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ABSTRACT

In this paper we will look at three proofs of the Weierstrass Approximation

Theorem. The first proof is in much the same form in which Weierstrass originally

proved his theorem. The next is due to Lebesgue. It is by far the easiest proof

to follow, with only a minimum knowledge of analysis required. The last arises

from probability and uses the Bernstein polynomials.

Secondly we look at a generalization of this theorem, called the Stone-

Weierstrass Theorem. This generalization was inspired by modern developments

in mathematics. The theorem deals with functions on a general compact space

rather than on a closed interval.
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INTRODUCTION

In 1885 Karl Weierstrass showed that every continuous
function in a closed interval can be uniformly approximated
by polynomials. This result is called the Weierstrass
Approximation Theorem.

Many mathematicians have since found new proofs of this
theorem, using techniques which arise from their particular
fields of interest. Some proofs give extra information
about the approximating polynomial, others do not. Some
require advanced knowledge of various fields, others can be
understood with a basic knowlege of analysis.

In this paper we will look at three proofs of the .
Weierstrass Approximation Theorem. The first proof is in
much the same form in which Weierstrass originally proved
his theorem. The next is due to Lebesgue. It is by far the
easiest proof to follow, with only a minimum knowledge of
analysis required. The last arises from probability and
uses the Bernstein polynomials.

Secondly we look at a generalization of this theorem,

called the Stone-Weierstrass Theorem. This generalization

o i e

was inspired by modern developments in mathematics. The

theorem deals with functions on a general compact space %

AT

rather than on a closed interval.
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I. PRELIMINARY REMARKS

Before we actually begin looking at the Weierstrass
Approximation Theorem we consider a preliminary lemma. It
shows that it is sufficient to prove the Weierstrass

Approximation Theorem on the closed interval (0,1].

Lemma
It is sufficient to prove the Weierstrass Approximation

Theorem for the special case [a,b] = [0,1].

Proof

If a<x<b, and x=a + (b - a)y, thenm 0 <y <1.

Let f be a continuous function on {a,b]. Set g(y) = f(x).

Then g is a continuous function on [0,1]. By hypothesis,
there exists a polynomial p such that |g(y) - p(y)| < ¢
for 0 <y < 1. Then

|£(x) - p[H]I <e

- a

for a < b, and p[g—-;] is a polynomial.
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II. PROOF DUE TO WEIERSTRASS

In 1885, Weierstrass proposed and solved the following:
If f(x) 1is a continuous function, is it possible to make
the error of approximation arbitrarily small by increasing
the degree of the approximating polynomial? By looking at
the three theorems in this section we see that the answer
to this question is yes; and we will show this in much the
same form as Weierstrass first proved it. These theorems

require knowledge of some graduate-level analysis.

Remark

It is sufficient to prove the Weierstrass Approximation
Theorem for the special case f(1) = £(0) = 0. For if we
were to prove the theorem using these conditions, we see
that for any continuous f on [0,1] we could let
g(x) = £(x) - £(0) - x[£(1) - £(0)] for O < x < 1.
Then g(0) = g(1) = 0, and if g can be obtained as the
limit of a uniformly convergent sequence of polynomials, it
is clear that the same is true for f, since f - g is a

polynomial.

Theorem 1
If £ 1is a continuous function on (0,1] and if g,
is a family of functions such that: '
a) g, 20;
b) For each e > 0 there exists a 6 > 0 such

¢
that Jltl>6 gn(t)dt < e if n 1is large;




c) J gn(t)dt = 1;
d) gy is even,
then (gn * f)(x) - £(x) uniformly on [0,1], where
(F » G)(x) 1is defined by (F » G)(x) = I F(x - t)G(t)dt,

if this integral exists.

Proof

Assume by the previous remark that £(0) = £(1) = 0.

Since f 1is continuous on [0,1], a closed interval,
f is uniformly continuous on ([0,1]. Furthermore, we
define £(x) to be zero for x outside (0,1]. Then f£
is uniformly continuous on the whole real line.

