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Report Summary

Introduction

This report describes the research efforts carried out

under Air Force Contract F30602-80-C-0200. The purpose of the

research was to develop techniques for the self-testing of

microprocessors. These techniques were then implemented for a

specific, 8080 based microcomputer system. The ia.lementation

took the form of a set of self-test routines and a small amount

of added, self-test hardware. In order to assess the

effectiveness of the self-test software, a "chip" level

simulation model was developed and used to simulate faults in

the systems and thus rate the effectiveness of the self-test

software. Finally, a real 8080 system was built and the self-

test software executed on it in order to demonstrate its

compatibility with a real time computer system environment.

Self-Test Techniques

The report describes one program in a proposed library of

self-test programs for microprocessor based systems. The

library is to contain a set of programs with varying degrees of

fault coverage and execution times. This report describes a

self-test designed for minimum execution time, minimum use of

added hardware, and minimum interference with the main system

tasks. Within these constraints, maximum fault coverage is

desired.

The basic approach was to partition the self-test program

into segments that require from 2 to 4 milliseconds each to

- -i - ---



execute. A timer is used to generate program interrupts at a

frequency selected by the user (e.g., every two seconds). Bach

interrupt causes execution of the next self-test segment. The

CPU test and parallel I/O port test both execute in the first

segment. Memory tests posed the greatest demand upon execution

time. Only 128 bytes of ROK or 32 bytes of RAM can be tested in

the 2-4 ms window. Thus memory testing is carried out in a

series of segments. Serial I/O port tests require 2 segments at

9600 Baud.

A second timer is used to insure that the interrupt request

is acknowledged within a reasonable time. Once the interrupt is

acknowledged, a timer is set for 2-4 as, depending upon the

program segment, to time execution of the self-test segment. If

the self-test does not execute within the allotted time, an

error condition is geiuerated.

Two LED indicators are used to provide redundant error

signals. One LED it normally ON. If the self-test software

detects an error, if the interrupt acknowledge is not generated

fast enough, or if a self-test program segment does not execute

within the 2-4 mas window, then this LED is turned OFF to

indicate an error. This provides a fail-safe indicator since

the most prominent failure mode for an LED is to "burn-out"

which indicates an error. The second LED provides a wheart-

beat" status signal. This LED is toggled on and off at a fixed

rate by the self-test program. This provides a redundant

indication of failure. This system thus detects failure in both

iv
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the primary system hardware and in the self-test hardware.

A small amount of additional hardware is required to

provide "wraparound* data paths for testing I/0 ports. The

added hardware required constitutes a small percentage of the

total system hardware and all added hardware is covered by the

self-test mechanism except the final isolation buffer that

prevents external devices from corrupting the self-test data.

Fault Simulation

One of the difficulties in developing self-tests for LSI

systems is trying to rate the effectiveness of the software.

The reason for this is that, presently, the only known way of

testing the effectiveness of self-test software is to conduct

"fault injection experiments*. One can either run these

experiments with a real hardware system or through simulation.

Using a hardware system is not feasible because obtaining LSI

devices with known internal defects is much more difficult than

obtaining good devices. Simulation does provide an answer, but

there are problems here also. LSI devices contain thousands of

gates, thus using traditional gate level simulation techniques

can present great difficulties. The biggest problem is that

accurate gate level models of LSI devices are usually known only

by the manufacturer and in most cases they are unwilling to

divulge this information. Secondly, even given a gate level

model of an LSI system, the simulations require too much host

CPU time, i.e. money, when validating self-test software. The

only solution to this problem is to develop a simulation model

v



at a higher level.

On this contract a simulation language known as GSP

(General Simulation Program) was used to develop a "chip" level

model of the 8080 system under consideration. In modeling at

the chip level, internal chip micro-operations and interface

signal timing are modeled without resorting to detailed

description of the internal gate structure. This allows

accurate simulation of an LSI system in an efficient manner.

Once the simulation model was developed, it was used to

conduct fault injection experiments. In these experiments;

faults were injected into the simulation model, and the

execution of the self-test software was simulated. The fault

types simulated were (1) incorrect device micro-operations (2)

stuck faults and (3) timing faults. Because of the high

probability of interconnect failures between chips (vs internal

defects), 43% of the defects simulated were interconnect faults.

The simulation experiments allowed us to calculate a

Ofigure of merit" for the self-test routines, i.e. approximately

800 of faults injected were detected by self-test mechanisms.

Hardware System Checkout

In this effort an 8080 laboratory system was constructed

and all self-test routines were executed on it. The purpose of

this activity was to verify that the test routines would operate

properly in a real system and that they would, when finished

with their execution, leave the system in a state compatible

with the operational program. Building of the hardware system

vi
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also allowed us to verify that the limited amount of added self-

test hardware functioned as anticipated. Finally, experience

with the hardware system provided the test program writer and

simulation model developers with useful information about its

characteristics.
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1. INTRODUCTION

The advent of LSI technology has presented computer system

designers with a powerful design capability. However, along

with this increased capability has come the attendant problem of

trying to verify that the LSI devices in a system are operating

correctly. The large number of logic gates on an LSI chip can

make this testing process difficult. On the other hand, the LSI

chips in a system tend to exhibit a degree of functional

independence from each other and usually contain powerful logic

capabilities. These features make possible the implementation

of self-test mechanisms in LSI systems.

The purpose of the research carried out under Air Force

Contract F30602-80-C-0200 was to develop self-test software for

microprocessor systems and verify the effectiveness of this

software through fault simulation. This document is the fin-R!

report for this research.

The research efforts carried out under this contract can be

divided into three major areas. The body of the report will

treat each area in detail but we briefly summarize them here:

(1) Development of Self Test Software. Under this effort,
a system self-test scheme was first developed which identified

the major functions to be performed by software and a limited

amount of self-test hardware to achieve the testing goals.

Next, within the system scheme, self-test routines were designed

and written to test the particular microprocessor chip set
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chosen for the research: an 8080 microprocessor, semiconductor

random access memory (RAN), read only memory (ROM) and 8228,

8251, and 8255 support chips. Details of this research area are

given in section 2 of the report.

(2) Fault Simulation. In this part of the research a

simulation model was developed for the microprocessor system.

The modeling was done using the General Simulation Program (GSP)

previously developed at VPI. Once developed and checked out,

the simulation model was used for fault simulation. Functional

faults were injected into the model and the execution of the

self-test routines was simulated in order to test their

effectiveness in detect'ng faults. Details of this research are

given in section 3 of the report.

(3) Check out of the Self Test Scheme on a Hardware

System. In this effort an 8080 laboratory system was

constructed and all self-test routines were executed on it. The

purpose of this activity was to verify that the test routines

would operate properly in a real system and that they would,

when finished with their execution, leave the system in a state

compatible with the operational program. Building of the

hardware system also allowed us to verify that the limited

amount of added self-test hardware functioned as anticipated.

Finally, experience with the hardware system provided the test

program writer and simulation model developers with useful

information about the characteristics of the chips. Details of

this research are given in report section 4.
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SELF-TEST METHODOLOGY

The motivation for this study ii the development of a

library of self-test software for microprocessor-based control

systems. At one end of the scale would be a very fast executing

self-test program that would provide as much fault coverage as

possible using a mlnimal amount of extra hardware and a small

amount of memory. The added cost for the self-test would be

minimal. At the other end of the scale would be a comprehensive

self-test that would provide the maximum possible fault

coverage. It is anticipated that this test would require

considerable execution time and possibly costly extra hardware.

In between these two extremes would be a variety of self-test

mechanisms that would provide a wide range of fault coverages

with intermediate execution times, memory requirements, and

hardware costs. If such a library existed, microprocessor

system designers could select the library program that best

matched their particular requirements.

This report describes one program in the library in detail.

The primary goal of this project was to develop a short test

using minimal extra hardware that would achieve the highest

possible fault coverage. It was intended that successful

completion of this project would establish credibility for the

library concept in addition to being directly applicable in its

own right.

3
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2.1 Self-Test Environment

Of all the proposed library programs, this one would

minimize the impact on system cost, on power requirements, on

system programming and on system reliability. The extra

hardware required can be classified into three categories.

Indicators of system status. Two LED's provide status

information. One LED will be normally ON to indicate that the

system iq operational. This LED will be turned off by the self-

test program if it detects an error condition or by a hardware

time-out if the self-test program fails to respond within an

appropriate time period. The normally ON condition makes the

LED fail-safe since the most likely failure mode of an LED is to

"burn out". However, it is possible for the electronic driving

circuit to fail in such a way as to make the LED remain

permanently ON. Therefore a second LED will act as a

"heartbeat" for the system. It will be toggled off and on at a

fixed visible rate by the self-test program. The 'heartbeat"

indicator will detect catastrophic type failures where the

program is executing in an erratic manner that provides

interrupt acknowledge and false pass signals to the fixed LED.

This active redundant indicator will also detect stuck-at

failures in the driving circuit of the first LED. The heartbeat

then protects against failures in the self-test hardware and

catastrophic failure of the CPU. For the system to be operating

properly, the fixed LED must remain ON and the "heartbeat" must

oscillate at a fixed visible rate.

4



Function Timers

Two timers are employed. One initiates the self-test

program by periodically generating a program interrupt. The

other times the response to the interrupt and the execution time

of the self-test program. If a system failure prevents the

microprocessor from responding to the interrupt request or

prevents the microprocessor from executing the self-test program

in the allotted time interval, the second timer will time out

and indicate a system failure by turning off the fixed LED.

Wraparound and Isolation: Hardware for I/O Ports

Since testing 8255 and 8251 peripheral I/0 chips was an

important part of the self-test objective, a means for reading

back the data written to the ports must be provided. In

addition, we must isolate the peripheral device during testing

to prevent distortion of the testing data by the external

devices and to prevent test data from being transmitted to the

external devices (when necessary). A device signal is provided

to the external device during testing to indicate CPU busy

status. The details of this logic can be found in Section 4.
I

This hardware represents the minimal amount necessary to

implement complete system testing. The only burden placed on

external hardware is to observe the busy signai and hold input

data until the processor is ready to accept it. A complete

description of the hardware is provided in section 4.

')_ : _ ' . .. .1 . . .. ... ;I - - I 1 I I . .....5



2.2 Alternative Approaches for a Short Periodic Test

A primary objective is to make the periodic test

transparent to the users. This has two major ramifications:

first, the user's registers and stack must be preserved; second,

interrupts must be disabled during the test since execution of

an interrupt service routine could lead to a hardware timeout

(i.e., the test, once started, must run to completion

uninterrupted); third, the test must execute in as short a time

as possible so that its execution would not be noticed by the

controller program. However, in general, a shorter test routine

results in less fault coverage. In order to reduce execution

time, one tries to design test algorithms with many operations

between verifications; but too few verifications may allow a

feult to escape detection. Thus a tradeoff between speed and

fault coverage seems inevitable.

Three different approaches were considered for the short

periodic test. The first is a simple, straightforward, quick

test. A second approach uses a longer, more thorough (but

slower) test and partitions it into a set of short segments that

are executed one by one at consecutive test times. A third

approach combines the first two method-. Again a series of

tets is employed, but now a common 'core' test is executed each

time. This core attempts to verify enough operations so that

the housekeeping and dispatch functions required to decide which

segment is to execute next can be expected to function reliably.

6
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The primary advantage of the single comprehensive test is

its simplicity. No overhead is required to schedule test

segments. The major disadvantage is that fault coverage may not

be adequate for a test that would execute in the available time

window. The single test would certainly be preferable if the

coverage is adequate. Our research indicates that such a test

is practical for the 8080 CPU. However, we found that the

execution time required for even a short memory test was

excessive for this application. Since our objective is to test

the whole system, we were forced to reject the single pass

approach.

Experience with the test routine showed that the additional

fault coverage gained by approach three was not worth the

additional execution time. Therefore, we adopted approach two

and partitioned the self-test into disjoint segments.

2.3 Constraints Imposed on System Design

A major objective of the self-test project was to provide

an add-on package with minimal impact on the system design.

This section describes the interaction required with the

application system.

In the hardware area, the system must react to the self-

test busy signal by holding input data until the self-test is

completed. The required display isolation buffers must be

provided. Three output port numbers must be reserved forA

, 
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reporting the status and controlling the timers. About IN bytes

of RON must be reserved for the self-test program.

In the software area, two vectored interrupts must be

reserved for thp self-test program. One is used to initiate the

self-test execution and the other as an error exit. Sufficient

additional stack depth must be provided to service the self-test

program. The 8080 implementation requires 16 bytes of stack

space to execute.

The application program must call the self-test

initialization subroutine (INIT) whenever the system executes a

cold start or system reset. See Section 2.6.1 for details. The

programmer must also reserve 8 or 9 bytes of system RAN for the

use of the self-test program.

In addition, the application program must operate with

interrupts enabled most of the time. An extensive period with

interrupts disabled would cause a hardware time-out. If the

user has RON to be included in the self-test, he must provide

one checksum byte somewhere in every 128 byte block. See

Section 2.6.4 for details.

2.4 Partitioning the System

Since we are doing functional testing, the most logical

method to use in partitioning is based on function. In general,

the CPU test, if possible, should be done in one segment.

