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ABSTRACT

!
This thesis presents a stability analysis of rotor bearing
system operation affected by a single labyrinth seal. Labyrinth seals,
primarily intended for leakage control in turbines, have been observed to
affect rotor stability in high pressure steam turbines. A small
experimental rotor bearing system, existing in the Mechanical Engineering
Department, and a compatible labyrinth seal are the subjects of this
dnalysis. Linear analytical models of these rotor bearing and labyriﬁth
seal systems, both isolated and coupled, are developed. Labyrinth seal
geometry and pressure variations generate various affects on rotor
bearing system stability. These affects can help develop labyrinth seal
design criteria directed toward high pressure turbine stability
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NOMENCLATURE

Seal strip dimensicn (in)

Area (inz), Matrix descriptor, Variable, Seal position identifier
Damping coefficient (1fb sec/in), Seal strip dimension (in)
Damping coefficient (1bf sec/in), Variable, Seal position identifier
Bearing to journal radial clearance (in)

Seal position identifier, Variable

Function

Eccentricity (in), Natural logarithm base = 2.718

Modulus of elasticity (lbf/inz)

Friction factor (dimensionless), Function

Force (1bf)

Minimum bearing to journal or seal base to disc radial clearance (in)
Related to h

Moment of inertia (1bf in secz)

Stiffness factor (1bf/in), Specific heat ratio (dimensionless)
Stiffness coefficient (1bf/in), Constant coefficient

Seal chamber length (in), Journal length (in)
N Rotor-bearing system overall length (in)

Mass (1bf secz/in)

Mass coefficient (1bf sec2/in), Mach number (dimensionless)
Exponent in seal friction relationms, Integer

Fixed reference point

Pressure (lbf/inz), Momentum (1bf sec)

Generalized coordinate




viii

r Disc radius (in), Journal radius (in)

R Gas constant (inz/seczoR)

Re Reynolds number (dimensionless)

s Seal circumferential distance independent variable (in)
t Time (sec)

T Temperature (OR), Kinetic energy (1bf in)

u Seal circumferential fluid velocity (in/sec)
U Disc or journal surface velocity (in/sec)

v  Eigenvector element (dimensionless), Velocity (in/sec)
V  Potential energy (1bf in)

W  Weight (1bf)

x Variable, Coordiﬁate

y Variable, Coordinate

Y Related to y

z Variable, Coordinate

Greek

4 Finite increment

{ Seal angular position variable (radians)

§ variation

€ Eccentricity ratio (dimensionless) = e/c

©® Bearing angular position variable (radians)
p,) Eigenvalue (dimensionless)

M- Dynamic viscosity (1bf sec/inz)

5: Generalized force (1bf)

V¥  Kinematic viscosity = gRT/P (in2/sec)
T~ Constant 2~3.14




ix

Density (1bf sec/inS)

T Frictional shear stress (1bf/in2)
¢ Journal attitude angle (radian)
E « Angular velocity (rad/sec)
Subscripts {

letters Identification

skl

numbers Identification

A Seal location, Axial :
B Seal location, Bearing #
C Seal location, Chamber
d Disc 4
e Eccentricity direction
f Related to friction
h High clearance area, Related to bearing or seal minimum
clearance
i Inside, Particular value
3 General value
J Journal
L Low clearance area, Left
n Nominal value
o Outside, Initial value
P Related to seal chamber pressure
R Right
-] Seal, Steady
S Stiffness, Seal circumferential distance




T Total, Differentiating subscript

u Related to seal circumferential fluid velocity

%) Whirl, Discharge coefficient

X Coordinate frame direction i
y Coordinate frame direction §
2z Coordinate frame direction

Greek

¢ Related to journal attitude angle
Other

Vector or matrix

Superscripts
. d
dt
—gl
e dae
/ Other value, ‘—g_ ( T = tu/r)
* Coenergy

number/variable Exponentiation




Chapter 1 INTRODUCTION

Steam Turbine (Figure 1.l1) instability in the form of
precession or whirl ((i)) of a rotor about a fixed reference position
(Figure 1.2 ~ Turborotor, circumferential cross section) has received
extensive study throughout this century. Such instability is
characterized by cross coupled orthogonal forces acting on a turborotor
to promote rotor precession (Figure 1.2) [1] Such instability is
generally classified as either forced or self excited.

Forced rotor whirl is caused by mass unbalance. It is
characterized by: (1) a whirl frequency that equals rotor rotational
frequency, (2) whirl amplitudes that peak within a narrow speed band
(Figure 1.3 - Forced vibration attributes in Rotating Machinery), and (3)
an absense of oscillatory rotor fiber stress [2] . This form of
instability is usually corrected through the use of balance weights.
When balance weight application does not restore turborotor stability,
self excited vibrations exist.

Self excited vibrations generally are caused by flow or
friction energy that generates rotor whirl [3] . Such vibrations are
characterized by: (1) a whirl frequency that is nearly constant and
independent of rotor rotational speed and is at or near a rotor natural
frequency, (2) whirl amplitudes that suddenly increase as a particular
rotor rotational speed value is achieved and continue to increase with
increasing rotor speed, (3) alternating stresses in rotor fibers, caused
by nomnsynchronous whirl, that make self excited whirl more destructive

than forced whirl [2] .
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Figure 1.1 - Typical High Pressure Steam Turbine [17]
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Because this instability form is as complicated as it is destructive it

requires additional attention.
Instability phenomena such as 0il Whip and steam excited whirl 1

are common forms of self excited rotor whirl. 0il Whip is journal

bearing induced rotor whirl that occurs when a pressurized bearing film 4

thickens and begins to trail the position of minimum journal to bearing

clearance. (Figure 1.4 - 0il Whip)[%]. 1
This trailing high pressure fluid region imposes a force, Fw,

on the journal's centroid, normal to rotor eccentricity, e (00' in Figure ]

1.4), and in the direction of rotor rotation. Rotor whirl at a frequency

of % that of rotor rotational speed ()) results. This whirl is further ;

Bearing

N\ .
\€———Line of
\

Journal Centers
\

Pressurized Bearing Film

h = minimum journal to bearing clearance

Figure 1.4 - 011 Whip Transverse cross-sectional view
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defined as '"forward" whirl since precession (¢) occurs in the same
direction as rotor rotation. 0il Whip occurs when rotor rotational
frequency is increased beyond a system particular value known as the
"Stability Threshold" [4] . Although improvements in bearing design have
increased this threshold value in many rotor bearing systems, steam
turbines must still contend with other sources of self excited whirl.

Self excited whirl energy transformed from steam flow has
increasingly affected steam turbine stability with the advent of
increasing upstream turbine pressures. Whirl forces (Figure 1.2),
necessary to cause ''Steam Whirl", are produced by unbalanced torques [3]
This torque unbalance results from higher turbine blade energy losses at
high shroud to blade row clearance areas. Caused by an initial rotor
deflection, steam leakage at these large clearance areas will exceed
leakage at opposite smaller clearance areas (Figure 1.5). Consequently,
the turbine blades nearest these high clearance annular sections will
receive less fluid energy than will opposite small clearance annular
section blading. The resulting unbalanced torques produce a force that
acts on the rotor's centroidal axis and 1is orthogonal to rotor
eccentricity (e).

Nonsynchrous forward whirl at the fundamental natural frequency
of the rotor results. This whirl form is load dependent because degree
of torque unbalance increases with increasing upstream pressure. Since
Steam Whirl is a relatively new phenomenon present correction methods are
limited to bearing modification and/or rotor stiffening [3] . These
techniques, such as the use of tilting pad bearings, often introduce new
problems. For example, tilting pad bearings provide a reduced defense

against mass unbalance instability with respect to standard cylindrical
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Figure 1.5 - Steam Leakage Between Turbine Shroud and Blade Row

journal bearings [SJ .  Therefore, alternate stabilization methods, with
minimal effects, are needed to enhance whirl protection for high pressure
steam turbines.

One source of such whirl protection has existed since the
inception of the steam turbine. It is derived from cross coupled
orthogonal forces generated by steam flow through labyrinth seals.
Labyrinth seals were originally intended to reduce steam }eakage between
rotor and stator turbine elements by providing flow resistance [6] .
Alford [7] suggested that these seals were a source of instability when
rotor deflection caused seal flow area at a longitudinal cross section to
be converging (Figure 1.6b). Correspondingly, he also believed that

divergent seal flow area enhanced rotor stability (Figure 1.6c).
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Figure 1.6 - Labyrinth Seal Geometries
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Unfortunately, his analyses neglected circumferential flow through the
seal cavity. Spurk and Keiper [8]made a claim directly opposite to
Alford's -- that divergent seal geometry promoted instability.
Unfortunately, their analysis was also incomplete. They neglected rotor
rotation. Because of such disagreement, as well as potential for
stability enhancement, labyrinth seal forces require more thorough study.
Shatoff [5] provides an explanation supporting Alford while

still suggesting that divergent and convergent seal geometries can be

okt

either stabilizing or destabilizing depending wupon other operating

conditions. Figure 1.7a depicts convergent seal geometry. Here, Fe and i
F‘ are components of the resultant force produc ed by the seal (FLs)' 4
Since the whirl component of FLs (F‘ ) exceeds the bearing damping force,

forward whirl at the rotor's fundamental natural frequency results.

Alternately, divergent seal geometry (Figure 1.7b) induces backward whirl

at an otherwise stable rotor speed (w).*

This suggests that '"negative" bearing damping (reversed bré

vector direction with respect to Figure 1.7a), associlated with rotor
speed increase beyond the threshold of 0il Whip can be offset (Figure
1.7¢). Therefore, by increasing the 0il Whip stability threshold,
divergent seal geometry enhances rotor bearing system stability.
Similarly, since Steam Whirl is a forward whirl phenomenon that enhances
oil whip instability, it too might be counteracted by backward whirl
inducing divergent seal geometry. Although seemingly plausible,
experimental verification is needed to prove such a theory. Wright's [9]

development and operation of a seal and disc test apparatus partially

* As defined by 0il Whip
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Resultant Bearing
Fluid Force

kse+ k e
Shaft and Bearing
Elastic Forces

a) Convergent Seal

Static (elastic)
Seal Force

Dynamic (damping)
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Bearing Damping
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b) Divergent Seal

¢) Divergent Seal
Beyond 0il Whip
Threshold

Figure 1.7 - Labyrinth Seal Forces
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satisfies this requirement.

Wright's model was not representative of actual high pressure
steam turbines. Its 8-inch diameter disc and .05 inch nominal seal strip
to disc clearance were much smaller than their high pressure steam
turbine counterparts. Additionally, he did not attempt to accurately
scale rotor surface speed and friction factors. However, his
experimental efforts did provide a basis for follow-on experimentation
with actual high pressure turbine seals.

Wright's work also provides verification of Alford's theory
that divergent seal geometry is stabilizing. Therefore, his results are
probably, at least, qualitatively reliable and warrant some discussion.

With divergent seal geometry, Wright produced strong, self
excited backward whirl -- an effect possibly capable of counteracting the
forward whirl of Steam Whirl and 0il Whip. Although his model was not
ideally suited for accurate convergent seal geometry experimentation, his
results did indicate reduced forward whirl stability for convergent
geometry relative to divergent and straight (a=b in Figure 1.6)
geometries. Such consistency and apparent plausibility encouraged him to
consider using his results as a basis for alternate turbine seal design.
He believed that if seal geometry affected rotor stability, then design
of labyrinth seals to enhance stability was possible.

Such design information must provide formulas for seal
parameters and materials and be applicable for the high pressures and
speeds of today's high pressure turbines. Analytical modeling is
required to provide such mathematical relations. The first step in such

modeling is analytical verification of Wright's results, particularly,

that of stabilizing divergent seal geometry. Additionally, information
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explaining the effect that other seal parameters have on rotor stability
is needed. TFor example, increasing seal diameter is expected to enhance
stability because increasing rotor and seal surface area should increase
fluid friction -- an energy dissipating and, therefore, stabilizing
phenomenon. Similarly, increasing seal strip separation (f in Figure
1.6) should also be stabilizing.

If the individual effects of such parameters can be isolated,
then design criteria will have a basis for development. Such information
can allow derivation of formulas relating seal parameters and rotor
stability.

The purpose of this thesis was to provide such information.
Analytical verification of stability threshold increase due to divergent

seal geometry was its principle aim. Since stability was defined in

Left Bearing Disc Right Bearing
and Journal and Journal

L//’/,H/'{,//’/w
QL___"Labyrinth
\ Seal

_l/////////J l////// /l

[v\\\\\\\\' F\V\\\\

1 1
Ij\Yi\ VNV VA I

Lipe 5
= (7.6 1IN
Figure 1.8 - Myrick Rotorbearing System Model with

Single Labyrinth Seal[#]




13

terms of frequency the analytical model developed 1in this thesis produced
root locus output. This model used a rotor bearing system similar to one
described by Myrick, adding a single labyrinth seal (Figure 1.8). It was

also similar to Wright's experimental apparatus. It simulated divergent,
convergent, and straight seal geometries as well as variations in seal
dimensions, pressure, and rotor speed. Stabilizing or destabilizing
trends were available after each parameter was separately incremented.

This thesis presentation will first describe its model
physically. Components will be identified and located relative to each
other. Operating conditions such as pressure and temperature will be
presented.

Derivation of the analytical model will follow system
description. This chapter will present assumptions, derive equations of
motion, and prepare these equations for computer programming. The
schemes needed for such programming, as well as a listing of model
parameter exercises, will also be presented. General information needed
to understand these computer programs will be made available.

Test results will present and explain output generated by these
computer programs. Eigenvalues will be graphed on root locus plots.
Trends will be identified and explained.

Finally, conclusions based upon test results will be presented.
This final chapter will, ultimately, satisfy the aim of this thesis. It

will state its success or failure.




Chapter 2 SYSTEM DESCRIPTION
2.A Rotor Bearing System

The rotor bearing system described by Myrick served as the
basis of this study (Figure 1.8). It consisted of 3 masses (2 journals
and a disc) separated by 2 flexible shafts. Myrick's purpose was the
study of rotor bearing system whirl using realistic incompressible film
hydrodynamic journal bearings. Since analytical description of such
bearings was complex, 1lengthy, and required considerable computer
simulation time, Myrick's bearing model was modified to assure an
infinitessimally short bearing, i.e., a bearing with fluid flow in the
circumferential direction only (Figure 2.l1) described by the following

reduced version of the Reynold's equation:

3 (RWIP\ - 6ulU Dh o 124U Jh @
)z y2 r Y] )t

Here, © was an independent variable representing circumferential
angular distance. 1Its datum, per F*gure 2.1, coincided with the line of
centers at the position of maximum journal to bearing clearance. Minimum
journal to bearing clearance was represented by h. Dynamic viscosity was
represented byau , journal surface speed by U, and bearing fluid pressure
by P. Axial distance was represented by z.

This short bearing simplification is supported by Myrick's

14
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conclusion that hydrodynamic moments in finite length journal bearings

£= efc

Figure 2.1 - Short Bearing Circumferential Cross-section

are small compared with shaft bending moments. Additional
approximizations consistent with this short bearing assumption are: [}é]
(1) Bearing and journal curvatures are small compared with film
thickness.

(2) The pressure and journal to bearing clearance (h) gradients in the
axial direction are much less than those in the vertical direction (y in

Figure 2.1). 1{.e.,

b L
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(Short Bearing)

(3) h = cte cos® = minimum journal to bearing clearance where c equals

radial clearance between a concentric journal and bearing.
(4) The bearing fluid is incompressible and has comnstant viscosity.

(5) Bearings are rigid and stationary.

The two flexible shafts were assumed to be massless. They had
circular cross sections, homogeneous compositions, and no damping
properties (completely elastic). These assumptions were consistent with
finite element modeling necessary for computer simulation. Shaft

stiffness in bending was described by the relatiom:

3 (2.2)
3Pt

The centrally located disc and both journals were assumed to
behave as point masses. i.e., tilting and/or deformation was neglected.
Furthermore, axial displacement was also neglected. Because eccentricity
ratios (€ = e/c) in this analysis did not exceed .5, Myrick's assumption
of constant rotor speed (W) applied for this model.* This implied an
absense of shaft twist since constant rotational speed for all masses
required identical rotational speed for all masses. Therefore, elastic

shaft deformation occured in bending only and mass displacement occured

only in a plane transverse to its axial steady state rotor position.

