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ABSTRACT

We prove the existence and the uniqueness of differentiable and strong

solutions for a class of boundary value problems for first order linear

hyperbolic systems arising from the dynamics of compressible non-viscous

fluids. In particular necessary and sufficient conditions for the existence

of solutions for the non-homogeneous problem are studied; strong solutions are

obtained without this supplementary condition. See Theorems 3.2, 3.9, 4.1,

4.2 and Corollary 4.3; see also the discussion after Theorem 4.1. In

particular we don't assume the boundary space to be maximal non-positive and

the boundary matrix to be of constant rank on the boundary.

In this paper we prove directly the existence of differentiable solutions

without resort to weak or strong solutions. An essential tool will be the

introduction of a space Z of regular functions verifying not only the

assigned boundary conditions but also .ome suitable complementary boundary

conditionsg see also the introduction of Part I of this work [1].
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SIGNIFICANCE AND EXPLANATION

We pursue the mathematical study of the equations governing the motion of

a compressible non-viscous fluid in some region of space, initiated in the

Part I of this work. The equations are presented in J. Serrin's article in the

Handbuch der Physik, or in the classical treatises of L. Landau-E. Lifchitz or

L. Sedov.

A rigorous mathematical study of these equations is quite difficult but

of physical interest since existence and uniqueness properties are a test of

the validity of the model under discussion. Beyond that qualitative prop-

erties of solutions often underlie the estimates derived in studying existence

problems. Finally, rigorous numerical approximations can frequently be

derived from the mathematical apparatus.

A general approach to studying non-linear equations is to use approxima-

f tion by a family of linear ones. In general different linearizations can be

found. It is important to find simple ones not only to simplify the mathemat-

ical study but also for possible use in applications, particularly linear

numerical approximations.

A study of the full non-linear equations was done by D. G. Ebin, by the

author and by R. Agemi. However, the linearizations utilized by these authors

are not the canonical one since the known results in the literature are not

applicable to the corresponding linear problem. The aim of our paper is the

study of the canonical linearized equations. Actually, we study a class of

boundary value problems for linear hyperbolic symmetric systems which con-

tains, as a particular case, the equations under consideration. To propound

the central role of linear hyperbolic systems in pure and applied mathematics

seems superfluous. We only point out that in the course of our study many

interesting problems arose - for instance, the compatibility conditions con-I necting the boundary values of the unknown vector field u to those of the

external forces f (see Section 4).

Finally, we note that the proofs given here are quite simple, and use

only basic results in functional analysis and partial differential equations.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.I



HOMOGENEOUS AND NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS

FOR FIRST ORDER LINEAR HYPERBOLIC SYSTEMS ARISING IN FLUID MECHANICS
(PART II)

H. Beirao da Veigat

1. Notations and results. In this paper we study problem (1.1) with boundary

conditions (1.2) or (1.3), the evolution counterpart of the stationary problem

(1.3.1) studied in Part I (1. This problem arises from the study of the non-

linear equations of the motion of compressible non-viscous fluids. A discus-

sion on this subject was done in Part I, which will be assumed familiar to the

reader. We start by recalling some notation.

Let T > 0 and put I -[-T,T], Rm {x e Rr_ :xI < 0), x (x2 *...,

x Mi), e I = {x:x I = 0). We denote by L (Rm) the Hilbert space of real

square integrable functions in R and by H k(R) the Sobolev space of

functions belonging to L2 (1) together with all the derivatives of order

k m
less than or equal to k. Moreover H0 (RD, k > I, denotes the subspace of

functions vanishing (only the function, not the derivatives) on the boundary

k m
s!-1 and %(R-), k ; 2, the subspace of functions with vanishing normal

derivative on the boundary. Hs(Re-1), s - 1/2, 3/2, denotes the usual

Sobolev spaces of fractional order on the boundary Rl-
1. The space of all

real functions which are bounded and continuous together with their deriva-

k m
tives up to order k will be denoted by C (R ), and the usual norm by I I

Let n and p be fixed integers, 0 4 p 4 n. We define X = [L 2R)],

y U ZR [H 2 (11mR)] Y [ H (CR )3 PX [H1R]

Department of Mathematics, University of Trento (Italy).
(1)

1.3.1. means equation (3.1) in part I, and so on; a corresponding notation

is also used for the statements.

