time between reception of the RECEIVED_
SUCCESSFUL_OPERATION status packet
ELSEIF Input = RECEIVED_CONTINUE_ONLY_PACKET then either
Resend the bad data record and continue or just
Continue sending data records.
ELSEIF Input = RECEIVED_CONTINUE_SKIP_PACKET then
Skip over the bad record and continue sending data records
ELSEIF Input = errors in any of the above inputs then
Output FILE_ERRORS
ELSEIF Input = RECEIVED_SYNC_DATA, RECEIVED_FILE_ERRORS, RECEIVED_FORMAT_
DATA, RECEIVED_UNSUPPORT DATA then ’ !
IF want to skip the bad record and continue then
Qutput SKIP_REC/CONTINUVE
ELSEIF want to continue with the bad record still in .
the file then
Output CONTINUE_WITH_BAD_REC
ELSEIF want to purge the new file and terminate then
Output ACCOMP(PURGE) immediately followed by
Output PURGE/ABORT_INTERRUPT '

251 !

ELSE want to close the new file and terminate then
Output ACCOMP(COMMAND) immediately followed by
Output PRUGE/ABORT_INTERRUPT

ELSEIF want to stop a sequential file storage operation before it is complete
and purge the incomplete file then

Output PURGE/ABORT_INTERRUPT

ELSEIF want to send a message to let the accessing system know there will be a

delay in getting data then
Output OPERATION_IN_PROGRESS

ELSE end-of-file is detected and want to end the data stream but not the
logical link then

Output ACCOMP(ECS)

PROCESS NAME: DECODE ON REQUIRED ACTION
PROCESS NUMBER: 1.7.2
PROCESS DESCRIPTION:
IF Input = RECEIVED_DATA_FILE with errors or RECEIVED_FILE_ERRORS then
Output either DATA_ERRORS or FILE_ERRORS or
IF want to request link termination then
Output ACCOMP(COMMAND)
ELSEIF want to request data stream termination then
Output ACCOMP(EOS)
ELSEIF want to request the information be sent again then
Output RESENT_INFO
ELSE want to ship that record and continue then
Output SKIP_INFO/CONTINUE
ELSEIF Input = RECEIVED_DATA_FILE and RECEIVED_SEQ_PUT_PACKET or RECEIVED_
KEY_PUT_PACKET or SUBMIT _AS_COMMAND_FILE then
Qutput data to file in correct format
ELSEIF Input = RECEIVED_DATA_FILE and RECEIVED_ADD_PUT_PACKET then
Qutput data to file in correct format and after each store operation
Output SUCCESSFUL_OPERATION
ELSE Input = RECEIVED_OPERATION_IN_PROGERSS then do not
Output FILE_ERRORS or DATA_ERRORS

PROCESS NAME: GENERATE CONTINUE ABORT PACKET

PROCESS NUMBER: 1.7.3

PROCESS DESCRIPTION:

IF Input = PURGE/ABORT_INTERRUPT or CONTINUE_ABORT_ERROR then
Output CONTINUE_ABORT_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTINUE SKIP PACKET
PROCESS NUMBER: 1.7.4 b

PROCESS DESCRIPTION:

252

o g, T ™ M
r

IF Input = SKIP_REC/CONTINUE, SKIP_INFO/CONTINUE, or CONTINUE_SKIP_ERROR then
Output CONTINUE_SKIP_PACKET

ELSE Null
PROCESS NAME: GENERATE CONTINUE ONLY PACKET
PROCESS NUMBER: 1.7.5

PROCESS DESCRIPTION: :
IF Input = CONTINUE_WITH_BAD_REC, RESEND_INFO, or CONTINUE_ONLY_ERROR then
Output CONTINUE_ONLY_PACKET

ELSE Null
PROCESS NAME: CODE CONTINUE PACKETS
PROCESS NUMBER: 1.7.6

PROCESS DESCRIPTION:
IF Input = CONTINUE_ABORT_PACKET, CONTINUE_SKIP_PACKET, or CONTINUE_ONLY_
PACKET then
OQutput as CONTINUE_INTERRUPT_PACKET

ELSE Null
PROCESS NAME: GENERATE DATA PACKET
PROCESS NUMBER: 1.7.7

PROCESS DESCRIPTION:

IF Input = DATA then
Generate and output a DATA_PACKET

ELSE Input = DATA + EOF then
Generate and output last DATA_PACKET and
Output EOF flag

PROCESS NAME: CODE CONTINUE ERRORS
PROCESS NUMBER: 1.7.8
PROCESS DESCRIPTION:
IF Input = RECEIVED_UNSUPPORT_CONTINUE, RECEIVED_FORMAT_CONTINUE, or RECEIVED_
SYNC_CONTINUE then
IF CONTINUE_ABORT_PACKET was the last continue packet sent then ,
Output CONTINUE_ABORT_ERROR i
ELSEIF CONTINUE_SKIP_PACKET was the last continue packet sent then |
Output CONTINUE_SKIP_ERROR '
ELSE CONTINUE_ONLY_PACKET was the last continue packet sent then
Output CONTINUE_ONLY_ERROR f
ELSE Null j
§
|
|

253

PROCESS NAME: START/STOP TIMER
PROCESS NUMBER: 1.8.1 1
PROCESS DESCRIPTION:

IF Input = RECEIVED_CONFIGURATION_PACKET, RECEIVED_ATTRIBUTES_PACKET,
RECEIVED_ACCESS_PACKET, RECEIVED_ATTRIB/ACC_PACKET, ACCESS_
COMPLETE_PACKET(RESPONSE), or SETUP_ERRORS then

START TIMER
ELSEIF Input = CONFIGURATION_PACKET, ATTRIBUTES_PACKET, ACKNOWLEDGE_PACKET,
RECEIVED_CONFIGURATION_PACKET, LINK_TERMINATION, or RECEIVED_
STARTUP_PACKETS then
STOP TIMER
ELSE output TIMEOUT

PROCESS NAME: CODE WORKING PACKETS

PROCESS NUMBER: 1.8.2

PROCESS DESCRIPTION:

IF Input = SETUP_PACKETS, DATA_PACKETS, CONTROL_PACKETS, or CONTINUE_,
INTERRUPT_PACKETS then

Output WORKING_PACKETS |
ELSE Null
PROCESS NAME: GENERATE STATUS PACKETS
PROCESS NUMBER: 1.8.3 ‘
PROCESS DESCRIPTION:]
IF Input = RECEIVED_CONTROL_ERRORS, RECEIVED_UNSUPPORT_STATUSZ, RECEIVED_ ¢

FORMAT_STATUS2, RECEIVED_SYNC_STATUS2, SETUP_ERRORS, EOF, FILE_
ERRORS, SUCCESSFUL_OPERATION, OPERATION_IN_PROGRESS, RECEIVED_
STATUS_ERROR, DATA_ERRORS, or CONTINUE_ERRORS then

Cutput appropriate status packet as STATUS_PACKET

ELSE Null
PROCESS NAME: TERMINATE LOGICAL LINK
PROCESS NUMBER: 1.8.4

PROCESS DESCRIPTION:
IF Input = TIMEOUT, RECEIVED_UNSUPPORT_MISC, RECEIVED_FORMAT_MISC, RECEIVED_
SYNC_UNKNOWN, or DISCONNECT then
Output DISCONNECT_REQUEST '

ELSE Null

"
PROCESS NAME: TERMINATE DATA STREAM
PROCESS NUMBER: 1.8.5

PROCESS DESCRIPTION:
IF Input = RECEIVED_ACCOMP(EOS) then

254

IF want to start new access then
' Output NEW_ACCESS

ELSE output DISCONNECT
ELSE Input = RECEIVED_ACCOMP(RESPONSE) then
Output DISCONNECT

PROCESS NAME: CODE FILE PACKETS

PROCESS NUMBER: 1.8.6

PROCESS DESCRIPTION:

IF Input = DISCONNECT_REQUEST, WORKING_PACKETS, or STATUS_PACKETS then
Output as OUTGOING_PRIMARY_ NODE_ARCHITECTURE_PACKET

ELSE Null
PROCESS NAME: CHECK FOR CONTINUE ERROR
PROCESS NUMBER: 1.9

PROCESS DESCRIPTION:

IF Input = CONTINUE_PACKETS with errors then
Output CONTINUE_ERRORS

ELSEIF Input CONFUNC value = try again then
Output as RECEIVED_CONTINUE_ONLY_PACKET

ELSEIF Input CONFUNC value = skip then
Output as RECEIVED_CONTINUE_SKIP_PACKET

ELSE Input CONFUNC value = abort then
Output as RECEIVED_CONTINUE_ABORT_PACKET

PROCESS NAME: EXECUTE ARCHITECETURE PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 2.0

PROCESS DESCRIPTION:
Provide standardized formats and procedures for accessing and passing
data between a user process and a file system existing in a network
enviroment.

. 255

) | |
DATA DICTIONARY

FOR TRANSPORT/NETWORK LEVEL (T/N) PROTOCOL

Page
Data Element /Flow Descriptlons..............lll.C.......’l...lll.l'l.l 257
File Definitions'...“..IIII.l..'l.....".......l....Illlllllll..l..‘... 299

PI'OCeBS Specifi‘:ations.ooo'.c..0ul-.000....0..0.000...........l'.o'luoo. 306

256

" oy : — R—— A —— 1

DATA ELEMENT NAME: ABORT
ALIASES: NONE
' VALUES AND MEANINGS:
A FLAG USED TO INDICATE THAT THE RECEIVED_DISCONNECT_
INITIATE_PACKET IS A RESULT OF AN ABORT_COMMAND. RESULTS
IN THE IMMEDIATE GENERATION OF A DISCONNECT _CONFIRM_
PACKET.
NOTES: EXECUTE DISCONNECT PACKET LAYER

DATA ELEMENT NAME: ABORT_COMMAND

ALIASES: NONE

VALUES AND MEANINGS:
OPERATOR OR DIALOGUE COMMAND USED TO ABORT A LOGICAL LINK
CONNECTION, DIALOGUE DATA IS NOT SAVED, CURRENT DIALOGUE
DATA BEING TRANSMITTED IS LOST.

NOTES: EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: ACCEPT_CONFIRM

ALIASES: NONE

VALUES AND MEANINGS:
A FLAG USED TO SET THE LINK_ACCESSABLE BIT IN THE
ADJACENT_NODE_PARAMETERS TABLE. THIS INDICATES THAT TEE
LOGICAL_LINK HAS BEEN SUCCESSFUL CONNECTED,

NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: ACCEPT_CONNECT

ALIASES: NONE

VALUES AND MEANINGS:
FLAG USED TO INDICATE THE ACCEPTANCE OF A RECEIVED_
CONNECT_INITIATE_PACKET, RESULTS IN THE GENERATION OF A
CONNECT_CONFIRM_PACKET,

NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: ACCOUNT '
ALTIASES: NONE
VALUES AND MEANINGS:
A CHARACTER-CODED DEFINITION THAT WHEN PAIRED WITH THE
REQUESTOR-ID IDENTIFIES A "BILLING ADDRESS™ FOR SERVICE '
COSTS AT THE DESTINATION NODE. ’

257

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

ALL TRANSPORT LAYERS

ACKNUM
NONE

THE NUMBER OF THE LAST TRANSPORT DATA SEGMENT
SUCCESSFULLY
RECEIVED AND AN ACK OR NAK INDICATION, THIS FIELD IS
OPTIONAL. ITS PRESENCE IS INDICATED BY BIT 15 BEING SET.
FORMAT:

QUAL = ACK = ACKNOWLEDGE

NAK NEGATIVE ACKNOWLEDGE

NUMBER = THE SEGMENT NUMBER

ALL TRANSPORT LAYERS

-~
=
-
=

ACKNUMI
NONE

THE NUMBER OF THE LAST TRANSPORT INTERRUPT OR LINK
SERVICE PACKET SUCCESSFULLY RECEIVED AND AN ACK OR NAK
INDICATION. THIS FIELD IS OPTIONAL, ITS PRESENCE IS
INDICATED BY BIT 15 BEING SET.
FORMAT:
QUAL = ACK = ACKNOWLEDGE .
NAK NEGATIVE ACKNOWLEDGE
NUMBER = THE PACKET NUMBER
ALL TRANSPORT LAYERS

ADJACENT_NODE_PACKETS
NONE

ADJACENT_NODE_PACKETS =
——fRANSMITTED_IRANSPORT_INITIALIZATION_PACKET_T
FIRST_DISCONNECT_CONFIRM_PACKET |
TRANSMITTED_TRANSPORT_DATA_PACKET |
[

I

I

TRANSMITTED_TRANSPORT_CONTROL_PACKET

!

|

I

| TRANSMITTED_TRANSPORT_ACKNOWLEDGE_PACKET
!

| (EXCEPT FOR CONNECT_INITIATE)

= WHERE DSTADDR IMPLYS THAT THE
PACKET IS GOING TO AN ADJACENT
NODE. INITIALIZATION PACKETS
ALWAYS ARE BETWEEN ADJACENT NODES '
ONLY.

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTIASES:

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

EXECUTE OUTGOING TRANSPORT PACKET LAYER

ADJACENT_NODE_ROUTING_PACKET
ROUTING_PACKET
VALID_ROUTING_PACKET
HOPPED_ROUTING_PACKET
INITIAL_ROUTE_PACKET
OLD_ROUTING_PACKETS

SEE ALIASES
EXECUTE NETWORK PROTOCCOL AT PRIMARY NODE LAYER

BLKSIZE
NONE

THE MAXIMUM PHYSICAL BLOCK SIZE THE LINK WILL ACCEPT.
ALL TRANSPORT LAYERS

CHOKE
NONE

BIT INDICATES THAT THE PACKET IS A CHOKE PACKET RATHER
THAN AN ORDINARY DATA PACKET. NOT PRESENTLY USED.
ALL NETWORK LAYERS

CLOSED_FLOW_CONTROL
NONE

A FLAG THAT INDICATES THAT THE FLOW_CONTROL_PARAMETER
DATA_FLOW_CONTROL_SWITCH IS SET TO CLOSED RESULTING IN
ALL INCOMING DATA PACKETS BEING NEGATIVELY ACKNKOWLEDGED,
EXECUTE DATA PACKET LAYER

COMMVER
NONE

THE VERSION OF THE COMMUNICATIONS PART OF THE TRANSPORT
PROTOCOL.
ALL TRANSPORT LAYERS

-,

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

CONNECT_CONFIRM_PACKET
RECEIVEL_CONNECT_CONFIRM_PACKET

CONNECT_CONFIRM_PACKET = MSGFLG + DSTADDR + SRCADDR +
SEGMENT REQUESTS COUNTS + INFO +
SEGSIZE + DSTNAME + SRCNAME +
MENU + RQSTRID + PASSWRD +

ACCOUNT
EXECUTE CONNECT PACKET LAYER

CONNECT_INITIATE_PACKET
RECEIVED_CONNECT_INITIATE_PACKET

CONNECT_INITIATE_PACKET = MSGFLG + DSTADDR=0 + SRCADDR +
SEGMENT REQUEST COUNT + INFO +
SEGSIZE + DSTNAME + SRCNAME +
MENU + RQSTRID + PASSWRD +

ACCOUNT
EXECUTE CONNECT PACKET LAYER

CONNECT_REQUEST
NONE

OPERATOR OR DIALOGUE COMMAND TO START CONNECTION OF THE

LOGICAL LINK,

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE CONNECT PACKET LAYER

EXTTUTE CONTROL PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

CORRECT_PASSWORD
NONE

THE RECEIVED CORRECT PASSWORD
EXECUTE STARTUP PACKET LAYER

CORRECT_PASSWORD_COMMAND
RECEIVED_CORRECT_PAS SWORD_COMMAND

A COMMAND TO NOTIFY THE SATELLITE NODE THAT THE PASSWORD
GIVEN IN THE NODE_VERIFICATION_PACKET WAS CORRECT.

260

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:

ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES:

LOGICAL LINK ESTABLISHMENT CAN NOW PROCEED. ADJACENT_
NODE_PARAMETER TABLE VALUES ARE NOW VALID,
EXECUTE STARTUP PACKET LAYER

COUNTED_TRANSPORT_DATA_SEGMENT
INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
TRANSMITTED_DATA_PACKET
RETRANSMITTED_DATA_PACKET

SEE ALIASES
EXECUTE DIALOGUE SEGMENT LAYER

COUNTED_TRANSPORT_I/L_PACKET
TRANSPORT_I/L_PACKET
RETRANSMITTED_1/1,_PACKET
TRANSMITTED_I/L_PACKET

COUNTED_TRANSPORT_I/L_PACKET =

T INTERRUPT_LINK_SERVICES_PACKET |
| DATA_LINK_SERVICES_PACKET |

EXECUTE I/L PACKET LAYER

DATA
NONE

THE DATA THE DIALOGUE PROCESS WISHES TO SEND OVER A
LOGICAL LINK, THIS INFORMATION WILL BE TOTALLY
TRANSPARENT AND MAY BE ALL 8-BITS OF EACH BYTE., DATA
PACKETS ARE LIMITED TO THE MAXIMUM SEGSIZE ALLOWED ON THE
LOGICAL LINK IN THE DIRECTION THAT THE PACKET IS SENT.
THE LENGTH OF THE DATA FIELD IS ASCERTAINED FROM THE
TOTAL LENGTH OF THE NORMAL DATA SEGMENT AND CONSIST OF
ALL BYTES IN THE SEGMENT AFTER THE SEGNUM FIELD. THE
DATA FIELD MAY BE NULL.

ALL TRANSPORT LAYERS

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA_ACK_FLAG
NONE

FLAG USED TO START THE GENERATION OF AN ACKNOWLEDGEMENT
PACKET ON A RECIEVED DATA PACKET,
EXECUTE DATA PACKET LAYER

DATA_ACK_PACKET
DATA_NAK_PACKET

DATA_ACK_PACKET = MSGFLG + DSTADDR + SKCADDR + ACKNUM
EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA_FLOW_ERROR
NONE

INDICATES Tr..T THE FLOW_CONTROL_PARAMETER TABLE CONTAINED
A CLOSED DATA_FLOW_CONTROL_SWITCH CR THE DATA_REQUEST_
COUNT HAD BEEN OVERFLOWED.

EXECUTE DIALOGCUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATAI
NONE

THE DATA TO BE SENT OVER A LOGICAL LINK. THIS FIELD IS
TOTALLY TRANSPARENT AND MAY USE ALL 8-BITS OF EACH BYTE.
THE LENGTH OF THE DATA FIELD IS ASCERTAINED FROM THE
TOTAL LENGTH OF THE INTERRUPT PACKET AND CONSIST OF ALL
BYTES IN THE PACKET AFTER THE SEGNUMI FIELD.

ALL TRANSPORT LAYERS

DATA_LINK_SERVICES_PACKET
INTERRUPT_LINK_SERVICES_PACKET
VALID_LINK_SERVICES_PACKET

SEE ALIASES
EXECUTE I/L PACKET LAYER

262

L T o
- 4r)f'7\a ‘
'

' DATA ELEMENT NAME: DATA_NAK_FLAG
ALTASES: NONE
VALUES AND MEANINGS:
FLAG USED TO START THE GENERATION OF AN MNEGATIVE
ACKNOWLEDGEMENT PACKET ON A RECEIVED DATA PACKET.

NOTES: EXECUTE DATA PACKET LAYER
DATA FLOW NAME: DATA_NAK_PACKET
ALIASES: DATA_ACK_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA ELEMENT NAME: DESTINATION
ALTIASES: NONE
VALUES AND MEANINGS:
THE NAME OF THE NODE TO WHICH THE ROUTING PACKET IS

GOING,
NOTES: ALL NETWORK LAYERS
DATA FLOW NAME: DISCONNECT_CONFIRM_PACKET
ALTASES: FIRST_DISCONNECT_CONFIRM_PACKET
RECEIVED_DISCONNECT_ CONFIRM_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER
DATA FLOW NAME: DISCONNECT_INITIATE_PACKET
ALTASES: RECEIVED_DISCONNECT _INITIATE_PACKET
COMPOSITION:

DISCONNECT_INITIATE_PACKET = MSGFLG + DSTADDR + SRCADDR +
DISCONNECT REASON + DSTNAME
+ SRCNAME + MENU + RQSTRID +
PASSWRD + ACCOUNT

NOTES : EXECUTE CONNECT PACKET LAYER

AN 2. i SISt o R AT R 755 .

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

DISCONNECT_REQUEST
NONE

OPERATOR OR DIALOGUE COMMAND USED TO STOP THE LOGICAL
LINK PROCESS. CURRENT DIALOGUE DATA IS TRANSMITTED AND
ACKNOWLEDGED BEFORE THE DISCONNECT_REQUEST IS ALLOWED TO
TAKE EFFECT.

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER

DISCONNECT_REQUIRED
NONE

A FLAG USED TO INDICATE THAT THE
SATELLITE_NODE_PARAMETERS TABLE IS NOT SET TO
THE CORRECT PASSWORDS AND THAT THE

LINK IS NOT UP AND RUNNING.

DECODE ROUTE HEADER LAYER

DSTADDR
NONE

THE LOGICAL LINK DESTINATION ADDRESS FOR THE PACKET.
THIS ADDRESS IS ASSIGNED WHEN A LINK IS EXTABLISHED
{CONNECT_PACKETS) .

ALL TRANSPORT LAYERS

DSTNAME
NONE

THE DESTINATION PROCESS IDENTIFICATION.

FORMAT 02:
OBJTYPE = OBJECT TYPE
GRPCODE = BINARY GROUP CODE
USRCODE = BINARY USER CODE
DESCRPT = PROCESS DESCRIPTOR. A UNIQUE NAME THAT
QUALIFIES THE OBJECT TYPE.
FORMAT 01:

OBJTYPE = OBJECT TYPE
= PROCESS DESCRIPTOR

DESCRPT

FORMAT 00:
OBJTYPE = OBJECT TYPE

, RULES :
APPLICATION PROGRAMS = FORMAT 01 OR 02
DIALOGUE LEVEL PROTOCOL = FORMAT 00
. SOURCE PROCESS DESCRIPTOR = FORMAT 02
- NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: ENTER_MAINTENANCE_MODE

ALIASES: NONE

VALUES AND MEANINGS:

3 REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL
NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA ELEMENT NAME: ERROR_REASON
ALIASES: NONE
VALUES AND MEANINGS: 4
REFER TO FILE “REASON" 1
NOTES : EXECUTE DISCONNECT PACKET LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: FCVAL

ALIASES: NONE

VALUES AND MEANINGS:
THE NUMBER OF NORMAL DATA SEGMENTS OR INTERRUPT PACKETS
THAT THE SENDER OF THE PACKET CAN RECEIVE IN ADDITION TO
THOSE PREVIQUSLY REQUESTED BY A LINK SERVICE PACKET. THIS
NUMBER IS ADDED TO THE REQUEST COUNT WHICH IS MAINTAINED
IN THE FLOW_CONTROL_PARAMETERS TABLE TO DETERMINE HOW
MANY NORMAL DATA SEGMENTS OR INTERRUPT PACKETS WILL BE
TRANSMITTED VIA A LOGICAL LINK.

NOTES: ALL TRANSPORT LAYERS
{
DATA FLOW NAME: FIRST_DISCONNECT_CONFIRM_PACKET
ALTASES: RECEIVED_DISCONNECT_CONFIRM_PACKET
DISCONNECT_CONFIRM_PACKET
COMPCSITION: '
FIRST_DISCONNECT_CONFIRM_PACKET = MSGFLG + DSTADDR +
SRCADDR + REASON
NOTES : DECODE ROUTE HEADER LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER ’
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

j‘ 265

e — e e— -

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:

FLOW_CONTROL_ERRORS
NONE

FLOW_CONTROL_ERRORS = | LINK_INACCESSABLE |
| INTERRUPT_FLOW_ERROR |
| DATA_FLOW_ERROR |

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

FUNCTIONS
NONE

THE FUNCTIONS SUPPORTED AT THIS NODE,
FORMAT:
INT INTERCEPT FUNCTIONS
000 = NO INTERCEPT - SET ON TRANSMIT BY A
NON-INTERCEPT-SATELLITE
NODE
111 = INTERCEPT - SET ON TRANSMIT BY A

INTERCEPT-ROUTING-NODE

[

ALL TRANSPORT LAYERS

HOP_COUNT
HOPS

REFER TO ALIASES
ALL NETWORK LAYERS

HOPPED_ROUTING_PACKET
ROUTING_PACKET
VALID_ROUTING_PACKET
INITIAL_ROUTING_PACKET
ADAJACENT_NODE_ROUTING_PACKET
OLD_ROUTING_PACKETS

SEE ALIASES
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

HOPS
HOP_COUNT

266

B

e o i i

e

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COUNTER USED TO KILL OFF OLD PACKETS.
ALL NETWORK LAYERS

I/L_ACK_FLAG
NONE

FLAG USED TO START THE GENERATION OF AN ACKNOWLEDGEMENT
PACKET ON A RECEIVED_I/L_PACKET.
EXECUTE DATA PACKET LAYER

I/L_ACK_PACKET
I/L_NAK_PACKET

I/L_ACK_PACKET = MSGFLG + DSTADDR + SRCADDR + ACKNUMI
EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

1/L_NAR_FLAG
NONE

FLAG USED TO START THE GENERATION OF AN NEGATIVE
ACKNOWLEDGEMENT PACKET ON A RECEIVED I/L PACKET,
EXECUTE DATA PACKET LAYER

I/L_NAK_PACKET
I/1_ACK_PACKRET

SEE ALIASES

EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT

267

[PUTO

TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_ TRANSPORT_DATA_SEGMENT
TRANSMITTED_DATA_PACKET A
RETRANSMITTED_DATA_PACKET

COMPOSITION: ;
INCOMING_DIALOGUE_DATA = MSGFLG + DSTADDR + SRCADDR +
ACKNUM + SEGNUM + DATA
NOTES : EXECUTE DIALOGUE SEGMENT LAYER
DATA FLOW NAME: INCOMING_DIALOGUE_INTERRUPT
ALIASES: TRANSPORT_INTERRUPT_PACKET
PIGGYBACKED_TRANSPORT_INTERRUPT_PACKET
VALID_INTERRUPT_PACKET
COMPOSITION:

INCOMING_DIALOGUE_INTERRUPT = MSGFLG + DSTADDR + SRCADDR

+ACKNUMI + SEGNUMI + DATAI

NOTES: EXECUTE DIALOGUE SEGMENT LAYER §
EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: INCOMING_DIALOGUE_MESSAGE
ALIASES: SECONDARY_INCOMING_DIALOGUE_MESSAGE
COMPOSITION:

INCOMING_DIALOGUE_MESSAGE = | INCOMING_DIALOGUE_PACKET |
| OPERATOR_PASSWORD_COMMAND |
| CONNECT_REQUEST |

| ENTER_MAINTENANCE_NODE [

| OPERATOR_START_COMMAND I

| ABORT_COMMAND |

| DISCONNECT _REQUEST |

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER .

DATA FLOW NAME: INCOMING_DIALOGUE_PACKET
ALTASES: OUTGOING_DIALOGUE_DATA_PACKET

COMPOSITION: '
INCOMING_DIALOGUE_PACKET = \

T_INCOMING_DIALOGUE_INTERRUPT—T
| INCOMING_DIALOGUE_DATA |

268

e

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:

ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

EXECUTE DIALOGUE SEGMENT LAYER

INCOMING_DIALOGUE_SEGMENT
INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT
TRANSMITTED_DATA_PACKET
RETRANSMITTED_DATA_PACKET

SEE ALIASES
EXECUTE DIALOGUE SEGMENT LAYER

INCOMING_NODE_NETWORK_PACKET
SECONDARY_INCOMING_NODE_NETWORK_PACKET

INCOMING_NODE_NETWORK_PACKET = T-NETWORK_PACKET—T

| ROUTING_PACKET |
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

INCOMING_NODE_TRANSPORT_PACKET
INCOMING_SATELLITE_TRANSPORT_PACKET
SECONDARY_INCOMING_SATELLITE_TRANSPORT_PACKET
SECONDARY_INCOMING_NODE_TRANSPORT_PACKET

SEE ALIASES

OVERVIEW LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DECODE ROUTE HEADER LAYER

EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

INCOMING_SATELLITE_TRANSPORT_PACKET
SECONDARY_INCOMING_SATELLITE_TRANSPORT_PACKET
INCOMING_NODE_TRANSPORT_PACKET
SECONDARY__INCOMING_NODE_TRANSPORT_PACKET

INCOMING_SATELLITE_TRANSPORT_PACKET =

269

.-

|

N o

NOTES:

DATA ELEMENT NAME:
«LIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
AT TASES:
V/LJES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:

OUTGOING_TRANSPORT_ROUTE_PACKET |
RECIEVED_ADJACENT_NODE_PACKETS |
VALID_DSTNODE_CI_PACKET |
INVALID_DSTNODE_PACKETS |
VALID_DSTNODE_PACKETS f

OVERVIEW LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DECODE ROUTE HEADER LAYER

INCORRECT_PAS SWORD_COMMAND
RECEIVED_INCORRECT_PASSWORD_C:)MMAND

A COMMAND TO NOTIFY THE SATELLITE NODE THAT THE PASSWORD
GIVEN IN THE NODE_VERIFICATION_PACKET WAS INCORRECT.
BEFORE LOGICAL LINK ESTABLISHMENT CAN PROCEED MUST START
INITIALIZATION PROCEDURE OVER WITH CORRECT PASSWORD,
EXECUTE STARTUP PACKET LAYER

INFO
NONE

INFORMATION. FORMAT:

PRI = LINK PRIORITY NOT USED AT
PRESENT.
ALL TRANSPORT LAYERS

INITIALIZE_LINK
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE STARTUP PACKET LAYER

INITIALIZATION_COMPLETE
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE STARTUP PACKET LAYER

INITIZATION_ON_OTHEF_END
NONE

270

o

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES ARD MEANINGS:

NOTES:

DATA FLOW NAME:
ALTIASES:

COMPOSITION:

NOTES:

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL,
EXECUTE STARTUP PACKET LAYER

INITIAL_ROUTE_PACKET
ROUTING_PACKET
VALID_ROUTING_PACKET
HOPPED_ROUTING_PACKET
ADJACENT_NODE__ROUTING_PACKET
OLD_ROUTING_PACKETS

SEE ALIASES
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

INTERRUPT_ERROR
NONE

FLOW CONTROL FAILURE = INT®RRUPT MESSAGE RECEIVED WHEN
THE INTERRUPT REQUEST COUNT IS ZERO.

EXECUTE DATA PACKET LAYER

EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

INTERRUPT_FLOW_ERROR
NONE

INDICATES THAT IN THE FLOW_CONTROL_PARAMETERS TABLE THAT
THE INTERRUPT_REQUEST_COUNT HAD BEEN OVERFLOWED,

EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

INTERRUPT_LINK_SERVICES_PACKET
DATA_LINK_SERVICES_PACKET
VALID_LINK_SERVICES_PACKET

INTERRUPT_LINK_SERVICES_PACKET = MSGFLG + DSTADDR + '
SRCADDR + ACKNUMI +
SEGNUMI + LSFLAGS +
FCVAL ‘
EXECUTE I/L PACKET LAYER 4

271 1

DATA ELEMENT NAME:
ALTASES:
VA. 'S AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

INVALID_DSTADDR_PACKETS
NONE

A FLAG USED TO INDICATE THAT THE DSTADDR FIELD WITHIN THE

MSGFLG FIELD DOES NOT CONTAIN AN ADDRESS OF A REACHABLE
LOGICAL LINK FROM THIS NODE,
DECODE ROUTE HEADER LAYER

INVALID_DSTNODE_PACKETS
NONE

FLAG USED TO INDICATE THAT THE DESTINATION CODE WITHIN
THE RTHDR FIELD IS NOT EQUAL TO THE NAME OF A REACHABLE
SATELLITE FROM THIS NODE.
DECODE ROUTE HEADER LAYER

LINE_COST
NONE

WEIGHT OF A PARTICULAR PHYSICAL LINK.
ALL NETWORK LAYERS

LINK_INACCESSABLE
NONE

A FLAG TFAT INDICATES THAT THE ADJACENT_NODE_PARAMETERS
TABLE HAS BEEN SET TO A LINK_INACCESSABLE SINCE THE

PHYSICAL LINK OVER WHICH THE ADJACENT NODE INITIALIZATION

THAT TOOK PLACE HAS UNDERGONE A TRANSITION OUT OF THE ON
STATE.

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

LINK_SERVICES_ERROR
NONE

FLOW CONTROL VIOLATION - ILLEGAL FCVAL

EXECUTE DATA PACKET LAYER

EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

272

' DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

COUNT
NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

LS_CODE
NONE

A FLAG USED TO INDICATE THAT A TRANSMIT BUFFER WAS NOT
COMPLETELY FULL WHEN THE LAST DATA SEGMENT WAS PUT INTO
IT.

EXECUTE I/L PACKET LAYER

EXECUTE DATA PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

LSFLAGS
NONE

LINK SERVICE FLAGS., FORMAT:

FCMOD = FLOW CONTROL MODIFICATION
= 0 = NO CHANGE
= 1 = STOP DATA
= 2 = START DATA
FCVAL INT = INTERPRETATION OF
FCVAL FIELD
DATA SEGMENT COUNT

u
o

—
nn

INTERRUPT REQUEST

ALL TRANSPORT LAYERS

MAXLNKS
NUNE

THE MAXIMUM NUMBER OF LINKS THIS NODE WILL SUPPORT. THE

VALUE IS LIMITED TO 4096.
ALL TRANSPORT LAYERS

MENU
NONE

FIELD FORMAT CONTROL = RQSTRID, PASSWORD, ACCOUNT FIELDS
ALL TRANSPORT LAYERS

MSGDATA

ALIASES: NONE
VALUES AND MEANINGS:

' DATA. THE REMAINDER OF A TRANSPORT PACKET
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: MSGFLG
ALIASES: NONE
VALUES AND MEANINGS:
00000000 = MIDDLE SEGMENT OF A MULTI-SEGMENT DIALOGUE

i MESSAGE
‘ 00100000 = THE FIRST SEGMENT OF A MULTI-SEGMENT DIALOGUE
MESSAGE
01000000 = THE LAST SEGMENT OF A MULTI-SEGMENT DIALOGUE
. MESSAGE .
01100000 = THE ONLY SEGMENT OF A DIALOGUE MESSAGE
00110000 = INTERRUPT PACKET
00010000 = LINK SERVICE PACKET
00000100 = ACKNOWLEDGEMENT OF NORMAL DATA SEGMENT
00010100 = ACKNOWLEDGEMENT OF INTERRUPT PACKET OR LINK
SERVICES PACKET
00011000 = CONNECT_INITIATE_PACKET
00101000 = CONNECT_CONFIRM_PACKET
00111000 = DISCONNECT_INITIATE_PACKET
01001000 = DISCONNECT_CONFIRM_PACKET
01011000 = NODE_INITIALIZATION_PACKET
01011000 = NODE_VERIFICATION_PACKET .
00001000 = NO OPERATION (NOP)
NOTES: ALL TRANSP: RT LAYERS

DATA ELEMENT NAME: NODEADDR

ALTIASES: NONE

VALUES AND MEANINGS:
THE SOURCE NODE ADDRESS. THE VALUE OF THIS FIELD MUST BE
GREATER THAN 1 AND LESS THAN 241, NO TWO NODES IN THE
SAME NETWORK MAY HAVE THE SAME NODE ADDRESS.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: NODENAME

ALTASES: RTHDR(SRCNODE)
VALUES AND MEANINGS:

SEE ALIASES
NOTES : ALL TRANSPORT LAYERS

274

'
N
I
[
|
i

»

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

NETWORK_PACKET
NONE

NETWORK_PACKET = | INCOMING_NODE_TRANSPORT_PACKETT
| NETWORK_TO_NETWORK_PACKET |

EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

NETWORK_TO_NETWORK_PACKET
VALID _NETWORK_TO_NETWORK_PACKET
VALID_NETWORK_PACKET

NETWORK_TO_NETWORK_PACKET = TRANSPORT_PACKET WITH A
DESTINATION CODE THAT IS NOT ADJACENT TO THIS
NODE.

EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

NO_ABORT
NONE

A FLAG USED TO INDICATE THAT THE RECEIVED_DISCONNECT_
INITIATE_PACKET IS A NORMALLY GENERATED DISCONNECT.
RESULTS IN A STOP_LINK FLAG BEING ISSUED.

EXECUTE DISCONNECT PACKET LAYER

NO_BUFFER_SPACE
NONE

FLAG USED TO GENERATE A NEGATIVE ACKNOWLEDGEMENT SINCE
THERE WERE NO MORE RECEIVE BUFFERS TO LOAD INCOMING DATA
PACKETS INTO,

EXECUTE DATA PACKET LAYER

NODE_INITIALIZATION_VO_FACKET
RECEIVED_NODE_INITIALIZATION_PACKET
RECEIVED_INTERCEIT_INITIALIZATTON_PACKET
RECEIVED_NO_INTERCEPT_INITIALIZATION_PACKET
NODE_INITIALIZATION_V1_PACKET

SEE ALIASES
EXECUTE STARTUP PACRET LAYER

275

" AD=A119 253

UNCLASSIFIED

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO==ETC F/& 9/2
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AF8 ELECTRONI==ETC (U}
DEC 81 R H STOKES .

AFIT/GCS/EE/81D-16

. ey

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

NODE_INITIALIZATION_V1_PACKET
RECEIVED_NODE_INITIALIZATION_PACKET
RECEIVED_INTERCEPT INITIALIZATION_PACKET
RECEIVED_NO_INTERCEPT_INITIALIZATION_PACKET
NODE_INITIALIZATION_VO_PACKET

SEE ALIASES
EXECUTE STARTUP PACKET LAYER

NODE_VERIFICATION_PACKET
RECEIVED_NODE_VERIFICATION_PACKET

SEE ALIASES
EXECUTE STARTUP PACKET LAYER

NONADJACENT_NODE_PACKETS
NONE

NONADJACENT_NODE_PACKETS =

| TRANSMITTED_TRANSPORT_ACKNOWLEDGE_PACKET |
| FIRST_DISCONNECT_CONFIRM_PACKET |
| TRANSMITTED_TRANSPORT_CONTROL_PACKET {
| REANSMITTED_TRANSPORT_DATA_PACKET |
= WHERE THE DSTADDR IMPLYS THAT
THE PACKET IS GOING TO A NON-
ADJACENT NODE. IF A CONNECT_
INITIATE_PACKET THEN ALWAYS
GIVES THIS ROUTE.
EXECUTE OUTGOING TRANSPORT PACKET LAYER

NONADJACENT_ROUTE_PACKET
OUTGOING_TRANSPORT_ROUTE_PACKET
OUTGOING_NODE_TRANSPORT_PACKET
SECONDARY_OUTGOING_NODE_TRANSPORT_PACKET
TRANSPORT_PACKET

NONDAJACENT_ROUTE_PACKET = CONTAINS A RTHDR FIELD THAT
HAS A DSTNODE NAME THAT IS
REFERING TO A SATELLITE THAT
IS NOT ADJACENT TO THIS
ROUTING NODE.

EXECUTE OUTGOING TRANSPORT PACKETS LAYER

276

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: NONADJACENT_SATELLITE_PACKETS
' ALIASES: NONE
' COMPOSITION:
l NONADJACENT_SATELLITE_PACKETS = RTHDR_NONADJACENT_NODE_
PACKETS - NONADJACENT_
ROUTE_PACKET
NOTES: EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW NAME: NORMAL_DATA_PACKET
ALIASES: INCOMING_DIALOGUE_DATA
VALID_NORMAL_DATA_SEGMENT

RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT

TRANSMITTED_DATA_PACKET
RETRANSMITTED_DATA_PACKET
COMPOSITION: .
SEE ALIASES
NOTES: EXECUTE DATA PACKET LAYER
DATA ELEMENT NAME: NSPSIZE i
ALIASES: NONE

VALUES AND MEANINGS:
THE MAXIMUM TRANSPORT PACKET SEGMENT SIZE THIS NODE WILL]

ACCEPT. THIS NUMBER MUST BE LESS THAN OR EQUAL TO BLKSIZE
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: OBJTYPE

ALIASES: NONE

VALUES AND MEANINGS: '
1. GENERAL TASK, USER PROCESS 1
2., FILE ACCESS]
3. UNIT RECORD SERVICES
4, APPLICATION TERMINAL SERVICES
5. COMMAND TERMINAL SERVICES
6. RSX-11M TASK CONTROL
7. OPERATOR SERVICES INTERFACE
8. NODE RESOURCE MANAGER

NOTES: ALL TRANSPORT LAYERS

n
i 277

DATA FLOW DAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

OLD_ROUTING_PACKETS
ROUTING_PACKET
VALID_ROUTING_PACKET
HOPPED_ROUTING_PACKET
INITTIAL_ROUTE_PACKET
ADJACENT_NODE_ROUTING_PACKET

SEE ALIASES
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

OPERATOR_PAS SWORD_COMMAND
NONE

OPERATOR COMMAND PROVIDED DURNINKG THE NODE VERIFICATION
PHASE OF INITIALIZATION.

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE STARTUP PACKET LAYER

OPERATOR_START_COMMAND
NONE

OPERATOR COMMAND TO START INITIALIZATION OF THE PHYSICAL
LINK,.

EXECUTE STARTUP PACKET LAYER

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

OUTGOING_DIALOGUE_DATA_PACKET
INCOMING_DIALOGUE_PACKET

SEE ALIASES

EXECUTE DATA PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

OUTGOING_DIALOGUE_MESSAGE
SECONDARY_OUTGOING_DIALOGUE_MESSAGE

278

Y

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:
NOTES:

OUTGOING_DIALOGUE_MESSAGE =

TTRANSIENT_ERROR_’ERESHOLD_COUN‘IER_OV ERFLOW

| FLOW_CONTROL_ERRORS

| OUTGOING_DIALOGUE_DATA_PACKET

| RECEIVED_INCORRECT_PASSWORD_COMMAND
| ERROR_REASON

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

OUTGOING_NODE_NETWORK_PACKET
SECONDARY_OUTGOING_NODE_NETWORK_PACKET

OUTGOING_NODE_NETWORK_PACKET =
T ADJACENT_NODE_ROUTING_PACKET
| TRANSPORT_TO_NETWORK_PACKET
| OLD_ROUTING_PACKETS
| HOPPED_ROUTING_PACKET
| VALID_NETWORK_PACKET
| INITIAL_ROUTE_PACKET

EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

OVERVIEW LAYER

§ o e e o e e

OUTGOING_NODE_TRANSPORT_PACKET
NONADJACENT_ROUTE_PACKET
OUTGOING_TRANSPORT_ROUTE_PACKET
SECONDARY_OUTGOING_NODE_TRANSPORT_PACKET
TRANSPORT_PACKET

SEE ALIASES

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

OUTGOING_TRANSPORT_ROUTE_PACKET
NOKADJACENT_ROUTE_PACKET
OUTGOING_NODE_TRANSPORT_PACKET
SECONDARY_OUTGOING_NODE_TRANSPORT_PACKET
TRANSPORT_PACKET

SEE ALIASES
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

279

————-—'

ATom -
et
¥

s OOt A A mmme 1w e

S
3

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTASES:

DECODE ROUTE HEADER LAYER

.

OUTGOING_SATELLITE_TRANSPORT_PACKET
SECONDARY_OUTGOING_SATELLITE_TRANSPORT_PACKET

OUTGOING_SATELLITE_TRANSPORT_PACKET =

TNONADJACBNT_SAMLITE_PACKET’T
| ADJACENT_NODE_PACKETS |
EXECUTE OUTGOING TRANSPORT PACKETS LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
OVERVIEW LAYER

PAS SWORD
NONE

THE PASSWORD FOR THE REQUESTING NODE. IT IS THE SAME FOR
THE ENTIRE NETWORK.
ALL TRANSPORT LAYERS

PASSWRD
NONE

ACCESS VERIFICATTON PASSWORD = AN ARBITRARY BYTE STRING
USED FOR CROSS-CHECK VERIFICATION (NORMALLY UNIQUELY
PAIRED WITH THE REQUESTOR-ID OR WITH THE SERVICE).
ALL TRANSPORT LAYERS

PERSISTENT_ERROR
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE CONNECT PACKET LAYER

PIGGYBACKED_TRANSPORT_DATA_SEGMENT
INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET

VALID _NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT

280

- T AT T W,
EERME T R
S Ry]

TRANSPORT,DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT

P TRANSMITTED_DATA_PACKET
S N RETRANSMITTED_DATA_PACKET
‘ COMPOSITION:
r . SEE ALIASES
g " NOTES: EXECUTE DIALOGUE SEGMENT LAYER
DATA FLOW NAME: PIGGYBACKED_TRANSPORT_INTERRUPT_PACKET
ALIASES: INCOMING_DIALOGUE_PACKET
TRANSPORT_INTERRUPT_PACKET
VALID_INTERRUPT_PACKET
= COMPOSITION:
SEE ALIASES
NOTES: EXECUTE I/L PACKET LAYER

DATA ELEMENT NAME: REASON
ALIASES: NONE
VALUES AND MEANINGS:
REFER TO FILE BY SAME NAME.

NOTES: ALL TRANSPORT LAYERS
! DATA FLOW NAME: RECEIVED_ADJACENT_NODE_PACKETS
ALIASES: VALID_SATELLITE_TRANSPORT_PACKET
VALID_DSTADDR_PACKETS
VALID_DSTNODE_PACKETS
VALID_DSTNODE_CI_PACKET
COMPOSITION:
RECEIVED_ADJACENT_NODE PACKETS =
| RECEIVED_TRANSPORT_INITIALIZATION_PACKET |
| RECEIVED_TRANSPORT_DATA_PACKET |
| RECEIVED_TRANSPORT_CONTROL_PACKET |
| RECEIVED_YRANSPORT_ACKNOWLEDGE_PACKET i
NOTES: DECODE ROUTE HEADER LAYER
EXZCUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DATA FLOW NAME: RECEIVED_CONNECT_CONFIRM_PACKET
ALIASES: CONNECT_CONFIRM_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE CONNECT PACKET LAYER

,i&s
.

281

e o e 3
R S g

DATA FLOW NAME: RECEIVED_CONNECT_INITIATE_PACKET

ALIASES: CONNECT_INITIATE_PACRET
COMPOSITION:

SEE ALIASES
NOTES: EXECUTE CONNECT PACKET LAYER

DATA ELEMENT NAME: RECEIVED_CORRECT_PASSWORD_COMMAND
ALIASES: : CORRECT_PAS SWORD,_ COMMAND
VALUES AND MEANINGS:

NOTES:

DATA FLOW “AME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:

SEE ALIASES
EXECUTE STARTUP PACKET LAYER

RECEIVED_DISCONNECT_CONFIRM_PACKET
FIRST_DISCONNECT_CONFIRM_PACKET
DISCONNECT_CONFIRM_PACKET

SEE ALIASES

EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER

RECEIVED_DISCONNECT_INITIATE_PACKET
DISCONNECT_INITIATE_PACKET

SEE ALIASES

EXECUTE CONNECT PACKET LAYER
EXECUTE PISCONNECT PACKET LAYER
EXECUTE CONTROL PACKET LAYER

RECEIVED_I/L_ACK_PACKET

ALTASES: NONE
E COMPOSITION: - —-
RECEIVED_I/L_ACK_PACKET = | I/L_ACK_PACKET |
| I/L_NAK_PACKRET |
’ NOTES: EXECUTE ACKNOWLEDGE PACKET LAYER
i

‘?' DATA FLOW NAME: RECEIVED_I/1_PACKET

282

3 ALIASES: VALID_I/L_PACKET
3 .- COMPOSITION: —_ —_—
s RECEIVED_I/L_PACKET = | VALID_LINK_SERVICES_PACKET |

i | VALID_INTERRUPT_PACKET |
NOTES: EXECUTE DATA PACKET LAYER
DATA ELEMENT NAME: RECEIVED_INCORRECT_PASSWORD_COMMAND
ALIASES: INCORRECT_PAS SWORD_COMMAND
VALUES AND MEANINGS:
SEE ALIASES
NOTES: EXECUTE STARTUP PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DATA FLOW NAME: RECEIVED_INTERCEPT_INITIALIZATION_PACKET
ALIASES: RECEIVED_NODE_INITIALIZATION_PACKET
RECEIVED_NO_INTERCEPT_INITIALIZATION_PACKET
NODE_INITIALIZATION_VO_PACKET
NODE_INITIALIZATION_V1_PACKET
COMPOSITION:
SEE ALIASES
NOTES : EXECUTE STARTUP PACKET LAYER
DATA FLOW NAME: RECEIVED_NODE_INITIALIZATION_PACKET
ALTIASES: RECEIVED_INTERCEPT_INITIALIZATION_PACKET
, RECEIVED_NO_INTERCEPT INITIALIZATION_PACKET
NODE_INITIALIZATION_VO_PACKET
i NODE_INITIALIZATION_V1_PACKET
: COMPOSITION:)
RECEIVED_NODE_INITIALIZATION_PACKET = MSGFLG + STARTTYPE
: + NODEADDR + NODENAME + FUNCTIONS + REQUESTS
; + BLKSIZE + NSPSIZE + MAXLINKS + ROUTVER +
| COMMVER + SYSVER
% NOTES: EXECUTE STARTUP PACKET LAYER
i
i
DATA FLOW NAME: RECEIVED_NODE_VERIFICATION_PACKET
ALIASES: NODE_VERIFICATTON_PACKET
COMPOSITION:
RECEIVED_NODE_VERIFICATION_PACKET = MSGFLG + STARTTYPE +
PASSWORD
| NOTES : EXECUTE STARTUP PACKET LAYER
1
- - 283
onm— - T TR LS

Akl

o o ARRETNE

DATA FLOW NAME:

. ALTIASES:
L ¥ J
COMPOSITION:
~ NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

RECEIVED_NO_INTERCEPT_IRITIALIZATION_PACKET
RECEIVED_NODE_INITIALIZATION_PACKET
NODE_INITIALIZATION_VO_PACKET
NODE_INITIALIZATION_V1_PACKET
RECEIVED_INTERCEPT_INITIALIZATION_PACKET

SEE ALIASES
EXECUTE STARTUP PACKET LAYER

RECEIVED_NORMAL_DATA_ACK_PACKET
NONE

RECEIVED_NORMAL_DATA_ACK_PACKET = | DATA_ACK_PACKET |
| DATA_NAK_PACKET |

EXECUTE ACKNOWLEDGE PACKET LAYER

RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT
TRANSMITTED_DATA_PACKET
RETRANSMITTED_DATA_PACKET

SEE ALIASES
EXECUTE DATA PACKET LAYER

RECEIVED_PACKET
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

RECEIVED_TRANSPORT_ACKNOWLEDGE_PACKET
TRANSMITTED_TRANSPORT _ACKNOWLEDGE_PACKET

SEE ALIASES
EXECUTE ACKNOWLEDGE PACKET LAYER

284

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVED_TRANSPORT_CONTROL_PACKET
ALIASES: TRANSMITTED_TRANSPORT_CONTROL_PACKET
} COMPOSITION:
- SEE ALIASES
i NOTES: EXECUTE CONNECT PACKET LAYER

EXECUTE CONTROL PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: RECEIVED_TRANSPORT_DATA_PACKET
ALIASES: NONE
COMPOSITION:

RECEIVED_TRANSPORT_DATA_PACKET =

T RECEIVED_NORMAL_DATA_SEGMENT | ?
| RECEIVED_I/L_PACKET | :
NOTES : EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE DATA PACKET LAYER

DATA FLOW NAME: RECEIVED_TRANSPORT_INITIALIZATION_PACKET
ALTASES: NONE
COMPOSITION:

RECEIVED_TRANSPORT_INITIALIZATION_PACKET =

| RECEIVED_INCORRECT_PASSWORD_COMMAND |
| RECEIVED_NODE_INITIALIZATION_PACKET |
| RECEIVED_NODE_VERIFICATION_PACKET |
| RECEIVED_CORRECT_PASSWORD_COMMAND |
NOTES: EXECUTE STARTUP PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: REJECT_CONFIRM
ALIASES: NONE
VALUES AND MEANINGS:
A FLAG USED TO INDICATE THE REJECTION OF A RECEIVED_
CONNECT_CONFIRM_PACKET. RESULTS IN A
DISCONNECT_INITIATE_PACKET BEING GENERATED,.
NOTES: EXECUTE CONNECT PACKET LAYER

285

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

REJECT_CONNECT
NONE

A FLAG USED TO INDICATE THE REJECTION OF A RECEIVED_
CONNECT_INITIATE_PACKET. RESULTS IN THE GENERATION OF A
DISCONNECT_INITIATE_PACKET.

EXECUTE CONNECT PACKET LAYER

RETRANSMITTED_DATA_PACKET
INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED,_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT
TRANSMITTED_DATA_PACKET

SEE ALIASES
EXECUTE DIALOGUE SEGMENT LAYER

RETRANSMITTED_1/L_PACKET
COUNTED_TRANSPORT_I/L_PACKET
TRANSPORT_1/L_PACKET
TRANSMITTED_I/L_PACKET

SEE ALIASES

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

RETURNING
NOKE

THIS BIT IS TURNED ON WHEN A PACKET IS ON ITS RETURN
JOURNEY. NOT PRESENTLY USED.
ALL NETWORK LAYERS

RETURN_REQUEST
NONE

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

THIS BIT INDICATES THAT AN UNDELIVERABLE PACKET SHOULD BE
RETURNED TO THE SENDER,
ALL NETWORK LAYERS

REQUESTS
NONE

THE REQUESTS DESIRED OF THE RECEIVER BY THE SENDER OF THE
INITIALIZATION PACKET. FORMAT:

VERIF = NODE VERIFICATION PACKET
REQUIRED,
RINT = 0 = NO INTERCEPT = SET

ON TRANSMIT BY A ROUTING
NODE GOING TO A SATELLITE
NODE.

1 = INTERCEPT = SET ON
TRANSMIT BY A ROUTING NODE
GOING TO A ROUTING NODE OR
ON TRANSMIT BY A SATELLITE
NODE GOING TO A ROUTING
NODE.

