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Part I:

* GEOMETRICALLY NONLINEAR ANALYSIS OF LAYERED COMPOSITE SHELLS

W. C. Chao
Graduate Research Assistant

J. N. Reddy
Professor, Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

ABSTRACT Rao [13] used a doubly curved quadrilateral alemeat to

Two kinds of finite-elemeut analyses are model laminated shells of revolution; there are 12

presented for the Investigation of the large unknown diplacemeants at each node. moor 114-161 used
deformation phenomenon In laminated comlpostea mixed formulation to compare several elements in thedefomaton henmenn inlamnatd cmpoitelinear analysis of laminated shells,* iu, * eddy ad
structures, especially shells. The first kind of iert a171 employed the shear- lHformable element

finite-elemnt analysis emloys the generalDat[7emlydhesorefrbeeeen
incementl aiatnal forlionaell the enraproposed by teddy 1181 to analyse shells composed ofincremental variational formulation as well me the bimodular materials. Moor [191 employed the classicaltotal Lagranglan description of notion. The element shell elemnt that Includes the geometric nonlinearity

adopted Is the "degenerate" three-dimensional to solve a spherical shall problem. A degenerate
element. The second analysis adopts a formulation element associated with the updated Lagrangian
based on deformeable shell theory, and the plate- formulation Is presented In 1201 to solve a cylinder
bending element is used. Numerical results for problem.
bending are presented for plate and shell structures
of isotropic as well as orthotropic composition. The The present paper deals with the gemetriclly
reats are In good areemt with results available in nonlinear analysis of layered composite shells. usingthe literature. a 3-0 degenerate element. For the shear deformable

shell element description, see Reddy 121.221.

A 3-0DEGENElRATEt S1 FOR 1ATS1U= CONMSZ SHLLgJS
The shell is a comma load-carrying element in

ost industrial equipuent, especially in aerospace, Consider the motion of a material body in a
nuclear and offshore engineering. Although linear Saelideas space, as shown In Figure 1. Mer C

t

models suffice in many aspects of engineering, a denotes the configuration of the body at time t. To
linear analysis of shells yields results too gross and facilitate the description of the kinematics of the
inaccurate to be useful. The nonlinear behavior of centims at any time, the initial state of the body
structures should be taken into account if a thin can be chosen as the reference configuration to which
shel structure design, dictated by economic all subsoluent comfgetions are referred to; this is
considerations, Is desired. There exist a u*bar of kn as the otal Lranlas description. If the
shell finite elements in the literature. A discussion os as te oa a escrp tion-fte

coordinates are updated at each incremental time-step,
of various elements Is given by Gallagher (l. and the kinematice of the contimmum is described in

terms of the current configuration, the description is
The degenerate three-dimsimal element called the updated Lagranglan description. It is

originally proposed by Ahmed, Itroom and Zienkilvcs noted that a load step is used instead of the time
[21 for linear analysis of thin and thick shells, was step If e are solving the static bending problem.
applied to problems dealing with the geometrical and
material noulneasritielas (31 and [4. It Is now
believed that this element performs well in shell
analysis. oreak (51 proposed a bilinear degenerate
element, and Worsak, at al. [61 developed an eight-
node element that has relative displacement degrees-
of-fredom in place of the cumbersome finite
rotations. The derivation of both elements was based
on the concept of the degenerate 3-dismsional element
moel. Celieabgr (71, and grebbi sad Cromer (8)
extended this concept to the geometrically nonlinear
analysis of shells. The degeserate 3-0 element is ofiguration
usually accompanied by incremental fomulations in the x C at time t
analysis of Semestric and material noaliesrittes in 3 0
problems of structures; vaous Incremental 6nti&l configuration
veriational formalations for the total Lagrangias as (at time t-0)
well as the updated Legraenls approach are presented~in (9,103.

