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I. Introduction
The general objective of this program was to further the development

of nondestructive evaluation, particularly in relation to its use as a

means of quantitatively characterizing performance related properties of

structural materials. The principal two areas of emphasis have been low
frequency eddy current testing methods for nonferromagnetic metals and
microwave testing of dielectric layers on conducting substrates using

surface electromagnetic waves.




[ e )
4

Gl OB GBS BN M e P

II. Summary of Progress
A. Eddy Current Testing

The excitation of eddy currents in materials to detect flaws is
well developed in practice. The theoretical solutions, however, of even
the most basic geometries, which even remotely resemble practical testing
situations, have not been attempted until recently. The numerical solutiomns
of Dodd and Deeds [Journal of Applied Physics, Vol. 30, pp. 2823-2838, 1968]
and the analytical work by Zaman, Gardner and Long for both cylindrical
[IEEE Transactions on Instrumentation and Measurements, March 1981] and
planar [Journal of Nondestructive Evaluation, 1981' geometries are the
first real attempts to attack the basic eddy current problem on a theo- '
retical level. The results of these studles have application in many
practical cases where eddy current methods have been used for years.

The case of a single-turn loop surrounding an imperfectly con-
ducting cylinder has been solved for a slightly restrictive set of physical
parameters. The change in complex impedance of the coll was calculated as
a function of the geometry of the problem (radii of the coil and core) and
of the material properties of the core (conductivity). (See Appendix A)

In a similar fashion the impedance of a loop parallel to and near
an infinitely large planar conductor was calculated. This change in com
plex impedance was found as a function of the size of the coil, the 1lift-
off distance and the conductivity of the material. Again these results
bear direct application for practical testing situations employing planar
geometries. (See Appendix B)

The results of these previous investigations may also be used to

calculate the change in impedancc due to a flaw in the conducting material.

5
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A first approximation using only the fields in the unflawed sample has been
developed for the usual case of a single coil eddy current system in the

presence of a conducting half space. (See Appendix D)

B. Microwave Testing

The investigation of the use of surface electromagnetic waves to
measure the thickness and dielectric constant of a dielectric layer sup-~
ported by a planar conductive substrate has been completed. The theoretical
results show that the thickness and the dielectric constant can be measured
independently by exciting a surface electromagnetic wave along the layer
and the subsequent measurements of its propagation characteristics. The
results of this theory have been tested by an experimental investigation
of surface waves traveling along 1-2 cm thicknesses of layers of dielectric
materials at a frequency of 10 GHz, The resulting predictions of thickness
and dielectric constant are found to be quite accurate when applied to
samples of known physical properties. The measurement of thinner layers
may be accomplished by simply increasing the frequency of operation.

Some addition complexity of the actual experimental apparatus
will result, but the same theory will still be valid. Technical details
of both the theoretical work and the experimental set~up including a com-
parison of theory and experiment is included as Appendix C. A more detailed

paper is presently under preparation and will be submitted to a suitable

journal for publication.
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Impedance of a Loop Surrounding a Conducting
Cylinder

AFROZ ). M. ZAMAN, STUART A. LONG, MEMBER, I1IEEE, AND C. GERALD GARDNER

Abstract—The change in complex impedance between an ideal
one-turn coil surrounding and coaxial with an infinitely long circular
cylinder of conductivity o and permeability u and a similar coil without
the core has been calculsted. From the exact expression, a power series
in the quantity 8/b (8 = skin depth; b = radius of core) has been de-
veloped. From this result, the change in impedance of a physically
reafistic multiturn coil can be estimated. The theory permits a rational
approach to optimization of the design of eddy-current test coils and
provides a possible means of detecting changes in the radius and con-
ductivity of the cylinder.

I. INTRODUCTION

NOTABLE OMISSION to the present body of knowl-
edge dealing with eddy-current testing is an adequate
theoretical basis for the interpretation of changes in the im-
pedance of the test coil. This deficiency remains, even though
the fundamental theory is well established, owing to the
mathematical difficulties involved in solving the equations for
practical test-coil and specimen configurations. A complete
solution in analytical form seems to exist for only a few ide-
alized cases which do not necessarily approximate practical
problems of current interest.

The problem selected for study in this investigation is that
of an idealized one-turn coil (or loop) around and coaxial with
a long, solid. electrically conducting cylinder. This arrange-
ment is illustrated in Fig. 1 and shows the loop with radius a
and the core with radius b and conductivity a. The theoretical
treatment will assume that the core is infinitely long. (This
approximation should produce very small errors as long as the
distance from the position of the loop to either end of the core
is lurge compared to the dimensions of the loop itself.) This
problem has the advantage of being simple enough to permit
a meaningful approximate solution to be found while still
corresponding to a practical eddy-current testing situation. The
results show how the complex impedance of the test coil
chinges when a cylindrical specimen is placed inside the loop
and how this impedance is a function of the geometrical and
material parameters of the cylindrical core.

1. THEORY

A theoretical treatment of a geometrically similar problem
has been previously reported by Isiam [1]. In that work,
however, the emphasis was on the radiation properties of the

Manuscript received October |, 1979; revised September 9, 1980. This work
was supported in part by the US. . Force Office of Scientific Research
under Grant 77-3457

The authors are with the Electrical Enginecring Department, University
of Houston, Houston, TX 77004
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Fig. . Loop with a cylindrical core.

configuration and thus only a high-frequency approximation
was attempted for the case of a magnetically permeablc cy-
lindrical core. The case of interest in this work. that of an
electrically conducting core at much lower frequencies, may
be attacked in a similar fashion but is essentially a completely
different problem. A previous paper by Dodd and Decds [2}
investigates this configuration but its solutions are left in the
form of complicated integrals which must be evaluated nu-
merically. From Maxwell's equations for time-harmonic fields
one may derive the wave equation for the magnetic vector
potential A in terms of the impressed current density J.

VA4 k2A=—uJ. M

Using the standard eddy-current approximation of neglecting
the displacement current terms and recognizing that the vector
potential has only a ¢ component which depends on r and -,
the left-hand side of the equation becomes

N R a 2
V2A=¢ VZAO_./iQ)=¢ 12 r.___QA).',aATQ_d?
r? ror\ or 72 r?
_ 5[ 104 4, 84, )

o2 rdr r? 9z%j
Equating this expression to the source terms due to the loop
current and the induced eddy currents one obtains the equation

for the vector potential in each of the regions shown in Fig.
1.
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where py is the permeability of free space, /g is the magnitude
of the impressed loop current, w s the angular frequency of
the time-harmonic fields, and g and a are the permeability and
conductivity of the core. The presence of the impressed loop
current at z = 0, r = u is represented by the two 6 func-
tions

The solution to the cqaation may be found using a cosine
transform.

l c
Audr. sy =~ f gtr. kycos ko dk {4)
n 0

with the following functions defined for cach ol the three re-
glons:

Cilly G+ ), r<h
2 k) = 4 Cal(hr) + Cih thry, h<r<a (%)
Cak ((Ar), r>ua

where £ and Ky are the modified Bessel functions of order one,
&= wur and CrCs Coand Cyare constants to be deter-
mined by the boundiry conditions

Stince the quantity of primary interest is the vector potential
in the vicingty of the loop. the simplest expression is that for
Recion HI for whic aly (g needs to be found from the
standard boundary conditions

-05¢

-20F

—

Fig. 3 Normahized reactanee versus core radus

Oy = polpd lll(/"“)

N [ Ablotkb)i(y) = 313V (kD).
k

N /\1(/\'[1)' (6)
bl (YIKoABY + Y 1o(y K (Ltka)

where /gy and A g are the modificd Bessel functions of order zero
and 4 = (kb)Y + j(xb)7 . Using this expression the vatue of
A, along the [oop at = = 0, r = a can be found.