ALL TRANSPORT LAYERS

ROUTING_PACKET
VALID_ROUTING_PACKET

HOPPED_ ROUTING_PACKET
INITTIAL_ROUTE_PACKET
ADAJACENT_NODE_ROUT ING_PACKET
OLD_ROUTING_PACKETS

ROUTING_PACKET = DESTINATION + LINF_COST + HOP_COUNT
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

ROUTVER
NONE

THE VERSION OF THE ROUTING ALGORITHM. FORMAT:
1, VERSION NUMBER
2, ECO NUMBER
3. CUSTOMER LEVEL NUMBER
ALL TRANSPORT LAYERS

RTHDR

ALTASES:
VALUES AND MEANINGS:

FUNCTION

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NCTES:

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

NONE

THE RTHDR IS USED BY NODES CONTAINING AN INTERCEPT

TO DETERMINE THE PHYSICAL LINK ON WHICH TO SEND THE
PACKET TOWARD THE DESTINATION NODE. A TRANSPORT PACKET
GOING TO AN ADJACENT NODE WILL NOT CONTAIN THE RTHDR
FIELD UNLESS IT IS A NETWORK_TO_NETWORK_PACKET. FORMAT:

1. DSTNODE = DESTINATION NODE NAME
2. SRCNODE = SOURCE NODE NAME
3. MPRI = PRIORITY

ALL TRANSPORT LAYERS

RTHDR_NONADJACENT_NODE_PACKETS
NONE

RTHDR_NONADJACENT_NODE_PACKETS = NONADJACENT_NODE_PACKETS
+ RTHDR FIELD
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

RQSTRID
NONE

REQUESTOR ID = A CHARACTER-CODED REFERENCE THAT, IN A
SINGLE NODE CONTEXT, UNIQUELY IDENTIFIES
THE PERSON OR PROCESS REQUESTING SERVICE.
ALL TRANSPORT LAYERS

SECONDARY_INCOMING_NODE_NETWORK_PACKET
INCOMING_NODE_NETWORK_PACKET

SEE ALIASES
OVERVIEW LAYER

SECONDARY_INCOMING_NODE_TRANSPORT_PACKET
INCOMING _SATELLITE_TRANSPORT_PACKET
SECONDARY_INCOMING_SATELLITE_TRANSPORT_PACKET
INCOMING_NODE_TRANSPORT_PACKET

SEE ALIASES
OVERVIEW LAYER

288

B P e R SRR e on . Lipimtos i o v e EO I i o

3 DATA FLOW NAME: SECONDARY_INCOMING_SATELLITE_TRANSPORT_PACKET
ALIASES: INCOMING_SATELLITE_TRANSPORT_PACKET
INCOMING_NODE_TRANSP.AZ_PACKET
' SECONDARY_INCOMING_NODE_TRANSPORT_PACKET
COMPOSITION: :
SEE ALIASES
i NOTES: OVERVIEW LAYEK
f
DATA FLOW NAME: SECONDARY_OUTGOING_DIALOGUE_MESSAGE
ALIASES: OUTGOING_DIALOGUE_MESSAGE
COMPOSITION:
SEE ALIASES
NOTES: OVERVIEW LAYER
DATA FLOW NAME: SECONDARY_OUTGOING_NODE_NETWORK_PACKET
ALIASES: OUTGOING_NODE_NETWORK_PACKET
COMPOSITION:
SEE ALIASES
NOTES: OVERVIEW LAYER
DATA FLOW NAME: SECONDARY_OUTGOING_NODE_TRANSPORT_PACKET
ALIASES: NONADJACENT_ROUTE_PACKET
OUTGOING_TRANSPORT_ROUTE_PACKET
OUTGOING_NODE_TRANSPORT_PACKET
TRANSPORT_PACKET
COMPOSITION:
SEE ALIASES
NOTES: OVERVIEW LAYER
DATA FLOW NAME: SECONDARY_OUTGOING_SATELLITE_TRANSPORT_PACKET
ALTASES: OUTGOING_SATELLITE_TRANSPORT_PACKET
COMPOSITION:
SEE ALIASES
NOTES:: OVERVIEW LAYER

DATA ELEMENT NAME: SEGMENT_COUNT

ALIASES: NONE

VALUES AND MEANINGS:
THE NUMBER OF SEGMENTS THE TRANSMITTER IS GOING TO BREAK
THE INCOMING DIALOGUE DATA INTO.

289

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE I/L PACKET LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

SEGNUM
NONE

THE NUMBER OF THIS SEGMENT, MODULO 4096.
ALL TRANSPORT LAYERS

SEGNUMI
NONE

THE NUMBER OF THIS INTERRUPT OR LINK SERVICE PACKET.
NUMBERS FOR INTERRUPT OR LINK SERVICE PACKETS WILL HAVE
NO RELATIONSHIP TO THE NUMBERS ASSIGNED TO NORMAL DATA
PACKETS. EACH PACKET TYPE UTILIZES A DIFFERENT
SUBCHANNEL ON A LOGICAL LINK.

ALL TRANSPORT LAYERS

SEGSIZE
NONE

THE MAXIMUM SIZE OF A NORMAL DATA SEGMENT TO BE RECEIVED
ON THIS LOGICAL LINK.
ALL TRANSPORT LAYERS

SERVICES
NONE

REQUESTED SERVICES. FORMAT:
FCOPT = FLOW CONTROL OPTION
0 = NONE

1 = SEGMENT REQUEST COUNT

ALL TRANSPORT LAYERS

SOURCE
NONE

THE NAME OF THE NODE FROM WHICH THE ROUTING PACKET CAME
FROM,

NOTES: ALL NETWORK LAYERS

-« F
DATA ELEMENT NAME: SRCADDR
ALIASES: NONE
VALUES AND MEANINGS:
THE LOGICAL LINK SOURCE ADDRESS, THIS ADDRESS IS ASSIGNED
WHEN A LINK IS ESTABLISHED (CONNECT_PACKETS),
NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: SRCNAME

ALIASES: NONE

VALUES AND MEANINGS:
THE SOURCE PROCESS IDENTIFICATION, USE OF FORMAT 02 AS
DESCRIBED IN DSTNAME.

NOTES: ALL TRANSPORT LAYERS

DATA ELEMENT NAME: START

ALIASES: NONE

VALUES AND MEANINGS:

i A FLAG USED TO INDICATE THAT THE NODE SHOULD START THE
3 INITIALIZATION PROCESS.

NOTES: EXECUTE STARTUP PACKET LAYER

DATA ELEMENT NAME: START_DATA

ALTASES: NONE

VALUES AND MEANINGS:
A FLAG USED TO TRIGGER THE RETRANSMITTING OF NEGATIVELY
ACKNOWLEDGED DATA PACKETS.

NOTES: EXECUTE DIALOGUE SEGMENT LAYER

DATA ELEMENT NAME: START_I/L
ALTASES: NONE
VALUES AND MEANINGS:
A FLAG USED TO TRIGGER THE RETRANSMITTING OF NEGATIVELY
ACKNOWLEDGED INTERRUPT AND LINK SERVICES PACKETS.
NOTES: EXECUTE I/L PACKET LAYER

DATA ELEMENT NAME: STARTTYPE
ALIASES: NONE

by

291

f

<L

) oy

rﬂ"“F—‘--——-.._._.m...

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

TYPE OF STARTUP MESSAGE. 1
2

NODE_INITIALIZATION_PACKET
NODE_VERIFICATION_PACKET

ALL TRANSPORT LAYERS

STOP
NONE

A FLAG USED TO START LOGICAL LINK DISCONNECTION DUE TO A
RECEIVED_DISCONNECT_REQUEST_COMMAND,
EXECUTE CONNECT PACKET LAYER

STOP_LINK
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE DISCONNECT PACKET LAYER

STOP_LINK_NOW
NONE

A FLAG USED TO INDICATE THAT A DISCONNECT_CONFIRM_PACKET
CAN NOW BE ISSUED SINCE ALL DATA_PACKETS SENT OUT HAVE
BEEN POSITIVELY ACKNOWLEDGED.

EXECUTE DISCONNECT PACKET LAYER

SYSVER
NONE

A STRING DESCRIBING THE OPERATING SYSTEM, DATA OF
CREATION, ETC.
ALL TRANSPORT LAYERS

TRANSIENT_ERROR_THRESHOLD_COUNTER_OVERFLOW
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

292

DATA ELEMENT NAME:
, ALIASES:
' VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

TRANSMIT_PACKET
NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL.
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

TRANSMITTED_DATA_PACKET
INCOMING_DIALOGUE_PACKET
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT
RETRANSMITTED_DATA_PACKET

SEE ALIASES
EXECUTE DIALOGUE SEGMENT LAYER

TRANSMITTED_I/L_PACKET
COUNTED_TRANSPORT_I/I_PACKET
TRANSPORT_X/L_PACKET
RETRANSMITTED_I/L_PACKET

SEE ALIASES

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE I/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

TRANSMITTED_TRANSPORT_ACKNOWLEDGE_PACKET
RECEIVED_TRANSPORT_ACKNOWLEDGE_PACKET

TRANSMITTED_TRANSPORT_ACKNOWLEDGE_PACKET =

| DATA_ACK_PACKET |
| DATA_NAK_PACKET |
| I/L_ACK_PACKET |
| I/L_NAK_PACKET |
EXECUTE DATA PACKET LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER

293

-r DATA FLOW NAME: TRANSMITTED_TRANSPORT_DATA_PACKET
<«r ALIASES: NONE
COMPOSITION:

TRANSMITTED_TRANSPORT_DATA_PACKET =
T RETRANSMITTED_DATA_PACKET
| RETRANSMITTED_I/L_PACKET
| TRANSMITTED_I/L_PACKET
| TRANSMITTED_DATA_PACKET

NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING TRANSPORT PACKETS LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER

DATA FLOW NAME: TRANSMITTED_TRANSPORT_CONTROL_PACKET
ALIASES: RECIEVED_TRANSPORT_CONTROL_PACKET
COMPOSITION:

TRANSMITTED_TRANSPORT_CONTROL_PACKET =

| DISCONNECT_INITIATE_PACKET |
| CONNECT_INITIATE_PACKET I
| CONNECT_CONFIRM_PACKET [
| DISCONNECT_CONFIRM_PACKET |
NOTES: EXECUTE CONNECT PACKET LAYER

EXECUTE CONTROL PACKET LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

EXECUTE OUTGOING TRANSPORT PACKETS LAYER

DATA FLOW NAME: TRANSMITTED_TRANSPORT_INITIALIZATION_PACKET
ALIASES: NONE
COMPOSITION:

TRANSMITTED_TRANSPORT_INITIALIZATION_PACKET = 1

| NODE_INITIALIZATION_VO_PACKET |
| NODE_INITIALIZATION_V1_PACKET |
| NODE_VERIFICATION_PACKET |
| CORRECT_PASSWORD_COMMAND |
| INCORRECT_PASSWORD_COMMAND |
_ NOTES: EXECUTE STARTUP PACKET LAYER ’
, EXECUTE OUTGOING TRANSPORT PACKETS LAYER
EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

» Sy

A

294

R~ oV —

.- DATA FLOW NAME: TRANSPORT_DATA_SEGMENT

ALIASES: INCOMING_DIALOGUE_DATA
NORMAL_DATA_PACKET
VALID_NORMAL_DATA_SEGMENT
RECEIVED_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT

RETRANSMITTED_DATA_PACKET
COMPOSITION:
SEE ALIASES 1
ROTES: EXECUTE DIALOGUE SEGMENT LAYER
i
DATA FLOW RAME: TRANSPORT_INTERRUPT_PACKET
ALIASES: INCOMING_DIALOGUE_INTERRUPT
PIGGYBACKED_TRANSPORT_INTERRUPT_PACKET
VALID_INTERRUPT_PACKET
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE I/L PACKET LAYER
DATA FLOW NAME: TRANSPORT_PACKET 3
ALIASES: NONADJACENT_ROUTE_PACKET
OUTGOING_TRANSPORT_ROUTE_PACKET
OUTGOING_NODE_TRANSPORT_PACKET 1
SECONDARY_OUTGOING_NODE_TRANSPORT_PACKET ‘
COMPOSITION:
SEE ALIASES
NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
DATA FLOW NAME: TRANSPORT_TO_NEIWORK_PACKET
ALIASES: NONE
COMPOSITION:
TRANSPORT_TO_NETWORK_PACKET = TRANSPORT_PACKET + HOPS +
SOURCE + DESTINATION +
CHOKE + RETURN + REQUEST +
RETURNING + VERSION]
NOTES: EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER
DATA ELEMENT NAME: TSTDATA
ALIASES: NORE

VALUES AND MEANINGS:

3wy

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FiLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW RAME:
ALIASES:

ANY TEST DATA PATTERN. THIS PACKET IS IGNORED ON RECEIVE,
ALL TRANSPORT LAYERS)

VALID_DSTADDR_PACKETS
RECEIVED_ADJACENT_NODE_PACKETS
VALID_SATELLITZ_TRANSPORT_PACKETS
VALID_DSTNODE_PACKETS
VALID_DSTNODE_CI_PACKET

SEE ALIASES
DECODE ROUTE HEADER LAYER

VALID_DSTNODE_CI_PACKET
RECEIVED_ADJACENT_NODE_PACKETS
VALID_SATELLITE_TRANSPORT_PACKET
VALID_DSTADDR_PACKETS
VALID_DSTNODE_PACKETS

SEE ALIASES

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER
DECODE ROUTE HEADER LAYER

EXECUTE OUTGOING TRANSPORT PACKETS LAYER

VALID_DSTNODE_PACKETS
RECEIVED_ADJACENT_NODE_PACKETS
VALID_SATELLITE_TRANSPORT_PACKET
VALID_DSTADDR_PACKETS
VALID_DSTNODE_CI_PACKETS

SEE ALIASES
DECODE ROUTE HEADER LAYER

VALID_I/L_PACKET
RECEIVED_I/L_PACKET

SEE ALIASES
EXECUTE DATA PACKET LAYER

VALID_INTERRUPT_PACKET
INCOMING_DIALOGUE_INTERRUPT
TRANSPORT_INTERRUPT_PACKET

296

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW KAME:
ALIASES:

COMPOSITION:

NOTES:

TP »

PIGGYBACKED_TRANSPORT_INTERRUPT_PACKET

SEE ALIASES
EXECUTE DATA PACKET LAYER

VALID_LINK_SERVICES_PACKET
INTERRUPT_LINK_SERVICES_PACKET
DATA_LINK_SERVICES_PACKET

SEE ALIASES
EXECUTE DATA PACKET LAYER

VALID_NEIWORK_PACKET
NETWORK_TO_NETWORK_PACKET
VALID_NETWORK_TO_NETWORK_PACKET

SEE ALIASES
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

VALID_NETWORK_TO_NETWORK_PACKET
NETWORK_TO_NETWORK_PACKET
VALID_NETWORK_PACKET

SEE ALIASES
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

VALID_NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_PACKET
NORMAL_DATA_PACKET

RECEIVED _NORMAL_DATA_SEGMENT
INCOMING_DIALOGUE_SEGMENT
TRANSPORT_DATA_SEGMENT
PIGGYBACKED_TRANSPORT_DATA_SEGMENT
COUNTED_TRANSPORT_DATA_SEGMENT
TRANSMITTED_DATA_PACKET
RETRANSMITTED_DATA_PACKET

SEE ALIASES
EXECUTE DZTA PACKET LAYER

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOT%S:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANIRGS:

NOTES:

DATA ELEMENT RAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

VALID_ROUTING_PACKET
ROUTING_PACKET
HOPPED_ROUTING_PACKET
INITIAL _ROUTE_PACKET
ADJACENT_NODE_ROUTING_PACKET
OLD_ROUTING_PACKETS

SEE ALIASES
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

VALID_SATELLITE_TRANSPORT_PACKET
RECEIVED_ADJACENT_NODE_PACKETS
VALID_DSTADDR_PACKETS
VALID_DSTNODE_PACKETS
VALID_DSTNODE_CI_PACKET

SEE ALIASES
DECODE ROUTE HEADER LAYER

VERIFY_CLEAR
NONE

A FLAG TO INDICATE THAT A
RECEIVED_INTERCEPT_INITIALIZATION_PACKET

WAS RECEIVED WITH THE VERIFY BIT NOT SET CAUSING
GENERATION OF ANOTHER RECEIVED_INTERCEPT_INITIALIZATION_
PACKET WITH THE VERIFY BIT NOT SET.

EXECUTE STARTUP PACKET LAYER

VERIFY_SET
NONE

A FLAG USED TO INDICATE THAT A RECEIVED_INTERCEPT_

INITIALIZATION_PACKET WAS RECEIVED WITH THE VERIFY BIT
SET CAUSING THE GENERATION OF A NODE_VERIFICATION_PACKET. |
EXECUTE STARTUP PACKET LAYER

VERSION
NONE

THIS BIT TELLS WHICH VERSION OF THE NETWORK PROTOCOL

GENERATED THE PACKET. PRESENTLY NOT USED.
ALL NETWORK LAYERS

298

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

ACK_D_FILE
NONE

ACK_D_FILE = THE SEGMENT NUMBER OF THE LAST DATA
PACKET POSITIVELY ACKNOWLEDGED.

1 8-BIT BYTE

EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER

EXECUTE DISCONNECT PACKET LAYER

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

EXECUTE DATA PACKET LAYER

EXECUTE ACKNOWLEDGE PACKET LAYER

ACK_I/L_FILE
NONE

ACK_I/L_FILE = THE SEGMENT NUMBER OF THE LAST
INTERRUPT OR LINK SERVICES PACKET POSITIVELY
ACKNOWLEDGED TO THIS NODE.

1 8~BIT BYTE

EXECUTE 1/L PACKET LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE DATA PACKET LAYER ,

EXECUTE ACKNOWLEDGE PACKET LAYER

ADJACENT_NODE_PARAMETERS
NONE

ADJACENT_NODE_PARAMETERS = NODEADDR + NODENAME + NO

INTERCEPT + INTERCEPT
REQUESTED + BLKSIZE +

NSPSIZE + MAXLNKS + COMMVER

+ SYSVER + CORRECT_

PASSWORD + LINK_ACCESSABLE

VARIABLE LERGTH 8-BIT BYTE COMBINATIONS
EXECUTE STARTUP PACRET LAYER

EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES :

DATA_MEMORY
NONE

DATA_MEMORY = DATA SEGMENTS ARE LOADED INTO MEMORY
UNTIL SUCH TIME A POSITIVE
ACKNOWLEDGEMENT IS RECEIVED.

ARRAY OF VARIABLE BYTE LENGTH WORDS,

EXECUTE DIALOGUE SEGMENT LAYER

DATA_NAK_FILE
NONE

DATA_NAK_FILE = THE SEGMENT NUMBER OF THE LAST DATA

PACKET NEGATIVELY ACKNOWLEDGED TO THIS

NODE, AT OTHER TIMES IT IS EQUAL TO
TRANSMIT_D_FILE + 1.

1 8-BIT BYTE

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE DATA PACKET LAYER

EXECUTE ACKNOWLEDGE PACKET LAYER

DIALOGUE_PROCESS_TABLE
NONE

DIALOGUE_PROCESS_TABLE = DESTINATION NODE NAME +
DESTINATION PROCESS
IDENTIFICATION + SOURCE
PROCESS IDENTIFICATION +
LINK IDENTIFIER + ACCESS
CONTROL INFORMATION +
SOURCE NODE NAME + SOURCE
PROCESS IDENTIFICATION +
DESTINATION PROCESS
IDENTIFICATION +
REPLY IDENTIFIER + REMOTE
PROCESS'S SEGMENT SIZE.

VARIABLE LENGTH 8-BIT BYTE WORDS.

EXECUTE CONNECT PACKET LAYER

EXECUTE DISCONNECT PACKET LAYER

EXECUTE DIALOGUE SEGMENT LAYER

DECODE ROUTE HEADER LAYER

EXECUTE DATA PACKET LAYER

EXECUTE I/L PACKET LAYER

EXECUTE OUTGOING TRANSPORT PACKETS LAYER

300

FILE OR DATABASE NAME: FLOW_CONTROL_PARAMETERS
ALIASES: NONE
COMPOSITION:
l FLOW_CONTROL_PARAMETERS = DATA FLOW CONTROL SWITCH +
| INTERRUPT REQUEST COUNT +
DATA REQUEST SWITCH + DATA
REQUEST COUNT
ORGANIZATION: INITIAL PARAMETERS = OPEN,1,SEGMENT,0 RESPECTIVELY
NOTES: EXECUTE DIALOGUE SEGMENT LAYER
EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE I/L PACKET LAYER
EXECUTE DATA PACKET LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER

FILE OR DATABASE NAME: I/L_MEMORY
ALIASES: NONE
COMPOSITION:
I/L_MEMORY = INTERRUPT AND LINK SERVICE PACKETS ARE
LOADED INTO MEMORY UNTIL SUCH TIME A
POSITIVE ACKNOWLEDGEMENT 1S RECEIVED,
ORGANIZATION: ARRAY OF VARIABLE BYTE LENGTH WORDS.
NOTES: EXECUTE I/L PACKET LAYER

FILE OR DATABASE NAME: I/L_NAK_FILE
ALIASES: NONE
COMPOSITION:
I/L_NAK_FILE = THE SEGMENT NUMBER OF THE LAST
INTERRUPT OR LINK SERVICES PACKET NEGATIVELY
ACKNOWLEDGED TO
THIS NODE. ALSO EQUAL TO TRANSMIT_I/L_FILE + 1.
ORGANIZATION: 1 8-BIT BYTE
NOTES: EXECUTE I/L PACKET LAYER
EXECUTE DATA PACKET LAYER
EXECUTE ACKNOWLEDGE PACKET LAYER

FILE OR DATABASE NAME: INITIAL_PARAMETER_LIST
ALIASES: NONE
COMPOSITION:
INITIAL_PARAMETER_LIST = NODEADDR + NODENAME +

T NO_INTERCEPT | + | NO_INTERCEPT_REQUESTED |
| INTERCEPT | | INTERCEPT_REQUESTED |

301

ORGANIZATION:
NOTES:

ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

ALIASES:
COMPOSITION:

+ BLKSIZE + NSPSIZE + MAXLNKS + ROUTVER +
COMMVER + SYSVER

VARIABLE LENGTH 8-BIT BYTE COMBINATIONS

EXECUTE STARTUP PACKET LAYER

FILE OR DATABASE NAME: LINK_TO_TRANSPORT_COMMAND_TABLE

NONE

REFER TO DATA DICTIONARY FOR LINK LEVEL PROTOCOL
SINGLE VARIABLE

EXECUTE STARTUP PACKET LAYER

EXECUTE CONNECT PACKET LAYER

EXECUTE TRANSPORT PROTOCOL AT PRIMARY NODE LAYER

FILE OR DATABASE NAME: LS_FILE

NONE

LS_FILE = SEGMENT NUMBER OF LAST PACKET SENT.
1 BYTE

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE INCOMING DIALOGUE MESSAGE LAYER
EXECUTE CONTROL PACKET LAYER

EXECUTE CONNECT PACKET LAYER

EXECUTE DISCONNECT PACKET LAYER

FILE OR DATABASE NAME: REASON

NONE
A FILE WITH THE FOLLOWING ERRORS:
ERROR CODE MEANING

0 NO ERROR

1 RESQOURCES ALLOCATION FAILURE

2 DESTINATION NODE DOES NOT EXIST

3 NODE SHUTTING DOWN

4 DESTINATION PROCESS DOES NOT EXIST

5 INVALID PROCESS NAME FIELD

6 DESTINATION PROCESS QUEUE OVERFLOW

7 UNSPECIFIED ERROR CONDITION

8 THIRD PARTY ABORTED THE LOGICAL LINK
9 LINK ABORT BY DIALOGUE PROCESS
10 FLOW CONTROL VIOLATION-ILLEGAL FCVAL IN LINK

SERVICES MESSAGE

11 TOO MANY CONNECTIONS TO NODE

302

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

12 TOO MANY CONNECTIONS TO DESTINATION PROCESS

13 ACCESS NOT PERMITTED-UNACCEPTABLE RQSTRID OR
PAS SWORD

14 LOGICAL LINK SERVICES MISMATCH

15 UNACCEPTABLE ACCOUNT INFORMATION-UNAUTHORIZED
OR ACCOUNT BALANCE UNACCEPTABLE

16 SEGSIZE TOO SMALL

17 DIALOGUE PROCESS ABORTED, TIMED OUT, OR
CANCELLED REQUEST

18 NO PATH TO DESTINATION NODE

19 FLOW CONTROL FAILURE

20 DSTADDR LOGICAL LINK DOES NOT EXIST

21 CONFIRMATION OF DISCONNECT INITIATE

22 IMAGE DATA FIELD TOO LONG-RQSTRID, PASSWORD,

ACCOUNT, USRDATA, AND DATA.
EACH ERROR = 2 BYTES
DECODE ROUTE HEADER LAYER
EXECUTE CONTROL PACKET LAYER
EXECUTE CONNECT PACKET LAYER
EXECUTE DISCONNECT PACKET LAYER

RECEIVED_D_FILE
NONE

RECEIVED_D_FILE = MOST CURRENT DATA SEGMENT NUMBER
RECEIVED,

' 8-BIT BYTE

EXECUTE DATA PACKET LAYER

RECEIVED_I/L_FILE
NONE

RECEIVED_I/L_FILE = MOST CURRENT 1I/L SEGMENT NUMBER
RECEIVED.

1 8-BIT BYTE

EXECUTE DATA PACKET LAYER

ROUTING_TABLE_l

NONE
ROUTING_TABLE_l = 1-2 = 6
2-3 =5
3-1 =10
1-2-3 = 11
2-3-1 = 15
303
ek ot eetiliin e it Aadiinit il ol i

Maea i

ORGANIZATION:

NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:

NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALTASES:
COMPOSITION:

ORGANZATION:
NOTES :

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

3-1-2 = 16
ABOVE NUMBERS HAVE ASSOCIATED NODE NAMES,
THIS IS A TABLE THAT CONTAINS THE PERMINATE LINK COST,
IF THE FULL NETWORK WERE UP AND RUNNKING. THE ABOVE
VALUES ARE FOR A 3 ROUTING NODE NETWORK CONFIGURATION.
EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

ROUTIRG_TABLE_2
NONE

ROUTING_TABLE_2 = 1-2 + 2-3 + 3-1 + 1-2-3 + 2-3-1 +
: 3-1-2

THIS IS THE TABLE THAT IS ACTUALLY USED AS THE NETWORK

ROUTING TABLE FOR GENERATING AND SENDING ROUTING

PACKETS.

EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

SATELLITE_NODE_PARAMETERS
NONE

SATELLITE_NODE_PARAMETERS = NODEADDR + NODENAME +
INTERCEPT + NO INTERCEPT +
BLKSIZE + NSPSIZE +
MAXLNKS + ROUTVER +
COMMVER + SYSVER +
PAS SWORD

VARIABLE LENGHT 8-BIT BYTE COMBINATIONS

EXECUTE STARTUP PACKET LAYER

DECODE ROUTE HEADER LAYER

TRANSMIT_D_FILE
NONE

TRANSMIT_D_FILE = DATA TRANSMITTING SEGMENT NUMBER,
MODULO 4096 .

