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The research carried on in this project was concerned with an important

aspect of surface physics, namely the behavior of adatoms, whether impurities

or self atoms. The research dealt with three aspects of adatom binding and

mobility and each aspect is treated in a separate publication. Two of these

Ihave been published and the third is in press. They are listed below along 1

with a fourth paper which describes a special treatment for a term difficult

to evaluate. All the details of the work are now, or soon will be, available

in the open literature. Here only the principal results will be summarized.

List of Publications

a. "Binding of an Adatom to a Simple Metal Surface", H. B. Huntington, L. A.

Turk and W. W. White III, Surface Sci. 48, 186 (1975).

b. "Local Density Functional for Kinetic Energy", H. B. Huntington, Phys. Pev.

B 20, 3165 (1979).

c. "Adatom Mobility on the Surface of a Simple Metal", A. B. Meador, Te-Hua

Lin and H. B. Huntington, Surface Sci. 27, 53 (1980).

d. "Adatom Binding at the Surface Ledges of a Jellium Metal", M. D. Thompson

and H. B. Huntington, Surface Sci., in press for Vol. 116 (3) 522 (1982).

The first stage in this research is summarized in paper (a) and was actually

completed prior to ARO support. Here we treated the adatom as an Ashcroftipseudo-

p&ential ion with Herman Skillman2 valence electron wave function. For the

metal a jellium model was chosen with an electron fall-off at the surface after

the procedure of Smith.3 Parameters were chosen to simulate a sodium atom on a

sodium surface. The binding energy of adatom on the surface was obtained in

first approximation by using the Density Functional Approximation for the combined
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atom surface electron distribution as shown by the dashed curve in Fig. 1.

The solid curve shows the improvement in the energy obtained by varying the

charge distribution of the adatom.

Paper b is the work of the principal investigator aimed to simplify the

calculation of the kinetic energy contribution to such problems involving in-

homogeneous electron distributions. The research was supported by ARO.

The second phase of this research is reported in paper c, listed above.

Here a plane of metal ions has replaced an equivalent slice of the jellium

used in (a). The procedure is much the same as before. Two minor changes are

the use of a Topp-Hopfield4 pseudo-potential which avoids the discontinuity in

slope of the Ashcroft form and the change from the Smith3 expression for electron

density fall off at the surface to an error function formulation which avoids the

discontinuity in the second derivative.

The first step in the calculation is to seek a modulation of the electron

distribution parallel to the surface which will minimize the surface energy alone.

Next the adatom is allowed to approach the surface and the energies of the adatom

are calculated for three symmetric configurations: A directly above an ion of

the surface, B directly above a bridge point halfway between surface ions and C

above the center point of three or four surface ions. Calculations were performed

for four surfaces:(lll) and (200) for the fcc lattice and (110) and (200) for the

bcc lattice. For these four cases EB - E gives the motion energy for adatom

mobility; the diffusion is isotropic over these surfaces.

The most significant result of this investigation became apparent on plotting

the various energies, particularly EB - EC (see Fig. 2), as a function a designed

to measure the degree of surface close packing. The a is defined as the ratio of
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the square of the interplanar spacing to the area per surface atom. It turns

out that all energy quantities appear to depend only on a and sre quite inde-

pendent, otherwise on surface geometry, i.e. whether the net surface is tri-

angular square or rectangular. As an example of this,Fig. 2 shows the values

of the motion energy for the four surfaces considered plotted versus a.

The third phase of this work deals with vicinal surfaces, or planes

exhibiting an even spacing of atomic leges. Because of the important implica-

tion for catalysis, the binding of the adatoms at the ledges is of interest.

The same machinery invoked in paper (b) is also employed here.

The first step in the calculation was to introduce a modulated electron

distribution in the neighborhood of the ledges, using many of the devices developed

in paper (b). A fall-off parameter, this time associated with the coordinate

along the surface perpendicular to the ledges, is determined by minimizing the

surface energy.

Next an adatom on the surface is brought in to the ledge, first along the

lower terrace and then along the upper terrace. The variation of the energy

as a function of position is shown in Pig. 3. The upper curve [01 is obtained

by simply superimposing charge distributions. The lower curve [A] shows the

effect of adatom distortion in lowering the energy. As might be expected, the

surface binding energy !s increased approaching the ledge from the lower terrace -

by about 0.18 eV - whereas approaching the ledge from the upper terrace the

adatom binding energy is reduced by about 0.16 eV. There is then an effective

"ballustrade" which repulses the adatoms approaching the ledge from the upper

terrace while those from the lower terrace are captured to start a new line

extending the ledge. As a consequence it can be deduced that, for a vicinal
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surface growing, say, by vapor deposition, there will be a tendency to establish

a uniform inter-ledge separation.
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