. A
Agla, 0) = Howd f ikar K (ha) di + Boled
T 0 m

= kblythh -l I(kb s
. f [A/L_ ,Q(A,, ;) ‘_(71,, ’J)_(l) ‘(,__) ] I\',‘(k(l) dk
0

BLAYVIKGARY 4 Y 1u(VIA (k)]
(7

The first of these integrals can be shown to be exactly the
contribution to the vector potential due 1o the loop itsell il the
core were not present at abl, { This term is singular in nature.)
The second integral s the contribution due to the eddy currents
and thus represents the difference in the vector potential with
and without the core present. This term now called A4, may
be expanded as an asymptotic series.

Ad, = Hofva _ f N lv'(._é'ﬁ'l\,l?t'gi) dk
g n K (hh)
~= [ (y)R itk
+ | Rk
0 ANitkh)
~ T (VIADKoAPYA (ka)
- f SAIARR BE9Y
0 A LAh)
+f T'ORE)Y AyRBIA((Ka) |
(]

At oo )
KAM (

oy L hm ad

T R AU o ST e < v 3
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l T(y) =

AMAN el IMPEDANCGE OF A L OOP

where
L1y
Y loty Y
It shouadd be noted that the dependence of A4, on the ma-
ternd parameters goand a of the core is completely contained
inthe Ty dierm For certain cases of practical interest, & is
Lrrpe compared 1o values of A within the range for which the
mteerands i (8) are appreciable. For such cases, v (and hence
Loy i nearls independent of & Indeed, as & becomes suf-

vorenthy Jarge feorresponding 1o o core conductivity ap-
Mo dnn ! H'I‘Hlll\\ we have

Yo s =1+ B

Ahere o=y 2 wwuo . the skin depth. We, therefore, expect
that for small but nonvanishing skin depth, T(y) may be ad-
cyuctely represented by an asymptotic series in (d/b). Using
the standard ass mptotic series for the modified Bessel func-
tions we tind

T L4 ©)

03 -+
Y Y 8y

as g power series in Ak /x. and neglecting terms
docrder ingher than (67AY, we find

P 1)—/}((’))
D h
;{0 1+ ) 1
- +*--*” - b -1. 10
/R ) T AT

Note that the fowest order term affected by the k& dependence
4y s the (a, by Hterm. For the range of geometrical and ma-
werial parameters considered in subsequent numerical work,
the cubic term contributes negligibly to the final resuit.

One may then separate the contributions to A, into real
d imaginary parts

SO R A AR

Papanding 5 !

+

e | MR AR H R
A | RN R
)

tatlowing itegeals have been defined and are seen

to be only o Tunction of the ratio a/b (n = kb)

A o«
“) Himh my
- dn

Av|( 7))

YI/\()(U)K| ( )

a
I RE e
’(b o Kl " ()
, L ki (n :) dy
M(~— R (15
b 0 Ki(n)
KA (r) u)
o L R
b 0 Al(n) T te)

The apparent change in the driving point impedance of the loop
1S
JwBAy2wy

AZ = AR+ jwdl = (17)

1o

From the previous expressions, the changes in inductance and
resistance can be found to third order in o/ b

. atf o fa) Z V(3 (e
S = —2uogy {““ (h) B (h) M (,)

al{l (b a
AR = 2wpo = {7V N ¢
who b [2 (h) ' (h

3 -()*M(JN

To obtain numerical values for Afand AR itis first necessary
to evaluate the integrals Vo, N Na, Ay and Ny Although
they cannot be evaluated analytically they can be found nu-
merically for fixed values of the geometrical parameter a/b
Once these integrals are evaluated, the expressions are cach
seen to be a power series in the parameter /5 which contains
the electrical properties of the core material. One should note
that for the case of a perfectly conducting core (ie ., o/b =
0)

t19)

v s
Al = T-Hoed ,N() (f’)
h b
and AR = 0. This v a reasonable result which shows o decrease
in the inductance but no change in the resistance sinee no losses
are possible. The effect of a farge but finite conductivity is seen
to diminish the anmount of deercase found for the pertectly
conducting case and to add a finite, positive apparent resis-
tance

12
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1. RESULTS

To faciitate the evaluation of AL and AR for practical cases
the mtegrals Vo V). Na NV, and Vg were evaluated for several
values of a/h varying from a value of 1.05 to 2.0. Using these
results, the values of AR and Al can be calculated through
terms of order {0/b) . Accuracy of the results depends criti-
cally on the assumption that /b remains small with respect
toone

f-or the case of an aluminum core with a 3-in diameter we
find o = 0.0826 \ fwhich for f = S0 kH7 yields a skin depth
o =037 mm resulting m a value of 76 = 0.0388. Thus for this
pracuical case we are well within the assumptions used in the
dervations.

To generalize the results somew hat, the normalized quan-
utics AR 'wpa and AV/wpa have been plotied in the re-
meiming trrures AV = @A) It should be noted that each of
these quantties is unitless. The most obvious graphical pre-
sentations would be those of AR und AL versus the geomet-
rical parameter ¢/b and the material parameter 8/b. Unfor-
tunately . this direct approach does not correspond to the usual
parameters which may be subject to change. Assuming that
the practical testing situation consists of a cylindrical sample
moving through a fixed coil, the quantities which may change
are actually the radius of the core b and the conductivity of the
core materiad o To dlustrate the changes in impedance for
variitions in b about a nominal radius by, the graphs in Figs.
2and dare shown. In Fig. 2. the normalized change in resis-
tance 1~ shown versus the quantity b/by. The nominal radius
Ay may be any value as long as our restriction of 6/bg <« 118
satisfied The va’ - of a/by = 1.25 was chosen to be repre-
sentatine of o real ol design which couples strongly with the
core. A family of curves is also shown for several values of 6/ by,
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Fig 6. Normahized reactance versus conductivity.

1t is noted that all the curves approach zero as b/bg is decreased
and become very large as h/bo approaches 1.25 which is the
position of the driving loop. A similar set of curves is shown in
Fig. 3 for the change in reactance. Again as expected, the
change in reactance approaches zero as the core radius de-
creases and becomes a very large negative value for b/bq near
[.25. It should be noted that changes in the parameter 6/by
have a relatively small effect on AX as compared to their effect
on AR The same lunctional dependence is also illustrated in
Fig. 4. The solid curves show the normalized resistance plotted
versus the normalized reaciance as bfbg is varied. Changes in

e
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the complex impedance can be seen for varying radii for each
of four values of 6/ b.

