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ABSTRACT

Two kinds of finite-element analyses are
presented for the iavestigation of the large
deformation phenomenon in laminated composite
structures, especially shells. The first kind of
finite~element analysis employs the genersl
incremental variational formulation as well as the
total Lagrangian description of motion. The element
adopted is the “degenerate” three-dimensional
element. The second analysis adopts a formulation
based on deformable shell theory, and the plate-
bending elemant is used. Numerical results for
bending are presented for plate and shell structures
of isotropic as well as orthotropic compoeition. The
resuts are f{n good agreement with results availadle in
the literature.

INTRODUCTION

The shell is a common load-carrying element in
wost industrial equipment, especislly in aerospace,
muclear and offshore enginsering. Alchough linesr
models suffice in many aspects of engineering, a
1linear analysis of shells yields results too gross and
insccurate to be useful. The nonlinear behavior of
structuras should be taken into account if & thin
shell structure design, dictated by economic
considerations, is desired. There exist a mumber of
shell finite elements in the literature. A discussion
of various elements {s given by Gallagher (1].

The degensrate three-dimeasionsal element,
originally proposed by Ahmed, lrons snd Zienkiewics
[2] for linear analysis of thin and thick shells, was
applied to prodlems desling with the geomstrical and
saterisl nonliaesrities in [3) and [4). It is now
bealieved that this element performs well in shell
analysis, Worsak (5] proposed a bilinear degenerate
element, snd Worsak, et al. [6] developed an eight-
node element that has relative displacement degrees-
of-fruedom in place of the cumbersome finite
rotations. The derivation of both elements was based
on the concept of the degenerate J~dimensiomal element
wodel. Gallagher {7], and Brebbia aand Connor [8)
extended this concept to the geomstrically nonlinesr
snalysis of shells. The degenerate 3D element f{»
ususlly sccompanied by incremsntal formilations in the
sualysis of geometric and saterial nonlinearities in
problems of etructures; various incresental
varistional formulations for the total Lagrangian as
well as the updated Lagrangian approach are presented
ia (9,10].

1n sodeling lsminated cosposite-usterial shells,
Doung, Pister and Taylor [11) formulsted a theory of
thin shells lsuninated of saisotropic msterial, which
is an extension of the theory developed by Stavsky
[12]) for laminsted saisotropic plates based on Lova's
first approximation theory of shells., Venkatesh end
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Rac [13] used 8 doubly curved quadrilateral element to
sodel laminated shells of revolution; there are 12
unknown displacements at each node. Noor [14-16] used
8 mixed formulation to compare several elemencs inm the
lineaz analysis of laminated shells. Reu, Reddy and
Bert [17) employed the shear-deformable element
proposed by Reddy {[18] to anslyse shells composed of
bimodular waterials. Noor [19) employed the classical
shell element that includes the geometric nonlinearity
to solve & spherical shell problem. A degenerate
elemant associsted with the updated Lagrangian
formslation is presented in {20] to solve a cylinder
problem.

The present paper deals with the geomecrically
nonlinear analysis of layered composite shells, using
& 3=D degensrate element. For the shear deformable
shell element description, see Reddy [21,22].

A 3D DEGCENERATE ELEMENT POR LAYERED COMPOSITE SHELLS

Consider the motion of a saterial body in a
Buclidean space, as shown {n Figure 1. Here ct
denotes the configuration of the body at time t. To
facilitate the description of the kinematics of the
continsum at any time, the fuitial state of the body
can be chosen as the reference configuration to which
all subsequent configurations are referred to; this s
known as the total Lagrangian description. If the
coordinstes are updated at each incremental time-step,
and the kinematics of the contimuum is described in
terms of the current configuration, the description ie
called the updated Lagrangian description. It is
noted that a load step 1is used instead of the time
etep if wa are solving the static bending problem.