Memory will generally require many segments. As many I/0

r ~~*



devices as possible should be included in the remaining

segments. Bach segment should be approximately the same length

in execution time.

For the 8080 system, we were able to test the 8080 CPU and

the 8255 I/O port in the first segment. The RON test was

partitioned into 128 byte segments and the RAN test into 32 byte

segments. The 8251 test required two segments. Execution time

of each segment was approximately 4 milliseconds. The 8251 test

execution time is practically clock independent since it depends

mostly on the baud rate.

2.5 General Statements about the Short Test Algorithms

The self-test algorithms are designed to provide systemwide

functional GO/NO-GO tests; they do not provide diagnostic

information about what fault occurred. As such, they employ the

'start big' approach; i.e., they jump right into testing various

functional elements rather than slowly building up from a small

core. The tests are systemwide in that failures cannot be

isolated to a single device; for example, a RON or RAN fault

could well cause the CPU test to fail. The algorithms were

developed to cover single functional faults, although most

multiple faults will also be detected.

Since there is virtually no failure mode data for

microprocessors and their support chips, we don't know what

faults are most likely to occur and cannot concentrate on

testing for specific faults. Therefore the basic goal of the

9 l m a I . . . .



self-test is to exercise all functional elements and data paths

of the microprocessor system (excluding user peripherals, but

including their 1/O ports). Of course, exercising a faulty

element or function does not guarantee detecting the fault;

therefore we have made use of fault simulation results to

determine how effective the self-tests are. (See Section 3.)

1
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2.5.1 The CPU

The most complex component to test is the CPU itself; in

general it consists of an ALU (arithmetic & logic unit), a

(user) register array, other assorted registers and latches

(accumulator(s), instruction register, etc.), some flags,

instruction decoding logic (probably an internal ROM), timing

and control circuitry, and the data paths connecting these

elements.

The self-test exercises all functions of the ALU, thus

testing the ALU control logic. The full adders that perform

addition and subtraction are exercised by applying all input

combinations to each adder (i.e. each bit position); since a

full adder is a 3-input device (2 source operands and a carry

in), 8 input combinations per adder are required. This tests

for all detectable stuck-at faults and some shorts/opens in the

adders. Similarly, the logic that performs AND, OR, and XOR is

exercised by applying all four possible input combinations to

each bit position. (That is, each bit position of each logic

function is tested with inputs of 00, 01, 10, and 11.) Other

functions (such as rotates) are tested in a similar manner, by

applying all input combinations to each bit position for

thorough coverage. A decimal (BCD) adjust function, if present,

should be tested for no adjustment, adjustment due to flags, and

adjustaent due to a digit greater than nine.

11



The register array contains RAM (register memory), register

select logic and multiplexers, and possibly increment/decrement,

rotate, clear, and/or complement logic. The RAM must be tested

for stuck-ats and shorts between adjacent bits; just which bits

are adjacent depends on the RAM layout (which, in general, is

unknown). Therefore the test requires loading (and verifying)

at least three patterns into each register; the patterns apply

both a 0 and a 1 to each bit position (stuck-at test), and the

same and complement values to each pair of adjacent bits (test

for shorts). These same patterns will also be used in testing

the processor's other registers and latches and the data paths.

This will be done by executing instructions that move the

register data through the desired data paths to the other

registers. When the internal layout of register memory and data

paths is unknown (as usual), the most logical assumption is that

logically adjacent bits are physically adjacent (this is

certainly true for at least some of the registers, latches,

and/or data paths). Under this assumption, some suitable

patterns are (in hexadecimal): 00, 55, G AA; 33, 66, & CC; D9,

6C, & 36. The patterns are distributed in the registers so that

register select faults may also be detected, assuming either

logical ORing or logical ANDing (as appropriate for the

technology employed) of register contents for a multiple select

fault on reading. Thus the tests employ different patterns in

the different user registers so that R1 OR R2 (or R1 AND R2, as

12
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appropriate) equals neither Ri nor R2. This allows both

erroneous select and multiple select faults to be detected. A

fault resulting in no register being selected will be easily

detected when using these patterns. The contents of all user

registers are verified near the end of the test, so that an

erroneous write or multiple write fault can be detected.

Increment/decrement logic would probably be centralized in

one unit within the register array (as in the 8080); however,

the exact gate implementation is most likely unknown. For this

reason, the self-test applies only a few basic test vectors,

such as incrementing -1 (all ones) and decrementing zero, which

tests carry/borrow propagation through every bit. Carry/borrows

through no bits (incrementing an even number and decrementing an

odd number) and through an intermediate number of bits are also

tested. It should be noted that this logic may also be used to

increment the program counter (PC) and/or stack pointer (SP) (as

.is the case for the 8080), which provides some additional

increment testing. Other possible register functions, such as

clear or complement, are most likely built into each register if

they are present at all. These are easily tested, but testing

and verifying each function of each register will be time

consuming, so that a tradeoff may be necessary.

Any microprocessor will contain, in addition to the

register array, some internal registers and latches and possibly

special accumulator registers. These registers may be tested

13
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for stuck-ats and shorts between adjacent bits by using the same

patterns -discussed above, assuming they can be loaded by

software (either directly or indirectly). The instruction

register (IR) is of interest in that it is loaded, not with

data, but with instruction opcodes; this means that a fault will

result in the execution of some erroneous instructions, possibly

causing loss of program control. This cannot be avoided;

however, as long as the GO signal is not generated, a hardware

timeout will provide the needed NO-GO result, so that the fault

will be detected. Accumulator registers are also of interest in

that they inevitably have special functions, such as complement

and/or increment. The self-test must exercise each function of

each accumulator with sufficient patterns to ensure the

detection of any (detectable) stuck bits. Two complementary

patterns will suffice to test complement logic; but note that

two successive complements (with no verification in between)

results in a poor test, since the correct final result will be

obtained if each complement does nothing at all. The program

counter (PC) and address latches/buffers are of special interest

as well, because, for meaningful results, only valid memory and

I/0 addresses can be applied. However, these registers/latches

are used for all memory reads and writes, including instruction

fetches, and sometimes for I/O, so that enough patterns will be

applied during the course of the test to detect most stuck-

ats/shorts. Increment and decrement functions are tested as

described above.
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The condition flags make up another CPU element to test.

The self-test simply applies and verifies (by conditional jump,

add with carry, ... ) both one and zero (true and false) for

each flag. Shorts between the flag flip flops are conceivable,

but cannot be efficiently tested for without knowing the

internal layout. The logic driving the flags is exercised

throughout the test by numerous arithmetic and logical

instructions; but obviously the test can only verify the flags

at strategic points (optimally where another function is also

verified) to minimize execution time.

The instruction decoding and machine cycle encoding unit of

the CPU is the most difficult component to test. To simplify

LSI implementation, the decoder most likely employs ROM, the

exact nature of which is unknown. Thus a fault in the ROM could

conceivably be manifested for only a single instruction. Also,

note that faults in instruction decoding, like faults in the

instruction register, may cause erratic behavior or even loss of

program control (hopefully resulting in a hardware timeout).

Since the self-test cannot execute and verify every instruction

in the short time available, it simply covers as many classes of

instructions and as many micro-operations as possible. For

example, only a few register to register moves are tested,

instead of trying to move each register to each other register.
!

All types of addressing and all types of parameters (registers,

immediate data of all lengths, immediate addresses) are employed

15



through the course of the test. However some instructions (such

as halt) cannot be self-tested without special hardware. The

most commonly used instructions (such as adds, compares,

branches, etc.) are tested most thoroughly. Conditional

transfers (jumps, calls, and returns), for example, are tested

for both transfer and no-transfer; note that this overlaps with

flag testing and almost everything else, since the conditional

transfers are used f : verifications of other functions. This

overlap is typical of the 'start big' approach, several

functions being tested together.

The self-test is designed to exercise all possible micro-

operations, thus testing some decoding and most of the machine

cycle encoding. The micro-operations are determined from the

processor's User's Manual based on the data paths, CPU elements,

and functions employed by each instruction. All registers of

the register array are considered equivalent since they use

identical data paths external to the array (only register

selection differs, and this was considered previously). The

other registers (IR, accumulator, ...) are treated

independently since their data paths differ. Conditional type

instructions, which employ different micro-operations under

different conditions, are considered to cover only those micro-

operations common to both conditions. This prevents the

illusion of covering micro-ops that may in fact not be performed

during instruction execution. Software has been developed to
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determine the micro-operation coverage of a given test

algorithm, and to find a minimal set of instructions that cover

any set of micro-operations. Fault simulation will be required

to determine actual fault coverage, since exercising a faulty

micro-op does not guarantee detecting the fault.

Since the micro-operations are derived based in part on the

data paths they use, exercising all micro-operations also serves

to exercise all data paths. Most of the data paths are

exercised with the register test patterns previously described,

thus testing for stuck-ats and shorts between adjacent bits. As

mentioned earlier, this is performed by executing instructions

that move data from the registers over the desired data paths

(thus providing more overlap). Some data paths, however, cannot

be directly exercised with these patterns. For example,

consider the data paths leading to the instruction register and

those leading to an address buffer. For meaningful results,

only valid opcodes and valid addresses, respectively, can be

applied to these data paths. However, during the course of the

test, enough opcodes will pass into the instruction register to

effectively test for any stuck-ats/shorts in IR or its data

paths. Also, the RAM, ROK, and I/O tests will access all valid

addresses so that most stuck-ats/shorts in the address circuitry

can be detected. Thus although complete stuck-at/short coverage

is not in general possible for all data paths, the self-test can

still verify that valid data will not be distorted. What

happens to invalid addresses is not important anyway.
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The final part of the CPU is its timing and control

circuitry; this cannot be directly self-tested. However, by

exercising all micro-operations, the self-test will also

exercise much of this control circuitry. Further, the hardware

timeout feature guards against some possible major control

faults that are totally transparent to the software, such as

generation of numerous unneeded hold or wait states. Also,

interrupt control is verified since the test is initiated by

interrupt. Still, some control signals cannot be self-tested

without considerable extra hardware because of their nature

(e.g., the HOLD/HOLD Acknowledge circuitry of the 8080 is used

for DMA by external devices and thus is completely transparent

to software). This is a limitation that cannot be avoided

without the addition of considerable extra hardware.

2.5.2 RON

ROs are the easiest system component to test. A checksum

is stored in the RON itself to produce a known result when the

contents of all (or a certain piece of) RO are summed. Several

different methods of forming this sum have been considered. The

first uses a modulo 2 sum, in effect an exclusive ORI each

column (bit position) is independent of the others (there are no

carries). However, two faults in the same column would go

undetectedj hence this method was rejected. The second method

uses a modulo 256 sum, namely the ADD instruction; carries out

of the most significant bit (MSB, bit 7) are lost. But two
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faults in the KSB column would again go undetected, so this

method was enhanced to form the third approach: the carry out

of the HSB (from the ADD) is added back to the least significant

bit (LSB, bit 0) of the sum; thus nothing is lost. Now to

escape detection, the two faults must not only be in the same

column, but they must also be complementary. That is, one must

be a 0 turned 1, and the other a 1 turned 0. But due to the

physical nature of a ROM, PROM, or EPROM, this is extremely

unlikely; faults will normally occur in only one direction.

Thus O's may turn to l's or l's to 0's, but not both. Under

this assumption, the third test method will prove quite

effective.

Another consideration for the ROM test is how many

checksums to use. The test algorithm is passed the start

address of the RON to test to make it address independent, but

this also allows the RON to be tested in pieces of any size

desired, so long as each piece contains a checksum byte (to give

the required sum); the checksum may be anywhere in the block of

ROM under test. The ROM test could thus be broken up into a

series of tests, so that periodic tests can execute in the short

time available.

The final consideration is what number to use as the final

known result of the sum. A sum to -1 (FF hex) was considered

until we noticed that a 'dead' ROE (permanently deselected)

would pass the test. (Since the bus would float when the RON
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should be active, FF hex would be read as the contents of each

byte, resulting in the net sum of FF hex.) A sum to zero was

similarly rejected in favor of a sum to AA hex, since the latter

is a 'checkerboard' pattern (10101010 binary).

The test algorithm thus tests the ability of the RON to

access each location which verifies the address decoders, select

logic, output drivers, and the ROM contents.

2.5.3 RAM

Many techniques for RAM testing have been developed over

the past decade, each with its own advantages and disadvantages.

But all thorough RAM tests share a common drawback: they take

forever. Faster, specialized tests could be developed were the

internal cell layout of the RAM known, since then a cell's true

neighbors would be known. This would permit minimal tests of

the decoders (access each row and column of the RAM only once)

and allow true nearest neighbor (disturb) tests. But cell

layouts vary from manufacturer to manufacturer and are almost

never made available to users.