The effect of changes in conductivity of the core on the re-
sistance and the reactance are shown in Figs. S and 6. The

4s

conductivity is again normalized with respect to a o near that
of aluminum. (However, g is actually arbitrary as long as the
condition that /b < | is still satisfied.) The limiting behavior
is again logical showing the resistance approaching zero for
large conductivities and zero for very small values. The rcitc-
tance is seen to approach the “perfect conductor™ case as o
increases. The region where o becomes small violates the as-
sumption on /b and, therefore, the behavior of these curves
has no meaning in this region. The resistance versus the reac-
tance is shown in the solid lincs of Fig. 7. As the conductivity
decreases from the perfect conductor case, AR is seen to in-
crease while AX becomes less negative. Each of these curves
terminates in the region where the assumption that /b <« 1
begins to break down.

With the aid of Figs. 4 and 7 one may ascertain the behavior
of changes in both the resistance and reactance for any percent
change in either the radius of the core of its conductivity. The
functional change in impedance is quite different for the two
parameters. This characteristic may, therefore, be utilized in
practical testing to determine changes in sample radius and
conductivity of rods and tubes with wall thickness greater than
several skin depths.
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APPENDIX B

The Impedance of a Single-Turn Coil Near a Conducting

Half Space

Afroz J. M. Zaman,' Stuart A. Long,' and C. Gerald Gardner'

Receved June 4, 1980

The change in complex impedance between an ideal one-turn circular coil located above and
parallel to a conducting half space with respect to a similar isolated coil has been calculated.
From this result, a series expansion of the integrand allows the solution to be approximated
by terms expressed as complete elliptic integrals. Results have been calculated for the change
in impedance as a function of the liftoff distance and the conductivity of the half space for a

coil of representative radius.

KEY WORDS: eddy current; impedance; liftofl; conductivity.

1. INTRODUCTION

The eddy current method of nondestructive
evaluation entails the induction of eddy currents in a
conductive test object by a time-varying field pro-
duced by a suitable distribution of impressed currents
(via an excitation or primary coil), and the detection
of the resultant field, usually by an inductive search
coil, which may be either a separate secondary coil or
the primary coil itself (see Fig. 1). The method is
ordinarily used at frequencies sufficiently low to ne-
glect effects due to displacement current; hence a
theoretical analysis entails calculating either a trans-
fer impedance for a primary coil and secondary coil
in the presence of the test object, or the calculation of
the self-impedance of a primary coil in the presence
of the test object. In practice, one often needs only
the change in impedance produced by the test object
or by changes in the nominal properties of the test
object (e.g.. changes in its geometry or position with
respect to the test coil or coils, or distributed or
localized changes in the resistivity of the test object).
The most general case, allowing arbitrary configura-

'Department of Electrical Engineering, University of Houston,
Houston, Texas 77004,

tions of primary and secondary coils and arbitrary
test objects, can be handled only by numerical meth-
ods. Certain idealized arrangements can be treated
analytically either exactly or in useful approximation.
In virwally all cases of practical interest, the analysis
eventually reduces to the evaluation of certain in-
tegrals that cannot be expressed in closed form in
terms of standard transcendental functions.

In this paper, we discuss the case of a one-turn
circular coil located above and parallel to the surface
of a homogeneous conductive half space. From the
standard boundary value problem approach, we ob-
tain the general expression for the change in coil
impedance, AZ, produced by the half space; AZ is
given in terms of an integral over a separation param-
eter. A series expansion of one term in the integrand
permits the integral to be expressed as a series of
terms, each of which is expressible in terms of com-
plete elliptic integrals. The leading terms of this series
approximate AZ asymptotically for sufficiently small
values of skin depth of the half space.

The problem addressed here has previously been
treated by Cheng.!" who evaluated AZ by numerical
methods for vanious choices of the relevant parame-
ters. Similarly, Dodd and Deeds® have devised a
digital computer program capable of handling cir-
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Fig. 1. Geometncal configuration of loop near a conductor.

cular test coils 1n the presence of layered planar and
coaxial cvlindrical test objects. Such brute force
numerical procedures are valuable for design pur-
puses. but have the disadvantage of somewhat con-
cealing the essentially simple manner in which the
final result depends upon the parameters of the prob-
lem. The approach taken here, while less universal
than the purely numerical approach, results in rela-
uvely simple. though approximate and restricted, for-
mulas for AZ in terms of the basic parameters of the
problem. For illustrative and comparative purposes,
some selected numerical examples are also given.

2. THEORETICAL ANALYSIS

The basic geometry of the problem is shown in
Fig. 1. and consists of a loop of radius r, oriented
parallel to and at a distance / above a homogeneous
half space of conductivity o. Beginning with the basic
equation for the vector potential,

VA+kA= ~pl(1)&’{—’—)8(l—z) (N

and noting the symmetry of the problem, it is seen
that the only component of the vector potential pre-
sent is the circumferential component, 4,. and that
A, is a function of r and z only. Making the usual
low-frequency, quasi-static approximation that the
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kA term is negligible for >0, we have

%4, 194, U4, A
20— _$ L "¢ % _Te_ -
VA P +r e + a2 2 0 forz>0

(2)

and, with k2 = —jwpo for z<0,

924, 104, 094, A
* 4 * t— =2 —jupod, =0 forz<0
r

art r or ;2

(3
Solving by the separation of variables technique

yields the following expression for the general solu-
tion to Eqs. (2) and (3):

o0
Ay(r, 2)2/(; [4(a)e™: + B(a)e ]

X [C(a).l,(ar)+D(a)Y,(ar)] da (4)
where a is the separation constant. Since z may
become infinitely large in the region z>/, the coeffi-
cient A(a) must equal zero. Similarly, in the region
2<0, B(a) must also equal zero, and since the origin

is included in all regions, then D(a) must equal zcro
in each:

*® —az
A.,(r,z)=j(; Bie~*J\(ar)da
2>1>0 (5)
Ag(r, z)=f°°[C2e‘" +Bye ™ *]J\(ar)da
0
1>2>0 (6)
o0
Ay(r, z)=f0 Cie™*J(ar)da
2<0 (7)
where a? =a’ +jwpo.
Since the electric field is proportional to A, the
boundary conditions for the tangential electric field

can be satisfied by equating the values of 4, at the
z=1 plane:

["Bie U (ar)da= [7(Cre* + Bye ~*')J\(ar) da
V] (]

(8)
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Impedance of a Single-Turn Coil

Multiplying both sides by the integral operator
fo{ - - - W\(a’r)rdr and using the Fourier-Bessel iden-
tity,®
8 —_
fm.h(ar Y a'r)rdr= —(—a;a—) 9)
(

gives the following result:

e e g R

Be ™ G wty By oy
) P + ;,—e (10)
or
Bie *=Cye® + Bye (11)

The radial component of the magnetic field can also
be found from the vector potential. H, = —(3/0z)4,,.
H_ 1s discontinuous at the position of the loop (r=

' ry- 2=1) by an amount equal to the surface current
! density there:
9 0 _
—a—:A°|+5;A’2 ::I—p18(r~ro) (]2)

or

~Bie M =Ce™ —Bye " —plrgJi(ar,) (13)

Similarly, the boundary conditions may also be ap-
plied at z=0. where both E, and H, are continuous,
yielding

C,+B,=(; (14)

——r—rn s

and CZ—BZ:%C, (15)

i These four equations (11, 13, 14, and 15) can then be
solved for the constants B,, C,, B,, and C, and used
in Egs. (5). (6), and (7) to evaluate the vector poten-

tial.
I . Since our principle interest lies in evaluating the
vector potential at the location of the loop, the most
direct route is to evaluate the constant B,