Given € > 0, we choose 61 > 0 such that
ly - x| < §; implies that |[£(y) - £(x)| < 5, which is
permissible by uniform continuity. Choose 60 > 0 so that

I|t|>5° gn(t)dt < fa, where M = sup|f(x)|, for n > No'

Let § = min(so,dl). First we note that

(g * O = [ g (x-uw(w)du

= I gn(u - x)f(u)du (using the evenness of g).

Let u-x=t. Then u = x + t, so that
8y * 0100 = [ g (0)E(x + 1) de.

We see that for 0 < x <1

-




L A

HgﬁfNﬂ-f&H=LrgJﬂfu+ﬂ&-f&H

= IJ f(x+t)gn(t)dt - £(x) J gn(t)dt|
= lr [f(x+t) - f(X)]gn(t)dtl

_<_r [£(x+1t) - £(x) |g, (t)dt

S
=J 6]f(x+t) - f(x)lgn(t)dt+J|tl>6|f(x+t) - f(x)lgn(t)dt

§
<Indggn(t)dt-bjltl>62Mgn(t)dt

€ 8
37{ ng(t)dt + ZM[ItINSgn(t)dt

g%-]:raw-£§=e, for all large enough n.

Theorem 2

If Q (x) =c (1-xH)" for -1<x<1, and Q(x) = 0
otherwise, for n=1, 2, 3, ..., then the cn's can be
chosen so that the following conditions hold:

a) Qn(x) is even;

b) [ que)de = 1;

c) Q(x) >0;

d) For each € > 0 there exists a &8 > 0 such

that jltl>6 Qn(t)dt < e if n 1is large.

Proof
To see that Qn(x) is even, substitute -x for x.

Then Q,(-x) = ¢, (1 - (-5 = c (1 - xH = q (x).

”b—«-.‘»i*‘ .
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- -]
J a - tz)ndt is obviously finite, so we can let
-

c_ = 1 .  Then J Q.(t)dt = 1.
n ® 20 o M
[ a- e
(1 - x5 >0 for -1 <x < 1. This implies that

Ch 2 1 for all n. Thus Qn(x) > 0.

We need to find an upper bound on c_. Since |x| > x?
for 0 < |x| <1, we have that (1 - xz)n > (1 - le)n.
Then
® Z\n 1 24N 1 n
I (1 - x“)dx = I (1 - x*)"dx > ZI (1 - |x]|) dx
- - 0
g - oMbt a2a - p™t o 2a - ™
n+ 1 0 n + 1 n + 1
- 2
n+ 1’

Since

- 1
1 = [ Q (x)dx = f RN x2)Pdx

ch

1
= - 2 n t———————
an-l (1 x“)dx > =1

n+1
we have that <h < =

For any & > 0, if 6 < |x] <1 then &% < x". Thus

1-62>1-x% and (1 -6 > - xH for
n=1, 2,3, ... . If Qn(x) = cn(l - xz)n where
¢, < n E 1, then

Q,(x) = c, (1 - " < 2_%_l(1 - x4H)n <z 11 - 55" for

§ < [x| < 1.
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Given ¢ > 0, we have

],tpé Q, (t)de < ,{It|>6 Rl - o)t

. 1+ 1

nrla - 62)“““)5 dt
1
- "—-E-—l(l . sz)nzf dt
§
= (m+ 1)(L - §5)"1 - 8).

This last quantity goes to zero, as n + =. Thus

I|t|>5 Qn(t)dt < e if n 1is large.

Theorem 3
Let f be as in Theorem 1. Then Pn(x) = (Qn 2 £)(x)
is a polynomial and thus Pn(x) is a family of polynomials

which approximates f wuniformly.

Proof

Our assumptions about £ show, by a simple change of

variables, that

P (x) = (@ » O)X) = [ Quu)flx + wdu

1 1-x
= [-1 Q,(u)f(x + u)du = I-x £(x + u)Q, (u)du

1
- [ fg,te - nae,
0
where x + u=¢t, or u==¢t - x. Thus
1
Pn(x) = J f(t)Qn(t - x)dt, which is clearly a polynomial
0

in x. The final conclusion follows from Theorems 1 and 2.




