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ABSTRACT

This thesis presents a stability analysis of rotor bearing

system operation affected by a single labyrinth seal. Labyrinth seals,

primarily intended for leakage control in turbines, have been observed to

affect rotor stability in high pressure steam turbines. A small

experimental rotor bearing system, existing in the Mechanical Engineering

Department, and a compatible labyrinth seal are the subjects of this

Analysis. Linear analytical models of these rotor bearing and labyrinth

seal systems, both isolated and coupled, are developed. Labyrinth seal

geometry and pressure variations generate various affects on rotor

bearing system stability. These affects can help develop labyrinth seal

design criteria directed toward high pressure turbine stability

enhancement.
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NOMENCLATURE

a Seal strip dimension (in)

A Area (in 2), Matrix descriptor, Variable, Seal position identifier

b Damping coefficient (lfb sec/in), Seal strip dimension (in)

B Damping coefficient (lbf sec/in), Variable, Seal position identifier

c Bearing to journal radial clearance (in)

C Seal position identifier, Variable

SFunction

e Eccentricity (in), Natural logarithm base = 2.718

E Hod2ulus of elasticity (lbf/in
2)

f Friction factor (dimensionless), Function

F Force (lbf)

h Minimum bearing to journal or seal base to disc radial clearance (in)

H Related to h

I Moment of inertia (ibf in sec2)

k Stiffness factor (lbf/in), Specific heat ratio (dimensionless)

K Stiffness coefficient (lbf/in), Constant coefficient

Seal chamber length (in), Journal length (in)

Lsp t Rotor-bearing system overall length (in)

22

m Mass (ibf sec2/in)

M Mass coefficient (lbf sec /in), Mach number (dimensionless)

n Exponent in seal friction relations, Integer

0 Fixed reference point

P Pressure (lbf/in 2), Momentum (ibf sec)

q Generalized coordinate

vii



viii

r Disc radius (in), Journal radius (in)

R Gas constant (in /sec 2R)

Re Reynolds number (dimensionless)

s Seal circumferential distance independent variable (in)

t Time (sec)

T Temperature ( R), Kinetic energy (ibf in)

u Seal circumferential fluid velocity (in/sec)

U Disc or journal surface velocity (in/sec)

v Eigenvector element (dimensionless), Velocity (in/sec)

V Potential energy (lbf in)

W Weight (lbf)

x Variable, Coordinate

y Variable, Coordinate

Y Related to y

z \ariable, Coordinate

Greek

A Finite increment

Seal angular position variable (radians)

Variation

E Eccentricity ratio (dimensionless) = e/c

0 Bearing angular position variable (radians)

Eigenvalue (dimensionless)

Dynamic viscosity (lbf sec/in )

Generalized force (ibf)

Kinematic viscosity *&i.RT/P (in 2/sec)

"7r Constant-3.14



ix

Density (bf sec/in )

T Frictional shear stress (lbf/in 
)

Journal attitude angle (radian)

a) Angular velocity (rad/sec)

Subscripts

letters Identification

numbers Identification

A Seal location, Axial

B Seal location, Bearing

C Seal location, Chamber

d Disc

e Eccentricity direction

f Related to friction

h High clearance area, Related to bearing or seal minimum

clearance

i Inside, Particular value

j General value

J Journal

L Low clearance area, Left

n Nominal value

o Outside, Initial value

P Related to seal chamber pressure

R Right

s Seal, Steady

S Stiffness, Seal circumferential distance



x

T Total, Differentiating subscript

u Related to seal circumferential fluid velocity

W Whirl, Discharge coefficient

x Coordinate frame direction

y Coordinate frame direction

z Coordinate frame direction

Greek

Related to journal attitude angle

Other

Vector or matrix

Superscripts

* d
dt

dt

d~d

Other value, C ( = tU/r)

* Coenergy

number/variable Exponentiation



Chapter 1 INTRODUCTION

Steam Turbine (Figure 1.1) instability in the form of

precession or whirl (4) of a rotor about a fixed reference position

(Figure 1.2 - Turborotor, circumferential cross section) has received

extensive study throughout this century. Such instability is

characterized by cross coupled orthogonal forces acting on a turborotor

to promote rotor precession (Figure 1.2) [i]. Such instability is

generally classified as either forced or self excited.

Forced rotor whirl is caused by mass unbalance. It is

characterized by: (1) a whirl frequency that equals rotor rotational

frequency, (2) whirl amplitudes that peak within a narrow speed band

(Figure 1.3 - Forced vibration attributes in Rotating Machinery), and (3)

an absense of oscillatory rotor fiber stress [2] - This form of

instability is usually corrected through the use of balance weights.

When balance weight application does not restore turborotor stability,

self excited vibrations exist.

Self excited vibrations generally are caused by flow or

friction energy that generates rotor whirl [3] . Such vibrations are

characterized by: (1) a whirl frequency that is nearly constant and

independent of rotor rotational speed and is at or near a rotor natural

frequency, (2) whirl amplitudes that suddenly increase as a particular

rotor rotational speed value is achieved and continue to increase with

increasing rotor speed, (3) alternating stresses in rotor fibers, caused

by nonsynchronous whirl, that make self excited whirl more destructive

than forced whirl[21.

1
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0 - Static Rotor Position

0'- Steady Running Rotor

Position

0

F.!

Figure 1.2 - Cross coupled Orthogonal Forces Acting on a Turborotor

Simplified Circumferential Cross-sectional View



4L4

CRITICAL
*j~l FREQUENCY

ROTATIONAL SPEED

04 LIGHTLY DAMPED

(;2> 0 - -- HEAVILY DAMPED

>
Tc >

ROTATIONAL SPEED

Fig - 1.3 -ATTRIBUTES OF FORCED VIBRATION OR RESO]YANCE IN
ROTATING MACNI NERY LPJ



5

Because this instability form is as complicated as it is destructive it

requires additional attention.

Instability phenomena such as Oil Whip and steam excited whirl

are common forms of self excited rotor whirl. Oil Whip is journal

bearing induced rotor whirl that occurs when a pressurized bearing film

thickens and begins to trail the position of minimum journal to bearing

clearance. (Figure 1.4 - Oil Whip)E4).

This trailing high pressure fluid region imposes a force, Fw,

on the journal's centroid, normal to rotor eccentricity, e (00' in Figure

1.4), and in the direction of rotor rotation. Rotor whirl at a frequency

of that of rotor rotational speed (0s) results. This whirl is further

Bearing

Line of

Journal Centers

Pressurized Bearing Film

h = minimum Journal to bearing clearance

Figure 1.4 - Oil Whip Transverse cross-sectional view
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defined as "forward" whirl since precession ($) occurs in the same

direction as rotor rotation. Oil Whip occurs when rotor rotational

frequency is increased beyond a system particular value known as the

"Stability Threshold" [4. Although improvements in bearing design have

increased this threshold value in many rotor bearing systems, steam

turbines must still contend with other sources of self excited whirl.

Self excited whirl energy transformed from steam flow has

increasingly affected steam turbine stability with the advent of

increasing upstream turbine pressures. Whirl forces (Figure 1.2),

necessary to cause "Steam Whirl", are produced by unbalanced torques [3].

This torque unbalance results from higher turbine blade energy losses at

high shroud to blade row clearance areas. Caused by an initial rotor

deflection, steam leakage at these large clearance areas will exceed

leakage at opposite smaller clearance areas (Figure 1.5). Consequently,

the turbine blades nearest these high clearance annular sections will

receive less fluid energy than will opposite small clearance annular

section blading. The resulting unbalanced torques produce a force that

acts on the rotor's centroidal axis and is orthogonal to rotor

eccentricity (e).

Nonsynchrous forward whirl at the fundamental natural frequency

of the rotor results. This whirl form is load dependent because degree

of torque unbalance increases with increasing upstream pressure. Since

Steam Whirl is a relatively new phenomenon present correction methods are

limited to bearing modification and/or rotor stiffening [3] . These

techniques, such as the use of tilting pad bearings, often introduce new

problems. For example, tilting pad bearings provide a reduced defense

against mass unbalance instability with respect to standard cylindrical
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fh flow through high clearance
Shroud areas

Blade Row GD fL flaw through low clearance

areas

Figure 1.5 -Steam Leakage Between Turbine Shroud and Blade Row

journal bearings [5] . Therefore, alternate stabilization methods, with

minimal effects, are needed to enhance whirl protection for high pressure

steam turbines.

One source of such whirl protection has existed since the

inception of the steam turbine. It is derived from cross coupled

orthogonal forces generated by steam flow through labyrinth seals.

Labyrinth seals were originally intended to reduce steam leakage between

rotor and stator turbine elements by providing flow resistance[6

Alford 1 7] suggested that these seals were a source of instability when

rotor deflection caused seal flow area at a longitudinal cross section to

be converging (Figure 1.6b). Correspondingly, he also believed that

divergent seal flow area enhanced rotor stability (Figure 1.6c).
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Stator

Labyrinth
a) Turborotor +Seal

Cross-section at
Labyrinth Seal

A/

RotorFlow Direction

b) View A-A

(h-a)' (h-b) 
Stator

Rotor

c) View A-A
Divergent Seal
(h-a)AC(h-b)T

Stator

Figure 1.6 -Labyrinth Seal Geometries
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Unfortunately, his analyses neglected circumferential flow through the

seal cavity. Spurk and Keiper [8]1 made a claim directly opposite to

Alford's -- that divergent seal geometry promoted instability.

Unfortunately, their analysis was also incomplete. They neglected rotor

rotation. Because of such disagreement, as well as potential for

stability enhancement, labyrinth seal forces require more thorough study.

Shatoff [5] provides an explanation supporting Alford while

still suggesting that divergent and convergent seal geometries can be

either stabilizing or destabilizing depending upon other operating

conditions. Figure 1.7a depicts convergent seal geometry. Here, F eand

F4  are components of the resultant force produc ed by the seal (F Ls).

Since the whirl component of F Ls (F# ) exceeds the bearing damping force,

forward whirl at the rotor's fundamental natural frequency results.

Alternately, divergent seal geometry (Figure 1.7b) induces backward whirl

at an otherwise stable rotor speed (&).*

This suggests that "negative" bearing damping (reversed br4

vector direction with respect to Figure 1.7a), associated with rotor

speed increase beyond the threshold of Oil Whip can be offset (Figure

1.7c). Therefore, by increasing the Oil Whip stability threshold,

divergent seal geometry enhances rotor bearing system stability.

Similarly, since Steam Whirl is a forward whirl phenomenon that enhances

oil whip instability, it too might be counteracted by backward whirl

inducing divergent seal geometry. Although seemingly plausible,

experimental verification is needed to prove such a theory. Wright's [9]

development and operation of a seal and disc test apparatus partially

*As defined by Oil Whip



10

F = Resultant Bearing

Fluid Force

t F = k e k Bea) Convergent Seal bs b
= Shaft and Bearing

6S Elastic Forces

F ' F e Static (elastic)
Seal Force

F , = Dynamic (damping)
Seal Force

bri Bearing Damping
Force

b) Divergent Seal

c) Divergent Seal
Beyond Oil Whip
Threshold

%

Figure 1.7 - Labyrinth Seal Forces

..__ .....



satisfies this requirement.

Wright's model was not representative of actual high pressure

steam turbines. Its 8-inch diameter disc and .05 inch nominal seal strip

to disc clearance were much smaller than their high pressure steam

turbine counterparts. Additionally, he did not attempt to accurately

scale rotor surface speed and friction factors. However, his

experimental efforts did provide a basis for follow-on experimentation

with actual high pressure turbine seals.

Wright's work also provides verification of Alford's theory

that divergent seal geometry is stabilizing. Therefore, his results are

probably, at least, qualitatively reliable and warrant some discussion.

With divergent seal geometry, Wright produced strong, self

excited backward whirl -- an effect possibly capable of counteracting the

forward whirl of Steam Whirl and Oil Whip. Although his model was not

ideally suited for accurate convergent seal geometry experimentation, his

results did indicate reduced forward whirl stability for convergent

geometry relative to divergent and straight (a-b in Figure 1.6)

geometries. Such consistency and apparent plausibility encouraged him to

consider using his results as a basis for alternate turbine seal design.

He believed that if seal geometry affected rotor stability, then design

of labyrinth seals to enhance stability was possible.

Such design information must provide formulas for seal

parameters and materials and be applicable for the high pressures and

speeds of today's high pressure turbines. Analytical modeling is

required to provide such mathematical relations. The first step in such

modeling is analytical verification of Wright's results, particularly,

that of stabilizing divergent seal geometry. Additionally, information
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explaining the effect that other seal parameters have on rotor stability

is needed. For example, increasing seal diameter is expected to enhance

stability because increasing rotor and seal surface area should increase

fluid friction -- an energy dissipating and, therefore, stabilizing

phenomenon. Similarly, increasing seal strip separation (.. in Figure

1.6) should also be stabilizing.

If the individual effects of such parameters can be isolated,

then design criteria will have a basis for development. Such information

can allow derivation of formulas relating seal parameters and rotor

stability.

The purpose of this thesis was to provide such information.

Analytical verification of stability threshold increase due to divergent

seal geometry was its principle aim. Since stability was defined in

Left Bearing Disc Right Bearing
and Journal and Journal

byrinth I
Seal

Figure 1.8 -Myrick Rotorbearing System Model with

Single Labyrinth Seal~l
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terms of frequency the analytical model developed in this thesi.s produced

root locus output. This model used a rotor bearing system similar to one

described by Myrick, adding a single labyrinth seal (Figure 1.8). It was

also similar to Wright's experimental apparatus. It simulated divergent,

convergent, and straight seal geometries as well as variations in seal

dimensions, pressure, and rotor speed. Stabilizing or destabilizing

trends were available after each parameter was separately incremented.

This thesis presentation will first describe its model

physically. Components will be identified and located relative to each

other. Operating conditions such as pressure and temperature will be

presented.

Derivation of the analytical model will follow system

description. This chapter will present assumptions, derive equations of

motion, and prepare these equations for computer programming. The

schemes needed for such programming, as well as a listing of model

parameter exercises, will also be presented. General information needed

to understand these computer programs will be made available.

Test results will present and explain output generated by these

computer programs. Eigenvalues will be graphed on root locus plots.

Trends will be identified and explained.

Finally, conclusions based upon test results will be presented.

This final chapter will, ultimately, satisfy the aim of this thesis. It

will state its success or failure.



Chapter 2 SYSTEM DESCRIPTION3

2 .A Rotor Bearing System

The rotor bearing system described by Myrick served as the

basis of this study (Figure 1.8). It consisted of 3 masses (2 journals

and a disc) separated by 2 flexible shafts. Myrick's purpose was the

study of rotor bearing system whirl using realistic incompressible film

hydrodynamic journal bearings. Since analytical description of such

bearings was complex, lengthy, and required considerable computer

simulation time, Myrick's bearing model was modified to assure an

infinitessimally short bearing, i.e., a bearing with fluid flow in the

circumferential direction only (Figure 2.1) described by the following

reduced version of the Reynold's equation:

(k3 &L ) ~ JL4~U~ (2.1)

r )r

Here, @was an independent variable representing circumferential

angular distance. Its datum, per F~gure 2. 1, coincided with the line of

centers at the position of maximum journal to bearing clearance. Minimum

journal to bearing clearance was represented by h. Dynamic viscosity was

represented byA, journal surface speed by U, and bearing fluid pressure

by P. Axial distance was represented by z.

This short bearing simplification is supported by Myrick's

14
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conclusion that hydrodynamic moments in finite length journal bearings

\0

4'

+I

Figure 2.1 - Short Bearing Circumferential Cross-section

are small compared with shaft bending moments. Additional

approximizations consistent with this short bearing assumption are: [i0

(1) Bearing and journal curvatures are small compared with film

thickness.