In modeling laminated compos it-materlal shells, X2
Dog, plater and Taylor [11[ formlated a theory of
tin shells lamiested of misotropic material, Mch

* is e eeniom of the theory developed by Stavsky
1121 for laminated sisetropie plates based em 's Figure 1. Description of the motion of a
first approximtion theory of shells vaskatesh ana ontinuu



EI

Invoking the principle of virtual displacements, (ty +- (*LI]{I - - [ I (8)
aoe can express the equilibrium equation of the body
at time t + At as: where fEL,. [lL) and JR1 are the linear stiffnes

matrix, ionlinear stiffness matrix and usbaLaaced
t4at. t4dt 6 -f ted t , 6u .. t# At 1 du el terms, respectively; (P) is the forcing tern from

o LJ o jV o 0 Tt LdA 1 0 external loading. To solve these equations, the
vO(1) Mo-lophs or the modified ewteo-tapbsoe -- tbod

cam be used. if the 11L] is updated after see
.tJtaw iteration. ose he the IOuton-Napheo method. Mn

t0 the [K.,, Iis kept conotant during each step. ome hoa

where the left superscript refers to the configuration the Mirfled orton-laphoe method.

at which the quantity Is calculated; the left N
subscript is the configuration to which the calculation
ton rfer rd, I lthe second lio -F~rebbeff stress The filte-element formulation presented berein
toero and e Is the Green-Ltegrangian strain tensor includes the transverse shear effect, although we have
defined as assumed that the straight line normal to the m id-plano

before deformation remains straight after
t46t 1 t46t t4at t4fit t46t ( deformation. The reduced Integration technique is

otIj- 2 ouL.J oUj,I 4  o%,I okp ) used In the numrical integration. Due to the biaxial
symmetry in the probleme considered, only a quarter

domain is considered. A 22 meh of $-node and 9-ode
a, and F

1 
denote the components of surface and body elements are employed in this analysis.

forces, and Vo and An the volume ad area,
respectively, of the body in the Initial L Laminated Composite Plates
configuration. Using the relations

A simply supported, 2-layer croesply square plate
t4t t S  ( mate of graphite-epoxy material subjected to a

o i" o Ij 
+ o () uniformly distributed load is analysed. The material

properties are

and a - 40 , G12 i 2 - 0.5 . V 12 ' 0.25 (9)

te11 tu + (3b) uand the boundary conditions are
- u 1 + u0(b

V -z . 0 at y - 0,a,

where 3 and ou
1

t are the Incremental stress and V .* . 0 at x - (1a0displacement componets. vs w1 rite
The numerical solutions for both elements are

t4o t  t ' proeoted in Table 1. It i clear that the DST
t " o Cj 

+ o'() predicts lower deflections than the 3-0 theory.

where Table 1. CO mpaurism of the nonlinear center-

j a O~a) deflection (vtl) of Problem I obtained by
otlj a otj+ o"J )the 3-D degenerate and Sbefl elemts.

- + ( P 1.0 2.0 3.0 4.0 5.0 6.0oe I-( ~ ,J+ujt+o;k. ok.J+6k.i % )(b

3-V 1.0414 1431 2.0604 2.3471 2.6595 2.8955

Lj, " oak,/, o'kj (5c) WT 1.0754 1.6042 1.9971 2.3008 2.5560 2.7716

j The linear constitutive relatios are given by P (P0(a/b)4/3x 2 0-2

ou
a  C iJU o 9l. (6) 3-D - degenerate 3-D e&lemt

V8T - deformaio shell (2-0) theory (211
The equilibrium equation (1) thn becomes

C 60 ty 3 f : 0 1 dY* PIOL 2: tsotropic Cylindrical Pawel With Uniform

Consider the circular cylindrical peal @e=w in
t"at*. - f si oe4d (7) P4 ore 2. To panel is claed along all four edges. 0

0 o and to snbjected to uniform normal loading. A h3) ETO smik of 9-mod elemnte is used. The dinional

wsich is a G eoier equation In tem of the center deflactls obtained by both element* are
inclatll displacemnts e, v and r. Per the listed in Table 2. Once again vs note that the 36T

degemerate eGlawt (se (23) this equtie a" be slemt predicts lower deflections.
east in terms of the middle eurffaw sad vedl eble
% 0o . a n1 i. s matrix form, we b

- -
'! ~ ~Dst , ;" ,

01:



S R-2540 mm

h u2 xhh6.35 om \ RAL - 10

h/L - 0.01
n h E*3 10275 kN/mm2

v0.3 Figure 3. Spherical shell used in Problem 4

Figure 2. Cylindrical panel used in Problems
2 and 3

Table 4. Comparison of the nonlinear center-
deflection (w/h) for Problem 4 obtaLned by

Table 2. Comparison of the nonlinear center- various Investigators

deflection v (in --) of Problem 2 obtained P 2 4 5 6 8 10
by the 3-0 degenerate element and shell
element DST 0.70918 1.8591 - 2.8299 3.4240 3.8804