at time ¢t
*3
Initial configuration
(at time ts0)
3
2
|
Figure 1. Description of the motion of a

a continuum
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Invoking the principle of virtual displacements,
oue can express the equilibrium squacion of the body
at time t + At as:

tHit, t#dt tHt tit
Iv oSty o“q“o'f A, o“x“'x“"{ v JFdu v

] L] (1)
. Bty
(]

where the laft superscript refers to the coufiguration
at vhich the quantity is calculated; the left
subscript is the configuration to which the calculation
18 referred, Sgq 1o the second Piola-RKirchhoff stress
tensor and ¢ 13 1- the Green-Lagrangian strain tensor
defined ae

teae, 1

tH¥t tHt
of14= 3

tHt t4dt
o%,1" %Y o%,t o'k,

T, and ¥, denote the components of surface and body
forces, and Yo and the volume and area,
respectively, of the body ia the initial
configuration. Using the relations

tHit t
o313 = o513 * o1y (32)
and
t4it t
0% " o% * o'’ (v
where 844 and ,u, are the incresantal stress and
u.pn«an components, we write
t4it t .
013 " o135 ¥ o1y’ 52/
where
o®13 = o*13% o"13 (52)

1 ¢ e
0%y = 0%, 5% ,1%%, 1 o, 3 %%, ¢ o) 3P

1
o™ " 7 o",2 o%,3 (5¢)
The linear constitutive relations are given by

o%13 * Syt i 6
The equilibrium equation (1) then becomes

[ 4
Iv oC1gke 0%t o%15 %% *!' T
-] L]

tHat t
- SC - [' po o"&j"o ¢))
(-]

which is s nenlinear equation in terms of the
{acremsutal displaceasits «, v sad w. For the
degensrate slement (see [23]) this equation can be
cast in terms of the middle surface nodal variables
Ss Y9 ¥y, ¢ aad 5. In matrix form, we heave

(e + (R D{u} = - (2} +{r} ®

vhere (K], (K] and {m} are the linear stiffness
matrix, sonlingar stiffness matrix and uabalanced
terms, respectively; {7} 1s the forcing terw from
external loading. To solve these equations, the
Newton-Raphson or the modified Newtou-Raphson method
cen be used. If the {K, ] is updated after ssch
iteration, one hss the on~Raphsoa method. When
the (K] 18 kept conatant during each step, ooe has
the £ied Newton-Raphson method.

NUMBRICAL RESULTS

The finite~element formulation presented hereis
includes the transverse shear effect, although we have
assumed that the straight liane gorssl to the aid-plane
before deformation remains straight after
deformation. The reduced integration technique is
used in the numerical integration. Due to the biasxial
syamstry in the problems considered, ouly & quarter
domain is considered. A 2x2 wesh of 8-node and 9-node
elenents are employed in this snalysis.

PROBLEM 1: Laminated Composite Plates

A simply supported, 2-layer crossply squsre plate
made of graphite—epoxy material subjected to s
uniforuly distributed load {s snalysed. The materfal
properties are

ll/lz = &0 , Gnll2 = 0.5 , vu = 0.25 9
and the doundary conditions are
'-"-o at y = 0,8,
(10)
--vy-o at x = 0,8,

The oumericel solutions for both elements are
presented in Table 1. It is clear that the DST
predicts lower deflections than the 3}~D theory.

Table 1. Comparison of the nonlinear ceater -
deflection (w/h) of Problem 1 obtained by
the 3-D degenerate and shell elements.

P 1.0 2.0 3.0 4.0 5.0 6.0

3-D 1.0414 1.6421 2.0604 2.3871 2.6395 2.8938
DST 1.0754 1.6042 1.9971 2.3008 2.3360 2.7716
? = (2 (a/m)'/3,) x 207,
3-D = degensrate 3-D slement o

DST = deformable shell (2-D) theory [21]

PROBLEM 2: hotiggte Cylindrical Punel With Usiform —*—=meas
Joading

Consider the circular cylindrical pamel showm 12 u
Pigere 2. The penel {s clemped along all four edges,
and 19 subjected to uniform normel losding. A Ix3I 0
mesh of 9-code elements ie used. The dimensiosal
centar deflections obtained by bdoth elements are T ——
1isted 13 Table 2. Once again we note that the DST Tr——
elenmnt predicts lowar deflections.
e
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R=2540 mm