(2) The pressure and journal to bearing clearance (h) gradients in the

axial direction are much less than those in the vertical direction (y in

Figure 2.1). i.e.,

- . --- i
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.~I( !Qfd iL « 1.. (Short Bearing)

(3) h =c+e case = minimum journal to bearing clearance where c equals

radial clearance between a concentric journal and bearing.

(4) The bearing fluid is incompressible and has constant viscosity.

(5) Bearings are rigid and stationary.

The two flexible shafts were assumed to be massless. They had

circular cross sections, homogeneous compositions, and no damping

properties (completely elastic). These assumptions were consistent with

finite element modeling necessary for computer simulation. Shaft

stiffness in bending was described by the relation:

k5s - +V .2L (2.2)

The centrally located disc and both journals were assumed to

behave as point masses. i.e., tilting and/or deformation was neglected.

Furthermore, axial displacement was also neglected. Because eccentricity

ratios (S - e/c) in this analysis did not exceed .5, Myrick's assumption

of constant rotor speed (0.) applied for this model.* This implied an

absense of shaft twist since constant rotational speed for all masses

required identical rotational speed for all masses. Therefore, elastic

shaft deformation occured in bending only and mass displacement occured

only in a plane transverse to its axial steady state rotor position.

*Myrick's upper limit for constant rotor speed was E. - .7
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2.B Labyrinth Seal System

The model labyrinth seal (Figure 2.2) was concentrically

located about the central disc for any and all rotor bearing system

steady running conditions (constant speed). Air was used as the working

fluid through and within the seal to facilitate possible experimental

duplication of this analysis. Downstream pressure, PB9 was constant and

identical for most simulations. It represented exhaust into an ambient

environment. In accordance with Kearton [11] and Kostyuk [12] , fluid

temperature was considered constant and axial fluid kinetic energy was

considered to be completely destroyed within the seal chamber.

Labyrinth
Seal

/ \\\\\ \\\\ u

Lp -

Disc

Disc

Figure 2.2 - Model Labyrinth Seal



Chapter 3 ANALYTICAL MODELING

3.A Overview

Analytical modeling of this system was actually accomplished in

three phases. Each phase consisted of equation derivation and computer

simulation for a particular analytical model. Equation derivation for

all models occured first followed by explanations of simulation

procedures.

Phase 1 developed the nonlinear rotor bearing system model.

Equations of motion were derived for the rotor bearing and labyrinth seal

systems separately. Using a finite difference time integration scheme,

rotor bearing system operation was compared with Myrick's observation of

stability threshold.

In phase 2, these rotor bearing system equations were

linearized, reduced to first order form, and assembled in matrix form [ii

L0' ]HKZ> (3.1)

This formulation allowed the eigenvalues, , to be determined using the

QR algorithm.* Corresponding eigenvectors were then obtained by

subjecting the matrix in equation 3.2 to Gaussian Elimination.

* QRHMOD - available on METAPE and DYNSYS Mechanical Engineering

Department computer files.

18
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+ BX~ ~]~IK~(3.2)

Eigenvalues allowed root locus system representation while eigenvectors

described relative state variable magnitudes in each discrete mode of

system behavior. When results from these formulations matched those of

Shapiro and Colsher [I] rotor bearing system modeling verification was

confirmed since they similarly modeled Myrick's system*. With this

assurance, a labyrinth seal model was incorporated into this rotor

bearing system model during the third phase.

Labyrinth seal nonlinear modeling was more difficult than that

for the rotor bearing system since both time and circumferential seal

distance were bases for state variable integration. It required the use

of a finite element labyrinth seal model, needed to effect seal

circumferential distance integration. The expense of such an effort, in

computer simulation time, was unjustified. Contrary to experience with

the rotor bearing system nonlinear modeling, comparison with a

nonexistent and proven seal model was impossible. Comparison of

nonlinear and linear seal models' results had little value since both

models derive from the same equations. Therefore, nonlinear labyrinth

seal modeling did not occur beyond derivation of system equations as

required for linear modeling.

Linear labyrinth seal modeling took a form somewhat different

* Calculation details are not available. Figures 4.4b and 4.5b contain

these results.
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from that for the rotor bearing system. Since linearization of equations

of motion could not eliminate partial derivative terms, assumed solution

forms were substituted for each state variable. The result was f our

first order, time dependent differential equations with solution form

coefficients as dependent variables. The resulting matrix was subjected

to the QR algorithm and Gaussian Elimination both separately and coupled

to the rotor bearing system's linear model matrix. As a result,

eigenvalues and eigenvectors from coupled and isolated systems were

compared for a complete stability analysis.

3.B Rotor Bearing System Modeling

3.B.1 Nonlinear Equation Derivation

Initial analytical modeling of Myrick's rotor bearing system

required adequate description of bearing film forces on each journal.

Bemn[133 has accomplished such an analysis.

Starting from the reduced Reynold's equation (equation 2.1), an

expression describing bearing pressure per unit axial distance was

obtained:

F + (33)

where r - journal radius

Forces normal to and in the eccentricity direction (e - Figure 3. 1) were

derived by integrating bearing film pressure around the journal

circumference:
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fSPcos E)r d (3.4a)

JI IIFs r d 
(3.4b)

Line of

Centers

Figure 3.1 -Bearing Description, Circumferential Cross Section
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These forces are generated by the bearing film and act on each

journal's centroid. After integration, equations 3.4 become:

Fe 3 _U. ____ 10+ (3.5a)
-a C., , Y1_.1

F,-L-,-, (-e'-_ h{u

(note: E and s involve differentiation with respect to 
= VA

r

Conversion to a standard x-y coordinate system (Figure 3.1) is easily

accomplished using the following relations:

F, .....+4 4 ( ) .(3.6a)

-;. F L S I h (3. 6b)
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Equations 3.6 apply to both left and right bearings. They can be

considered to be generalized forces acting on each journal's -antroid

(Figure 3.2) [14].

Figure 3.2 depicts Myrick's model with nonlinear short bearing

forces and linear x and y direction springs connecting each journal to

the central disc. From this figure and Chapter 2 assumptions, two

generalized coordinates for each mass were assigned (Figure 3.3).

Since all constraints imposed upon this system were holonomic,

Lagrange's equations were used to derive its equations of motion [14].

Starting with the central disc, a kinetic coenergy expression was

derived.

T *= + (3.7)

Disc potential enery was stated as:

+-~kI \ 7-x~ x~ (3.8)

Combining these expressions, the disc Lagrangian was expressed:

XgJ I~V X -)54 - 39

Lagrange's equations (equation 3.10) for the disc were then formulated,

realizing that all forces acting on the disc were conservative ( 0)

and that rotor angular velocity,W , was constant and, therefore, not a

generalized coordinate.

............. ..
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Left Disc Right

Journal Journal

Figure 3.2 - Analytical Rotor Bearing System Model

Left Disc Right

Journal Journal

o %

Figure 3.3 - Generalized Coordinate Assignment

hLi
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ci (3.10)

For coordinate X1 (Figure 3.3 - G.C. assignment):

MJ MA
, _- _K (x,-x4 -Js.(,x-4 (3) .11)

Similarly, for coordinate X2

-_ - _ (x -X ' (3.12)

Equations of motion for each journal were similarly derived. However,

because bearing film forces include nonconservative damping they were

represented as Generalized Forces, i.e.,

'F (3.13a)

, = (3.13b)

Proceeding for the left journal as in the derivation of disc equations:

VTL -- + L I( (3.14)

==.L -k +*' ) - z X- k4 (x-x,.

- k (x - X )'] (3.16)
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Employing Lagrange's Equations (equation 3.10) and incorporating

equations 3.13.

, 3-- k', (,X-.3 ) 4  F) L (3.17)

X < -k q X-X~. xl - I (3,18)

Similarly, for the right journal:

-TAxf (3.19)

V,-, k ( 4-c,? 4*k,(x-X4 (3.20)

X,= #,kv ,X" + Fx , (3.21)i

-".)_1 (3.22)

r €- I



27

Equations 3.11, 12, 17, 18, 21, and 22 were integrated with

respect to time using a Runge Kutta finite difference technique. To do

this, it was convenient to reduce these 2nd order differential equations

to 1st order form. Defining the following additional variables allowed

such reduction:

'Y"7 (3.23a)

(3.23d)

)(11 (3.23e)

Xaa, :(3.23f)

Since these variables were not independent of x through x but still

specified system behavior, they were labeled as state variables [14]

Rotor bearing system equations of motion were then restated:

k, k-x (x , ks (3. 24a)

t14d

k - x, - x) - (3.24b)
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Kk, 3 )II( (X 1) 4-(3. 24c)

k)w 4- j L (3. 24d)

X1  kx FNX~ E( (3. 24e)

MT MT

X2 z k~j ( X L) + :FY (3.24f)

3.B.2 Lineariation

Since equations 3.24c through f have nonlinear components they

were not suited for a frequency domain solution, as required for root

locus output. Therefore, these bearing film force terms had to be

linearized.

Beaman [132 had linearized equations 3.5 to achieve the

following form:

-Ct K ~ KBee- 'eA Se (3.25)

whertSe' and i,' indicated differentiation with respect to r "t td/#

and : *

* Stiffness and damping coefficients appear in Appendix B.
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Fe- C (3. 26a)

F- F_4_ (3.26b)
A&4 13) r

Equation 3.25 was converted to the Figure 3.1 coordinate system using the

following transformation:

X.- e_.Sit) (3.27a)

e- --e.. O4 (3. 27b)

The following transformed solution resulted:

j (3.28)
L YX YYR Ii L Y

where, after equations 3.26 were incorporated:*

dX Fx C- (3.29a)

* Stiffness and damping coefficients appear in Appendix B.
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AA LJ r

Bearing force terms in equations 3.24c through f were then expressed in

linear form using the equation 3.28 revised bearing coefficients.

FfL + ..k, Sy + BU S + B 'Y L (3.30a)

F+SS (3.30b)

fL kJyk 9X+IL T1, +BV (3.30c)L ." L

4-_____+__C +gl (3.30d)

With these substitutions, equations 3.23 and 3.24 became linear rotor

bearing system equations of motion. They were then arranged per

equations 3.1 and 3.2.

The square matrix in equation 3.1 is an algebraic manipulation

of the more fundamental linear homogeneous matrix equation of motion:[18J
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M_ + B4 _ + K cL 0 (3.31a)

Where, a represents a generalized coordinate column vector and &, in

equation 3.1, represents a state variable column vector (not all

variables are independent):

x (3. 31b)

Equation 3.31a is reduced to 1st order form by doubling the number of

variables as in equation 3.23. Equation 3.1 is further rearranged to

facilitate solution:

A] x (3.32a)

where:

A_ 0_ (3.32b)

and, 1193

KA Ax (3.32c)

Equation 3.32a was solved for , the system eigenvalues.
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These eigenvalues were then used in the following formulation to

determine the system eigenvectors (v ) corresponding to each eigenvalue:

A was then developed from equations 3.23, 3.24, and 3.32b:

MMA

"1.Y

-U (.k+k) -k -k -jAL,

A M7 MS 43

L M1. Mr ' PITMI

(assume blank spaces contain zeros) (3.34)
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3.C Labyrinth Seal Modeling

3.C.1 Derivation of Equations of Motion

Figure 3.4 depicts the model labyrinth seal surrounding the

central rotor bearing system disc. In this analysis the following

additional assumptions were required:

\b

sectio n A-A

)

(Note: h now represents minimum seal base to disc radial clearance)

Figure 3.4 - Single Labyrinth Seal Model

1) Working fluid (air) behaves as an ideal gas: [12]
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(3.35)

Fluid Density, R Gas Constant)

2) The disc is concentric within the rigid and stationary seal during

steady running. I

3) Fluid axial kinetic energy is completely destroyed within the seal

chamber. [15,

4) This flow process is adiabatic [151

5) Fluid temperature (T) is constant throughout the seal [6]

6) Circumferential fluid velocity during steady running is that of

disc surface speed and is in the direction of disc rotation: (Figure

3.5).

r 3  (3.36)

7) Friction factors for shear forces on circumferential disc and seal

surfaces are per Kostyuk [12]

Kj; (3.37a)

f0  (3.37b)[I *



35

where,

n -. 0 I3 7KC < 101

8) Flows through seal strips A and B (Figure 3.4) are each modeled as

that of an isentropic nozzle affected by a discharge coefficientE.2

9) Fluid dynamic viscosity is assumed constant.

10) Axial flow is always positive, i.e., PA> PB (constant pressures),

A> PC' and P > PB

Flow Direction

, p

Section A-A

seal angular distance (independent

variable)

s - seal circumferential distance ['r

Figure 3.5 - Labyrinth Seal Control Volume
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As in any compressible fluid mechanics analysis, the concepts

of continuity, momentum, state, and previous assumptions were applied to

the control volume of Figure 3.5. Because of the adiabatic flow

assumption an energy balance was not necessary. One differential

equation for each generalized coordinate resulted. In this case, two

equations were expected corresponding to the generalized coordinates of

chamber pressure (P) and circumferential fluid velocity (u). Minimum

disc to seal base clearance (h), although variable, was not independent

since it was directly related to disc behavior.

Equation 3.38 expressed the mass flow balance or continuity of

the system:

S4 L4 ;A B(3.38)

P1-Con t]

Considering shear forces on circumferential and radial interior (within

chamber) seal surfaces only, a momentum balance was performed:

(3.39a)

t4~ d~h~ s> - ~ v (t'k e)s +- ' \ L4 S2-Moml

where friction stresses were represented by:

r t-(
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-o o (3. 39c)

Differentiating equation 3.38 and substituting equation 3.35

yielded:

RT t R t

)L + (A + L (3.40)I as ) - B-Cont

Equation 3.39a was also differentiated. After substituting

equations 3.39b and c it became equation 3.41:,

T -t - LSJ a-RT

T T it-.o S

)t [2-Momj

Equation 3.40 required the following mass flow rate

substitutions [16]
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___ Cw 1 (3.43) A

Where CWA and CWB represented empirical discharge coefficients for seal

strips A and B respectively:

CIA PI~('PA~) +~ CLM Sta At (3.44a)

C13 -f ('i 3 )+ CorAtaijt (3.44b)

Mach numbers MA and MB were functions of chamber pressure, P. (see

equations 5.&3 .c 0.21)

3.C.2 Linearization

Since a linear solution of equations 3.40 and 3.41 was desired,

these equations were linearized and arranged in a form compatible with

equation 3.32C. To begin linearization, the small motion substitutions

of equations 3.45 were made:

~L
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FP + = Chamber pressure (3.45a)

+ = Seal Base to Disc Clearance (3.45b)

S -s% + 9L4 = Circumferential fluid velocity (3.45c)

S - i = Friction Factor at Disc surface (3.45d)

S - - = Friction Factor at Seal Base (3.45e)

A- r + 9A = Mass Flow Rate at Seal Strip A (3.45f)

r M8 
= 6 B = Mass Flow Rate at Seal Strip B (3.45g)

MA -- 1A+ SMA = Mach number at Seal Strip A (3.45h)

Me., 4.l SM, = Mach number at Seal Strip B (3.451)

CW - CWA.1 S CW &= Discharge Coefficient at A (3.45j)

C W CWn "  Discharge Coefficient at B (3.45k)

Mass flow rates in equation 3.40 were linearized. Therefore, MA and "

required definition. Since these were axial flow rates only, they were

not functions of circumferential velocity, u. The following general

relations applied and were substituted into equations 3.45f and g:
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[KlXAA + 1(k A i (3.4 6a)

The "K" coefficients in equations 3.46 were derived from linearization of

equations 3.42 and 3.43 with the following substitutions:

& 7(Mi 7 M, (3.47a)

-- =V/ k (3.47d)
RT

C,,A = -. 397 W 9[t( ' + .717231.7 (3.47e)

C, , = -.. f'1'f1) +- 723727 (3.47f)

.......................................