1 8-BIT BYTE

EXECUTE DIALOGUE SEGMENT LAYER

TRANSMIT_I/L_FILE
NONE

TRANSMIT_I/L_FILE = INTERRUPT OR LINK SERVICES
TRANSMITTING SEGMENT NUMBER,

304

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

MODULO 4096 .

1 8-BIT BYTE
EXECUTE I/L PACKET LAYER

TRANSPORT_TO_LINK_COMMAND_TABLE
NONE

REFER TO DATA DICTIORARY FOR LINK LEVEL PROTOCOL.
SINGLE VARIABLE

EXECUTE DIALOGUE SEGMENT LAYER

EXECUTE STARTUP PACKET LAYER

EXECUTE DISCONNECT PACKET LAYER

EXECUTE OUTGOING TRANSPORT PACKETS LAYER

EXECUTE NETWORK PROTOCOL AT PRIMARY NODE LAYER

305

T T i e e e et s

PROCESS NAME: DECODE RTHDR FIELD
PROCESS NUMBER: 1.1.1
PROCESS DESCRIPTION:
WREN Input = INCOMING_SATELLITE_TRANSPORT_PACKET or INCOMING_NODE_TRANSPORT_
PACKET then
Check for RTHDR field
IF RTHDR field not present then
Output RECEIVED_ADJACENT_NODE_PACKETS
ELSE
IF DSTNODE = valid satellite node and MSGFLG = 00011000
then
Output VALID_DST_CI_PACKET
ELSEIF DSTNODE = valid satellite node then
Output VALID_DSTNODE_PACKETS
ELSEIF DSTNODE = valid routing node then
Output OUTGOING_TRANSPORT_ROUTE_PACKET
ELSE output INVALID_DSTNODE_PACKETS

PROCESS NAME: DECODE MSGFLG FIELD

PROCESS NUMBER: 1.1,2

PROCESS DESCRIPTION:

IF MSGFLG field = valid destination logical link address then
Output VALID_DSTADDR_PACKETS

ELSE output INVALID_DSTADDR_PACKETS

PROCESS NAME: GENERATE FIRST DISCONNECT CONFIRM
PROCESS NUMBER: 1.1.3
PROCESS DESCRIPTION:
IF Input = INVALID_DSTADDR_PACKETS or DISCONNECT_REQUIRED or INVALID_DSTNODE_
PACKETS then
Extract REASON_CODE from REASON file and
Output FIRST_DISCONNECT_CONFIRM_PACKET

ELSE Null
PROCESS NAME: EXAMINE LOGICAL LINK DATABASE
PROCESS NUMBER: 1.1.4

PROCESS DESCRIPTION:

IF SATELLITE_NODE_PARAMETERS are null then
Output DISCONNECT_REQUIRED

ELSE output VALID_SATELLITE_ TRANSPORT_PACKET

306

PROCESS NAME: PASS TO SATELLITE

PROCESS NUMBER: 1e1.5

PROCESS DESCRIPTION:

WHEN Input is VALID SA‘].'ELLITE_TRANSPORT_PACKET or VALID_DSTNODE_CI_PACKET
Pass to satellite node accordxng to DSTADDR value.

ELSE Null

PROCESS NAME: DECODE PACKET TYPE
PROCESS NUMBER: 1.2
PROCESS DESCRIPTION:
WHEN Input is RECEIVED_ADJACENT_NODE_PACKETS then
IF MSGFLG = 0BB00000 where BB = 00,01,10,11 then
Output RECEIVED_TRANSPORT_DATA_PACKET
ELSEIF MSGFLG = 00110000 then
Output RECEIVED_TRANSPORT_DATA_PACKET
ELSEIF MSGFLG = 00010000 then
Output RECEIVED_TRANSPORT_DATA_PACKET
ELSEIF MSGFLG = 00010100 or 00000100 then
Output RECEIVED_TRANSPORT_ACKNOWLEDGE_PACKET
ELSEIF MSGFLG = 00011000, 00101000, 00111000, or 01001000 then
Output RECEIVED_TRANSPORT_CONTROL_PACKET
ELSEIF MSGFLG = 0101100 with a STARTTYPE of 1 or 2 then
Output RECEIVED_TRANSPORT_INITIALIZATION_PACKET
ELSE Null

PROCESS NAME: DECODE DIALOGUE MESSAGE
PROCESS NUMBER: 1.3.1.1
PROCESS DESCRIPTION:
IF Input = command format then
Output appropriate command:
ENTER_MAINTENANCE_MODE
CONNECT_REQUEST
OPERATOR_PAS SWORD_COMMAND
OPERATOR_START_COMMAND
ABORT_COMMAND
DISCONNECT_REQUEST
ELSE output input as INCOMING_DIALOGUE_PACKET

PROCESS NAME: EXAMINE ADJACENT NODE PARAMETERS AND DECODE
PROCESS NUMBER: 1.3.1.2

PROCESS DESCRIPTION:

IF ADJACENT_NODE_PARAMETER is equal to LINK_INACCESSABLE then

307

Output LINK_INACCESSABLE_ERROR
ELSEIF Input = dialogue data then

Output INCOMING_DIALOGUE_DATA
ELSE output INCOMING_DIALOGUE_INTERRUPT

PROCESS NAME: BREAK DIALOGUE DATA INTO SEGMENTS

PROCESS NUMBER: 1.3.1.3

PROCESS DESCRIPTION:

TAKE INCOMING_DIALOGUE_DATA and breask into segments according to the maximum
segment length the node can handle.
Output each segment as INCOMING_DIALOGUE_SEGMENT.
Output the total number of segments the message has been broken up in

as the SEGMENT_COUNT

PROCESS NAME: EXAMINE DATA FLOW CONTROL PARAMETERS
PROCESS NUMBER: 1.3.1.4
PROCESS DESCRIPTION:
IF FLOW_CONTROL_PARAMETERS is set to closed then
Output DATA_FLOW_ERROR
ELSEIF FLOW_CONTROL_PARAMETERS DATA_REQUEST_CQUNT is greater than 0 then
Decrement the DATA_REQUEST_COUNT and
Output the INCOMING_DIALOGUE_SEGMENT as TRANSPORT_DATA_SEGMENT
ELSE output DATA_FLOW_ERROR

PROCESS NAME: PIGGYBACKED DATA ACKNOWLEDGE
PROCESS NUMBER: 1.3.1.5
PROCESS DESCRIPTION:
IF Input = DATA_ACK_PACKET or DATA _NAK_PACKET then
Output TRANSPORT_DATA_SEGMENT with the appropriate ACKNUM field set
ELSE output PIGGYBACKED_TRANSPORT_DATA_SEGMENT with a null ACKNUM field

PROCESS NAME: ASSIGN SEGMENT NUMBER MOD 4096
PROCESS NUMBER: 1.3.1.6 '
PROCESS DESCRIPTION: i
IF TRANSMIT_D_FILE < 4096 then
TRANSMIT_D_FILE = TRANSMIT_D_FILE + 1}
DATA_NAK_FILE = TRANSMIT_D_FILE + 1
Output COUNTED_TRANSPORT_DATA_SEGMENT 3
IF last segment then
Output TRANSMIT_D_FILE value to LS_FILE
ELSE Rull
ELSE TRANSMIT_D_FILE
DATA_NAR_FILE =

=0
1

308

Output COUNTED_TRANSPORT_DATA_SEGMENT
IF last segment then
Output TRANSMIT_D_FILE value to LS_FILE

ELSE Null
PROCESS NAME: LOAD AND DELETE DATA MEMORY
PROCESS NUMBER: 1.3.1.7

PROCESS DESCRIPTION:
IF Input = COUNTED_TRANSPORT_DATA_SEGMENT then
Output to memory
ELSEIF Input = ACK_D_FILE value then
Delete all COUNTED_TRANSPORT_DATA_SEGMENTS that have the same or lower
values for segment numbers
ELSE Input = START_DATA flag then

el

Output all recorded COUNTED_TRANSPORT_DATA_SEGMENTS with segment numbers

equal to or greater than the DATA_NAK_FILE value as RETRANSMITTED_
DATA_PACKET. All COUNTED_TRANSPORT_DATA_SEGMENTS with segment
numbers less than the DATA_NAK_FILE value are deleted.

PROCESS NAME: CHECK DATA RETRANSMIT
PROCESS NUMBER: 1.3.1.8
PROCESS DESCRIPTION:
IF DATA_NAR_FILE = TRANSMIT_D_FILE + 1 then
Output COUNTED_TRANSPORT_DATA_PACKET as TRANSMITTED_DATA_PACKET
ELSE the DATA_NAK_FILE value will be substracted from the TRANSMIT_I/L_FILE
value and this value will be used to increment the
FIOW_CONTROL_PARAMETERS DATA_REQUEST_COUNT value.
Output START_DATA flag
Buffer all incoming COUNTED_TRANSPORT_DATA_SEGMENTS

PROCESS NAME: CODE DATA AND I/L PACKETS
PROCESS NUMBER: 1.3.1.9
PROCESS DESCRIPTION:
IF Input = RETRANSMITTED_DATA_PACRETS, TRANSMITTED_DATA_PACKETS,
RETRANSMITTED_I/L_PACKET, or TRANSMITTED_I/L_PACKETS then
Output as TRANSMITTED_TRANSPORT_DATA_PACKET

ELSE Null
PROCESS NAME: EXAMINE INTERRUPT FLOW CONTROL PARAMETERS
PROCESS NUMBER: 1.3.2,1

PROCESS DESCRIPTION:
IF FLOW_CONTROL_PARAMETER INTERRUPT_REQUEST_COUNT is greater than 0 then
Decrement the INTERRUPT_REQUEST_COUNT and

309

PRV

o

:hlh e

Output the INCOMING_DIALOGUE_INTERRUPT as TRANSPORT_INTERRUPT_PACKET
ELSE output INTERRUPT_FLOW_ERROR

PROCESS NAME: GENERATE INTERRUPT LINK SERVICES

PROCESS NUMBER: 1.3.2.2

PROCESS DESCRIPTION:

UPON reception of the first INCOMING_DIALOGUE_INTERRUPT
Generate and output an INTERRUPT_LINK_SERVICES_PACKET with LSFLAGS ficld
Set to INTERRUPT_REQUEST_COUNT plus a START_DATA command, The actual
INTERRUPT_DATA_COUNT is contained in the FCVAL field.

PROCESS NAME: PIGGYBACK I/L ACKNOWLEDGE
PROCESS NUMBER: 1.3.2.3
PROCESS DESCRIPTION:
IF Input = I/L_ACK_PACKET or I/L_NAK_PACKET then
Output TRANSPORT_INTERRUPT_PACKET with the apporpriate ACKNDM field set
ELSE output PIGGYBACKED_TRANSPORT_INTERRUPT_PACKET with a null ACKNUM field

PROCESS NAME: CODE I/L PACRET
PROCESS NUMBER: 1.3.2.4
PROCESS DESCRIPTION:
IF Input = PIGGYBACKED_TRANSPORT_INTERRUPT_PACKET, INTERRUPT_LINK_SERVICES_
PACKET, or DATA_LINK_SERVICES_PACKET then
OQutput as TRANSPORT_I/I_PACKET

ELSE Null
PROCESS NAME: GENERATE DATA LINK SERVICES
PROCESS NUMBER: 1.3.2.5

PROCESS DESCRIPTION:
IF Input = SEGMENT_COUNT then
Output & DATA_LINK_SERVICES_PACKET with LSFLAGS field set to
DATA_REQUEST_COUNT
Output a START_DATA command. The actual DATA_REQUEST_COUNT value is
contained in the FCVAL field
ELSEIF Input = LS_CODE then
Output a DATA_LINK_SERVICES_PACKET with LSFLAG field set to DATA_REQUEST_
COUNT,
Output a STOP_DATA command. The actual DATA_REQUEST_COUNT value is the
amount of segment space left over from filling the last buffer.
ELSE Null

310

PROCESS NAME: ASSIGN PACKET NUMBER MOD 4096
PROCESS NUMBER: 1.3.2.6
PROCESS DESCRIPTION:
IF TRANSMIT_I/L_FILE < 4096 then
TRANSMIT_I/L_FILE = TRANSMIT_I/L_FILE + 1
I/L_RAK_FILE = TRANSMIT_I/L_FILE + 1
Output COUNTED_TRANSPORT_I/L_PACKET
ELSE TRANSMIT_I/L_FILE = 0
I/L_NAK_FILE = 1
Output COUNTED_TRANSPORT_I/L_PACKET

PROCESS NAME: LOAD AND DELETE I/L MEMORY
PROCESS NUMBER: 1.3.2.7
PROCESS DESCRIPTION:
IF Input = COUNTED_TRANSPORT_I/L_PACKET then
Load to MEMORY
ELSEIF Input = ACK_I/L_FILE value then
Delete all COUNTED_TRANSPORT_I/L_PACKETS that have the same of lower
values for segment numbers
ELSE Input = START_I/L flag then
Output all recorded COUNTED_TRANSPORT_I/L_PACKETS with segment numbers
equal to or greater than the I/L_NAK_FILE value as RETRANSMITTED_
I1/L_PACKETS.
Delete all COUNTED_TRANSPORT_I/I_PACKETS with segment numbers less than
the I/L_NAK_FILE value

PROCESS NAME: CHECK I/L RETRANSMIT
PROCESS NUMBER: 1.3.2.8
PROCESS DESCRIPTION:
IF I/L_NAK_FILE = TRANSMIT_I/L_FILE + 1 then
Output COUNTED_TRANSPORT_I/1_PACKET as TRANSMITTED_I/L_PACKET
ELSE output START_I/L flag and
Buffer incoming COUNTED_TRANSPORT_I/L_PACKET

PROCESS NAME: DETERMINE DATA PACKET TYPE

PROCESS NUMBER: 1.4,1

PROCESS DESCRIPTION:

IF Input MSGFLG = 0BB00000 where BB = 00,01,10,11 then
Output RECEIVED_NORMAL_DATA_SEGMENT

ELSEIF Inmput MSGFLG = 00110000 or 00010000 then
Output RECEIVED_I/L_PACKET

ELSE Null

PROCESS NAME: DECODE DATA ACKNUM
PROCESS NUMBER: 1.4.2
PROCESS DESCRIPTION:
IF RECEIVED_NORMAL_DATA_SEGMENT ACKNUM field = NAK then
Output data segment number to DATA_NAK_FILE
ELSEIF RECEIVED_NORMAL_DATA_SEGMENT ACKNUM field = ACK then
IF RECEIVED_NORMAL_DATA_SEGMENT ACKNUM value is greater than the stored
ACK_D_FILE value then
Output segment number to the ACK_D_FILE

ELSE Null
ELSE Null
!
PROCESS NAME: DECODE DATA SEGMENT NUMBER !
PROCESS NUMBER: 1.4.3

PROCESS DESCRIPTION:
IF Input data segment number is greater than the RECEIVED_D_FILE value then
Update the RECEIVED_D_FILE value then
IF the FLOW_CONTROL_PARAMETER DATA_FLOW_CONTROL_SWITCH is set to open
then
Output VALID_NORMAL_DATA_SEGMENT and DATA_ACK_FLAG
ELSE output CLOSED_FLOW_CONTROL
ELSE output DATA_NAK_FLAG

PROCESS NAME: DECODE I/L SEGMENT NUMBER

PROCESS NUMBER: l1.4.4

PROCESS DESCRIPTION:

IF Input I/L segment number is greater than the RECEIVED_I/L_FILE value then
Update the RECEIVED_I/L_FILE and
Output I/L_ACK_FLAG and VALID_I/L_PACKET

ELSE output I/L_NAK_FLAG

PROCESS NAME: DECODE I/L ACKNUMI FIELD

PROCESS NUMBER: 1.4.5

PROCESS DESCRIPTION:

IF RECEIVED_I/L_PACKET ACKNUMI field is equal to NAK then
OQutput stored I/I_SEGMENT_NUMBER to I/L_NAK_FILE

ELSEIF RECEIVED_I/L_PACKET ACKNUMI field is greated than the stored ACK_I/L_
FILE value then
Output segment number to the ACK_I/L_FILE

ELSE Null
PROCESS NAME: GENERATE DATA ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.6

312

PROCESS DESCRIPTION:
UPON reception of a DATA_ACK_FLAG
Generate and output a DATA_ACK_PACKET

PROCESS NAME: GENEFATE DATA NEGATIVE ACKNOWLEDGE PACKET

PROCESS NUMBER: 1.4.7

4 PROCESS DESCRIPTION:

UPON reception of a DATA_NAK_FLAG or CLOSED_FLOW_CONTROL flag
Output a DATA _NAK_PACKET

PROCESS NAME: LOAD RECEIVE BUFFER UNTIL FULL OR LS
PROCESS NUMBER: 1.4,8
PROCESS DESCRIPTION:
IF receive buffers available then
Fill until all data segments are accounted for and
Output NORMAL_DATA_PACKET
IF last receive buffer is not entirely full when last data segment is
deposited then
Output LS_CODE
ELSE Null
ELSE output NO_BUFFER_SPACE

PROCESS NAME: GENERATE I/L NEGATIVE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.9
PROCESS DESCRIPTION:
UPON reception of an I/L_NAK_FLAG
Generate and output an I/L_NAK_PACKET

PROCESS NAME: GENERATE I/L ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.10
PROCESS DESCRIPTION:
UPON reception of an I/L_ACK_FLAG
Generate and output an I/L_ACK_PACKET

PROCESS NAME: DECODE VALID I/L PACKET
PROCESS NUMBER: 1.4.11
PROCESS DESCRIPTION:
IF Input MSGFLG = 00010000 then
Output VALID_LINK_SERVICES_PACKET
ELSEIF Input MSGFLG = 00110000 then
IF INTERRUPT_REQUEST_COUNT is greater than 0 then

313

Output VALID_INTERRUPT_PACKET
ELSE output INTERRUPT_ERROR
ELSE Null

PROCESS NAME: CODE ACKNOWLEDGE PACKETS

PROCESS NUMBER: 1.4.12

PROCESS DESCRIPTION:

IF Input = DATA _ACK_PACKET, DATA_NAK_PACKET, I/L_ACK_PACKET, or I/1_NAR_PACKET
then
Output as TRANSMITTED_TRANSPORT_ACKNOWLEDGE_PACKET

ELSE Null

PROCESS NAME: CODE DATA PACKETS

PROCESS NUMBER: 1.4.13

PROCESS DESCRIPTION:

IF Input = NORMAL_DATA_PACKET or VALID_INTERRUPT_PACKET then
Output as OUTGOING_DIALOGUE_DATA_PACKET

ELSE Null

PROCESS NAME: DECODE LINK SERVICES PACKET

PROCESS NUMBER: l1.4.14

PROCESS DESCRIPTION:

IF FCVAL field value of the VALID_LINK_SERVICES_PACKET when added to the data
segment request would result in a DATA_SEGMENT_REQUEST_COUNT greater than
+127 or less than -127 then
Output LINK_SERVICES_ERROR

ZLSEIF FCVAL field value of the VALID_LINK_SERVICES_PACKET when added to the
I/L segment request would result in a INTERRUPT_REQUEST_COUNT greater
than +127 then
Output LINK_SERVICES_ERROR

ELSE output FCVAL field value + current SEGMENT_REQUEST_COUNT to the FLOW_
CONTROL_PARAMETERS_TABLE

PROCESS NAME: TRANSITION LINK TO ON-LINE MODE

PROCESS NUMBER: 1.5.1

PROCESS DESCRIPTION:

IF Input = OPERATOR_START_COMMAND tlen
Output INITIALIZE_LINK command

ELSE Input = INITIALIZATION_ON_OTHER_END or INITI‘iIZATION_COMPLETE then
Output START_COMMAND

314

PROCESS NAME: DECODE FUNCTIONS FIELD

PROCESS NUMBER: 1.5,2

PROCESS DESCRIPTION:

IF Input = RECEIVED_NODE_INITIALIZATION_PACKET with FUNCTIONS field set to
INTERCEPT then
Output RECEIVED_INTERUPT_INITIALIZATION_PACKET

ELSE Input = RECEIVED_NODE_INITIALIZATION_PACKET with FUNCTIONS field set to
NO_INTERCEPT then
Output RECEIVED_NO_INTERCEPT_INITIALIZATION_PACKET

PROCESS NAME: DECODE INITIALIZATION PACKET
PROCESS NUMBER: 1.5.3
PROCESS DESCRIPTION:
IF Input STARTTYPE = 1 then

Qutput RECEIVED_NODE_INITIALIZATION_PACKET
ELSEIF Input STARTTYPE = 2 then

Output RECEIVED_NODE_VERFICATION_PACKET
ELSEIF Input STARTTYPE = 4 then

Output RECEIVED_CORRECT_PASSWORD_COMMAND
ELSEIF Input STARTTYPE = 5 then

Output RECEIVED_INCORRECT_PASSWORD_COMMAND
ELSE Input STARTTYPE = 3 then Null

PROCESS NAME. GENERATE NODE INITIALIZATION PACRET VERIFY = 0
PROCESS NUMBER: 1.5.4

PROCESS DESCRIPTION:
IF Input = START_COMMAND or VERIFY_CLEAR flag then
OQutput NODE_INITIALIZATION_VO_PACKET

ELSE Null
PROCESS NAME: DECODE REMAINING FIELDS
PROCESS NUMBER: 1.5.5

PROCESS DESCRIPTION:
IF Input = RECEIVED_INTERCEPT_INITIALIZATION_PACKET then
Send required field values to INITIAL_PARAMETER_LIST
IF VERIFY field = 1 then
Output VERIFY_SET flag
ELSE output VERIFY_CLEAR flag

ELSE Null
PROCESS NAME: GENERATE NODE VERIFICATION PACKET
PROCESS NUMBER: 1.5.6

PROCESS DESCRIPTION:

315

A VTG (N T AN BT ST

; IF Input = VERIFY_SET then
Take OPERATOR_PASSWORD_COMMAND and
Generate and output NODE_VERIFICATION_PACKET

ELSE Null
PROCESS NAME: GENERATE NODE INITIALIZATION PACKET VERIFY = 1
PROCESS NUMBER: 1.5.7

PROCESS DESCRIPTION:

IF Input = RECEIVED_NO_INTERCEPT_INITIALIZATION_PACKET then
Decode fields and place values in INITIAL_PARAMETER_LIST and
Generate and output NODE_INITIALIZATION_V1_PACKET

ELSE Null
PROCESS NAME: DECODE PASSWORD
PROCESS NUMBER: 1.5.8

PROCESS DESCRIPTION:

IF PASSWORD field of a RECEIVED_NODE_VERIFICATION_PACKET contains the correct
password then
Output the password to the SATELLITE_NODE_PARAMETERS_TABLE and
Output CORRECT_PAS SWORD_COMMAND

ELSE output INCORRECT_PASSWORD_COMMAND

PROCESS NAME: CODE INITIALIZATION PACKETS

PROCESS NUMBER: 1.5.9

PROCESS DESCRIPTION:

IF Input = NODE_INITIALIZATION_VO_PACKET, NODE_VERIFICATION_PACKET, NODE
INITIALIZATION_V1_PACKET, CORRECT_PASSWORD_COMMAND, or INCORRECT_
PASSWORD_COMMAND then
Output as TRANSMITTED_TRANSPORT_INITIALIZATION_PACKET

ELSE Null
PROCESS YAME: GENERATE CONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.1.1

PROCESS DESCRIPTION:
IF Input = CONNECT_REQUEST command then
Output CONNECT_INITIATE_PACKET

ELSE Null
PROCESS NAME: DECODE CONTROL PACKET
PROCESS NUMBER: 1.6.1.2

PROCESS DESCRIPTION:

316

IF Input MSGFLG = 00011000 then

Output RECEIVED_CONNECT_INITIATE_PACKET
ELSEIF Input MSGFLG = 00101000 then

Output RECEIVED_CONNECT_CONFIRM_PACKET
ELSEIF Input MSGFLG = 00111000 then

Output RECEIVED_DISCONNECT_INITIATE_PACKET
ELSE Input MSGFLG = 01001000 then

Output RECEIVED_DISCONNECT_CONFIRM_PACRET

PROCESS NAME: DECODE CONNECT INITIATE PACKET

PROCESS NUMBER: 1.6.1.3

PROCESS DESCRIPTION:

PASS SOURCE_NAME, SOURCE_PROCESS_IDENTIFICATION, DESTINATION_PROCESS_
IDENTIFICATION, REPLY_IDENTIFIERS, ACCESS_CONTROL_INFORMATION, and
REMOTE_PROCESS'S_SEGMENT_SIZE to the DIALOGUE_PROCESS_TABLE

PASS SERVICES :o the FLOW_CONTROL_PARAMETERS_TABLE

IF the follow.ng errors apply then
Output s REJECT_CONNECT flag

1. Resource allocation failure

2. Destination node does not exist

3. Yode shutting down

4, Destination process does not exist

5. Invalid process name field

6. Destination process queue overflow

7. Too many connections to node

8. Too many connmections to destination node

9. Access not permitted~unacceptable RQSTRID or PASSWORD
10. Unacceptable ACCOUNT information
11. Dialogue process aborted, timedout, or cancelled request
12, No path to destination node

13. Image data field too long

ELSE output an ACCEPT_CONNECT flag

PROCESS NAME: DIALOGUE PROCESS EXTERNAL END
PROCESS NUMBER: l1.6.1.4
PROCESS DESCRIPTION:
IF Input = DISCONNECT_REQUEST then
IF ACK_D_FILE value equals the LS_FILE value then
Output a STOP flag
ELSE hold DISCONNECT_REQUEST

ELSE Null
PROCESS NAME: DECODE CONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.1.5

PROCESS DESCRIPTION:

k)Y

i IF the following errors apply then
Output a REJECT_CONFIRM flag
* 1. Segsize too small
£, 2, Dialogue process aborted, timedout, or cancelled
3. DSTADDR logical link does not exist
4, Image data field too long
ELSE output an ACCEPT_CONFIRM flag
Update the FLOW_CONTROL_PARAMETERS_TABLE
Signal ADJACENT_NODE_PARAMETERS that valiues are valid

PROCESS NAME: GENERATE CONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.1.6
PROCESS DESCRIPTION:
UPON successful reception of an ACCEPT_CONNECT flag
Generate and output a CONNECT_CONFIRM_PACKET using data in the DIALOGUE_
PROCESS_TABLE

PROCESS NAME: GENERATE DISCONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.1.7
PROCESS DESCRIPTION:
IF Input = REJECT_CONNECT then
Output a DISCONNECT_INITIATE_PACKET with REASON as listed in process
1.6.1.3
ELSEIF Input = REJECT_CONFIRM then
Output & DISCONNECT_INITIATE_PACKET with REASON as listed in process
1.6.1.5
ELSEIF Input = PERSISTENT_ERROR then
Output a DISCONNECT_INITIATE_PACKET reason: ~Third party aborted the
logical link”
ELSEIF Input = STOP then
Output a DISCONNECT_INITIATE_PACKET with reason: "Third party aborted
the logical link”™
ELSEIF Input = ABORT_COMMAND then
Output a DISCONNECT_INITIATE_PACKET with reason: “Link aborted by
dialogue process”
ELSEIF Input = INTERRUPT_ERROR then
Output a DISCONNECT_INITIATE_PACKET with reason as listed in REASON table
ELSE Input = LINK_SERVICES_ERROR then
Output a DISCONNECT_INITIATE_PACKET with reason as listed in REASON table