ITI. PROOF DUE TO LEBESGUE

There is a multitude of proofs of the Weierstrass
Approximation Theorem. However, one of the simplest and
most direct proofs is due to Lebesgue, in 1898. (Because of
its simplicity, this proof is suitable for undergraduate
mathematics majors.) The basic method of the proof is first
to establish that the function f(x) may be approximated
arbitrarily closely by a broken line. That this may be done
follows from the fact that £f(x) 1is continuous on a closed
interval, and hence uniformly continuous. The second step
is to show that the broken line may be approximated
arbitrarily closely by a polynomial.

Our proof will be presented in the form of three lemmas.

Lemma 1
Let £ be a continuous function on {0,1]. Then £

can be uniformly approximated by piecewise linear functions.

Proof

Pick 6 such that [f(u) - £(v)] <% if Ju - v|] <&

(by uniform continuity). Pick Xi» i=0,1], ..., k with
0= x, <Xx; <...<x =1 so that lxj+1 - le < §. Define
¢ such that m(xj) = f(xj) for j =0, 1, ..., k and such

that ¢ 1is linear between the xj's. Then if xj < X < xj+1,

£(x.,,) - £(x;)
i+l ] (x - xj) + f(xj).

o(x) = -
i+l T




Then

f(x.+1) - £(x.)

£00 - 00| = £ - [
i+l 7
X - X.
= | £(x) - [
i*l 7

X5

A

541 7%

<] - %*-1- %==e.

Definition

(- x5) *f"‘j)”

E—-:%;Tf(xj+1)-+{1 -[—:i;::L—]}E(xj)]I

X341 7 %]

1%

X - X. X-X
- e e - £y, ) S L1 - £(x;)1]

[_x_-_xj._]'f(x) - f(xj+1)[ + [1 -Ex__fL_]lf(x) - f(xj)l

17

For each real number a, define wa(x) = max(x - a,0).

Lemma 2

The function ¢(x) of Lemma 1
k-1

o(x) = £(0) + }

j=0

for 0 < x < 1.

Proof

The function ¢(x) 1is clearly
X f {xo’ xl’

find a

. xk}. All we need
0 v -1 so that ¢(xj)

equivalent to solving the following

can be written

5o, (x)

J

linear for
to show is that we can
= f(xj). This 1is

system:
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v (x,) = £(0)
o(xq) =£(0) +a o, (xq)=1£(x;)
[0}

¢(x,) = £(0) + aocxo (x,) + alwxl(xz) = £(x,)

¢ (x, ) = £(0) + aowxo(xk) + al"xl(xk) TR, ak_lka_l(xk) = £(x,)

This system can be trivially solved recursively, proving the

lemma.

Remark

It follows from Lemmas 1 and 2 that if we can approximate
the functions ¢a(x) arbitrarily closely on [0,1] by
polynomials, then we can approximate f£(x) arbitrarily
closely on [0,1] by polynomials. But
9, (x) = %(Ix - al + (x - a)), so, in reality, we have to
approximate |x - al on (0,1]. For this, it clearly
suffices to approximate (x| on an arbitrary interval [-A,A].

But if we can approximate |u| on [-1,1], that is, if

|lul - pw

< % on -1<uc<l,

then, setting u = %, Ix] < A and

< e, or

g1 - wof3]
[]xl - Ap[%]! < e on |x] < A.

T e (2 SN ML ST b et
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Lemma 3
|x] is approximable arbitrarily closely by polynomials

on |x] < 1.

Proof
Consider the function g(t) = /I -t on 0 <t <1,

Write
g(t) = T (t) + R (t)

where Tn(t) is the Taylor polynomial of degree n, and
Rn(t) is the remainder. We will show that Rn(t) + 0
uniformly on 0 < t < 1.

Write Rn(t) in the Lagrange form

t
Rn(t) = gTIo (t - u)ng(n+1)(u)du, where

(D o (Y17 e ea)f o)™

R_(t) = [%][% _ ll;{. [% -nJIt (t - u)n(l - u)-n-%Au, and

IR_(2)] < [%] {1 _ %]L ' %J, [n i H”i a-wta - u)-n-%dul

SN PR DO [T
|

b))

A —— 2 i e
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We need to show that P, = [1 - %][1 - %]

as n » =, or that 1log P, > "® as n =+ =, Now

log pn = log[l - %] + log[l - %} + ...+ log[l - ZH]’ and
10311"'&_}1’%) 'IOJ_.];algg%l;h_)ao-l as h -+ 0.

log(l - h)

So if h 1is small, > %, so 1log(l - h) < -%.