41

AA ;i Tr r(3. 47g)

Equations 3.47e and f represented linearized approximations of J.A.

Perry's graphical discharge coefficient relation for sharp edged orifice

meters.* Incorporating equations 3.47 into equations 3.46 yielded

equations 3.48.

11 ~ [='w kA .4 A4- n ))( ) ] 34a

+ CWA,fQ'1A) £AA

a Ka AvflECwen S r 5y.) + Y (Vy 1'3 (3.48b)

Previously undefined terms in equations 3.48 required definition:**

MAA P-rrr AA, (3.49a)

• This graph appears on page 100 of [20]

• * "K" coefficient expressions appear in Appendix B.

• 4.-.
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SAB I Tr rN A,, rT r (3.49b)

Cw,,4K 1")4 .I1Y~ (3.49c)

(3.49d)

KS~MA~/~1A(3.49e)
C," (3.49f) P '

ll" 4- M 13 (3.49h)

mb 
(3.49j)
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(3.49k)

=, (M" n (3.491)

Therefore;

~ = ~ ~ ~ ~rP(3.49n)

Coefficients in equations 3.46 were then described in terms of

equations 3.47, 3.48, and 3.49:

Krm zLr [AgnI (CW6A IkjfMIr + 4X1'v (~ 2j (3.50b)

(3rr

= /~ ~ .(A1 4,~ (.50c
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= k'1 C W4 A'5 (3.50d)

Realizing that, during steady motion, nominal axial flow rates at A and B

(Figure 3.5) were equal (i = ;I), equations 3.40 and 3.41 were
An Bn

expressed in terms of the small motion substitutions of equations 3.45:

[~ I- tI I~'YT~

[-'%J k [ (3.51)

E-Con]

a R-r

+ 01%Pv ", + K5fj + J
KT____ ± ]

+ r w L-r4 ' U 14 LA_'

4[U+] +- U . (3.52

fk T [2-xOMI
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The friction related coefficients in equation 3.52 exist because friction

factors f. f are functions of state variables - p, u, and h.*

I~fU) (3.53)

Equations 3.51 and 3.52 were then expressed more compactly:

P 7 1~L P] P + I [i 4 - 4[-j~ [i j,

E1-Conti

+ ~ ~~~ [Kr [IA~+~~7~

(3.55)

* Appendix B

ft
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These linearized continuity and momentum equations were not

compatible with the linearized rotor bearing system model (equation

3.32c) because partial derivations with respect to both time and

circumferential distance existed. The linear rotor bearing system model

was based upon time as the only independent variable. Consequently,

these linearized seal equations could not be coupled within the A matrix

of equation 3.34. Therefore, it was necessary to reconfigure equations

3.54 and 3.55 such that partial derivatives no longer appeared and time

became the only independent variable. One approach involved substitution

of the following assumed solution forms into equations 3.54 and 3.55:

SP= A cos5 + Bps,$ i )n (3.56a)

LI (A CosY + B, 1Zd~ . (3.56b)

(3.56c)

Refering to Figure 3.4 (Seal Model) and remembering that, during steady

running, the disc is concentric within the seal, equation 3.56c was

rewritten:

H cisos~:



47

Therefore, H represents disc displacement in the y direction (Figure

3.4), i.e.,

Y e- At (3.58a)

and, from equation 3.56c:

I-H 7 cos0  (3.58b)

therefore,

or,

H kY QaLn.JA4 (3.58d)

Substituting equations 3.56 into equations 3.54 and 3.55 yields time

dependent differential equations without partial derivatives:
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Ki (3.59a)

I(, eu t 3.3 :H (3.59b

jJ

rZrt I/U

14)A 4__ -1- ~r K±, t____ V

(3. 59c)

r.(tfs KI 4 + ( 4-

Kr - (3.4- 5,Pt K6

Linearized seal equations were then present in a form simiilar

to equation 3.32c:
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APko(..VP 0 Kc.. 4
k6* I4AKof KbAm B0

A-4  klcAr Kt6p KCA 4j cet4, A4t
KBI AP Kasp kJA44 KJ t'hjB'

(3.60)

Because H-Y represented disc displacement in the y direction it also

corresponded to X . Consequently, H 8 . Equation 3.60, therefore,

included the effect that the disc has upon the seal. To complete

coupling between seal and rotor bearing systems, seal force exerted on

the disc was also specified.

Since linearization involved infinitessimal variations of state

variables, seal force acting on the disc was so represented. (See Figure

3.4 - Seal Model)

2LTr

(3.61a) '

- ,
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TF rd (3. 61b)

To accommodate these integrations, equation 3.56a can be expressed 
as in

equation 3.62!

'F~~~ Inrt' os (3.62)

Substitution into equations 3.61 yields:

F - 'rr r(3.63a)

A,.Trr (3. 63b)
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Since the datum for independent variable time in equation 3.32c was

arbitrary, t = 0 was chosen. Consequently, e t  
= 1 and:

0

ArAp (3. 64a)

Therefore, seal to rotor bearing system coupling was accomplished.

Equation 3.65 depicted the A matrix of equation 3.34 expanded to 16 x 16

to include equations 3.60 and 3.63:
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Kill

(Blank spaces contain zeros: upper left hand corner is the A matrix of
equation 3.34)

(3.65)

Equation 3.65 was then used to generate eigenvalues and

eigenvectors for the rotor bearing and labyrinth seal systems, both

isolated and coupled.

3.D Simulation Procedure

This section will explain the programming schemes* needed to

Listed in Appendix A.
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exercise the nonlinear rotor bearing system (equations 3.23 and 3.24) and

the A matricies of equations 3.34 and 3.65. Programming of the nonlinear

rotor bearing system model will be discussed f irst. Programming of both

rotor bearing and labyrinth seal systems linear models will be explained

next to be followed by a description of parameter variations.

The parameter variations section of this chapter will focus

primarily upon labyrinth seal physical variables. Myrick's rotor bearing

system will experience minor changes only, to minimize impact on possible

follow on experimental verification. Such testing will provide data for

analysis in Chapter 4.

3.D. 1 Isolated Rotor Bearing System Testing

3.D.l.A Nonlinear Model Programming (RW5)

As previously mentioned, nonlinear rotor bearing system

modeling was intended as a modeling accuracy check. Its basis was a 4th

order Runge Kutta finite difference integration of equations 3.23 and

3.24. Although C and + in Figure 3.1 (Bearing description) were

directly related to bearing generalized coordinates X 3through X 6, they

were also separately integrated to simplify bearing force calculations

(equations 3.5). The coordinate assignments of equations 3.23 and 3.24

did not change. Additional bearing state variable assignments were per

equations 3.66:

X1 (x, + )q Left Journal (3.66a)

C- Eccentricity ratio
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where c = Journal to bearing radial clearance

tan Left Journal

X4 Attitude Angle (3.66b)

=,, - (x + = Right Journal (3.66c)

C- Eccentricity ratio

tXvt 6(s\) = Right Journal

-- Attitude Angle (3.66d)

First derivative expressions for these new state variables were also

required:

X(3.66e)

F =-(X., X, - X. .) (3.66f)

(X, C)'
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Fs (XS X11, )4 X4 t L> EP (3. 66g)

(x x11  - xsxI l> (3. 66h)

X S

Since journal surface speed (U = rO) in equations 3.5 required

specification of angular velocity an expression from Cameron El 6 was

used:

- ( _&. r- + 3.67

(W total rotor bearing system weight)

Journal length, r = Journal Radius)

Equation 3.67 was compatible with bearing assumptions made in Chapter 2

and applied to all rotor bearing system mass elements.* Cameron had also

derived an expression for journal attitude angle,

4'=ta jq- rjH Y )
(3.68)

* Constant speed assumed in Chapter 2.

.....................
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Since both left and right journals (Figure 3.2 - Rotor Bearing System

Model) were physically identical and since their angular velocities were

also equal, C and + were expected to be identical for both journals,

i.e., symmetry should prescribe identical behavior for both journals.

For verification, however, angular velocity was defined for each journal.

As in any time dependent simulation, initial conditions were

prescribed. These were defined in terms of an assumed journal

eccentricity ratio, E , and attitude angle, 4 -- the same values at both

bearings. Disc initial circumferential position was assumed equal to

that of both journals. Since equations 3.67 and 3.68 were defined for

steady running only*, the initial value for + did not satisy equation

3.68. Otherwise, mass displacement and, therefore, potential system

instability could not be observed. Instead, steady running conditions

were defined separately and differently with respect to these initial

conditions.

Steady running conditions were defined in terms of an assumed

eccentricity ratio and corresponding journal angular velocity (equation

3.67) and attitude angle (equation 3.68). Steady journal positions,

therefore, wery based upon: (1) static deflection due to rotor weight

and (2) angular displacement (+) due to journal interaction with bearing

fluid. Steady running disc position was assumed equal to that of both

journals. Steady bearing film forces added in the line of centers

direction (Figure 3.1). The vector sum of these forces equaled rotor

bearing system weight. Steady running conditions, in effect, established

a temporary coordinate reference frame (Figure 3.6). With

* Rotor operation without displacement of mass element centroids.
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steady conditions defined, computer simulation could begin by applying

different initial conditions.

.1y

(-Bearing Cross Section

O, I

Figure 3.6 - Fixed Inertial and Steady Running (x ,y )

Coordinate Reference Frames

Simulation 'commenced with 4th order Runge Kutta finite

difference integration of equations 3.23 and 3.24. State variable

increments were calculated for an assumed time step (4t) and added to

previous values to yield state variable values at time, t = t0 + nAt.

Bearing force equations 3.5 appeared twice, embodied with equations 3.66

-- once for each journal. These equations were first calculated using
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£ and 4 state variables converted to a t = tO integration basis:

(i I(_(3.69a)

(3. 69b,)

E' and 4D were later multiplied by W to allow finite difference time

integration -- a Runge Kutta requirement! Bearing force equations 3.6

appeared next, again, once for each journal. Steady bearing film forces

were subtracted from each bearing force (equations 3.6) -- necessary when

force increments due to transient loading were being calculated. Rotor

bearing system state variable equations 3.23 and 3.24, therefore,

contained state variable and bearing force values relative to a

particular steady running position (Figure 3.6).

Model accuracy tests were performed by setting steady running

conditions that were just above and below (2 simulations) the stability

threshold predicted by Shapiro and Colsher [1] . This was accomplished

by prescribing steady running eccentricity ratios such that W in equation

3.67 was less than 93 rev/sec for one simulation and greater than 93

rev/sec for the other. Different initial conditions were applied and

time dependent state variable values were monitored using a simple plot

routine.*

* MINIPLT--See Mechanical Engineering Dept. Computer Files.
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To be compatible with Shapiro and Colsher, testing below the

stability threshold should yield slightly damped state variable response.

Testing above the stability threshold should yield ever increasing

(exploding) state variable values with time.

3.D.1.B Linear Model Programming (RWE4)

As mentioned earlier, linear modeling was intended to produce

eigenvalues and eigenvectors. Subjecting the A matrix of equation 3.34

to the QRHMOD routine accomplished this task. QRHMOD was available by

calling METAPE or DYNSYS which appeared on Mechanical Engineering

Department computer file tapes.

To prepare equation 3.34 for QRHMOD, several preliminary

calculations were performed. Beaman's U13] linearized bearing

coefficients (equations 3.257 were calculated and converted to x-y

reference frame form (equations 3.23). Since linear analysis deals only

with infinitessimal state variable variations from a steady running

position, equations 3.67 and 3.68 were used to describe rotor speed (4))

and attitude angle (*) respectively, for an assumed eccentricity ratio

(.). As before, F- values for both left and right journals were assumed

identical. This routine was used for further comparison with Shapiro and

Colsher's results and to obtain performance data for the isolated rotor

bearing system.

Since labyrinth seal effects were the focus of this thesis and

since changing the physical parameters of Myrick's rotor bearing system

nullified comparison of results, performance data, here, were restricted
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to rotor speed variation. This was best accomplished by iterating

eccentricity ratio from about E = .5 (W= 45.8 rad/sec) to about r& .005

W'~= 8745 rad/sec).

3.D.2 Labyrinth Seal Testing

This section discusses linear labyrinth seal model programmingI

separately and in the context of coupling to the rotor bearing system

linear model program (RWE4). Although explanation of isolated seal and

disc programming appears to be a logical next step in this discussion,

this programming is actually more conveniently accomplished by modifying

the coupled system program. Therefore, coupled system programming will

be discussed first.

3.D.2.A. Linear Model Programming - Coupled Labyrinth

Seal and Rotor Bearing System (RWE4S)

The ultimate intent of linear model programming was to subject

the A matrix of equation 3.65 to the QRHMOD routine. Since this A matrix

contained the unaltered rotor bearing system A matrix of equation 3.34 in

its upper left corner, expression of seal equation 3.60 coefficients and

their proper placement within equation 3.65 were accomplished.

To do this, several intermediate tasks were performed.

Initially, nominal (steady) chamber pressure (P n) was established. This

was accomplished by first assuming a Mach number at seal strip A (M An

and then solving for P using equation 3.70. This pressure (equationn

3.70) was then used to calculate the nominal discharge coefficient at
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Fn l.70 PA (3.70)