PROCESS NAME: CODE CONTROL PACKETS

PROCESS NUMBER: 1.6.1.8

PROCESS DESCRIPTION:

IF Input = CONNECT_INITIATE_PACKET, CONNECT_CONFIRM_PACKET,
DISCONNECT_INITIATE_PACKET, or DISCORNECT_CONFIRM_PACKET then

318

Output as TRANSMITTED_TRANSPORT_CONTROL_PACKET

ELSE Null
PROCESS NAME: DECODE DISCONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.2.1

PROCESS DESCRIPTION:

DECODE REASON field and
PASS to DIALOGUE_PROCESS
SHUT-DOWN the logical link

PROCESS NAME: DECODE DISCONNECT INITIATE PACKET
PROCESS NUMBER: 1.6.2.2
PROCESS DESCRIPTION:
IF REASON field = “link aborted by dialogue process” then
Output REASON to DIALOGUE_PROCESS and
Output an ABORT flag
ELSE Pass error reason to DIALOGUE_PROCESS and
Output a NO_ABORT flag

PROCESS NAME: DIALOGUE PROCESS END
PROCESS NUMBER: 1.6.2.3
PROCESS DESCRIPTION:
IF Input = NO_ABORT then
IF ACK_D_FILE value = LS_FILE value then
Output STOP_LINK_NOW flag
ELSE hold NO_ABORT flag

ELSE Null
PROCESS NAME: GENERATE DISCONNECT CONFIRM PACKET
PROCESS NUMBER: 1.6.2.4

PROCESS DESCRIPTION:

IF Input = ABORT flag or STOP_LINK_NOW flag then
Output 8 DISCONNECT_CONFIRM_PACKET with reason: “Confirmation of
disconnect initiate™
Output a STOP_LINK command to shut down the physical link

ELSE Null

PROCESS NAME: DETERMINE ACKNOWLEDGE TYPE
PROCESS NUMBER: 1.7.1

PROCESS DESCRIPTION:

IF Input MSGFLG = 00000100 then

319

Output as RECEIVED_NORMAIL_DATA_ACK_PACKETS
ELSE Input MSGFLG = 00010100 then
Output as RECEIVED_I/L_ACK_PACKET

PROCESS NAME: DECODE DATA ACK PACKET
PROCESS NUMBER: 1,7.2
PROCESS DESCRIPTION:
DECODE ACKNUM field
IF =1 then
Output associated value to ACK_D_FILE
ELSE = 2 then
Output associated value to DATA_NAK_FILE

PROCESS NAME: DECODE_1/L_ACK_PACKET
PROCESS NUMBER: 1.7.3
PROCESS DESCRIPTION:
DECODE ACKNUMI field
IF = 1 then
Output associated value to the ACK_I/L_FILE
ELSE = 2 then
Output associated value to the I/L_NAKR_FILE

PROCESS NAME: EXAMINE DSTADDR FIELD

PROCESS NUMBER: 1.8.1

PROCESS DESCRIPTION:

IF DSTADDR = ADJACENT_NODE_ADDRESS then
Output as ADJACENT_NODE_PACKETS

ELSEIF INITIALIZATION_PACKETS then
Output as ADJACENT_NODE_PACKETS

ELSEIF DSTADDR = NONADJACENT NODE_ADDRESS then
Output as NONADJACENT_NODE_PACKEIS

ELSE Input = CONNECT_INITIATE_PACKET then
Output as NONADJACENT_NODE_PACKETS

PROCESS NAME: ADD
PROCESS NUMBER: 1.8
PROCESS DESCRIPTION:

IF Input = NONADJACENT_NODE_PACKETS then
Refer to DIALOGUE_PROCESS_TABLE and
Extract DSTNODE_NAME
Output RTHDR_NONADJACENT_NODE_PACKETS

ELSE Null

RTHDR FIELD
2

320

s et e e A ——————— T TSR T 4 =T s e

w T — .
L R - S T AT 5 —— ‘—ﬁ

PROCESS NAME: IS ROUTING NECESSARY AND PRESENT
v PROCESS NUMBER: 1.8.3
PROCESS DESCRIPTION:
IF Input DSTNODE name = the name of a satellite not adjacent to this node then
Output as NONADJACENT_ROUTE_PACKET
ELSE output as NONADJACENT_SATELLITE_PACKETS

PROCESS NAME: PASS TO CORRECT ADJACENT NODE

PROCESS NUMBER: 1.8.4

PROCESS DESCRIPTION:

IF Input = ADJACENT_NODE_PACKETS or NONADJACENT_SATELLITE_PACKETS then
Output as OUTGOING_SATELLITE_TRANSPORT_PACKET
Output a TRANSMIT_PACKET command
Output a RECEIVE_PACKET command

ELSE Null
PROCESS NAME: CODE OUTGOING DIALOGUE MESSAGE
PROCESS NUMBER: 1.9

PROCESS DESCRIPTION:

IF Input = FLOW_CONTROL_ERRORS, OUTGOING_DIALOGUE_DATA_PACKET, RECEIVED_
INCORRECT_PASSWORD_COMMAND, ERROR_REASON, or TRANSIENT_ERROR_THRESHOLD_
COUNTER_OVERFLOW then
Output above as OUTGOING_DIALOGUE_MESSAGE

ELSE Null
PROCESS NAME: SEND TO NETWORK PROTOCOL
PROCESS NUMBER: 1.10

1 PROCESS DESCRIPTION:
IF Input = OUTGOING_TRANSPORT_ROUTE_PACKET or NONADJACENT_ROUTE_PACKRET then
Output OUTGOING_NODE_TRANSPORT_PACKET

ELSE Null
PROCESS NAME: DECODE MESSAGE TYPE
PROCESS NUMBER: 2.1

A PROCESS DESCRIPTION:

IF Input = NETWORK_HEADER then

4 Output as NETWORK_PACKET

ELSE Input = ROUTE_HEADER then
Output as a ROUTING_PACKET

PROCESS NAME: CHECK R-HOP COUNT = 2

PROCESS NUMBER: 2,2

PROCESS DESCRIPTION:

IF Input HOP_COUNT field is less than or equal to 2 then
Output VALID_ROUTING_PACKET

ELSE Null
PROCESS NAME: DECODE NETWORK HEADER
PROCESS NUMBER: 2.3

PROCESS DESCRIPTION:
IF Input NETWOBK layer header destination field value relates to an adjacent
satellite node then
Output as INCOMING_NODE_TRANSPORT_PACKET after stripping off the network
header
ELSE output as NETWORK_TO_NETWORK_PACKET

PROCESS NAME: INCREMENT HOP

PROCESS NUMBER: 2.4

PROCESS DESCRIPTION:

INCREMENT value in HOP COURT field by 1 and
Output as HOPPED_ROUTING_PACKET

PROCESS NAME: UPDATE ROUTING TABLE IF NEW

PROCESS NUMBER: 2.5

PROCESS DESCRIPTION:

IF VALID_ROUTING_PACKET liue cost value is different from what is located in
ROUTING_TABLE_2 link cost value for the particular link then
Update to the correct ROUTING_TABLE_2 value
Calculate and update 1-2-3, 2-3-1, and 3-~1-2 valuez if possible

ELSE Null

PROCESS NAME: DETERMINE LEAST COST LINK

PROCESS NUMBER: 2.6

PROCESS DESCRIPTION:

FROM the OUTGOING_NODE_TRANSPORT_PACKET RTHDR field use the NODENAME to
Determine the least cost link
Output TRANSPORT_PACKET

ELSE Null

PROCESS NAME: ADD NETWORK HEADER

322

w FEEe T =T

WP OV At s

PROCESS NUMBER: 2.7
PROCESS DESCRIPTION:
IF Input = TRANSPORT_PACKET then
Add network layer header and
Send out as TRANSPORT_TO_NETWORK_PACKET. HOP = 1

ELSE Null
PROCESS NAME: SEND OLD VALUES OUT OVER NEW INITIALIZED LINE
PROCESS NUMBER: 2.8

PROCESS DESCRIPTION:
IF node senses that initialization just took place over a new routing line
then
IF ROUTING_TABLE_2 has existing values then
Generate and output OLD_ROUTING_PACKETS

ELSE Null
ELSE Null
PROCESS NAME: CHECK N-HOP COUNT = 2
PROCESS NUMBER: 2.9

PROCESS DESCRIPTION:
IF Input HOPS field is less than or equal to 2 then

Output as VALID_NETWORK_TO_NETWORK_PACKET

ELSE Null
PROCESS NAME: UPDATE NETWORK HEADER
PROCESS NUMBER: 2.10

PROCESS DESCRIPTION:
IF Input = VALID_NETWORK_TO_NETWORK_PACKET then
Compare existing destination code in the network header against the lane
cost in ROUTING_TABLE_2 then
Output over the correct ROUTING_LINE

ELSE Null
PROCESS NAME: EVERY TIMER INTERVAL UPDATE ADJACENT LINE
PROCESS NUMBER: 2.11

PROCESS DESCRIPTION:
AT the end of every preset timer interval
check ROUTING_TABLE_2
IF values present then
Qutput ADJACENT_NODE_ROUTING_PACKETS on all routing links,
HOP = 1|
ELSE Null

—— e e

e T T

T L ——

< e mmnm gl %

PROCESS NAME: ISSUE CORRECT LINK COST OVER ALL LINKS

PROCESS. NUMBER: 2.12

PROCESS DESCRIPTION:

IF Input = STOP_LINK command or INITIALIZE_LINK command then refer to ROUTING_
TABLE_l and get the cost associated with the specific link.
Generate and output INITIAL_ROUTE_PACKET

ELSE Null
PROCESS NAME: SEND PACKET OVER CORRECT LINE(S)
PROCESS NUMBER: 2.13

PROCESS DESCRIPTION:

IF Input = INITIAL_ROUTE_PACKET, VALID_NETWORK_PACKET, HOPPED_ROUTIVN:_PACKET,
ADJACENT_NODE_RCUTING_PACKET, OLD_ROUTING_PACKETS, or TRANSPORT_TO_
NETWORK_PACKET then
Output it as a OUTGOING_NODE_NETWORK_PACKET

ELSE Null
PROCESS NAME: EXECUTE NETWORK PROTOCOL AT SECONDARY NODE
PROCESS NUMBER: 3.0

PROCESS DESCRIPTION:

USE the established ROUTING ALGORITHM to route packets from SECONDARY_INCOMING
_NODE_NETWORK_PACKET to SECONDARY_INCOMING_NODE_TRANSPORT_PACKET or
SECORDARY_OUTGOING_NODE_NETWORK_PACKET. Also route packets from
SECONDARY_OUTGOING_TRANSPORT_PACKET to SECONDARY_OUTGOING_NODE_NETWORK_
PACKET. Routing packets are generated internally to keep all routing
tables up-to-date.

PROCESS NAME: EXECUTE TRANSPORT PROTOCOL AT SECONDARY NODE

PROCESS NUMBER: 4.0

PROCESS DESCRIPTION:

USED to take a SECONDARY_INCOMING_DIALOGUE _MESSAGE or SECONDARY_INCOMING_
NODE_TRARSPORT_PACKET or SECONDARY_INCOMING_SATELLITE_ TRANSPORT_PACKET
and create the necessary envelope for accurate interprocess communication
Outputs can be SECONDARY_CUTGOING_TRANSPORT_PACKET or SECONDARY_OUTGOING_
NODE_TRANSPORT_PACKET or SECONDARY_OUTGOING_DIALOGUE_MESSAGE,

324

L=l

A S, - i 05k A A N5 - Bl B A 5 AP A 0 b ot - s =

DATA DICTIONARY

FOR LINK LEVEL (L) PROTOCOL

Contents
Page

DPata Element / Flow Descriptions........................-..............- 326
File Definitionl........n..u-... 352
Process Specificationﬂ.u....--.....-.....-..........-..-..-..-......... 356

325

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

ABUTTED_PACKET
FOLLOWON_PACRET
SYNC_PACKET
LINK_PACKETS

SEE ALIASES
DECODE AND SYNC INCOMING BIT STREAM LAYER

ACK_PACKET
RECEIVED_ACK_PACKET

ACK_PACKET = ENQ + ACKTYPE + ACKSUB + FLAGS + RESP +
FILL + ADDR + BLKCK3

EXECUTE OUTGOING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKET LAYER

ACKSUB
NONE

ACK SUBTYPE = 00000000
ALL LINK LAYERS

ACKTYPE
NONE

ACK PACKET TYPE VALUE = 00000001
ALL LINK LAYERS

ADDR
NONE

ALWAYS EQUALS 1
ALL LINK LAYERS

AGREE
NONE

A FLAG USED TO ISSUE AN ACK_PACKET SINCE THE LAST
SEQUENTIAL NUMBERED DATA PACKET SENT AGREES WITH THE

NUMBER OF THE LAST SEQUENTIAL PACKET RECEIVED.
EXECUTE INCOMING CONTROL PACKET LAYER

326

EaiEE 2N e L o

DATA ELEMENT NAME: BLKCK1

ALIASES: NONE

VALUES AND MEANINGS:
THE BLOCK CHECK ON THE NUMBERED PACKET HEADER. IT IS
COMPUTED ON SOH THROUGH ADDR USING THE CRC-16 POLYNOMIAL
(X716 + X'15 + X2 + 1), BLKCRl IS INITIALIZED TO ZERO
PRIOR TO COMPUTATION AND TRANSMITTED X 15 BIT FIRST. ON
RECEPTION THE INCLUSION OF BLKCK1 IN THE COMPUTATION WILL
RESULT IN A ZERO REMAINDER OR CRC IF NO ERRORS EXIST.

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: BLKCK2
ALIASES: NONE
VALUES AND MEANINGS:
THE BLOCK CHECK ON THE DATA FIELD. COMPUTED ON THE DATA
FIELD ONLY USING THE TECHNIQUE DESCRIBED FOR BLKCK1.
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: BLKCK3

ALIASES: NONE

VALUES AND MEANINGS:
THE BLOCK CHECK ON THE CONTROL PACKET. BLKCK3 IS
COMPUTED ON FIELDS ENQ THROUGH ADDR USING THE TECHNIQUE
DESCRIBED IN BLKCKl,

NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: CLEAR

ALTIASES: NONE

VALUES AND MEANINGS:
A FLAG USED TO CLEAR THE SRAK FLAG FILE OR THE SACK FLAG
FILE OR THE SREP FLAG FILE

NOTES: EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKRETS LAYER

DATA ELEMENT NAME: COUNT

ALIASES: NONE

VALUES AND MEANINGS:
SPECIFIES THE NUMBER OF BYTES IN THE DATA FIELD. A VALUE
OF 0 IS NOT ALLOWED.

NOTES : ALL LINK LAYERS

iz

J’ DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

. o ko A —— NG o Y

COUNTED_LINK_DATA_PACKET

< 256_LINK_PACKET

RETRANSMITTED_PACKETS
NOSYNC_PRIMARY_TO_SECONDARY _DATA_PACKET

COUNTED_LINK_DATA_PACKET = LINK_DATA_PACKET + RESP + NUM
FRAME PRIMARY INFORMATION PACKETS LAYER

DATA
NONE

THE NUMBERED PACKED DATA FIELD. THIS FIELD IS TOTALLY
TRANSPARENT TO THE PROTOCOL AND HAS NO RESTRICTIONS
EXCEPT TO CONTAIN THE NUMBER OF BYTES SPECIFIED IN THE
COUNT FIELD.

ALL LINK LAYERS

DISABLE_LINK
NONE

DISCONNECTS THE DRIVER FROM THE LINK PROTOCOL.
START REPLY TIMER LAYER

DISAGREE
NONE

A FLAG PLUS THE NUMBER OF THE LAST SEQUENTIAL PACKET THAT
WAS RECEIVED. USED TO ISSUE A NAK_PACKET SINCE THE LAST
SEQUENTIALLY NUMBERED DATA PACKET SENT DID NOT AGREE WITH
THE LAST SEQUENTIAL PACKET RECEIVED.

EXECUTE INCOMING CONTROL PACKET LAYER

DLE
NONE

MAINTENANCE PACKET IDENTIFIED = 10010101
ALL LINK LAYERS

328

‘ DATA FLOW NAME:
! ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
1 ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

DLE_PACKET
VALID_DLE_PACKET
TRANSMIT_DLE_PACKET

DLE_PACKET = DLE + COUNT + FLAGS + FILL + FILL + ADDR +
BLKCK1 + DATA + BLKCK2

DECODE AND SYNC INCOMING BIT STREAM LAYER

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE MAINTENANCE PACKET LAYER

ENABLE_LINK
NONE

CONNECTS THE DRIVER TO THE LINK PROTOCOL
ALL LINK LAYERS

ENQ
NONE

UNNUMBERED CONTROL PACKET IDENTIFIER = 00000101
ALL LINK LAYERS

ENQ_PACKET

VALID_ENQ PACKET
VALID_CRC_ENQ_PACKET
VALID_LENGTH_ENQ_ HEADER

ENQ_PACKET = ENQ + TYPE + SUBTYPE + FLAGS + RCVR +
SNDR + ADDR + BLKCK3

DECODE AND SYNC INCOMING BIT STREAM LAYER

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

ENQ/DLE_SYNC_PACKET
QSYNC_ENQ/DLE_PACKET
TRANSMIT_DLE_PACRET
PAD/STRT_PACKET
MOP_PACKET
REP_PACKET
STACK_PACKET
ACK_PACKET
NAK_PACKET

ENQ/DLE_SYNC_PACKET = 4{SYNC} +

329

g T N et it
ok

Ve T

-}

- -

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

DATA ELEMENT NAME: ENTER_MAINTENANCE_MODE
ALIASES: NONE
VALUES AND MEANINGS:

[

CHANGE FROM ON-LINE MODE TO OFF-LINE MAINTENANCE MODE
NOTES: EXECUTE MAINTENANCE PACKET LAYER

DATA ELEMENT NAME: FILL
ALIASES: NONE
VALUES AND MEANINGS:
FILL BYTE WITH VALUE OF 0
NOTES: ALL LINK LAYERS

DATA ELEMENT NAME: FLAGS

ALIASES: NONE

VALUES AND MEANINGS:
LINK FLAGS TO CONTROL OWNERSHIP AND PACKET
SYNCHRONIZATION -

BIT 0 = QUICK SYNC FLAG - QSYNC
BIT 1 = SELECT FLAG = OWNERSHIP (MUST BE PRESENT ON DLE
AND ENQ PACKETS, DON'T CARE IN
SOH_PACRET) .
NOTES: ALL LINK LAYERS
DATA FLOW NAME: FOLLOWON_PACKRET
ALIASES: SYNC_PACKET
ABUTTED_PACKRET
LINK_PACKETS
COMPOSITION: —_ — i
FOLLOWON_PACKET = | SOH_PACKET | 4
| DLE_PACKET |
| ENQ_PACKET |
NOTES : DECODE AND SYNC INCOMING BIT STREAM LAYER
DATA FLOW NAME: FRAMING_ERRORS
ALIASES: NONE
COMPOSITION: — —
FRAMING_ERRORS = | HEADER_FORMAT_ERROR
330

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMERT NAME:
ALIASES:

INVALID_DATA_LENGTH |
INVALID_DLE_PACKET |
INVALID_BLKCK1 I
INVALID_BLKCK2 i

|

INVALID_BLKCK3

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

HEADER_FORMAT_ERROR
NONE

FLAGS AN INCORRECTLY RECEIVED HEADER_LENGTH FIELD. AN
NAR_PACKET IS GENERATED,

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE CONTROL INCOMING PACKET LAYER

IDENTIFY
NONE

USED TO PASS A SET OR CLEAR CONDITION FROM SNAK FLAG FILE
OR SACK FLAG FILE OR SREP FLAG FILE TO THE ASSOCIATED
GENERATE PROCESS.,

EXECUTE OUTGOING CONTROL PACKET LAYER

INCREMENT_R
NONE

NEW VALUE OF R (HIGHEST SEQUENTIAL DATA MESSAGE RECEIVED)
USED TO UPDATE THE R_FILE AND TRIGGER THE SENDING OF AN
ACK_PACKET,

EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE DATA PACKET LAYER

INITIALIZATION_COMPLETE
NONE

RESPONSE TO INITIALIZE_LINK COMMAND
EXECUTE INCOMING CONTROL PACKETS LAYER

INITIALIZATION_ON_OTHER_END
NONE

331

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES :

THE OTHER END HAS BEEN INITIALIZED, HALT PROTOCOL.
EXECUTE OUTGOING CONTROL PACKET LAYER

INITIALIZE_LINK
NONE

INITIALIZE THE PROTOCOL AND START THE DATA LINK
EXECUTE OUTGOING CONTROL PACKET LAYER

INITIAL_PACKET

NONE
INITIAL_PACKET = 2{SYNC}8 + | SOH_PACKET |
| DLE_PACKET |
| ENQ_PACKET |

- -

DECODE AND SYNC INCOMING BIT STREAM LAYER

INVALID_BLKCK1
NONE

FLAGS AN INCORRECTLY RECEIVED SOH/DLE HEADER. AN NAK_
PACKET IS RETURNED TO THE TRANSMITTER.

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

INVALID_BLKCK2
NONE

FLAGS AN INCORRECTLY RECEIVED DATA FIELD. AN NAK_PACKET
IS GENERATED,

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

INVALID_BLKCK3]
NONE

FLAGS AN INCORRECTLY RECEIVED ENQ _HEADER. AN NAK_PACKET
IS GENERATED.
FRAME SECONDARY INFORMATION PACKETIS LAYER

332

e e ——— o~ e e e e o ms s

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

EXECUTE INCOMING CONTROL PACKET LAYER

INVALID_DATA_LENGTH
NONE

FLAGS AN INCORRECTLY RECEIVED DATA LENGTH FIELD. AN NAK_
PACKET IS GENERATED.

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE DATA PACKET LAYER

INVALID_DLE_PACKET
NONE

FLAGS A NON-SELECTED TRANSMISSION OWNERSHIP CONTROL BIT
WHEN IN THE MAINTENARCE MODE

FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

INVALID_PACKRETS
NONE

FLAG USED TO TRANSMIT AN NAK_PACKET OBTAINED FROM
RECEPTION OF AN:

1. INVALID_BLKCK1

2, INVALID_BLKCK2

3. INVALID_BLKCK3

4, PACKET_NON_ABUT
EXECUTE INCOMING CONTROL PACKET LAYER

INVALID_STACK_PACKET
NONE

A FLAG USED TO TRANSMITTER TO SEND OUT A NAK_PACKET SINCE
THE SELECT BIT WAS NOT SET IN THE RECEIVED_STACK_PACKET
RESULTING IN THE RECEPTION OF A BAD STACK_PACKET.

EXECUTE INCOMING CONTROL PACKET LAYER

INVALID_STRT_PACKET
NONE

333

NOTES ¢

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

T TRANSPORT
| TRANSPORT

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:

A FLAG TO THE TRANSMITTER TO SEND OUT A NAK_PACKET SINCE
THE SELECT BIT WAS NOT SET IN THE RECEIVED_STRT_PACKET
RESULTING IN THE RECEPTION OF A BAD STRT_PACKET.
EXECUTE INCOMING CONTROL PACKET LAYER

LINK_AND_MODEM_CONTROL
NONE

LINK_AND_MODEM_CONTROL = I_DISABLE_LINK—I_
| ENABLE_LINK |

START REPLY TIMER LAYER

LINK_DATA_PACKET
NONE

LINK_DATA_PACKET

PROTOCOL + BLKCK2 + ADDR + BLKCK1 + COUNT + SOH + FLAGS-T
PROTOCOL + BLKCK2 + ADDR + BLKCK1 + COUNT + SOH !

FRAME PRIMARY INFORMATION PACKETS LAYER

LINK_PACKETS
ABUTTED_PACKET
SYNC_PACKET
FOLLOWON_PACKET

SEE ALIASES
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

LOCALLY_GENERATED_CRC_REMAINDER
NONE

A SIXTEEN BIT SEQUENCE THAT IS THE REMAINDER AFTER

DIVISION OF THE VALID_LENGTH_SOH/DLE_HEADER, VALID_
LENGTH_DATA, OR VALID_LENGTH_ENQ HEADER BY THE CRC

POLYNOMIAL.

FRAME SECONDARY INFORMATION PACKETS LAYER

LONG_DATA_COUNT

334

ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW RAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:

VALUES AND MEANINGS:

Cm e esi e —e———

SHORT_DATA_COUNT

LONG_DATA_COUNT = TRANSPORT PROTOCOL + BLKCK2 + ADIR +
SOH + COUNT
FRAME PRIMARY INFORMATION PACKETS LAYER

MODEM_FAILURE
NONE

A NOTIFICATION FROM THE DRIVER THAT THE MODEM/LINK HAS
FAILED.
START REPLY TIMER LAYER

MOP_PACKETS
NONE

MOP_PACKETS = | PARAMETER_LOAD_WITH_TRANSFER_ADDRESS |
MEMORY_LOAD_WITH_TRANSFER_ADDRESS |
REQUEST_MEMORY_DUMP |
ENTER_MOP_MODE |
REQUEST_PROGRAM |
REQUEST_MEMORY_LOAD {
MOP_MODE_RUNNING |
MEMORY_DUMP_DATA |
LOOP_BACK_TEST |
MEMORY_LOAD_WITHOUT_TRANSFER_ADDRESS |
EXECUTE MAINTENANCE PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

— e — — ——— —— — — —

NAK_PACKET
RECEIVED_NAK_PACRET

NAK_PACKET = ENQ + NAKTYPE + REASON + FLAGS + RESP +
FILL + ADDR + BLKCK3

EXECUTE OUTGOIRG CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKET LAYER

NAK_TRANSMIT_FLAG
SET_STARTUP
RESYNC

A FLAG USED TO SET TRE CORRESPONDING BIT IN THE STARTUP_

335

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:

FLAG_FILE.
DECODE AND SYNC INCOMING BIT STREAM LAYER
EXECUTE INCOMING CONTROL PACKRET LAYER

NAKTYPE
NONE

NAK PACKET TYPE = 00000010
ALL LINK LAYERS

N=EVEN
NONE

WHEN N (COUNTER) IS AN EVER NUMBER AND THE TRANSMITTER
RECEIVES A VALID_STRT_PACKET, THEN RETURN A STACK_PACKET.
EXECUTE OUTGOING CONTROL PACKET LAYER

N=0DD
NONE

WHEN N (COUNTER) IS A ODD NUMBER AND THE TRANSMITTER
RECEIVES A VALID_STRT_PACKET, THEN RETURN A STRT_PACKET,
EXECUTE OUTGOING CONTROL PACKET LAYER

NO_HEADER_DATA_PACKET
NONE

NO_HEADER_DATA_PACRET = TRANSPORT PACKET + BLKCK2 + COUNT
FRAMING PRIMARY INFORMATION PACKETS LAYER

NOSYNC_PRIMARY_TO_SECONDARY_DATA_PACKET
COUNTED_LINK_DATA_PACKET

< 256_LINK_PACKET

RETRANSMITTED_PACKETS

SEE ALIASES
FRAME PRIMARY INFORMATION PACKETS LAYER

336

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NONE

USED TO DENOTE THE NUMBER OF THIS DATA PACKET, WHEN USED

WITH REP_PACKET IT IS THE NUMBER OF THE LAST SEQUENTIALLY
NUMBERED DATA PACKETS SENT, THIS 1S COMPARED AGAINST THE
NUMBER OF THE LAST SEQUENTIAL PACKET RECEIVED AND RESULTS
IN EITHER AN ACK BEING RETURNED IF THEY AGREE OR A NAK IF
THEY DO NOT,

ALL LINK LAYERS

START REPLY TIMER LAYER

PACKET_NON_ABUT
NONE

FLAG INDICATING THAT THE LAST TWO MESSAGES RECEIVED DID
NOT ABUT AND THE TRANSMITTER SHOULD BE NOTIFIED TO
RETRANSMIT.