3-0 0.69053 1.7607 - 2.7649 3.4170 3.8897
(kN/.2) NOOK 0.6806 1.741 2.305 - 3.436 3.916

3-D 1.4117 2.6131 6.3163 7.6686 6.6041 9.3426 PROBLEM 5: Laminated Cylindrical Panel With Uniform
DST 1.3827 3.8828 5.9449 7.5132 8.546 9.2949 Loadin

The som shell geometry as in Problem 3, but with
PROBLEMD 3: iled Circular ylindrical Panel Wi/th Pin 2 layers 0*/90*1 is used. The aterial is graphite-

oad epoxy and all four edges are simply supported, i.e.,

Using the same geometry of the panel in Problem u - v - * 0 at y - 0,a,
2, but vith thickness 12.7-i and boundary conditions X (12)
such that the curved edges are hinged end the straight ( v V . - ) at a - 0'a.
edges are free. A concentrated normal loading is y
applied at the center. Table 3 contains the numerical The results are compared In Table 3.
results:

Table 3: Comparison of the nonlinear center- Table . Comparison of the nonlinear center-Tal fCmaion of the ma)inPrblear center ned deflection (v/h) of Problem S obtained by
defle tion v (in a-) in Problem 3 obtin~ed the 3-D degenerate element and shell
by the 3-0 degenerate element and shell element.
element

P 0.5 1.0 1.5 1.7 2.0 2.2 Pa
S0. -- 50 100 200 300 350

3-0 1.3784 2.9786 4.9390 5.8965 7.719 9.7715 z__
OST 1.3707 2.9591 4.9088 - 7.627 9.4931 DST 0.6326 1.2533 1.9739 2.3988 -

3-0 0.6014 1.2340 1.98L2 2.4317 2.471

PROBLE 4: Laminated iComosite Spherical Shell WithOnit oe Lad ACK3WuLEDGNTS
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graphite-epoxy (see Figure 3). The four edges are during an investigation supported, in pert , by the
simply aupported; i.e., Structural Reeearch Section of NA LW*s through

Grant NAG 3-208 and Engineering Mechanics Division of
Ia.- -O.. /z 0at y . O, a, ONR through Contract NM0014-78-C-0647. The(.0) encouragement and support of this work by Dr. Christ*
• - w -9 *y O t x - 0, a. C. CistL (NASA/Levis) to gratefully acknowledged.

A uniform inward loading is applied on the shell. The RRFKIZMCIS
numerical results are tabulated in Table 4. The
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Part 11:
THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS OF LAYERED COMPOSITE PLATES

N. S. Putcha
Graduate Research Assistant

J1. F~ Reddy
Professor, Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University, Blacksbuirg, VA 24061

ABSTRACT theory for homogeneous. isotropic plates to

R~esults of a preliminary study of the three- aritarl P6.3.0 t nsee~ ateddypi pl aces [4 hipesned

dimensional, geometrically nonlinear, finige-elmat aned-gao (3o(lutoso the hery hen 14)prsedtd
analysis of the bending of laminated enisotropiccoe-onsltost teter h&apidt

composite plates are presented. Individual lamina* certain croes-ly and angle-ply rectangular plates.
are assumed to be homogeneous, transversely Isotropic. Reddy 151 presented & finite-lement analysis of the
and linearly elastic. The Investigation ucilisee a lamination theory. A higher-order lamination theory
fully three-dimensional isoparenscric finite element thet accounts for a cubic variation (as opposed to
with eight nodes (i.e., linear element) and 24 degrees linear in [2-51) of the inplane displacements and
of freedom (three displacement component* per sode). quadratic variation of the transverse displacement
Numerical results of the linear analysis are compared through the thickness is presented by Lo, Christensen.
with the exact solutions obtained by Pagno The and We [61.* and hybrid-stress finite-element analysis
present results converged to the exact solution a of the theory is presented by Spilker [71. A
mesh Is refined. Due to lack of space, resulta of the generalization of the von Karmen nonlinear plate
nonlinear analysis were not included here; the results theory of Isotropic plates to anisotropic plates is

willapper .levlire.du, to Zbcioglu [S1. Chia end his colleagues (9,101
v111apper esewhre.presented approximate numesrical solutions, using the

INTROUCTON perturbation method and the calerkin method. of the
won KArman equations associated with layered composite