* Myrick's upper limit for constant rotor speed was £ = .7

P

L s
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2.B Labyrinth Seal System

The model labyrinth seal (Figure 2.2) was concentrically
located about the central disc for any and all rotor bearing system
steady running conditions (constant speed). Air was used as the working
fluid through and within the seal to facilitate possible experimental

duplication of this analysis. Downstream pressure, P was constant and

B’
identical for most simulations. It represented exhaust into an ambient
environment. In accordance with Kearton [11] and Kostyuk [12] , fluid

temperature was considered constant and axial fluid kinetic energy was

considered to be completely destroyed within the seal chamber.

Labyrinth
Seal

AAAMANANANNN N
U u

39
w U

Disc

Figure 2.2 - Model Labyrinth Seal




Chapter 3 ANALYTICAL MODELING

3.A Overview

Analytical modeling of this system was actually accomplished in
three phases. Each phase consisted of equation derivation and computer
simulation for a particular analytical model. Equation derivation for
all models occured first followed by explanations of simulation
procedures.

Phase 1 developed the nonlinear rotor bearing system model.
Equations of motion were derived for the rotor bearing and labyrinth seal
systems separately. Using a finite difference time integration scheme,
rotor bearing system operation was compared with Myrick's observation of
stability threshold.

In phase 2, these rotor bearing system equations were

linearized, reduced to first order form, and assembled in matrix form [i]:

o I ¢! = 2 lg (3.1)

This formulation allowed the eigenvalues, >\ , to be determined using the
QR algorithm.* Corresponding eigenvectors were then obtained by

subjecting the matrix in equation 3.2 to Gaussian Elimination.

* QRHMOD - available on METAPE and DYNSYS Mechanical Engineering

Department computer files.

deaanakisies PRSI

Ao
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[M)\z + B A *B] vi =0 (3.2)

Eigenvalues allowed root locus system representation while eigenvectors
described relative state variable magnitudes in each discrete mode of
system behavior. When results from these formulations matched those of
Shapiro and Colsher [i] rotor bearing system modeling verification was
confirmed since they similarly modeled Myrick's system*, With this
assurance, a labyrinth seal model was incorporated into this rotor
bearing system model during the third phase.

Labyrinth seal nonlinear modeling was more difficult than that
for the rotor bearing system since both time and circumferential seal
distance were bases for state variable integration. It required the use
of a finite element 1labyrinth seal model, needed to effect seal
circumferential distance integration. The expense of such an effort, in
computer simulation time, was unjustified. Contrary to experience with
the rotor bearing system nonlinear modeling, comparison with a
nonexistent and proven seal model was impossible. Comparison of
nonlinear and linear seal models' results had little value since both
models derive from the same equations. Therefore, nonlinear labyrinth
seal modeling did not occur beyond derivation of system equations as
required for linear modeling.

Linear labyrinth seal modeling took a form somewhat different

* Calculation details are not available. Figures 4.4b and 4.5b contain

these results.

a
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from that for the rotor bearing system. Since linearization of equations
of motion could not eliminate partial derivative terms, assumed solution
forms were substituted for each state variable. The result was four
first order, time dependent differential equations with solution form
coefficients as dependent variables. The resulting matrix was subjected
to the QR algorithm and Gaussian Elimination both separately and coupled
to the rotor bearing system's linear model matrix. As a result,
eigenvalues and eigenvectors from coupled and isolated systems were

compared for a complete stability analysis.

3.B Rotor Bearing System Modeling

3.B.1 Nonlinear Equation Derivation

Initial analytical modeling of Myrick's rotor bearing system

required adequate description of bearing film forces on each journal.

Beaman [13] has accomplished such an analysis.

Starting from the reduced Reynold's equation (equation 2.1), an
expression describing bearing pressure per unit axial distance was

obtained:

P= —a (U _dh 4 23h 2
2 |rk )6 Koyt

where r = journal radius
Forces normal to and in the eccentricity direction (e - Figure 3.1) were
derived by integrating bearing film pressure around the journal

circumference:
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T
FQ = j Pcos® r db (3.4a)
ar
F‘, = J PSme rdé (3.4b)
0
(S
Line of
Centers

Figure 3.1 - Bearing Description, Circumferential Cross Section
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These forces are generated by the bearing film and act on each

journal's centroid. After integration, equations 3.4 become:

F - —u 24 {0- 2&’ }lﬁl 4+ ﬂiﬂiﬁﬂ. (3.5a)

- e (I- az)z (1- sj.)s/.-;.

Fo——wfU |[(2¢'-DNre _ #2'e .

9\c’?. 2“_ ia.):/z (‘_21)7-

Y] ' u
(note: E' and ¢ involve differentiation with respect to T- t—r‘ )
Conversion to a standard x-y coordinate system (Figure 3.1) is easily

accomplished using the following relations:

Fx = \FJ sim¢ + (FJ cos ¢ (3.62)

F‘I = _(F'J“’S‘b + (F¢\S‘“¢’ (3.6b)




Equations 3.6 apply to both left and right bearings. They can be

considered to be generalized forces acting on each journal's _entroid
(Figure 3.2) [14] .

Figure 3.2 depicts Myrick's model with nonlinear short bearing
forces and linear x and y direction springs connecting each jourmal to
the central disc. From this figure and Chapter 2 assumptions, two
generalized coordinates for each mass were assigned (Figure 3.3).

Since all constraints imposed upon this system were holonomic,
Lagrange's equations were used to derive its equations of motion [;{] .
Starting with the central disc, a kinetic coenergy expression was

derived.
* . . b
T4 = L my (X,2+ X:) +% IA-I W (3.7
Disc potential energy was stated as:
F 2
Vy = & Ky [(x-xs) +(x,-x5\]
2 S
+ &k, sz-x*\ + (xa-x.,\—_[

Combining these expressions, the disc Lagrangian was expressed:

x .
ST == -’amd(x,z+xf)+£IMw"

-4 kx([(X,’X-,\l"'(XFXS-]- ";la'.ky EX,_"X-S-'*’(XA“XS:]O&)

(3.8)

Lagrange's equations (equation 3.10) for the disc were then formulated,
realizing that all forces acting on the disc were conservative & = 0)

and that rotor angular velocity,W , was constant and, therefore, not a

generalized coordinate.

i Sl

L ™ .q‘hvtk DAy
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Left Disc Right

Journal Journal

Figure 3.2 - Analytical Rotor Bearing System Model

Left Disc Right

L,
0 X

Figure 3.3 - Generalized Coordinate Assignment

Journal Journal
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d [3L )\ — W - o , (3.10)
. —_ o~
dt AXJ BX_; J
For coordinate Xl (Figure 3.3 - G.C. assignment):
™My M4
Similarly, for coordinate X2:
Xa = ".'_(_.‘L(XJ'X") - ﬁ_(’\’&—xb\ (3.12)
MJ md

Equations of motion for each journal were similarly derived. However,
because bearing film forces include nonconservative damping they were

represented as Generalized Forces, i.e.,

QK = FX (3.13a)
’—_3—\3 = EI (3.13b)

Proceeding for the left journal as in the derivation of disc equations:

u

» . 2
-1 : 4
T = ame (X, + Xy )"’ = T,aw (3.14)

VJ_L:‘%.kx (XS_X|\14—J5kj(Xq‘X,)L (3.15)
Ly =& E\,(x,u £+ Doz 0 = ky (25X,

- k\J (Xq _Xa:)ﬂ (3.16)
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Employing Lagrange's Equations (equation 3.10) and incorporating

equations 3.13.

X = ~ky (X - X)) + P (3.17) !
Xy = —ky (X.,-Xa\_;_ FyL (3.18)
My mr

Similarly, for the right journal:

Toe =50 +x7) +EIpw (3.19)
2
Vog = & Ke (3 =) + %k, (6-20) (3.20)
szs = _f{c__(xs‘ X\\ + Fxr (3.21)
i MT MT
X, = --k2 (X.,-/\’z\ + Fye (3.22)
My m-_r
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Equations 3.11, 12, 17, 18, 21, and 22 were integrated with

respect to time using a Runge Kutta finite difference technique. To do
this, it was convenient to reduce these 2nd order differential equations
to lst order form. Defining the following additional variables allowed

such reduction:

X, = X, (3.23a)
Xe = X, (3.23b)
Xq = X, (3.23c)
Xo © )'<4 (3.23d)
Xo = Xs (3.23e)
Xa = X (3.23f)
Since these variables were not independent of 3} through x6 but still

specified system behavior, they were labeled as state variables [lﬁ] .

Rotor bearing system equations of motion were then restated:

Xq= -_‘S;‘. (X,-'X,\ - Ex_()(. 'XSS (3.24a)
M4 md

X? :-_EL (Xz"x*\ - b_(x,_"x‘\ (3.24b)
my ™md

i
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Xy = —_)fx_ (Xa'X\\ + Fy (3.24c¢)
My - My

'\}ta = - kz (X¢ "Xz\ + Fyo . (3.24d)
My M:r

Xy =- kx (XS‘X\\ + Fxr (3.24e)

Xo ==Ky KXL"‘X:L\ + Fy (3.24£)

My Mz !

3.B.2 Linearization

Since equations 3.24c through f have nonlinear components they
were not suited for a frequency domain solution, as required for root
locus output. Therefore, these bearing film force terms had to be
linearized.

Beaman [ﬁi] had 1linearized equations 3.5 to achieve the

following form:

% Kee Keo ||Se]  [Bee BayllSe’] oz
-L. /
3} k¢¢_ KQQ S ¢ B¢¢ B¢¢ S ¢

wherefe' and §¢ ' indicated differentiation with respect to T = tufp

M

and:*

* Stiffness and damping coefficients appear in Appendix B.

kol
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Fo = Fe_ C (3.26a)
/Af’wr‘
’\-ﬂ 1

Fy = FQ)C, (3.26b)
ulwr

Equation 3.25 was converted to the Figure 3.1 coordinate system using the

following transformation:

X= ¢ 5“'\4) (3.27a)

4y =—-¢€ CDS¢) (3.27b)

The following transformed solution resulted:

3-:\' K,“ KXY SX Bx& er S*
= + (3.28)

3:) Kye Ky 8y Byx Byr (199

where, after equations 3.26 were incorporated:*

T
Ix = Fc¢ (3.29a)

* Stiffness and damping coefficients appear in Appendix B.
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?’—'J = FY (‘L (3.29b)
W
Bearing force terms in equations 3.24c through f were then expressed in
linear form using the equation 3.28 revised bearing coefficients.
—

P = | s (Koo S +hyg 5y + By S5 + By §9)

(3.30a)

L

Fxr = | mwr Qkxx §x + kx\( Sj +Bx)g ¥x + Bx\lg‘j\ R (3.30b)
T

Fau = | 2ewr Uyx gy §y +Byx b + Byy 3‘3\ (3.30¢)
y L

C

Fuyn = | acwr (Ky 8K + Ky 8y + By 39X +Byy 3\3\ L G

With these substitutions, equations 3.23 and 3.24 became linear rotor
bearing system equations of motion. They were then arranged per
equations 3.1 and 3.2.

The square matrix in equation 3.1 is an algebraic manipulation

of the more fundamental linear homogeneous matrix equation of motion:[lé]




3]

Ma + Ba +Ka = O (3.31a)

Where, a represents a generalized coordinate column vector and g, in
equation 3.1, represents a state variable column vector (mot all

variables are independent):

(3.31b)

R
"
Ix- IX

Equation 3.3la is reduced to lst order form by doubling the number of
variables as in equation 3.23. Equation 3.1 1is further rearranged to

facilitate solution:

(@) (3.32a)

I :V'l
I
1
1>
—_
—~—
I
-
W

A = o I (3.32b)

I1<-
"

=

I>x

(3.32¢)

Equation 3.32a was solved for >\ , the system eigenvalues.

C et e
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These eigenvalues were then used in the following formulation to

determine the system eigenvectors ( Vv ) corresponding to each eigenvalue:

Dz L ‘_] {th =0

(3.33)
A was then developed from equations 3.23, 3.24, and 3.32b: {
~ -
|
l
|
|
|
A= |
"l & '3
m ™md md
2k, K 5 -
md Ml my i
!&L ~th*Kﬁ - Key = Brx - Ba
my ™My My My My
_EL': -Kyn - (K +hy) -Byy -;'?!\!1
My My My T
._&- - Kn"“x) - K -3_:1 -Bx ‘
My My My My ™y y
L9 Ky - oyt -y - Byy
- My My Mgy My ’U]

(assume blank spaces contain zeros)

(3.34)
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3.C Labyrinth Seal Modeling
3.C.1 Derivation of Equations of Motion

Figure 3.4 depicts the model labyrinth seal surrounding the

central rotor bearing system disc. In this analysis the following

additional assumptions were required:

o

A <

Section A-A

h now represents minimum seal base to disc radial clearance)

(Note:

Figure 3.4 - Single Labyrinth Seal Model

1) Working fluid (air) behaves as an ideal gas: [ii]
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(3.35)

P=¢RT | ‘

(Q= Fluid Density, R = Gas Constant) :

2) The disc is concentric within the rigid and stationary seal during

s o slas L

steady running.
3) Fluid axial kinetic energy is completely destroyed within the seal
chamber. [15_] ;
4) This flow process is adiabatic [15] . i

5) Fluid temperature (T) is constant throughout the seal [6] . 1

M,

6) Circumferential fluid velocity during steady running is % that of
disc surface speed and is in the direction of disc rotation: (Figure

3.5).

U, = W (3.36)
2

7) Friction factors for shear forces on circumferential disc and seal

surfaces are per Kostyuk [12] .

-
£ = Ky | Lrw- u“’\] " (3.37a) |
2N !
?
'i
-5 |
{0 * k;, _!}l_ (3.37b) ~

PRV
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where,
= 04176 (3
E; =4.3¢ 0" < Re <10

K, = 01423
n =1.%

Z I < Re < 10°

Y

8) Flows through seal strips A and B (Figure 3.4) are each modeled as

that of an isentropic nozzle affected by a discharge coefficientﬂié]

et s

9) Fluid dynamic viscosity is assumed constant.

pas L

10) Axial flow is always positive, i.e., PA:> PB (constant pressures),

PA> P., and PC> Py

Flow Direction

N
7

WP
Ri ... iR
® ©

Section A-A

X = seal angular distance (independent
variable)

8 = gseal circumferential distance = T‘X

Figure 3.5 - Labyrinth Seal Control Volume
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As in any compressible fluid mechanics analysis, the concepts
of continuity, momentum, state, and previous assumptions were applied to
the control volume of Figure 3.5. Because of the adiabatic flow
assumption an energy balance was not necessary. One differential
equation for each generalized coordinate resulted. In this case, two K
equations were expected corresponding to the generalized coordinates of
chamber pressure (P) and circumferential fluid velocity (u). Minimum
disc to seal base clearance (h), although variable, was not independent
since it was directly related to disc behavior.

Equation 3.38 expressed the mass flow balance or continuity of

the system?

L(Qh'ﬂ -+ 3_(2“1‘4\ = ™, = Mg (3.38)
o5 '

ot [l-ContJ

Considering shear forces on circumferential and radial interior (within

chamber) seal surfaces only, a momentum balance was performed:

(ﬂ" ‘QS B (ﬂ‘ Q)sus - Ti‘e‘!-g + T, (,Q+3|\\d$

(3.392)

= ) (euh 2ds) — (Qu"kQ\s + (Q “zkﬂwl; [ 2-¥on]
ot ,

where friction stresses were represented by:

L= %5 e (rw-u)z (3.39b)




T
T,= T feu (3.39)

Differentiating equation 3.38 and substituting equation 3.35

Lh W - ('."‘h_’;‘tb --—;Q.E QL.