- L=254
1y 2 h=6.35 mm
i . 8=0.1 rad,
SN £+3.10275 ki/mn’
y ve0.3

Figure 2. Cylindrical panel used in Problems
2 and 3

Table 2. Comparison of the noalinear center -
deflection v (in am) of Problem 2 obtained
by the 3-D degenerate element and shell
element

P 1.0 1.5 1.7 2.0 2.25 2.50
(kN/u?)
3-D T.3117 2.6131 6.3165 7.6686 8.6041 9.3426

DST 1.3827 3.8828 5.9449 7.5132 8.546 9.2949

TSR e Ry 4. Aged IR L e o= e

PROBLEM 3: Htt_:!ed Circular Cylindrical Panel With Pin
Loa

Using the sase geowetry of the panel in Problea
2, but with thickness 12.7am and boundary coanditions
such that the curved edges are hiaged end the straight
adges sre free, A concentrated normal loading s

applied at the center. Table 3 contains the numerfical

results:

Table 3: Comparison of the nonlinesar center -
deflection w (in mm) in Problem 3} obtained
by the 3-D degenecate element aad shell
elewment

P 0.5 1.0 1.5 1.7 2.0 2.2
kN

3-D 1.3784 2.9786 4.9390 5.8965 7.719 9.7715
DST 1.3707 2.9591 4.9088 - 7.627 9.4931

PROBLEM 4: Lswinated
ore 0

site Spherical Shell With

Consider a 9-layered cross~ply laminated shell of
graphite-epoxy (see Pigure 3). The four edges are
slaply supported; f.s.,

urTwe t‘-o.cy-o, a,
(11)
v-w-t,-Oncx-o. a.

A unifora inward losding is applied on the shell., The
numecrical results are tabulated in Table 4. The
present results compsre very wall with those of Noor
[19}. 1In this case, the DST element predicts larger
deflectione while Noor's mixed element predicts lower
deflections than those predicted by the 3-D degenerate
element.

R R/L = 10
h/L = 0.01

Figure 3, Spherical shell used in Problem 4

Table 4, Comparison of the noalinear center-
deflection (w/h) for Problem 4 obtainad dy
various investigators

P 2 4 ] 6 8 10

DST 0.70918 1.8591 -
3-p 0.69053 1.7607 -
NOOR 0.6806 1.741 2.305 -

2.8299 3.4240 3.8804
2.7649 1.4170 3.8897
3.436 3.916

PROBLEM 5: Lasinated Cylindrical Panel With Unifora
Loadiag
The same shell geomstry a3 in Problem 3, but with

2 layars [0°/90°] (s used. The msterial fe graphite-
eapoxy and all four edges are eimply supported, i.e.,

u-v-t‘-ony-o.l.
(12)
v-v-t'-onx-o.a.

The reeylts sre compared in Table S.
Table S. Comparison of the nonlinear ceater-

deflection (w/h) of Problea S obtained by
the 3-D degenerate element and shell

element.
-~ P°l~
P= (-;2:‘-) L] 100 200 300 350

DST  0.6326 1.2533 1.9739 2.3988 -
3-D  0.6014 1.2340 1.9812 2.4317 2.471
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ABSTRACT

RBesults of s preliminary study of the three~
dimensionsl, geometrically noulisear, finite-element
analysis of the bending of laminated snisotropic
composite plates sre presented. Individual lamiose
are assumed to be homogeuneous, trausversely isotropic,
and linesrly elastic. The investigstion ucilises &
fully three-dimsnsional isoparsmetric finite element
with eight nodes (i.e., linesr element) and 24 degrees
of fresedom (three displacement components per node).
Numarical results of the linear anslysis are compared
with the exact solutions obtained by Psgano. The
present results converged to tha exact solution as
mesh is refined. Due to lack of space, results of the
nonlinear sanalysis were not included here; the results
will appear elsewhere.