_,,,(l —(a,/a))
(1+(a,/a))

il
s

[

Ir,J ( ar,
B=“ 0 |( o)

, 3 e +e

(16)

|

Thus

1
An(r.2)= B2 [Taar) s (ar)et-er=en
0

oy

x e+2al+(“'“| )

ava ) |4 (17)
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The two terms in the square brackets represent, re-
spectively, the vector potential due to the loop itself
and that due to the currents induced in the conduct-
ing plane. This second term, due 1o the conductive
half space, will produce the change in impedance
from the case of the isolated loop to the case of the
loop near the plane. This change in vector potential is
thus given by this second term:

1
BAy(r.2)= __p2r0 fw.ll(aro).l,(ar)e Telz vl
0

x(:;::)da (18)

This change in vector potential can be used to
calculate the change in impedance due to the pres-
ence of the conductor by integrating the tangential
electric field around the position of the loop:

_ —$AE-dl _
= 2apd

. 2mr,
AZ jw IOAA”(ro,I) (19)

since AE= —jwA A,¢: then

ey {72 —2atf 2™
AZ-ﬂwrop/(; Jiary)e (a+u,)du (20)

The integrand factor (a—a;)/(a+a,). essentially a
reflection factor, has modulus equal to or less than
unity, the extreme value being assumed for a=0 and
a=o0. The integrand factor J?(ar,) guarantees that
the value of the integral is negligibly affected by
values of a greater than about 10/r,. Practical values
of r, are usually of the order of 10 "2m. For such
values of r,, the importance range for a is 0<a< 10?
m™', while the quantity wuo [=2/(skin depth)?] is,
in many practical cases, of the order of 10’ (e.g., for
aluminum at 50 KHz, wpo=1.5%107). For such
cases, a’/wpo<0.1, and (a—a,)/(a+a;) may be
expanded as a power series in a/ /@0 :

2
4 2e_2a

a—"a' = +
ata, virs J k2

==14+(1—j)a8)+j(a8)*+ .-~ (21)

where §=\/2/wpo , and k= /Gjio .

We expect the series above to converge rapidly
provided ad« 1. As we shall presently show, it is
convenient to adopt r, as a characteristic length.
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Since the value of AZ is determined almost entirely
by values of a for which ar, <10, we have rapid
convergence of the integrated series if 8/r, «1/10.
Separating A Z into real and imaginary parts, we have

AZ=AR+jAX (22)

X= —pwvrroz{ jw.l,z( arg)e "% da
()
- j‘”&,lz( ary)e "2, da}
)
-]
AR =ymrroz{f 8J(ary)e "**ada
0

- fw82.1,2(ar0)e —2aiy2 da} (24)
()

These changes in resistance and reactance can be
represented by three integrals:

ax=—aonr 1B)=(2)eim) @3

AR—'”W#’O(( )lz(B) ( Ia(ﬁ)) (26)

where
B=2l/r, (27)

and

1(B)= [T J¥(x)e Brux (28)
0
1(8)= = 51(8) @9)

I(B)= le(ﬂ) (30)

d

1,(B) is just the Laplace transform of J2(x)¥

l,(ﬁ):%Q,/z(l+-;-ﬁz) (31

where Q, , is the Legendre function of the second
kind of order 1/2.
1.(B) is therefore given by

we=-Lo(1+382) 2
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where the prime indicates differentiation with respect
to the argument. The required derivative may be
found from the recursion relation

(x2=1Q; 2(x)=3 Q1 a(x)= 40, o(x) (33)

For convenience in evaluation, both Q, , and
Q_,; may be expressed in terms of complete elhptu.

integrals'®:
172 2 \I”2
) K[( x+1 ) ]

—[2(x+l)]'/2E[(x—i]—)m] (34)

Q-1plx)= ( +l '/2 [(x+l '/2] (3)

where K(k) and E(k) are, respectively, the complete
elliptic integrals of the first and second kind of
modulus k:

Ql/z(x)=x( +

K(k)=f"/2(l-kzsinzr)"/zdl (36)

0

E(k)=f"/2(l—kzsinzt)'/zdl (37
0

Values of K(k) and E(k) may be obtained from
standard tables or from readily available computcr
software.

L,(B) may likewise be reduced to an expression
involving K(k) and E(k). However, for most practi-
cal cases, the factor (8/ry)? by which I3(8) is multi-
plied is so small that the contribution to AR from the
term proportional to [;(8) is negligible.

3. RESULTS

To illustrate the changes in impedance as a
function of the liftoff distance / and the conductivity
o, calculations were made for a loop of radius r, = 1.27
cm (diameter of 1 in.) at distances / from 0.05 to 1.5
cm, and for condyctivities from 0.1 to 4 times that of
aluminum (o, =3.8X 107 mho/m). These results are
shown in Figs. 2 and 3 as a function of / for various
constant conductivities. The normalized dimension-
less changes in impedance A X /wur, and AR/wpr,
are chosen as the quantities to be plotted. For all
values of conductivity, the value of A X/wpry is seen
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Fig. 2. Change in normalized resistance versus liftoff distance.

to approach a large negative value as / decreases,
showing the known decrease in total inductance as
the loop approaches the plane. As / becomes large,
A X/wpr, approaches zero as required. Similarly, in
Fig. 2 AR/wpr, is seen to give a large positive
contribution for small I/, and approaches zero as /
becomes large.

To illustrate the effects of the conductivity on
the changes in impedance for several constant values
of liftoff, the results for the same loop are shown in
Figs. 4 and 5. The change in reactance AX/wpr, is
seen to be very nearly independent of conductivity
over the range considered. The value of AR/wpr,,
however, is seen to increase for lower values of o.
This resistance term, of course, approaches zero as
the conductivity approaches that of a perfect conduc-
tor.

Both the variations in resistance and reactance
can be combined into the one graph shown in Fig. 6
by plotting A X versus A R. The solid lines thus show
the change in impedance as the liftoff is changed,
while the dashed lines show the variation with chang-
ing conductivity for constant liftoff /. Figure 6 repre-
sents a narrow strip of a conventional normalized
impedance plane showing curves of constant conduc-
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Fig. 3. Change in normalized reactance versus liftoff distance.

tivity and curves of constant liftoff, the strip corre-
sponding to large values of conductivity, with the
scale of normalized resistance greatly amplified in
relation to the scale of normalized reactance. In a
complete impedance plane representation, the curves
of constant conductivity and curves of constant liftoff
would, of course, converge at the origin.

i by > . R
1¢) 1 2 3 4 5 gra, ©

Fig. 4. Change in normalized resistance versus conductivity.
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ax T "3 :1_05 Table 1. Comparison of Theoretical Change in Inductance to
l Wt Mutual Inductance for the Perfect Conductor Case .
, ok 1 »
4 as i AX AL M H
cm H, H] i
ol 4 {cm) wnr (#H) (sH)
. 025 25 1.0887 001737 0.01727
a2k | 5.0 0.5425 0.00866 0.00869
A ’ 150 0.07784 0.00124 0.00114
. 16 &
at The limiting values of A X/wur, for large values
-20r i of o can be checked by comparing the calculated
values with that of the case of a loop above a 1
24 005 ] perfectly conducting plane. Using image theory, the !
mutual inductance between two identical loops .
T YT located a distance 2/ apart can be calculated®: t
Fig. 5. Change in normalized reactance versus conductivity. M=2.54Nr %

where N is a tabulated function of r, and /. The
values of M and AL at 50 KHz are compared in
Table 1, and quite good agreement is found.