Sponsored by the United States Army under Contract NO. DAAG29-80-C-0041.



Z - !U(RIN 0 (I xINN(0m)1'-p. in section 4 we also utilize the trace spaces
Hs

P
The canonical scalar products and norms in X and y will be denoted

by (u,v), ((u,v)), Jul and lul. Given a fixed vector field h = (h1 ,.0h)

in I x Rm we also utilize (see Part I) the families of weighted scalar pro-

ducts (ulv)h(t) and ((ulv))h(t) and corresponding norms in X and Y,

namely lulh(t) and |Ul h(t)' here h(t) stands for h(te). For

convenience we will write (u,v)t  instead of (uv)h(t) and so on. Hence

n
(u,v) t  I f UI vkkct)dx, ((uv))t  (u,v)t + (VuVv)t

t t

where (VuVv) B 7 1 To point out that X is endowed with
t j1 3x axj

the norm 1-1t we sometimes write Xt . A similar notation holds for Yt" We

note from now on that (under the choice of h(t,x) made in the sequel) the

norms 3o3 t  and S.l are equivalent in Y, uniformly respect to t e I. The

same holds for jIt and -I in X (weighted norms are also utilized in

Kato's paper [5] ). We also introduce the following forms:

n
(uV)h') I1 f h(t)dx,

h(t) . ()k-1 R

((u~v))h.~ ( + m

Moreover we put

Iht(t)l = max Ih (t)lo 1

C I 1C n C (ll )
here h1(t) stands for the time derivative.

Let now X be a general Banach space. We will utilize classical nota-

tions for Banach spaces consisting of X-vector valued measurable functions

defined on I. We don't repeat the definitions of Lq(I;X), I < q 4 +-.

AC(IiX) means X-valued absolutely continuous functions on I. The meaning

-2-



of Ck( IX) is clear. Moreover L[XaX 1 ]  denotes the Banach space of the

linear continuous operators from X into X 1 .
n ± S

Finally we define N - {u e :u . u p - 0), N {u e Rn:u
..=un  0}. P u = (uO #P u - (u1000.up)

Let now u0(x) and f(t,x) be given n-dimensional vector fields defined

in Rm and in I X Rm  respectively. We want to study the mixed initial

boundary-value problem

u ' + (L(t) + B(t))u = f in IX rm

01.1)

u(O,x) - Uo( in R

with homogeneous boundary conditions

(1.2) uk(tOx') - 0, k - 1,ooo,p, for (t,x') e I x 10-1,

or with non-homogeneous boundary conditions

(1.3) Uk(t,0,x') - Wk(t,x'), k = 1,°°°,p, for (t,x') e I x

In 1.1) the unknown u is an n-dimensional vector field defined in

I x R, moreover (2 )

1.4) Lu 2 H A 3&

where H and AJ, J - 1,',m, are n x n matrix valued functions defined

in I x RM . We assume that H is diagonal (this condition is not essential;

see Remark 1.2) with diagonal h - (h1 ,o°,h n) and that

(1.5) m (t) B inf hk(t,x) > 0, v t e I.
X e R0
l<k'Cn

We suppose that the matrices AJ  are symmetric

(1.6) a k(t,x) - ai (t , x), Vik - 1,066,n, V(t,x) e I x Rm

(2)
Matrix action is understood as multiplication from the leftj in this case

vectors are understood as column vectors.