RT Jt RT ot
- L f’(k)_u + udh\ 4 ha 3P (3.40)
RT 4s s ¥ s E—Conc]

Equation 3.39a was also differentiated. After substituting

equations 3.39b and ¢ it became equation 3.41°%

RPh du < _ 4 |Ph . AMP| o £ PO (rw-u)

RT ot s s 2RT
_ £ P (A+ah) _ £ ?(u_ag L udh +:zuk_3i>
*RT T at s as
+ wh 3P, uhIP (3.41)
it s E_Moﬂ

Equation 3.40 required the following mass flow rate

substitutions [1 6] :
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=U\‘a\2‘ﬁr L ECWA lj ]3.42)
rM

= N

<
s/ 1+/ k=1 Mg (3.43)

me=(h=b)aTrr/k B Cus
RT X

Where C and CWB represented empirical discharge coefficients for seal

strips A and B respectively:

51(?/?,4\_ + constant (3.44a)

-f (P/ﬂb + constant (3.44b)

Mach numbers MA and MB were functions of chamber pressure, P. (see

equations B.23 end B.24)
3.C.2 Linearization

Since a linear solution of equations 3.40 and 3.41 was desired,
these equations were linearized and arranged in a form compatible with

equation 3.32C. To begin linearization, the small motion substitutions

of equations 3.45 were made:
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F= Fn + SF = Chamber pressure (3.45}&1)
h = hn + Sh = Seal Base to Disc Clearance (3.45b)
u=u, <+ Sq = Circumferential fluid velocity (3.45¢)
f_‘. = ﬁ“ + S-f‘ = Friction Factor at Disc surface (3.454d)
So ;fon + s‘fo = Friction Factor at Seal Base (3.45e)

h.n&= “:\An + SMA = Mass Flow Rate at Seal Strip A (3.45f)
Mg= M, + §Mm, = Mass Flow Rate at Seal Strip B (3.45g)
MA = MA" + SMA = Mach number at Seal Strip A (3.45h)
Mg = M,, +8Mg = Mach number at Seal Strip B (3.451)
Cwa= Cwant+ S Cwa= Discharge Coefficient at A (3.453)
CWB = chn + Scw;' Discharge Coefficient at B (3.45k)

Mass flow rates in equation 3.40 were linearized. Therefore, MA and MB

required definition. Since these were axial flow rates only, they were

not functions of circumferential velocity, u. The following general

relations applied and were substituted into equations 3.45f and g:




%
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T
Sm, = [Krm ]SF + [K""‘J Sh (3.46a)

< k
Smy = [khs] SP + l}(m, Sh (3.46b)

-

The "K" coefficients in equations 3.46 were derived from linearization of

equations 3.42 and 3.43 with the following substitutions: i
-}(M,) - M& (3.473a) i
- (K1) 2 (k-1)
(1 + &Mz -
?(M,;) = Me V+ (L.-';')M; (3.47b)

Ka :/E Fa | (3.47¢)
RT

K, = / k ?B (3.474)
vV RT

' Corn = -.3:7%%(?) + 1723727 3.470) ]
, 3 |

fa

Cwp = “‘-3”?‘14"{(&) + .91723729 (3.476)

P
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Aun = (b -0«5 LT r : (3.478)
Apa = (t:- 53 QITr ) (3.47h)

, ;
{
Equations 3.47e and f represenéed linearized approximations of J.A. :

Perry's graphical discharge coefficient relation for sharp edged orifice

meters.* Incorporating equations 3.47 1into equations 3.46 vyielded

equations 3.48.

Siim = b § s Cann SEM) + £, 5] ?‘
+ Cwan J(MA\,, SAA} ‘

S';\B = KBSA’Bn J:Cwan g(’;(MBBB + ?(MB\n S‘CWB] (3'48@
+ Cosn F(Meda SA5)

Previously undefined terms in equations 3.48 required definition:#*

SAa = 2r §h ] A,,,ﬁ(k,;—a\&'\‘rr (3.49a)

: * This graph appears on page 100 of [?Q] .
|

*k “K" coefficient expressions appear in Appendix B.




SAp= 2T Ch Aaﬁ(kn-la)anr
Coan = —3IT74LH (_ﬁ._\_\ 4 -91723729
fa

Cwon = -.3177444(_EE>+ .91723729

Kscwa 9T

$Cwa
SCws T Ksewp °F
M) = Ksgma $Ma
sFMY) = Ksams Mo

SM, = Kymp SP
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(3.49b)

(3.49¢)

(3.49d)

(3.49e)

(3.491)

(3.49g)

(3.49h)

(3.491)

(3.493)

i i it o
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DC(MA\,\ = 'F(MM\ (3.49K)

3- (Ma" = :.F (Mon\ (3.491)
Therefore;

S({(MA\ = K;fm» KSMA- SP = '(S{rMAT SF (3.49m)
S(’;(M,\\ = Kyams KMB oP = KS?MBT‘ $P (3.49n)

Coefficients in equations 3.46 were then described in terms of

equations 3.47, 3.48, and 3.49%

kmk = _KA_.[A"" (Cwm\ ksfﬁur + ;(M‘\n KSCWA\] (3.50a)

ey

k"'“B = _k’_ [Aﬂn (CWM k:smo'r + g(Ma)n Kk :cws\] (3.50b)

awr

Kima = Ka Cunn ‘f(MA\,\ (3.50¢)
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Kkma = K; Cwu ;\F(MA,\ (3.50d)

Realizing that, during steady motion, nominal axial flow rates at A and B

(Figure 3.5) were equal (x'nAn= ﬁan), equations 3.40 and 3.41 were

expressed in terms of the small motion substitutions of equations 3.45:

[1 A,]A_S_P . [(k,,.,-f(,,,,,m]w

it
+ [(Kl\mh" kg..u) RT:l 8"\ 3 l:" } |:k?u __}\_
[: 'QP k]gs—" + [.Xk"u“:l%f—fb (3.51)

E-Conﬂ
[i.L ( U“’T‘ du,rw +u:) L - fon “: Q"'l)‘) + k:f;r + k:i-?] 5P

aRrT IRT

+[‘ ‘fon?n u:— + K‘.;;l\ + KH'O‘\ J SL\

+]5aR (ro-uN - foTy (0+43h) 4 fyg +kas

| RT

$ =2 uh asp 4 [FRurh, - 2k, ] a5P
p)

RT ot RT s

-2 hu otk 4 [- 28 -aBu>] 2sh

—_n

L RT it RT | Fs

N 2 A h.] I 4 [— 24P u, k,])gu _ 0 (3.52)
s [2-Mom]

RT

. RT

3t
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The friction related coefficients in equation 3.52 exist because friction

factors fi fo are functions of state variables - p, u, and h.*
bl

Kgf*,‘ = 'f(F) u, k\ (3.53)

Equations 3.51 and 3.52 were then expressed more compactly!

_[KLPT]%_{S.E + [KLP] ,S P+ [th Sh 4-["’1“:1%%_4' [Kua}i_t\

+[K,“{l%§g_ + [Kus}s_i_P_ = 0O (3.54)

[l-Conéj

o+ s + i <Ryt

+ [Kars] %_E_E +[k:kt]%%k_ 'f'[Kak;]%;_k_ +[Kaue %Tst‘_f
(3.55)

+ ]38 = © [-ree
»S$

* Appendix B
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These linearized continuity and momentum equations were not
compatible with the 1linearized rotor bearing system model (equation
3.32c) because partial derivations with respect to both time and
circumferential distance existed. The linear rotor bearing system model
was based upon time as the only independent variable. Consequently,
these linearized seal equations could not be coupled within the A matrix
of equation 3.34. Therefore, it was necessary to reconfigure equations
3.54 and 3.55 such that partial derivatives no longer appeared and time
became the only independent variable. One approach involved substitution

of the following assumed solution forms into equations 3.54 and 3.55%

SF = (AP COSX + BPSI‘M X\ Q\t (3.56a)
Su = (A cos¥ + By Sin X\) Mt (3.56b)

zt
sh = Ui e . (3.56¢)

Refering to Figure 3.4 (Seal Model) and remembering that, during steady
running, the disc 1is concentric within the seal, equation 3.56c was

rewritten:

Sh=‘§-j cos¥ &t | fr €,=0 and ¢, =0
oh

Se cosY <t

- H cos X g)‘t

h

1
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Therefore, H represents disc displacement in the y direction (Figure

3.4), i.e.,

a7

S*j = Ye (3.58a)

and, from equation 3.56c:

H, = - Heos¥ (3.58b)
‘therefore,

- 7w
Sh = ~Yeos ¥ e (3.58¢)
or,

H=Y and H =>'I (3.58d)

Substituting equations 3.56 into equations 3.54 and 3.55 yields time

dependent differential equations without partial derivatives;

PP SR LU S VNI PG x--SPU ST I
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KAP AP-[- 1Ps \)BP -}-(Kws \B“
(3.59a)

| \Kyre " kift rKype
1 .
Kik 4 /- Kus» H
Kire Kire

é ( kip_s BA'F..‘.( KLPB Bf +( K Au +( \H (3.59b)
rKipe Kyre rKype FKype

Aq =(’KaP ~ Kape KLP A? +<‘Kzrt Ku’s - s \BP

Kiut  Kipe Kaae " Kipe Kaut r K.

Kag Au-}—(’Kzgg—_Kius - zu-’ BU\

( Kaut r ki?(— kzut r K;ut’

+(K7-?t K.th <+ bi\H' +( Kmr Ku,t + Kant ‘:l
k‘.lrt— kzut Kzut Kﬂ,n Kzut Kzub

(3.59¢)

éu“’(Km Kirs + Kips \Ap 4.(-&9 — Kape Kip ) Bp

*Kype Kt r Kaut et Keor Keut

tu?

(K!N’ Ko  + Kl“’jAw +(

T Kire Mot r K.
(3-5‘;‘i)

+ ('Kzrt Ku,s - s H

tKire Kur Fraue

Linearized seal equations were then present in a form sixilar

to equation 3.32¢:
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.P kegr kaa? O KaBu Ap

P e >
L
ti
PaY
»
x
Py
)
)
N
1
o
(=
S

Y KcAr KtBP KCAv\ kcoq Aq
KJA\\ Kdyu BU\

o 18
£
&
>

-]
ey
B

[~ J

°

(3.60)

Because H=Y represented disc displacement in the y direction it also
corresponded to Xz. Consequently, i = X8. Equation 3.60, therefore,
included the effect that the disc has upon the seal. To complete
coupling between seal and rotor bearing systems, seal force exerted on
the disc was also specified.

Since linearization involved infinitessimal variations of state

variables, seal force acting on the disc was so represented. (See Figure

3.4 ~ Seal Model)

aTl
SF,‘ = 5 Psn¥ £¢ AY

° (3.61a)
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(3.61b)

To accommodate these integrations, equation 3.56a can be expressed as in

equation 3.62?

P= Kp(t) cos¥ + Er(t)sin}(

Substitution into equations 3.61 yields:

§F = B, Tr4

SF, = A,k

(3.62)

(3.63a)

(3.63b)
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Since the datum for independent variable time in equation 3.32c¢ was

arbitrary, to = 0 was chosen. Consequently, eht‘ = 1 and:

Ar (-tb = AP (3.64a)

ﬁ, @s = BP (3.64b)

Therefore, seal to rotor bearing system coupling was accomplished.

Equation 3.65 depicted the A matrix of equation 3.34 expanded to 16 x 16

to include equations 3.60 and 3.63:

e L
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(Blank spaces contain zeros: upper left hand corner is the A matrix of
equation 3.34)
(3.65)

Equation 3.65 was then used to generate eigenvalues and

eigenvectors for the rotor bearing and labyrinth seal systems, both

isolated and coupled.

3.D Simulation Procedure

This section will explain the programming schemes* needed to

* Listed in Appendix A.
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exercise the nonlinear rotor bearing system (equations 3.23 and 3.24) and
the A matricies of equations 3.34 and 3.65. Programming of the nonlinear
rotor bearing system model will be discussed first. Programming of both
rotor bearing and labyrinth seal systems linear models will be explained
next to be followed by a description of parameter variations.

The parameter variations section of this chapter will focus
primarily upon labyrinth seal physical variables. Myrick's rotor bearing
system will experience minor changes onlx to minimize impact on possible
follow on experimental verification. Such testing will provide data for

analysis in Chapter 4.
3.D. 1 1Isolated Rotor Bearing System Testing

3.D.1.A Nonlinear Model Programming (RW5)
As previously mentioned, nonlinear rotor bearing system
modeling was intended as a modeling accuracy check. Its basis was a &4th
order Runge Kutta finite difference integration of equations 3.23 and
3.24, Although & and ¢ in Figure 3.1 (Bearing description) were
through X

directly related to bearing generalized coordinates X they

3 6’
were also separately integrated to simplify bearing force calculations
(equations 3.5). The coordinate assignments of equations 3.23 and 3.24

did not change. Additional bearing state variable assignments were per

equations 3.667

k3 ™
X.; = EL = (X, + Xq) ) = Left Journal (3.66a)

C Eccentricity ratio

SV R T ORI T
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First derivative

required:

where ¢ = Journal

to bearing radial clearance

(x2 +x3)

tan (Xs
=X,

expressions for

Fo = (X Xq + Xy X,

)(,3 C

&

Fu ==(X¢ Xo = X X..\
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these new

h
0
~

Left Journal

Attitude Angle

Right Journal
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(3.66b)

(3.66¢)

Eccentricity ratio

Right Journal

Attitude Angle

state variables

(3.664d)

were also

(3.66e)

(3.66f)
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Fis = (Xs Xy T X X = (3-668)
T
Xis ©
Fo = —(XeXou — X X} = ¢R (3.66h)
T
(Xis )
Since journal surface speed (U = rw) in equations 3.5 required

specification of angular velocity an expression from Cameron [Ed] was

used:

w = $wWe(- &%) - o
T LET 1 _ }, 3.67
(n-* IB g+ |

(W = Lk total rotor bearing system weight)

(JQ= Journal length, r = Journal Radius)

Equation 3.67 was compatible with bearing assumptions made in Chapter 2
and applied to all rotor bearing system mass elements.* Cameron had also
derived an expression for journal attitude angle, ¢ :

¢ = tan \TT (1-¢)"

Y € (3.68)

* Constant speed assumed in Chapter 2.
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Since both left and right journals (Figure 3.2 - Rotor Bearing System
Model) were physically identical and since their angular velocities were
also equal, € and ¢ were expected to be identical for both journals,
i.e., symmetry should prescribe identical behavior for both journals.
For verification, however, angular velocity was defined for each journal.

As in any time dependent simulation, initial conditions were
prescribed. These were defined in terms of an assumed journal
eccentricity ratio, € , and attitude angle, ¢ -- the same values at both
bearings. Disc initial circumferential position was assumed equal to
that of both journals. Since equations 3.67 and 3.68 were defined for
steady running only*, the initial value for ¢ did not satisy equation
3.68. Otherwise, mass displacement and, therefore, potential system
instability could not be observed. Instead, steady running conditions
were defined separately and differently with respect to these initial
conditions.

Steady running conditions were defined in terms of an assumed
eccentricity ratio and corresponding iournal angular velocity (cquation
3.67) and attitude angle (equation 3.68). Steady journal positionms,
therefore, wer. based upon: (1) static deflection due to rotor weight
and (2) angular displacement (¢) due to journal interaction with bearing
fluid. Steady running disc position was assumed equal to that of both
journals., Steady bearing film forces added in the 1ine of centers
direction (Figure 3.1). The vector sum of these forces equaled rotor
bearing system weight. Steady running conditions, in effect, established

a temporary coordinate reference frame (Figure 3.6). With

* Rotor operation without displacement of mass element centroids.

PR r—
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steady conditions defined, computer simulation could begin by applving

different initial conditions.

¢—— Bearing Cross Section

] L]
Figure 3.6 ~ Fixed Inertial and Steady Running (x ,y )

Coordinate Reference Frames

Simulation ‘commenced with 4th order Runge Kutta finite
difference integration of equations 3.23 and 3.24. State variable
increments were calculated for an assumed time step (At) and added to
previous values to yleld state variable values at time, t = to + nAt.
Bearing force equations 3.5 appeared twice, embodied with equations 3.66

-- once for each journal. These equations were first calculated using
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€ and ¢ state variables converted to a T = tw integration basis:
£ = (A€ | (3.69a) ;
(E) <

w :

¢’ = (AQ ‘ (3.69b)
At

¢’ and ¢ were later multiplied by w to allow finite difference time
integration -- a Runge Kutta requirement! Bearing force equations 3.6
appeared next, again, once for each journal. Steady bearing film forces

" were subtracted from each bhearing force (equations 3.6) -- necessary when
force increments due to transient loading were being calculated. Rotor
bearing system state variable equations 3.23 and 3.24, therefore,
contained state variable and bearing force values relative to a
particular steady running position (Figure 3.6).