4. CONCLUSIONS

For the commonly occurring case where 8«
0.1 r,, the change in coil inductance is essentially the
value that would occur if the substrate were perfectly
conductive; AL is thus dominated by its dependence
on liftoff. The change in resistance is, for constant
liftoff, proportional in first order to skin depth (or.
for constant frequency, proportional to the square
root of substrate conductivity); however, AR is also
strongly dependent upon liftoff. Second-order
changes in AL and AR, due to small variations in /
and ¢ about nominal values, are well approximated
by linear functions of A/ and As; hence vanations in
AL and AR may readily be interpreted in terms of
corresponding variations in liftoff and conductivity
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APPENDIX C

NONDESTRUCTIVE EVALUATION OF DIELECTRIC LAYERS ON {ONDUCTIVE
SUBSTRATES BY MICROWAVE SURFACE ELECTROMAGNETIC WAVES

C. G. Gardner, S, A, Long, and W, Gu

Electrical Engineering Department
University of Houston

Houston, Texas 77004

Abstract
The thickness and permittivity (or dielectric constant) of dielectric
lavers on electrically conductive substrates can be determined by sujt-
able measurements using surtace electromagnetic waves. The approach used
here s ta measure the cutoff frequency of the TMy SEW mode and, in effect,
the propapation vonstant of the TM) SEW mode as a function of frequency.
The theory of the methed and some preliminary results obtained using
B-1JCH, SEW supported by a layver of polvpropylene on an aluminum substrate
are presented. By poing to higher tfrequencies the method can be extended
to thin protective coatings on metals, e.g., ceramic coatings on jet
cipine and coal utilization components.

INTRODUCLEON tion. There is also the case of surfaces of
. . . metals prepared for adhesive bonding, where the
The idea ot using surtace clectromapnetic waves

o . . strength attained by the bond is know o be
(SEW)Y to measure the thickaess and dielectric treng ttaine on own t €

sensitive to the condition of the adherent sur-

constant (or complex permittivity) of o laver

of drelectric amaterial on oan clectrically con- fares.

ductive substrate is well knowno It has roe- lhis paper describes some preliminary work ex-
ceived considerable attention in relation to ploring seome of the porsibilities and practical
optu-electrenic devices in which thin lavers ot problems associated with the SEW method. 1t is
optically transparent material on conductive or not aimed at a specitic application. The werk
semicenductive substrates are used as optical involves the use of microwaves in the 8-12 «Hz
UdVCKUldUS.(l':) The possibility of adapting ranpge (free space wavelengths around 3 em).,

the technique tor nendestroctive evaluation of "Coatings” are simulated by relatively thick
other tvpes of coatings wa. ratsed by Bell and (1.5 ¢m) slabs of a readily available plastic
uownrkvrs.(j) However, the idea does not appear (polvpropvlene) placed on a large sheet of alum-
to have been pursued to the point of practical inum, For application to thin coatings, the
applicacion, techniques would have to be "scaled down' bv

. one or two orders of magnitude. Fortunatel
There are currently several potential applica- B y

. . there are no fundamental obstacles to this.
tions of the method,  Scveral in partfcular are ¢ ta te

. . Thus far only transverse magnetic (TM) waves
noteworthy,  One is the case of protective ; ! v (™)

. have been used; the possibility of using trans-
coat ings on compenents ol et engines, coal :

combustion chambers, magnetohvdrodvnamic gen- verse electric (TE) waves and coabined TM and
(4) TE waves remains open.

erators, and the like, Another is the case

of polymeric coatings for environmental protec-




Figure 1. Dielectric Layer on Metal Substrate
THEORY

Referring to Figure 1, the illustrated unbound-
ed planai structure can be shown from Maxwell's
equations to support TM plane waves propagating
in the z-ditection (with surfaces of constant
phase perpendicular to the z-direction) for
which the z-component of the amplitude of the

electric field is given by the relations:

Eosin KX O0<x<t
E (0 - { g ) (1)
Eo(sin x2)e Rex
where
2 2.1/2
0 = (8 L) (2)
= (ekl-ghl/? 3

B is the propagation constant, and ké - uzuoco.
e is the permittivity of the dielectric layer
of thickness £. Conditions for such a surface
wave exist when the relation

1/2
€ ko

is satisfied. For this case, both x and x

k, < B <

(%)

0 are

real, positive quantities.

The remaining components of the elgctric field
intensity, as well as the y-component of the
wmagnetic field intensity follow from Maxwell's
equations (the x-component and z-component van-
1ish). When the requisite boundary conditions

on the fields are imposed, the following dis-

persion relation is found:

(xt)tan(xkt) = ex, .t (5)

0
Equation (5) implicitly defines the propagation

constant, 8, as a function of k ¢t and €. This

0’
transcendental equation cannot be solved exactly
in closed form. If Equation {(5) is rewritten
in the form

x2 1/2

xtanx = e[(c-l)(kol)z- (6)

where
X = K

it becomes clear that the solutions of the equa
tion correspond to the intersection of the
(circular) curve

x2 1/2

y = el(e-1) (o) 2o

with the curve
y = xtanx .

Multiple solutions to the equation occur, a new
branch occurring as x increases by a multiple
of m, For x = n7, the right hand side of Equa-
tion (6) must vanish, ie.,

nn

k n=0,1,... (7

1(5_1)1/2 ’

0 "
The values of kn given by Equation (7) corre-

gpond respectively to cutoff frequencies

nfc
“n 7 R(e-1)1/2 ®

12 is the speed of light in

where ¢ = (uotzo)-1
vacuo. The fields corresponding to the solutim
of Equation (6) for nw<x<(n+l)7 sre described
as the THn SEW modes. The cutoff frequency for
the THO mode 18, of courge, zero; the TNO mode
can be excited for any frequency. The higher
order modes can be excited only for frequencies
exceeding their respective cutoff frequencies.
We note that a determination of the cutoff fre-
quency of any mode except THO determines the

quantity t(c—l)llz.

If the left and right hand sides of Equation (6)

are expanded as a4 power series in x about the




value x = n¥, an approximate solution is ob-
tained which may be written in the form

B \2 - E-1,..2 2

Eye o 1+{ (&2 - 9
(ko) I+ 18} (kg kn) 9
Equation (9) is valid for

Y
k0 > kn .

Equation (9) mav be written

£-1
€

L2 = ek ) (10)
0

Thus if the propagatiorn constant B is determined
as a function of the wave number kO (for fixed
values of € and L), for values of ko greater
than, but near kn’ the quantity (e-1)2/¢ may Ee
determined as the slope of a graph of [(B/ko)"
—1]1/2 versus ko; the graph will intersect the

k,-axis at the value kn. which, in turn, deter-

0 1/2
mines the quantity i{e-1) . Writing
e-1
s = (=7 )2 (11)
we have
sk
l+[l-6(—;%)2]1/2
€ = T (12)
2(—;;)
and
€
L= (s (13)

Thus ¢ and % are determined as functions of the

experimentally measurable parameters s and kn.
PRISM METHOD OF LAUNCHING AND RECEIVING SEW

One practical means of launching a SEW is Otto's
prism method,(S) illustrated in Figure 2. If
the angle of incidence ¢ 18 such that the in-
ternal angle of incidence ® exceeds the critical
angle for the prismair interface, then the x-
component of the (now complex) propagation
vector for the fileld below the prism is pure
imaginary. By varying the angle of incidence
¢ (and consequently the internal angle of inci-
nce 6), the ratio B/k0 can (for appropriate

of ko) be made to assume the value

Figure 2. Prism Coupling Arraugement for
Launching and Receiving Surface
Electromagnetic Waves

necessary for a SEW on the substrate. At thi,

condition, a SEW will propagate. Thus the con-

dition for launching a an surfuce wave way b

written

2600 = B o e 02 )Y (o
p ko € 0 n

where Ep is the relative permittivity of the

prism material.