The development of simple finite elemento for the plates. Recently. Reddy and Chao. 111,121 presented
analysis of plates has been a subject of continued finite-element anl""e Of the Sam equations.
Interest among researchers of computational solid tn the lamination theory it is assumed that the
mechanics. most of the currently available elements lamite s toIn a state of plane stress (an assumption
are based on two-dimensional thin-plate theory In carried from the plate theory) and Integrals through
which the plane sections norel to the sidsurf ace tetikeso aiaeaeeult h mo
before deformation are acsused to rmain straight thahcnsnfd aiaeaeeua otesmoto te edsnfaceaftr dformtio (ie.,Integrals through the thickness of Individualnormal totendufc fe eomto ielaminae. These asumption* lead to iaccuratet
transverse shear strains ore "asd to he zero) an prediction of interlaminar stresse" at the free edges;
thick-plate theory that accounts for constant or aa rmfe de h aiainter ouin

* linear variations of transverse shear strains through away ferom fccre e Tges the lmation theory st
* the thickness. With the Increased use of advanced arev ccurat e. inu thonar aer lamegion thihee not

fiber composite mterials In aerospace and automotive acuteiabonayleregnwhhexnd
struturs, moe acurte peditio ofatrese in inward from the edge to a distance approximately equal

composite plates is needed. Composite mterials t h aiaetikee
exhiit ighr o~ffeva-o-wigh raio$andThe fully three-dimensional theory is nothing butIncreased corrosion resistance compared to isotropic thLnerlaicyteo fath e-nso l

meteial. Te aisoropc neeril popetie ofsolid. Pipes and Pagano [131 and Pipes [141 used a
layered composites can be varied by varying the fibre finite-difference technique to solve the quasi-three-
orientation and stocking sequence. While this feature
gives the designer am added degree of flexibility, the dimensional elasticity equations for laminates (also

stifnes mimatc oftheortbtroic ayer boded see amn and larahovich 1151). Lis 1161, Dane 1171,
toehrtdiffnes s eh t ofithe orietriolyns bneadst and Dens end Barker [181 used a cubic, three-

togeherwit diferet fber rietatons ead to dimensional, isoparamstric element with 72 degrees of
intelamnar treses n te vciniy o fre edes. freedom to analyse laminated plates. The numerical

For certain stacking sequences, loading, end boundary reut is these studies agree very wall with those of
conditions interleminar stresses *an he so large that
they dictate the design of the structure. An accurate Fgafous(19,201.(a The stdis maerealconfineat
prediction of the isterlamicar stresses io possible gmtiay(swlan aerly)ler

onlywhe a hre-diensona thoryis s".analyses. Rescently, Sriffin, Memet, and 8srakovich
onlywhe a hreediunsinaltheoy i ned. 211 Investigated three-dimensional inelastic (i.e.,

of material mulineariry) fisIt-lemwat ealysis ofbe Previous analyses oflayered composite plates can lmntdcmoiewieto~[2 eeoe
bedivided Into two groups: (i) analyses based osnImntdcmosts hl rcme,12 eeoe

Lamination theory, and (it) analyses based o a fully finite-elms: program (called NA) for three-
threedIsnsional theory. Tie lamination theory Is en dimenional, geomtrically, nonIlnear, analysis Of
extension of the classical plats theory (CPT) or the Isotropic plates.
Ieitseer-Nfndlin shear-deformablo plate theory (SDT)Thpesnstdismivtdbtelako
to layered composite plates. The first lmntion fnteeent esut fo iadb thre- n lack o
theory is apparently due to lalsoer and $taweky 11. gemetrica nonlnear redyimensfolayeelcmost
TaWO, Norris, and Stavsky [21 preented a plates. The present paper gIVes a finite-elmtt
generalization of the Ssiesner-IfnlIn chick-plate forwalatiol of the neeliter equatims 86weii" a



linearly elastic, 3-D continuum. NuNMical results of given Is term of ui via Rqs. (1) and (3):
the linear analysis are presented for several problems
and the linear formulation is validated by comparing -n u- 1(-
the present results with those of Pago [19,20] and ij i jemme " u U k (6)
others. Results of the nonlinear analysis will appear where
elsewhere.

Governing Equations Qij , if I - - n
Oij= -- 0 , otherwise.