The Moving Inversions (MOVI) test technique is one example

of a thorough test, and it is much faster than Walking or

Galloping tests (1,2). A memory location is first read to

verify it contains the previous pattern; then the current

pattern is written and immediately read back for verification

(to try and detect write recovery faults). This continues until

the memory is filled with the current pattern. The patterns
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employed are (in hexadecimal): 00, 01, 03, 07, ... , 7F, FF, PH,

FC, FS, ... , 80, and back to 00; thus one bit is inverted each

time. MOVI sequences through the RAM first moving forward (up)

and then backward (down). In addition, MOVI steps through

memory using each address bit as the LSB; that is, MOVI first

moves from location N to N+l (N-i on down cycle), then from N to

N+2 (N-2) on the next pass, then N to N+4 (N-4), etc. Thus all

fundamental address transitions are tested (i.e. a change by a

power of two, both forwards and backwards); this provides some

testing for cell, row, and column disturb faults (despite the

unknown layout). In order to test all of these basic address

transitions, the test program tests all of (contiguous) RAM at

once (testing smaller pieces would not test all basic

transitions). Refer to reference [1] for complete details on

MOVI. Note that MOVI does not test refresh for dynamic RAMs.

MOVI is a fairly good test for address decoder switching

speed, cell, row, and column disturb faults, data sensitivity,

and write recovery faults [2]. It is a very good test of

address uniqueness , and a good general test of both functional

and dynamic behavior [1].

The NOVI test requires 12 x B x n x N memory cycles, where

B - number of bits per word, n - number of address bits, and N -

2**n - number of RAM locations. Naturally, a self-test program

is much slower due to all the overhead it must perform. The

MOVI test implemented for the 8080 requires about 20 seconds per
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1K of RAM. Also, this test is, of necessity, destructive; that

is, original RAM contents are lost. Thus NOVI is not at all

suitable for a short, periodic test.

Therefore, two nondestructive tests were developed for the

short periodic test, but they are, of necessity, not as

thorough. Both algorithms make use of 'random' patterns,

generated using a feedback shift register technique. This

employs an irreducible polynomial of degree 8 to generate a

sequence of 255 test patterns. The programs generate the next

pattern by shifting the current pattern left and exclusive-ORing

bits 2, 3, and 4 with the carry out from the [SB (bit 7). This

carry out is also shifted into the LSB of the new pattern.

Starting with 55 hex, the sequence is: 55, AA, 49, 92, 39, 72,

34, etc. Thus the desired 'randomness' is achieved. All 8-bit

patterns except 00 will be generated before the sequence

repeats. Note that test algorithms using this technique require

one byte of RAM in which to store the current pattern. Since

these random patterns change from test run to test run, numerous

different patterns will be applied (over time), which provides

some likelihood of detecting pattern sensitive faults. The

algorithms are passed the start location of the RAM to test, so

that RAM may be tested in segments.

The first algorithm tests RAN one location at a time, thus

not testing address decoding (uniqueness) at all. It works as

follows:
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(1) Read & save a RAM byte

(2) Write/verify complement of original contents

(3) Write/verify 'random' pattern

(4) Write/verify complement of 'random' pattern

(5) Restore/verify original contents

The second algorithm tests groups of two successive RAM

locations, thus providing a minimal test for address uniqueness.

It works as follows, where M and M+1 are the two locations under

test:

(1) Read & save both M & M+l

(2) Write 'random' pattern to M+l; verify both 1 & 1+l

(3) Write complement of 'random' pattern to K;

verify both M & X+l

(4) Restore & verify both M & M+l

Location M+l then becomes the next K, and the test

continues.

Both algorithms immediately follow each memory write with a

read from the same location in an effort to detect write

recovery faults. However, the algorithms test primarily for

data errors in a RAM cell and the ability to read aod write,

with at best minimal testing of other RAM faults (such as cell,

row, and column disturb faults, address uniqueness, and addressj decoder switching speed). Note that although the sequence of
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'random' patterns does not include zero, a zero pattern will

eventually be written since the complement of the 'random'

pattern is also used.

2.5.4 I/O Pores

As mentioned in Section 2.1, self-testing I/0 ports

requires external wraparound hardware. Consider a serial I/0

port chip (such as an 8251); three tri-state buffers can provide

wraparound. Two are normally enabled to allow passage of user

I/O data; the third, normally disabled, connects the serial

output to the serial input. Then in test mode the first two

buffers are disabled (tri-stated), isolating the user's external

serial device, and the third buffer is enabled for wraparound.

Thus serial data output will be received by the same chip's

serial input, simultaneously exercising both transmit and

receive logic if the serial chip is full duplex. Parallel I/O

chips are tested similarly, using a single I/0 chip if it has

multiple I/O ports (as does the 8255) or using one output chip

and one input chip if not (thus testing both at once).

Serial I/O chips (UARTs/USARTs) and some parallel I/O chips

handshake with the CPU by means of status bits. In general, the

processor must wait for proper status before performing input or

output. This means that a fault in the I/O chip could leave the

CPU in an infinite wait; this, however, will result in a

hardware timeout so that the NO-GO test result will still be

generated.
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Some of the more recent LSI I/O chips (like the 8251 a

8255) are software programmable and can function in more than

one operational mode. Unfortunately, the chip's current mode

cannot, in general, be read back from the chip. This presents a

severe problem to the self-test program. If it is to be

nondestructive (as the periodic test must be), the chip's

current mode must be restored before returning control to the

application program. But, since the current mode cannot be read

from hardware, the applications program would have to be

constrained to store current mode data in RAM accessible to the

self-test routine. Since most applications never change the

mode of the I/0 port, the best solution seems to be testing the

chips thoroughly (in more than one mode) only after system RESET

(or upon user request), and performing configuration dependent

nondestructive tests periodically.

The serial port test algorithm consists of three parts: a

transmit/receive test; a break send/receive test; and an overrun

error detection test. Tests for framing or parity errors would

require external hardware, and are therefore not performed. The

transmit/receive test simply outputs test patterns and verifies

that the same pattern is received (via the wraparound) with no

errors. (Note that this also serves to test the wraparound.)

The patterns used are (hexadecimal) 00, 55, and AA -- the same

patterns that were used in the CPU register test. This tests
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for stuck-ats or shorts between adjacent bits in the parallel

data paths leading to the I/O port and in the chip's data

registers, as well as testing the serial send/receive circuitry

and portions of the status logic. The break test works in a

similar fashion: a send break command is issued and then the

CPU waits for the break detect (received) status bit to come

active. In the overrun error test, the CPU outputs one

character and waits until the UART has received it; then,

without reading this character, the CPU outputs a second

character and waits for it to be transmitted and received. Then

the processor verifies that the overrun error status bit is set

and that the second character can be read correctly (the first

is lost). Thus most of the status and I/O circuitry has been

tested. A more thorough destructive test would repeat the test

for different baud rates, character lengths, and/or other

programmable features.

A parallel I/O port test is much more chip dependent;

simple I/O can be tested by applying the same patterns used in

CPU register testing (00, 55, & AA hex will do). This tests the

data paths, data registers (if any), output drivers, wraparound

data paths, and input circuitry for stuck-at's or shorts between

adjacent bits. (Note that strobe driven input may require some

special hardware to generate the strobe signal.) Special

functions (like the 8255's Port C single bit set/reset function)
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are then tested for correct functional operation, provided they

do not alter the chip's current operating mode (so that the test

remains nondestructive).
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2.6 Implementation of the Algorithm for the 8080 System

The preceding section considered test algorithms for

microprocessor systems in general. That methodology has been

applied to a system consisting of an 8080 CPU, RAM, ROM, 8251

serial I/O port, and 8255 parallel I/O port. This section of

the report will discuss the self-tests developed for this 8080

system. It should be noted that the 8228 (system controller)

and 8224 (clock generator) are considered part of the CPU

element, along with the 8080 itself. This is reasonable since

these chips are usually located on the same printed circuit

board as the CPU.

2.6.1 Preliminary Considerations

This program is written in such a way as to be applicable

to as wide a variety of user environments as possible. Also,

the user responsibilities are reduced to a minimum. However, it

is never possible to be completely transparent. The program

must know certain parameters about the actual system. The user

must provide these constants as shown in the configuration

dependent assembly language equate statements on page A.l.

The first item that must be upscified is the starting

address of a 1.25K (1280) blte segment of RON to be used for the

self-test program. This is specified by defining the system

parameter START as shown on page A.l.
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Other items to be specified include the address ranges of

RAM and RON, the memory mapped addresses of the 8255 and 8251

data ports and the three memory mapped I/O addresses necessary

to configure the wraparound logic and the self-test timers. (See

Appendix A, page A.1.)
I

Also, 8 contiguous bytes of system RAM must be reserved ."or

use by the self-test program. The user must specify the address

of the first of these eight bytes by defining the value of TSTAD

(page A.1).

The ROM and RAM test segment sizes may be changed by

altering the ROMSS and RAMSS parameters. This segment size must

always divide the ROM or RAM into an integral number of

segments, and hence should usually be a power of 2. Note that

changing the ROM segment size (ROMSS) will change the number of

checksums required for the self-test program listed in Appendix

A. Increasing ROMSS results in fewer checksums, while

decreasing ROMSS increases the number of checksums and may

require adding JMP's around the checksum byte (if the checksum

must be placed within a block of program code). Naturally,

increasing a segment size increases the time per test pass,

while decreasing either segment size makes for faster test

passes.

In addition, any user ROM to be included in the self-test

must include a checksum byte somewhere within each 128 byte*t
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block. The checksum is chosen so that the modulo 256 sum (with

end around carry) of all 128 bytes in the block is AA(Hex). A

jump around this checksum may also be needed, so that 4 bytes

out of each 128 bytes of user RO must be dedicated to the self-

test function. Only one byte is required if there is an

unconditional branch in the block, since the checksum may then

be placed immediately after this transfer. The 128 byte block

size was chosen so that each RON test segment will execute in

approximately the same amount of time as the CPU/8255 test

segment. The block size is small because the CPU self-test was

made as short as possible.

The initialization routine is shown on page A.23. This

routine (INIT) must be called by the applications program when

processing a reset. This routine initializes all of the self-

test variables in the self-test portion of RAM and intializes

the programmable timers.

The entry point (START) must be reached from one of the 8

vectored interrupt locations selected by the system designer.

All registers and flags from the main program are saved on the

main program stack. The entry routine also initializes the

timeout counter and reads the address of the next scheduled test

segment from TSTAD. At the end of each routine, TSTAD is loaded

with the address of the next segment to follow. Successive

interrupts will then execute successive test segments. Variable
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PAGE 31

values that need to be retained are stored in the 8 reserved RAN

locations.

2.6.2 Reporting Status

If the self-test discovers an error, the ERR routine (shown

on page A.2) is executed. In our implementation, the LED that

normally remains on is turned OFF to indicate an error

condition. The processor is then halted. This routine was

placed at the beginning of the self-test program to increase the

probability of the HLT being executed when the CPU is bad.

Three successive HLT statements take care of possible byte skew

due to software failure.

If the current test segment executes properly, the GOEXIT

routine is executed. This routine initializes the main

interrupt counter to the desired interval and restarts the

timeout counter to insure the next interrupt is processed. If

the self-test program did not execute properly in the allotted

time, then the timeout counter would turn off the error LED.

This would fail only if the GOEXIT routine were accidentally

executed properly by a faulty processor. To minimize this

probability three HLT instructions precede this routine. Also,

the software error routine immediately precedes this routine.

We therefore minimize the probability of a faulty GO signal as

much as possible.
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2.6.3 The CPU Test

The 8080 CPJ test is shown in A.4--A.ll. The 8080 CPU

self-test exercises all ALU functions, which overlaps with

exercising all possible micro-operations. These ALU functions

are: ADD and SUBtract both with and without carry/borrow (and

for carry/borrow of both 0 and I); XOR, OR, AND; rotates left

and right both through the carry flag (RAL, RAR) and without the

carry (RLC, RRC)I decimal adjust (DAA); and no-operation (after

INR/DCR). Since arithmetic is very common, the full adders used

for addition and subtraction are tested with all input

combinations for each adder (8 combinations for each of the 8

adders) during the course of the test. Note that the compare

instructions are subtracts as far as the ALU is concerned. A

self-contained subtest applies all input combinations to each of

the ALU's XOR, OR, and AND logic function gates (4 combinations

for each of the 8 gates for each function). (Users not

concerned with the logic functions could omit this subtest.)

The ALU's rotates are tested for functionality by performing

each of the four different rotates once; this seems like a

s minimal test, but since the exact implementation of these

functions is unknown, what is optimal? Also, the rotates are

not one of the most commonly used ALU functions, so a longer

test seems unjustified. The (BCD) deciwr7 adjust function is

tested for four cases: no-adjustment, adjustment due to the
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carry flag CY=l, adjustment due to the auxiliary carry flag

AC-1, and, finally, for adjustment due to a digit greater than

nine. This test also verifies that the AC flag can be both one

and zero (providing overlap with flag testing).