DECODE AND SYNC INCOMING BIT STREAM LAYER

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

PERSISTENT_ERROR
NONE

AR ERROR HAS OCCURRED FROM WHICH RECOVERY IS NOT
POSSIBLE.
THIS ERROR IS: 1. 7 CONSECTATIVE RESPONSES
2. TIMER EXPIRATIONS
START REPLY TIMER LAYER

PAD/STRT_PACKET
NONE

PAD/STRT_PACKET = | 11111111 + STRT_PACKET |
| STRT_PACKET |

EXECUTE OUTGOING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

PHYSICAL_TO_LINK_PACKETS
NONE

337

o

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES ¢

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

PHYSICAL_TO_LINK_PACKETS = (2{SYNC}8) + | SOH_PACKET |
| DLE_PACKET |
| ENQ_PACKET |

DECODE AND SYNC INCOMING BIT STREAM LAYER

PIGGYBACKED_LINK_DATA_PACKET
NONE

PIGGYBACKED_LINK_DATA_PACKET = LINK_DATA_PACKET + RESP
FRAME PRIMARY INFORMATION PACKETS LAYER

PRIMARY_INCOMING _BIT_STREAM_FROM_DRIVER
PRIMARY_OUTGOING_BIT_STREAM_TO_DRIVER
SECONDARY_OUTGOING_BIT_STREAM _TO_DRIVER
SECONDARY_INCOMING_BIT_STREAM_ FROM_DRIVER

PRIMARY_INCOMING_BIT_STREAM_FROM_DRIVER = (11111111) +

(2{sYNC}8) + | SOH_PACKET |
| DLE_PACKET |
| ENQ_PACKET |

DECODE AND SYNC INCOMING BIT STREAM LAYER
OVERVIEW LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

PRIMARY_OUTGOING_BIT_STREAM_TO_DRIVER
PRIMARY_INCOMING_BIT_STREAM_FROM_DRIVER
SECONDARY_INCOMING_BIT_STREAM_FROM_DRIVER
SECONDARY_OUTGOING_BIT_STREAM_TO_DRIVER

SEE ALIASES

OVERVIEW LAYER

EXECUTE HDLC 2ROTOCOL AT PRIMARY NODE LAYER
START REPLY TIMER LAYER

PRIMARY_TO_SECONDARY. _DATA_PACKET
NONE

PRIMARY_TO_SECONDARY_DATA_PACKET = (2{SYNC}8) + LINK_

DATA_PACKET + RESP + NUM
FRAME PRIMARY INFORMATION PACKETS LAYER

338

START REPLY TIMER LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME:

PRIMARY_TO_SECONDARY_CONTROL_PACKET

ALIASES: NONE
COMPOSITION: — —_
PRIMARY_TO_SECONDARY_CONTROL_PACKET = | PAD/STRT_PACKET |

| NAK_PACKET |
| STACK_PACKET |
| ACK_PACKET |
| REP_PACKET l

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA FLOW NAME: PRIMARY_TO_SECONDARY_MAINTENANCE_PACKRET

ALIASES: NONE

COMPOSITION:

PRIMARY_TO_SECONDARY_MAINTENANCE_PACKET =

T TRANSMIT_DLE_PACKET |
| MOP_PACKETS |

NOTES: EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

DATA ELEMENT NAME: QSYNC

ALIASES: NONE

VALUES AND MEANINGS:
QUICK SYNC FLAG, USED TO NOTIFY THE RECEIVER THAT THE
NEXT PACKET WILL NOT ABUT THIS PACKET, AND
RESYNCHRONIZATION SHOULD FOLLOW THIS PACKET.

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER
DATA FLOW NAME: QSYNC_DATA_PACKET

ALIASES: NONE

COMPOSITION:

QSYNC_DATA_PACKET = TRANSPORT PROTOCOL + BLKCKZ + ADDR +
COUNT + SOH + FLAGS

NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER
DATA FLOW NAME: QSYNC_ENQ/DLE_PACKET
ALTASES: ENQ/DLE_SYNC_PACKET

339

COMPOSITION:

NOTES:

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES

DATA FLOW NAME:
ALTIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

SEE ALIASES
FRAME PRIMARY INFORMATION PACKETS LAYER

RCVR
NONE

CONTROL PACKET RECEIVER FIELD. USED TO PASS INFORMATION
FROM THE DATA PACKET RECEIVER TO THE DATA PACKET SENDER.
ALL LINK LAYERS

REASON
NONE

NAK ERROR REASONS
1. ERROR DUE TO TRANSMISSION MEDIUM
000001 = HEADER BLOCK CHECK ERROR
000010 = DATA FIELD BLOCK CHECK ERROR
000011 = REP RESPONSE
2. ERROR DUE TO COMPUTERS/INTERFACE

001000 = BUFFER TEMPORARILY UNAVAILABLE
001001 = RECEIVE OVERRUN

010000 = PACKET TOO LONG

010001 = PACKET HEADER FORMAT ERROR

ALL LINK LAYERS

RECEIVED_ACK_PACKET
ACK_PACKET

SEE ALIASES

EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE DATA PACKET LAYER

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

RECEIVED_NAK_PACKET
NAK_PACKET

SEE ALIASES

EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE DATA PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

340

L+ i ———

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

RECEIVED_PRIMARY_NODE_TRANSPORT_PACKET
RECEIVED_SECONDARY_NODE_TRANSPORT_PACKET

SEE ALIASES
OVERVIEW LAYER

RECEIVED_REP_PACKET
REP_PACKET

SEE ALTASES
EXECUTE INCOMING CONTROL PACKET LAYER

RECEIVED_SECONDARY_NODE_TRANSPORT_PACKET
RECEIVED_PRIMARY_ NODE_TRANSPORT_PACKET

RECEIVED_SECONDARY_NODE_TRANSPORT_PACKET = TRANSPORT_TO_

LINK_DATA_PACKET
OVERVIEW LAYER

RECEIVED_STACK_PACKET
STACK_PACKET
VALID_STACK_PACKET

SEE ALIASES
EXECUTE INCOMING CONTROL PACKET LAYER
START REPLY TIMER LAYER

RECEIVED_STRT_PACKET
STRT_PACKET
VALID_STRT_PACKET

SEE ALIASES
EXECUTE INCOMING CONTROL PACKET LAYER
START REPLY TIMER LAYER

RECEIVE_PACKET
NONE

TRANSPORT PROTOCOL SUPPLIES A POOL OF BUFFERS TO THE LINK

341

e e erep——

———

NOTES :

DATA FLOW NAME:
ALTASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES ARD MEANINGS:

NOTES

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
AL fASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

PROTOCOL.
FRAME PRIMARY INFORMATION PACKETS LAYER

REP_PACKET
RECEIVED_REP_PACKET

REP_PACKET = ENQ + REPTYPE + REPSUB + FLAGS + FILL +
NUM + ADDR + BLKCK3

FRAME PRIMARY INFORMATION PACKETS LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

REPSUB
NONE

REP SUBTYPE = 00000000
ALL ".INK LAYERS

REPTYPE
NCRE

REP PACKET TYPE = 00000011
ALL LINK LAYERS

RESET_SIGNAL
NONE

A FLAG TO THE TIMER TO RESET SINCE A POSITIVE ACKNOWLEDGE

HAS BEEN RECEIVED,
START REPLY TIMER LAYER

RESET_STARTUP
NORE

A FLAG TO THE STARTUP_FLAG_FILE TO CLEAR THIS FILE.
DECODE AND SYNC INCOMING BIT STREAM LAYER

RESP
NONE

342

NOTES:

DATA ELEMENT NAME:

ALIASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALTIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COHMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES :

USED TO ACKNOWLEDGE CORRECTLY RECEIVED PACKETS (THE
PIGGYBACKED ACK)., THE NUMBER REPRESENTS THE LAST

CONSECUTIVE CORRECTLY RECEIVED PACKET RECEIVED FROM THE
ADDRESSED NODE BY THE NODE TRANSMITTING THIS PACKET. IT

IMPLYS THAT ALL UNACKNOWLEDGED PACKETS BETWEEN THE ONE

ACKNOWLEDGED IN THE LAST RESP FIELD RECEIVED AND THE ONE
ACKNOWLEDGED BY THIS RESP FIELD (MOD 256), HAVE BEEN

RECEIVED CORRECTLY. WHEN USED IN A NAK_PACKET, USUALLY
IMPLYS SOME ERROR IN A PACKET WITH NUMBER RESP + 1 OR
BEYOND.

ALL LINK LAYERS

RESYNC
NAK_TRANSMIT_FLAG
SET_STARTUP

SEE ALIASES
DECODE AND SYNC INCOMING BIT STREAM LAYER

RETRANSMITTED_PACKETS
COUNTED_LINK_DATA_PACKET

< 256 _LINK_PACKET
NOSYNC_PRIMARY_TO_SECONDARY_DATA_PACKET

SEE ALIASES
FRAME PRIMARY INFORMATION PACKETS LAYER

SECONDARY_INCOMING_BIT_STREAM_FROM_DRIVER
PRIMARY_INCOMING_BIT_STREAM_FROM_DRIVER
PRIMARY_OUTGOING_BIT_STRE&AM_TO_DRIVER
SECONDARY_OUTGOING_BIT_STREAM_TO_DRIVER

SEE ALIASES:
OVERVIEW LAYER

SECONDARY_OUTGOING_BIT_STREAM TO_DRIVER
PRIMARY_INCOMING_BIT_STREAM FROM_DRIVER
PRIMARY_OUTGOING_BIT_STREAM_TO_DRIVER
SECONDARY_INCOMING_BIT_STREAM_FROM_DRIVER

SEE ALIASES
OVERVIEW LAYER

343

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALTASES:

VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

SET
NONE

A FLAG TO SET COUNTERS, SNAK FLAG FILE OR SACK FLAG FILE,
EXECUTE INCOMING CONTROL PACKET LAYER

SET_STARTUP
NAK_TRANSMIT_FLAG
RESYNC

SEE ALIASES
DECODE AND SYNC INCOMING BIT STREAM LAYER

SHORT_DATA_COUNT
LONG_DATA_COUNT

SEE ALIASES
FRAME PRIMARY INFOKMATION PACKETS LAYER

SNDR
NONE

CONTROL PACKRAT SENDER FIELD. USED TO PASS INFORMATION
FROM THE DATA PACKET SENDER TO THE DATA PACKET RECEIVER.

ALL LINK LAYERS

SOH
NONE

THE NUMBERED DATA MESSAGE IDENTIFIER = 10000001
ALL LINK LAYERS

SOH_PACKET
VALID_SOH_PACKET

SOH_PACKET = SOH + COUNT + FLAGS + RESP + NUM + ADDR +
BLKCK1 + DATA + BLKCK2

DECODE AND SYNC INCOMING BIT STREAM LAYER
FRAME S:CONDARY INFORMATION PACKETS LAYER

344

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES ¢

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:

ALTASES:
VALUES AND MEANINGS:

STACK_PACKET
VALID_STACK_PACKET
RECEIVED_STACK_PACKET

STACK_PACKRET = ENQ + STCKTYPE + STCKSUB + FLAGS + FILL +
FILL + ADDR + BLKCK3

EXECUTE OUTGOING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

START
NONE

THE SENDING OF RETRANSMITTED_PACKETS,

A FLAG TO THE LOAD AND DELETE MEMORY PROCESS TO TRIGGER I
FRAME PRIMARY INFORMATION PACKETS LAYER

STARTUP
NONE

A FLAG TO THE "CHECK FOR STARTUP™ PROCESS TO SET OR CLEAR

THE STARTUP BIT.
DECODE AND SYNC INCOMING BIT STREAM LAYER

STCRSUB
NONE

STACK SUBTYPE = 00000000
ALL LINK LAYERS

STCKTYPE
NONE

STACK PACKET TYPE = 00000111
ALL LINK LAYERS

STOP_LINK
NONE

NOTES :

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALTIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALTASES:

HALT THE PROTOCOL
START REPLY TIMER LAYER

STRT_PACKET
VALID_STRT_PACKET

RECEIVED_STRT_PACKET
STRT_PACKET = ENQ + STRTTYPE + STRISUB + FLAGS + FILL +

FILL + ADDR + BLKCK3

EXECUTE OUTGOING CONTROL PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

STRTSUB
NONE

STRT SUBTYPE = 00000000
ALL LINK LAYERS

STRTTYPE
NONE

STRT PACKET TYPE = 00000110
ALL LINK LAYERS

SUBTYPE
NONE

SUBTYPE = [(ACKSUB) + (REPSUB) + (STRTSUB) + (STCKSUB)]
ALL LINK LAYERS

SINC
NONE

SYNCHRONIZATION BYTE, THE OCTET 10010110
OVERVIEW LAYER

SYNC_PACRET
FOLLOWON_PACRET
ABUTTED_PACKET

346

! COMPOSITION:

' NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA ELEMENT NAME:

ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:

LINK_PACKETS

SEE ALIASES
DECODE AND SYNC INCOMING BIT STREAM LAYER

TIMEOUT
NONE

TIMEOUT = INCREMENT ERROR COUNTER + | TIMEGUT_DATA |
| TIMEOUT_STRT
| TIMEOUT_STACK

START REPLY TIMER LAYER

TIMEOUT_DATA
NONE

AN ACKNOWLEDGEMENT TO DATA PACKET IS HELD UP AND RESULTS
IN THE REPLY TIMER EXPIRATION CAUSING A TIMEOUT SIGNAL
TO TRIGGER THE SENDING OF A REP_PACKET.

START REPLY TIMER LAYER.

TIMEOUT_STACK
NONE

AN ACRNOWLEDGEMENT TO A STACK_PACKET 1S HELD UP AND
RESULTS IN THE REPLY TIMER EXPIRATION CAUSING A TIMEOUT
SIGNRAL TO TRIGGER THE SENDING OF A STACK_PACKET.

START REPLY TIMER LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER

TIMEOUT_STIRT
NONE

AN ACKNOWLEDGEMENT TO A START PACKET IS HELD UP AND
RESULTS IN THE REPLY TIMER EXPIRATION CAUSING A TIMEOUT
SIGNAL TO TRIGGER THE RESENDING OF A STRT_PACKET.

START REPLY TIMER LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

TRANSMIT_COMPLETE

347

Aot v o e,

'[m&}' P

ALTASES:
VALUES AND MEANINGS:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:
NOTES:

DATA ELEMENT NAME:

E ALIASES:
VALUES AND MEANINGS:

NOTES:

DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

NOTES:

{ DATA ELEMENT NAME:
ALTASES:
VALUES AND MEANINGS:

] NOTES:

DATA FLOW NAME:

ALTASES:
COMPOSITION:

NOTES:

NONE

A NOTIFICATION TO THE LINK PROTOCOL ONCE THE DRIVER HAS
COMPLETED A PREVIOUS TRANSMIT_A_BLOCK CO

START REPLY TIMER LAYER

TRANSMIT_DLE_PACKET
DLE_PACKET

VALID_DLE_PACKET

SEE ALIASES
EXECUTE MAINTENANCE PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

TRANSIENT_ERROR._THRESHOLD_COU NTER_OVERFLOW
NONE

ERROR_THRESHOLD COUNTER OVERFLOW DUE TO
1. NAKS RECEIVED

2. ERRORS THAT CAUSE NAKS TO BE SENT
TRIS COMMAND AUTOMATICLY CLEARS THE TRESBOLD_COUNTER

WHEN THE NUMBER OF ERRORS RECORDED EQUALS 7.
EXECUTE INCOMING CONTROL PACKET LAYER

TRANSMIT_A_ BLOCK
NONE

PASS A BLOCK TO THE DRIVER FOR TRANSMISSION.
START REPLY TIMER LAYER

TRANSMIT_PACKET
NONE

GIVE A PACKET TO LINK PROTOCOL FOR TRANSMISSION,
FRAME PRIMARY INFORMATION PACKETS LAYER

TRANSMITTED_PRIMARY_NODE_TRANSPORT_PACKET
TRANSMITTED_SECONDARY_NODE_TRANSPORT_PACKET

SEE ALIASES
EXECUTE DATA PACKET LAYER

348

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES ¢

DATA ELEMENT NAME:
ALIASES:
VALUES AND MEANINGS:

NOTES :

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:

;'_1

OVERVIEW LAYER
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

TRANSMITTED_SECONDARY_NODE_TRANSPORT_PACKET
TRANSMITTED_PRIMARY_NODE_TRANSPORT_PACKET

TRANSMITTED_SECONDARY_NODE_TRANSPORT_PACKET = wprﬁg{gfsoa_

OVERVIEW LAYER

TRANSPORT_TO_LINK_DATA_PACKET
NONE

ANY TRANSPORT PACKET
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER

TYPE

NONE

TYPE = | ATCKTYPE |
] STRITYPE |
| REPTYPE |
| NAR_TYPE |
{ ACK_TYPE |

ALL LINK LAYERS

VALID_CRC_ENQ_PACKRET
ENQ_PACKET
VALID_ENQ_PACKET
VALID_LENGTH_ENQ_HEADER

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

VALID_CRC_SOH/DLE_PACKET
VALID_LENGTH_SOH/DLE_HEADER
VALID_SOH/DLE_HEADER
VALID_LENGTH_DATA

349

G s

P

e

T SOH + COUNT + FLAGS + RESP + NUM + ADDR + BLKCK] + DATA + BLECK?2
| DLE + COUNT + FLAGS + FILL + FILL + ADDR + BLKCK1 + DATA + BLKCK2

NOTES:

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:

ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:

ALTASES:

COMPOSITION:

NOTES :

DATA FLOW NAME:
ALIASES :

COMPOSITION:

NOTES :

DATA FLOW NAME:
ALIASES:

VALID_CRC_CRC/DLE_PACRET =

FRAME SECONDARY INFORMATION PACKETS LAYER

VALID_DLE_PACKET
DLE_PACKET

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE DATA PACKET LAYER

VALID_ENQ_PACKET

ENQ_PACKET
VALID_CRC_ENQ_PACKET
VALID-LENGTH_ENQ HEADER

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

VALID_LENGTH_DATA
VALID_CRC_SOH/DLE_PACKET

VALID_LENGTH_SOH/DLE_PACKET
VALID_SOH/DLE_HEADER

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

VALID_LENGTH_ENQ HEADER
ENQ_PACKET

VALID_ENQ PACKET
VALID_CRC_ENQ_PACKET

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

VALID_LENGTH_SOH/DLE_HEADER
VALID_CRC_SOH/DLE_HEADER

350

B

e i Loa

COMPOSITION:

NOTES:

DATA FLOW NAME:
ALIASES:

COMPOSITION:
NOTES::

DATA FLOW NAME:
ALIASES:
COMPOSITION:

NOTES:

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES 3

DATA FLOW NAME:
ALTASES:

COMPOSITION:

NOTES:

DATA FLOW NAME:

ALIASES:

COMPOSITION:

NOTES:

VALID_LENGTH_DATA

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

VALID_SOH/DLE_HEADER
VALID_CRC_SOH/DLE_PACKET
VALID_LENGTH_DATA
VALID_LENGTH_SOH/DLE_HEADER

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER

VALID_SOH_PACKET
SOH_PACKET

SEE ALIASES
FRAME SECONDARY INFORMATION PACKETS LAYER
EXECUTE DATA PACKRET LAYER

VALID_STACK_PACKRET

STACK_PACKET
RECEIVED_STACK_PACKET

SEE ALIASES
EXECUTE INCOMING CONTROL PACKET LAYER

VALID_STRT_PACKET

STRT_PACKET
RECEIVED_STRT_PACKET

SEE ALIASES
EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

< 256_LINK_PACKET
COUNTED_LINK_DATA_PACKET
RETRANSMITTED_PACKETS
NOSYNC_PRIMARY_TO_SECONDARY_DATA_PACKET

SEE ALIASES
FRAME PRIMARY INFORMATION PACKETS LAYER

351

e Sramgar v Piarulinttut

EILE DEFINITIONS (L)

FILE OR DATABASE NAME: A_FILE

ALIASES: NONE

COMPOSITION:
THE NUMBER OF THE HIGHEST SEQUENTIAL DATA MESSAGE THAT
HAS BEEN ACKNOWLEDGED TO THIS STATION, RECEIVED IN THE
RESP FIELD OF DATA_PACKETS, ACK_PACKETS, AND NAK
PACKETS.

N SINGLE OCTET
ggggngATIo EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE DATA PACKET LAYER
FRAME PRIMARY INFORMATION PACKETS LAYER
START REPLY TIMER LAYER

FILE OR DATABASE NAME: HOLD_TABLE
ALIASES: NONE

COMPOSITION:
HOLD_TABLE = LINK_DATA_PACKET

ORGANIZATION: VARIABLE-LENGTH OCTET
NOTES: FRAME PRIMARY INFORMATION PACKETS LAYER

FILE OR DATABASE NAME: LINI(__TO_PHYSICAL_COMHAND_TABLE
ALIASES: NONE

COMPOSITION:
LINK_TO_PHYSICAL-COMMAND_TABLE =
(LINK_AND_MODEM_CONTROL) +
(TRANSMIT_A_BLOCK)

ORGANIZATION: 20-BIT TABLE
NOTES: START REPLY TIMER LAYER

FILE OR DATABASE NAME: LINK_TO_TRANSPORT_COMMAND_TABLE

ALTASES: NONE

COMPOSITION:
LINK_TO_TRANSPORT_COMMAND_TABLE = (PERSISTENT_ERROR) +

(TRANSIENT_ERROR_THRESHOLD_COUNTER_OVERFLOW) +
(INITIALIZATION_ON_OTHER_END) +
(INITIALIZATION_COMPLETE)
ORGANIZATION: 4~BIT TABLE
NOTES: EXECUTE INCOMING CONTROL PACKET LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER
START REPLY TIMER LAYER

FILE OR DATABASE NAME: MEMORY ”

352

ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:

ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES :

NONE

STANDARD COMPUTER MEMORY, ALL DATA PACKETS SENT ARE
RECORDED IN MEMORY AND WHEN A VALID ACKNOWLEDGE IS
RECEIVED THEY ARE DELETED.

VARIABLE LENGTH 8-BIT-BYTE WORDS

FRAME PRIMARY INFORMATION PACKETS LAYER

PHYSICAL_TO_LINK_COMMAND_TABLE

NONE

PHYSICAL_TO_LINK_COMMAND_TABLE = (TRANSMIT_COMPLETE) +
(MODEM_FATLURE)

2-BIT TABLE

START REPLY TIMER LAYER

R_FILE
NONE

THE NUMBER OF THE HIGHEST SEQUENTIAL DATA PACKET
RECEIVED AT THIS STATION. SENT IN THE RESP FIELD
OF DATA_PACKETS, ACK_PACKETS, AND NAK_PACKETS AS
ACKNOWLEDGEMENT TO THE OTHER STATION.

SINGLE OCTET

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER
EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE DATA PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

SACK
NONE

THIS FLAG IS SET WHEN EITHER THE R-FILE IS INCREMENTED
MEANING A NEW SEQUENTIAL DATA PACKET HAS BEEN RECEIVED
WHICH REQUIRES AN ACK REPLY. TRE SACK FLAG IS CLEARED
WHEN SENDING EITHER A DATA PACKET WITH THE LATEST RESP
FIELD INFORMATION, OR AN ACK WITH THE LATEST RESP
FIELD INFORMATION.

SINGLE-BIT VARIABLE

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE INCOMING CONTROL PACKET LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

353

FILE OR DATABASE NAME:
ALTASES:
COMPOSITION:

ORGANIZATION:

FILE OR DATABASE NAME:
ALTIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FILE OR DATABASE NAME:

ALIASES:
COMPOSITION:

ORGANZATION:
NOTES :

FILE OR DATABASE NAME:
ALTASES:
COMPQSITION:

ORGANZATION:
NOTES:

SNAK
NONE

A RECEIVE ERROR OCCURS THAT

REQUIRES A NAK REPLY, IF IS CLEARED WHEN A NAK PACKET
ISQSENT WITH LATEST RESP INFORMATION. ADDITIONALLY

A NAK REASON VARIALBE IS SET IN THE FILE.
ocC

THIS FLAG IS SET WHEN

SREP
NONE

THIS FLAG IS SET WHEN A REPLY TIMER
RUNNING STATE AND A REP SHOULD BE SENT.
WHEN AN REP_PACKET IS SENT.

SINGLE-BIT VARIABLE

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER
EXECUTE OUTGOING CONTROL PACKET LAYER

START REPLY TIMER LAYER

EXPIRES IN THE
IT 1S CLEARED

STARTUP_FLAG_FILE
NONE

A FLAG THAT IS SET WHEN
1. STARTUP~PAD SEQUENCE IDENTIFIED
2. TO LOCATE THE NEXT PACKET AFTER A NAR_
PACKET IS SENT.
3. TO LOCATE THE NEXT PACKET AFTER A QSYNC_
PACKET IS SENT.
THE FLAG IS CLEARED ON THE RECEPTION OF A NORMAL
(NO_PAD SEQUENCE) PACKET.
SINGLE~BIT VARIABLE
DECODE AND SYNC INCOMING BIT STREAM LAYER

T_FILE
NONE

THE NUMBER OF THE NEXT DATA_PACKET TO BE TRANSMITTED.
WHEN SENDING NEW DATA_PACKETS, T WILL HAVE THE VALVE
v + 1. WHEN RETRANSMITTING, T WILL BE SET BACK TO

A + 1 AND WILL ADVANCE TO V + 1.

SINGLE OCTET
EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

354

FILE OR DATABASE NAME:
ALIASES:
COMPOSITION:

ORGAIZATION:
NOTES:

FILE OR DATABASE NAME:

ALIASES:
COMPOSITION:

ORGANIZATION:
NOTES:

FRAME PRIMARY INFORMATION PACKETS LAYER

TRANSPORT_TO_LINK_COMMAND_TABLE
NONE

TRANSPORT_TO_LINK_COMMAND_TABLE = (STOP_LINK) +
(INITIALIZE_LINK) + (RECEIVE_PACKET) +
(TRANSMIT_PACKET) +
(ENTER _MA INTENACE_MODE)

5-BIT TABLE

START REPLY TIMER LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

EXECUTE MAINTENANCE PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

V_FILE
NONE

THE NUMBER OF THE HIGHEST SEQUENTIAL DATA_PACKET
TRANSMITTED BY TRIS STATION. SENT IN THE NUM FIELD
OF REP_PACKETS, V IS THE NUMBER ASSIGNED TO THE LAST
USER TRANSMIT REQUEST WHICH HAS BEEN TRANSMITTED
(SENT IN THE NUM FIELD OF THAT DAT PACKET).