INTRODUCTION

The develdpment of siwple fianite elements for the
snalysis of plates has bdeen s subject of continued
i{nterest smong ressarchers of computational eolid
mechanics. Most of the curreatly gvailable elements
are based on two-dimensionsl thin-plate theory in
which the plane sections notmsl to the aidsurface
bdefore deformation are assumed to remain straight and
normal to the smidsurface after deformation (i.s.,
trausverse shear straians sve sssumed to be zero) and
thick-plate theory that accounts for constant or
linear variatioas of transverse shesr strains through
the thickness. With the {ucressed use of advanced
fiber composite materiasls in serospace and sutosotive
structures, s wore accurats prediction of stresses in
conposite plates {s needed. Composite materials
exhibit higher stiffness-to-weight ratios and
incressed corrosion resistance compared to isotropic
msterials. The anisotropic saterial propertiss of
layered composites can be varied by varying the fibre
orientation and stscking sequence. While this featurs
gives the designer an sdded degree of flexibilicy, the
stiffness mismstch of the orthotropic layers bonded
together with different fiber orientations leads to
interlaminar stresses in the viciaity of free edges.
For certain etscking sequences, losding, and boundary
conditions interlsminar stresses can be so large that
they dictate the design of the structurs. An accurste
prediction of the interlsainar stresses is poseible
oualy when a three-dimensional theory is used.

Preavicus anslyses of layered composite plates can
be divided into two groups: (1) anslysss based on s
leninstion theory, and (11) snalyses based om a fuily
three~disensionsl theory. The lamination theory is an
extension of the classical plate theory (CPT) or the
Reissner-Mindlin shesr~deforwsble plate theory (SDT)
to layered composita platas. The first leminacionm
theory is apparently dus to Relssuer sad Staveky (1}.
Yang, Yorris, and Stavsky [2] presented a
generalisation of che Reissuer-iindlia thick-plate

theory for homogeneous, isotropic plates to
srbitrarily Ilaminated anisotropic plates. Whituey
and Pagano [3] (also see Reddy and Chao [4]) presented
closed-form solutions to the theory when applied to
certain cross-ply and angle-ply rectangular plates.
Reddy [5] presented s finite-element analysis of che
lsuination theory. A higher-order lamination theory
that sccounts for a cubic variation (as opposed to
linesr in [2-5]) of the iuplsue displacements and
quadratic variation of the transverse displacement
through the thickness is presented by Lo, Christensen,
and Wu [6], and hybrid-etrees finite-element analysis
of the theory is pr ted by Spilker [7]. A
geveralization of the von Karman noalinear plate
theory of isotropic plates to snisotropic plates is
dua to Ebcioglu [8]). Chia and his colleagues (9,10]
presented approximste sumerical solutions, using the
perturbation method sud the Galerkin method, of the
vou Zarman squations associated with layered composite
plates. Racently, Reddy and Chao {11,12] presented
finite-element snalyses of the same squations.

In the laminatfon theory it fs assumed that the
laminate is in a state of plane stress (an assumption
cerried from the plate theory) and ifategrals chrough
the thickness of s laainate are equal to the sum of
fantegrals through the thickuess of tndividual
leuivae. These sssuaptions lead to tnsccurate
prediction of interlsminar stresses at the free edges;
sway from free edges the lamination theory solutions
sre very sccurate. Thus the lamination theory is not
sccurate {n & boundary layer region which extends
inward from the edge to a distance approxisately equal
to the laminate thicknesa.

The fully three-dimensional theory is nothing but
the linear elasticity thaory of a three-dimensicnal
solid. Pipes and Pagano [13) and Pipes [14] used a
finite~differance technique to solve the quasi-three-
dimensional elasticity equations for laminates (also
see Hau and Berskovich [15]). Lin [16], Dana [17],
and Dana and Barker [18) used a cubic, three-
dimensional, isoparsmetric element with 72 degrees of
freedom to anslysze laminated plates. The numerical
results in thess studies agree very well with those of
Paganc {19,20]. The studies were confined to
geometrically (as well as materially) linear
analyses. Receatly, Griffia, Kamst, sad Herskovich
[21] investigated three~dimensionsl inelestic (i.e.,
seterial nonlinearity) finite-elemeat englysie of
laninated composites, while Brockmsn [22) daveloped a
finite~element program (cslled MAGNA) for three~
dimsusionsl, geomstrically, nonlisear, analysis of
{sotropic plates.