The 8080 register array consists of the user registers B&C,

D&E, and H&L, plus the stack pointer SP, program counter PC, the

W&Z internal registers, a 16-bit increment/decrement circuit,

and a 16-bit address latch (plus multiplexers and demultiplexers

for register select). Registers B,C,D,E,H,L, and SP are tested

with the patterns described in Section 2.7 of this report. It

is important to note that the 8080 XCHG instruction (exchange

D&E with H&L) operates by switching the internal addressing of

the DE and HL register pairs, and does not actually move any

data at all [3]. Thus to test these registers' RAM cells, one

must be wary of XCHG's, or the test coverage will not be what it

seems. The register test patterns used for SP (hex AAAA, 5555,

and 0000/FFFF) are also (while testing SP) applied to the

array's address latch and inc/decrement circuit. This should

detect any stuck bits or shorts between adjacent bits in these

elements. The address buffer (which drives the address bus from

the address latch), however, cannot be tested with these

patterns, since (for meaningful results) only valid memory (and

I/O) addresses can be applied (without adding more test

hardware). The same restriction applies to the program counter
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PC. In addition, the W&Z internal registers are not tested with

these patterns either, despite the fact that they can be loaded

via XTHL (exchange top of stack with H&L). This is because W&Z

are used for all branching (jumps, calls, returns, and RSTs)

except PCHL, which is unconditional. Thus though a stuck-

at/short in W&Z could be detected, the conditional branch that

must be used for verification would probably jump to the wrong

address. (Also, the test would require a fair amount of time as

XTHL is the slowest 8080 instruction.) Note that W&Z are

implicitly tested to some extent since the test includes an XTHL

and numerous branches; PC is similarly tested as it steps

through the self-test programs.

The increment/decrement circuit is tested for worst case

transitions (decrementing 0 and incrementing -1), for

carry/borrow to/from the high order register of the pair, and

for no carry/borrow propagation. Also, some additional testing

is performed while testing stack operations and by the

incrementing of PC after each fetch. Finally, register select

logic is tested by using different and logically distinct

patterns in the various user registers, as explained in Section

2.3.

The 8080 also contains several other 8-bit registers: the

accumulator A, accumulator latch ACT, a TMP register,

instruction register IR, and a data buffer/latch (driving the
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data bus). The first three, A, ACT, and TMP, are used for

almost all ALU operations and are tested (for stuck-ats and

shorts between adjacent bits) with the register test patterns

(described in Section 2.3) during the course of various

arithmetic instructions (overlapped with ALU testing).

Sufficient opcodes are applied to IR to verify that it too is

free of stuck-ats and shorts between bits. The data bus

buffer/latch is also tested for these faults by the opcodes and

data bytes read from memory (latch) and by the patterns output

by the CPU for testing memory and stack writes (buffer). The

8228 bidirectional data paths are also tested by these data

transfers. The 8-bit increment/decrement function is tested in

the same manner as the 16-bit inc/decrement circuit, with worst

case transitions (incrementing -1 and decrementing 0) and

various others. Finally, the accumulator's complement function

(CMA) is also tested for any stuck-ats or shorts (between

adjacent bits) while generating patterns for other uses

(overlap).

The flags (CY, AC, even Parity, Sign, & Zero) are tested by

verifying each as true (1) and false (0). This is simultaneous

with the testing of conditional jumps: JZ, JNZ, JM, JP, JC, and

JNC are all verified for both branch and no-branch. The

remaining two, JPE and JPO, are tested for no-branch only since

the Parity flag is not commonly used and the time seemed better

35



spent elsewhere. The AC flag is tested while testing the

decimal adjust function (DAA). The CY and Z flags are

considered most important and as such are tested most

thoroughly. CY is the easiest to test, since it is used by adds

with carry, subtracts with borrow, certain rotates, and decimal

adjust. Some additional testing of all flags occurs while

testing the PUSH/POP PSW instructions.

The 8080 instruction decoding, implemented by ROM, is

tested by exercising all possible classes of instructions and

all possible micro-operations. Also, the test includes

instructions with zero, one, and two bytes of immediate data,

and instructions with an immediate address (such as LDA).

Likewise, all forms of addressing, direct, register, register

indirect, and immediate, are exercised. Despite the fact that a

decoder ROM fault may show up for only a single instruction, the

self-test does not _,ry to execute all instructions. Rather the

test exercises classes of instructions, where, for example, ADD

r, ADD N, and ADI xxx form a class, DCA rp form another, and

XCHG is a class of its own. All classes of instructions are

exercised except for DI, ELT, IN, and OUT (since extra hardware

would bq required to test these), and conditional calls/returns.

IN and OUT would be tested in I/O port tests and/or status

reporting if memory mapped I/O is not employed. A test

containing conditional calls and returns has been implemented,
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with all but the parity conditions tested for both call (return)

and no-call (no-return). However, the extra time required is

considerable (about 300 clock cycles) so that user priority will

determine whether or not to use this version of the self-test.

More importantly, the self-test exercises all micro-operations

except those covered only by DI, HLT, IN, and OUT; this

exercises most of the decoding and control logic of the CPU.

Refer to Appendix G for a list of the 8080 micro-operations.

The data paths connecting the various elements of the CPU

are tested (for stuck-ats/shorts) "in the process of testing the

elements themselves. Also, as was mentioned in Section 2.2, the

micro-operations were developed with the data paths in mind; so

all data paths are exercised to some degree. The weakest point

is the path to the address buffer which, as stated before, is

restricted to valid memory and I/0 addresses (for meaningful

results).

Tests were combined where possible. For example, on page

A.4, the portion of the test between OKO and OK1 executes the

DCX, ADD, and ACI to set the carry and zero flags and EVEN

parity. The JNZ, JNC, JPO instructions verify the correct

operation of instructions, flags, and conditional jumps. Note

that the JZ to OK1 is followed by a JMP error in case the JZ

fails. The RST ERX is yet another branching mechanism that may

work if the JMP fails. Finally, the HLT should hang up the
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program if no transfer at all is executed. The RST ERX

transfers control to one of 8 vectors in low memory, where a

copy of the ERR routine is located.

Similarly, segments from OK1 to OKS verify other

combinations of operations. The segment OK5 verifies DAA, DAD,

INX, and other register and ALU operations. As a final check,

the contents of all registers are verified by adding them

together modulo 256 with end around carri and checoing for the

expected sum. This tests for multiple register selects.

The other instruction tests are documented in appendix A,

pages A.2 to A.10.

2.6.4 RON Test Program

A RON test using checksums formed by modulo 256 addition

with carries added back to the LSB (as described in Section

2.5.2) has been implemented for the 8080 processor. The

algorithm is passed the start address of the block of RON to

test and forms a sum of AA hex for a GO pass. The test routine

object code occupies only 64 bytes of memory and runs in about

45 N clock cycles, where N is the number of bytes of RON to

test. Thus 128 bytes of RON can be tested in a single pass of

just under 3 milliseconds (with a 2 MHz clock). See page A.16.

A sample program, written in Nicrosoft BASIC, for

calculating the checksum needed for each RON segment is listed

in Appendix H. The program requests the segment size and

I 
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desired final sum for flexibility; these should be 128 and 170

decimal (AA Hex), respectively, to match the self-test program

listed in Appendix A. The CHKSU program accepts an INTEL ASCII

format object file as input. This object file should have a

zero byte where each checksum byte will be placed; the zeroes

must then be changed to the appropriate checksums, and the file

reassembled prior to burning the RON.
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2.6.5 RAN Test Program

A MOVI RAM test and both quick, nondestructive RAM tests

described in Section 2.5.3 have been coded for the 8080. The

thorough MOVI (Appendix F) test requires almost 20 seconds per

1K of RAM (for a 2 MHz clock) and, as stated earlier, tests all

of contiguous RAM at once. The first quick test, which tests

RAM location by location (A.17), requires about 150N clock

cycles to test N locations, or about 75 milliseconds per lK.

The 32 byte segment used in the program (A.17) requires 2.3

milliseconds to execute. The second quick test, which tests two

successive RAM bytes at a time, requires about 235N clock cycles

for N locations, or about 120 milliseconds for 1K. Both of

these tests are passed the start address of the RAM segment to

be tested to allow segment testing. Each of the nondestructive

test routines requires less than 100 bytes of object code, while

MOVI requires about 200 bytes. The first nondestructive test is

included in the self-test program listed in Appendix A; it was

chosen for its high speed.

2.6.6 1/0 Ports Test Program

The 8080 has two software programmable I/O port chips: the

8251 USART for serial I/O, and the 8255 for parallel I/O.

Nondestructive tests have been coded for both chips using memory

mapped I/O so that the same test routine may be used to test

several different 8251's (or several 8255's). However, the
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routines may be easily converted to discrete I/0 (using IN and

OUT).

The asynchronous mode of the 8251 is tested and has been

modelled for simulation. As described in Section 2.5.4, the

test consists of an I/O test, a break send/detect test, and an

overrun error detect test. Unfortunately, not all versions of

the 8251 have the break detect capability [4,51; the break is

transmitted and wrapped around to the serial input, but a

framing error is detected instead of the break. For these chips

the break test has become a break send/framing error detect

test. The 8251 test routine requires about 128 bytes of object

code; its execution time depends upon the character length and

baud rate selected. With one stop bit, 8 bit characters, no

parity, and at 9600 baud, the 8251 test requires just under 8

milliseconds. Therefore, it was divided into two parts

requiring about 4 ms each. (See p A.19)

An 8255 test has been coded to test Mode 0 operation (basic

I/O with no strobes/handshaking)(See page A.11). Although the

8255 remains in Mode 0 throughout, it changes the port

configurations (i.e., changes which ports are inputs and which

are outputs). However, the test restores the 8255 to its

original configuration, which must be known in advance. Before

the test commences, all wraparound and isolation buffers are

tr-stated (isolating the external device); then a pattern is
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written to each port. This is a no-op if the port is defined as

an input, while if it is an output, the pattern is latched and

can be read back by reading that port. Each port is then read

back; if it was an input, FF hex (all ones) is read (since the

lines driving the inputs are tri-stated). If the port was an

output, the pattern is read back; note that if neither value is

read back, there is a fault and a NO-GO result is generated.

The first part of the test routine tests the 8255's three

I/O ports (A, B & C) and the data paths involved for stuck bits

or shorts between bits as well as testing the 8255's basic

functionality. The test defines one port as output and the

other two as input, and then outputs test patterns and verifies

that they have been read back correctly through the two input

ports. Each port has a turn as output port, as shown below:

Output port Input ports Patterns used (hex)

A B, C 55, AA, 00

B A, C CC, 66, 33

C A, B D9, 6C, 36

The second part of the test checks the Port C single bit

set/reset function. Each bit is set (verified) and reset; the

test then verifies that setting a set bit and resetting a zero

bit have no effect. The patterns in Port C are read back for

verification through Port B. The total test routine requires

approximately 300 bytes of object code and takes between 1700
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and 1800 clock cycles to execute (0.85 to 0.90 milliseconds for

a 2 MHz clock), depending upon the original configuration.

Therefore, this test was combined with the CPU test to make a 2

ms segment.

A self-test methodology has been described for

microprocessor systems in general and specific algorithms for an

8080 system have been discussed. The methodology has been

developed under the constraints of minimum additional hardware,

minimum impact on system users, and has been tailored to quick,

periodic, transparent tests. Some elements/functions are

untestable under these constraints (as was Halt), or can be

given only a partial test (as for RAN). The test procedures

proposed follow the 'start-big' approach and so attempt to

overlap testing one element/function with testing others.

Overlap is quite important under the above constraints in order

to maximize fault coverage while minimizing testing time.

Unfortunately, this overlap makes automatic generation of tests

most difficult, but research toward this end is desirable.

2.7 Organization of Self-Test Segments

The overall system self-test is organized as a sequence of

short periodic test segments. With a 2 MHz processor clock and

fast memory that does not require WAIT states, the execution

time of each segment is as follows:

where m - (RON memory size in bytes)/128
n - (RAM memory size in bytes)/32

Segment (1) Tests CPU and 8255 (2 ms)
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Segment (2) Tests first 128 bytes of RO (3 ms)
Segment (3) Tests next 128 bytes of ROM (3ms)

Segment (m+l) Tests last 128 bytes of ROM (3ms)
Segment (m+2) Tests first 32 bytes of RAM (2.5ms)
Segment (m+3) Tests next 32 bytes of RAM (2.5ms)

Segment (m+n+l) Tests last 32 bytes of RAM (2.5ms)
Segment (m+n+2) Tests 8251 (4ms at 9600 baud)
Segment (m+n+3) Tests 8251 (4ms at 9600 baud)

The total test time is 3m+2.5n+10 milliseconds. For

example, for a system with 16K of RAM and 2K of ROM, the total

test time would be 1338 ms. The CPU test uses only 2ms of the

total time. The 8251 uses 4 ms, the ROM requires 48 ms and the

RAM requires the rest (1280 ms). The test is executed in m+n+3

= 531 sequential segments.

2.8 Hardcore Assumptions

The self-test, as mentioned previously, cannot test all CPU

elements/functions completely without special extra hardware.

Those elements not tested are: the HLT instruction; the DI

(disable interrupts) instruction; the IN and OUT instructions

(since memory mapped I/0 is employed); conditional calls and

returns (an enhanced CPU test verifying these calls/returns has

been coded, but was not simulated); the program counter (PC) and

address buffer (since only valid addresses may be used for

meaningful results); and the WZ register pair. Faults in the
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latter three elements may be detected by a hardware timeout

should the program lose control due. to faulty addresses.

Finally, the 8080's timing and control circuitry cannot be self-

tested lirectly (without special hardware).
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3. FAULT SIMULATION

One of the difficulties in developing self-tests for LSI

systems is trying to rate the effectiveness of the software.