seal strip A (CwAn - equation 3.49c) and chamber pressure. A Mach number

at seal strip B (MBn) was calculated using equation 9.24 Chamber

pressure was recalculated using equation 3.71. Pn3.71 was compared with

P4 sI = AA CWA P% M~n33.71

~~~ A+ 0wA~ M ,n

Pn3.70" If they differed by more than "0005xPn3.70' then MAn was

incremented accordingly and the process was repeated until both P valuesn

satisfied equation 3.72.* Since seal strips had been assumed to act only

P,o 0 (-.000s) s t,, - .,(1,..0005) (3.72)

as converging nozzles both Mach numbers could not exceed 1.0. Mach

numbers were also made greater than zero to avoid trivial solutions,

i.e.:

S1 (3.73)

Once P was established, the axial flow coefficients in

n

*.0005 factor chosen to provide 3 digit accuracy
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equations 3.50 could be calculated. Nominal circumferential seal

fluid velocity (u n) was determined from equation 3.36. Since steady

running disc position had been assumed to be concentric within the seal,

nominal disc to seal base clearance (h ) was constant for all
n

simulations. All that remained was to describe the coefficients in

equation 3.60 and arrange them together with rotor bearing system

coefficients per equation 3.65.

3.D.2.B. Linear Model Programing-Isolated Seal and Disc

(RWE4P)

With the coupled system A matrix of equation 3.65 completely

programmed, modifications for isolated seal and disc tests were then

described. All that was necessary was to replace the coupled system A

matrix with the seal PC matrix, consisting of the 4x4 lower right corner

of equation 3.65. In order to properly reset this matrix between

simulations, it was filled with zeros. The calculation routines within

QRHMOD made this necessary whenever parameter variations required

repeated use of QRHMOD.

3.D.3. Parameter Variations

In order to fully understand labyrinth seal and rotor bearing

system interaction, certain seal and disc parameters were varied

separately. Corresponding linear model programs, both isolated and

coupled (RWE4P and RWES), were used. Generally, straight seal geometry

(a-b) applied.
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Disc Speed (L) variation was accomplished by iterating

eccentricity ratio (6) as in RWE4. Variation of seal chamber axial

length (.) was more restrictive, however, since too narrow a seal chamber
A --

))

Section.A - A

Figure 3.7 - Isolated Labyrinth Seal Surrounding Rotor

Bearing System Disc

would violate the Chapter 2 assumption requiring complete axial kinetic

energy destruction within 
the seal chamber. To determine this transition

point, ( was incremented upward starting atI=.O01 in. It did not exceed

axial disc length prescribed by Myrick (1.423 in.).

Disc radius was also incremented. Seal diameter was assumed to

~. -L
-- ,- I
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increase accordingly such that h, a, and b remained constant. Since

Shapiro and Colsher's analysis of Myrick's system also assumed point

masses at bearing and disc stations, enlarging the disc did not affect

comparison with this thesis' results provided that mass values remained

unchanged.

Nominal disc to seal base clearance (hn) was next to be

individually varied. The upper limit for this parameter was expected to

be very restrictive because, beyond a certain h value, complete kinetic

energy destruction within the seal could not be assured.

Upstream pressure QPA) variation was next. Both the upper and

lower limits for this parameter were expected to be sensitive. The upper

limit was prescribed by choked flow at seal strip B. The lower limit was

restricted by assumed constant seal exit pressure (PB). i.e., Should FA

become too small, unrealistic flow reversal would occur. As with l and

h variations, these limits were determined through analysis of an

complete range of upstream pressures.

Finally, a and b seal strip heights were varied together to

achieve variable seal convergence (a> b) and divergence (a< b). For

comparability, average axial flow area was maintained. i.e., An increase

in the "a" dimension was offset by a decrease in "b" (Figure 3.7). To

establish the stabilizing nature of a divergent seal, another speed

variation exercise was accomplished for an extreme divergent seal

geometry. To maximize stability threshold increase, PA was set to

provide choked flow at seal strip 5. Straight, divergent, and convergent

seal geometry simulations were also conducted with exit pressure set at

one atmosphere (14.7 psi). These simulations indicated whether or not

this model is suited for testing at higher ambient pressures -- a useful
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feature when developing high pressure turbine seal design criteria.

I

I



Chapter 4 RESULTS

4.A Overview

This chapter will present and discuss data produced from

Chapter 3 simulations. For every simulation, parameter values will be

listed followed by a graphical generalization of the data and

observations of system behavior trends.

Nonlinear rotor bearing system (RW5) results discussion will be

first and briefest because of its limited value to the purpose of this

thesis. Linear rotor bearing system (RWE4) results discussions will

follow and are limited to comparison with Shapiro and Colsher's speed

variation results. Isolated seal and disc linear modeling (RWE4P)

results will be next. Here, system behavior observations will take the

form of discussions of trends exhibited by this system while several

parameters are individually varied. The coupled rotor bearing and

labyrinth seal model (RWE4S) results will be similarly discussed. Some

attention will be focused upon seal and rotor bearing systems

interaction. Such discussion provides qualitative understanding only.

Ultimately, coupled system model speed will be increased with the seal at

extreme divergence in an effort to prove stability threshold increase.

66
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Table 4.1

Nonlinear Rotor Bearing System Parameter Values

Constant Parameters

k = k = 5348.6 lbf/in. = Shaft Stiffness
x y

mJL mJR = .0096 lbf sec2 /in. = Journal Mass .

md = .0875 lbf sec 2/in. Disc Mass

W = 20.625 lbf - Rotor Bearing System Weight

= 1.603 in. - Journal Length

r = 1.081 in. = Journal Radius

c = .003 in. - Bearing to Journal Radial

Clearance

t = 10-5 sec =Time Step

Variable Parameters

Simulation 1: (.= 86 rev/sec, = .08, E= .0797

Simulation 2: W = 98.3 rev/sec, s.= .078, F-= .07

Simulation 3: W - 92.87 rev/sec, = .09 lE- .074

4.B Rotor Bearing System

4.B.1. Nonlinear Modeling (RW5) Results

As mentioned in Chapter 3, nonlinear rotor bearing system

simulations were intended only as a modeling accuracy check. Such

verification was best accomplished by operating this nonlinear model at

or near Myrick's stability threshold.

Simulation 1 was conducted below Myrick's stability threshold

of 93 rev/sec. Damped half frequency whirl was observed (see Figure
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4.1). Angular velocities for both journals were observed to be identical

for this and all other simulations.

Simulation 2 was conducted above Myrick's stability threshold.

Explosive half frequency whirl was observed. (see Figure 4.2).

Simulation 3 was conducted very close to Myrick's stability

threshold. Half frequency whirl was observed. However, neither damped

nor explosive whirl could be confirmed (see Figure 4.3). Therefore, mass

precession approaching a limit cycle at steady state was assumed. This

condition establishes 92.87 rev/sec as at, or very close to, the system

stability threshold. Because of inaccuracies inherent in visual graph

sighting, a limited number of operating cycles and computer calculations

this result was not expected to compare exactly with Myrick's.

Additionally, lengthy simulation time makes more accurate

definition of this stability threshold, using iterative simulations,

unwarranted. Therefore, simulation 3 provided practical confirmation of

Shapiro and Colsher's stability threshold calculation.

4.B.2. Linear Modeling (RWE4) Results

Linear rotor bearing system simulation results are a bit more

extensive with respect to nonlinear results. In addition to a stability

threshold comparison, model frequency versus rotor speed and some mode

shapes must also be compared with the results of Shapiro and Colsher.

These results identify 4 primary modes for Myrick's system.

(see Figure 4.5a) Mode 1 is most susceptible to self excited whirl. It

is characterized by mass displacement due to both rotor bending and rigid
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body translation. Mode 2 is least susceptible to any excitation source.

It is characterized by rigid body motion because of relatively large

journal displacements since it is affected predominantly by bearing

coefficient changes. Mode 3 is most susceptible to mass unbalance, but

only marginally affected by Oil Whip as suggested by a relatively large

disc displacement. Mode 4 is well damped and is characterized by a

combination of rotor bending and translation.

Rotor speed variation revealed a stability threshold of 92.58

rev/sec (see Figure 4.4). This was indicated by a near zero eigenvalue

real part for Mode 1. It does not differ appreciably from the nonlinear

model result of 92.87 rev/sec. Both results are not completely accurate.

Linear model accuracy required a Mode 1 eigenvalue real part of exactly

zero and nonlinear accuracy required a large number of cycles of

operation. However, since they both compare resonably with Shapiro and

Colsher, RW5 and RWE4 accuracies are acceptable.

Comparing modal frequency vs rotor speed, RWE4 results and

those of Shapiro and Colsher are in general agreement. Figure 4.4a

closely duplicates their plot (Figure 4.4b). Per Shapiro and Colsher, a

critical speed for Modes 3 and 4 occurs at a rotor speed of 55 rev/sec.

RWE4 results indicate a similar critical speed near 55.6 rev/sec. Both

graphs show a Mode 1 and 2 intersection at their respective stability

thresholds (93 and 92.58 rev/sec). Mode 1 "growth factors" (eigenvalue

real parts) are also reasonably similar.

Mode shape comparisons are not as close as were previous

comparisons (Figure 4.5). RWE4 rotor speeds cannot be precisely matched

to those of Shapiro and Colsher because of the requirement to increment

rotor speed by adjusting eccentricity ratio (equation 3.67). However,



73

___I__r - _ -------

-4.--4-

_-20

I -.

-. _ 13-. ~ J~ 1D I-500D~i

20 _67_7 Critical1

r~L 96 SpeedL~~ - MODE 4-

____ _ _ ____MODE2 _
C300

-?0

-30 -'-p Th0resh60old 8

L L ~ ... .. 0 900 ___ __ _ 00___

- - --- -- --- - - - - -

... 50 .. 0 .00 ..... .0

_'4ReaT 1 4 -----



74

93 APS

SPM c"

4.

'"a

Figure 4.4b -Shapiro &Coisher []Linear Results

* -~ * -ohm



75

Lef t:-.. Right I
Modal Frequency, Journal De ora

'46.5 Rev/Sec

Rotor $peed~ i
-=291.7 Rad
____Sec_ _ __.4

-92.86 Rev _

Growth Factor ____

*-+.43

-7

----1~ - ---

-- - -~_ -_ _ -_ _ ---.

I -- - - . - -

.-- - -.. L .---- - - -------9-.-



76

-----. --- -- -_ ------------ -- _--

71 1

IrI

-- -- - -- -1

10-0

-1:

_ _ _ _------

-I -40. 38:Rev/Sec
d~tor-Speded f-7 -- 503.'47 Rad/Sec- -- ----

* ~rowth :Factor lei5611 __

-44 - ...4r ,9 W od UpsLpd



.7 .-. ......... ......

Le__tLef"Disc Righ4
... .... -o r a .ourria I., . I:

.1~~.. .... ... _ _ .

-- ---- - - -- ---7---- --
Moda Ftquen ____ ________ ____ __q

-, 55.bb6J-5ev/5e

--- ---- - -- -- -- --* ~ - ----------
-- -4 -bL u

. . ... . .... .

-- : :-w

-4 _

_ _ _ _ _ ---- :-7 7_17

7-:
1 4**~:-:--- ---- -----

7 ---- - -_

-7

- -- --- --- --- -

L.. ~. -t-- - _____ ____A

LEE- :

-. . -

.-. ~ - --. i~4u~**=w



78

-- 7

_ _ I ._ ._ _.a i

m -- - -f
fodal reque-cy. aV . .. .......

-~ .543Rev Sec) ....j ..

-tr -1 1ee - -~-------- -

-80113 Rvc V' Se [ .....
-- - --- -

- - - - - ----

row t--------- -----

t...... ...-

w -a

f:t 
. 2 2 U I.



70

NOW SPUDg~ 93.h' wA -

.2325853)*

-. W

Figure 4.5b1 - Mode 1

SW? LDmmh(O

Figure 4.5b2 -Mode 2

Figure 4.5b - Shapiro arnd Coihsher Mode Shapes [i]



80

-.of possgmp .95.3? OAPIP O1W VA - -&S9
"5M W -8o "I

-am

-

a 4.67 6.33 14A)4.
APT L&NM (CN

Figure 4.5b3 - Mode 3

MUM PRINOMP-2LSff GIMw 1P*-a
A~ MWOl- MAM

_SAN

.-4.g -

0i a.3 * 1. t
UUFrr LW" (im

Figure 4.5b4 - Mode 4

Figure 4.5b - Shapiro and Colsher 1i] Mode Shapes



81

general modal characteristics are similar. Modes 1 and 3 compare closest

with Shapiro and Colsher. Their shapes and relative displacements are

similar. Mode 2 shapes compare in that they both reflect rigid rotor

behavior.

Considering the astonishing similarity between modal frequency

vs rotor speed plots, these Mode 2 differences might be attributed to

phase changes occuring between 80 and 80.13 rev/sec for this mode. Mode

4's shape is most radically different from that of Shapiro and Colsher.

But, since modal frequencies and growth factors are similar, these mode

shape differences might also be attributed to phase differences caused by

non-precise speed duplication. Generally, therefore, this rotor bearing

system model practically resembles Myrick's system (Figure 1.8).

4.C. Isolated Seal and Disc (RWE4P) - Results

4.C.1. Overview

This section will discuss results of parameter variations for