Model accuracy tests were performed by setting steady running
conditions that were just above and below (2 simulations) the stability
threshold predicted by Shapiro and Colsher [1] . This was accomplished
by prescribing steady running eccentricity ratios such that«w in equation
3.67 was less than 93 rev/sec for one simulation and greater than 93
rev/sec for the other. Different initial conditions were applied and
time dependent state varlable values were monitored using a simple plot

routine.*

* MINIPLT--See Mechanical Engineering Dept. Computer Files.
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To be compatible with Shapiro and Colsher, testing below the
stability threshold should yield slightly damped state variable response.
Testing above the stability threshold should yield ever increasing

(exploding) state variable values with time.
3.D.1.B Linear Model Programming (RWE4 )

As mentioned earlier, linear modeling was intended to produce
eigenvalues and eigenvectors. Subjecting the A matrix of equation 3.34
to the QRHMOD routine accomplished this task. QRHMOD was available by
calling METAPE or DYNSYS which appeared on Mechanical Engineering
Department computer file tapes.

To prepare equation 3.34 for QRHMOD, several preliminary
calculations were performed. Beaman's [ﬁi] linearized bearing
coefficients (equations 3.25) were calculated and converted to x-y
reference frame form (equations 3.28). Since linear analysis deals only
with infinitessimal state variable variations from a steady running
position, equations 3.67 and 3.68 were used to describe rotor speed (W)
and attitude angle (¢ ) respectively, for an assumed eccentricity ratio
(€). As before, € values for both left and right journals were assumed
identical. This routine was used for further comparison with Shapiro and
Colsher's results and to obtain performance data for the isolated rotor
bearing system.

Since labyrinth seal effects were the focus of this thesis and

since changing the physical parameters of Myrick's rotor bearing system

nullified comparison of results, performance data, here, were restricted
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to rotor speed variation. This was best accomplished by iterating
eccentricity ratio from about € = .5 W= 45.8 rad/sec) to about € = .005

(« = 8745 rad/sec).

3.D.2 Labyrinth Seal Testing

This section discusses linear labyrinth seal model programming
separately and in the context of coupling to the rotor bearing system
linear model program (RWE4). Although explanation of isolated seal and
disc programming appears to be a logical next step in this discussion,
this programming is actually more conveniently accomplished by modifying
the coupled system program. Therefore, coupled system programming will

be discussed first.

3.D.2.A. Linear Model Programming - Coupled Labyrinth

Seal and Rotor Bearing System (RWE4S)

The ultimate intent of linear model programming was to subject
the A matrix of equation 3.65 to the QRHMOD routine. Since this A matrix
contained the unaltered rotor bearing system A matrix of equation 3.34 in
its upper left corner, expression of seal equation 3.60 coefficients and
their proper placement within equation 3.65 were accomplished.

To do this, several intermediate tasks were performed.
Initially, nominal (steady) chamber pressure (Pn) was established. This
was accomplished by first assuming a Mach number at seal strip A (MAn)

and then solving for Pn using equation 3.70. This pressure (equation

3.70) was then used to calculate the nominal discharge coefficient at
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ﬁn.-;o = A (3.70)
(14 () me )"

seal strip A (CWAn - equation 3.49c) and chamber pressure. A Mach number

at seal strip B (MBn) was calculated using equation 8&.3% Chamber

pressure was recalculated using equation 3.71. Pn3 711 was compared with

Pns.'n = Aan Cw\n MAn (l "'(E;)Ms:\ e (3.71)
e (1 ()

Pn3.70' If they differed by more than .0005xPn3.70, then MAn was

incremented accordingly and the process was repeated until both Pn values

satisfied equation 3.72.* Since seal strips had been assumed to act only

¢

Pn‘a.‘lo ('—~OOOS) < F:\).'” = F,”.-M("" .0005\ (3.72)

as converging nozzles both Mach numbers could not exceed 1.0. Mach

numbers were also made greater than zero to avoid trivial solutions,

i.e.:

o <M ¢ 1 (3.73)
Once Pn was established, the axial flow coefficients in

*,.0005 factor chosen to provide 3 digit accuracy

i n e i I e - i

{
|
4
i

s e
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equations 3.50 could be calculated. Nominal circumferential seal
fluid velocity (un) was determined from equation 3.36. Since steady
running disc position had been assumed to be concentric within the seal,
nominal disc to seal base clearance (hn) was constant for all
simulations. All that remained was to describe the coefficients in
equation 3.60 and arrange them together with rotor bearing system

coefficients per equation 3.65.

3.D.2.B. Linear Model Programming-Isolated Seal and Disc

(RWE4P)

With the coupled system A matrix of equation 3.65 completely
programmed, modificatiohs for isolated seal and disc tests were then
described. All that was necessary was to replace the coupled system A
matrix with the seal PC matrix, consisting of the 4x4 lower right corner
of equation 3.65. In order to properly reset this matrix between
simulations, it was filled with zeros. The calculation routines within
QRHMOD made this necessary whenever parameter variations required

repeated use of QRHMOD.

3.D.3. Parameter Variatiomns

In order to fully understand labyrinth seal and rotor bearing
system interaction, certain seal and disc parameters were varied
separately. Corresponding linear model programs, both isolated and

coupled (RWE4P and RWE4S), were used. Generally, straight seal geometry

(a=b) applied.

LN SN -
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Disc Speed (u)) variation was accomplished by iterating
! eccentricity ratio (£ ) as in RWE4. Variation of seal chamber axial

length () was more restrictive, however, since too narrow a seal chamber

Seal

Section A - A

Figure 3.7 ~ Isolated Labyrinth Seal Surrounding Rotor

Bearing System Disc

would violate the Chapter 2 assumption requiring complete axial kinetic
energy destruction within the seal chamber. To determine this transition
point,ll was incremented upward starting at £=.001 in. It did not exceed
axial disc length prescribed by Myrick (1.423 in.).

Disc radius was also incremented. Seal diameter was assumed to

seaalo

o 51
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increase accordingly such that h, a, and b remained constant. Since
Shapiro and Colsher's analysis of Myrick's system also assumed point
masses at bearing and disc stations, enlarging the disc did not affect
comparison with this thesis' results provided that mass values remained
unchanged.

Nominal disc to seal base clearance (hn) was next to be
individually varied. The upper limit for this parameter was expected to
be very restrictive because, beyond a certain h value, complete kinetic
energy destruction within the seal could not be assured.

Upstream pressure (PA) variation was next. Both the upper and
lower limits for this parameter were expected to be sensitive. The upper
limit was prescribed by choked flow at seal strip B. The lower limit was
restricted by assumed constant seal exit pressure (PB). i.e., Should PA
become too small, unrealistic flow reversal would occur. As with £ and
hn variations, these 1limits were determined through analysis of a
complete range of upstream pressures.

Finally, a and b seal strip heights were varied together to
achieve variable seal convergence (a» b) and divergence (a& b). For
comparability, average axial flow area was maintained. i.e., An increase
in the "a" dimension was offset by a decrease in "b" (Figure 3.7). To
establish the stabilizing nature of a divergent seal, another speed
variation exercise was accomplished for an extreme divergent seal
geometry. To maximize stability threshold increase, PA was set to
provide choked flow at seal strip 8. Straight, divergent, and convergent

seal geometry simulations were also conducted with exit pressure set at

one atmosphere (14.7 psi). These simulations indicated whether or not

this model is suited for testing at higher ambient pressures -- a useful
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feature when developing high pressure turbine seal design criteria.
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Chapter 4 RESULTS

4.A Overview

This chapter will present and discuss data produced from
Chapter 3 simulations. For every simulation, parameter values will be
listed followed by a graphical generalization of the data and
observations of system behavior trends.

Nonlinear rotor bearing system (RW5) results discussion will be
first and briefest because of its limited value to the purpose of this
thesis. Linear rotor bearing system (RWE4) results discussions will

follow and are limited to comparison with Shapiro and Colsher's speed
variation results. Isolated seal and disc linear modeling (RWE4P)
results will be next. Here, system behavior observations will take the
form of discussions of trends exhibited by this system while several
parameters are individually varied. The coupled rotor bearing and
labyrinth seal model (RWE4S) results will be similarly discussed. Some
attention will be focused upon seal and rotor Dbearing systems
interaction. Such discussion provides qualitative understanding only.

Ultimately, coupled system model speed will be increased with the seal at

extreme divergence in an effort to prove stability threshold increase.
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Table 4.1
Nonlinear Rotor Bearing System Parameter Values
Constant Parameters
A k = ky = 5348.6 1bf/in. = Shaft Stiffness
} My =Wy = .0096 1bf secz/in. = Journal Mass
my = -0875 1bf sec?/in. = Disc Mass
W = 20.625 1bf = 1 Rotor Bearing System Weight
X =1.603 in. = Journal Length
r = 1.081 in. = Journal Radius
c = .003 in. = Bearing to Journal Radial
Clearance
At = 10-5 sec = Time Step
Variable Parameters
Simulation 1: e« = 86 rev/sec, €= .08, €= .0797
Simulation 2: « = 98.3 rev/sec, €= .078, g= .07
Simulation 3: w = 92.87 rev/sec, E,= .09 €F .074

4.B Rotor Bearing System

4.B.1. Nonlinear Modeling (RW5) Results

As mentioned in Chapter 3, nonlinear rotor bearing system
simulations were intended only as a modeling accuracy check. Such
verification was best accomplished by operating this nonlinear model at
or near Myrick's stability threshold.

Simulation 1 was conducted below Myrick's stability threshold

of 93 rev/sec. Damped half frequency whirl was observed (see Figure

sl
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4.1). Angular velocities for both journals were observed to be identical
for this and all other simulations.
Simulation 2 was conducted above Myrick's stability threshold.
Explosive half frequency whirl was observed. (see Figure 4.2).
Simulation 3 was conducted very close to Myrick's stability
threshold. Half frequency whirl was observed. However, neither damped
nor explosive whirl could be confirmed (see Figure 4.3). Therefore, mass
precession approaching a limit cycle at steady state was assumed. This
condition establishes 92.87 rev/sec as at, or very close to, the system
stability threshold. Because of inaccuracies inherent in visual graph
sighting, a limited number of operating cycles and computer calculatioms
this result was not expected to compare exactly with Myrick's.
Additionally, lengthy simulation time makes more accurate
definition of this stability threshold, using iterative simulations,
unwarranted. Therefore, simulation 3 provided practical confirmation of

Shapiro and Colsher's stability threshold calculation.

4.B.2. Linear Modeling (RWE4) Results

Linear rotor bearing system simulation results are a bit more
extensive with respect to nonlinear results. In addition to a stability
threshold comparison, model frequency versus rotor speed and some mode
shapes must also be compared with the results of Shapiro and Colsher.

These results identify 4 primary modes for Myrick's system.
(see Figure 4.5a) Mode 1 is most susceptible to self excited whirl. It

is characterized by mass displacement due to both rotor bending and rigid
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body translation. Mode 2 is least susceptible to any excitation source.
It is characterized by rigid body motion because of relatively large
journal displacements since it 1is affected predominantly by bearing
coefficient changes. Mode 3 is most susceptible to mass unbalance, but
only marginally affected by 0il Whip as suggested by a relatively large
disc displacement. Mode 4 is well damped and is characterized by a
combination of rotor bending and tramslation.

Rotor speed variation revealed a stability threshold of 92,58
rev/sec (see Figure 4.4). This was indicated by a near zero eigenvalue
real part for Mode 1. It does not differ appreciably from the nonlinear
model result of 92.87 rev/sec. Both results are not completely accurate.
Linear model accuracy required a Mode 1 eigenvalue real part of exactly
zero and nonlinear accuracy required a large number of cycles of
operation. However, since they both compare resonably with Shapiro and
Colsher, RW5 and RWE4 accuracies are acceptable.

Comparing modal frequency vs rotor speed, RWE4 results and
those of Shapiro and Colsher are in general agreement. Figure 4.4a
closely duplicates their plot (Figure 4.4b). Per Shapiro and Colsher, a
critical speed for Modes 3 and 4 occurs at a rotor speed of 55 rev/sec.
RWE4 results indicate a similar critical speed near 55.6 rev/sec. Both
graphs show a Mode 1 and 2 intersection at their respective stability
thresholds (93 and 92.58 rev/sec). Mode 1 "growth factors'" (eigenvalue
real parts) are also reasonably similar.

Mode shape comparisons are not as close as were previous
comparisons (Figure 4.5). RWE4 rotor speeds cannot be precisely matched
to those of Shapiro and Colsher because of the requirement to increment

rotor speed by adjusting eccentricity ratio (equation 3.67). However,
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Figure 4.4b - Shapiro & Colsher [1] Linear Results
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Figure 4.5bl - Mode 1
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Figure 4.5b2 - Mode 2

Figure 4.5b - Shapiro and Coisher Mode Shapes [1] ;@
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Figure 4.5b3 - Mode 3
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Figure 4.5b4 - Mode 4

Figure 4.5b ~ Shapiro and Colsher [i] Mode Shapes
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general modal characteristics are similar. Modes 1 and 3 compare closest
with Shapiro and Colsher. Their shapes and relative displacements are
similar. Mode 2 shapes compare in that they both reflect rigid rotor
behavior.

Considering the astonishing similarity between modal frequency
vs rotor speed plots, these Mode 2 differences might be attributed to
phase changes occuring between 80 and 80.13 rev/sec for this mode. Mode
4's shape is most radically different from that of Shapiro and Colsher.
But, since modal frequencies and growth factors are similar, these mode
shape differences might also be attributed to phase differences caused by
non-precise speed duplication. Generally, therefore, this rotor bearing

system model practically resembles Myrick's system (Figure 1.8).
4.C. 1Isolated Seal and Disc (RWE4P) - Results
4.C.1. Overview

This section will discuss results of parameter variations for
the isolated and rigidly mounted seal and disc system. This system has
only 2 modes because of such rigid seal and disc mounting. Consequently,
these modes relate to flow behavior only. To identify each mode,
isolating phenomena must be identified.

When fluid friction (sz, K2h’ and K2u coefficients in equation
3.55) against disc and seal surfaces was eliminated, the "Axial" flow
eigenvalue was practically unaffected, but, the "Circumferential"” flow

eigenvalue radically destablized (real part became positive) with little

affect on modal frequency. Since friction within the seal affects
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Isolated Seal and Disc Nominal Parameter Values

Program Coding

Parameter
£ = Seal Strip Separation
r = Disc Radius
PA = Seal Inlet Pressure
PB = Seal Exit Pressure
hn = Nominal Seal Base to
Disc Clearance
A «w = Disc Angular Velocity
a = Height of Seal Strip A
b = Height of Seal Strip B

CLC
RD

PSI
PSE
DC
PSDR

A

B

(HP)

(HP)

Value
.1 in.
10.0 in.

2.55 psi
15.00 psi

1.00 psi
14,70 psi

.200 in.

579.45 rad/sec

.195 in.

.195 in.

ek




Table 4.3

Constant Seal Parameter Values

Parameter Program Coding
R = Gas Constant R
k = Specific Heat Ratio CK
T = Seal Fluid Temperature TI
A= Dynamic Viscosity DV

83

Value

247104 in%/sec2°r
1.4
560°R

2.8 x 10~ Ibfsec/in”

i
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circumferential flow predominantly these modes have been labled "Axial”
and "Circumferential" accordingly. The Axial mode is, generally, the
more stable of these modes as this section's discussion will illustrate.

The parameter variations examined in this analysis are: (1)
seal strip separation in the axial direction (£ in Figure 3.7), (2) disc
radius (r), (3) upstream pressure (PA), (4) disc to seal base nominal
clearance (hn), (5) disc rotational speed (W), and (6) radial projections
of seal strips toward the disc (a, b). Each of these parameters were
varied individually leaving all others at nominal value (Table 4.2).
These nominal values were selected to produce realistic results. The
high pressure simulation (HP), by definition, involved different nominal
pressures.