When one reads articles on self test development for LSI

systems, the authors are usually mute on this point or make

vague statements such as "the test routines were shown to be

effective." The reason for this is that, presently, the only

known way of testing the effectiveness of self-test software is

to conduct "fault injection experiments." One can either run

these experiments with a real hardware system or through

simulation. Using a hardware system is not feasible because

obtaining LSI devices with known internal defects is much more

difficult than obtaining good devices. Simulation does provide

an answer, but there are problems here also. LSI devices

contain thousands of gates, thus using traditional gate level

simulation techniques can present great difficulties. The

biggest problem is that accurate gate level models of LSI

devices are usually known only by the manufacturer and in most

cases they are unwilling to divulge this information. Secondly,

even given a gate level model of an LSI system, the simulations

require too much host CPU time, i.e. money, when validating

self-test software. The only solution to this problem is to

develop a simulation model at a higher level. During the past

several years at VPI, we've developed an approach to higher
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leve. simulation known as chip level simulation. In chip level

simulation, the internal microperations of a device and the

timing characteristics of the signals at its interface pins are

simulated. This is done without modeling the detailed internal

gate structure of the chip.

The simulation language that we employ is called GSP

(General Simulation Program). It was developed under previous

U. S. Navy research contracts. It has been used on this

contract and we are also using it to do fault modeling for the

NASA-Langley Research Center.

We have found GSP to be a very effective tool for the fault

modeling required by this contract. As will be detailed, using

GSP, we were successful in modeling the microprocessor system

and conducting the required fault injection experiments.

3.1. A Description of the General Simulation Program (GSP)

The General Simulation Program (GSP) is a general purpose

simulation program designed specifically to simulate LSI devices

at the chip level, i.e. internal device micro-operations and

detailed interface signal timing are simulated. The program is

written in FORTRAN to insure portability. Presently the system

runs in either a batch (IVS) or interactive (ClS) mode on an IBM

3032 Processor. An optimizing compiler (Gl-HX(2)) is used to

speed up the simulation.
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When utilizing the GSP system one goes through the

following three phases:

Phase 1 - Chip Description. The user models the device at

the chip level (an example of this is given below) and codes its

description using the GSP assembly language. This code

description is then processed by the GSP assembler to produce an

integer microcode file which can be used in any subsequent

simulation requiring that device.

Phase 2 - Interconnect Description. The user edits an

interconnect description file which is used to link the

microcode descriptions of the individual modules into a total

system microcode description. This description can be used for

all subsequent simulations of the particular system.

Phase 3 - Simulation. External system inputs are specified

and simulation is begun and repeated as necessary.

The prccess of modeling and coding a *sample" module is

illustrated in Figures 3.1 through 3.4.

The sample module is an 8 bit register with buffered

outputs. Data is clocked into the register on the fall of the

strobe (STB). The ouput buffers are enabled (EN - 1) when the

input select function (DSl DS2) is true.

The first step in the modeling process is to examine the

chip description and timing specifications to identify module

events. As shown in Figure 3.1, the sample module has a 55 NS
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delay (tSD) from the fall of the strobe until data appears on

the ouputs (assuming the buffers are enabled). Also, there is a

45 NS delay (tED) specified from the presence of the enabling

input logic condition (DS1 DS2) until ouput data appears.

If the buffer delay is 10 NS, then three delay events can

be identified: (1) negative strobe transition to register self

call (45NS), (2) positive enable transition to enable self call

(35NS), and (3) self calls to data output. The term "self

calls" refers to the fact that after the module routine identifies

either of the two external events C11 or (21, it causes an event

to be placed in the time queue which will call the module routine

in a specified number of nanoseconds. Once called, the routine

will schedule the register content to appear in the outputs after

10 NS, provided that the buffers are enabled.

Figure 3.2 illustrates the second step in the modeling

process: generation of the module flow chart. We have found

this step in the modeling process to be very important in

assuring an accurate model. A good deal of time can be

fruitfully spent in this phase before proceeding to the coding

phase.
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For the example under discussion, the flowchart illustrates

the logical structure of the model. After the enable (EN)

signal is computed, a check is made to see if either the enable

or the strobe events have occurred. Note that the events are

detected by comparing the present value of a signal with the

value of the signal that was stored the previous time the module

was called (e.g. STB vs STBO). If either of the events has

occurred, an appropriate self call is scheduled. Also, the

value of the data or signal involved is "carried along" with the

self call event for later storage.

The next section of the flow chart checks for either an

enable self call (ENSC) or a data register self call (DRSC). If

DRSC - 1, the data register is _pdated using the previous value

of the data input value that was "carried along" with the data

register self call. Next, the value of the delayed enable (END)

is checked. If END - 1, the data outputs are scheduled to take

on the value of the data register in 10 NS. If END - 0, the

data outputs will be forced to the all ones configuration

simulating the high impedance state. The final activity in the

flowchart is the updating of the "old values" of EN (ENO) and

STB (STBO). After this, the module procedure is exited.

The final step is the coding of the module description

using the GSP assembly language. This is illustrated in Figure

3.3.
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Note that the description contains a declaration section

and a section containing module micro-operations. The

declaration section specifies registers (REG), pin connections

(PIN) and events (EV). Module micro-operations are specified

using a rather normal looking assembly language except for

instructions like: MOV(WlO) D, DO. This instruction causes the

contents of the D register to be moved to the ouput in 10

nanosJc.

Figure 3.4 shows the form of the integer microcode file for

the sample module.

This section of the report has given only a cursory

introduction to the General Simulation Program (GSP). For more

information the reader is referred to reference 6.
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DECLARATION SECTION:

REG(8) D jSAMPLE MODULE, 8 BIT CLOCKED REGISTER
EG(1) TEMPI,EN,ENO,STBO ,TRI STATE OUTPUT WITH ENABLE CONTROL
IN DI(1,8), DO(9,6),DSI(17),NDS2(18),STB(19) ;PIN SPECIFICATIONS

PIN DID(20,27),END(28),EX(61),ENSC(62),DRSC(63) -PSEUDO PINS
EVW(500) WIO(IO),W35(35),W45(45)

MODULE MICROPERATIONS:

MOV NDS2,TEMPi -COMPUTE EN=DSI.NDS2'
COM TEMPI
AND DSI,TEMPI,EN

ENC: XOR EN,ENO, TEMPI ;CHANGE IN OUTPUT ENABLE?
BEQ TEMPI,STBC
MOV(W35) #I,ENSC ;SCHEDULE ENABLE SELF CALL IN 35NS
MOV(W35) ENEND ;CARRY ALONG CURRENT ENABLE VALUE

STBC:MOV STBTEMPI ;COMPUTE STB'.STBO
COM TEMPI
AND TEMPI,STBO, TEMPI
BEQ TEMPI FL *NEG STROBE TRANSITION?
MOV(W45) RC ;SCHEDULE REG SELF CALL IN 45NS
MOV(W45) DI,DID ;CARRY ALONG THE CURRENT INPUT VALUE

FLGCK:OR ENSC DRSCTEMPI
BEQ TEMPI,UPDATE ;EITHER SELF CALL FLAG SET?
MOV #O,ENS ;RESET FLAG
BEQ DRSCUT ;CHECK FOR REGISTER SELF CALL
MOV #UD SC ;RESET FLAG
MOV DID, -UPDATE D REGISTER

OUT: BEQ END,HIZ ;CHECK OUTPUT ENABLE
MOV(W1O) D,DO ;DO=D IN IONS
BRU UPDATE

HIZ: MOV(WIO) #225,DO ;DO=ALL I'S IN IONS
UPDATE:MOV ENENO ;UPDATE VARIABLES

MOV STB, STBO
MOV #O,EX ;EXIT MODULE
END

FIGURE 3.3 MODULE DESCRIPTION
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3.2. The Simulation Model for 8080 System

The system that was modeled consisted of the same chips

that are in the hardware system: (1) 8080 microprocessor (2)

8228 System Controller and Bus Driver (3) Semiconductor Random

Access Memory (RAM) (4) Read Only Memory (ROM) (5) 8251

Programmable Communicaton Interface (UART) and (6) 8255

Programmable Peripheral Interface (Parallel Port). The real

system also contains an 8224 clock chip, however for simulation

purposes this was considered to be part of the microprocessor.

In addition to the above six models, the gating used to perform

address selection was grouped together to form a Select Module.

Finally the bus interconnect between the chips was also modeled

as a module. Figure 3.5 below shows a diagram of the system

model.

As pointed out in section 2, the system test scheme employs

wrap around from I/O outputs to I/O inputs. It was not

necessary to model this wrap around as separate modules in that

we were able to use our regular method of interconnect

specification.

3.3. The Modeling Process

The development of the simulation model for a computer

system consists of steps which are analogous to hardware

development. Models for the individual chips are first

developed and checked out. This model development consists of
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four steps: (1) examination of the manufacturer's

specifications (2) development of a model flow chart (3) coding

of the model (4) assembling the model code to produce a "micro

code" file. This process was illustrated in section 3.1 for a

sample module.

The development of the models for the test system followed

the same four steps. Model development and model checkout for

LSI chips is a sophisticated process, requiring that the modeler

have a thorough understanding of the chip logic. We estimate

that approximately 7 man months of effort were expended in model

development. We do not discuss each model in detail in this

report. However, in appendix B the model flow charts for the

test system are given. Appendix C gives the assembly language

description for each module. At the present time, a separate

document discussing modeling techniques. is in the writing

process. We will forward this to RADC when completed.

5
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3.4. Development of the System Model

Once the individual models have been coded and checked out,

they are merged to form a system microcode file. Figure 3.6

illustrates the process. It assumes that individual microcode

files have been prepared. These files are then merged to form

the LINK file. The LINK file holds the microcode for the entire

system. In addition it also is used to maintain the state of

all system signals initially and as simulation progresses. The

merging of module descriptions to form the LINK file is

performed automatically upon command.

Another file, the DATA file, contains necessary information

on: (1) module interconnection (2) initial signal values (3)

module input marking (4) input vector specification. The DATA

file for the test system is given in Appendix D. Details of how

to prepare the data file are given in reference 6.

Once the LINK file and the DATA file are in place the

simulation can begin. As simulation progresses, the state of

the system is maintained in the LINK file. Specified system

outputs are routed to an output file for storage. The

simulation output can also be simultaneously routed to the

user's terminal and/or printer. The above discussion implies

operation in an interactive computing system; however the

simulator can be run in the batch mode as well. In fact, most

of our longer simulation runs were made this way.
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3.5. Fault Injection Experiments

The purpose of constructing the simulation model was to

conduct "fault injection experiments" in order to assess the

effectiveness of the test software. The first step in the

process is the injection of the fault into the module microcode.

This is done by assessing the effect the fault has on the module

response and then incorporating this effect into the model.

This incorporation is accomplished by: (1) deleting module code

or (2) modifying module code or (3) adding additional module

code or (4) some combination of (1), (2) and (3).

This contract was the first time we had ever done this on a

large scale. Our approach to doing this was therefore "ad hoc*,

but we will study the overall results and attempt to derive

general principles for fault insertion.

A full list of the faults injected for each chip are given

in appendix E. However, they can loosely be divided into three

categories:

(1) Incorrect microperations - Examples: "Incorrect

operation of carry flag for subtract instruction" (CPU),

"multiple register select on read, selecting C also selects L"

(CPU), "Bit set/reset command clears Port C output completely"

(8255).

(2) stuck at faults
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Examples: "Data bus line 2 from the 8228 stuck at zero",

address line ADO stuck open (RON)", and "status register stuck

at all zeros" (8251).

(3) timing faults.

Examples: "Write pulse must be 50ONS to write correctly

instead of the specified 250 NS (8251)" or "Hold times for

address and data had to be too large--300NS from the end of the

write pulse" (8255).

A basic question that %ght be asked is how were the faults

chosen. With the very high reliability of LSI devices [71, the

most likely faults will be interconnect faults, e.g. cold solder

joints and printed circuit board defects. Therefore, in our

simulation of faults, a high priority was given to interface

defects: 43 per cent of the faults injected were interface

faults.

In selecting interior chip faults to simulate, the ideal

approach would be to first compile a list of the most likely

faults from literature data and information obtained directly

from the manufacturer. The faults to inject could then be

selected from this list. In the case of memory devices, failure

modes are well documented [21 so that we were able to do this.

For the other chips in the system, i.e. the 8080 processor and

it's support chips, no such data is available. We contacted

peopl, involved in fault simulation at INTEL and their reply was
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that they knew of no fault history for their chips. In light of

this situation, we decided that the next best approach was to

have the simulation modeler of each chip select the faults, e.g.

the person who developed the model for the 8251 would compile a

fault list for that chip. Also, to as great a degree as

possible, the selector of the faults should not be aware of the

characteristics of the test programs. We followed these

guidelines as closely as possible given the limited number of

people working on the project at one time (4-5) and believe we

were able to select an unbiased set of faults to test the self

test software.