1f the wave inside the prism, and incident ovu
the prism-air interface, were an ideal plane
wave, there would be a sharply defined internal
angle of incidence &, at which a THn SEW could
be launched. In practice the incident wave
comprises plane waves with a range of propag.-
tion directions distributed about a central ray
Hence as 6 is varied, the amplitude of the
launched TMn wave varies and is maximum for the
theoretical value of 8. By measuring the value
of 8 at which the amplitude of the THn SEW 1w
maximum, as a function of ko (or, equivalently,
the frequency of the incident radiation), B/k0
is determined as a function of ko. and Equations
(10), (12) and (13) may be applied to determine

€ and 2.

EXPERIMENTAL METHOD

A block disgram of the experimental arrangement

26
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Figure 3. Block Diagram of Experimental
Arrangement
is shown in Figure 3. A sweep oscillator which
has a trequency range from 8.0 GHz to 12.4 GHz
is used ae the microwave source. For launching
a surtace electromagnetic wave, the prism coupl-
ing technique has been used. The 45° prisms
were made of paraffin wax having a measured
permittivity ¢ = 2,22; the base size of the
prisms is 20 cm < 20 cm. In order to minimize
direct pick-up of any radiation other than SEW
modes, two microwave absorbing screens were
placed behind (or ahead of) the prisms. A gap
of 9 c¢m was left between the microwave absorber
and the specimen on which SEW propagated. Each
microwave horn has an aperture 8 cm *x 8 cm. In
order to get a far-field pattern we have to set
the distance between the transmission horn and
prism r>2D2/A, wvhere D is the dimension of the
aperture. For our case, r has to be greater
than 45 cm., A divided circular quadrant (not
shown in the figure) with a radius of 80 cm was
built and the transmission horn mounted on it.
For the receiving horn a similar scanning device
with smaller radius (r = 50 cm) is used. The
transmission and receiving horns can be inde-

pendently scanned through 90°.

For coupling the wave in the prism into the SEW,
rhere must be an air gap between the prism and

the dielectric layer. Experiment shows the op-

timum gap for the best-coupling is h = A/2,
where A is the free-space wavelength of the

microwaves.

An aluminum sheet (alloy #6061) of size 8'<8"
is used as the conductive substrate. Several
polypropylene sheets of the same size but dif-
ferent thicknesses are used as the dielectric
coating material. The polypropylene shects arc
layed on the aluminum sheet and clamped in
order to minimize air space between the poly-

propylene and the aluminimum sheet.

There are two basic parameters we have to mea-
sure, namely the frequency and the incident
angle in the air. Before making quantitative
measurements we have to scan several times to
determine the angular range within which the
TMO and TM1 modes propagate with maximum ampli-
tude.

In the actual measurement, as the external an-
gle ¢ is increased, we have to adjust the posi
tion of the prism slightly in order to keep the
central ray of the incident beam near the edge
of the prism for most efficient coupling. Then
the coupling angle can be obtained by scanning
the incident beam from ¢ = 0° to ¢ = 80° and
measuring the angle at which the most energy is
coupled into the surface mode. The microwave

frequency is obtained from the frequency meter.

s L

Figure 4. Surface Wave Intensity Versus Exter-
nal Angle of Incidence
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RESULTS

Figure 4 is a representative graph of the de-
tected signal amplitude as a function of the
external angle of incidence, The large peak
mode; the smaller second

Table 1

corresponds tou the TMl
peak corresponds tu the TMO mode.
shows an example ot measurements obtained from
a specimen ot thickness v = 1,50 cm and the
dielectric constant ot the polypropylene layer
€ = 2.25. There are two modes (TMI and TMO)
which can be propapated on this structure. The
data 1n Table 1 is the result of the TM1 mode,
because onlv the higher mode is useful to de-
termine the dielectric constant and thickness
of the laver. The table basically contains the
frequency f and the incident angle in the air,
¢; the other data is simply determined from f

and $. The free-space wave number is k. = 2nf/c,

where ¢ 1s the velocity of light in freg space.
The incident angle in the prism, 9, is obtained
from the incident angle in the air, ¢. There
are two vases: i) For § < n/4 then v = n/4
—sin-l(sin(ﬂ/4~9)/n ); ii) Lf ¢ > §/4 then

6 = n/u*sxn‘l(sin(tfn/é)/np). where n_ 1s the
refraction index ot the prisms(np = Ep).

The most important parameter we must know is
the ratio B/ko. According to the theory of
launching SEW by the prism coupling technique,
the incident angle in the prism is determined
by the equation B = kon sind; therefore if we
know © and n , B/ko can be obtained from the
equation s/ko = n si:d. ls;k in turn determines
the quantity l(B/kO)‘-ll .

The approximate dispersion relation for any TMn
mode of SEW near cutoff is given by Equation
(9). From Equation (10) we can see that if we
plot [(ﬁ/kg)z-l]l/2 versus kO‘ a straight line
will result, and the slope s will be equal to
(e-1)/et; the intercept will be equal to the
cutoff wave number kl. A representative graph
correaponding to the data in Table 1 is, shown
in Figure 5. For th;s particular case, ihe

tope 8 = 8.39 x 10 "m and k, = 186.7 m .

:r » and kl are determined, ¢ and £ are ob-

tained by means of Equations (12) and (13).

For the example, we have ¢ = 2,16 and ¢ = 1.9
cm. These may be compared with the value

¢ = 2,25 determined by the standard waveguid
method, and ¢ = 1.50 ¢m mcasured with a patr ul

calipers.

Table 1. Representative Data for T™; SEW on
1.5 Inch Polypropylene Layer on Alum-
inum Substrate

N //// —t——a " n - .
* . e

T o £ t ™ -

Figure 5. Function of Surface Wave Propagation
Constant Versus Wave Number of Ex-
citing Radiation

CONCLUSION

The possiblility of measuring the thickues: and
dielectric constant of a dielectric layer uvn a
conductive substrate by measuring the propaga-
tion constant of a ™ SEW using the prism
launching method has been demonstrated in a
regime appropriate to the 8-12 GHZ frequency
range. To handle thinner dielectric layere 1t
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will be necessary to employ much higher fre- 5. Octto, A., Excitation of Nonradiative Sur-
face Plasma Waves in Stilver, Z. Physik,
Vol. 216, pp. 398-410 (1968).

quencies.
A number of important points remain to be in-
vestigated, including: (1) the effects of

pronounced variations in the thickness of the

dielectric layer; (2) the effects of pronounced
variations in the dielectric constant of the
dielectric layer; and (3) the effects of im-

perfections in the surface of the conductive

substrate.