The present study is motivated by the lack of
fiaite-elemant rasults for threa~dimensiomal,
geomstrically oonlinesr, smalysis of layered composite
plates. The preseat peper gives s finite-element
forsulation of the nonliuear equations goveraing a

o . .
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linearly slastic, 3-D continuum. Numerical results of
the linear snalysis are presented for seversl probdlems
and the linear formulation is validated dy comparing
the present results with those of Pagano {19,20] and
others. Results of the nonlinear analysis will appear
elsevhere.

Governing Equatioans

Coneider s laminate (R) composed of N orthotropic
layeres with axes of elastic symmetry parallel to the
plate axes. The laminate is subjected to noreal
traction ty =~ q(xl.xz) at {ts upper surface ({.e., xq

= h/2). The coustitutive equatioas for eny layer are
4 given by

n Ry Q2 3 0 0 0] 11
%22 Yy Q@2 2Py 0 0 0 fe,,

1 3| _ %3 %3 %3 O 0 Ojjeyy |
%y 0 o o0 g4 o of]=,
%13 0 0 0 0 Q5 0} |)=,
a, [0 0 0 o o o |2,

n

and the governing field equations are given by (in the
absence of body forces)

[0y (8gg + g )] 4= 0 )

where ¢ 1 and € 13 are the rectangular Cartesisan

components of the stress and straian tensors,
respectively, and q“ are the material properties of a

lamina in the laminate coordinates. In (2) the
summation convention on vepeated indices is used. The
strain-displacesent equations are given by

{
T A WAL WL M

To complete the description of the field
equations, Eqs. (1)-(3) should be adjoined by boundary
conditions. At any point of the boundsry of the plate
one should specify one of the following two types of
boundary coadittions:

(1) essentisl (or geomstric) boundary conditions
u - ;1 (4)a
(11) natural (or dynamic) boundary conditions
£, F 4 'j’ij“-t + “-.1’ -t (4)b
Pinite-Element Formulation
Here wa present a displacement finite-slement

sodel of the equstions (1)-(4). To this end we
construct the variational formulation of the equations

over an arbitrary element 9(.) of the finite-element
sash., We have (see {23, p. 382)])

o=f m{“‘-.j“’u“u“‘-.t"“t“z"s -f ;
2 r

t.Gu-d‘
(s)

Here § denotes the variational symbol, and ¢ 1 is

given in terms of u; via Eqs. (1) sad (3):

- 1=
T Ut = 7T Qijn(“l.u‘“n.-“k.l“k.nl (6)
where

Qij ,if Len, §=n

oi.j- | » othervise. n

Rext, we assume that the displacements u, are
interpolated by expressions of the form,

8
o
w=1I uy
a 3-1-“

(m = 1,2,3) (®)

where ¥, (x,7,3) (s = 1,2,...,8) are the trilinear
interpolation functions of the eight-node

isoparasetric element in three dimensiouns.
Substituting Eq. (8) into (5), we obtain

3 8
B . o=
RARH KU, +15=0, (a=1,2,3; a=l,2,...,8),  (9)

where

'™ 8 L,
==, S0 8 + I o P))dx ds,dx
8 la(') ij [ TRt gl ® an 17273

R/

s ) ty de , (jym,n = 1,2,3) (10)

r(. na

Every isoparametric fianite element a(‘) of the
finite-element mesh can be gensrated from the master
element (which is a cube of side 2) via the
transformation (see Pigure 1)

‘1 - xl“l"2"3)
8 [
- IoalGtty ez an

vhere x: are the glodal coordinastes of the element

aodes. Therefore, the integrals in Eq. (10) can be
transformed to the master element and evaluated
auserically using the GCaues quadrature. The

(1) (1)
traansformation of ,?'- to ,!-'- is parformed as follows
(see Reddy [24]): “71 1

'
{:-:fl - {,-?:-]
m =1

dx dx dx, = (dot [I1)6 &,8,  (l2)a

where

B et Y

- NI v e AR b i s 2 Sz AT SOV ...