Nominal values in Table 4.2 were also chosen to resemble the
seal used by Wright. The Myrick rotor bearing system disc radius was
increased to provide stable operation with other nominal parameter
values. Since disc mass and position were left unchanged rotor bearing
system performance was not affected by this change.

Throughout this discussion, the terms '"stabilize" and
"destabilize" will be used to indicate the direction of change of
eigenvalue position on a root locus plot as a parameter is incremented.
A "stabilizing" trend is directed toward the left, '"destablilizing"”
toward the right. "Stable"” eigenvalues appear to the left of the

imaginary axis. "Unstable" eigenvalues exist to the right of this axis.

4.C.2 Seal Strip Separation (f) Variation

Figure 4.6 presents seal strip separation variation results.

P T

SO S

s
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For both Axial and Circumferential modes, stability decreases with
increasing seal strip separation. This result appears to contradict the
expectation* that increasing fluid to interacting surfaces friction with
increasing seal surface area would be stabilizing. It should be noted,
however, that once coupled to the rotor bearing system, this system will
have 6 modes. A proper stability assessment must consider all modal
reactions together.

Circumferential modal frequency decreases with increasing { .
This could represent declining circumferential fluid velocity as chamber
widening makes this seal behave more like a subsonic diffuser by reducing
velocity of subsonic circumferential flow. Corresponding Axial modal
frequency 1increase suggests that 1increasing seal width provides
increasing time and distance for acceleration (and deceleration) of axial
flow. For any of these simulations, both seal modal frequencies add to
equal disc rotational frequency W).

Such a consistent event suggests that disc rotational frequency
is the "driving" frequency for this isolated seal and disc system. Since
both seal and disc are rigidly mounted and seal pressure drop is constant
only the Axial and Circumferential "degrees of freedom" are available to
distribute disc momentum (IAdu». Should either modal frequency exceed
the frequency of this sole momentum source, energy creation must have
occurred. Obviously, such an event 1is unrealistic. Its computer
predicted occurence for X< .051 in. suggests, possibly, that the
assumption of complete kinetic energy dissipation within the seal chamber

is invalid below this seal strip separation valwye.

* See Chapter 1.

PRy
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4.C.3 Disc Radius (r) Variation

Figure 4.7 presents the results of disc radius variation. With
increasing disc radius, the Axial mode stabilizes while the
Circumferential mode destabilizes. Since Circumferential mode
stabilization occurs about the imaginary axis its affect on system
stability is more important, i.e., incréasing disc radius enhances seal
stability.

As predicted earlier (Chapter 1), this stabilization can be
attributed to increasing friction between fluid and adjoining surfaces.
Because friction increases with both fluid velocity and interacting area
-- both characteristics of increasing disc radius -- fluid flow through
the seal should be stabilized.

Another expected characteristic of increasing r is increasing
Circumferential modal frequency. Increasing circumferential fluid
velocity is intuitively assoclated with increasing disc surface speed.
Axial modal frequency must decrease because of increased axial flow area
associated with increasing disc (and seal) radius. It is also physically
conceivable that a gain in Circumferential modal frequency should offset
a reduction in Axial modal frequency since transfer of fluid momentum

involves corresponding changes in fluid velocity.*

* Each fluid particle has axial and circumferential velocity components.

Therefore, 'mass transfer” during such a "momentum transfer" (P = mv)

does not occur,
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4.C.4 Upstream Pressure (PA) Variation

Figure 4.8 presents upstream pressure variation results. Both
Axial and Circumferential modes destabilize when PA is increased.
Increasing upstream pressure implies increasing force applied against
seal and disc. Since both disc and seal are physically constrained only
flow modes can react to this increasing force. Such a reaction should
reflect reduced stability.

Unfortunately, actual destabilization (left to right crossing
of imaginary axis) is not illustrated here. At P, = 2,55 psi, flow

A
through seal strip B (Figure 3.7) chokes. Further increase in P,, until

A
flow through seal strip A chokes, should destabilize the Circumferential
Mode. 1In addition to this upper realistic limit, a lower realistic limit
was also encountered.

Circumferential modal frequency exceeds disc rotational
frequency when PA & 1.3108 psi. As explained in 4.C.2, such a condition
is unrealistic. This condition, possibly, corresponds to a reversal of
flow direction thereby violating a system constraint -- PA > PC.

4.C.5. Disc to Seal Base Nominal Clearance (hn) Variation

Figure 4.9 presents results of hn variation simulations.
Within realistic 1limits, both Axial and Circumferential modes are
stabilized by dincreasing hn' This result might be attributed to a

reduced rate of change of chamber pressure. As hn increases, axial fluid

velocity and modal frequency decrease th ereby reducing rate of change of
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chamber pressure (equation 3.51 - §P coefficient).

This effect is valid between narrow limits only. The obvious
lower limi: is hn = a and/or hn = b resulting in complete cessation of
flow. The upper limit is hnz .27 in. (interpolated result). This limit
corresponds to an unrealistic Circumferential modal frequency greater
than W . Consequently, this limit corresponds to a clearance so great
that the assumption of complete kinetic energy destruction within the

seal chamber is violated.

4.C.6. Disc Angular Velocity (w) Variation

Figure 4.10 presents disc angular velocity variation results.
Both Axial and Circumferential modes stabilize with increasing w. This
stabilization can, again, be attributed to increasing friction between

seal fluid and interacting surfaces with increasing disc surface speed.

4.C.7. Seal Divergente (a > b) Variation

Figure 4.11 presents seal divergence variation results. Both
seal modes are stabilized by increasing seal divergence. Decreasing
nominal chamber pressure with increasing seal divergence suggests that
greater exit with respect to inlet mass flow area, reducing chamber

pressure, is responsible for this stabilizing trend.

4.C.8 Seal Convergence (a € b) Variation

Figure 4.12 presents seal convergence variation results. Seal
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convergence destabilizes both seal modes. Convergence results are
expected to be equal and opposite to seal divergence results.

Unfortunately, identical support pressures (P and PB) for both

A
simulations causes choked flow at seal strip B and, therefore, constant
nominal chamber pressure with increasing seal convergence. However,
evident reduced stabilization, with respect to seal divergence, can be
attributed to rate of change of chamber pressure per equations 3.48.

These mass flow rate variation relations are affected by axial flow area.

They are also strong coefficients of §P in continuity equation 3.5I.

4.C.9 Variable Seal Geometry at High Chamber Pressure

The results in Figure 4.13 indicate that straight seal geometry
is not as stable as convergent or divergent geometries for seal modes at
high chamber pressure. This result might indicate that any unequal seal
geometry is stabilizing at high pressure and/or low axial fluid velocity.
However, it 1is believed that, for flow Mach Numbers closer to 1.0, these

results would be similar to those in Figures 4.11 and 4.12.

4,C.10 General Trends

The most obvious trend among these RWE4P simulations is the
Circumferential mode's role as the least stable seal mode. In every
simulation, it is either the least stable or the only unstable seal mode.
Eigenvector analysis further supports this observation. For all

simulations, the largest eigenvector component is the "Au" component

(equation 3.56b). This cosine related circumferential velocity
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coefficient exceeds axial pressure components (Ap and Bp in equation
3.56a) by, at least, a factor of 104. Consequently, the Circumferential
mode, as the most volatile seal mode, deserves maximum attention when
stability is discussed. Additionally, its modal frequency always exceeds
that of the Axial mode.

One more pattern common to all RWE4P simulations is that of
Axial and Circumferential modal frequencies adding to equal disc
rotational frequency (w ). Explained earlier, this criterion is
responsible for locating many realistic limits for seal parameters.

Of all parameter variations performed with this isolated disc
and seal system, increasing seal divergence and disc speed are the most
stabilizing. Increasing disc radius also has an overall stabilizing
affect on the seal. The stabilizing effects of increasing both wwand r
are due to consequent increasing friction between seal fluid and
interacting surfaces., Although seal base to disc nominal clearance
increase also stabilizes both seal modes, its limited realistic range
made its usefullness as a stabilizing design parameter unpromising.

Because most RWE4P results have satisfactory physical
explanations they can serve somewhat as a modeling accuracy verification.
Their primary purpose, however, is, still, to provide information
describing affects that individual seal parameters have on seal

stability. In the next section, these parameter variations will be

evaluated in the context of a coupled seal and rotor bearing system.
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4.D Coupled Rotor Bearing and Seal System (RWE4S) - Results

4.D.1 Overview

Now that both rotor bearing and labyrinth seal models have been
operationally proven, coupled system reactions to seal parameter
variations can be discussed. First, the behavior of Myrick's 4 modes
will be presented graphically. All modes are identified by comparing
RWE4S eigenvalues with RWE4 and RWE4P eigenvalues obtained under the same
operating conditions.* When an RWE4S eigenvalue pair more closely
equals one RWE4 or RWE4P eigenvalue pair than any other, it is assigned
that RWE4 or RWE4P mode's designator. Secondly, differences in behavior
for these modes between coupled and rotor bearing (RWE4) systems will be
discussed. Such a discussion will explain seal influence on the rotor
bearing system. Finally, rotor bearing system influence on seal modes
will be discussed by relating coupled system results with those for the
isolated seal and disc.

The format of this discussion will parallel that used for
discussing RWE4P results. The same seal and disc parameters will be
varied individually. Corresponding plots for Modes 1 through 4 will be

presented and explained.

4.D.2 Seal Strip Separation ({f) Variation

Figure 4.14 presents seal strip separation variation results

* Parameter values in Tables 4.1 and 4.2
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for Myrick's first 4 modes.

Mode 1 behaves as expected for £ values that are near nominal
(Table 4.2). Increasing £ beyond .1 in. (nominal) stabilizes this
fundamental Myrick mode. This event might be interpreted as a "stability
transfer" between Mode 1 and destabilizing seal modes (Figure 4.6).
However, Mode 1 promptly begins to destabilize for £> .1255 in.,
indicating an upper limit for such a stability transfer. This stability
turning point also corresponds closely to actual destabilization of the
Circumferential seal mode. Another eigenvalue real part direction change
toward increasing stability at A = .2002 in. could be either an aberation
or an indication that seal strip separation growth cannot, by itself,
destabilize Mode 1. However, an absence of eigenvalue real part
direction change for seal modes at f = ,2002 in. suggests that Mode 1
destabilization will continue with continued increase in,?. Further
speculation of such a stability transfer must await presentation of
remaining 1 variation results.

The remarkable stability of Mode 2 justifies Shapiro and
Colsher's high appraisal of this mode (Figure 4.5). Despite
computational accuracy to 7 digits (single precision), no change in
stability or modal frequency is noticeable.

Mode 3's behavior is similar to that of Mode 1, but, with
larger real part variation and reversal of modal frequency change
direction. 1It, too, stabilizes withf increase up to .1255 in. However,
its modal frequency decreases for f > .1006 in., after a gradual increase
for £ < .1006 in., and then begins another gradual increase for X » .1504

in,

Mode 4 destabilizes with increasingl. Its range of eigenvalue
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real part variation is between that for Modes 1| and 3. At £ = .1255 in.,
its rate of destabilization decreases. Its modal frequency also begins
to decrease at this point after a previous gradual increase.

For rotor bearing system Modes 1, 3, and 4, {4 =x .1255 in.
represents a transition point. Modes 1 and 3 begin destabilization while
Mode 4 continues its destabilization. This point also roughly corresponds
to actwal Circumferential seal mode destabilization. It is plausible,
therefore, that the straight geometry seal has a stabilizing effect on
the rotor bearing system's most delicate modes (1 and 3) until the seal
itself becomes unstable. Such an effect might also be described as a
"stability transfer'" from seal modes to Modes 1 and 3. This suggests
that unstable circumferential flow within the seal acts, through
friction, to destabilize all rotor bearing system modes. Therefore,
£ ,1255 in. represents an upper design limit for RWE4S straight seal

stability.

4.D.3 Disc Radius (r) Variation

Figure 4.15 presents r variation results for Modes 1 through 4.

Mode 1 stabilizes normally with increasing r, i.e., it follows
a smooth trend without observed aberrations. Its modal frequency also
increases with increasing r.

Mode 2 is, again, unaffected. However, Mode 3 behaves almost
in an equal and opposite manner with respect to ,evariation results.
Here, r = 10 in. (nominal value) is close to a transition toward

destabilization. Since this value also represents near instability for

the seal's Circumferential mode (Figure 4.7) a "stability transfer"
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theorvy similar to that proposed for A variation, again, appears
plausible.

Mode 4 destabilizes with increasing r. Its modal frequency
simultaneously increase:s The value r = 10 in. appears to have no
special significance for this mode. However, this root locus plot is
more erratic than that for Mode 1, for either seal mode, or for Mode 4
during A variation. Considering also Mode 1's relatively smooth
stabilizing behavior and the similarity in form between Mode 3 in both r
and £ variations, increasing disc radius seems to have an approximately
opposite effect on rotor bearing system behavior than does increasing
seal strip separation.

Since increasing both £ and r should increase disc to seal
fluid friction and since the rotor bearing system disc is modeled as a
point mass, such friction 1is not responsible for this difference.
Instead, some other feature of the Circumferential seal mode should be
considered responsible. This is the only seal mode that destabilizes

with increasing § while stabilizing with increasing r.

4,D.4 Upstream Pressure (PA) Variation

Figure 4.16 presents P, variation results for Myrick's modes.

A
These results are much less erratic than those for f and r variationms.
Mode 1 stabilizes with increasing PA' Its modal frequency
simultaneously decreases slightly. Mode 2 1is unaffected. Mode 3
destabilizes with increasing PA' Mode 4 stabilizes with increasing P

while its modal frequency decreases.

A

Increasing pressure difference across the seal is intuitively
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believed to be destabilizing. Accordingly, Mode 1 should be destabilized
by such increasing pressure since it is the most susceptible mode to self
excited instability. However, these results challenge such a belief.
This surprising result is significant in that increasing upstream
pressure might help reduce the nemesis of Mode 1 -- speed induced or
self excited instability. By increasing upstream pressure when rotor
speed approaches the stability threshold, Mode 1 instability might be

postponed.

4.D.5 Seal Base to Disc Nominal Clearance (hn) Variation

Results.

Figure 4.17 presents hn variation results. As in isolated disc
and seal simulations, an upper realistic limit is encountered. Root
locus plots reflect unrealistic eigenvalues with dotted lines.

Mode 1 is stabilized by increasing hn within realistic limits
while its modal frequency is decreased. Mode 2 is finally affected by a
seal parameter variation, It 1is slightly stabilized. Its modal
frequency 1is increased with increasing hn. Mode 3 is destabilized with
increasing hn while its modal frequency is increased. »Mode 4 is also

destabilized. 1Its modal frequency is decreased.
4.D.6 Disc Angular Velocity (w) Variation
Figure 4.18 presents disc speed variation results. Mode 1

demonstrates a stability threshold (92.69 rev/sec) slightly higher than

the RWE4 result (92.56 rev/sec). It also exhibits a stabilizing trend
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for w values less than 38.22 rev/sec (240 rad/sec). Its modal frequency
increases smoothly with increasing w.

Mode 2 behaves similarly. Its transition toward
destabilization with increasingew begins at about 69 rev/sec (435
rad/sec). Although beyond range of physical operation, its stability
threshold is about 464 rev/sec (2915 rad/sec).*

Mode 3 behaves erratically during speed variation. Initially,
it stabilizes with w increases up to 76 rev/sec (477 rad/sec). This
eigenvalue plot changes direction 3 more times before starting a
destabilizing journmey that, apparently, never quite reaches the imaginary
axis (eigenvalue real part at 1392 rev/sec = -.63, corresponding to € =
.005). Such erratic behavior supports Mode 3's reputation as a lightly
damped mode readily destabilized by mass unbalance but not by increasing
speed.

Mode 4 is stabilized by increasing«’ during the useful range of
this simulation. However, like Modes 1 and 2, it also turns toward the
imaginary axis. This turning poilnt occurs at about 126 rev/sec (790
rad/sec). Its fictitious stability threshold is just below that of Mode
2 thereby supporting eventual convergence of Modes 2 and 4 with
increasingw (Figure 4.4 -- RWE4 Results). Similarly, at another large
value, Modes 1 and 3 converge -- Mode 1, presumably, transverses the

imaginary axis several times while Mode 3 approaches it asymptotically.