In order to rationally optimize the experimen- §
tal arrangement it will be necessary to develop
a detailed mathematical model of the prism SEW

launching arrangement.

Finally, it would be worthwhile to investigate
alternative launching arrangements including
gratings (or similar periodic structures) and
special horns; and to investigate Lhe possi-
bilities of using transverse electric (TE)

modes as well as both TM and TE modes.
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Appendix D

THE CHANGE IN IMPEDANCE OF A SINGLE-TURN
COIL DUE TO A VOID IN A CONDUCTING HALF SPACE

Afroz J. M. Zaman, C. Gerald Gardner, and Stuart A. Long
Department of Electrical Engineering
University of Houstor®
Houston, Texas 77004

Abstract
The problem of detection and characterization of a flaw in a
conducting half-space using an eddy-current coil oriented
parallel to the interface is examined. An expression is de-
rived for a first order approximation for the change in com-
plex impedance due to a void located within the conducting
medium. The overall impedance is a function of the radius
and lift-off distance of the test coil and the conductivity
of the material. An analytical expression is derived for the
change in impedance as a function of the electric fields at
the position of the flaw. It is found to be an integral over
the volume of the flaw of the electric fields found with and
without the flaw being present. The limiting case of a de-
generate point flaw may be examined in greater detail by
allowing the field in the presence of the flaw to be approxi-
mated by the unperturbed field. For flaws small enough that
the field does not vary much over its volume the field may be
even further approximated by using just the value of the field
at the position of the centroid of the flaw. Plots are shown
to illustrate the behavior of the change in impedance as a
function of the radial range of the flaw and the depth of the
flaw centroid, using previously derived expressions for the
fields for the unflawed case.

1. INTRODUCTION void within the conducting medium as a
function of the electric field at the
position of the flaw. A knowledge of
the fields everywhere in the conducting

In previous work, an approximate ana-
lytical expression for the change in
impedance of a single turn loop par-

allel to and near a conducting half medium due to the impressed source cur-

& .;.:‘JJ B

space has been obtained analytically
for certain idealized test coil and
specimen configurations.( The re-
sults of this previous investigation
have been used to calculate the change
in impedance due to a finite flaw in
the conducting naterial. An analytical
expression has been derived for a first
order approximation for the change in
the complex impedance due to a small

rent of the loop is required. The
change in coil impedance AZ due to the
void can be found in terms of an inte-
gral of the field quantities E and EO i
(the fields at the position of the flaw
with and without the flaw being pre-
sent). The electric field inside the
conducting material can be obtained

from the standard boundary value prob-
lem approach in terms of an integral
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over a separation parameter. A series
expangsion of the integrand then allows
the field to be expressed in terms of
a derivative of the Legendre function
of the second kind of half order. The
field expressions substituted in the
equation for AZ give the complex im-
pedance as a function of the depth and
radial position of the flaw. The
radial position affects only in the
magnitude but changes in the depth re-
sult in variations in both the magni-
tude and phase. This can be explained
by the fact that for our eddy current
approximations the radial position of
the loop will always be a negligibly
small portion of the wavelength in air.
However, the depth in the conducting
material is not small compared to the
skin depth and therefore affects the
phase of the response.

2. BASIC THEORY

Consider a two port network consisting
of a transmitter T; a receiver R and a
conductive body B containing an inter-
nal void of volume Vp as shown in Fig.
1. Then identify the multiply con-
nected region bounded by the surface

Sg of the void; the closed surface ST
surrounding the transmitter and the
associated quiding structure (a portion
of which coincides with a standard re-
ference plane cutting through the field
guiding structure); a similar surface
SR
infinity S_. Let the volume enclosed
by this surface be V, and let ﬁo and
ﬁo denote the time harmonic fields that
would exist when the material within
Ve is identical to that within VB and
£ and # denote the field actually ex-~

isting with the void present.

for the receiver; and a boundary at

Since the volume V contains no sources

and the material within V is identical

with or without the presence of VF’ the

Lorent2 reciprocity theorem is valid.
With the bounded volume V, EO’ ﬁo
E, ® satisfy the same set of equations,

and

Vg = -jwuoﬁ i V= jwe (0 E

By the Lorentz reciprocity theorem, we
have

Jstﬁoxu - Exaol-ds =0

where ds is an element of surface which
is normal to and directed into the
bounded volume, The gurface S is the
sum of surfaces which include S_, ST'

sR and SF

e fo el

R

i

Since the tangential component of elec-
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tric field intensity vanishes on the
metal waveguide by the boundary condi-
tion,

boundary surface = 0; and since
the fields satisfy the radiation condi-

tion, the integral over S, vanishes.
Hence, we have

j 1B xB-Bxli_)edb = -j [ il
0 0 (4]
Sp*Sp Sg

- Exﬁol-dz

Given the assumption that the trans-
mitter and receiver wavequides operate
in their respective dominant modes,
currents and voltages are defined such
that

3; ﬁ =1 ﬁ

- - -> *>
E=ve; i = 1h; B 0 0

=V

0 0

where ¢ and h are the normalized dom-
inant waveguide modal electric and

magnetic fields; that is cross (axh)

-> .
*ds = 1, we have section

-+ *> ->
Js (onu-ﬁxﬂo)'ds = ITOVT-ITVTO

R VR IRVR

(B xH-Exf _)+ds = I
Is 0 0 0

R
If Eo, ﬁo are the fields with a current
IR impressed at the reference plane and
the transmitter open circuited (I =0)
and £, H are the fields with an img

pressaed current I

0

T and the receiver

open-circuited (IR-O), then

- -+
‘ITVT +IR VR = ~[ (EOKH-Exﬁo)'ds = 0

0 0 s

F

Now vT = z12 IR , where z12 is the
transfgr impeaange between tgansmitter
and receiver with no void; and
VR = leIT’ where z12 is the transfer
impedance with the void.

Hence

-+ » *
Ip Ip(2,,72,, ) = -I (onu-ﬁxﬂo)-ds
0 0 Sp

.. A2 (2

22 8 12'2120) i
(onﬁ—ﬁxﬁo)-dé

using Gauss' theorem

= - 1 L] - %
8z, I, Iv ve (E <B-Exdi ) av
0 F
82, = = =2 | [He (9xB ) -B e (D)
12 I 31 o) "Eo
R,€'T Vg

- ﬁo-(VxE)+§-(Vxﬁo)ldv

1

= e i
1.1
Ro T VF

. > - . ->
- ﬁod—quOH)+E-(JucoEo)]dv

lﬁ-(-jwuoﬁo)-ﬁd(jwti)

jwle-€.}
-, B
Re'r vy
= - J_Q_ M - = - jo
But € Co ll) .« . € Co o

12 I, 1
0 F

where E and EO are respectively the

AZ = g I Eo-ﬁ dv
v

electric fields found with and without
the flaw being present. The limiting
case of a degenerate point flaw may be
examined in greater detail by allowing
the field in the presence of the flaw
() to be approximated by the unper-
turbed field Eo over the volume of the
flaw.

8z;, = TEET; IV [Eo(r,z)lzdv
0 F

For flaws small enough that the fields
do not vary greatly over its volume,
the expression may be further approxi-
mated by using just the value of the
field at the position of the centroid
of the flaw (rc,zc).
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A2, = Ve
127 T

2
[Eo(rc.zc)l

3. FLAW IN A HALF SPACE

The basic geometry of the problem is

shown in Fig. 2 and consists of asingle

turn coil of radius “to" oriented par-
allel to and at a distance "&" above a
conducting half gpace within which a
flaw of volume Ve is located at a posi-
tion (rc,zc) with respect to the origin

of the co-ordinate system.