B RURG: i Ve Y

-




e Sty AT IRND a AP IO  I> w.> %5 . . et R

W, W, 3y < <! !
n'; TE; TE; 1 *2 M
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- 1 2 '8 1 *2 %3
m T T
W, 3, vy B o8 8
R; ﬁ;.-- 76—3‘ l 2 3
3x8 8x3
(12)d

Yor example, consider

3'“ 3" 111 1
IQ(-)"’Q ety [ R RN N

| a '11
eI I I (B, P, BNV W (13)
Iel Jel =1 ¢ 1" ITKTTUX

wvhere Py and Wy are the Gauss points end weights,
respectively, and the integrand P:g (1,3 =
1,2,3; a8 = 1,2,...,8) 1s given by

3 . W, 3,
3 - * a * 8
ot (F Jnar) (F S mpdee W1 as

J;,' being the elemants of the iaverse of the Jacobian

matrix, [J]. This procedure csn be implemented on &
digital computer, snd the element coefficient matrices
in Eq, (10) can be evaluated numerically. The Ixixl
Gauss quadrature was used to evaluate the coefficients
of Q“. stp and 2x2x2 Causs rule was used to
integrate all other terms.

Since the coefficient matrix [K] depends on the
unkown solution vector {u}, one should employ an
iterative solution procedure to solve the finite-
element equations. Here we use the Picard type
{terative technique, vhich begins with an assuwed
displacement field (usually, set to gzero to obtain the
1inear solution) to compute (K] at the beginmaing of
the firsc iterstion. In subsequent iterations, the
solutioa obtained from the previous iterations is used
to compute {K]j. The fteration is continued unctil the
solutions obtsined {n two consscutive it.nuo‘l
differ by s presssigned error ssrgin (say, 107%).

Discuseion of the Mumericsl Ressults

Here we preseant ressults of the linesr analysis of
:hr;o test cases that have been anslysed by Paganc
{20]:

1. A symmetric three-ply square (a = b) laminste
with direction 1 of materiasl principal axes .
coincides with the xy~direction in the outer
layers snd direction 2 is parallel to the x;~
axis ia the center laysr. The lsyers are o}
equal thickaass.

2. The ssme lamination geometry as in (1) above,
exncapt that b = 3a.

3. A square (a = b) sandwich plate vith the
thickaese of the face sheets egual to h/10,
whete h 15 the total thicknese of the
leainste.

In all three csses, the loading 1s assumed to be
sinusoidal (the coordinate aystem is taken at the
center of the plate).

- 1 £ =,

£y 2 q(xl,xz) *® q cos —— cos = 1%
and the boundary conditions are of the simply
supported type vhich allow normal displacement on the

boundary, but prevent tangentisl displacement. PFor s
quarter plate thase imply

2-“3-tx-o

Atxx-O: uI-O.ty-O.t‘GO

- -

At x; = a/2: ::

{16)
At x, = b/2: u

1 " u3 - ;y -.0

M:xz-O: uz-o. :‘-o, c'-o.

The matarial of the laminae in cases 1 and 2 and
face sheets in case ] is assumed to have the following
valuss for the material coefficlents:

E, = 1.724 = 10° kw/n? (25 x 108 pet)

£, = By = 6.89 x 105 kn/n? (105 pet)

Gy = Gyg = 3.45 x 105 wi/n? (0.5 x 10 pe1)

Gy3 = 13.78 x 106 kN/u? (0.2 x 105 pe1)

Vig = V3 = V3 = 0:25 Qan

The properties of the core material in case 3 are
given by

B, = B, = 0.275 x 10° ku/u? (0.04 x 108 pet)
£y = 3.45 x 106 xn/a? (0.5 x 105 pe1)