In conducting the actual injection experiments we wanted to

insure that the necessary fault information was collected. To

insure this, a standard Fault Injection Experiment Record form

was used for each experiment. Figure 3.7 gives an example of

this. The Fault Description, as its name implies, describes the

physical fault that is inserted, in this example: "data line DO

to 8251 shorted to ground." The System Configuration category

lists the module files that were used for the run. The Initial

Conditions and Input categories are self explanatory. This

information is stored in a DATA file so the name of that file is

specified here. The test routine that was being executed is

recorded in the *Program Executed" category. A description of

how the fault manifested itself is given in the Fault Syndrome

i' category. Finally space is given for additional comments.
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We did not include the Fault Experiment Record for each

experiment in the report. (They are on file in the Department

of Electrical Engineering at VPI&SU.) Instead we prepared for

this report, as appendix E, a Fault Experiments Summary. The

spmmary has an entry for each experiment. The entry contains a

"description of the fault" and the test results. Test results

are classified as detected, program control lost, or not

detected. Under our system test concept, a fault can be

detected in two ways: (1) the test routine detects the fault or

(2) the test routine hangs up in an infinite loop due to lack of

response from some section of the hardware. In this second

case, a "watch dog timer" would time out indicating a system

failure. Loss of program control means that the processor

receives faulty instruction data from the ROM and therefore is

no longer executing the test routine. It is highly probable, we

believe, that a time out will occur in these cases also, but we

list them separately since the probability of detection is not

unity.
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Fault Injection Experiment Record

Date: 8-25-1

Fault Description: Iterconnect Fault #8251IB, Data line Do to 8251

shorted to ground

System Configuration: SYS51

RAM32RB

A8255V6

B8228

A808ON

CSL

BUS

TEST8251 (RON)

A8251V5

Initial Conditions Input Program Executed

A8251IB DATA Al TEST8251 SOR Al

Fault Syndrome: Mode word and command word to 8251 were modified to

4C and 14 respectively instead of 4D and 15.

Test incomplete. Processor hangs up. Hardware timer

should detect the fault.

Comments:

Figure 3.7
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3.6 Analysis of Fault Coverage

Table 3.7 below gives a numerical summary of the results of

the fault injection experiments.

System NOT
Component DET. PCL DET. Totals

CPU 33 2 1 36
8228 4 2 6
BUS 3 3
ROM 1 3 1 5
RAM 2 2 3 7
8255 31 7 38
8251 21 2 23
Totals 9- 1- I, 118

Percent 78 8 14 100

Table 3.7

The data shows that of the 118 faults injected, 92, or 78

percent would definitely be detected, 102, or 86 percent would

probably be detected, while 16, or 14 percent, would definitely

go undetected. The table also shows, in particular, the

sensitivity that the system has to faults in the data path

involving the RON, BUS and 8228. Of the total of 15 faults

injected in these three modules, only 3 (20 percent) are

definitely detected, 8 (53 percent) are probably detected, while

4 (27 percent) went definitely undetected. This is because

these faults effect the instructions that the processor reads

and thus would alter the program flow. The coverage of internal

CPU faults, on the other hand, was excellent, with 92%

definitely detected and 973 probably detected. This compares

J well with the data given in reference S.
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4. SELF-TEST HARDWARE EXPERIMENTATION AND DOCUMENTATION

The hardware added to the microprocessor system for self-

testing was kept to a minimum. The hardware consists of three

basic parts: wraparound, isolation, and control logic for self-

testing I/O ports; timers and control for initiating the self-

tests; and a display for reporting the test results. In

addition, some system RON (1.5K) is required to store the self-

test routines and 8 bytes of system RAM must be dedicated to the

self-test. Figure 4.1 shows a block diagram of a self-testing

8080 system.

4.1 Experimental Verification of Self-Test System

The self-test described in Appendix A has been successfully

verified on the self-test board. A "user" program was run in

the foreground to ensure that the self-testing did not interfere

with user programs. The program read characters from the

console terminal (through the 8251), echoed them, and printed

back the whole line of text when a carriage return was typed.

It had no problems executing--even through the 8251

tests--despite the fact that self-test passes were made very 75

ms instead of about once a second as would probably be the case

in practice.

4.2 Status Display

The self-test displays system status on two LEDs and,

optionally, on a 7-segment display. The first LED represents
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NOT ERROR, it is normally on to indicate NO-ERROR and is

extinguished to indicate ERROR. The second LED is a "heartbeat"

indicator. It is toggled on and off by successive test passes

(or by every nth test pass if n passes are made per second) so

that the LED blinks on and off about once per second. This

provides a visual indication that the system is successfully

self-testing at (about) the proper rate. Note that should

either LED burn out an error condition results. The LEDs do, of

course, require monitoring. Figure 4.2, shows the LEDs and some

of the driving circuitry. The 74373 8-bit latch is used as a

memory mapped output port (at address ADDRl); a one or zero

(alternately) is written to control bit BO at the end of each

successful test pass (or each n passes) to make the "heartbeat"

blink. The ERROR signal driving the ERROR LED is generated by

logic to be described in the next section of the report.

The 7-segment display, also shown in Figure 2, can be

included to allow some fault location; that is, different codes

are written to the display by different tests (CPU, 8255, ROM,

RAM, 8251) so that a fault may be isolated to a specific element

or card. Since our self-test was not designed for fault

diagnosis, many faults in one module are detected by the self-

test routine for a different module. For example, a memory

fault could cause the CPU memory read/write test to fail,

indicating a bad CPU when really the memory is at fault. The
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,501 I~SELECT LOGIC)

MEMW
(FROM 8228)

Figure 4.2: Test Status Displays.
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display was included on the self-test prototype board mostly as

a development aid, but can be incorporated into the system self-

test if desired.

Of the three displays, the "heart-beat" provides the best

indication that the system is up and running correctly because

it must blink on and off (at approximately the right rate).

However, certain failures in the self-test hardware could cause

loss of the "heartbeat" while the ERROR LED would stay lit

(indicating NO ERROR). The two indicators provide a measure of

redundancy that allows detection of errors in the self-test

hardware itself.

4.3 Timers: Interrupt and Timeout

Figure 4.3 shows the counters and control logic needed to

generate the periodic self-test interrupt calls and the hardware

timeout. Note that an 8253 Programmable Interval Timer provides

the two counters (with one spare); the counters are software

controlled. This has the advantage of allowing different test

cycle times for different passes of the self-test (an 8251 test

pass, for example, requires more time than a ROM test pass).

The disadvantage is that the system must function correctly to

initialize the counters; failure to do so, however, will be

indicated by the loss of the "heartbeat". Both timers (0 & 1)

are configured in Mode 0 so that the outputs, initially zero,

will change to one and stay there upon the terminal count;
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counting will then be suspended until a new start value is

loaded.

Timer 0 is responsible for generating the interrupt request

while Timer I provides the hardware timeout feature. The 8080

loads Timer 0 with the count value for the desired time between

self-test passes, To, and loads Timer 1 with a slightly larger

value, T1 = T0 + 6 . The counters are started simultaneously by

writing ones to control bits CO and Cl of the CNTL latch (at

memory mapped address ADDR3), thus enabling the Gate inputs on

the 8253. When Timer 0 reaches To, OUT 0 rises from zero to

one, clocking a one (CO) through F/F #1 to generate the

interrupt request; Timer 1 will still be counting. If the self-

test has not begun within time 6 after To, Timer 1 will time

out and generate the ERROR condition (latched by F/F #2). Time 6

is the maximum time needed for the 8080 to process the

interrupt, save user registers, and stop Timer 1. Thus Timer

l's first function is to ensure that the self-test is initiated

within the allotted time.

Upon interrupt acknowledge, P/F #1 is cleared and an RST

instruction is gated onto the Data Bus by the 74244. (The 74244

may be omitted if RST7 is used for the self-test, since that

opcode is FF Hex.) The self-test has now been successfully

initiated and zeroes are written to CNTL bits CO and Cl,

disabling the timers. Timer 1 is now loaded with a new count
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value corresponding to the length of the test to be performed on

this pass (test times vary depending on what is being tested).

A one is then written to CNTL bit Cl to start this timer. Upon

successful completion of the test pass, Timer 1 is stopped (by

,riting a zero to CNTL bit Cl), Timers 0 and 1 are reloaded with

T0 and T, respectively, and the timers are started (by writing

ones to CO and Cl) to await the next test pass. If, for any

reason, the self-test does not finish within the allotted time

interval, Timer 1 will time out and generate the ERROR signal.

Thus Timer l's second function is to ensure the self-test pass

reaches a timely completion (or an error is generated).

During all previous write operations to the CNTL latch

(actually writes to address ADDR3), bit C2 was a logic one. If

the self-test detects a fault, a zero is written to C2,

presetting F/F #2 to generate the ERROR signal; the processor

then halts (since successful return of control to the user

program is not guaranteed). Thus ERROR may be generated by

either a hardware timeout (Timer 1) or by software. The ERROR

signal turns off the ERROR LED and is ava'lable to the user for

any other desired action. Note that upon power-up the ERROR

signal may be true (indicating ERROR) for a short while before

the software initializes the 8253 and CNTL latch. A one-shot

could be used to eliminate this possibility, if necessary.
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The hardware shown in Figure 4.3 allows complete software

control of the self-testing and hardware timeout. This allows a

user program to suspend self-testing during a time-critical

operation. The user program simply writes zeroes to CNTL bits

CO and Cl (and a one to C2) to suspend testing, and then writes

ones to CO, Cl, and C2 to resume self-testing. Note that the

"heartbeat" LED will be affected by a long suspension, so that

suspensions for over 100 ms or so are not recommended. Note

also that if the user program fails to resume self-testing, then

the "heartbeat" will stop altogether, indicating a fault.

The "heartbeat" also minimizes the effect of a fault in the

hardware of Figure 4.3 or in the software control. If tests are

not successfully completed at (about) the proper rate, the

heartbeat" will indicate a fault even if the ERROR LED is still

lit.

4.4 Hardware Required to Self-Test I/0 Ports

Figures 4.4a and 4.4b illustrate the logic needed for self-

testing parallel and serial I/O for an 8080 system. The 8255

parallel I/O port is especially easy to test in Mode 0 since

each of the three ports can be configured as either input or

output; this allows data output to one port to be input through

another port of the same chip. Similarly, the 8251 (being a

full duplex USART) has both serial input and serial output so

that another UART is not required to self-test it.
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As shown in Figure 4.4a, the self-test logic for the 8255

consists of three (8-bit) isolation buffers (11-13), two

bidirectional (8-bit) wraparound buffers, and another control

latch, memory mapped at address ADDR4. Buffers Ii, 12, and 13

isolate the 8255 from its peripheral devices during self-testing

of the 8255. Figure 4.5 shows the three possible

implementations for an isolation buffer. In Figure 4.5a, the

8255 port is configured as an output port; the 74373 (octal D-

type latch) outputs follow the inputs (from the 8255 port)

during normal operation. During testing, the TESTING signal

goes low and the 74373 latches its current ouputs; thus the user

signals are preserved during the test and the peripheral device

never sees the test patterns. The 8255 output value is restored

upon successful completion of the test, and TESTING is set high

once again for normal operation. The TESTING signal is supplied

by the CNTL latch bit X4 as shown in Figure 4.4.

In Figure 4.5b, the 8255 port is configured as an input

port; now the 74373 outputs feed the peripheral data into the

8255 during normal operation. During testing, the TESTING

signal goes high, trn-stating the 74373 outputs. Thus the

peripheral input data is prevented from conflicting with test

patterns. Figure 4.5c shows a special case; here the 8255 port

is sometimes used as an input port and sometimes as an output

port. The Y signal is controlled by the user (through a latch-
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like CNTL to define the direction of data flow. This case is

merely a combination of the first two cases. During testing,

the lefthand 74373 latches its data (in case the port is an

output, Y - 1) while the righthand 74373 is tri-stated (in case

the port is an input, Y = 0).

The wraparound buffers, Wl and W2, are 74245's, octal bus

transceivers with tri-state outputs. During normal operation,

their EN inputs (XO and X2) are high, and both directions have

outputs tri-stated. During testing, CNTL bits XO and X2 are set

at zero and bits Xl and X3 are used to define the direction of
data flow. Thus each 8255 port can be tested as both an input

port and output port.

The serial I/0 self-test logic, as shown in Figure 4.4b,

requires two tri-state buffers to isolate the serial peripheral

device and one more tri-state buffer to provide wraparound

(requiring one 74125). Only one control bit (X5) is required to

define either normal operation or self-test mode (wraparound).

During testing, the serial input is connected to the serial

output so that the 8251 receives what it transmits; the

peripheral device is isolated by the tri-stated buffers. During

normal operation, the wraparound buffer is tri-stated and the

other two buffers enabled for normal serial I/0.

One important consideration here is the effect of a fault

in the isolation/ wraparound hardware. A fault in a wraparound
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buffer would be detected by the I/0 port's self-test. However,

a fault in an isolation buffer would not be detected. The

isolation can be tested, but an additional input port is

required and, more importantly, the testing must be done while

writing to or reading from the peripheral device. This requires

knowledge of the peripheral device. Figure 4.6 shows an example

of testing parallel I/0 isolation buffers. If the isolation

buffers passes data out to the peripheral, data must be written

to the 8255, input through the extra port (ADDR5), and compared.