Then, if n is large,

L P

11 1 1

Since the harmonic series diverges, the right side goes to

-», Thus P, * 0, and Rn(t) + 0 uniformly for 0 < t < 1.

Thus, if n is large, IRn(t)l <e for 0<t<1l, and
g(t) = |VT - ¢t - Tn(t)l <e for 0 <t <1l. The same
inequality continues to hold on 0 < t <1 by continuity.

To finish the proof, note that if |x| < 1, then
2

0<1-x"<1 and |x| = /1 - (1 - x¢). From the argument
above, we can find the polynomial p such that

[vI -t - p(t)| <e for 0<t<1l, and so

Ix] - p(1 - x2) = |/T - (1 - x5 - p(l -x%)] <e¢

for (x| < 1.

- — S T LT L T S S e T e O
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IV. PROOF DUE TO BERNSTEIN

This proof utilizes the Bernstein polynomials which
arise from the study of probability. In the process of the
proof we obtain a specific polynomial that estimates the
given function to the desired degree. For this reason this
proof is sometimes of interest to applied mathematicians.

Before proceeding with the proof, we need some

preliminary computations.

Preliminary Computations

From the binomial theorem we see that for any

P, @ € R we have

0 ,
klo(ﬁ]pkq“ k. (p + )" for n € I. (a)

Differentiating with respect to p we obtain

’z‘

[ﬂ]kpk°1qn'k =n@p + ™1,
k=0

which implies

n - -
kZO %[2]pkq" Kapp+ ™! for ner1.

Differentiating once more we have

~153

k=0 {%;}[ﬁ]pk-lqn’k <pn- D+ ™Y,

and so
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B k) %(n) kn-k 2, _ 1 n-2 -1
3 [E R - He s 0™ e Be s ™ (@

Now, if x € [0,1], set p=x and q = 1 - x. Then

(a), (b) and (c) yield:

kgo {2]xk(l - x)? k. 1,
kgo %[2}xk(1 x)n'k = x,
AR RS (-

Rewriting these three equations we have:
2 _2(n) k n-k 2
I x { ]x (1 - x) = x°,
k=0 K

n
- Zxk[;]xk(l - x)n'k = -sz,

k=0 n
e ot

k=0

If we add these three equations together we have that

k=0 a ' n k
or that
1 k 2 ni k n-k l1-x
N s e IR

) [xz - 2xk [E]z][n]xk(l R R xz[l - %ﬂ +

X
n

- R,
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Statement of Theorem

Let f be any continuous function on [a,b]. Then,

n'ns=1
converges uniformly to f on [a,b].

given e > 0, there is a sequence of polynomials {p

such that {po } _,

Proof

By Chapter I we know it is sufficient to prove this
theorem for the special case in which [a,b] = [0,1].

For any continuous f on [0, 1] we define a sequence

of polynomials (B as follows:

n' n=1
® (n).k n-k.[k
B (x) = § [k]x (1-x) f[-] for 0<x<1l and ne¢l.
n k-o n - ha
We call Bn the nth Bernstein polynomial for f. Given

€ > 0 we shall show that there exists N € I such that
| £(x) - Bn(x)l < ¢ for all x ¢ [0,1] and n > N. This
will show that {Bn};_l converges uniformly to £ on
[o,1].

From the Preliminary Computations we need the following

two equations:

n
o [ﬁ]xktl S ! (1)

and

o (5o (k0 - o - @

for 0 <x <1 and n € I.
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f is uniformly continuous on [0,1] since £ |is
continuous on the closed interval {[0,1]. Hence, given
€ > 0 there exists & > 0 such that [|£f(x) - £(y)]| < %
whenever [x - y| <8 and x, y € [0,1]. Let
M = sup|f(x)| for x € [0,1]. We may assume M > 0.
Choose N € I such that
1 .
and such that
K< e 2
‘Now fix x € [0,1]. Multiplying (1) by £(x) and
subtracting Bn’ we obtain for any n € I
£(x) - B_(x) = If £ix) - £]5 | xka - oK
n k=0 n)jik
1 11
= z + z (5)
where J' is the sum over those values of k such that
k 1
‘H - x| <, (6)
while J" is the sum over the other values of k.
If k does not satisfy (6), that is, if l% - xl > ?E,
2
then (k - nx)? = nzlg - xl > /n3. Hence
e 1 e - o] sk - 0
et i+ [e8)] [ - 0
- A AT T S AN ANECI A SO IR TR s S s