the isolated and rigidly mounted seal and disc system. This system has

only 2 modes because of such rigid seal and disc mounting. Consequently,

these modes relate to flow behavior only. To identify each mode,

isolating phenomena must be identified.

When fluid friction (K2p, K2h, and K2u coefficients in equation

3.55) against disc and seal surfaces was eliminated, the "Axial" flow

elgenvalue was practically unaffected, but, the "Circumferential" flow

eigenvalue radically destablized (real part became positive) with little

affect on modal frequency. Since friction within the seal affects
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Table 4.2

Isolated Seal and Disc Nominal Parameter Values

Parameter Program Coding Value

= Seal Strip Separation CLC .1 in.

r = Disc Radius RD 10.0 in.

PA w Seal Inlet Pressure PSI 2.55 psi
(HP) 15.00 psi

P = Seal Exit Pressure PSE 1.00 psi
(HP) 14.70 psi

h = Nominal Seal Base to DC .200 in.n

Disc Clearance

= Disc Angular Velocity PSDR 579.45 rad/sec

a = Height of Seal Strip A A .195 in.

b = Height of Seal Strip B B .195 in.

- _ _ _ _
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Table 4.3

Constant Seal Parameter Values

Parameter Program Coding Value

R = Gas Constant R 247104 in2 /sec2oR

k = Specific Heat Ratio CK 1.4

T - Seal Fluid Temperature TI 5600 R

,A4- Dynamic Viscosity DV 2.8 x 10- 9 lbfsec/in2
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circumferential flow predominantly these modes have been labled "Axial"

and "Circumferential" accordingly. The Axial mode is, generally, the

more stable of these modes as this section's discussion will illustrate.

The parameter variations examined in this analysis are: (1)

seal strip separation in the axial direction (A in Figure 3.7), (2) disc

radius (r), (3) upstream pressure (PA), (4) disc to seal base nominal

clearance (h ), (5) disc rotational speed (0), and (6) radial projections
n

of seal strips toward the disc (a, b). Each of these parameters were

varied individually leaving all others at nominal value (Table 4.2).

These nominal values were selected to produce realistic results. The

high pressure simulation (HP), by definition, involved different nominal

pressures.

Nominal values in Table 4.2 were also chosen to resemble the

seal used by Wright. The Myrick rotor bearing system disc radius was

increased to provide stable operation with other nominal parameter

values. Since disc mass and position were left unchanged rotor bearing

system performance was not affected by this change.

Throughout this discussion, the terms "stabilize" and

"destabilize" will be used to indicate the direction of change of

eigenvalue position on a root locus plot as a parameter is incremented.

A "stabilizing" trend is directed toward the left, "destablilizing"

toward the right. "Stable" eigenvalues appear to the left of the

imaginary axis. "Unstable" eigenvalues exist to the right of this axis.

4.C.2 Seal Strip Separation (1) Variation

Figure 4.6 presents seal strip separation variation results.
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For both Axial and Circumferential modes, stability decreases with

increasing seal strip separation. This result appears to contradict the

expectation* that increasing fluid to interacting surfaces friction with

increasing seal surface area would be stabilizing. It should be noted,

however, that once coupled to the rotor bearing system, this system will

have 6 modes. A proper stability assessment must consider all modal

reactions together.

Circumferential modal frequency decreases with increasing -

This could represent declining circumferential fluid velocity as chamber

widening makes this seal behave more like a subsonic diffuser by reducing

velocity of subsonic circumferential flow. Corresponding Axial modal

frequency increase suggests that increasing seal width provides

increasing time and distance for acceleration (and deceleration) of axial

flow. For any of these simulations, both seal modal frequencies add to

equal disc rotational frequency (p).

Such a consistent event suggests that disc rotational frequency

is the "driving" frequency for this isolated seal and disc system. Since

both seal and disc are rigidly mounted and seal pressure drop is constant

only the Axial and Circumferential "degrees of freedom" are available to

distribute disc momentum (IAdW). Should either modal frequency exceed

the frequency of this sole momentum source, energy creation must have

occurred. Obviously, such an event is unrealistic. Its computer

predicted occurence for X<( .051 in. suggests, possibly, that the

assumption of complete kinetic energy dissipation within the seal chamber

is invalid below this seal strip separation val~ae.

*See Chapter 1.
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4.C.3 Disc Radius (r) Variation

Figure 4.7 presents the results of disc radius variation. With

increasing disc radius, the Axial mode stabilizes while the

Circumferential mode destabilizes. Since Circumferential mode

stabilization occurs about the imaginary axis its affect on system

stability is more important, i.e., increasing disc radius enhances seal

stability.

As predicted earlier (Chapter 1), this stabilization can be

attributed to increasing friction between fluid and adjoining surfaces.

Because friction increases with both fluid velocity and interacting area

-both characteristics of increasing disc radius -- fluid flow through

the seal should be stabilized.

Another expected characteristic of increasing r is increasing

Circumferential modal frequency. Increasing circumferential fluid

velocity is intuitively associated with increasing disc surface speed.

Axial modal frequency must decrease because of increased axial flow area

associated with increasing disc (and seal) radius. It is also physically

conceivable that a gain in Circumferential modal frequency should offset

a reduction in Axial modal frequency since transfer of fluid momentum

involves corresponding changes in fluid velocity.*

*Each fluid particle has axial and circumferential velocity components.

Therefore, "ms transfer" during such a "momentum transfer" (P -my)

does not occur.
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4.C.4 Upstream Pressure (PA)Variation

Figure 4.8 presents upstream pressure variation results. Both

Axial and Circumferential modes destabilize when P Ais increased.

Increasing upstream pressure implies increasing force applied against

seal and disc. Since both disc and seal are physically constrained only

flow modes can react to this increasing force. Such a reaction should

reflect reduced stability.

Unfortunately, actual destabilization (left to right crossing

of imaginary axis) is not illustrated here. At P A= 2.55 psi, flow

through seal strip B (Figure 3.7) chokes. Further increase in P A. until

flow through seal strip A chokes, should destabilize the Circumferential

Mode. In addition to this upper realistic limit, a lower realistic limit

was also encountered.

Circumferential modal frequency exceeds disc rotational

frequency when P A < 1.3108 psi. As explained in 4.C.2, such a condition

is unrealistic. This condition, possibly, corresponds to a reversal of

flow direction thereby violating a system constraint -- P A > P '

4.C.5. Disc to Seal Base Nominal Clearance (h ) Variation

Figure 4.9 presents results of h n variation simulations.

Within realistic limits, both Axial and Circumferential modes are

stabilized by increasing h n. This result might be attributed to a

reduced rate of change of chamber pressure. As h nincreases, axial fluid

velocity and modal frequency decrease th ereby reducing rate of change of
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chamber pressure (equation 3.51 - JP coefficient).

This effect is valid between narrow limits only. The obvious

lower limi is h = a and/or h = b resulting in complete cessation ofn n

flow. The upper limit is h n- .27 in. (interpolated result). This limit

corresponds to an unrealistic Circumferential modal frequency greater

than W . Consequently, this limit corresponds to a clearance so great

that the assumption of complete kinetic energy destruction within the

seal chamber is violated.

4.C.6. Disc Angular Velocity (to) Variation

Figure 4.10 presents disc angular velocity variation results.

Both Axial and Circumferential modes stabilize with increasing&d. This

stabilization can, again, be attributed to increasing friction between

seal fluid and interacting surfaces with increasing disc surface speed.

4.C.7. Seal Divergence (a > b) Variation

Figure 4.11 presents seal divergence variation results. Both

seal modes are stabilized by increasing seal divergence. Decreasing

nominal chamber pressure with increasing seal divergence suggests that

greater exit with respect to inlet mass flow area, reducing chamber

pressure, is responsible for this stabilizing trend.

4.C.8 Seal Convergence (a < b) Variation

Figure 4.12 presents seal convergence variation results. Seal
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convergence destabilizes both seal modes. Convergence results are

expected to be equal and opposite to seal divergence results.

Unfortunately, identical support pressures (P and PB)for both

simulations causes choked flow at seal strip B and, therefore, constant

nominal chamber pressure with increasing seal convergence. However,

evident reduced stabilization, with respect to seal divergence, can be

attributed to rate of change of chamber pressure per equations 3.48.

These mass flow rate variation relations are affected by axial flow area.

They are also strong coefficients of SP in continuity equation 3.51.

4.C.9 Variable Seal Geometry at High Chamber Pressure

The results in Figure 4.13 indicate that straight seal geometry

is not as stable as convergent or divergent geometries for seal modes at

high chamber pressure. This result might indicate that any unequal seal

geometry is stabilizing at high pressure and/or low axial fluid velocity.

However, it is believed that, for flow Mach Numbers closer to 1.0, these

results would be similar to those in Figures 4.11 and 4.12.

4.C.10 General Trends

The most obvious trend among these RWE4P simulations is the

Circumferential mode's role as the least stable seal mode. In every

simulation, it is either the least stable or the only unstable seal mode.

Eigenvector analysis further supports this observation. For all

simulations, the largest eigenvector component is the "A u" component

(equation 3.56b). This cosine related circumferential velocity
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coefficient exceeds axial pressure components (A pand B pin equation
p4

3.56a) by, at least, a factor of 10~ Consequently, the Circumferential

mode, as the most volatile seal mode, deserves maximum attention when

stability is discussed. Additionally, its modal frequency always exceeds

that of the Axial mode.

One more pattern common to all RTWE4P simulations is that of

Axial and Circumferential modal frequencies adding to equal disc

rotational frequency (WV) Explained earlier, this criterion is

responsible for locating many realistic limits for seal parameters.

of all parameter variations performed with this isolated disc

and seal system, increasing seal divergence and disc speed are the most

stabilizing. Increasing disc radius also has an overall stabilizing

affect on the seal. The stabilizing ef fects of increasing both w and r

are due to consequent increasing friction between seal fluid and

interacting surfaces. Although seal base to disc nominal clearance

increase also stabilizes both seal modes, its limited realistic range

made its usefullness as a stabilizing design parameter unpromising.

Because most RWE4P results have satisfactory physical

explanations they can serve somewhat as a modeling accuracy verification.

Their primary purpose, however, is, still, to provide information

describing affects that individual seal parameters have on seal

stability. In the next section, these parameter variations will be

evaluated in the context of a coupled seal and rotor bearing system.
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4.D Coupled Rotor Bearing and Seal System (RWE4S) - Results

4.D.1 Overview

Now that both rotor bearing and labyrinth seal models have been

operationally proven, coupled system reactions to seal parameter

variations can be discussed. First, the behavior of Myrick's 4 modes

will be presented graphically. All modes are identified by comparing

RWE4S eigenvalues with RWE4 and RWE4P eigenvalues obtained under the same

operating conditions.* When an RWE4S eigenvalue pair more closely

equals one RWE4 or RWE4P eigenvalue pair than any other, it is assigned

that RWE4 or RWE4P mode's designator. Secondly, differences in behavior

for these modes between coupled and rotor bearing (RWE4) systems will be

discussed. Such a discussion will explain seal influence on the rotor

bearing system. Finally, rotor bearing system influence on seal modes

will be discussed by relating coupled system results with those for the

isolated seal and disc.

The format of this discussion will parallel that used for

discussing RWE4P results. The same seal and disc parameters will be

varied individually. Corresponding plots for Modes 1 through 4 will be