Consider a laminate (Q) composed of V orthotropic
layer*s with axes of elastic symestry parallel to the Next, we assume that the displacements us areplate axes. The laminate is subjected to normal interpolated by expresions of the form,

traction t3 - q(xlz 2) at its upper srface ("., x3

-hi2). The constitutive equation for aey layer aregiven by us (a - 1.2.3) (8)

a11 "11 Q12  QI3 0 0 0 c1
a22 Q12  Q22  Q23  0 0 0 '22 where #*(xy,z) (a - 1,2,...,8) are the trilinear

033 Q13 Q23 Q33 0 0 0 . interpolation functions of the eight-node3 - ioprametric element in three dimensions.

023 0 0 0 Q4 0 0 2t23  Substituting Eq. (8) into (5), we obtain

a 13 0 0 0 0 Q55 0 2 13 3 8

1 0 0 0 0 29 I u0+P-0, (a-1.2.3; nl2..), (9)12 .1 u,,a

(1)

and the governing field equations are given by (in the where
absence of body forces)

(a (a + u, )I . 0 C2) +''a• z +  .0 Jz id dx'
(2) MI7.. M. ju I.- 10jo 1) 1de 2  3

where a and C1i are the rectangular Cartesian 9 6.

components of the stress and strain tenosors, ()
respectively, and Qj are the meterial propertlee of a a an

la-dns in the laminate coordinates. In (2) the (
sumation convention on repeated indices is used. The Every isoparamtric finite element a( e ) of the
stran-displacement equations are given by flnte-elment mosh can be generated from the meter

element (which is a cube of side 2) via the
Sf [i~,j + ui a U ,j](3) transformation (see igure 1)

To complete the description of the field x I - 1 2,3
equations. Eqs. (l)-(3) should he adjoined by boundary
conditions. At any point of the boundary of the plate 6
one should specify one of the following two types of = a C ,CC) (i - 1,2,3) (II)
boundary conditions: 6- i1 23

(i) essential (or geometric) boundary coditions where a e the global coordinates of the element

ut  ui  (4)a nodes. Therefore, the integrals in Eq. (10) can be
transformed to the meter element and evaluated
numerically mein the Cames quadrature. The(iS) natural (or dynamic) boundary conditions * e a d

Stransformtion of to 8%I s performed as follow@t a a n~i, a *m,ia - t. (4)b (see Noddy 1241),t a I r a o

Piaite-Ilement Formulation

Nere we present a displacement finite-element i"1 I aJ l

model of the equations (1)-(4). To this end we
costruct the variational formlation of the equations 3%1 3.1

over an arbitrary element o(e) of the finite-element dldid 3  (dot [J])14 2d 3 ()a
msh. We have (see (23, p. 3821)

0-1 WJ~ 84(a i, iIdaidxtdx3  r e)t Gumds where9 O (e){ut [i(A4ui dd d3"Ft.e

r()

Nor 6 denote the variational symbol, and a iS t



ir irr 1 2In all three cases, the loading Is assumed to be
x 1 1 2 sinsoidal (the coordinate system is taken at the

1 2  1 a cntor of the Plato).
in3 ir ii [ : j " a:'2)"q coa:o.(53x 2] 2  2 1 2

3xG 3 3 W supported typ which allow normal displacemnt on the

n3 , but prevent tangential displ ment. Por a

(12)b quarter plate these Imply

For example, consider

8% 3#01, At x, -0: u 1 -0. tyft0, t3 .f0
j. % d1 dx 

-3'1" I a E (16)
(a) 1 3_ 1d - 1( '1 2,1 3 ) 1 2  3  At 2- b/2: - t a 0

a VAt 
z2  -:.O " u2 - 0 t - 0 0 t a 0.

X Z i P,,. I (13) The material of the laminae in caos lend 2 and
le1 jai Kai face shoets In case 3 is assumed to have the following

values for the material coefficients:

where P and W, are the Caue points and lighte, 1 - 1.724 x 108 kg/%2 (25 : 106 pot)

respectively, and the integrand (i,J -
1,2,3; nP - ,2,...,I) is ie ty 

2 - 3 - 6.89 x 106 kR/u
2 

(106 psi)

3 3 .S#G 1 2 " 13 ' 3.45 x 06 kN/m
2 (0.5 x 06 pi)

k-" r j I * .det, (JI (14) , 13.76 2 106 k,. 2 (0.2 : 106 psi)
k-1 k -1 £ 2

41 being the elements of the inverse of the Jacobian V1 2 "V 3 1 " V32 " 0.25 (17)

matrix, (3]. This procedure can be Iplmeuted on a The properties of the core material in case 3 are

digital computer, and the element coefficient matrices given by
in Eq. (10) can be evaluated numerically. The lzixl
Cause quadrature was used to evaluate the coefficients 81 -2 - 0.275 x 106 kI/•