— ———
-
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< M {L‘)xkcl - )k
< &1 - wolf)fa - o
8, <o

2

Multiplying (2) by n® we see that

" _Zi N ZM
1T < 75mxd - ) < 7
If n>N, it follows from (4) that /_1% <& or % < s

and so
[E"‘ < 5_.

Moreover, if n > N and if k satisfies (6), then, by (3)

and (6), ‘% - x{ < § and so

e - £(¥]] < §.

Thus

1= [f(x) - f[};]][:]xku - gk

<51 (f]=*a - omk

and so by (1)
1 <%

Thus, from (5),
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€00 - B GOl = 1T #1111+ 117 <5+ 5= e

Since x was any point in [0,1] and n any integer
with n > N, this shows |[f(x) - Bn(x)l <e for 0 <x <1

and n > N.

Remarks

The idea for this proof arises from probability, as
follows: Let Sn be the number of successes in n
independent trials with the probability of success in each
being p (0 < p < 1). Then the weak law of large numbers

says that

S
n -
Prob[l7r P

> e] -+ 0 as n -+ « for each fixed e;

Sh
or — + P in probability.

Now if f is a real arbitrary function, it seems

+ £(p) in probability, and

'S
2] - BEen) - £@). Bue

reasonable that f[

_E
n )
furthermore that [

E[f[in'ly - i f[k}Prob(S x)
O L LRk

With this in mind, Bernstein justified these steps, and

then showed the convergence is uniform.
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V. THE STONE-WEIERSTRASS THEOREM

In this final chapter we present a generalization of
the Weierstrass Approximation Theorem called the Stone-
Weierstrass Theorem. This theorem is helpful to those who
wish to study operator theory and functional analysis.

We will prove this theorem using the following three

steps. First we will show that A, a closed subalgebra of

C(X,R), for X a compact Hausdorff space, is alsc a closed

sublattice. Next we will show that if A separates points
and contains a nonzero constant function, it strongly

separates points. Finally we show that A -equals C(X,R).

The Stone-Weierstrass Theorem

Let X be a compact Hausdorff space and let A be a
closed subalgebra of C(X,R) which separates points and
contains a nonzero constant function. Then A equals

C(X,R).

Proof ‘
Note that C(X,R), the set of all real continuous

functions on X, 1is a Banach algebra.

STEP I: Let X be a compact Hausdorff space. Let A be
a closed subalgebra of C(X,R). Then A 1is a closed
sublattice of C(X,R).

In the proof of this step we make use of the concept

of the absolute value of a function. If f is a real
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function defined on a topological space X, then the function
[£| is defined by |[f|(x) = |f(x)|. If £ is continuous,
then |£f]| is also continuous. We observe that the lattice
operations in C(X,R) are expressible in terms of addition,

scalar multiplication, and the formation of absolute values:

f+g+ |f- f+g-|f-

fvg = = max{f,g} and fag =

These identities show that any linear subspace (th;t is, a
subspace closed under addition and scalar multiplication) of
C(X,R) which contains the absolute value of each of its
functions is a sublattice of C(X,R).

By the above remarks it suffices to show that if f 1is
in A, then |[f| is also in A. Let € > 0 be given.
Since |t]| 1is a continuous function of the real variable
t, by the Weierstrass Approximation Theorem there exists a

< % for

polynomial p' with the property that ||t| -p'(t)
every t on the closed interval (-[ifll,llfl|]]. Let p be
the polynomial which results when the constant term of p'

is replaced by zero. Then p is a polynomial with zero as
€

<2

its constant term. Since |0| = 0, and lltl - p'(t)
or [0 -~ p'(0)] = |p'(0)] < %, the constant term of p'
must be less than %. Then, when we replace the constant
term in p' by zero, we are changing p' at most by %,
so that the largest difference we could now have between p
and |[t]| is % + % or e¢. Thus [t] - p(t)| < e for

every t in [-|fll,Ilf]l]]. Since A is an algebra, the

=min{f,g}.