SINGLE OCTET

EXECUTE HDLC PROTOCOL AT PRIMARY NODE LAYER

EXECUTE OUTGOING CONTROL PACKET LAYER

FRAME PRIMARY INFORMATION PACKETS LAYER

355

PROCESS NAME: CHECK FOR AND REMOVE PAD SEQUENCE

PROCESS NUMBER: 1.1.1
PROCESS DESCRIPTION:
IF 111111111001011010010110 is encountered then

Delete the 1111111l
Qutput a SET_STARTUP_FLAG

Output next consecutive bytes
ELSE output the next congecutive bytes

PROCESS NAME: CHECK FOR STARTUP

PROCESS NUMBER: 1.1.2

PROCESS DESCRIPTION:

1F STARTUP flag set then
Output next packet as INITIAL_PACKET
Reset STARTUP

ELSE output next packet as FOLLOWON_PACKET

PROCESS NAME: LOCATE TWO CONSECUTIVE SYNC BYTES
PROCESS NUMBER: 1.1.3
PROCESS DESCRIPTION:

STRIP off all syuc bytes
Output remaining bytes as SYNC_PACKETS

PROCESS NAME: DECODE PACKET HEADER

PROCESS NUMBER: 1.1.4
PROCESS DESCRIPTION:
IF first byte = 10000001 then
Output ABUTTED_PACKET (SOH_PACKET)
ELSEIF first byte = 00000101 then
Output ABUTTED_PACKET (ENQ_PACKET)
ELSEIF first byte = 10010000 then
Output ABUTTED_PACKET (DLE_PACKET)
ELSE output PACKET_NON_ABUT

PROCESS NAME: CHECK FOR QSYNC
PROCESS NUMBER: 1.1.5
PROCESS DESCRIPTION:
IF 23rd bit set then
Output RESYNC to set STARTUP_FLAG_FILE
Qutput SOH, DLE, or ERQ_PACKET
ELSE output SOH, DLE, or ENQ_PACKET

356

PROCESS NAME: CHECK HEADER LENGTH
PROCESS NUMBER: 1.2.1

PROCESS DESCRIPTION:
IF SOH_PACKET or DLE_PACKET headers are less than 48 bits long then

Output HEADER_FORMAT_ERROR
ELSE output VALID_LENGTH_SOH/DLE_HEADER

PROCESS NAME: CHECK BLKCK1
PROCESS NUMBER: 1.2.2

PROCESS DESCRIPTION:
IF the BLKCK]l and the LOCALLY_GENERATED_CRC_REMAINDER are equal then

Output VALID_LENGTH_SOH/DLE_HEADER as a VALID_SOH/DLE_HEADER
ELSE output as a INVALID_BLKCK1

PROCESS NAME: CHECK DATA LENGTH (COUNT)

PROCESS NUMBER: 1.2.3

PROCESS DESCRIPTION:
IF SOH_PACKET or DLE_PACKET data fields are less than the value recorded in

the COUNT field then
Output VALID_SOH/DLE_HEADER as an INVALID_DATA_LENGTH

ELSE output as a INVALID_LENGTH_DATA

PROCESS NAME: CHECK BLKCK2

PROCESS NUMBER: 1.2.4

PROCESS DESCRIPTION:
IF the BLKCK2 and the LOCALLY_GENERATED_CRC_REMAINDER are equal then

Qutput VALID_LENGTH_DATA as a VALID_CRC_SOH/DLE_PACKET
ELSE output as a INVALID_BLKCK2

PROCESS NAME: CHECK ENQ HEADER LENGTH

PROCESS NUMBER: 1.2.5

PROCESS DESCRIPTION:
IF ENQ_PACKET header is less than 48 bits long then

Output HEADER_FORMAT_ERROR
ELSE output as VALID_LENGTH_ENQ_HEADER

PROCESS NAME: CHECK BLKCK3

PROCESS NUMBER: 1.2.6
PROCESS DESCRIPTION:

357

™)

IF the BLKCK3 and the LOCALLY_GENERATED_CRC_REMAINDER are equal then
Output the VALID_LENGTH_ENQ_HEADER as VALID_CRC_ENQ_PACKET

ELSE output INVALID_BLKCK3

PROCESS NAME: GENERATE CRC REMAINDER

PROCESS NUMBER: 1.2.7
{

PROCESS DESCRIPTION: .
APPEND 16 zeros after the header or data protion of the packet (VALID_LENGTH_

SOH/DLE_HEADER, VALID_LENGTH_DATA, VALID_LENGTH_ENQ_HEADER) ffici
i i d and at each bhit as _the coefficient
TAKE ggeaSEZ;:go%fabsigygggigiuaigh %he ig of tﬁe 21rst byte gexng Ene
coefficient of the highest order polynomial term. The highest §rder
t is A * X ** 63 for a header block and A * X % (8 * (count) +
lggmfor a data block where A is the least significant bit of the
first byte of the header or data. The lowest order term is 0 *

X ** 0 for both cases.)
DIVIDE the constructed polynomial by the CRC-16 polynomial X ** 16 +

X %% 15 + X ** 2 + 1 modulo 2, obtaining a quotient that is

discarded and the 16~bit remainder.
TRANSMIT the remainder as the LOCALLY_GENERATED_CRC_REMAINDER

PROCESS NAME: CHECK SELECT BIT

PROCESS NUMBER: 1.2.8
PROCESS DESCRIPTION:
SEPARATE VALID_CRC_SOH/DLE_PACKET into VALID_SOH_PACKRET and VALID_DLE_PACKET
IF VALID_DLE_PACRET select bit not set then
Cutput INVALID_DLE_PACKRET
ELSE output VALID_DLE_PACKET
Output VALID SOH_PACKET
Output VALID_CRC_ENQ_PACKET as VALID_ENQ_PACKET

PROCESS NAME: DECODE ENQ PACKRET
PROCESS NUMBER: 1.3.1
PROCESS DESCRIPTION:
IF TYPE equal 00000001 then
Output RECEIVED_ACK_PACKET
ELSEIF TYPE equal 00000010 then
Qutput RECEIVED_NAK_PACRET
ELSEIF TYPE equal 00000011 then
Output RECEIVED_REP_PACKET
ELSEIF TYPE equal 00000110 then
Output RECEYVED_STRT PACKET
ELSE output RECEIVED_STACK_PACKET

358

| I

e

PROCESS NAME: SET NAK TRANSMIT FLAG

PROCESS NUMBER: 1.3.2

PROCESS DESCRIPTION:

IF Input = INVALID_BLKCKl. INVALID_BLKCK2, INVALID_BLKCK3, or PACRKET_NON_
ABUT then
Qutput a NAR_TRANSMIT_FLAG and
Qutput an INVALID_PACKETS flag

ELSE Null
PROCESS NAME: SET NEGATIVE ACKNOWLEDGE FLAG, RESET TIMER
PROCESS NUMBER: 1.3.3

PROCESS DESCRIPTION:

IF Input = HEADER_FORMAT_ERROR, INVALID_DATA_LENGTE, INVALID_DLE_PACKET,
INVALID_STRT_PACKET, INVALID_STACK_PACKET, DISAGREE, or INVALID_PACKETS
flag then
Output a SET flag to SNAK_FILE and to COUNT_ERRORS_PROCESS

Reset REPLY TIMER

ELSE Null
PROCESS NAME: CHECK STRT SELECT BIT
PROCESS NUMBER: 1.3.4

PROCESS DESCRIPTION:

IF RECEIVED_STRT_PACKET select bit set then
Qutput VALID_STRT_PACKET

ELSE output INVALID_STRT_PACKET

PROCESS NAME: CHECK STACK SELECT BIT

PROCESS NUMBER: 1.3.5

PROCESS DESCRIPTION:

IF RECEIVED_STACK_PACKET select bit set then
Output VALID_STACK_PACKET

ELSE ocutput INVALID_STACK_PACKET

PROCESS NAME: CHECK NUM FIELD TO R

PROCESS NUMBER: 1.3.6

PROCESS DESCRIPTION:

1F RECEIVED_REP_PACKET NUM field value equal to the curr
Output AGREE

ELSE output DISAGREE

ent R_FILE value then

359

237 P A

e e

PROCESS NAME: SET ACKNOWLEDGE FLAG, RESET TIMER

PROCESS NUMBER: 1.3.7
PROCESS DESCRIPTION:
IF Input = AGREE, INCREMENT_R, or VALID_STACK_PACKET then

Output a SET flag to SACK_FILE

ELSE Null
PROCESS NAME: COUNT ERRORS (NAK)
PROCESS NUMBER: 1.3.8

PROCESS DESCRIPTION:
INCREMENT counter on SET input

IF counter = 49 then
Output TRANSIENT_ERROR_IHRESHOLD_COUNTER_OVERFLOW

Reset counter to O

ELSE Null
PROCESS NAME: N=N+1
PROCESS NUMBER: l.4.1

PROCESS DESCRIPTION:
OUTPUT N = ODD when

Reception of INITIALIZE_LINK (N=1)

Reception of VALID_STRT_PACRET (N=0ODD)
OUTPUT N = EVEN when

Reception of VALID_STRT_PACKET (N=EVEN)

PROCESS NAME: GENERATE NEGATIVE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.2
PROCESS DESCRIPTION:

IF SNAK_FILE set then
Output NAK_PACKET of the following format: ENQ + NAKTYPE + REASON +
FLAG" + RESP + FILL + ADDR +

BLKCK3
ELSE Null
PROCESS NAME: GENERATE START PACKET
PROCESS NUMBER: 1.4.3

PROCESS DESCRIPTION:
IF N = ODD or TIMEOUT_STRT is inputed then

Output STRT_PACKET of the following format: %&2 + STRTTYPE + STRTSUB +
GS + FILL + FILL + ADDR +

BLRCK3
ELSE Null

360

PROCESS NAME: GENERATE START ACKNOWLEDGE PACKET

PROCESS NUMBER: 1.4.4
PROCESS DESCRIPTION:
IF N = EVER or TIMEOUT_STACK is inputted then

Output STACK_PACKET of the following format: ENQ + STCKTYPE + STCKSUB +
FLAGS + FILL + FILL + ADDR +

BLKCK3

Once STACK_PACKRET is transmitted then ;
Output INITIALIZATION_ON_OTHER_END flag i

ELSE Null
PROCESS NAME: GENERATE ACKNOWLEDGE PACKET
PROCESS NUMBER: 1.4.5

PROCESS DESCRIPTION:

IF SACK_FILE is set then
Output as ACK_PACKRET of the following format: ENQ + ACKTYPE + ACKSUB +
FLAGS + RESP + FILL +

ADDR + BLKRCK3
ELSE Null
PROCESS NAME: GENERATE REP PACKET
PROCESS NUMBER: 1.4.6

PROCESS DESCRIPTION:
IF SREP_FILE set then

Output an REP_PACKET of the following format: ENQ + REPTYPE + REPSUB +
FLAGS + FILL + NUM +

ADDR + BLKCK3

ELSE Nyll
PROCESS NAME: CLEAR NEGATIVE ACKNOWLEDGE FLAG
PROCESS NUMBER: 1.4,7
PROCESS DESCRIPTION:
UPON transmission of a NAK_PACKET

Qutput flag to clear the SNAK_FILE
PROCESS NAME: IF INITIALIZATION THEN PAD PACKET

PROCESS NUMBER: 1.4.8
PROCESS DESCRIPTION:
I® Input is INITIALIZE_LINK then
Add PAD SEQUENCE (11111111) to STRT_PACKET

361

ELSE pass STRT_PACKET as is :

PROCESS NAME: CLEAR ACKNOWLEDGE FLAG
PROCESS NUMBER: 1.4.9
PROCESS DESCRIPTION:
UPON transmission of a ACK_PACKET
Output flag to clear the SNAK_FILE

PROCESS NAME: CLEAR SREP FLAG

- PROCESS NUMBER: 1.4,10

PROCESS DESCRIPTION:
UPON transmission of a REP_PACKET

Output flag to clear the SREP_FILE

PROCESS NAME: PROCESS NUM FIELD
PROCESS NUMBER: 1.5.1
PROCESS DESCRIPTION:

SET R = NUM field value
Output R value as INCREMENT_R to R_FILE

Output VALID_SOH_PACKET

PROCESS NAME: PROCESS RESP FIELD
PROCESS NUMBER: 1.5.2

] PROCESS DESCRIPTION:
IF RESP field value from a VALID_SOH_PACKET or RECEIVED_ACK_PACKET or INVALID_

DATA_LENGTH or RECEIVED_NAK_PACRET is greater than A_FILE value then
SET A = RESP field value
Output VALID_SOH_PACKET as TRANSMITTED_PRIMARY_NODE_TRANSPORT_PACKET

Output a value to A_FILE
ELSE output VALID_SOH_PACKET as TRANSMITTED_PRIMARY_NODE_TRANSPORT_PACKET

PROCESS NAME: GENERATE MAINTENANCE MODE PACKETS
PROCESS NUMBER: 1.6,.1
PROCESS DESCRIPTION:

UPON reception of a VALID_DLE_PACKET
Start maintenance operation protocol which issues MOP_PACKETS 3

PROCESS NAME: GENERATE MAINTENANCE COMMAND
PROCESS NUMBER: 1.6.2

362

!’I;_ﬁwtﬂ:;i T —r—— T —— ——

PROCESS DESCRIPTION:
OUTPUT‘a TRANSMIT_DLE_PACKET on input of an ENTER_MAINTENANCE_MODE_COMMAND
with the following format: DLE + COUNT + FLAGS + FILL + FILL + ADDR +
BLKCK1 + DATA + BLKCK2

PROCESS NAME: AD
PROCESS NUMBER: 1.
] PROCESS DESCRIPTION:

IF QSYNC set in last packet then
Add 4 SYNC bytes to the following packets depending on which is the next
packet to arrive: NAK_PACKETS, ACK_PACKET, REP_PACKET, MOP_PACKET,

TRANSMIT_DLE_PACKET

Reset QSYNC bit once the 4 SYNC bytes have been added to the appropriate
packet

Add 4 SYNC bytes to the following packets at all times: STACK_PACKET,
and STRT_PACKET

Output ENQ/DLE_SYNC_PACKET

ELSE add 4 SYNC bytes to the following packets at all times: STACK_PACKET,
and STRT_PACKET
Output ENQ/DLE_SYNC_PACKET

D 4 SYNC BYTES TO PACKET IF QSYNC
7.1

PROCESS NAME: COUNT DATA FIELD ADD BLKCK2 AND COUNT

PROCESS NUMBER: 1.7.2

PROCESS DESCRIPTION:

IF TRANSMIT_PACKRET and RECELVE_PACKET present then
Accept incoming TRANSPORT_TO_LINK_DATA_PACKET
Determine the number of bits in the TRANSPORT_TO_LINK_DATA_PACKET
Put this number in the count field and use it to

Generate BLKCK2
Output NOHEADER_DATA_PACKET

ELSE Null
PROCESS NAME: ADD REMAINING HEADER FIELDS
PROCESS NUMBER: 1.7.3

PROCESS DESCRIPTION: . .
TO NOHEADER _DATA_PACKET add ADDR field, NUM field, FLAGS field, RESP field,

and SOH field
} IF COUNT field is less than or equal to 4 SYNC bytes then

Output SHORT_DATA_COUNT
ELSE output LONG_DATA_COUNT

PROCESS NAME: SET QSYNC BIT
PROCESS NUMBER: 1.7.4

i 363

e e ade, sty

PROCESS DESCRIPTION:
IF Input is PAD/STRT_PACKET or STACK_PACKET then
Set select bit and
Qutput QSYNC_ENQ/DLE_PACKET
Output QSIYNC
ELSEIF Input is SHORT_DATA_COUNT then
Set select bit and
Output QSYNC_DATA_PACKET
ELSE output QSYNC_ENQ/DLE_PACKET

COUNT HEADER FIELD AND ADD BLRCK1

PROCESS NUMBER: 1.7.5

PROCESS DESCRIPTION:
TO LONG_DATA_COUNT and QSYNC_DATA_PACKET add BLKCK1

Output LINK_DATA_PACKET

PROCESS NAME:

PROCESS NAME: PIGGYBACK~ACKNOWLEDGE RECEIVED, SET RESP

PROCESS NUMBER: 1.7.6

PROCESS DESCRIPTION:

ADD T_FILE value to LINK_DATA_PACKET
Clear SACK_FILE
Output PIGGYBACK_LINK_DATA_PACKET

PROCESS NAME: CHECK MODULO 256
PROCESS NUMBER: 1.7,7

PROCESS DESCRIPTION:
IF -255 < (A +1 - V) < 1 and HOLD_TABLE contains data packet entries then

Read off and delete first data packet entry from top of table.
Output as <256_LINK_PACKET
ELSEIF 1 < (A + 1 - V) < 256 and HOLD_TABLE contains data packet entries then
Read off and delete first data packet entry from top of table
Output as <256_LINK_PACKET
ELSEIF -255 < (A +1 -V) <lorl < (A+1 -V) < 25 then
Output PIGGYBACKED_LINKED_DATA_PACKET as <256_LINK_PACKET
ELSE output PIGGYBACKED_LINKED_DATA_PACKET to bottom of HOLD_TABLE

o St s e,

PROCESS NAME: INCREMENT PACKET COUNT
PROCESS NUMBER: 1.7.8

PROCESS DESCRIPTION:

IF V < 256 then

V=Vv=+1

T=V+1

Assign NUM = V

364

.
B ARG s ———————— .
" . . j

{ Output COUNTED_LINK_DATA_PACKET
Update V_FILE and T_FILE

ELSE V = 1
T=2
Assign NUM = V
Output COUNTED_LINK_DATA_PACKET
Update V_FILE and T_FILE

PROCESS NAME: CHECK RETRANSMIT

PROCESS NUMBER: 1.7.10
PROCESS DESCRIPTION:

IFT-V =1 then
Output COUNTED_LINK_DATA_PACKET to NOSYNC_PRIMARY_TO_SECONDARY_DATA_

PACKET
ELSE output START flag

PROCESS NAME: ADD 4 SYNC BYTES TO DATA PACKET IF QSYNC OR INIT

PROCESS NUMBER: 1.7.11

PROCESS DESCRIPTION:

IF Input is a QSYNC flag or V_FILE value of 1 or the first packet of the
RETRANSMIT_PACKETS then
Add 4 SYNC bytes and
Output as PRIMARY_TO_SECONDARY_DATA_PACKET

ELSE output as PRIMARY_TO_SECONDARY_DATA_PACKET

PROCESS NAME: LOAD AND DELETE MEMORY

PROCESS NUMBER: 1.7.12

PROCESS DESCRIPTION:

IF COUNTED_LINK_DATA_PACKET NM field value is greater than the A_FILE value
then
Load COUNTED_LINK_DATA_PACKET to MEMORY

ELSEIF R_FILE value is same as a recorded COUNTED_LINK_DATA_PACKET then
Delete all COUNTED_LINK_DATA_PACKETS in MEMORY with NUM file values

less than or equal to the new R_FILE value

ELSE receive g8 START flag then
Output all recorded COUNT_LINK_DATA_PACKETS as RETRANSMITTED_PACKETS

PROCESS NAME: IF STRT, STACK, OR DATA_PACKET THEN START TIMER

PROCESS NUMBER: 1.8.1
PROCESS DESCRIPTION:
IF Input = QSYNC_ENQ/DLE_PACKET, STRT_PACKET, or STACK_PACKET then

Start TIMER
Send LINK_AND_MODEM_CONTROL = ENABLE_LINK

365

Send a block to the driver through the use of the TRANSMIT_A_BLOCK_
COMMAND, it will be outputted as PRIMARY_OUTGOING_BIT_STREAM_TO_
DRIVER
ELSEIF Input = PRIMARY_TO_SECONDARY_DATA_PACKET then

Start TIMER

Send LINK_AND_MODEM_CONTROL = ENABLE LINK
Send a block t the driver through the use of the TRANSMIT_A_BLOCK_

COMMAND, it will be outputted as PRIMARY_OUTGOING_BIT_STREAM_TO_

DRIVER
Send PRIMARY_TO_SECONDARY_DATA_PACKET NUM value to reset TIMER process

ELSEIF Input = RESET_SIGNAL then

Reset the TIMER
ELSEIF TIMER times out the
Output TIMEOUT

ELSE Input = STOP_LINK then .
SZﬁd last PRIMARY_OUTGOING_BIT_STREAM_TO DRIVER packet with an ENABLE_

LINK then
Send a DISABLE_LINK to the driver

PROCESS NAME: RESET TIMER

F{OCESS NUMBER: 1.8.2
PROCESS DESCRIPTION:
IF Input new A_FILE value then
Compare with last recorded NUM value

IF equal then

Reset TIMER
ELSE Null
ELSEIF Input is RECEIVED_STRT_PACKET then
Reset TIMER
ELSE Input is RECEIVED_STACK_PACKET then
Reset TIMER
PROCESS NAME: COUNT ERRORS (TIME)
PROCESS NUMBER: 1.8.3

PROCESS DESCRIPTION:
EACH time a TIMEOUT occurs then
Increment COUNTER
IF COUNTER = 7 then
Output PERSISTENT_ERROR
Reset COUNTER

ELSE Null
PROCESS NAME: IDENTIFY TIMEOUT PACKET
PROCESS NUMBER: 1.8.4

PROCESS DESCRIPTION:

366

Bage Rl - e

IF TIMEOUT due to DATA_PACKET then
Output TIMEOUT_DATA

ELSEIF TIMEOUT due to STRT_PACKET then
Output TIMEOUT_STRT

ELSE output TIMEOUT_STACK

PROCESS NAME: TRANSMIT BIT STREAMS

PROCESS NUMBER: 2.0
PROCESS DESCRIPTION:
USE the PHYSICAL LEVEL PROTOCOL to transmit the PRIMARY OUTGOINGB% REAM_

TO_DRIVER to the SECONDARY NODE and the SECONDARY OUTGOING_
TO_DRIVER to the PRIMARY NODE,

PROCESS NAME: EXECUTE HDLC PROTOCOL AT SECONDARY NODE

PROCESS NUMBER: 3.0

PROCESS DESCRIPTION:
USE the LINK LEVEL PROTOCOL to transmit an error free SECONDARY_INCOMING_BIT

STREAM_FROM_DRIVER to the SECONDARY NODE and to transmit an error free
RECEIVED_SECONDARY_NODE_TRANSPORT_PACKET to the PRIMARY NODE,

367

M eyt e 1 71t 73 s

jomibodngain-ad

This appendix contains a compilation of the EWNET hardware and
software design features using a format required for use by the Digital

Equipment Corporation.

Page
General InformatioNeceesesceconcssasesossssennsssasassssssancccacanscssnss 369
Link DescriptiONScecesssscresrsscsorsrsosscsssssssssesnssvesssssssssessse 314
Host DeSCripLiONSececcesesessenccsssossasascscassesasnsssocscsscsscsssnses J91
Node DeSCriptiONSecesccsscsocsssenstssscessssossscsscascsscssassscssncees 405

Peripheral Descriptions....---..-...-....-.......-.....-....--.......... 408

368

Electronic Warfare Network (EWNET) Profile

for

Robins AFB, Georgia

18-DEC-81

Revision 1

Developed by:

Approved by:

Robert H,.

Stokes

Network Profile

“Customer Information”
Robins AFB
c/o Mr. Joe Black
WR-A1C / MMRR
Robins Air Force Base, Georgia 31098
Customer Network Manager: Mr. Roger Boan

Location: Robins Air Force Base

“Digital Account Management”

Account Manager: Steven Jones
Software Specialist: Jim Bell
Office: ATD 2
District Software Manager: Ed Converse

“Application Information”

The network will be used in an application doing task-to-task
communication, peripheral sharing, and file transfers as described in
AFIT Thesis "Design of a Local Computer Network for the Robins AFB,
Electronic Warfare Division Engineering Branch Laboratory™ by Robert H.
Stokes., There exist special modifications to DECnet in this application
which constitutes overall functionality constraints and critical

factors.,

370

“Potential Problem Areas”

Does proposed network cross area, region, district, or branch

boundaries?

NO

Are any phased installation / warranty problems foreseen?

NO

Any network-related special purpose hardware or software involved?
YES

Fiber optic link and modems for high speed and bandwidth

“Overall Description”

Digital Supplied Customer Supported

Reeponsible Product Line: GSG

Other Product Lines: None

Numter of Nodes: 14 Phase II
3 Phase 111

Maximum number of links on any node: 7

Operating svstems: yMsS
RSX-11M

371

AD=A119 253

UNCLASSIFIED

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO=-ETC F/§ 972
DESIGN OF A LOCAL COMPUTER NETWORK FOR THE ROBINS AFB ELECTRONI==ETC (U}
DEC 81 R H STOKES

AFIT/GCS/EE/81D-16

4»

"DECnet Functionality to be used”

Task-to-Task

File Transfer

File Access

Batch / Command File Submission

Batch / Command File Execution
Down-Line System Loading

Down-Line Task Loading

Network Command Terminals (homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone

Auto-Dial Telephone

Multidrop DDCMP

Routing (Satellite)

Adaptive Routing

372

Present
YES NO
X
X
X
X
X
X
X
X
X
X
X

Future
YES NO
X
X
X
X
X
X
X

uoijeundrjuo) jaumig 1eIIIUl 1-d dJandry

sommt)y N, MY G0 son

splouhsy Ksaap sUOL Yi-4) ysoH 1 Yo7
il oL/
of Wuiy
- apon
F W 0014 !
Jnopiy moy BE-UAV A4 s . 38t
Jﬁ—.—
v
Asuey ey VIIl=d4d Q1 o

214 RUTT

plouogon Aqqog -0yt sop

gg1-01v a1 ysun

313

sSUSOyL S1uua(

oL/t

s11-0v a1 son 7 z
dooyg

o i puz
(4}
69-WIV 1 YHoH a ™ o

ABrea usoq

_ L i§ 2 \ sdutuuag Kaaey
s 14 2% \ 29pouyoE-21030
ol i 23 \ 4331aae) Aey
11 :8 o3 \ UgIIN YIIN
2 4 oo \ yovwg qog
_ €1 oy 92\ x0) Aiep
” v] 8‘ doysta g1

i ? yeon doquny apun

SYS0a/S°1oM3 @1 sl

e nu1

cG-8 a0l soy

9-Wiv idl sl

[}
~i *E.-c

oL/

PRI apoy
H °
ov-wIV 01 190 F17 K TLAN soons

x—._._ pag

(4!
S114 4] sl it 1
<4‘ b

SZI-0Iv a1 sl

NINININININININININININN N
!

P TR WA e o s s e

Link D .