presented and explained.

4.D.2 Seal Strip Separation (1) Variation

Figure 4.14 presents seal strip separation variation results

* Parameter values in Tables 4.1 and 4.2
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for Myrick's first 4 modes.

Mode 1 behaves as expected for R values that are near nominal

(Table 4.2). Increasing I beyond .1 in. (nominal) stabilizes this

fundamental Myrick mode. This event might be interpreted as a "stability

transfer" between Mode 1 and destabilizing seal modes (Figure 4.6).

However, Mode 1 promptly begins to destabilize for R2> .1255 in.,

indicating an upper limit for such a stability transfer. This stability

turning point also corresponds closely to actual destabilization of the

Circumferential seal mode. Another eigenvalue real part direction change

toward increasing stability at A = .2002 in. could be either an aberation

or an indication that seal strip separation growth cannot, by itself,

destabilize Mode 1. However, an absence of eigenvalue real part

direction change for seal modes at R= .2002 in. suggests that Mode 1

destabilization will continue with continued increase in ~R . Further

speculation of such a stability transfer must await presentation of

remaining .4 variation results.

The remarkable stability of Mode 2 justifies Shapiro and

Colsher's high appraisal of this mode (Figure 4.5). Despite

computational accuracy to 7 digits (single precision), no change in

stability or modal frequency is noticeable.

Mode 3's behavior is similar to that of Mode 1, but, with

larger real part variation and reversal of modal frequency change

direction. It, too, stabilizes with X increase up to .1255 in. However,

its modal frequency decreases for XA> .1006 in., after a gradual increase

for ( <.1006 in., and then begins another gradual increase for I> .1504

in.

Mode 4 destabilizes with increasing.~ Its range of eigenvalue
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real part variation is between that for Modes I and 3. At A=.1255 in.,

its rate of destabilization decreases. Its modal frequency also begins

to decrease at this point after a previous gradual increase.

For rotor bearing system Modes 1, 3, and 4, .1255 in.

represents a transition point. Modes 1 and 3 begin destabilization while

Mode 4 continues its destabilization. This point also roughly corresponds

to actual Circumferential seal mode destabilization. It is plausible,

therefore, that the straight geometry seal has a stabilizing effect on

the rotor bearing system's most delicate modes (1 and 3) until the seal

itself becomes unstable. Such an effect might also be described as a

"stability transfer" from seal modes to Modes 1 and 3. This suggests

that unstable circumferential flow within the seal acts, through

friction, to destabilize all rotor bearing system modes. Therefore,

A.9>.1255 in. represents an upper design limit for RWE4S straight seal

stability.

4.D.3 Disc Radius (r) Variation

Figure 4.15 presents r variation results for Modes 1 through 4.

Mode 1 stabilizes normally with increasing r, i.e., it follows

a smooth trend without observed aberrations. Its modal frequency also

increases with increasing r.

Mode 2 is, again, unaffected. However, Mode 3 behaves almost

in an equal and opposite manner with respect to Yvariation results.

Here, r - 10 in. (nominal value) is close to a transition toward

destabilization. Since this value also represents near instability for

the seal's Circumferential mode (Figure 4.7) a "stability transfer"
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theory similar to that proposed for I variation, again, appears

plausible.

Mode 4 destabilizes with increasing r. Its modal frequency

simultaneously increase; The value r =10 in. appears to have no

special significance for this mode. However, this root locus plot is

more erratic than that for Mode 1, for either seal mode, or for Mode 4

during I. variation, Considering also Mode I's relatively smooth

stabilizing behavior and the similarity in form between Mode 3 in both r

and I* variations, increasing disc radius seems to have an approximately

opposite effect on, rotor bearing system behavior than does increasing

seal strip separation.

Since increasing both I and r should increase disc to seal

fluid friction and since the rotor bearing system disc is modeled as a

point mass, such friction is not responsible for this difference.

Instead, some other feature of the Circumferential seal mode should be

considered responsible. This is the only seal mode that destabilizes

with increasing I while stabilizing with increasing r.

4.D.4 Upstream Pressure (PA Variation

Figure 4.16 presents P Avariation results for Myrick's modes.

These results are much less erratic than those for ..( and r variations.

Mode 1 stabilizes with increasing PA. Its modal frequency

simultaneously decreases slightly. Mode 2 is unaffected. Mode 3

destabilizes with increasing PA Mode 4 stabilizes with increasing PA

while its modal frequency decreases.

Increasing pressure difference across the seal is intuitively
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believed to be destabilizing. Accordingly, Mode 1 should be destabilized

by such increasing pressure since it is the most susceptible mode to self

excited instability. However, these results challenge such a belief.

This surprising result is significant in that increasing upstream

pressure might help reduce the nemesis of Mode 1 -- speed induced or

self excited instability. By increasing upstream pressure when rotor

speed approaches the stability threshold, Mode 1 instability might be

postponed.

4.D.5 Seal Base to Disc Nominal Clearance (hn) Variation

Results.

Figure 4.17 presents hn variation results. As in isolated disc

and seal simulations, an upper realistic limit is encountered. Root

locus plots reflect unrealistic eigenvalues with dotted lines.

Mode 1 is stabilized by increasing h within realistic limitsn

while its modal frequency is decreased. Mode 2 is finally affected by a

seal parameter variation. It is slightly stabilized. Its modal

frequency is increased with increasing h n Mode 3 is destabilized with

increasing h while its modal frequency is increased. Mode 4 is alson

destabilized. Its modal frequency is decreased.

4.D.6 Disc Angular Velocity (&) Variation

Figure 4.18 presents disc speed variation results. Mode I

demonstrates a stability threshold (92.69 rev/sec) slightly higher than

the RWE4 result (92.56 rev/sec). It also exhibits a stabilizing trend
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for W values less than 38.22 rev/sec (240 rad/sec). Its modal frequency

increases smoothly with increasing&O.

Mode 2 behaves similarly. Its transition toward

destabilization with increasingtO begins at about 69 rev/sec (435

rad/sec). Although beyond range of physical operation, its stability

threshold is about 464 rev/sec (2915 rad/sec).*

Mode 3 behaves erratically during speed variation. Initially,

it stabilizes with W. increases up to 76 rev/sec (477 rad/sec). This

eigenvalue plot changes direction 3 more times before starting a

destabilizing journey that, apparently, never quite reaches the imaginary

axis (eigenvalue real part at 1392 rev/sec = -.63, corresponding to C =

.005). Such erratic behavior supports Mode 3's reputation as a lightly

damped mode readily destabilized by mass unbalance but not by increasing

speed.

Mode 4 is stabilized by increasing c0 during the useful range of

this simulation. However, like Modes I and 2, it also turns toward the

imaginary axis. This turning point occurs at about 126 rev/sec (790

rad/sec). Its fictitious stability threshold is just below that of Mode

2 thereby supporting eventual convergence of Modes 2 and 4 with

increasingw (Figure 4.4 -- RWE4 Results). Similarly, at another large W

value, Modes 1 and 3 converge -- Mode 1, presumably, transverses the

imaginary axis several times while Mode 3 approaches it asymptotically.

* Mode 1 perlodically becomes unstable and then stable as speed increases

toward this "threshold". Therefore, physical failure is expected well

before this speed is achieved.
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4.D.7 Seal Divergence Variation

Figure 4.19 presents seal divergence results. As noted,

simulation 1 represents a straight geometry seal. Simulations 2 and 3

represent divergent seal geometries. Total flow area through both seal

strips is maintained.

Mode 1 is stabilized by increasing seal divergence. Its modal

frequency is also increased. Mode 2, again, proves itself resistant to

change. Mode 3 reexhibits its penchant for erratic behavior. It is

stabilized by moderate seal divergence, but, destabilized by continued4

divergence. Mode 4 is destabilized by increasing seal divergence.

Since stabilization of ModelI is required to increase stability

threshold seal divergence is, apparently, beneficial. Since degree of

seal divergence is physically limited ,actual destabilization of Mode 3

or 4 is unlikely with increasing seal divergence.

4.D.8 Seal Convergence Variation

Figure 4.20 presents seal convergence variation results.

Conditions stated for seal divergence apply here also.

As expected, Mode 1 is destabilized by increasing seal

convergence. Its small degree of distabilization relative to variable

divergence induced stabilization (Figure 4.19) can be attributed to

constant nominal chamber pressure caused by choked flow at seal strip B.

* .19 in. 4- a,b 4 h
n
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Mode 3 is stabilized by increasing seal convergence while mode

4 is destabilized. Again, rates of eigenvalue real part change relative

to variable seal divergence simulations are marginal due to constant

nominal chamber pressure.

4.D.9 Variable Seal Geometry at High Chamber Pressure

Figure 4.21 presents high chamber pressure results. Here, seal

geometry varies from convergent to divergent while relative pressure drop

across the seal* is maintained at a relatively low level. Nominal

chamber pressure is increased approximately by a factor of 10. The

stability reversals evident for seal modes (Figure 4.13) are not

exhibited by rotor bearing system modes.

Mode 1 is stabilized by decreasing seal convergence (or

increasing divergence) thereby maintaining predicted behavior (Figure

4.19). Mode 3 also stabilizes as expected. Mode 4 satisfies the

prediction of Figure 4.19 by destabilizing with increasing divergence.

It should be remembered that these results, particularly Mode

l's, are of primary interest when considering stability threshold

enhancement. Here, predicted Mode 1 stabilization with diverging seal

geometry is encouraging. Unfortunately, the seal Circumferential mode is

unstable during all of these high pressure simulations making

experimental verification impossible. Additionally, more simulations at

other pressure (PA' PB) and pressure drop (PA-PB) values are needed to

provide confidence in maintaining this assertion of improved stability at

* (P - PB)/P
B A
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high chamber pressure using divergent seal geometry.

4.D.10 Speed (Wo) Variation at Extreme Seal Divergence

Figure 4.22 presents root locus results for Myrick modes at

extreme seal. divergence and for variable rotor speeds starting near the

Mode 1 stability threshold of Figure 4.18. This simulation is intended

to determine a revised stability threshold due to seal divergence and to

verify improved, divergence induced, coupled system stability per Figure

4.19.

Mode 1's stability threshold is increased to 93.13 rev/sec

(585.16 rad/sec) because of seal divergence. This represents a .47%

increase from the revised stability threshold achieved with a straight

seal (Figure 4.18) and a .6% increase relative to the stability threshold

for Myrick's rotor bearing system without seal (Figure 4.4).

Stability of Modes 2 and 3 is marginally degraded, but not

enough to discourage further stabilization of Mode 1. Mode 4 continues

its stabilizing behavior with increasing W (Figure 4.18).

4.D.11 Seal and Rotor Bearing System Interactions

4.D.11.A Seal Influence on Rotor Bearing System Modes

Myrick modes are not radically affected by coupling with a

labyrinth seal. Generally, points on root locus plots in Figures 4.14

through 4.22 are affected equally by seal modes. Although such affects

cannot be positively attributed to any particular seal mode, the relative
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volatility of the Circumferential mode suggests its predominance.

Therefore, curve shapes and relative distances among points remain

practically unchanged.

Mode 1 is stabilized by the seal. The seal also acts to

increases its modal frequency.

As most RWE4S simulations reveal, the seal has little

perceptible effect on Mode 2. Only speed variations (not a seal

parameter) significantly affects Mode 2 (Figures 4.18 and 4.22).

Mode 3 is destabilized and has decreasing modal frequency for

bi 4 477 rad/sec (76 rev/sec) due to seal influence. For t.'> 477 rad/sec,

Mode 3 is, conversely, stabilized and has increasing modal frequency as a

result of seal influence.

Mode 4 is destabilized by the seal. Its modal frequency is

increased.

4.D.11.B Rotor Bearing System Influence on Seal Modes