* Mode 1 periodically becomes unstable and then stable as speed increases

toward this 'threshold". Therefore, physical failure is expected well

before this speed is achieved.
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4.,D.7 Seal Divergence Variation

Figure 4.19 presents seal divergence results. As noted,
simulation 1 represents a straight geometry seal. Simulations 2 and 3
represent divergent seal geometries, Total flow area through both seal
strips is maintained.

Mode 1 is stabilized by increasing seal divergence. Its modal
frequency is also increased. Mode 2, again, proves itself resistant to
change. Mode 3 reexhibits its penchant for erratic behavior. It is
stabilized by moderate seal divergence, but, destabilized by continued
divergence. Mode 4 is destabilized by increasing seal divergence.

Since stabilization of Mode 1 is required to increase stability
threshold seal divergence is, apparently, beneficial. Since degree of
seal divergence is physically limited*, actual destabilization of Mode 3

or 4 is unlikely with increasing seal divergence.

4.D.8 Seal Convergence Variation

Figure 4.20 presents seal convergence variation results.
Conditions stated for seal divergence apply here also.

As expected, Mode 1 1is destabilized by increasing seal
convergence. Its small degree of déstabilization relative to variable
divergence induced stabilization (Figure 4.19) can be attributed to

constant nominal chamber pressure caused by choked flow at seal strip B.

* .19 in. <a,b<hn
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Mode 3 is stabilized by increasing seal convergence while mode
4 is destabilized. Again, rates of eigenvalue real part change relative
to variable seal divergence simulations are marginal due to constant

nominal chamber pressure.
4.D.9 Variable Seal Geometry at High Chamber Pressure

Figure 4.21 presents high chamber pressure results. Here, seal
geometry varies from convergent to divergent while relative pwessure drop
across the seal* is maintained at a relatively low level. Nominal
chamber pressure is increased approximately by a factor of 10. The
stability reversals evident for seal modes (Figure 4.13) are not
exhibited by rotor bearing system modes.

Mode 1 1is stabilized by decreasing seal convergence (or
increasing divergence) thereby maintaining predicted behavior (Figure

4.19). Mode 3 also stabilizes as expected. Mode 4 satisfies the

prediction of Figure 4.19 by destabilizing with increasing divergence.

It should be remembered that these results, particularly Mode

1's, are of primary interest when considering stability threshold

enhancement. Here, predicted Mode 1 stabilization with diverging seal

geometry is encouraging. Unfortunately, the seal Circumferential mode is

unstable all of these

during high pressure simulations making

experimental verification impossible. Additionally, more simulations at

other pressure (PA’ PB) and pressure drop (PA-PB) values are needed to

provide confidence in maintaining this assertion of improved stability at

* (1>A - PB)/PA
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high chamber pressure using divergent seal geometry.

4.D.10 Speed (w) Variation at Extreme Seal Divergence

Figure 4.22 presents root locus results for Myrick modes at
extreme seal divergence and for variable rotor speeds starting near the
Mode 1 stability threshold of Figure 4.18. This simulation is intended
to determine a revised stability threshold due to seal divergence and to
verify improved, divergence induced, coupled system stability per Figure
4.19.

Mode 1's stability threshold is increased to 93.13 rev/sec
(585.16 rad/sec) because of seal divergence. This represents a .47%
increase from the revised stability threshold achieved with a straight
seal (Figure 4.18) and a .6% increase relative to the stability threshold
for Myrick's rotor bearing system without seal (Figure 4.4).

Stability of Modes 2 and 3 is marginally degraded, but not
enough to discourage further stabilization of Mode 1. Mode 4 continues

its stabilizing behavior with increasing w (Figure 4.18).
4.D.11 Seal and Rotor Bearing System Interactions
4.,D.11.A Seal Influence on Rotor Bearing System Modes
Myrick modes are not radically affected by coupling with a
labyrinth seal. Generally, points on root locus plots in Figures 4.14

through 4.22 are affected equally by seal modes. Although such affects

cannot be positively attributed to any particular seal mode, the relative

a
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volatility of the Circumferential mode suggests its predominance.
Therefore, curve shapes and relative distances among points remain
practically unchanged.

Mode 1 is stabilized by the seal. The seal also acts to
increases its modal frequency.

As most RWE4S simulations reveal, the seal has little
perceptible effect on Mode 2. Only speed variations (not a seal
parameter) significantly affects Mode 2 (Figures 4.18 and 4.22).

Mode 3 is destabilized and has decreasing modal frequency for
w<& 477 rad/sec (76 rev/sec) due to seal influence. For w?» 477 rad/sec,
Mode 3 is, conversely, stabilized and has increasing modal frequency as a
result of seal influence.

Mode 4 1is destabilized by the seal. Its modal frequency is

increased.

4.D.11.B Rotor Bearing System Influence on Seal Modes

Rotor bearing system influence on seal modes is similar to seal
influence on rotor bearing system modes 1n that- RWE4P seal mode curve
shapes and relative distances among points are unaffected. The Axial
mode is stabilized while the Circumferential mode is destabilized when
seal and rotor bearing systems are coupled. Again, because rotor bearing
system modes were not isolated, no particular mode can be identified as
having a predominant affect on these seal behavior changes.

Another such seal behavior change deals with affects on seal

modal frequencies. When seal modes are stable, the rotor bearing system

acts to reduce modal frequencies for both seal modes. Such an event

!
|
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suggests "'frequency transfer" from the seal to the rotor bearing system
since seal modal frequencies now add to be less thanw . However, when
the seal (Circumferential mode) is unstable, seal modal frequencies add
to exceedw . In this case, Axial (still stable) modal frequency is still
reduced, but Circumferential modal frequency increases. Since this
result was not encountered during isolated seal and disc simulations this
excess frequency must be assumed to have the form of disc whirl. Because
both systems are coupled with an unstable seal mode this whirl must be

explosive--a dangerous but still realistic condition!

4.E Cummary

RW5 and RWE4 rotor bearing system results compare favorably
with those of Myrick and Shapiro and Colsher. Such success establishes
Chapter 3's analytical rotor bearing system model as both accurate and
similar to Myrick's experimental model.

RWE4P results reveal increasing disc radius, disc rotational
speed, seal base to disc nominal clearance and seal divergence as having
stabilizing influences on seal fluid flow. Conversely, increasing seal
strip separation, chamber pressure, and seal convergence destablize fluid
flow through the seal. At high pressure and low axial flow rate, both
diverging and converging seal geometries stabilize seal modes relative to
straight seal geometry. These results, generally, have plausible
physical explanations thereby verifying seal modeling accuracy.

Coupled system results also compare favorably with earlier

predictions. Because Mode ! 1is most susceptible to self excited

instability, parameter variation affects on it determine coupled system
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stability.

Mode 1 is stabilized by increasing disc radius, seal pressure
drop, nominal seal base to disc clearance, and seal divergence. It is
destabilized by increasing seal convergence. In the vicinity of nominal
parameter values (Table 4.2), increasing seal strip separation stabilizes
Mode 1. However, an unstable seal, with further increase inA{ , soon
causes Mode 1 to destabilize. The destabilizing effect of increasing
disc speed on Mode 1 1is caused primarily by 0il Whip., Straight seal
geometry postpones the onset of 0il Whip marginally.

Similarly, diverging seal geometry increases system stability
threshold. Although still marginal in degree, this increase satisfies
expectations in that, amount of stability threshold increase exceeds that
of both straight and convergent seals. This marginal increase cannot be
considered within range of modeling error, indicated in «.B.2, because
RWE4 and RWE4S both contain the same rotor bearing system programming.
Additionally, by increasing stability threshold the least relative to
seal absence, convergent seal geometry results futher reinforce this
prediction of increasing stability threshold with increasing seal
divergence. This trend appears to apply also at increased chamber
pressure and reduced axial flow rate. Unfortunately, additional data at
different combinations of such higher chamber pressure and lower flow
rates are needed for verification. Such verification was not

accomplished using this model because of an unstable Circumferential seal

mode at high chamber pressure.

2. g o .

o,

adh




Chapter 5 CONCLUSIONS

The principle aim of this thesis has been achieved. Rotor
bearing system stability has been improved by divergent seal geometry.
Although such improvement was marginal (.47%Z), it should be noted that a
specific maximized stability threshold increase was not sought. System
adjustment to achieve such a threshold is warranted only when dealing with
models directly proportionate with operational steam turbines.

Seal parameter affects on system stability were discovered and
presented for possible later use in developing seal design criteria.
Such information might be used to optimize stability of both seal and
rotor bearing system modes toward the goal of ' turbine efficiency
enhancement.

These specific and notable conclusions were developed:

1) Performances of nénlinear (RWS) and linear (RWE4) analytical rotor
bearing system models are similar to that of Myrick's experimental model.
2) Labyrinth seal stability is governed primarily by its Circumferential
mode.

3) Straight seal geometry increases rotor bearing system stability.

*4) Divergent seal geometry increases rotor bearing system stability
threshold beyond that of straight seal geometry.

5) Convergent seal geometry destabilizes the Myrick rotor bearing system
relative to straight and divergent seal geometries.

6) This coupled rotor bearing and labyrinth seal system model is not

suited for experimental testing at atmospheric pressure.
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APPENDIX A
Nonlinear Rotor Bearing System Programming

PROGRAM RW5(RWS,OUTPUT, TAPES5=RW5, TAPE6=OUTPUT)
DIMENSION X(20),F(20),TS(100),X3(100),K(7),X1(100),X2(100)
COMMON/DR/SKX, SKY,BC,W,PI,SPI,DVR,DVL,CL,BR,PSDR, PER, PEL
1,ERR, ERL,XS (20) ,H,DM, BM, FXLS, FYLS, FXRS, FYRS

DATA X,F,TS,X5,%XS/452%0./ $DATA K/7*0/

THIS PROGRAM SIMULATES ROTOR BEARING SYSTEM OPERATION USING FINITE
DIFFERENCE TIME INTEGRATION

H=TIME STEP=1.E-05 SEC

DV=DYNAMIC VISCOSITY OF BEARING FLUID=5.E-O6LBFSEC/IN2
CL=JOURNAL LENGTH=1.063IN

W=l (JOURNAL+DISC)WEIGHT

BC=RADIAL BEARING CLEARANCE=.003IN

BR=JOURNAL RADIUS=1.081IN

SKX=X DIRECTION ROTOR SHAFT STIFFNESS=5348.6LBF/IN
SKY=Y DIRECTION ROTOR SHAFT STIFFNESS=5348.6LBF/IN
DM=DISC MASS=.0875LBFSEC2/IN

BM=JOURNAL MASS=.0096LBFSEC2/IN

ERI=INITIAL JOURNAL ECCENTRICITY RATIO

ERS=STEADY JOURNAL ECCENTRICITY RATIO

PEI=INITIAL ATTITUDE ANGLE

IH=TIME STEP COUNTER

ITP=PRINT COUNTER

MT=MAX NUMBER OF TIME STEPS

NN=NUMBER OF STATE VARIABLES=12

M=NUMBER OF PLOT POINTS

NP=PLOTTING OPTION(MINIPLT)
READ(5,1)H,DV,CL,W, BC,BR, SKX, SKY,DM, BM, ERI,PEI, ERS
READ(5,2) IH, ITP,MT,NN,M, NP

PI=3.1415927 : '
SPI=9.8696044

INITIALIZE ECCENTRICITY RATIO

XS(15)=ERS $ XS(13)=ERS

DVR=5.DE-06 $DVL=5.DE-D6

D1=(1.-(XS(15)**2))

D2=XS(15)/(D1*%*2)

D3=((16./SPI)-1.)

D4={D3*(XS(15)*%2)+1.)

CALCULATE JOURNAL ANGULAR VELOCITY

PSDR=4 , *W* (BC*%*2) * (D1##*2) / (PI*DVR*CL*XS (15) *SQRT (D4) *BR)
CALCULATE ATTITUDE ANGLE
XS(16)=ATAN((PI/4.)*SQRT(D1)/XS(15))

LEFT BEARING

21 Dl=(1.~(XS(13)**2))

D2=XS(13)/(D1%%*2)

D3=((16./SP1)-1.)

D4=(D3*(XS(13)**2)+1.)

PSDL=4 . *Wk (BC*%2) * (D1*%2) / (PI*DVL*CL*XS (13) *SQRT (D4 ) *BR)
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XS(14)=ATAN((PI/4.)*SQRT(D1)/XS(13))

T=0.0

STEADY CONDITIONS

XS(3)=XS(13)*BCASIN(XS(14))

XS (4)==-XS (13)*BC*COS (XS (14))

XS(5)=XS(3)

XS(6)=XS(4)

XS(1)=XS(3)

XS (2)=XS(4)

STEADY BEARING FILM FORCES

FXLS=WASIN(XS(14))

FYLS=W*COS (XS (14))

FXRS=WXSIN(XS(14))

FYRS=W*COS (XS (14))

WRITE(6,6)T,H,XS(15),XS(16),PSDR

WRITE(6,8)XS(13),XS(14),PSDL

WRITE(6,7) (XS(I),I=1,NN)

INITIAL CONDITIONS

X(3)=ERI*BC*SIN(PEI)

X(4)=~ERI*BC*COS (PEI)

X(5)=x(3)

X(6)=X(4)

X(1)=X(3)

X(2)=X(4)

X(13)=SQRT((X(3)**2)+(X(4)**2))/BC

X(15)=SQRT((X(5)**2)+(X(6)**2))/BC

X(14)=PE1

X(16)=PEI

WRITE(6,6)T,H,X(15),X(16),PSDR

WRITE(6,8)X(13),X(14),PSDL

WRITE(6,7)(X(I),I=1,NN)

KI=0

DO 10 II=1,MT,ITP

KI=KI+1

TS(KI)=T

XL(KI)=X(1)

X2(KI1)=X(2)

X3(KI)=X(3)

CALCULATE STATE VARIABLE VALUES

DO 11 JJ=1,ITP,IH

CALL RK4(F,X,T,NN,H)

CONTINUE

WRITE(6,6)T,H,X(15),X(16),PSDR

WRITE(6,8)X(13),X(14),PSDL

WRITE(6,7) (X(1),I=1,NN)

CONTINUE

K(1)=1 $ K(3)=NP

K(6)=10HX1 VS T

PLOT STATE VARIABLE VALUES

CALL MINIPLT(TS,X1,M,K)
K(6)=10HX2 VS T

CALL MINIPLT(TS,X2,M,K,)
K(6)=10HX2 VS X1

"
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CALL MINIPLT(X1,X2,M,K)
K(6)=10HX3 VS T
CALL MINIPLT(TS,X3,M,K)
7 FORMAT( E23.6)
6 FORMAT( /,5X,'T = ',El0.3,5X,'d = ',E15.6,3X, 'ERR=',E12.6, 3X,
1'PER=',E12.5,3X, '"PSDR=",E12.5)
3 FORMAT(46X,"ERL=',E12.6,3X, 'PEL=",E12.5,3X, "PSDL=",E12.5,/)
1 FORMAT(E20.7)
2 FORMAT(I10)
STOP
END

SUBROUTINE DERIV(F,X,T)
DIMENSION X(20),F(20)
COMMON/DR/SKX, DKY,BC,W,PI,SPI,DVR,DVL,CL,BR,PSDR,PER, PEL
1,ERR, ERL, XS (20) ,H,DM, BM, FXLS, FYLS, FXRS, FYRS
ECCENTRICITY AND ATTITUDE ANGLE INCREMENTS
E=X(13)*BC $ ES=E*%*2
F(13)=(X{(3)*X(9)+X(4)*X(10))/(X(13) *(BC**2))
F(14)=-(X(4)*X(9)-X(3)*X(10))/ES
E=X(15)*BC $ ES=E%*2
F(15)=(X(5)*X(11)+X(6)*X(12))/(X(15)*(BC**2))
F(16)=-(X(6)*X(11)-X(5)*X(12))/ES