Link Number: 1

Node Name: First Floor Node Linked to Node Name: ARC

Interface: DMCl1-AR
DMCl11-MA

Bootstrap:

Operating System: RSX-11M

Bootstrap:

Line Speed: IM Baud
“Link Characteristics”
Serial Synchronous Full~Duplex Local
“Expected Data Throughput”
Average: 1M baud
Peak: IM baud
Size of Average Data Message: 512 Bytes
Expected Line Utilization: 50%
“DECnet Functionality to be Used”
Present

YES NO
Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading
Down~Line Task Loading
Network Command Terminals (Bomogeneous) X
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone X
Auto~-Dial Telephone X
Multidrop DDCMP X
Routing X
Adaptive Routing X

Interface: DMCl1-AR
DMC11-MA

Operat'ng System: RSX-1IM

Future

YES NO

P4 DDt M4

Link T iot]
«r Link Number: 2
Node Nsme: First Floor Node Linked to Node Name: F-15 TEWS
Interface: DMCl1-AR Interface: DMCl1-AL
DMC11-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS

Link Speed: 1M baud

“Link Characteristics”™

Serial Synchronous Full~Duplex Local

“Expected Data Throughput™

Average: 1M baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50%

“DECnet Functionality to be Used”

Present

YES NO
Task-to~-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading
Down-Line Task Loading
Network Command Terminals (Homogeneous)
Network Command Terminals (hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing

pd >4 24 4 M4

™

4 DM

<. 375

Future
YES

NO

M MMM M

Link Number: 3

Node Name: First Floor Rode Linked to Node Name: APR-38

Interface: DMCl1-AR Interface: DMC1l1-AL
DMC11-MA DMC11-MA

Bootstrap: Bootstrap:

Operating System: RSX-11M Operating System: VMS

Link Speed: 1M baud

“Link Characteristics™
Serial Synchronous Full Local
“Expected Data Throughput™

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

“DECnet Functiorality to be Used”

Present Future

YES NO YES NO
Task-toTask
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down-Line Task Loading X
Network Commsnd Terminals (Homogeneous)
Network Commsand Terminals (hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adsptive Routing

M4 P M

M MPede M
M MMM M

376

B T e

v TR S —— ———
b
A

Lick D o

Link Number: 4 1

Node Name: First Floor Node Linked to Node Name: EF-111A

Interface: DMCl1-AR Interface: DMCll-AL
DMC11-MA DMC11-MA

Bootatrap: Bootstrap:

Operating System: RSX-11M Operating System: VMS

Link Speed: 1M baud

“Link Characteristics™

Serial Synchronous Full-Duplex Local

“Expected Data Throughput™

Average: iM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

“DECnet Functionality to be Used™

Present

YES NO
Task-to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading
Down-Line Task Loading
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDMMP
Routing X
Adaptive Routing

>4 >4 >4 M4

R

M MMM M

n

i, vl s S BN

Link D ot

link Number: 5

Node Name: Second Floor Node Linked to Node Name: ALQ-131
Interface: DMCl1-AR Interface: DMC1l1-AL

DMC11-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11IM Operating System: VMS
Link Speed: 1M baud
“"Link Characteristics™
Serial Synchronous Full-Duplex Local

“Expected Data Throughput”™

Average: IM baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

"DECnet Functionality to be Used”

Present Future
YES NO YES
Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-l.ine Task Loading X

Network Command Terminals (Homogeneous)

Network Command Terminals (Hetergeneous)
Auto-Answer Telephone

Avto-Dial Telephone

Multidrop DDCMP

Routing _ X
Adaptive Routing

M MMM M

NO

P MM M

Liok D e

Link Number: 6

Node Name: Second Floor Node Linked to Node Name: ALQ-155

Interface: DMCl11-AR Interface: DMCl11-AL
DMC11-MA DMC11-MA

Bootstrap: Bootstrap:

Operating System: RSX-11M Operating System: VMS

Link Speed: 1M baud
“Link Characteristics”
Seria: Synchronous Full-Duplex Local

“Expected Data Throughput™

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

“"DECnet Functionality to be Used™

Present Future
YES NO YES NO
Task~to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing

> 04 P4 M

M M M
M MMM M

379

T T e e e o -) TN

Link D it

< Link Number 7

Node Name: Second Floor Node Linked to Node Name: ALQ-119

Interface: DMCl1-AR Interface: DMCl11-AL

, DMC11-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS

“Link Characteristics”

Serial Synchronous Full-Duplex Local

“Expected Data Throughput™

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

“DECnet Functionality to be Used”

Present Future
YES NO YES NO
Task-to~Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous) X
: Auto-Ansver Telephone
’ Auto~-Dial Telephone
; Multidrop DDCMP
Routing X
Adaptive Routing

Lol B]
>4
™

M MMM
M MMM

A e it doams cnia M

N AR AP s <ot mrocmnas . o sy

Link D s
-y
«» Link Number: 8
Node Name: Second floor Node Linked to Node Name: ALR-69
Interface: DMCl11-AR Interface: DMCl1-AL
DMC11-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: 1M baud
“"Link Characteristics”
Serial Synchronous Full~Duplex Local

“Expected Data Throughput”

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

] “DECnet Functionality to be Used”

Present Future
NO YES NO
Task~to-Task

File Transfer

File Access

Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X ;
Down-Line Task Loading X j
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone

Auto-Dial Telephone

Multidrop DDCMP

Routing X
Adsptive Routing

b4 54 54 54 54 3
wn

L]
»

M M4
M MMM

381

z' Link Number: 9

Node Name: Second Floor Node Linked to Node Name: EWOLS / ECSAS
Interface: DMCl1-AR Interface: DMCI1-~AL
DMC11-MA DMC11-MA
Bootstrap: Bootstrap: :
Operating System: RSX-11M Operating System: VMS
Link Speed: IM baud

“Link Characteristics”™

Serial Synchronous Full-Duplex Local

“Expected Data Throughput™

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

“DECnet Functionality to be Used”

Present Future

YES NO YES NO
Task~to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down~Line Task Loading " X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous) X
Auto~-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
1 Routing X
Adaptive Routing

pd M
>4
d

M MM
o B I

382

R S AN i ot A A g s A i a2 i~ - i on e

Link D o

Link Number: 10

Node Name: Third Floor Node Linked to Node Name: B-52

Interface: DMCl1l-AR Interface: DMCl1-AR
DMC11-MA DMC11-MA

Bootstrap: Bootstrap:

Operating System: RSX-11M Operating System: RSX-11M

Link Speed: 1M baud
“"Link Characteristics”
Serial Synchronous Full-Duplex Local

“Expected Data Throughout™

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 2

“DECnet Functionality to be Used”

Present Future

YES NO YES NO
Task-to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down~Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone
Auto Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing

Lo B

M MM 4
Lol >

™

383

A P T A P Y R~ R A e A 0

ey

a0

Ligk D .

Link Number: 11

Node Name: Third Floor Node Linked to Node Name: ALR-62
Interface: DMCl1-AR Interface: DMC11-AL

DMC11-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: 1M baud

“Link Characteristics™
Serial Synchronous Full-Duplex Local
“Expected Data Throughput”

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

“"DECnet Functionality to be Used”

Task-to-Task

File Transfer

File Access

Batch / Command File Submission

Batch / Command File Execution
Down-Line System Loading

Down-Line Task Loading

Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone

Auto-Dial Telephone

Multidrop DDCMP

Routing

Adaptive Routing

384

Present Future
YES NO YES
X
X
X
X
X
X
X
X
X
X
X
X
X
X

NO

bl

M DM

e £ M NSRS S = s SNl 345

Link D A

. Link Number: 12

Node Name: Third Floor Node Linked to Node Name: ALR-62

Interface: DMCl1-AR Interface: DMCl1-AL
DMC11-MA DMC11-MA
Bontstrap: Bootstrap:
Operating System: RSX-11M Operating System: VMS
Link Speed: 1M baud J

“"Link Characteristics™

Serial Synchronous Full-Duplex Local

“Expected Data Throughput™

Average: IM baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 2

"DECnet Functionality to be Used™

Present Future

YES NO YES NO
Task-to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing

24 D4 >4 D4 4

M MMM M
M MM P 24

385

<r

Link Number: 13

Node Name: Third Floor Node Linked to Node Name: FLTS

Interface: DMC11-AR Interface: DMC11-AR
DMC11-MA DMCLl1-MA

Bootstrap: Bootstrap:

Operating System: RSX-11M Operating System: RSX-11M

Link Speed: 1M baud

“Link Characteristics”
Serial Synchronous Full-Duplex Local

“Expected Data Throughput™

Average: IM baud

Peak: 1M baud

Size of Average Data Message: 512 bytes j
Expected Line Utilization: 50 2

“DECnet Functionality to be Used”

Present Future

YES NO YES NO
Task-to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading
Down-Line Task Loading
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing

P4 D 24 4 M
™
8t MM

M MM
MM P M

]

L L e

T T,

Link D s

Link Number: 14

Node Name: Third Floor Node Linked to Node Name: ALQ-125

Interface: DMCl1-AR Interface: DMCl1-~AR
DMC11-MA DMC11-~MA

Bootstrap: Bootstrap:

Operating System: RSX-11M Operating System: RSX-11M

Link Speed: 1M baud

"Link Characteristics™
Serial Synchronous Full-Duplex Local

“Expected Data Throughput”

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 50 %

"DECnet Functionality to be Used”

Present Future

YES NO YES NO
Task-to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephomne
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing

R B I
>
>

M Pad M
M MM

387

Link D ipti
‘ Link Number: 15

Node Name: Third Floor Node Linked to Node Name: Second Floor Node

Interface: DMCl11-AR Interface: DMCl1-AR
DMC11-MA DMC11-MA

Bootstrap: Bootstrap:

Operating System: RSX-1IM Operating System: RSX-11M

Link Speed: IM baud

“Link Characteristics™
Serial Synchronous Full~Duplex Local
“Expected Data Throughput”™

Average: 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 100 2

“DECnet Functionality to be Used™ ﬂ

Present Future

YES NO YES NO
Task-to-Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous)
Netvork Command Terminals (Hetergeneous)
Auto-Answer Telephone
Auto_Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing X

>4 e > e M
aiiiahiich

M e M
MM M

388

Link D . e
. » Link Number: 16
{ Node Name: Second Floor Node Linked to Node Name: First Floor Node
Interface: DMCl11-AR Interface: DMCl1l-AR
DMC11-MA DMCl1-MA
Bootstrap: Bootstrap:
Operating System: RSX-11M Operating System: RSX-11M

Link Speed: IM baud

“Link Characteristics”

Serial Synchronous Full-Duplex Local

“Expected Data Throughput”™

Average!? 1M baud
Peak: 1M baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 100 2

“DECnet Functionality to be Used”

Present Future
YES NO YES NO
Task-~to~Task
File Transfer
File Access
Batch / Command File Submission
Batch / Command File Execution
Down-Line System Loading X
Down_Line Task Loading X
Network Command Terminals (Homogeneous)
Network Command Terminals (Hetergeneous)
Auto-Answer Telephone
Auto-Dial Telephone
Multidrop DDCMP
Routing X
Adaptive Routing X

e >4

MR M
e q M

",\

389

E o ST

L e e
i
¥
H -
<« Link Number: 17
Node Name: First Floor Node Linked to Node Name: Third Floor Node
Interface: DMCl11-AR Interface: DMCl11-AR
DMC11~-MA DMC11-MA
Bootstrap: Bootstrap:
Operating System: RSX-~11M Operating System: RSX-11M
Link Speed: 1M baud
“Link Characteristics™
Serial Synchronous Full-Buplex Local
“Expected Data Throughput”
Average: IM baud
Peak: IM baud
Size of Average Data Message: 512 bytes
Expected Line Utilization: 100 2
“DECnet Functionality to be Used”
Present Future
YES NO YES NO
Task-to-Task X
File Transfer X
File Access X
Batch / Command File Submission X
Batch / Command File Execution X
Down-Line System Loading X
Down-Line Task Loading X
Network Command Terminals (Homogeneous) X X
Network Command Terminals (Hetergeneous) X
Auto-Answer Telephone X X
Auto~Dial Telephone X X
Multidrop DDCMP X X
Routing X
Adaptive Routing X
{

390

——

Hoat D . s
Host Name: ARC Host Number: 1
Location: Robins AFB
Expected Date On-Line: 1983

. :
Operating System: RSX-11M DECnet Version: 3.0

Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780 ,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
CPU: PDP-11/34 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
, 3 VT-100 9600 baud
i
Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 TJE-16
1 RIM-02
1 LP-11
Total Number of Links? 1
Total Throughput: (Bits/Second)
IN OUT
Average: 125 K 125 K
Peak: 125 K 125 K
Expected CPU Utilizatiom by DECamet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable under %
Link Description 1.

T Y

Host Name: F-15 TEWS Host Number: 2
Location: Robins AFB
Expected Date On-Line: Jan 1982

Operating System: VMS DECpnet Version: 1.3
Languages Supporied: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? YES
D/A Conversion? YES
Graphics? YES
27 80,3780 ,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? YES
CPU: VAX~11/780 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
8 vI-100 960C baud
1 vTr-125 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 Lp-11
1 TEE-16
2 REM-03
1 1A-120

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average: - 125 K 125 K j
Feak: 125 K 125 K

Expected CPU Utilization by DECnet? 50 X
“Rost Application”

This host will use DECnet for all uses listed as applicable under
Link Description 2,

392

Host Name: APR-38
Location: Robins AFB
Expected Date On-Line: Sept 1982

Host Number: 3

Operating System: VMS DECnet Version: 1.3

Languages Supported: Fortran and Pascal
Other Layered S/W Products: '

A/D Scanning? YES
D/A Conversion? YES
Graphics? YES
2780,3780,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
CPU: VAX-11/780 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
8 VI-100 9600 baud
1 VI-125 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LP-11
1 TEE-16
2 REM-03
1 LA-120

Total Number of Links? 1

Total Throughput: (Bits/Second)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet? 50 %

"Host Application”

This host will use DECnet for all uses listed as
Link Description 3.

applicable under

Host Name: EF-111A Host Number: &
Location: Robins AFB
Expected Date On-Line: Dec 1982

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? YES
D/A Conversion? YES
Graphics? YES
2780,3780,HASP,3271,SRA? NO

Other Interrupt Intensive S/W? YES

CPU: VAX-~11/780 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds

4 VI-100 9600 baud

1 vI-125 9600 baud
Other Peripherals:

Number Type

1 DR-11

1 LP-11

2 TEE-16

2 REM-03

1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Seconds)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECpet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable under
Link Description &4,

39

B I . L.
Host Name: ALQ-131 Host Number: 5
Location: Robins AFB

Expected Date On-Line: 15-Jun-8l

Operating System: VMS DECnet Version: 1,3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780 ,HASP,3271,SNA? NO
Other Interrupt Intemsive S/W? NO
CPU: VAX-11/780 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
8 VI-100 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LpP-11
1 TEE-16
1 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable
Link Description 5.

395

under

R v e goar it un c oy <o

T 4."
i D iof;
Host Name: ALQ-155 Host Number: 6
Location: Robins AFB
. Expected Date On-Line: 15-Jun-81
Operating System: VMS DECnet Versiom: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:
A/D Scanning? NO
D/A Conversion? NO
Graphics NO
2780,3780,HASP,3271,SNA? NO
Other Interrupt Intemsive S/W? NO
CPU: VAX-11/780 Main Memory: 1024 K bytes M0OS
Terminals: Number Type Speeds
6 VT-~100 9600 baud
Other Peripherals:
Number Type
1 DR~11
1 LP~11
1 TEE-16
1 REM-03
1 LA-120
Total Rumber of Links? 1
Total Throughput: (Bits/Second)
IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable under
Link Description 6.

Host Name: ALQ-119
Location: Robins AFB
Expected Date On-Line: 1983

Operating System: VMS ‘
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Couversion? NO
Graphics? NO
27 80,3780 ,HASP,3271,S5NA? NO

Other Interrupt Intensive S/W? NO

CPU: VAX-11/780

Terminals: Number Type Speeds

4 VI-100 9600 baud
Other Peripherals:

Number Type

1 DR-11

1 LP-11

1 TEE-16

1 REM-03

1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average? 125 K 125 K
Peak: 125 X 125 K

Expected CPU Utilization by DECnet: 50 Z
"Host Application”

This host will use DECnet for all uses listed as
Link Description 7.

397

Host Number: 7

DECnet Version: 1.3

applicable

Main Memory: 1024 K bytes MOS

under

Host Name: ALR-69 Host Number: 8
Location: Robins AFB
Expected Date On-Line: Jan 1982

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780,HASP,3271,SNA? NO
Other Interrupt Intemsive S/W? NO
CPU: VAX-11/780 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
4 vI-100 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 LP-11
1 TEE-16
2 REM-03

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

"Host Application”

This host will use DECnet for all uses listed as ayplicable under
Link Description 8.

398

oy panghamnit P o o - 35

ey

Host Name: EWOLS/ECSAS Bost Number: 9
Location: Robins AFB
Expected Date On-Line: 15-Jun-81

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

!
!
|
A/D Scanning? NO)
D/A Conversion? NO i
Graphics? NO !
27 80,3780 ,HBASP,3271,5NA? NO '
Other Interrupt Intensive S/W? NO !
1
CPU: VAX-11/780 Main Memory: 1024 K bytes MOS %
1
Terminals: Number Type Speeds i
22 VI-100 9600 baud |
Other Peripherals: f
Number Type ;
1 LP-11 |
6 DR-11 ‘
1 TEE-16 :
2 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %
“Host Application”

This Host will use DECnet for all uses listed as applicable under
Link Description 9,

399

Y

»

Host Name: B-52 Host Number: 10
Location: Robins AFB
Expected Date On-Line: 1983
Operating System: RSX-11M DECunet Version: 3.0
Languages Supported: Fortran and Pascal

Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780,HASP,3271,5NA? NO
Other Interrupt Intensive S/W? NO
CPU: PDP-11/34 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
2 VT-100 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LP-11
1 TJE-16
1 RIM~02
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable under

Link Description 10.

400

T NS - fhitbniisddiogoin GRA T S e SR
B

—

e Host Name: ALR-62 Host Number: 11
Location: Robins AFB
Expected Date On-Line: Dec 1981

Operating System: VMS DECnet Version: 1.3
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
27 80,3780 ,HASP,3271,SNA? NO
Other Interrupt Intemsive S/W? NO
CPU: VAX-11/780 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
6 VT-100 9600 baud
Other Peripherals:
' Sumber Type
1 DR-11
1 LP-11
1 TEE-16
1 REM-03
1 LA-120

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Averrge: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable wunder
Link Description 11.

Host Name: ALR-46
Location: Robins AFB
Expected Date On-Line: Feb 1982

Operating System: VMS
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

Host Number: 12

DECnet Version: 1.3

A/D Scanning? NO
D/A Conversion? .{¢]
Graphics? YES
2780,3780 ,HASP,3271,5NA? NO
Other Interrupt Intensive S/W? NO
Terminals: Number Type Speeds
6 VI-100 9600 baud
2 VI-125 9600 baud
1 TEK-4027 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LP-11
1 TEE-16
2 REM-03
1 LA-120
Total Number of Links: 1
Total Throughput: (Bits/Second)
IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 %

“Host Application”

This host will use DECnet for all uses listed as applicable under

Link Description 12.

402

AT R, 4T A e e . oy L

s - Host Name: FLTS Host Number: 13
Location: Robins AFB
Expected Date On-Line: Sept 1982

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:
A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
CPU: PDP-11/34 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
4 VT-100 9600 baud
Other Peripherals:
Numbez Type
1 DR-11
1 LA-120
1 TJE-16
1 RIM-02
1 LP-11

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN ouT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 2

“Host Application”

This host will use DECnet for all uses listed as applicable under
Link Description 13.

Host Name: ALQ-125 Host Number: 14
Location: Robins AFB
Expected Dgte On-Line: Nov 1981

Operating System: RSX-11M DECnet Version: 3.0
Langusges Supported: Fortran and Pascal
Other Layered S/W Products:
A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780 ,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
CPU: PDP-11/34 Main Memory: 1024 K bytes MOS
Terminals: Number Type Speeds
4 vVT-100 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 TJIE-16
1 RIM-02
1 LP-11

Total Number of Links: 1

Total Throughput: (Bits/Second)

IN 0UT
Average:® 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 50 2

“Host Application”

This host will use DECnet for all uses listed as applicable under
Link Description 14,

404

Node D .y
Node Name: First Floor Node Node Number: 1
Location: Robins AFB

Expected Date On-Line: 1983

Operating System: RSX-11M DECnet Version: 3.0

Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
~ D/A Conversion? NO
Graphics NO
27 80,3780 ,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
Cr: PDP-11/70 Main Memory: 2048 K bytes MOS
Terminals: Number Type Speeds
2 vVI-100 96090 baud
Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 LP-11
3 RWM-02

Total Number of Links: 3

Total Throughput: (Bits/Second)

IN ouUT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 100 2

"Node Application”

This node will use DECnet for all uses listed as applicable under
Link Description 15, plus act as an EWNET Routing node. ?

405

Node D . .
Node Name: Second Floor Node Node Number: 2
Location: Robins AFB

Expected Date On-Line: 1983

Operating System: RSX-1IM DECnet Version: 3.0

Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Conversion? NO
Graphics? NO
2780,3780,HASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
CPU: PDP-11/70 Main Memory: 2048 K bytes MOS
Terminals: Number Type Speeds
2 vI-100 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 Lp-11
3 RWM~03

Total Number of Links: 3

Total Throughput: (Bits/Second)

IN oUT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECuet: 100 %
“Node Application™

This node will use DECnet for all uses listed as applicable under
Link Description 15, plus act as an EWNET Routing node.

406

Node Description

Node Name: Third Floor Node Node Number: 3
Location: Robins AFB
Expected Dite On-Line: 1983

Operating System: RSX-11M DECnet Version: 3.0
Languages Supported: Fortran and Pascal
Other Layered S/W Products:

A/D Scanning? NO
D/A Counversion? NO
Graphics? NO
2780,3780,AASP,3271,SNA? NO
Other Interrupt Intensive S/W? NO
CPU: PDP~11/70 Main Memory: 2048 K bytes MOS
Terminals: Number Type Speeds
2 vT-100 9600 baud
Other Peripherals:
Number Type
1 DR-11
1 LA-120
1 LP-11
3 RWM-03

Total Number of Links: 3

Total Throughput: (Bits/Second)

IN OUT
Average: 125 K 125 K
Peak: 125 K 125 K

Expected CPU Utilization by DECnet: 100 %

“Node Application”

This node will use DECnet for all uses listed as applicable
Link Description 15, plus act as an EWNET Routing ncde,

under

vT-100
VI-125
TEK-4027
LA-120
RIM-02
RWM-03
REM-03
TEE-16

TJE-16

Lp-11
DR-11

Beripheral Descriptions (Ref. 3:18-20)

Standard CRT with Advance Video

Graphics CRT

Graphics CRT

180 Character Hard-Copy Terminal

67 M byte Freestanding Disc, Controller, and Drive
PDP-11/34

67 M byte Freestanding Disc, Controller, and Drive
PDP-11/70

67 M byte Freestanding Disc, Controller, and Drive
VAX-11/780

800/1600 BPI, 45 IPS, 9 Track Mag Tape Controller and
Drive. VAX-11/780

800/1600 BPI, 45 IPS, 9 Track Mag Tape Controller and
Drive. PDP-11/70 and PDP-11/34

600 LPM Line Printer

DMA Unibus Interface

408

O
.

Mr. Robert H. Stokes was born on November 2, 1948, in Athens,
Tennessee., In 1967, he graduated from McMinn Central Righ School in
Englewood, Tennessee. He served with the United States Air Force as a
communications specialist in Europe and was honorably discharged in
1972. He attended the Tennessee Technology University from which he
received a Bachelor of Science in Electrical Engineering degree in 1975.

Following graduation, he accepted employment with the Electronic Warfare i
Division of the United States Air Force as a civilian electronic
engineer working on the F-15 and F-4E Tactical Electronic Warfare
Systems, Between June 1977, and December 1978, he attended Georgia
College and in December of 1978, he received a Master of Science in
Adminstration degree. He entered the Air Force Institute of Technology
in June 19&.
Perminate address: Highway 411, South
Etowah, Tennessee 37331

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF%%%Dclgnigfg%ggNFsonu

T, REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AF1T/GCS/EE/81D-16 DALY
&, TITLE (and Subtitle) . TYPE OF REPORT & PERIOD COVERED
DESIGN OF A LOCAL COMPUTER NETWORK
FOR THE ROBINS AFB MS Thesis
ELECTRONIC WARFARE DIVISION 6. PERFORMING OG. REPORT NUMBER
ENGINEERING BRANCH LABORATORY
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)

Robert H. Stokes, Civ, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PﬂOGﬂAN ELEMENT. PROJECTY, TASK

. . AREA & WORK UNIT NUMBERS
Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, OH 45433

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
December 1981
13. NUMBER OF PAGES

423
5. SECURITY CLASS. (of this report)

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB, OH 45433

T4, MONITORING AGENCY NAME & AODRESS(if ditferent trom Controlling Office)

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

e S WS ——
16. ODISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ different from Report)

J; l;yﬂﬂ £ WOLAYLL |
18. SUPPLEMENTARY NOTES
{),HM,\ Dean for Reszarch ang
Approved for public release; IAW A‘%‘A'éo-n : Professional Developjnent
j Air Force Institute of Technotog} (ATC)

L 8 . SEP 1982

19. KEY WORDS (Continue on reverse gide if necessary and identify by block number)

Wright-Patterson AFB, OH 45433

Local Computer Network
X.25 Protocol

Computer Interfaces [
DECNET Protocol

20. ABSTRACT (Continue on reverse side If necessery end identity by block number)

See reverse

DD , 2%, 1473 eoimion oF 1 nov 63 15 oBsoLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

' UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

! Continuation of Block 20

A local computer for the Electronic Warfare Division Engineering Branch
Laboratory was designed-around a commercially available and supportable network
configuration. The requirements for this network were specified by interviewing

the engineers associated with the Engineering Branch Laboratory and then

an e et sakem s Abnen & <

translating the functional requirements inio a detailed set of hardware and
software system requirements. Structured Analysis was used to produce a

structured specification for application, transport, network, and data link i
protocol level requirements. Digital Equipment Corporation's 'DECnet'" Phase II
and Phase III network configurations were combined together to form this unique

Electronic Warfare Network (EWNET). The node network uses a loop topology with

a star of up to seven hosts connected to each node. The nodes are implemented

using Digital Equipment Corporation's PDP-11/70 computers. Initially, the net-

work will include fourteen Integrated Support Station computers which are either

Digital VAX-11/780s cr Digital PDP-11/34s. These computers will be connected to
the nodes using duplex fibier optic links supporting transmission rates up to
1 Mbs. The Phase II DECnet protocol was selected to provide the file transfer

and data transport protocols in conjunction with a basic routing algorithm at

each host, while the Phase III DECnet protocol was selected to proviae these
i functions at a higher level in the nodes. The selection of the above topology

in conjunction with the d-scribed protocol structure keeps any one host from

degrading the network if the host should fail. All Integrated Support Station

. e

common off-line functions, common databases, and commonly used support software |
tools are hosted on the node computer for easy, universal access, allowing for

a degree of standardization.

INCLASSIEIED
SECJRITY CLASSIFICATION OF T=© PAGE i hon Data Entered!