Rotor bearing system influence on seal modes is similar to seal

influence on rotor bearing system modes in that- RWE4P seal mode curve

shapes and relative distances among points are unaffected. The Axial

mode is stabilized while the Circumferential mode is destabilized when

seal and rotor bearing systems are coupled. Again, because rotor bearing

system modes were not isolated, no particular mode can be identified as

having a predominant affect on these seal behavior changes.

Another such seal behavior change deals with affects on seal

modal frequencies. When seal modes are stable, the rotor bearing system

acts to reduce modal frequencies for both seal modes. Such an event
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suggests "frequency transfer" from the seal to the rotor bearing system

since seal modal frequencies now add to be less thanWO. However, when

the seal (Circumferential mode) is unstable, seal modal frequencies add

to exceedw . In this case, Axial (still stable) modal frequency is still

reduced, but Circumferential modal frequency increases. Since this

result was not encountered during isolated seal and disc simulations this

excess frequency must be assumed to have the form of disc whirl. Because

both systems are coupled with an unstable seal mode this whirl must be

explosive--a dangerous but still realistic condition!

4.E Summary

RW5 and RWE4 rotor bearing system results compare favorably

with those of Myrick and Shapiro and Colsher. Such success establishes

Chapter 3's analytical rotor bearing system model as both accurate and

similar to Myrick's experimental model.

RWE4P results reveal increasing disc radius, disc rotational

speed, seal base to disc nominal clearance and seal divergence as having

stabilizing influences on seal fluid flow. Conversely, increasing seal

strip separation, chamber pressure, and seal convergence destablize fluid

flow through the seal. At high pressure and low axial flow rate, both

diverging and converging seal geometries stabilize seal modes relative to

straight seal geometry. These results, generally, have plausible

physical explanations thereby verifying seal modeling accuracy.

Coupled system results also compare favorably with earlier

predictions. Because Mode 1 is most susceptible to self excited

instability, parameter variation affects on it determine coupled system
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stailiyMode 1 is stabilized by increasing disc radius, seal pressure

drop, nominal seal base to disc clearance, and seal divergence. It is

destabilized by increasing seal convergence. In the vicinity of nominal

parameter values (Table 4.2), increasing seal strip separation stabilizes

Mode 1. However, an unstable seal, with further increase inf , soon

causes Mode 1 to destabilize. The destabilizing effect of increasing

disc speed on Mode 1 is caused primarily by Oil Whip. Straight seal

geometry postpones the onset of Oil Whip marginally.

Similarly, diverging seal geometry increases system stability

threshold. Although still marginal in degree, this increase satisfies

expectations in that, amount of stability threshold increase exceeds that

of both straight and convergent seals. This marginal increase cannot be

considered within range of modeling error, indicated in 4,.B.2, because

RWE4 and RWE4S both contain the same rotor bearing system programming.

Additionally, by increasing stability threshold the least relative to

seal absence, convergent seal geometry results futher reinforce this

prediction of increasing stability threshold with increasing seal

divergence. This trend appears to apply also at increased chamber

pressure and reduced axial flow rate. Unfortunately, additional data at

different combinations of such higher chamber pressure and lower flow

rates are needed for verification. Such verification was not

accomplished using this model because of an unstable Circumferential seal

mode at high chamber pressure.



Chapter 5 CONCLUSIONS

The principle aim of this thesis has been achieved. Rotor

bearing system stability has been improved by divergent seal geometry.

Although such improvement was marginal (.47%), it should be noted that a

specific maximized stability threshold increase was not sought. System

adjustment to achieve such a threshold is warranted only when dealing with

models directly proportionate with operational steam turbines.

Seal parameter affects on system stability were discovered and

presented for possible later use in developing seal design criteria.

Such information might be used to optimize stability of both seal and

rotor bearing system modes toward the goal of turbine efficiency

enhancement.

These specific and notable conclusions were developed:

1) Performances of nonlinear (RW5) and linear (RWE4) analytical rotor

bearing system models are similar to that of Myrick's experimental model.

2) Labyrinth seal stability is governed primarily by its Circumferential

mode.

3) Straight seal geometry increases rotor bearing system stability.

*4) Divergent seal geometry increases rotor bearing system stability

threshold beyond that of straight seal geometry.

5) Convergent seal geometry destabilizes the Myrick rotor bearing system

relative to straight and divergent seal geometries.

6) This coupled rotor bearing and labyrinth seal system model ±s not

suited for experimental testing at atmospheric pressure.



APPENDIX A

A.,1 Nonlinear Rotor Bearing System Programming

PROGRAM RW5 (RW5 ,OUTPUT, TAPE5=RW5 ,TAPE6=OUTPUT)
DIMENSION X(20),F(20),TS(100),X3(100),K(7),Xl(100),X2(100)
CONMON/DR/SKX,SKY,BC,W,PI,SPI,DVR,DVL,CL,BR,PSDR,PER,PEL
1, ERR, ERL ,XS(C20) ,H, DM, BM, FXLS, FYLS, FXRS ,FYRS
DATA X,F,TS,X3,XS/452*O./ $DATA K/7*O/

C THIS PROGRAM SIMULATES ROTOR BEARING SYSTEM OPERATION USING FINITE
C DIFFERENCE TIME INTEGRATION
C H=TIME STEP=1.E-05 SEC
C DV=DYNAMIC VISCOSITY OF BEARING FLUID=5.E-O6LBFSEC/IN2
C CL=JOURNAL LENGTH=1.0631N
C W= j(JOURNAL+DISC) WEIGHT
C BC=RADIAL BEARING CLEARANCE=.0031N
C BR=JOURNAL RADIUS=1.081IN
C SKX=X DIRECTION ROTOR SHAFT STIFFNESS=5348.6LBF/IN
C SKY=Y DIRECTION ROTOR SHAFT STIFFNESS=5348.6LBF/IN
C DM=DISC MASS=.O875LBFSEC2/IN
C BM=JOURNAL MASS=.OO96LBFSEC2/IN
C ERI=INITIAL JOURNAL ECCENTRICITY RATIO
C ERS=STEADY JOURNAL ECCENTRICITY RATIO
C PEI=INITIAL ATTITUDE ANGLE
C IH=TIME STEP COUNTER
C ITP=PRINT COUNTER
C MT=MAX NUMBER OF TIME STEPS
C NN=NUMBER OF STATE VARIABLES=12
C M-NUI4EER OF PLOT POINTS
C NP=PLOTTING OPTION(MINIPLT)

READ(5, 1)H,DV,CL,W,BC,BR,SKX,SKY,DM,BM1,ERI,PEI,ERS
READ(5, 2)IH,ITP,MT,NN,M,NP
PI=3.1415927
SPI=9 .8696044

C INITIALIZE ECCENTRICITY RATIO
XS(15)=ERS $ XS(13)=ERS
DVR=5.DE-06 $DVL-5.DE-D6

D2=XS(15) /(D1**2)
D3=((16./SPI)-1.)
D4-(D3*(XSC15)**2)+1.)

C CALCULATE JOURNAL ANGULAR VELOCITY
PSDR-4.*W*CBC**2)*(D1**2)/(PI*DVR*CL*XS(15)*SQRT(D4)*BR)

C CALCULATE ATTITUDE ANGLE
XS(16)=ATAN(PI/4.)*SQRT(Dl)/XS(15))

C LEFT BEARING
21 Dl=(1.-CXSCL3)**2))

D2=XS(13) I(Dl**2)
D3((16./SPI)-1.)
D4C(D3*CXS(13)**2)+1.)
PSDL=4.*W*(BC**2)*(D1**2)/(PI*DVL*CL*XS(13)*SQRT(D4)*BR)

150
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XS(14)=ATAN((PI/4.)*SQRT(D1)/XS(13))
T=0.0

C STEADY CONDITIONS
XS(3)-XS(13)*BC*SIN(XS(14))
XSC4)--XS(13)*BC*COS(XS(14))
XS(5)-XS(3)
XS(6)=XS (4)

XS(2)-XS(4)
C STEADY BEARING FILM FORCES

FXLS=W*SIN(XS (14))
FYLS=W*COS(XS(14))
FXvRS=W*SINCXS (14))
FYRS=W*COS (XS (14))
WRITE(6,6)T,H,XS(15) ,XS(16) ,PSDR
WRITE(6,8)XS(13) ,XS(14) ,PSDL

C WRITE(6,7)(XS(I),I=1,NN)
C INITIAL CONDITIONS

x(3)=ERI*BC*SIN(PEI)
X (4)=-ERI*BC*COS (PEI)
X(5)=X(3)
XC 6) =X(4)
XC 1) =X( 3)
XC 2) =X(4)
X(13)-=SQRT( CX(3)**2)+(X(4)**2) )/BC
X(15)-SQRT((X(5)**2)+(X(6)**2) )/BC
X(14)=PEI
X(16)-PEI
WRITE(6,6)T,Ii,X(15),X(16),PSDR
WRITE(6,8)X(13) ,X(14) ,PSDL

C WRITE(6,7)(X(I),I=1,NN)
KI=O
DO 10 1121,MT,ITP
KI-KI+l
TS(KI)=T
X1(KI)=X(l)
X2 (KI) =X( 2)
X3(KI)=X(3)

C CALCULATE STATE VARIABLE VALUES
DO 11 JJ-1,ITP,IH
CALL RK4(F,X,T,NN,H)

11 CONTINUE
WRITE(6,6)T,H,X(15) ,X(16) ,PSDR
WRITE(6,8)X(13) ,X(14) ,PSDL

C WRITE(6,7)(X(I),I=1,NN)
10 CONTINUE
33 K(l)=1 $ K(3)=NP

K(6)-IOHX1 VS T
C PLOT STATE VARIABLE VALUES

CALL MINIPLT(TS,X1,M,K)
K(6)=10HX2 VS T

CALL MINIPLT(TS,X2,11,K,)
K(6)'40HX2 VS X1
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CALL MINIPLT(X1 ,X2,M,K)
K(6)=1OHX3 VS T

CALL MINIPLT(TS,X3,M,K)
7 FORMAT( E23.6)
6 FORMAT( I,5X,'T - ,E1O.3,5X,'H =',E15.6,3X,'ERR=',E12.6,3X,
1' PER= E12. 5,3X , 'PSDR= E12. 5)
S FORMAT(46X,"ERL=',E12.6,3X,'PEL-',E12.5,3X,'PSDL=',El2.5,/)
1 FORMAT(E20.7)
2 FORMAT(I1O)

STOP
END

SUBROUTINE DERIV(F, X,T)
DIMENSION X(20) ,F(20)
CONMON/DR/SKX,DKY,BG,W,PI,SPI,DVR,DVL,CL,BR,PSDR,PER,PEL
1,ERR,ERL,XSC2O).,H,DM,BM,FXLS,FYLS,FXRS,FYRS

C ECCENTRICITY AND ATTITUDE ANGLE INCREM'ENTS
E=X(13)*BC $ ES=E**2
FC13)=(X(3)*X(9)+XC4)*XC 10))! (X(13)*(BC**2))

E=X(15)*BC $ ES=E**2

21 Dl=(l.-(XC13)**2))
D2=X13)/(DI**2)

D4=(D3*(X(13)**2)+1.)
DO 46 I=13,14
K 1+2
F(I)=F(I) /PSDL

46 'F(K)=F(K)/PSDR
C BEARING FORCE CALCULATION

FEL=-(((1 .-2.*F(14))*2.*(X(15)**2)/(D1**2))+(PI*FC13)*
1(I.+2.*(X(13)**2))/(D1**2.5)))

1-(4 .*F(13)*X(13)/I D1**2)))
FM=DVL*PSDL*BR/ (2 .*(BC**2))
FXL=((FEL*SINCX(14) )+FPL*COS (X(14) ))*F)-FX(JS
FYL=CC-FEL*COS(X(14))+FPL*SIN(X(14) ))*FM)-FYLS

D2=X(15)/CDl**2)
D3=((16./SPI)-1.)
D4 (D3* (XC 15) **2)+1. )

1(1.+2.*(X(15)**2))I(D1**2.5)))

1-(4.*F(15)*X(15)/(Dl**2)))
FM=DVR*PSDR*BR/ (2. *(BC**2))
FXR-(CFER*SIN(X(16))+FPR*COS(X(16)))*FM>-FXRS
FYR-((-FER*COS(X(16))+FPR*SIN(X(16)))*FM)-FYRS
DO 49 1=13,14
K-1+2
F(I)=F(I)*PSDL
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49 F(K)=F(K)*PSDR
DO 57 1-1,6

57 X(I)=X(I)-XS(I)
C STATE VARIABLE INCREMENTS

F(1)-X(7)
F (2) =X (8)
F(3)='X(9)
F(4)=X(1O)
F(5)=X(11)
F(6)=X(12)

F(8)-(-(X(2)-X(4) )-(X(2)-X(6) ))*SKY/DM
F(9)=~(-SKX*(X(3)-X(l) )+FXL) IBM
F(1O)-(-SKY*(X(4)-X(2) )+FYL) IBM
F(11)-(-SlCX*(XC5)-XC1))+FXR)/BM
F(12)-(-SKY*(X(2) )+FYR) /BM
DO 58 1-1,6

58 X(I)=XCI)+XS(I)
RETURN
END

SUBROUTINE RK4(F,Y,X,NN,HH)
C 4TH ORDER RUNGE-KUTTA

DIMENSION Y(20),FC20)
DIMENSION SAVEY(20) ,PIII(20)
N=-NN $ H-HH
MO

I M=M+1
CALL DERIV(F,Y,X)
GO TO (2,3,4,5),M

2 DO 22 J=1,N
SAVEY(J)=Y(J)
PHI (J)-F(J)

22 Y(J)-Y(J)+.5*F(J)*H
X-X+. 5*H
GO TO 1

3 DO 33 J=1,N
PHI(J)-PHI(J)+2 .O*F(J)

33 Y(J)=SAVEY(J)+.5*H*F(J)
GO TO 1

4 DO 44 J-1,N
PHI(J)=PHI(J)+2 .O*F(J)

44 Y(J)=SAVEY(J)+H*F(J)
X-X+. 5*H
GO TO 1

5 DO 55 J-1,N
55 YCJ)-SAVEY(J)+(PHI(J)+F(J))*H/6.O

RETURN
END
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A.2 Linear Rotor Bearing System Model Programming

PROGRAM RWE4 (RWE4 ,OUTPUT, TAPE5-RWE4 ,TAPE6=OUTPUT)
DIMENSION A(40,40),XR(40),XI(40),BREC4O,40),BI(40,40)

C THIS PROGRAM GENERATES EIGENVALUES AND EIGENVECTORS FOR THE MYRICK
C ROTOR BEARING SYSTEM 1
C SKX=SHAFT STIFFNESS EN X DIRECTION=5348.6 LBF/IN-
C SKY=SHAFT STIFFNESS IN Y DIR CTION=5348.6 LBF/IN2

C BM=JOURNAL MASS=.0096 LBF§EC /IN
C DM=DISC MASS=.0875 LBFSEC /IN
C W = 11(JOURNAL + DISC) WEIGHT=20.625 LBF 2
C DVL=BEARING FLUID DYNAMIC VISCOSITY (LBFSEC/IN)
C CL=JOURNAL LENGTH=1.603 IN
C BR=-JOURNAL RADIUS=1.081 IN
C BC=JOURNAL TO BEARING RADIAL CLEARANCE=.003 IN

READ(5, 11)SKX,SKY,BM,DM,W,CL,BR,BC
PI=3.1415927
SPI=9 .8696044
DVL=5.OE-06 $ DVR-5.OE-06

C SET INITIAL ECCENTRICITY RATIO
ERR=.075 $ ERL=.075
PRINT 11,DM,BM
PRINT 11

21 D1=(1.-(ERR**2))
D2=ERR/ CD1**2)
D3=(C16.ISPI)-1.)
D4=CD3*(ERR**2)+1.)

C CALCULATE ANGULAR VELOCITY
PSDR=-4 .*W*(BC**2)*(D1**2) /(PI*DVR*CL*ERR*SQRT(D4)*BR)
FM=DVR*PSDR*BR/ (BC**2)
FMD=FM/PSDR
PER=-ATAN( (PI/4.)*SQRT(DI)/ERR)

C CALCULATE BEARING COEFFICIENTS
BKEER=FM*(-2.*D2-(D2*CERR**2)*4./D1) )/BC
BKEPR=-PI*FM*ERR/ (4. * CD**1 .5) *EB1R*BC)
BDEER=-PI*FND*C1.+2.*(ERR**2))/C2.*(Dl**2.5)*BC)
BDEPR-2 .*ERR*D2*FMl/ (ERR*BC)
BKPER-FM*(CPI/C4.*CDI**1.5)))+C.75*PI*(ERR**2)/C(Dl**2.5))))
1/BC
BKPPR=-ERR*D2*FM/ (ERR*BC)
BDPER=2.*(D2/BC)*FMD
BDPPR=-PI*FMD*ERR/C2.*(Dl**1 .5)*ERR*BC)
S-S IN (PER)
C=COS (PER)

C BEARING COEFFICIENTS IN X-Y FORM
BKXXR=( (BKEER*S+BKEPR*C) *S+(BKPER*S+BKPPR*C) *C)
BKXYR=( (-BKEER*C+BKEPR*S) *S+(-BKPER*C+BKPPR*S) *C)
BKYXR=(-CBKEER*S+BKEPR*C) *C+(BKPER*S+BKPPR*C) *S)
BKYYR=C-(-.BKEER*C+BKEPR*S) *C+(-BKPER*C+BKPPR*S) *S)
BDXXR=( CBDEER*S+BDEPR*C)*S+(BDPER*S+BDPPR*C) *C)
BDXYR-( (-BDEER*C+BDEPR*S) *S+(-BDPER*C+BDPPR*S)*C)
BDYXR-(-(BDEER*S+BDEPR*C) *C+(BDPER*S+BDPPR*C) *S)
BDYYR=(-(-BDEER*C+BDEPR*S)*C+(-BDPER*C+BDPPR*S)*S)
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NC=O $ N-12
C INITIALIZE A MATRIX

DO 26 I-1,N
DO 27 J-1,N

27 A(I,J)=O.O
26 CONTINUE

DO 3 I=1,6
KI=I+6
A(I,KI)1I.

3 CONTINUE
C LOAD A MATRIX

A(7,1)--(SKX*2.)/DM
A(7 ,3)-SKX/DM
A(7 ,5)-SKX/DM
A(8,2)=-(SKY*2. )/DM
A(8 ,4)=SKY/DM
A(8, 6) =SKY/DM
A(9, 1)-SKX/BM
A(9 ,3)=-(SKX4-BKXXR) IBM
A(9,4)--BKXYR/BM
A(9 ,9)--BDXXR/BM
A(9, 1O)=-BDXYR/BM
A(1O, 2)-SKY/BM
AC 10,3)=-BKYXR/BM
A(10,4)=-(SKY+BKYYR) IBM
A(1O, 9)=-BDXYR/BM
A(10, 10)=-BDYYR/BM
A(l , 1)=SKX/BM
A(11 ,5)=-(SKX+BKXXR) IBM
AC 11,6) =-BKXYR/BM

A(11, 12)--BDXYR/BM
A(12,2)=SKY/BM
A(12,5)--BKYXR/BM
A(12,6)=-(SKY+BKYYR)/BM
A(12, 11)=-BDYXR/BM
A(12, 12)--BDYYR/BM
DO 89 11-1,12
DO 88 JJ-1,12

88 A(II,JJ)--A(II,JJ)
89 CONTINUE

J= 1
C CALCULATE EIGENVALUES AND EIGENVECTORS

CALL QRHMOD(A,N,J,XR,XI,BRE,BI)
PSDR=-PSDR
PRINT 2,PSDR,ERR,PER

C PRINT EIGENVALUES
PRINT 30,(XR(I),XI(l),I=1,N)
PRINT 11
PRINT 11

C INCREMENT ECCENTRICITY RATIO
ERR=ERR-.0001
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IF(ERR.LT. .074)GO TO 23
IF(ERR.GE. .25) GO TO 23
GO TO 21

23 CONTINUE
C PRINT EIGENVECTORS