Gy3 = Gpy = 0.413 x 10° xn/m? (0.06 x 10° pet)
Gyp = 0.11 x 105 kn/a? (0.016 x 106 pat)

Vig " V3 = V3 = 0.25 (18)

The following normalisations are used to preseant the
results:
2
h
7 (91:921%)5)
9,8

(al’az"lz) bl

~ Y
Gpdy) = s C1d)

_ mpl _ @ a1l
S T B T e
%" %*

Table 1 contains a comparison of the present
fiaite-element golution (for various meshes) for the
traneverse center deflection and stresses with the
exact solution of Pagano [20] for Case 1. As the mesh
i refined, the finite-element solutiom converges
toward the exact solution. Further mash refinements
were not done due to the limitatioms on computational
resources (i.e., storage, computatiocnal time, etc.).
From an examination of the results cne can see that
the finite-element rssults agree better with the emact
solution for increasing values of spen-to-depth ratio
(s/h). The transverss shear stresses are less
accurately predicted than the other stresses.

Stailar {aformation {s presented in Tables 2 and
3 for Cases 2 and 3, vespectively. PFigure 2 contains




e .

a8 plot of the transverse shear stress distribution
over the thickness for a/h = 10. The plot agrees,
qualitstively, very well with the plot presented in
Figure 7 of Referance 20 for a/h = 4,
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Table 1. Comparison of the finite-element results with the exact solution of Case 1
o | Normslized NORMALIZED STRESS o
£ Souxcx Ceatre  _ 4 0,4h, = ,0,0,4h, ~— & -, b ~ ,ab .k
Deflection ox( vl ) 62( % ) 013(!-.0.0) 623(0.1; ) “12(7"2'*2')
u4(0,0,0)
Ezact: Pagsno [20] 1.436 0.669 0.164 0.2591 -0.0859
-0.938 -0.742 0.0702
Preseut: FEM
2x2x3 7.5170 0.9880 0.5493 0.1350 0.1871 -0.05412
-0.6332 -0.6396 0.04977
2
3x3x3 7.1955 1.025 0.5834 0.1520 0.2022 -0.05843
-0.6680 -0.6837 0.05362
4x4x3 7.0893 1.037 0.5953 0.1584 0.2081 -0.05999
-0.6803 -0.6990 0.05303
Exact: Pagano [20] +0.590 0.285 0.357 0.1228 +0.0289
-0.288
Present: IFEM
2x2x3 0.7685 0.5349 0.2756 0.3099 0.07761 -0.0214
-0.5337 -0.2791 0.02156
10
3x3x3 0.76189 0.5636 0.2832 0.3407 0.08255 -0.02300
-0.5627 ~0.2870 0.02318
4%6%3 0.75985 0.5738 0.285 0.3521 0.08439 -0.02360
-0.5730 -0.288 0.02378
Reddy and Chao (4] 0.669 #0.5499 +0.252 0.406 0.091 +0.0250
Exact: Pagano [20] 20.539 40.181 0.395 0.0828 $0.0u13
Present: FEM
2x2x3 0.41971  20.4948 40,1670 0.3425 0.05057 ~0.01577
0.01578
100 -
Ix3x3 0.43217  £0.5249 #0.1770 0.373% 0.05539 +0.01732
Axéx3 0.43639  10.5356 40,1805 0.3844 0.05716 +0.01789
Reddy sad Chao [4] 0.434 40.53$ 20,179 0.422 0.070 +0.0212
Classical Plate Theory 40.539 0,180 0.395 0.0823 +0.0213
9
) xq = x4(gg)
8 y7 amem—— § £