21 D1=(1.-(X(13)**2))
D2=X(13)/(D1*%*2)
D3=((16./SPI)-1.)
D4=(D3*(X(13)**2)+1.)
DO 46 I=13,14
K I+2
F(I)=F(I)/PSDL

46 F(K)=F(K)/PSDR
BEARING FORCE CALCULATION
FEL=—(((1.-2.%F(14))*2.%(X(15)*%2)/(D1%%2))+(PI*F(13)*
1(1.+2.%(X(13)#%2))/(D1**2.5)))
FPL=-((2.*F(14)-1.)*PI*X(13)/(2.%(D1#*1.5)))
1-(4.*F(13)*X(13)/(D1%%*2)))
FM=DVL*PSDL*BR/ (2.*(BC**2))
FXL=( (FEL*SIN(X(14))+FPL*COS(X(14)))*FM)-FXLS
FYL=( (-FEL*COS (X(14) )+FPL*SIN(X(14)))*FM)-FYLS
Dl=(1.-(X(15)*%2))
D2=X(15)/(D1**2)
D3=((16./SPI)-1.)
D4=(D3* (X(15)**2)+1.)
FER=-(((1.-2.*F(16))#*2.,*(X(15)**2)/(D1**2))+(PI*F(15)*
L1(1.4+2.%(X(15)*%2))/(D1**%2.5)))
FPR=-(((2.*F(16)~-1.)*PI*X(15)/(2.%(D1%*1.5)))
1-(4.*F(15)*X(15)/(D1*%2)))
FM=DVR*PSDR*BR/ (2.* (BC**2))
FXR=( (FER*SIN(X(16) )+FPR*C0OS(X(16)))*FM)-FXRS
FYR=( (-FER*COS (X(16) )+FPR*SIN(X(16)))*FM)-FYRS
DO 49 I=13,14
K=1+2
F(I)=F(I)*PSDL




C

49 F(K)=F(K)*PSDR
po 57 I=1,6

57 X(I)=X(I)-XS(I)
STATE VARIABLE INCREMENTS
F(1)=X(7)
F(2)=X(8)
F(3)=X(9)
F(4)=X(10)
F(5)=X(11)
F(6)=X(12)
F(7)=(~SRX*(X(1)~X(3))-SKx*(X(1)~X(5))/DM
F(8)=(~(X(2)~-X(4))-(X(2)~X(6)))*SKY/DM
F(9)=(~SKX*(X(3)~-X(1))+FXL)/BM
F(10)=(-SKY*(X(4)-X(2))+FYL)/BM
F(11)=(~-SKX*(X(5)-X(1))+FXR)/BM
F(12)=(-SKY*(X(2) )+FYR)/BM
DO 58 I=1,6

58 X(I)=X(I)+XS(I)
RETURN
END

SUBROUTINE RK4(F,Y,X,NN,HH)
4TH ORDER RUNGE-KUTTA
DIMENSION Y(20),F(20)
DIMENSION SAVEY(20),PHI(20)
N=NN $ H=HH
M=0
1 M=M+1
CALL DERIV(F,Y,X)
GO TO (2,3,4,5),M
2 DO 22 J=1,N
SAVEY (J)=Y(J)
PHI(J)=F(J)
22 Y(J)=Y(J)+.5*F(J) *H
X=X+, 5*%H
GO TO 1
3 DO 33 J=1,N
PHI(J)=PHI(J)+2.0*F(J)
33 Y(J)=SAVEY(J)+.5*H*F(J)
GO TO 1
4 DO 44 J=1,N
PHI(J)=PHI(J)+2.0*F(J)
44 Y (J)=SAVEY (J)+H*F(J)
X=X+, 5%H
GO TO 1
5 DO 55 J=1,N
55 Y(J)=SAVEY(J)+(PHI(J)+F(J))*H/6.0
RETURN

END
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Linear Rotor Bearing System Model Programming

PROGRAM RWE4 (RWE4 ,OUTPUT, TAPE5=RWE4 , TAPE6=OUTPUT)

DIMENSION A(40,40),XR(40),XI(40),BRE(40,40),BI(40,40)

THIS PROGRAM GENERATES EIGENVALUES AND EIGENVECTORS FOR THE MYRICK
ROTOR BEARING SYSTEM ”

SKX=SHAFT STIFFNESS IN X DIRECTION=5348.6 LBF/INE ;
SKY=SHAFT STIFFNESS IN Y DIR;CT10N=5348.6 LBF/IN J
BM=JOURNAL MASS=.0096 LBF§EC /1IN ]
DM=DISC MASS=.0875 LBFSEC“/IN

W = %(JOURNAL + DISC) WEIGHT=20.625 LBF 2 .
DVL=BEARING FLUID DYNAMIC VISCOSITY (LBFSEC/IN®) 4
CL=JOURNAL LENGTH=1.603 IN ;
BR=JOURNAL RADIUS=1.081 IN

BC=JOURNAL TO BEARING RADIAL CLEARANCE=,003 IN .
READ(5,11)SKX, SKY,BM,DM,W,CL,BR,BC f

PI1=3.1415927

SPI=9.8696044

DVL=5.0E-06 $ DVR=5.0E-06

SET INITIAL ECCENTRICITY RATIO
ERR=.075 $ ERL=.075

PRINT 11,DM,BM

PRINT 11

D1=(1.-(ERR**2))

D2=ERR/ (D1**2)
D3=((16./SPI)-1.)

D4=(D3* (ERR**2)+1.)

CALCULATE ANGULAR VELOCITY ;
PSDR=-4 ,*W* (BC**2) * (D1#%2) / (PI#DVR*CL*ERR*SQRT (D4 ) *BR) ,
FM=DVR*PSDR#BR/ (BC**2)

FMD=FM/PSDR

PER=ATAN((PI/4.)*SQRT(D1)/ERR) !
CALCULATE BEARING COEFFICIENTS

BKEER=FM# (-2, *D2-(D2* (ERR**2)*4./D1)) /BC

BKEPR=-PI*FM*ERR/ (4 .%*(D1**1,5)*ERR*BC)
BDEER=-PI*FMD* (1.+2.* (ERR**2))/(2.%(D1**2,5)*BC)

BDEPR=2 ., *ERR*D2*FMD/ (ERR*BC)
3KPER=FM*((PI/(4.*(D1**1.5)))+(.75*PI*(ERR**2)/((Dl**2.5))))

1/BC

BKPPR=-ERR*D2*FM/ (ERR*BC)

BDPER=2.*(D2/BC)*FMD

BDPPR=-PI*FMD*ERR/ (2.*(D1**1.5)*ERR*BC)

S=SIN(PER)

C=COS (PER)

BEARING COEFFICIENTS IN X-Y FORM

BKXXR=( (BKEER*S+BKEPR*C) *S+(BKPER*S+BKPPR*C) *C)

BKXYR=( (~-BKEER*C+BKEPR*S) *S+(-BKPER*C+BKPPR*S) *C)

BKYXR= (- (BKEER*S+BKEPR*C) *C+(BKPER*S+BKPPR*C) *S)

BKYYR=(-(-BKEER*C+BKEPR*S) *C+(-BKPER*C+BKPPR*S) *S)

BDXXR=( (BDEER*S+BDEPR*C) *S+(BDPER*S+BDPPR*C) *C) 3
BDXYR=( (-BDEER*C+BDEPR*S) #*S+(-BDPER*C+BDPPR*S) *C) o
BDYXR=(-(BDEER*S+BDEPR*C) *C+(BDPER*S+BDPPR*C) *S)
BDYYR=(-(-BDEER*C+BDEPR*S) *C+(-BDPER*C+BDPPR*S) *S)

e i aotets ainm e
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88
89

NC=0 $§ N=]12
INITIALIZE A MATRIX
DO 26 I=1,N

DO 27 J=1,N
A(I,J)=0.0

CONTINUE

Do 3 I=1,6

KI=I+6

A(I,KI)=1.

CONTINUE

LOAD A MATRIX
A(7,1)=-(SKX*2.)/DM
A(7,3)=SKX/DM
A(7,5)=SKX/DM
A(8,2)=-(SKY*2.)/DM
A(8,4)=SKY/DM
A(8,6)=SKY/DM
A(9,1)=SKX/BM
A(9,3)=-(SKX+BKXXR) /BM
A(9,4)=-BKXYR/BM
A(9,9)=-BDXXR/BM
A(9,10)=~BDXYR/BM
A(10,2)=SKY/BM
A(10,3)=~BKYXR/BM
A(10,4)=~(SKY+BKYYR) /BM
A(10,9)=~BDXYR/BM
A(10,10)=-BDYYR/BM
A(11,1)=SKX/BM
A(11,5)=~(SKX+BKXXR) /BM
A(l1,6)=~BKXYR/BM
A(11,11)=-BDXXR/BM
A(11,12)=-BDXYR/BM
A(12,2)=SKY/BM
A(12,5)=-BKYXR/BM
A(12,6)=~(SKY+BKYYR) /BM
A(12,11)=-BDYXR/BM
A(12,12)=-BDYYR/BM

DO 89 II=1,12

DO 88 JJ=1,12
A(I1,J3)=-A(11,JJ)
CONTINUE

J=1

CALCULATE EIGENVALUES AND EIGENVECTORS
CALL QRHMOD(A,N,J,XR,XI,BRE,BI)

PSDR=-PSDR
PRINT 2,PSDR,ERR,PER
PRINT EIGENVALUES

PRINT 30, (XR(I),XI(I),I=1,N)

PRINT 11
PRINT 11

INCREMENT ECCENTRICITY RATIO

ERR=ERR-.0001
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IF(ERR.LT..074)GO TO 23
IF(ERR.GE..25) GO TO 23
GO TO 21
23 CONTINUE
c PRINT EIGENVECTORS
PRINT 30, ((BRE(I,J),BI(I,J),I=1,N),J=1,N)

2 FORMAT(9X, 'PSDR = ',E12.4,3X,”"ERR = ',E12.4,3X,'PER = ',E12.4/)
30 FORMAT(SX,E15.6,5X,E15.6) ‘
11 FORMAT(E15.6) .

6 FORMAT(10X,7E15.5/) *

STOP
END

s L
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Linear Rotor Bearing System and Labyrinth Seal ~ Coupled (RWE4S)
and Isolated Seal and Disc (RWE4P) Programming

PROGRAM RWE4S (RWE4S,OUTPUT,TAPES=RWE4S , TAPE6=0UTPUT)

DIMENSION AM(40,40),XR(40),BRE(40,40),BI(40,40),PC(4,4)

DATA PC/16%0./

THIS PROGRAM GENERATES EIGENVALUES AND EIGENVECTORS FOR A ROTOR
BEARING SYSTEM WITH SINGLE LABYRINTH SEAL

SKX= X DIRECTION ROTOR ELASTICITY=5348.6 LBF/IN

SKY= Y DIRECTION ROTOR ELASTICITY=5348.6 LBF/IN

BM = JOURNAL MASS=.0096 LBF*SEC2/IN

DM = DISC MASS=.0879 LBF*SEC2/IN

W = ! WEIGHT OF ROTOR BEARING SYSTEM ROTATING PARTS=20,625 LBF
CL = JOURNAL LENGTH=1.000 IN

BR = JOURNAL RADIUS=1.081 IN

BC = RADIAL BEARING CLEARANCE=.003 IN

CLC= LABYRINTH SEAL AXTIAL LENGTH
WD = LABYRINTH SEAL CIRCUMFERENTIAL LENGTH=PI*RD*2.
PSI= UPSTREAM SEAL PRESSURE

TI = SEAL TEMPERATURE=560R

R = GAS CONSTANT (AIR)=247104 IN2/SEC2R
A = UPSTREAM SEAL STRIP HEIGHT

B = DOWNSTREAM SEAL STRIP HEIGHT

DC = DISC TO SEAL RADIAL CLEARANCE

AMNI= INITTAL UPSTREAM MACH# (ASSUMED)

CK = SPECIFIC HEAT RATIO

CWB= DOWNSTREAM SEAL STRIP DISCHARGE COEFFICIENT

PSE= SEAL DISCHARGE PRESSURE

DV = SEAL FLUID DYNAMIC VISCOSITY

SPI= PI#*#%2

ERR,ERL= JOURNAL ECCENTRICITY RATIOS, RIGHT&LEFT JOURNALS
RD = DISC RADIUS

VK = KINEMATIC VISCOSITY

READ(5,11) SKX,SKY,BM,DM,W,CL,BR,BC,CLC,WD,PSI,TI,R,A,B
1,DC,AMNI,CK,RD,CWB,PSE

DV=2,8E 09

PI=3.1415927

SPI=9.8696044

CKl=(CK-1.)/CK $ CK1R=1,/CKl § CKR-1./CK
CKR2=(CK+1.)/(2.*(CK-1.))

CK3=(3.-CK)/(2.*(CK~-1.))

CK4=(CK-1.)/2. $ CK5=(CK+1.)/2. $ CK5R=1./CK5
CK6=CK2*2, $ CK7=(1.-2.*CK)/CK

CK8=SQRT (1.+CK4)

CK9=(1./CK5)**CKI1R

CK10=1./((1.4+CK4)**CK2)

CK11=SQRT( (CK/R) * (CK5R**CK6) )

BEARING FLUID DYNAMIC VISCOSITY

DVL=5.0E-06 $ DVR=5.0E-06

INITIALIZED JOURNAL ECCENTRICITY RATIO (VALUE AS REQUIRED)
ERR=.076

ITERATE SEAL PARAMETERS

DC 22 IBI=1,10

3 e aacs
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37
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SEAL ENTRANCE/EXIT AREAS

AB=(DC-B) *WD

AA=(DC-A) *WD

CALCULATE SEAL CHAMBER PRESSURE

AMNS=AMNT

FMAS=AMNS/ ( (1 .+CK4&4* (AMNS#**2) ) **CK2)

PNP=1./((l.4+CK4* (AMNS**2) ) **CK1R)

CWA=-,3179464*%PNP+,9123729

IF(AMNS.LE.O.)AMNS=0.

IF(AMNS.LE.0.)GO TO 37

PN=PNP*PSI

AMN=SQRT((1./CK&)*(((PSI/PN)**CK1)-1.))

CWB=-.3179464%(PSE/PN)+.9123729

BMNS=SQRT( (1./CK4)*( ((PN/PSE)**CK1)~-1.))

IF(BMNS.GE.1)BMNS=1.

IF(BMNS.GEl.)CWB=.74

FMBS=BMNS/ ( (1.4+CK4* (BMNS*#2) ) **CK2)

PNN=AA*PSI*FMAS*CWA/ (AB*FMBS*CWB)

IF(BMNS.GE.1.)PNN=PSE/CK9

IF(PNN.GT.PN) AMNS=AMNS-.00001

IF(PNN.LT.PN) AMNS=AMNS+.00001

IF(PNN.LE. (PN+.0005%PN) . AND.PNN.GE. (PN-.0005*PN) GO TO 37

IF(AMN.GE.1.)AMNS=1.

GO TO 24

IK=1 § N=16 ¢ NN=20 $ MM=10 §$ NP=4

PRINT 11,AMN, AMNS,BMNS, PN, PNN

PRINT 11

AMNI=AMN

D1=(1.-(ERR**2))

D2=ERR/ (D1**2)

D3=((16./SPI)-1.)

D4=(D3* (ERR**2)+1.)