-3- I



Furthermore B is an n x n matrix valued function (not necessarily

symmetric) defined in I x Rm . We assume that for all indices ik,J ( 3 )

(1.7) h a ,b L 1  I(R)),
k ik ik

(1.8) k daik ik 1 0-, -- , A e L (I C R())

From (1.7), (1.8) it follows that the functions in (1.7) belong to

C0(11C (R-)). Hence mo e c 0 (IR) is positive and bounded away from zero.

For convenience we use the notation IAJ (t)I - sup la (t)I
C i,k C (R)

1 4 i, k • ni similar notations will be used for other matrices and also for

norms on the boundary. Moreover IA(t)3 3 sup IAJ(t)I
C I1C.7 m C

We now give the assumptions for the matrices on the boundary. First of

all note that the boundary matrix is the restriction of Al to JP-'. We

assume that AI verifies the condition (1.2.14) or equivalently that

(1.9) A'. 1 v (t,x) e I x am-1

where K is a p x (n-p) matrix valued function defined in 1 x R - ' and

NT is it transpose; instead of (1.9) we can assume that the boundary matrix

aIt has the more general form indicated in Remark 1.2.4,(i). In this case all

the results and proofs hold again if one replaces (-TTJ by (0,T].

On the other hand we assume that the matrices Ai, , 2,0*9,m, verify

(1.2.15) or equivalently

( 1 .0 1 v(t,x) e I x
0 S

(3) In (1.7), (1.8) one can replace CI(R) by the space of all Lipschitz

continuous functions W' (R7) and C0 (3.) by the space of all bounded and

measurable functions L (3r),

-4-



where Rj and SJ  are p x p and (n-p) x (n-p) matrix valued functions

defined on 1 x R 1 . Finally the matrix B verifies (1.2.23) i.e.

I1.1B B- v , t,x) e i x -Irn-
[B 2 1B 3 1

where B1, B2 and B3 are matrix valued functions defined on the boundary,

of types p x p, (n-p) x p and (n-p) x (n-p) respectively. As pointed out

in part I we don't assume the boundary matrix Al to be of constant rank on

the boundary. Even when this condition is utilized (Corollary 4.3) the rank

is not assumed constant near the boundary. Moreover we don't assume the

operator L to be formally dissipative and the boundary space to be maximal

non-positive.

As pointed out in Part I we avoid the use of mollifiers, negative norms

and distributions by proving directly the existence of differentiable solu-

tions instead of starting by the existence of weak solutions; see for instance

the fundamental papers of K. 0. Friedrichs [3] and P. D. Lax - R. S. Phillips

161.

Remark 1.1. As for Part I, all the results and proofs hold again if the prob-

lem is posed in the whole space 11m; for this easier case it suffices to drop

in statements and proofs all assumptions and arguments concerning the bound-

ary. We get in this way a new and simpler proof for that particular case.

Concerning our results, we prove that if u0 e Y and f e LI(I;Y) then

the problem (1.1), (1.2) has a unique differentiable solution u e C 0 (I;Y) n

AC(IsX); see Theorem 3.2. clearly if f is more regular one easily gets

from Equation (1.1) more regularity for u'(t).
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Furthermore if f e L(I;x), U0 e x and w - (w 0..,w ) e LIa; H1)2

then there exists a (unique) strong solution u of problem (1.1), (1.3), with-

out any additional assumption on the operators; see Theorems 3.9 and 4.1.

The corresponding result for differentiable solutions is not true in general;

however we prove that a compatibility condition for w and the boundary

values of f suffices to guarantee differentiable solutions. This condition

is also necessary, at least in order to get smooth solutions; see Theorem 4.2

and the corresponding discussion. Note that our compatibility condition has

to hold for any time and is independent of the classical condition (4.7).

The compatibility condition is always verified if w - 0 and f e
L (IM), and in this sense the statement of Theorem 3.2 follows from that of

Theorem 4.2. We also prove that the compatibility condition is always

verified if rank M(t,x) - p on I x R11  i hence in this case a (unique)

differentiable solution exists for all pairs f,w (see Corollary 4.3).