If the isolation buffer passes data in from the peripheral, data

must be read through both the 8255 and the extra port, and

compared. Thus data from both sides of the isolation buffers is

compared. For serial I/0, an extra UART would replace the extra

74373 parallel input port. Again, since the peripheral will

either receive or provide the test data, this testing must be

part of the applications program.
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5. CONCLUSIONS

The main conclusions that can be drawn from this report

are:

(1) It is possible to develop efficient self-test routines

for detecting faults in the processor, memory, and support chip

areas of a microprocessor system. These routines comprise the

essential element of a total self-test strategy for

microprocessor systems. We found that the CPU and parallel I/0

port tests required the least amount of execution time, in fact

both of these tests are made in a single test pass in 2 ms,

while RAM memory testing required by far the most time, approx.

80 ms for 1K. RON testing also required a fair amount of time,

approx. 24 ms for 1K. These figures are for a 2MHz clock rate.

Serial I/0 testing depends almost entirely upon the baud rate

employed as opposed to the other tests which depend on the

processor clock rate.

Fault injection experiments indicate that the fault

coverage of the self-test strategy is approximately 80%.

Failures detected by self-test mechanisms include not only those

detected by the self-test routines directly, but also those

uncovered by "watch dog" timer mechanisms. This second category

of faults is characteristic of situations in which the system

becomes totally unresponsive and when the self-test hardware is

itself faulty.
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(2) A chip level simulation model is an effective tool for

evaluating self-test software. This model was used to construct

fault injection experiments in order to assess the effectiveness

of the self-test software. The results of these simulation

experiments were used to calculate the 80% fault coverage figure

mentioned above.

The fact that the model was constructed and was used to

evaluate self-test software constitutes an important

contribution to the state of the art in system validation. To

date, accurate modeling and simulation of LSI devices has been

prohibitively expensive in many validation situations. The work

carried out in this contract has demonstrated the effectiveness

of the GSP simulation language in solving this problem.

(3) An effective self-testing system requires only a small

amount of self-test hardware. An actual 8080 hardware system

was constructed and put into full working order. All self-test

routines were run on this system to verify that: (a) the self-

test routines will actually run on real equipment (b) the self-

test routines, when finished with their execution, leave the

system in a state compatible with an operational program (c)

that the small amount of self-test hardware that was added,

functioned as expected. Our laboratory system operation

verified that all three of these requirements were satisfied.
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In summary, then, we feel that we have met the three goals

of the research contract. In doing so, we have developed an

approach to the self-test of microprocessor systems which has

been demonstrated as being effective. In addition we have

accumulated a large base of concepts and ideas for further

important research in the areas of system self-test and system

modeling and simulation. We will present some of these ideas in

the next section.
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6. RECOMMENDATIONS FOR FURTHER RESEARCH

As was emphasized in the conclusion section, a large body

of important knowledge has been accumulated in completing Air

Force Contract P30602-80-C-0200. In light of this we make the

following recommendations for further research:

Future Study

(1) Develop additional self-test library programs that

provide greater fault coverage. The logical next step would be

to develop a self-test that achieved coverage as close to 100%

as possible without imposing any time constraints. This would

provide an indication of the time required for such a test.

This report describes such a test for RAM memory that requries

approximately 20 seconds to test 1K of memory. It would be

useful to know thb time and the amount of added hardware

required to achieve maximum coverage for the CPU as well. Next

it would be useful to develop a set of programs with

intermediate execution times and fault coverage. The system

designer could then select the self-test that best suits his

needs. The tradeoffs would be execution time and added hardware

cost for additional fault coverage.

(2) Extension of the self-test techniques to other

microprocessor technologies. The self-techniques that were

developed were applied to an 8080 system. An important

extension of this work could be made in two areas. First, self-
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test techniques could be developed for microprocessor systems

which possess a higher level of integration. A first step here

might be the 8085 system which combines the functions of the

8080 processor and the 8228 and 8224 support chips into one

chip. The 8085 has essentially the same instruction set as the

8080, so that this effort would constitute a rather straight

forward extension of the present research results. Next, self-

test techniques could be developed for a full microcomputer on a

chip, such as the Motorola 6802. These chips extend the level

of integration present in the 8085 by having both RAM and RON

memory in the chip. The obvious cost and reliability advantage

of such chips will dictate their use in avionics systems and it

is important that self-test techniques be developed for these

chip types also. The second possible area of extension, could

be to 16-bit microprocessors such as the 8086, MC68000, and the

Z8000. The greater computational power and accuracy of these

chips will no doubt result in their extensive use in avionics

designs and self-test techniques should be developed for them.

(3) Abstract the features of the various library programs,

possibly using a branch of formal mathematics, that would allow

the tradeoff to be defined in general terms applicable to

variety of microprocessor systems.

(4) Development of simulation models for other

microprocessor technologies. This effort would support the work

8
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in (2) by allowing fault simulations to be done for these other

microprocessor technologies as well.

(5) Development of systematic approaches to modeling of

both good and faulty LSI devices. We now have in place, a

complete, chip level model of a microprocessor system. Such a

resource offers great opportunity for exploring various

approaches to the modeling of good and faulty LSI devices.

Information gained in such a study, plus that gained in the

current contract F30602-80-C-0200 should allow us to develop

systematic approaches to this modeling.
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Interested qualified requesters may obtain copies of Appendix B
from RADC (COEA), Griffiss AFB NY 13441.

Appendix B
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APPENDIX 8

Fault Experiments Summary
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FAULT LIST
CHIP: 8060 CPU

TEST RESULT
FAULT DESCRIPTION COMMENTS

Detected Program Not
Control Detected
Lost

Push PSW results in A & Detected by CPIj4H at
PSW pushed onto stack in * 075H
reverse order. PSW value
on stack wrong
WR appeared before data * detected by CPI 04H at

075H

XTRL writes H twice and
L not at all *

DCR C decremented 8Oz detected by CMPK/JNZ ERR
got J0 * at 08CH

ADD did not set AC flag *
correctly

Incorrect CY flag after
subtracting zero CY - 1 *
instead of _
Improper RAL execution
LSB wrong *

SBI subtracted CY Detected by 7MPH/JNZ ERR
instead of CY * at 008 CH

Incorrect CY flag after
DA operation *

Incorrect parity flag * detected by JPO at MO52

Incorrect CY flag after detected by SSB C and JR
subtract and compare * at 0062H
instructions
Multiple register select
on READ. Select B also
selects D
Multiple register select
on READ. Select C also *
selects L.____ ________

Multiple register select
on READ. Select H also *
selects 3.

E. 1.

.1'

A_ - . i - I



FAULT LIST

I I TEST RESULT
I nFULT DESCRIPTION I__ coNmurs

IDetectedIProgreal not I
I IControlIDetectedI

I , i Los_ _ _
ImUltple registaer .select I I
IOn READ. Select aiso I as IIselect N l. I - I ____ l_____.. ________

li2gistr C bit3 IIstuk-at-I I . • I...........

ligster C bit5 I
Istuck-at-1 i •
I I _I~
lCA alvays sets bit 2 oflI
Iof &ccum. I *
l. I_______________ ____ _ -- _.______ __________________

li pulse duration too I
Ishort (about half of I I
inos. value) I
Iparity flag determin- I
lation ignores bit 3. I I
ITreats it as stuck-At-i -

IParity flag determin- I
lation ignores bit 3. I
ATreats 4t4 stu14 -at-U I_ I - I
ISYIC pulse is delayed I I Mault had no effect on the
Itill about the falling I i I Isystem performance.
Isdas of 62 clock I _ i .I 1
I I I I8ardware timer would
IData Line D3, stuck-mt-i I I * I Probably detect the fault
i I t., I

IfData line stuck-at-9 I * I I

Iieset pin open 1 18080 CPU does not function
I (stuck-at-i) I * Ihardware timer should
I ,_. I l. , .Idetect the fatlt
I nterrupt pin open I Iesults in AST? wnich
j(stuck-at-i) I * Icauses a call to address
1 I IFF389. The test program

I lincidentally, starts at
II I the Same location. Timer
I,-- I I detect ed

lncorroct register I I
select on REid ITE I * IWRIT

I slet H Blsm a) _AhI.
Incorrect regist er I I
select on READ & WRITE I

Ilnultiplo register selactl I
lOU urite (rite E also I •

• --fl , ilrites toC I .-.---. I_ I

B. 2.

,--,-.-- - - - -n- ---



FAULT LIST
CHIP: 8080 CPU

TEST RESULT
FAULT DESCRIPTION COHKENTS

Detected Program Not
Control Detected

_______ Lost ____ _ _ _ _ _ _ _ _ _ _ _ _

Multiple register 
select

on WRITE (Write C also *
writes to B)
Multiple register select
on WRITE (Write C also *
writes to E)
Multiple register select
on WRITE (Write B also *
writes to D)
Judge condition
microperation says CY-0 *
when CY-l
Ready line shorted to CPU wait state. Hardware
ground at time-10,000 NS * timer should detect the

fault.
DAA did not add 6H to detected by CMP/JWZ ERR at
low nibble * 008C H

SBI did not move result
to accumulator *

E. 3.

* a



FAULT LIST

| I TEST RESULT
I FAULT DESCRIPTION I COMM ENJTS

IDetectedIPrograml Not I
I IControliDetectedi

I I _____ ___ Lost 1____
Illocks data out from I I I IDetected by CPI 04H at
18080 by floating bus I I I 175H

IBUSIN input shorted to I IBus is never disabled
Iground *I I

JBOSN open (stuck-at-i) I * Bus disablea

I I. I

IDDIN input (stuck-at-0) I IHardvare timer should
SIIdetect the fault.

login input open
I(stuck-at-1) *

IData line 2 from 8080
lopen

E. I4.
I .... I I

I I, I
III
I _ _ _ _ _ _ _ _ _ P_ _ _ _ _ _ _ _ _ _ _
I ,I. ,I, I, .I

I

SIIII
I| I I I
I___________________I______
I

a a
I __________________ ______I...........

II I
-. -I.I,,I

I___________________I______
I III
I I, I

I __________________I______

! EB.4

i



FAULT LIST
CHIP: BUS

TEST RESULT
FAULT DESCRIPTION ________COMMENTS

Deete Program Not
Control Detected

____ ___ ___ ___ ____ __ ___ ___ Lost _ _ _ ___ _ _ _ _ _ _ _

Data bus line 4 from lopcodes altered
open (stuck-at-i)

Data bus line 2 from_
8226 stuck-at-#

Short between data bus
lines 4 &5fromS8228

4J

II

1. 5.

Li _____..__...__,_ ______
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FAULT LIST
cHI_P:RO

.... RTEST RESULT

FAULT DUSCRIPTION COMUTS
Detected Program Not

Control Detected
Lost

Faulty decoder. If
address is within the
range for RON, location *
1FS is read all the time
address line ADJ halt reached early
stuck-at N *

address line ADF
stuck-at-O *

ROM is always selected

CS stuck-at-1 Test incomplete
Hardware timer should

detect fault
V line to ROM
ofn Data bus from RON
at Hi-Z

E

- .1
*E.6.

4 _
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VAULT LIST

I TEST RESULT
F AULT DESCRIPTION IICOuRUS

IDatectOegPOqramI notI
II I1CostroliDtectedi

Iaddresslne AD2 I
lstuck-at-0 I I I

jadlress line AD2 I II
Istuck-at-Ig

IDecoder in BAR ignores I I I I Test incomplete
laost significant addressl I I I gardware timer should
JIt. only lower half of I Idetect the fault.
I memory can be accessed ____ ___________________

IDta line DI I II
Istuck-at-0

IData line DI
Istuck-at-1 I * II
I__ _ _ _ _ _ _ __ _ I_ _ _I_ _ _I_ _ _ _ _ _ _ _

jData bit 3 stuck-at-# I I jAccuulator contains PWIH
II I linatad of AAH
II _I _
IData line 3 stuck-at-iI I ITest incomplete

I I * I IIl~ardvare timer shaould
I I1...........I Idetect the fault

I I E.I7.



FAULT LIST
CHIP: 8251

TST RSULT
VAULT DE8CRIPI'XOU ___Detected Program Not

Control Detected
Lost

TxM4PTY & TxRDY status Test program gets stuck in
bits do not get set to a status check loop.
'1' at the end of Reset * Detected by hardware timer
mode word & command word
Data line DO open
(s-a-1) *

Data line DO hardware timer should
stuck-at-0 detect the fault

WR shorted to ground hardware timer should
• detect the fault

Reset line open
(stuck-at-i) I

No stop bit transmitted

Status register s-a-J -"Test program gets stuck in
* a status check loop. De-

tected by hardware timer
Output parity always Chip was configured for NO
even parity-hence no parity

checking

short between C/D & RD
inputs *

short between WR & CS
inputs *

short between CS & C/D hardware timer should
inputs * detect the fault

RD stuck-at-'

RD input open (s-a-i)

C/D input stuck-at-J hardware timer should
* detect the fault

C/D input open hardware timer should
(stuck-at-i) * detect the fault

4,.8.
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FAULT LIST
CHIP: 8251

TEST UESUT
FAULT DESCRIPTION __COMhMITS

Detected Program Not
Control Detected
Lost ____ _____________

CS stuck-at-#

WR input open
(stuck-at-i)

CS input open
(stuck-at-i)

8251 does not respond to
read or write commands.
Date bus to Hi-Z state ____________________

On a data read=,data re-
mains stable for only
10ONS after it is gated
onto the bus ____ ___ _________________

Write pulse requires t

Both mode word and com- hardware timer should
mand word are loaded in- *detect the fault
to the command register.____ _________ ___________

Output counter OCTR
stuck-at-all l's

E.9.