The field in each region satisfies
Maxwell's equation and hence the wave
eguation for the vector potential .

v + k%R - '“jimpres-ed

Making the usual quasistatic approxi-
mation in regions I and 11 (that the
kzx term is negligible) and with

k2 = jwuo in region 111, the solution
for A in the three regions il(l)

2 Yr,z) = | B, (a)e ®%3, (ar)da
o B1 1

A r.z) = ]o (B, (a) e™%%4c, (a) €27

. Jl(ar)da

L -]
A:II(r,z) - !o C3(u)ealzal(ur)du
Using the four boundary condition equa-
tions resulting from the continuity of
% and f at z = £, and z = 0 the four
constants can be found.

OQur principal interest is evaluating
the vector potential inside the con-
ducting half space, which in turn gives
the fields in that region The simplest
choice is to evaluate C3 and use the
expression for AIII to calculate the

time varying field.

The resulting derivation for the co-
efficient C3 is

. -af
uozroJl(aro)e

C3 =

a
1

(1+a—-)

where o is the separation variable and

a, = /uz+jmuc

which gives

AIII(r z) = y.ir B J, (ar)Jd, (ar,)
¢ ! 0*"o 0 1 1 0
~ak a1z
" Sgrey— ode

The effective range of the integration
variable o for which the value of the
integrand is significant is much
smaller than the quantity wuo. For

such cases u:u may be expanded as a
power series 1 in
Ywuo

a - a
at+a [+3
1 oy 1+ ql
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a 1

2 . -
* 1+ 19§2

1
a

/a2+jwua

For a good conductor uuo>>a2 . %—|<<|

o 2_

a a Qa a 3
Eﬁi = EI [l'(a;)+(u—l) (q) L IS |
al 8 Yjuwuo
= (1+3) }
where § = WwHo
Q_ = 17-1 ‘60)
¢
a2 __3 2
(al) = 5 (da)

@3 = - B2 (5q)3

The vector potential in the conducting
material as a power series in skin
depth is

111 . © (-1
A¢ (r,z) uoxrolé IO ——31— Jl(ur)

. Jl(aro)e_aleulzada

2

+

2 3 -
é JO 5 Jl(ur)Jl(aro)e

. e%1% 4234

3 (7 (a+)

-6 I ——71— Jl(ar)Jl(uro)
0

e-alealz a3dc RS |

Using the Lorentz condition, VR =

-ue %% , for the present case with

circular symmetry, Veh = 0, and the

scalar potential ¢ must be time inde-

pendent. This means ¢ will give rise

only to a static field which is of

little interest. Therefore,

A .
N Sy

S LY

Nt

So ﬁo, the field without the presence of
the flaw in the conducting half space is
given by

pair ; o
Eo =00, (1450278 I (1-9) 8
0
. Jl(ar)Jl(aro)e’al ada
® 2 ~al 2
- §°J, (ar)J, (ar,)e a‘da .....])
Io 1 1'%%0

uyir =
= —27—2 we(l+j)z/6[j IO 6J, (ar)

L]

Jl(uro)e-uluda + j Gal(ur)Jl(uro)

0
-l = 2 -a
e ada - IO [ Jl(ur)Jl(urO)e

L

azda PR |

This series of terms may be expressed in
the form of a Legendre function by tak-
ing the derivative of the Laplace trans-
form of the quantity Jl(ar)Jl(aro)(z)

= -ak 1
J, (ar)J, (ar.}e da =
J0 1 1 0 w/rro

£2+r2+rg

"2 e
J
0

. Jl(ur)al(azo)e‘°‘du1 = I(a)

ﬂa‘ﬂa
o

I Jl(ur)Jl(uro)e_azada - -
0

1 d
Ve I(a) = ——— Q (x)
n/EE, O /2
£2+r2+r§
where x = 35
0
I(a) = - ————£—§77 Q;/z(x)
w(rro)

From the recursion relation for Legendre
functions, the derivative may be ex-
pressed in terms of the functions them-
selves. (3
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oy e e

£ AR Sl oA . I b s,

: - i % -1
Oy = gm > 17 921007 3 0y 0]

Thus

® -af [
I J, (ar)J, {ax,)e X das=-
o ! 170 miery) >/ % (x%-1)

B VACEE ERPACY
= I(a)

2

Neglecting terms of order §° and above,

Unair .
B, = 2500w e D20 14541 (0)
For a small flaw located at (rc,-zc) as
shown in Fig. 2, EO can be approximated
as
uoir - ;
By = 250w em %/ 1ug15100)

Since the same coil is used as the pri-
mary coil and also as the secondary

coil I,r = IR and

OVF > >
A2 = i—z— fo(rc)'ﬁo(rc)

82 = Vowu r2(1(a)) e 22/ 8qI2 (2c/6T/4)

From the expression for AZ above it is
evident that all the dependence on
radial position is contained in the
I{a) term which contributes only to the
magnitude of the change in impedance.
The depth of the flaw is seen to affect
both the magnitude and phase of the
change in impedance.

The constant phase factor ej"/z comes
from the first two terms of the series
expansion of K¢. This factor would

shift slightly if more terms were in-

cluded in the series expansion.

4. RESULTS

To illustrate the change in impedance
as a function of the radial location
of the flaw, the function lI(u)]zrg

is plotted versus r, in Fig. 3 for sev~
eral different liftoff distances varying
from 0.3 to 1 times the radius of the
loop. Each of these curves tends to
zero as the flaw approaches the point
directly under the center of the loop or
as the distance from the periphery of
the loop becomes large. Each curve at-
tains its maximum value when the flawis
directly under the wire of the loop and
the value of this maxima is a function
of the liftoff distance. This behavior
is to be expected since the induced eddy
current distribution under the loop is
zero at the center and a maximum at the
position of the current carrying coil.
The current density then decays as the
position of the flaw moves further away
from the loop. At any constant radial
position, the magnitude of the eddy cur-
rent density becomes larger as the lift-
off becomes smaller. This functional
dependence is shown in Fig. 4 for the

case of I, = r,.

Since the axial position of the flaw
affects both the magnitude and phase of
the change in impedance,the real and
imaginary parts of this factor have been
plotted versus flaw depth in Fig. 5. As
the flaw becomes more deeply imbedded
inside the material the phase can change
enough so that the reactive part of the
impedance becomes negative near zc/é =
n/4. Similarly the resistive part passes
through zero at zc/c = w/2, but the
magnitude has decayed to an almost neg-
ligible value for flaws at this depth.

The real part of the impedance is zero
for a flaw at the surface (zc-O) owing
to the assumption that VF is infinitesi~-
mally small. Tnus when V. is located

at the surface, the current distribution
is not affected.

For constant values of lift-off and depth
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of the flaw the magnitude of the change
in impedance is shown in Fig. 6 for
linear scans of the coil near the flaw.
Curves are shown for the coil moving
parallel to the y-axis at x=0, x-0.5r0'
X=r,, and x-l.SrO (see Fig. 2). The
behavior is as expected with peaks at
the points where the flaw is nearest

the current carrying wire.
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