—_—— i ——— e — e e — e -
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function p(f) in C(X,R) 1is in A. f£f(x) for any fixed
x 1is just a real number, in fact, a real number in
[-N€f,1€}]. Thus it is easy to see that

| £(x)] - p(£(x))| < ¢ for every point x in X, and from
this it follows that |||£f| - p(f)]] < €. We conclude the
proof by remarking that since A is closed, the fact that
[£] can be approximated by the function p(f) in A shows

that |f| is a limit point of A and thus is in A.

STEP II: Show that A strongly separates points; that is,
if x and y are any two distinct points of X, and if
a and b are any two real numbers, then there exists

f ¢ A such that f£(x) = a and £(y) = b.

Note that if X has only one point, then C(X,R)
contains only constant functions, and since A contains a
nonzero constant function and is a subalgebra, it contains
all constant functions, and thus equals C(X,R). We may
thus assume that X has more than one point.

Since A separates points, there exists a function g
in A such that g(x) # g(y), where x and y are

distinct points of X. We now define f by

r4 - 2 - X
£(2) ag%x; - ziy} * bg%yg - gEx;'

Since g(x) - g(y) 1is just a nonzero real number, f is

in A, and

X - X - X) o
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= - g(y) - g(x)
A T e 1 M TR Te

Thus £ has the required properties.
STEP III: Show A = C(X,R).

Let £ be an arbitrary function in C(X,R). Since
A ¢ C(X,R), we need only show C(X,R) ¢ A, that is, that
f is in A, to show that they are equal.

Since A 1is closed, it contains all of its limit points.
We will show that f is a limit point of A; that is, for
€ > 0, there exists a function g in A such that
ff - gll < e. Thus what we really have to prove is that for
€ >0 there exists g in A such that
£f(z) - € < g(z) < £(z) + € for all z in X. We now
construct such a function.

Let x be a point in X which is fixed, and let vy
be a point in X different from x. By Step II, there

exists a function £ in A such that fy(x) = f(x) and

y
fy(y) = f(y). Now consider the open set
Gy = {z ¢ X: fy(z) < £(z) + €}. Both x and y belong to
Gv, for fy(x) = f(x) implies that fy(x) < f(x) + €, and

similarly for y, so the class of Gy's for all points vy
different from x 1is an open cover of X. Since X is
compact (by hypothesis), this open cover has a finite

G, }. If the

subcover, which we denote by {G_, , G, , ...,
71 Y2 Yn

corresponding functions in A are denoted by
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s «+-5 £ , then = f A £ A ... A £ is a
Ys Y 8 T fyy My, Yo

function in A such that gx(x) = f(x). We see that if

z € G , the
Yx n

gx(z) = min{fyl(z), cens fyn(z)} < fyk(z) < f(z) + €. Thus
gx(z) < f(z) + € for all points =z in X.

We next consider the open set
H, = {z € X: g, (z) > £(z) - €}. Since x belongs to Hy,
the class of Hx's for all points x in X is an open
cover of X. The compactness of X implies that this open

cover has a finite subcover, which we denote by

{Hx , H

x.? » H. }. We denote the corresponding functions
1 2 Xm
in A by By.» Sy v vt 8y s and we define g by
1 2 m
g = gxl v gxz V oieo v gxm. We see that if 2z ¢ ka, then

g(z) = max{gxl(z), cees By (z)} > gxk(z) > £(z) - €.
m

Thus it is clear that g is a function in A with the
property that £(z) - € < g(z) < £(z) + € for all points z

in X, so our proof is complete.

Comment
This theorem does not hold in general for complex

algebras. A counterexample would be:

Let A be the set of all continuous functions in
[z] < 1 which are analytic in |z| < 1. We see

that A 1is an algebra, and since the function
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g(z) = z is in A, A separates points. However,
A is not C(|z| < 1,C), since f£f(z) = |z| is

not analytic.

However, the conclusion of the theorem does hold, even for
complex algebras, if an extra condition is imposed on A;

namely, that for every f € A, its complex conjugate T

must also belong to A.
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