CALCULATE ROTOR ANGULAR VELOCITY ‘

PSDR=—4 . *Wx (BC**2) * (D1**2) / (PI*DVR*CL*ERR*SQRT (D4 ) *BR)

FM=DVR*PSDR*BR/ (BC**2)

FMD=FM/PSDR

CALCULATE JOURNAL ATTITUDE ANGLE

PER=ATAN( (PI/4.)*SQRT(D1)/ERR)

CALCULATE BEARING COEFFICIENTS

BKEER=FM#* (=2 .*D2~(D2*(ERR**2)*4,/D1)) /BC

BKEPR=~PI*FM*ERR/ (4 .*(D1l**].5)*ERR*BC)

BDEER=-PI*FMD* (1 .+2.*(ERR**2))/(2.%(D1*%2,5)*BC)

BDEPR=2 ., *ERR*D2*FMD/ (ERR*BC)

BKPER=FM* ((PI/(4.*(D1**1.5)))+(.75%PT*(ERR**2)/((D1**2.5))))

1/BC

BKPPR=~ERR*D2*FM/ (ERR*BC)

BDPER=2,*(D2/BC) *FMD

BDPPR=-PI*FMD*ERR/ (2.*(D1%*1.5)*ERR*BC)

S=SIN(PER) ‘

C=CO0S (PER) lk

BKXXR=( (BKEER*S+BKEPR*C) *S+(BKPER*S+BKPPR*C) *C) L

BKXYR=( (~-BKEER*C+BKEPR*S) #S+(-BKPER*C+BKPPR*S) *C) ' ‘

BKYXR=( -{(BKEER*S+BKEPR*C)*C+(BKPER*S+BKPPR*C)*S) !
t
)
|

ey
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BKYYR=( =-(~BKEER*C+BKEPR*S)*C+(-BKPER*C+BKPPR*S)*S) i
BDXXR=( (BDEER*S+BDEPR*C) *#S+(BDPER*S+BDPPR*C) *C) ‘
BDXYR=(-BDEER*C+BDEPR*S) *#S+(-BDPER*C+BDPPR*S) *C)
BDYXR=( -(BDEER*S+BDEPR*C)*C+(BDPER*S+BDPPR*C)*S)
BDYYR=( ~(-BDEER*C+BDEPR*S)*C+(-BDPER*C+BDPPR*S)*S)
ACH=CLC*WD
ED=ERR*BC
C ZERO A MATRIX
DO 26 I=1,N
DO 27 J=1,N
27 AM(I,J)=0.0
26 CONTINUE
c X1 THRU X6 INITIALIZATION IN AM -
po 3 I=1,6 §
KI=I+6 i
AM(I,KI)=1. i
3 CONTINUE .
RD2=RD/2.
PSDU=-PSDR*RD
HN=DC
AA= (HN-A) *WD
AB=(HN-B) *WD g
c SEAL FRICTION COEFFICIENTS )
UN=(PSDU/2.)
c REO=REYNOLDS# AT SEAL BASE
REO=ABS (PN*UN#HN/ (2 . *R*TI*DV))
FFEO=-1./4.38
AF0=.04176
IF(REO.GT.1.E+05)FFEO=-1./7.4
IF(REO.GT.1.E+05)AF0=.01423
C REI=REYNOLDS# AT DISC
REI=ABS (PN* (PSDU-UN)*HN/ (2. *R*TI*DV))
FFEI=~1./4.48
AFI=.04176 '
IF(REI.GT.1.E+05)FFEI=-1./7.4
IF(REI.GT.1.E+05)AFI=.01423
FFNI=-1./FFEI
FFNO=1./FFEO
c DISC AND SEAL BASE FRICTION FACTORS
FFI=(REI**FFEI)*AF1
FFO=(REO**FFEO) *AFO
RT=R*TI
c SEAL AXIAL FLOW COEFFICIENTS
BK=SQRT (CK/RT) *PSE
c DISCHARGE COEFFICIENT AT B
CWBN=-,3179464*(PSE/PN)+.9123729
CWBK=.3179464*PSE/ (PN**2)
c MACH# .LE.1
IF((PSE/PN).LE.CK9) CWBN=. 74
IF((PSE/PN) .LE.CK9) CWBK=0.
c MACH# AT B .LE.1
BMN=SQRT( (1./CK4) *( ((PN/PSE)**CK1)-1.))
IF((PSE/PN) .LE.CK9) BMN=1,

! y
|1
1,;:




GMB1l=(1.4+CK4* (BMN**2))
GMB=SQRT (GMB1)
FMB=BMN*GMB

FMBK= ( (CK&4* ( (BMN**2))+GMB1) /GMB) * (PSE**CK7) / ;
1 ( (PN**CKR) *CK*BMN) '
AXIAL FLOW AT B-COEFFICIENTS 3
PMBK=BK*AB* (CWBN* FMBK+FMB*CWBK) ¥
HMBK=BK*CWBN* FMB*WD A
DISCHARGE COEFFICIENT AT A 1
CWAN=-,3179464*(PN/PSI)+.9123729 -
AK=SQRT (CK/ (R*T1))*PS1
CWAK=-,3179464/PSI

IF((PN/PSI) .LE.CK9)CWAN=.74 4
IF((PN/PSI).LE.CK9)CWAK=0, ,
AMN=SQRT((1./CK&4)*(((PSI/PN)**CK1)-1.))

IF((PN/PSI).LE.CK9) AMN=1.

GMAl=(1.4+CK&* (AMN**2))

GMA=GMA1**CK2

FMA=AMN/GMA

FMAR=—(GMA- (AMN*#*2) #CK5* (GMA1*#*CK3) ) * (PN**CK7) / ((GMA1**CK6)
1% (PSI**CKR) *CK*AMN)

AXIAL FLOW AT A-COEFFICIENTS

PMAK=AK*AA* (CWAN* FMAK+FMA*CWAK)

HMAR=CWAN* FMA*WD*AK

CONTINUITY EQUATION COEFFICIENTS

C1PT=CLC*HN

C1P=(PMAK-PMBK) *RT/WD

C1H=(HMAK-HMBK) *RT/WD

ClUS=-CLC*PN*HN

C1PS=CLC*HN*UN

C1HT=-CLC*PN

C1HS=~CLC*PN*UN

FFOE=(FFNO+1.) *FFEO '
FFIE=(FFNI+1.)*FFEI

VK=DV*RT/PN

MOMENTUM EQUATION FRICTION TERMS
"FIPK=-(AFI/FFNI)* (REI**FFIE)* ( (PSDU=UN) **3) *HN*PN*CLC

1/ (4 . *DV*(RT**2))
FOPK=(AFO/FFNO) * (REO**FFOE) * (UN*%*3) *HN*PN# (CLC+2 . *HN)

1/ (4 . *DV* (RT#**2) )

FIHK=( (AFI*UN/FFNI)*( ((PSDU~UN)*HN/ (2.*VK) ) **FFIE))

1*PN* ( (PSDU~UN) #*2) *CLC/ (4 . *RT*VK)

FIUK=( (AFI*HN/FFNI)* ( ( (PSDU-UN) *HN/ (2,*VK) ) **FFIE))

1*PN* ((PSDU~UN) *#%2) *CLC/ (4 . *RT*VK)

FOHK=( (AFO*UN/FFNO) * ( (UN*HN/ (2.#VK) ) **FFOE) )

1*PN* (UN**2) * (CLC+2 . *HN) / (4 . *RT*VK)

FOUK= ( (AFO*HN/FFNO) * ( (UN*HN/ (2. *VK) ) **FFOE) )

1*PN* (UN**2) * (CLC+2. *HN) / (4 . *RT*VK)

MOMENTUM EQUATION COEFFICIENTS

C2P=( . 5% (FFI*((PSDU~UN)**2)*CLC FFO*(UN*#2)* (CLC+2)*HN))/RT
1)+FIPK+FOPK

C2H= (~FFOXFN* (UN**2) /RT)+FIHK+FOHK

C2U=(~FFI*PN* (PSDU-UN) *CLC/RT) +(~FFOXPN*UN* (CLC+2 . *HN) /RT) +F LUK+

IR
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51
50

1FOUK

C2PT=-CLC*UN*HN/RT
C2PS=~CLC*HN* ( ( (UN**2) /RT-1.)
C2UT=-CLC*PN*HN/RT
C2US=-CLC*PN*2 , *UN*HN/RT
C2HT=-~CLC*PN*UN/RT
C2HS=-CLC*PN* (1 .+(UN**2) /RT

ZERO SEAL MATRIX

DO 100 IP=],NP

DO 101 JP=1,NP

PC(IP,JP)=0

CONTINUE

SEAL MATRIX LOADING

PC(1,1)=C1P/ClPT

PC(1,2)=C1PS/(RD*C1PT)

PC(1,4)=ClUS/ (RD*C1PT)

PC(2,1)=-C1PS/ (RD*C1PT)
PC(2,2)=C1P/ClPT

PC(2,3)=-ClUS/ (RD*C1PT)
PC(3,1)=-(C2P+(C1P*C2PT/C1PT))/C2UT
PC(3,2)=-(C2PS+(C1PS*C2PT/C1PT) )/ (RD*C2UT)
PC(3,3)=-C2U/C2UT
PC(3,4)==-(C2US+(C1US*C2PT/C1PT) )/ (RD*C2UT)
PC(4,1)=(C2PS+(C1PS*C2PT/C1PT) )/ (RD*C2UT)
PC(4,2)=-(C2P+(C1P*C2PT/C1PT))/C2UT
PC(4,3)=(C2U8+(C1US*C2PT/CLPT) )/ (RD*C2UT)
PC(4,4)=-C2U/C2UT

DISC TO SEAL COUPLING COEFFICIENTS
CAH=-C1H/C1PT

CCH=(C1H*C2PT/ (C1PT*C2UT) )+C2H/C2UT
CBH=C1HS/ (RD*C1PT)

CDH=-(C2PT*C1HS/ (RD*C1PT*C2UT) ) -(C2HS/ (RD*C2UT) )
CAHD=-C1HT/C1PT

CCHD=(C2PT*C1HT/ (C1PT*C2UT) )+(C2HT/C2UT)
KP=13

KP3=KP+3

A MATRIX LOADING WITH SEAL COEFFICIENTS
DO 50 I=KP,KP3

DO 51 J=KP,KP3

KPJ=J-KP+1

KPI=I-KP+1

AM(1,J)=PC(KPI,KPJ)

CONTINUE

SEAL TO DISC COUPLING
AM(7,14)=PI*RD*CLC/DM
AM(8,13)=P1*RD*CLC/DM

DISC TO SEAL COUPLING

AM(13,2)=CAH

AM(15,2)=CCH

AM(14,2)=CBH

AM(16,2)=CDH

AM(13,8)=CAHD

AM(15,8)=CCHD
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A MATRIX LOADING WITH ROTOR BEARING SYSTEM COEFFICIENTS
AM(7,1)=(~(SKX*2.)/DM)
AM(7,3)=SKX/DM
AM(7,5)=SKX/DM
AM(8,2)=(~(SKY*2.)/DM)
AM(8,4)=SKY/DM
AM(8,6)=SKY/DM
AM(9,1)=SKX/BM

AM(9, 3) =- (SKX+BKXXR) /BM
AM(9,4)=-BKXYR/BM
AM(9,9)=-BDXXR/BM
AM(9,10)=-BDXYR/BM
AM(10,2)=SKY/BM
AM(10,3)=-BKYXR/BM
AM(10,4)=-(SKY+BKYYR) /BM
AM(10,9)=-BDYXR/BM
AM(10,10)=-BDYYR/BM
AM(11,1)=SKX/BM
AM(11,5)=-(SKX+BKXXR) /BM
AM(11, 6)=-BKXYR/BM
AM(11,11)=-BDXXR/BM
AM(11,12)=-BDXYR/BM
AM(12,2)=SKY/BM
AM(12,5)=-BKYXR/BM
AM(12,6)=-(SKY+BKYYR) /BM
AM(12,11)=-BDYXR/BM
AM(12,12)=-BDYYR/BM

DO 89 II=1,12

DO 88 JJ=1,N
AM(II,JJ)=-AM(II,JJ)
CONTINUE

J=1

CALCULATE EIGENVALUES & EIGENVECTORS FOR AM
RWE4P ONLY

CALL QRHMOD(PC,NP,J,XR,XI,BRE,BI)

RWE4S ONLY
CALL QRHMOD(AM,N,J,XR,XI,BRE,BI)
PSD=~PSDR

. PRINT 11,A,B,PSI,PSE

22

PRINT 6,CLC,RD,DC,REI,REO,FFI,FFO
PRINT 2,PSD,ERR,PER

PRINT EIGENVALUES

PRINT 30, (XR(I),XI(I),I=1,N)
PRINT 11

SEAL PARAMETERS VARIATIONS
A=A+,0005

CLC=CLC+.0249

RD=RD+1.

PSI=PSI+.1549

DC=DC+.0802

CONTINUE

GO TO 23

-_\A-.v;:'rx-\ e




SPEED VARIATIONS

ERR=ERR-.01

IF(ERR.LT..074)G0 TO 23
IF(ERR.GT..5)GO TO 23

GO TO 21

CONTINUE

PRINT EIGENVECTORS

PRINT 30,((BRE(I,J),BI(I,J),I=1,N),J
FORMAT(9X, 'PSDR = ' E12.4,3%,'ERR =
FORMAT(SX,E15.6,5X,E15.6)
FORMAT(E15.6)

FORMAT(IOX,?EIS.S/)

STOP

END

=1,N)
' E12.4,3X,'PER =

',E12.4/)
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APPENDIX B

B.l Beaman [13] Bearing Coefficients (Equation 3.25)

4¢°
- = (8.1)
L £)* /- z'-)’:l n

__E__V-I (.2)

K,, = —ZZ—— 37 (B.3)
$e | ¢ (/- eV~ Y- n
K¢¢ - — _ = - ] (B.4)
B - I1+2 ¢ (B.5)
ee W]ﬂ
B = = (B.6
C’ (I' t) n )
2E
Byy = - (B.7)
be (1-¢ L] n
B = —Te (B.8)
¢ ¢ = (- t,):/-n.l n
B.2 XY Bearing Coefficients (Equation 3.28)
(Kgc smé + Kee cos¢> Sin §
K_2= e (B.9)
XX
+ (Keesné + Ku cosd)cos 4]
- € n
K, = (—-A’,e cos ¢ 4+ Sg, Stn ¢>) Sin ¢ (B.10)
- Epe cosé + £ :m¢> cos
+( o .
K, = [‘(K., sind + %Q cos ¢ 3 cos ¢ | D
+ ( Kee S0 + Ky cos f#\ sin ¢ 4
& n
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(B.12)

l:— (~ Kee Cos ¢ +%S"\¢)COS¢
+ (' Kse cos +—_kz,_,_$m¢\ sinﬂ

[ ( Bee sin § 4+ _Be_q_ cos 4’}9‘“ ¢ (B.13)

+ (Bn snd ass¢\ cos ¢ J

K. =

yy

B =
XX

(‘ Bee 5—03¢ +__B€_e_0_ sin ¢ \ sin Q (B.14)
+ (-l3¢,_ cosd _,_BQM san\ <os¢ ]

n

= (Beesind + 3&9_‘034’)@3 $ 515
+ ( Bge st 4+ B c°s¢§ SM& 1
p_(_B«cosé + Bes Bg Sin 4) cos ¢
<

B
yy L

(B.16)

+ (_ Bye co5¢ '*-E,f-‘-g}“ Q) sin ¢ ]

n

B.3 Incremental Seal Strip Mass Flow Rate Coefficients

From Equation 3.49%e:

Ksewa = |~ 3! 4et (B.17)
Pa

From Equation 3.49f:

Kscws = [’3'77%‘{(—]}f> (B.18)
_ P

L}
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From Equation 3.49g:

Koo = (1 6 _QMA,J}IHT L +(J‘;L);\L]A’:X;ﬁ5

(K&%/(k q
(1 +(J‘i—)MM3 (5.19)
From Equation 3.49h:
Ks3ms =)‘(k-|)/"l;; + 2 (\ * (L%l) M:n ) (B.20)

2 (1 + )"

From Equation 3.491i:

Kyma = l:" F}t‘%&) E:KRL)} (8.21)

kK Myn

From Equation 3.49j:

TS

KS‘MB - B : (B.22)

kM,

where: 4

e @0

and:

- 0]

B.4 Friction Coefficients in Seal Momentum Equation (Equation 3.52)

-b +|
kS;iP l:(“" “ll“jr (rw - u_,b}\.\ "2) (B.25)
"z
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KS-SoP :__Kf°_ :’tl-#._—> (un Ln (‘Q + 2k\> (B.26)
Ny |3V 4 (RTY
Kesinh = Ke Lw ua) ha L (u P. (ro- u\ 2 (B.27)
oL NV, ¢V, RT
k:f‘ok k “n}ha et Ku.\z P, (1+3~l\.‘\> (B.28)
- o "\3 vV, RT
Ksgu = Ky | f{re- “\ = \)' F. (ro- “3 f) (B.29)
n 4V, RT
Kegou = Ko | Ua ’\ (h P, u, 1+21\\)) (B.30)
’;“ N, ¢V, RT
! where:
N, = wRT (8.31)
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