FAULT LIST
CHIP: 8255

TEST RESULT
FAULT DESCRIPTION SCOMG S

Detected Program not
Control Detected

Lost
Short between adjacent Data read back in differ-
data input lines * ent from data output to
D and D3 ) ,_the 8255

da a line shorted to
ground (D7 ) *

data line open
(Do) *

delay for data appearing (chip not meeting time
at an output port exces- * specifications)
sive (delay increase of
looms)
wrong bit is SET/RESET
stuck-at-F on bit *
select line #I
wrong bit is ST/RESET
stuck-at-i on bit select *
line #2
Bit SET/RESET operation
is reversed *

BIT reset does not work
set works ok 0

3it set Goes not worn

Reset works ok *

Address pin open (A1 )

Address pin open (A0 ) *

Port C does not work in Test routine does not test
split mode * port C in split mode.

output drivers in the
the 8255 fail (bit 5 *

rt stuck at 0)
ncorrect register se- not detected sine Ufa Is
lection (writing to port some at both ports due to
A results in writing to wraparound
l1rt _ too)incorrect' register so-

lection (read from port
port A results in
data from portA G. __.,.

E. 10.
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FAULT LIST
CHIP: 8255

- TES ESULT
FAULT DESCRIPTION ____ ______ COMMENTS

Detected Program Not
Control Detected

____ ___ ___ ___ ____ __ ___ ___ Lost _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

output driver 
in the

8255 fails. Bit *
stuck-at-1,
incorrect register se-
lection (write to port A *
results in writing
to port B),
Port C lower (4 bits)
stu~k at 0 *

Hold times for address chip not meeting timing
and data had to be too * specifications
(300NS from end of
write pulse)
Bit set/reset command
clears port C output *
completely
Reset calls to clear
A&B *4

Port A (input) bit 1
open *

Port B (input) bit 7stuck-at-*

Read port A operatlon Data buffer contains data
fails (Data buffer does * which was previously writ-
not get loaded from ten to it.

rt A)
read operation always

fails (Data bus tri- *
stated all the time)
Pattern OFFH fails to test program does not test
be read correctly (pat- * using the pattern FF H
tern sensitive fault)
A write operation rails
completely *

short between itD an CS
of 8255 *

short between RESET G WR
of 8255,*
Port A (input) bit 1
stuck-at-F ..

E.U1.
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CHIP: 8255 
FAULT LIST

TEST RESULT
FAULT DESCRIPTION COOHNENTS

Detected Program Not
Control Detected
Lost

Port B (input) bi:sshr ed5 shorted*

Address pin stuck-at-i
(AO) *

Address pin stuck-at-F
(A1) *

'sort between address
pins A@ A1  *

IR stuck-at-F

WR open *

CS open

RD open

E.12.
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Appendix F

MOVI RAM Test Program Listing
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APPINDUZ G

The folloving is a list of the micro-operations determined for the

8080 CPU based on the clock cycle by clock cycle breakdown of each

instruction <4 , pp. 2-16 to 2-20) and the CPU functional block
diagram <' * p. 2-2).

Key:
r8 Any 8-bit register of the register array
r16 Any 16-bit register pair of the register array

ACT Accumulator Latch
A Accumulator
CY Carry flag
T'P Temp. register
Dbus 8-bit data bus
Abus 16-bit address bus

EHicro-overations:

1) r16 = Abus
2) r16a I = r16b
3) Dbus a TIP and IR
4) r8= TIP
5) A= TOP
6) TOP r8
7) TOP A
8) Dbus - r8
9) Dbus - A
10) Dbus - TOP
11) TIP Dbus
12) A Dbus
13) r8 = Dbus
1) (IL) (DR) [ICIG
15) r16a = r16b
16) A ACT
17) r8 = ACT
18) ACT 4 TOP ALU [i.e. ALO outputs]
19) ACT TP 4CY - ALU
20) ACT- TOP = ALU
21) ACT -TP CY - ALU
22) TP 1 - ALU
23) TP -1 ALU
24) ALU = r8
25) ALU - A
26) ALU - Dbus
27) r6a - I - rl6b
28) DAA - A, flags [decimal adjust]
29) ACT AND TIP - ALU
30) ACT OR TIP - ALU
31) ACT XOR TIP - ALU
32) ALU - flags S, Z, P AC
33) ALU - CY
34) CYT ALU
35) A * ALUr

G. 1.
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36) Rotate Right
37) Rotate Right through CY
38) Rotate Left
39) Rotate Left through C!
40) NOT A " A
41) NOT CY - CY
#2) 1 - CY
43) Judge Condition
*4) 00 - V reg.
45) Flags = Dbus
46) Dbus = Flags
47) Set INTE F/F
48) Reset INTE F/F
49) Halt node
50) Status: Instruction Fetch
51) Status: Memory Read
52) Status: Memory Write
53) Status: Stack Read
54) Status: Stack Write
55) Status: IN Read
56) Status: OUT write
57) Status: interrupt Acknowledge
58) Status: Halt Acknovledge
59) Status: Interrupt Ack. while Halt
60) Dbus - r16high and r16lov

G. 2.
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Appendix H

Checksum Calculation Program
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APPENDIX H

100 / CHKSUM -- CALCULATE~ CHECKSUMS FOR AN 0BJECT FILE
/ IN SEGMENTS OF A DESIRED LENGTH.
/ THE SUM IS FORMED USING A MODULO 25b ADD WITH CARRY
/ OUTS ADDED BACK INTO LSB.

110 / THE SE~GMENT LENGTHS AND DESIRED FINAL CHECKSUN
/ ARE SELECTED BY.THE USER.

120 / DAVID HAISLETT MICROPROCESSOR SELF-TEST PROJECT

400 111105 = "0123456789ABCI)EF"
500 DE? PNH%(D$) = (INSTR(1,HEXOS,LEFT(D,1))-1)*16 +

INSTS (1,HbXOS,MIi.4 (03,2, 1) ) -1
/RETURN INTEGER VALUE OF 2 DIGIT HEX1 STRING

1000 PRINT CHRS(10);"CkiKSUM - V01.01;CHIS (10)
1010 PRINT "INPUT FILE"; :INPUT FILS:

IF IWSTR(1,FILS,".-)O0 THEN FILS=FIL$+*.HEI"
1020 OPEN -I-, 11, FIL$
1030 PRINT "RO3M SEGMENT SIZE"; :INPUT ROMSSS

IF RORSS%<3 THEN PRINT *?INVALID SIZE: N;RORSSI : GOTO 1030
1040 1kRINT "DESIRED FINAL SUM*; :INPUT DSURS

IF DSUN%<U UKl P)5011>255 THEN PRINT "?OUT OF RANGE, ENTER 0-2550
GOTO 1040

lobo HLINES = "" CSI~t= 0
2000 FORl b% = 1 TO ROMSS% : GoSUB 10000

IF OPS = -1 THEN IF B% 1 THEN 2100 ELSE 2030
2005 ADDRLI=AD)RI :IF 0%= THEN ADRI=ADDNI
2010 CSUlH%=CSUM% + UP'4

Z%-CSUMYI ANh) (NOT 255) : LSUM%-CSUMAI AND 255:
IF Z% THE.N CSUM%CSUM%41

2020 hbXT HII
2030 RsUMN-sDUm%-CSUm%'

IF RSUMA4.0 TH2'-, r3UM%.rSfM%-1
2040 flIm=fsuls Ai)o'
2050 PRINT "CdoLKSu0i lov SYGMENT ";lGHITS("000wH9X(ADDR1%) ,4);

"H To "; ifl.'l i 'tO0"4HA $(ADURLS) 4) OH IS "
RIGHTS ("U'"!ir.Al (iSUM%) d) "H

20bo CSUNIao
2070 1F OPI.<>-1 THtN 2000
210u CLOSE I1 GOTU i27h7

/ i lo Al4 UP.1'CT CODE I TL Fi4OM HEX FILE

10000 IF KLINiLAI="l rt11,N LINf. I4UT 81, H$S . HS=M1D$(I$.2):
IF MD (, 1, )<":"
THLO. lOUgO E;LSk r -TESy#=fNH%(NIVSAH*#2,2))

AD~.7.ii.(~I~ti,'4dI)*56# FNhM(MID (H,b.2)):
F~l-1 I4 iID(H$10,*ii1YT~i): IF HBYTESOU THEN OPa--Ig RETURN

10010 (iilu;p~uS):OFL)-LET$ (iLIWL$#2) :

10020 I? F0'4 Ti.g PtP4-0 A~L5H A r=ADDR%,1

H. 1.
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Appendix I

RADC Microprocessor Self-Test Project

Hardware System Documentation

The self-test system consists of an 8080 CPU, 8228 system

controller, 2 8251 serial I/O ports, an 8255 parallel I/O port, 8253

programmable interyal timer (with 3 independent timers), 2 8-bit data

latches for various control functions, 2K of RON containing the system

monitor, and 4K of RAN. The system employs memory mapped I/O and thus

does not use IN or OUT instructions. The system memory map is shown

below:

Address (Hex) Assignment

0000 - 07FF RON (monitor)

0800 - 17FF System RAN

3C24 Down-line load 8251, data port
3C25 Down-line load 8251, command port

3C28 CNTLI: 8-bit latch; see below

3C2C Console 8251, data port
3C2D Console 8251, command port

3C30 CNTL2: 8-bit latch; see below

3C38 8253 Timer 0 (interrupt)
3C39 8253 Timer 1 (timeout)
3C3A 8253 Timer 2 (unused)
3C3B 8253 Control

3C3C 8255 Port A
3C3D 8255 Port 3
3C39 8255 Port C
3C3r 8255 Control

1.1.-



The 8253 Timer 0 is used to generate the interrupt that initiates

the periodic self-test. This timer should be configured for Mode 0

since the interrupt is generated on the rising edge of Output 0. A

RST 3 is executed upon interrupt acknowledge, and control is passed to

RAN location OAOOH. Timer 1 is used to generate a hardware timeout;

this occurs if the self-test is not initiated or is not completed in

its allotted time. Timer 1 should be configured for Mode 0, since its

output must go high and stay high for the timeout. This causes the

ERR-bar LED to go out (indicating error). Timer 2 is unused and thus

available to the user. The Timer 0 and I Gate inputs are controlled

by the CNTL2 latch (3C30H); this latch is also responsible for

enabling or disabling the hardware timeout (see below). Both Timers 0

and 1 are driven by the processor clock (.89 MHz).

The CNTLI 8-bit latch (IC 22) is responsible for controlling the

baud rates of both 8251's; it also controls the console 8251

wraparound (self-test) logic and drives the 'heartbeat' LED. Its bits

have the following meanings:

oft(!) Function

0 Low connects console 8251 to th, console terminal;
High wraps serial output to serial input.

1-3 Console 8251 baud rate control (see below).

4 Controls the 'heartbeat' LED: low = ON; high = OFF.

5-7 Down-line load 8251 baud rate control (see below).

, 
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Assuming the 8251's are programmed for 16x operation, the baud

rate control is defined as follows:

Bit: 3 2 1 -- console
7 6 5 -- down-line load

0 0 0 Do NOT use
0 0 1 19200 baud
0 1 0 9600 baud
0 1 1 4800 baud
1 0 0 2400 baud
1 0 1 1200 baud
1 1 0 600 baud
1 1 1 300 baud

The CNTL2 B-bit latch (IC 17) is responsible for controlling the

8255 wraparound self-test logic, the 8253 Counters 0 & 1 gate inputs,

and for enabling/disabling the hardware timeout. Its bits have the

following functions:

Bit Function
0 8253 Gate 0 (Timer 0)

1 8253 Gate 1 (Timer 1)

2 High allows hardware timeout;
Low forces the timeout.

3 High disables hardware timeout;
Low enables it.

4 Low enables 8255 Port A wraparound logic;
High disables it (& tri-states Port A).

5 Low sets 8255 Port A wraparound INTO Port A;
High sets wraparound OUT OF Port A.

6 Low enables 8255 Port C wraparound logic;
High disables it (& tr-states Port C).

7 Low sets 8255 Port C wraparoWA INTO Port C;
High sets wraparound OUT Of Port C.

1.3.
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Note that Bit 5 is meaningless if Bit 4 is 1, and Bit 7 is

meaningless if Bit 6 is 1.

To enable a hardware timeout (Timer 1), Bits 2 and 3 should be 1

and 0, respectively. To indicate an error (fault detected), Bits 2

and 3 should both be set to 0; this forces a 'timeout' and turns off

the ERR-bar LED.

The system's 7-segment display is connected to the 8255's Port B;

if Port B is configured as an output, then Port B is used to drive the

display. When Port B is configured as an input, Port A or Port C may

be used to drive the display via the wraparound logic. Note that low

bits light segments, while high bits turn segments off.

i .'W 1. -7
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