PRINT 30,(CBRE(I,J),BI(I,J),I-1,N),J-1,N)
2 FORMAT(9X, 1 PSDR - ',E12.4,3X,"ERR =',E12.4,3X,'PER =',E12.4/)

30 FORMAT(5X,E15.6,5X,E15.6)
11 FORMAT(E15.6)
6 FORMAT(1OX,7E15.5/)
STOP
END

4:L A
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A.3 Linear Rotor Bearing System and Labyrinth Seal - Coupled (RWE4S)

and Isolated Seal and Disc (RWE4P) Programming

PROGRAM RWE4S (RWE4S ,OUTPUT ,TAPE5-RWE4S ,TAPE6-OUTPUT)
DIMENSION AM(40,40) ,XR(40),BRE(40,40),BI(40,40) ,PC(4,4)
DATA PC/16*O./

C THIS PROGRAM GENERATES EIGENVALUES AND EIGENVECTORS FOR A ROTOR
C BEARING SYSTEM WITH SINGLE LABYRINTH SEAL
C SKX- X DIRECTION ROTOR ELASTICITY-5348.6 LBF/IN
C SKY- Y DIRECTION ROTOR ELASTICITY-5348.6 LBF/IN
C BM - JOURNAL MASS=.0096 LBF*SEC2/IN

C DM - DISC MASS-.0879 LBF*SEC2/IN
C W - WEIGHT OF ROTOR BEARING SYSTEM ROTATING PARTS=20.625 LBF
C CL = JOURNAL LENGTH-1.000 IN
C BR = JOURNAL RADIUS-1.081 IN
C BC - RADIAL BEARING CLEARANCE=.003 IN
C CLC- LABYRINTH SEAL AXIAL LENGTH

C WD - LABYRINTH SEAL CIRCUMFERENTIAL LENGTH-PI*RD*2.
C PSI- UPSTREAM SEAL PRESSURE
C TI - SEAL TEMPERATURE=560R
C R - GAS CONSTANT (AIR)-247104 IN2/SEC2R
C A = UPSTREAM SEAL STRIP HEIGHT
C B - DOWNSTREAM SEAL STRIP HEIGHT
C DC = DISC TO SEAL RADIAL CLEARANCE
C AMNI- INITIAL UPSTREAM MACH# (ASSUMED)
C CK = SPECIFIC HEAT RATIO
C CWB- DOWNSTREAM SEAL STRIP DISCHARGE COEFFICIENT
C PSE- SEAL DISCHARGE PRESSURE
C DV - SEAL FLUID DYNAMIC VISCOSITY
C SPI- PI**2
C ERR,ERL- JOURNAL ECCENTRICITY RATIOS, RIGHT&LEFT JOURNALS
C RD - DISC RADIUS
C VK - KINEMATIC VISCOSITY

READ(5,11) SKX,SKY,BM,DM,W,CL,BR,BC,CLC,WD,PSITI,R,A,B
1,DC,AMNI,CK,RD,CWB,PSE
DV-2.8E 09
PI-3.1415927
SPI-9. 8696044
CK-(CK-1.)/CK $ CK1R-1./CK1 $ CKR-1./CK
CK2- (CK+1.) / (2.* (CK- 1.))
CK3-(3.-CK)/(2.*(CK-1.))
CK4-(CK-1.)/2. $ CK5-(CK+.)/2. $ CK5Rf1./CK5
CK6-CK2*2. $ CK7-(I.-2.*CK)/CK
CK8-SQRT(1 .+CK4)
CK9- (l./CK5)**CKlR

CKIO-I. /((l.4+CK4)**CK2)
CK1 1=SQRT( (CK/R)*(CK5R**CK6))

C BEARING FLUID DYNAMIC VISCOSITY
DVL-5.OE-06 $ DVR-5.OE-06

C INITIALIZED JOURNAL ECCENTRICITY RATIO (VALUE AS REQUIRED)
ERR-.076

C ITERATE SEAL PARAMETERS
DC 22 IBI-1,1O
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C SEAL ENTRANCE/EXIT AREAS
21 AB=(DC-B)*4D

AA-(DC-A) *Wr
C CALCULATE SEAL CHAMBER PRESSURE

AN -AMNI
24 FMAS-AINS((l .+CK4*(AMNS**2))**CK2)

PNP=1 ./((1.+CK4*CAMNS**2))**CK1R)
CWA--.3179464*PNP+.9123729
IF(AMNS.LE.O.)AMNS=O.
IF(AMNS.LE.O.)GO TO 37
PN-PNP*PS I
AMN=SQRT((1 ./CK4)*(((PSI/PN)**CK1)-1.))
CWB--.3179464*(PSE/PN)+.9123729
BMNS=SQRT((1 ./CK4)*(C(PN/PSE)**CK1)-1 .))
IF(BMNS.GE. 1)BMNS-1.
IF(BMNS.GE . )CWB.74
FMBS-BMNS/ ((1 .+CK4* CBMNS**2) )**CK2)
PNN=AA*PSI*FMAS*CWA/ (AB*pMS*CWB)
IF(BMNS .GE. 1.)PNN-PSE/CK9
IF (PNN. GT .PN) AMNS-AMNS- .00001
IF(PNN.LT.PN)AMNS-AIINS+. 00001
IF(PNN.LE.(PN+.OO5*PN).ANqD.PNN.GE.(PN-.OOO5*PN) GO TO 37
IF(AMN.GE. 1.)AMNS-1.
GO TO 24

37 1K-i $ N-16 $ NN=20 $ MMl10 $ NP=4
PRINT 11 ,AMN,AMNS,BMNS,PN,PNN
PRINT 11
AHNI-AMN
Dl=(1.-(ERR**2))
D2-ERR/ (D1**2)
D3-((16./SPI)-1.)
D4-(D3*(ERR**2)+1.)

C CALCULATE ROTOR ANGULAR VELOCITY
PSDR=-4 .*W*(BC**2)*CD1**2) /(PI*DVR*CL*ERR*SQRT(D4)*BR)
FM-DVR*PSDR*BR/ (BC**2)
FMD=FM/PSDR

C CALCULATE JOURNAL ATTITUDE ANGLE
PER-ATAN((PI/4.)*SQRT(D1) /ERR)

C CALCULATE BEARING COEFFICIENTS
BKEER-FM*(-2.*D2-(D2*(ERR**2)*4./D1) )/BC
BKEPR--PI*FM*ERR/ (4 .*(Dl**1 .5)*ERR*BC)
BDEER--PI*FMD*CI.+2.*(ERR**2))/(2.*CDl**2.5)*BC)
BDEPR-2 .*ERR*D2*M/ (ERR*BC)
BKPER-FM*((PI/(4.*(D1**1.5)))+C.75*PI*(ERR**2)/C(DI**2.5))))
1/BC
BKPPR--ERR*D2*FM/ (ERR*BC)
BDPER2 . *(D2/BC) *FMDi
BDPPR--PI*FMD*ERR/C2.*(D1**1 .5)*ERR*BC)
S-SIN (PER)
C-COS (PER)
BKXXR-( CBKEER*S+BKEPR*C)*S+(BKPER*S+BKPPR*C) *C)
BKXYR-( (-BKEER*C+BKEPR*S)*S+(-BKPER*C+BKPPR*S) *C)
BKYXR-( -(BKEER*S+BKEPR*C)*C+(BKPER*S+BKPPR*C) *S)
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BKYYR-( -(-BKEER*C+BKEPR*S)*C+(-BKPER*C+BKPPR*S)*S)
BDXXR-C (BDEER*S+BDEPR*C) *S+(BDPER*S+BDPPR*C) *c)
BDXYR- (-BDEER*C+BDEPR*S) *S+(-BDPER*C+BDPPR*S) *c)
BDYXR-( -CBDEER*S+BDEPR*C) *C+(BDPER*S+BDPPR*C) *S)
BDYYR-( -(-BDEER*C+BDEPR*S) *C+C-BDPER*C+BDPPR*S) *S)
ACH-CLC*WD
ED-ERR*BC

C ZERO A MATRIX
DO 26 1-1,N
DO 27 J-1,N

27 AM(I,J)-O.O
26 CONTINUE

C Xl THRU X6 INITIALIZATION IN AM
DO 3 1-1,6
KI=I+6
AM(I,KI)-1.

3 CONTINUE
RD2-RD/2.
PSDU--PSDR*RD
HN-DC
AA-(HN-A)*WD
ABin(HN-B) *WD

C SEAL FRICTION COEFFICIENTS
UN=(PSDU/2.)

C REO-REYNOLDS# AT SEAL BASE
REO=ABS (PN*UN*HNI (2. *R*TI*DV))
FFEO=-1 .14.38
AFO.04176
IF(REO.GT.1 .E+O5)FFEO=-1 ./7.4
IF(REO.GT.l1.E+05)AFO=.01423

C REI=REYNOLDS# AT DISC
REI-ABS (PN* (PSDU-UN) *HN/(2. *R*TI*DV))
FFEI--l1./4.48
AFI-.04176
IF(REI.GT.1 .E+05)FFEI=-l./7.4
IF(REI.GT.1 .E+05)AFI-.01423
FFNI-- . /FFEI
FFNO-1. /FFEO

C DISC AND SEAL BASE FRICTION FACTORS
FF1- CREI**FFEI) *AFI
FFO=(REO**FFEO) *AFO
RTUR*TI

C SEAL AXIAL FLOW COEFFICIENTS
BK-SQRT (CK/RT) *PSE

C DISCHARGE COEFFICIENT AT B
CWBN=-. 3179464*(PSE/PN)+. 9123729
CWBK-.3179464*PSE/ (PN**2)

C MACH# .LE.1
IF((PSE/PN) .LE.CK9) GWEN-. 74
IF( (PSE/PN) .LE.CK9)CWEK-O.

C MACH#P AT B .LE.1
BMN-SQRT((1.ICK4)*(((PN/PSE)**CK1)-l.))
IF((PSE/PN) .LE.CK9)BMN-1.
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GNB1-(l..+CK4*(BMN**2))
GMB-SQRT(GMB1)
FMB-BMN*GMB
FMK((CK4*((BN**2))+GMB1)/GMB)*(PSE**CK7) /
I.( (PN**CKR) *CK*BMN)

C AXIAL FLOW AT B-COEFFICIENTS
PIIBK-BK*AB* (CWBN*FMBK+FMB*CWBK)
HMBK-BK*CWBN*FMB*WD

C DISCHARGE COEFFICIENT AT A
CWAN--.3179464*(PN/PSI)+.9123729
AI(-SQRT(CK/ (R*TI) )*PSI
CWAK=-. 3179464/PSI
IF( (PN/PSI).LE. CK9) CWAN-. 74
IF( (PN/PSI) .LE. CK9) CWAK-O.
AMN-SQRT((l./CK4)*C((PSI/PN)**CK1)-1.))
IF((PN/PSI) .LE.CK9)AMN-1.
GMA1-(1 .+CK4* (AMN**2))
GKA-GMAl**CK2
FMA-AMN/GMA
FMAK--(GMA-(AMN**2) *CK5*(GMA1**CK3) )*(PN**CK') /(C GMA1**CK6)
1* (PSI**CKR) *CK*MN)

C AXIAL FLOW AT A-COEFFICIENTS
PMA-*A* (CWAN*FMAK+FKA*CWiAK)

C CONTINUITY EQUATION COEFFICIENTS
CIPT-CLC*HN
CiP- (PMAK-PNBK) *RT/WDT
C 1H- (HMAK-HI4BK) *RT/WD
C1US--CLC*PN*HN
ClPS-CLC*HN*UN
ClHT--CLC*PN
C 1HS--CLC*PN*UN
FFOE- (FFNO+1.) *FFO
FFIE-(FFNI+1 .)*FFEI
VK-DV*RT/ PN

C MOMENTUM EQUATION FRICTION TERMS
FIPK=-(AFI/FFNI) *(REI**FFIE) *( (PSDU-UN) **3) *HN*PN*CLC
1/(4 .*DV*(RT**2))
FOPK-(AFO/FFNO)*(REO**FFOE) *(UN**3) *HN*PN*(CLC+2. *HN)

11(4 .*DV*(RT**2))
FIHI=( (AFI*UN/FFNI) *((C(PSDU-UN) *HN/ (2. *VK) )**FFIE))

1*PN*(C(PSDU-UN) **2) *CLC/ (4. *RT*VK)
FIUK- ((AFI*HN/FFNI) * (((PSDU-UN) *HN/ (2. *K) )**FFIE))
1*PN* ((PSDU-UN) **2) *CLC/ (4.*R*K
FOHK-((AFO*UN/FFNO)*( (UN*HN/ (2 .*Vl) )**FFOE))

1*PN*(UN**2)*(CLC4.*HN) 1(4 .*RT*VK)
FOUK- ( AFO*HN/FFNO) *(C(UN*HNI (2. *VK) )**FFOE))
1*PN*(UN**2)*(CLC+2.*HN) 1(4.*R*V*K)

C MOMENTUM EQUATION COEFFICIENTS
C2P-(.5*(FFI*((PSDU-UN)**2)*CLC FFO*(UN**2)*(CLC+2)*HN))/RT

1)+FIPK4-FOPK
C2Hin(-FFO*rN*(UN**2) /RT)+FIHK+FOHK

C2U-(-FFI*PN*(PSDU-UN)*CLC/RT)-(FFO*PN*UN*(CLC+2. *IN) /RT)-4FIUK+4



161

1FOUK
C2PT--CLC*UN*HN/RT
C2PS--CLC*HN* ( ((UN**2) /RT-1.)
C2UT--CLC*PN*HN/RT
C2US--CLC*PN*2.*jJN*IIN/RT

C C2HT--CLC*PN*UN/RT
C2HS--CLC*PN*(1 .+CUN**2) /RT

C ZERO SEAL MATRIX
DO 100 IP-1,NP
DO 101 JP-1,NP

101 PC(IP,JP)-O
100 CONTINUE
C SEAL MATRIX LOADING

PC(1,1)-C1P/ClPT
PC(1 ,2)-C1PS/ (pl*ClPT)
PC( 1,4)-UJS/ (RD*ClPT)
PC(2,1)=-C1PS/(RD*C1PT)
PC (2,2) -CiP/CiPT
PC(2,3)=-C1US/ CRD*C1PT)
PC(3, 1)=-(C2P+(C1P*C2PT/C1PT) )/C2UT
PC(3,2)--(C2PS+(C1PS*C2PT/ClPT) )/I(R1J*C211)
PC (3,3) =-C2U/C2UT
PC(3,4)--(C2US+(C1US*C2PT/C1PT) )f(Pj*C2T)
PC(4, 1)=(C2PS+(CIPS*C2PT/C1PT)) /(RD*C2UT)
PC(4,2)--(C2P+CP*C2PT/C1PT) )/C2UT
PC(4,3)=(C2US+(C1US*C2PT/C1PT)) /(RD*C2UT)
PC(4 ,4) --C2U/C2UT

C DISC TO SEAL COUPLING COEFFICIENTS
CAHu.-ClH/ ClPT
CCH-(C1H*C2PT/ (C1PT*C2UT) )+C2H/C2UT
CBH"ClHS/ CRT*C1PT)
CDHin-(C2PT*C1HS/ (RD*CIPT*C2UT) )-(C2HS/ (RD*C2UT))
CAHD--C1HT/ClPT
CCHD-(C2PT*C1HT/ (C1PT*C2UT) )+(C2HT/C2UT)
KP-13
KP3-KPI3

C A MATRIX LOADING WITH SEAL COEFFICIENTS
DO 50 I-KP,KP3
DO 51 J-KP,KP3
KPJ-J-KP+1
KPI-I-KP+1

51 AM(I,J)-PC(KPI,KPJ)
50 CONTINUE

C SEAL TO DISC COUPLING
AM(7,14) =PI*RD*CLC/DM
A1(B, 13) uPI*RD*CLC/DM

C DISC TO SEAL COUPLING
AM(13,2)-CAH
A14(15 ,2)-CCH
A1(14,2)-CBH
AM(16,2)-CDH
AM(13,8)-CAHD
AM(l5,8)-sCCHD
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C A MATRIX LOADING WITH ROTOR BEARING SYSTEM COEFFICIENTS

AM(7,3)-SKX/DM
AM(7,5)-SKXDM

AM(8,4)-(-SKYM /DM
AM(8,4)-SKY/DM
AM(9, 1)-SKX/BM
AM(9,1)m-SKXBXR B
AMC9,4)-B(KXRBMXR)B
AM(9, 9) -BDXXR/BM
AM(9,91)--BDXR/BM
AM(910) -SKDYBM
AM( 10,3) -KY/BM
AM(10,3)~"-(KY+RBKYR)B
AM(10,9)--BDYRBMYR)
AM( 10,91) --BDYR/BM
AM(11 , 1)-KXY/BM
AM(11 ,5)--SKXBXR B
AM,(11,)-B(KXRBMXR)B
AM( 11,61) -BXR/BM
ANMli ,12)--BDXYR/BM
AM(11,12)--KYR/BM
AM( 12,5)--KY/BM
AM(12,6)-(SICY+RBYRM B
AM(12,1)--(SBDYYR
AM(12,112)=-BDYYRIBM

73DO89121)-,12/B
7DO 88 11-1,12
88 A88IIJJ)--AMIJJ

88 CONINUE)-M(I
89 COTIU

C ACLTJIENAUS&EGNVCOSFRA
C CALELAT ONLY AUS& IEVETR FRA

CALL QRHMOD(PC,NP,J,XR,XI,BRE,BI)

C RWE4S ONLY
CALL QRHMOD(AM,N,J,XR,XI,BRE,BI)
PSD--PSDR,
PRINT 11,A,B,PSI,PSE
PRINT 6,CLC,RD,DC,REI,REO,FFI,FFO
PRINT 2,PSD,ERR,PER

C PRINT EIGEN.VALUES
PRINT 30,(XR(I),XI(I),I-1,N)
PRINT 11

C SEAL PARAMETERS VARIATIONS
A-A+. 0005
CLC-CLC+. 0249
RD-RD+1.
PSI-PSI+. 1549
DC-DC+. 0802

22 CONTINUE
C GOTO23



163

c SPEED VARIATIONS
ERRURR.. .0
IF(ERR.LT. .074)GO TO 23

IF(ERR.GT.. .5)GO To 23

GO To 21
23 CONTINUE GNETR

C PRINT EI N),J-1,N)
PRINT 3 0,((BRF(I,J) ,BI(I)J) ,I,N), -'1,ElN) XFR ',l.

2 FORMIAT(9X,'PSDR -',El2.4,3X,'ERR 
'E243,PR ,1./

30 FORMAT(5X,E15.6,5X,E15.
6)

11 FORNAT(E15-
6)

6 FORMAT(1OX,7El5S5/)
STOP
END



APPENDIX B

B.1 Baman[13] Bearing Coefficients (Equation 3.25)

K 77-_ C - ( 4 Lt (B.2.)

K r 44 ST- L(B.3)

K~ (B.4)

B ee 1 .(B.5)

Be -= (B.6)

Bo (B.7)

[t 7rLZ/' (B.8)

B.2 XY Bearing Coefficients (Equation 3.28)

4 (K sin~ +- .. #j cDs )CosJ

KY = (B.11)

+I $(A + , Cos4\-Tin ]
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From Equation 3.49g: 3Z

From Equation 3.49i:

k-1) (k.2+I

From Equation 3.49j:

where : -- -zik IB2

and :

'L + N l -I (B20

B.4 Friction Coefficients in Seal Momen4ur1 Equation (Equation 3.52)

1 t Pa(T' (B.22)
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L,° La j ,, (o',")"

_,, , . PAK (B.3 )

where
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(Ai li -(
... . ..... .. .. .. . .. ............ II4I (B 29) II



BIBLIOGRAPHY

1. Shapiro, W. and Colsher, R., "Rotor Whirl in Turbomachinery:
Mechanisms, Analysis, and Solution Approaches"
Turbomachinery Developments in Steam and Gas Turbines
ASME Winter Annual Meeting, 27 Nov.-2 Dec. 77, pp 89-98

2. Ehrich, F.F., "Self Excited Vibration", Shock and Vibration
Handbook, Harris, C.M. and Crede, C.E. (editors)
Chapter 5, pp 1-14, 2nd edition, McGraw Hill, NY

3. Pollman, E., Schwardfeger, H. and Termuehlen, H., "Flow Excited
Vibrations in High Pressure Turbines"
ASME Journal of Engineering for Power, vol. 100, Apr. 78,
pp 219-228

4. Myrick, S.T. Jr., "Transient and Steady State Response of a Flexible
Rotor: Real Hydrodynamic Bearing Systems", PhD Dissertation,
University of Texas at Austin, Aug. 73

5. Shatoff, J., "Using Vibration Analysis to Determine the Dynamic
Health of Turbine Generators", Power, vol. 120, No. 5, May 76
pp 23-28

6. Sneck, H.J., "Labyrinth Seal Literature Survey", ASME
Journal of Lubrication Technology, Oct. 74, pp 579-582

7. Alford, J.S., "Protecting Turbomachinery from Self Excited Rotor
Whirl", Journal of Engineering for Power, Oct. 65, pp 333-344

8. Spurk, J.H. and Keiper, R., "Selbsterregt Schwingungen bei
Turbomaschien infolge der Labyrinthstr6mung", Ingenieur-Archiv,
vol. 43, 1974, pp 127-135

9. Wright, D.V., "Air Model Tests of Labyrinth Seal Forces on a

Whirling Rotor"
Turbomachinery Developments in Steam and Gas Turbines
ASME Winter Annual Meeting, 27 Nov.-2 Dec. 77, pp 61-73

10. Cameron, A., Basic Lubrication Theory, Ellis Harwood Limited, 1976

11. Kearton, W.J., "The Flow of Air through Radial Labyrinth Glands",
Proceedings of the Institute of Mechanical Engineers, vol. 169,
no. 30, 1955, pp 539-550

12. Kostyuk, A.G., "A Theoretical Analysis of the Aerodynamic Forces in
the Labyrinth Glands of Turbomachines", Teploenergetika, 1972,
19 (11), pp 39-44

168



169

13. Beaman, J.J., "Journal Bearing Forces-Short Bearing", Unpublished,
University of Texas at Austin, 1980

14. Crandall, S.H., Karnopp, D.C., Kurtz, E.F. Jr., and Pridmore-Brown,
D.C., Dynamics of Mechanical and Electromechanical Systems,
McGraw Hill, 1968

15. Egli, A., "The Leakage of Steam through Labyrinth Seals", Trans ASME,
vol. 57, 1935, pp 115-122

16. Shapiro, A.H., The Dynamics and Thermodynamics of Compressible Fluid
Flow, vol. 1, Ronald Press Co., NY, 1953

17. Saarlas, Maido, Steam and Gas Turbines for Marine Propulsion, Naval
Institute Press, Anapolis, MD, 1978

18. Meirovitch, Leonard, Analytical Methods in Vibrations, The MacMillan
Company, Collier-MacMillan Limited, London, 1967

19. Shultz, D.G. and Melsa, J.L., State Functions and Linear Control
Systems, McGraw-Hill, 1967

i



170

VITA

Anthony John Pavelko was born in Patuxent River, Maryland, on

February 3, 1953, to Anthony J. Pavelko and Mary E. Pavelko. He

completed secondary school at the Archbishop John Carroll High School,

Radnor, Pennsylvania, in 1971. He then attended and completed course

work leading to the degree of Bachelor of Science in Mechanical

Engineering at the Pennsylvania State University in 1975. Since then, he

has served as an officer in the U.S. Air Force including time spent in

The Graduate School of The University of Texas, beginning in September,

1979.

Permanent Address: 2100 Oakmont Avenue

Havertown, Pennsylvania

This thesis was typed by Joan K. Kellogg.