-
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Table 2. Comparison of the finite-element results with the exact solution of Case 2
N Normalized NORMALIZED STRESS G
SOURCE Centre
w =~ ,0,0,%h = ,0,0,%h - 8 -~ b — &b _h
Deflection o ( '2 ) 02( LS ) ‘113(‘2-0.0) 023(0n-2'v0) °12‘7"2"*2’>
4,(0,0,0)
Exact: Pageno (20] | 2.82 1.14 0.109 0.351 0.0334 -0.0269
-1.10 -0.119 0.0281
Present: FEM
2x2x3 3.0723 0.9577 0.1040 0.2963 0.01355 -0.02027
~0.9151 -0.1249 -0.02241
4
3x3x3  (Meshes) 2.9554 0.9897 0.1043 0.3286 0.01425 -0.02105
-0.9493 -0.1238 0.02334
4x4x3 2.9170 1.0001 0.1048 0.3405 0.01452 -0.02134
-0.9614 -0.1231 0.02368
Exact: Pagano [20] | 0.919 0.726 0.0418 0.420 0.0152 ~0.0120
-0.725 -0.0435 0.0123
\ Present: FEM
2x2x3 0.9208 0.6451 0.0386 0.3586 0.006974 -0.008716
-0.6440 -0.0420 0.009113
} 3x3x3 0.9107 0.6776 0.0393 0.3929 0.007613 ~0.009319
-0.6768 -0.0432 0.009744
10
4x4x3 0.9076 0.6892 0.0396 0.4054 0.007851 -0.009543
-0.6885 -0.0435 0.009978
Reddy (5] 0.802 £0.603 £0.0364 +0.0102
! Panda and -
: Natarajan [25] 0.752 £0.653 40,0367 40.0105
Mawenya and -
i Davies [26] 1.161 +0.685 +40.0141
Exact: Pagano [20] | 0.508 40,624 40.0253 0.439 0.0108 +0.0083
Present: FEM
! 2x2x3 0.48186  £0.5628 0.02355 0.3759 0.005567 -0.006038
' ~0.02351 0.006042
Ix3x3 0.49683  40.5978 0.02495 0.4102 0.006208 ~0.006639
~0.02499 0.006643
100
4xéx3 0.50191  £0.6101 0.02526 0.4227 0.006445 -0.006861
~0.02550 0.006865
Sx5x3 0.50424  30.6159 20.02527 0.4287 0.006556 -0.006965
0.006970
- Raddy (3) 0.506  0.603 20.0253 +0.0080
Panda and -
Wecarajen [25] 0.505 £0.654 £0.0261 +0.0086
L Mawenys and -
, ; Davies [26] 0.51Q £0.638 40,0083
v §J
& Classical Plate Theory| 0.503  0.623 10.0252 0.440 0.0108 +0.0083
TR 4
N
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Table 3. Comparison of the finite-element results with the exact solutfon of Case 3
e Normalized NORMALIZED STRESS 0
= SOURCE Centre
h - ,0,0,zh = .0,0,%h -~ (A = b - .ab  h
Deflection o (—Lz-'—-) 02(-41—) 013(-2-.0.0) 023(0,1,0) 012(7,7,17)
us(o.0.0)
Exact: Pagano 1,556 0.2595 0.239 0.1072 ~0.1437
«1,512 -0.2%33 0.1481
4
Present: FEM
2x2x3 8.588 1,514 0.273) 0.2125 0.07811 -0.1233
-1,570 -0.337 0.1621
Exact: Pagano 1.153 0.1104 0.300 0.0527 -0.0707
-1.1%2 -0.1099 0.0717
10
Present: FEM
2x2x3 2.3926 1.097 0.1112 0.2647 0.03438 ~0.06109
-1.103 -0.1211 0.06718
Exact: Pagano +1.098 +0.0550 0.324 0.0297 ;0.0631
100 | Pesent: FEM
2x2x3 0.87133 +1.015 0.05092 0.2829 0.01828 -0.03629
-0.05102 0.03635
Classical Plate Theory +1.097 £0.0543 0.324 0.0295 30.0433
z
0.4 Case 2 (a/h=10)
1 3,3(0,8,7), 2‘,2;
0.2+
0.0
4
«0.24
1 Mesh: 3x3x3
-0.4
o 1 2 3 4 5 6 1 8
Shear stress, g;3 X 10°
Figure 2. Distribution of the shear stress along z
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