2 
(0.04 : 106 psi)

of Q4 4 , Q5 5 , and 2z22 Cass rule me uasd to
integrate all other term. 33 - 3.45 x 106 kh/m

2 (0.5 x 106 psi)

Since the coefficient matrix (11 depends on the 013 - 43 - 0.413 x 106 W/m
2 

(0.06 x 106 psi)
unkoun solution vector jai, one should employ an
Iterative solution procedure to solve the finile- 012 - 0.11 : 106 kU/n

2 
(0.016 x 106 pst)

element equations. Nra we use the Picard type
Iterative technique, which begins with an assumed 12 - 31 -V 3 2 - 0.25 (16)
displacement field (usually, set to aore to obtain the

linear solution) to compute (K at the beginning of The following normalisations are use to present the
the first iteration. Tn subsequent iterations, the results:
solution obtained from the previous Iterations is used h

2

to compute (KI. The Iteration to continu d until the 01,0 12 (alto a
solutions obtained in two consecutive iteratiogs qa-
differ by a preassigned error argil (say, 0).

Discussion of the Nmerical Uselce 23 132 .V 3
a 2

h2  (a 2b3 u31)10 2

bra ma presnt results of the linear amalysis of - I . ;3 2 h u_)l)

three test cases that have been analysed by Pagan.o
(2011

Table 1 contains a comparison of the present
1. A symetric three-ply square (a a b) lJanat finite-element solntion (for various meshes) for the

with direction 1 of material principal 8=0 transverse center deflection end stresses with the
coincides with the :1-directlon in the outer esect solution of Pagaw (201 for Cas 1. As the msh
layers and direction 2 is parallel to the 1- is refined, the finite-element solution converges
axis In the center layer. The layers ae a, towrd the ect soluclon. Frther moes refinement
equal thickness, were not done due to the liltations on cPtationel

resources (i.e., storage, computational time, et.).
2. The em laid tion gometry as in (1) above, Prom n @nemination of the results one can see that

oxcapt that b - s. the finlte-element results agree better with the exact
solution for increaus g values of spa-to-depth ratio

3. A square (a a b) sandwich plate with the (/b). The transverse shear stress" are less
thickess of the face sheets equal to hla, accurately predicted then the other stresss.
where b to the total thickane of the
liduate. Similar information is priested In Tables 2 and

3 for Cases 2 ed 3, respectively. ?iue 2 contalne
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Table 1. Comparison of the finite-element results with the exact Solution of Case 1

i Normlsed EOWJZZD STESS 7

-Deflection i , h ( o13c1.o bq , . )

lxAct: Pagano [201 1.436 0.669 0.164 0.2591 -0.0859

-0.938 -0.742 0.0702

Present: PI

2W23 7.5170 0.9880 0.5493 0.1350 0.1871 -0.05412
-0.6332 -0.6396 0.04977

3z3x3 7.1955 1.025 0.5834 0.1520 0.2022 -0.05843
-0.6680 -0.6837 0.05362

4z~x3 7.0893 1.037 0.5953 0.1564 0.2081 -0.05999
-0.6803 -0.6990 0.05t.03

,xact: Pagano 1201 *0.590 0.285 0.357 0.1228 +0.0289

-0.288

Preseut: 1rM

2z2x3 0.7685 0.5349 0.2756 0.3099 0.07761 -0.0214
-0.5337 -0.2791 0.02156

10
3x3x3 0.76189 0.5636 0.2632 0.3407 0.08255 -0.02300

-0.5627 -0.2870 0.02318
4xx3 0.75985 0.5736 0.285 0.3521 0.08439 -0.02360

-0.5730 -0.288 0.02378

Reddy and Chao (41 0.669 *0.5499 *0.252 0.406 0.091 +0.0250

ZEact: Pagano [201 *0.539 *0.181 0.395 0.0628 +0.0213

Present: IN

2x2z3 0.41971 *0.4948 *041670 0.3425 0.05057 -0.01577
0.01578

100
3z3x3 0.43217 *0.5249 *0.1770 0.3735 0.05539 ;0.01732

4x4z3 0.43639 *0.5356 *0.1805 0.3844 0.05716 +0.01789

Roddy and Chao 141 0.44 *0.535 *0.179 0.422 0.070 ;0.0212

classical Plate Theory *0.539 *0.180 0.395 0.0823 ;0.0213

Xi XI q

17 7

IX3

56

I - 3
-X2

Figure 1. Transformation of the master
eloent to an arbitrary 1 emant
of a finite-elemnt mesh

'i/
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Table 2. Couparison of the finite-element results vith the exact solution of Case 2

Normalized NORMALIZED STRESS F
SOURCE Centre - 0 0,*h 0,0,th b L b hDeflection az(---*-) '2( ) '13 010)  523(o,!,0) --- ,b *

S
3(0010)2

Exact: Pagano [201 2.82 1.14 0.109 0.351 0.0334 -0.0269

-1.10 -0.119 0.0281

Prment: im

2x2x3 3.0723 0.9577 0.1040 0.2963 0.01355 -0.02027
-0.9151 -0.1249 -0.02241

4
3x3x3 (aeshes) 2.9554 0.9897 0.1043 0.3286 0.01425 0.02105

-0.9493 -0.1238 0.02334

4x4x3 2.9170 1.0001 0.1048 0.3405 0.01452 -0.02134
-0.9614 -0.1231 0.02368

Exact: Pagano 120] 0.919 0.726 0.0418 0.420 0.0152 -0.0120

-0.725 -0.0435 0.0123

Present: FPU

2z2x3 0.9208 0.6451 0.0386 0.3586 0.006974 -0.008716
-0.6440 -0.0420 0.009113

3x3x3 0.9107 0.6776 0.0393 0.3929 0.007613 -0.009319
-0.6768 -0.0432 0.009744

10
4x4x3 0.9076 0.6892 0.0396 0.4054 0.007851 -0.009543

-0.6885 -0.0435 0.009978

Reddy (51 0.802 *0.603 *0.0364 +0.0102

Panda and
Natarajan [25] 0.752 *0.653 *0.0367 4-0.0105

Nawanya and
Davies [261 1.141 *0.685 +0.0141

Exact: Pagano [201 0.508 *0.624 *0.0253 0.439 0.0108 +0.0083

Present: PE

2x2z3 0.48186 *0.5628 0.02355 0.3759 0.005567 -0.006038
-0.02351 0.006042

3x3x3 0.49683 *0.5978 0.02495 0.4102 0.006208 -0.006639
-0.02499 0.006643

100

4z4z3 0.50191 *0.6101 0.02526 0.4227 0.006445 -0.006861
-0.02550 0.006865

Sx~z3 0.50424 *0.6159 *0.02527 0.4287 0.006556 -0.006965
0.006970

teddy 151 0.506 *0.603 *0.0253 0.0060

Panda and
Watarajan (251 0.505 *0.654 *0.0261 ;0.0086

Namaeya and
Davies 1261 0.51Q *0.638 +0.0083

Classical Plate Theory 0.503 *0.623 10.0232 0.440 0.0106 ;0.0083

'IiIii m
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Table 3. Couparison of the finite-element results with the exact solution of Case 3

WormsLized NOENALIZED STRESS 7
SOURCE Centre

0  0f l e c  
1( -)'( 2 =T = 13(.' 00) 2 3 (0,,0) 12( f.*P)S3 (01010)

Exact: Pagano 1.556 0.2595 0.239 0.1072 -0.1437
-1.512 -0.2533 0.1481

4
Present: M

2x2x3 8.588 1.514 0.2733 0.2125 0.07811 -0.1233
-1.570 -0.337 0.1621

Exact: Pagano 1.153 0.1104 0.300 0.0527 -0.0707
-1.152 -0.1099 0.0717

10
Present: W(

2x2x3 2.3926 1.097 0.1112 0.2647 0.03438 -0.06109
-1.103 -0.1211 0.06718

Exact: Pagano *1.098 *0.0550 0.324 0.0297 ;0.0437

100 Peseant: FE?

2W2x3 0.87133 *1.015 0.05092 0.2829 0.01828 -0.03629

-0.05102 0.03635

Clasical Plate Theory *1.097 *0.0543 0.324 0.0295 +0.0433

z0.4- Case 2 (a/h-10)

0.0 . .

-0.2-

Mesh: 3x3x3
-0.4-

0 3 4 7 8

Shear stress, ;23 x 10
3

Figure 2. Distribution of the shear stress along Z
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