In the sequel we give a direct proof of Theorem 3.2 which is the evolu-

tion counterpart of the proof given in Part I for Theorem 1.3.1; we show

directly that the function u(t) constructed below is an X-valued absolutely

continuous function, without resort to approximation of the time dependent

operator L(t) + B(t) by piecewise constant (respect to t) elements; for

another proof, using T. Kato's results and part I, see Remark 1.3.

Remark 1.2. As pointed out in Remark 1.2.1 the method used in these papers

still work under the following conditions on the matrix H(t,x):

(i) H(t,x) is symmetric and uniformly positive definite in I x ( (instead

of diagonal plus condition (1.5));

(ii) on the boundary I x R-1 the matrix H(t,x) has the form

Hp

(1.12) -U

0 Hn-6-



where H p(t,xl) and Hn-p(t,x') are matrices of type p x p and (n-p) x

(n-p) respectively.
(4 )

In this case the scalar products (u,v)t and ((u,v))t are defined by

(uv)t  (H(t)u,v), V u,v e X,

and
m au av

((u,v)) t  (H(t)u,v) + I (Ht) 3 . ), V u,v e y.
J=1

The operator D(t) (see Section 2) acting on Z becomes D(t)v B H(t)v -

div(H(t)VV), or more explicitely

8n m n av

(D(t)V)k - 2.h )v a .j-(2 h.Ki t) i )* k

k i i t J 1 xj i . i t 3

where (D(t)v)k is the kth component of D(t)v. Now equation D(t)v = f is

an elliptic system of n equations instead of n decoupled elliptic equa-

tions. Due to the boundary assumption (1.12) the operator D(t) is again an

homeomorphism from Z onto X (for almost all t e I) and (2.8) holds

again.

Remark 1.3. Existence theorems for abstract evolution equations (and applica-

tions) have been given by T. Kato in a sequence of well known papers (see t4],

[5) and references; see also (2]). By using Friedrich's classical method one

shows (see 15]) that Kato's hypothesis hold for the pure Cauchy problem for

equation (.1) posed in the whole space 3m . However for mixed initial-

boundary value problems like (1.1), (1.2) this was still an open problem;

nevertheless from Theorem 1.3.1 it easily follows that L(t) + B(t) is

M - 10 stable in X and in Y, for suitable constants M and U 0 ; by

combining this result with Kato's theorems one gets immediately a statement

similar to Theorem 3.2. We show the above claim in the appendix.

(4)

The regularity assumptions remain (1.7), (1.8).
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2. Some basic estimates. In this paper c denotes any constant which

depends at most on the integers m and n; N is the set of all positive

integers.

For convenience we denote by E the subset of I consisting on all

points t where at least one of the coefficients in equation (1.7) is not

in C1(R')i note that these coefficients are continuous functions in

I X R . Clearly E has zero Lebesgue measure.

From the above definitions and assumptions it easily follows that

IL(t)ILCztX
] I clA(t)lc1

j -1 J,
where AJ H AJ

, J - 1,#,m, moreover

IB(t)ILE;X] 4 cIB(t)I ,

(2.2)

where in the left hand sides IB(t)I denotes the norm of the linear oper-

ator B(t) and in the right hand sides the notation introduced in Section 1

for matrix-valued functions is used. Clearly the above estimates concerning

CI norms hold for t e I/E and those concerning CO  norms for all t e 1.

We also define as in (1.2.9) and (1.2.11) the bilinear continuous and

symmetric forms a t(u,v) and t(u,v) on X and Y respectively; these

forms are now time depending. Moreover we define A 0(t) as in (1.2.20)

0(t) E max {sup I(B(t)uu) t 2+/ 2 atuu)l I((B(t)uu)) t + 1/2 Bt(u'u)t
ma x aup sup 2uex lu 2 ueY lulI

-8-



One easily verifies that there exists a constant c such that

( ot) {o-t) cB EA(t)I + 1 IA(t)I Ih(t)I + IB(t)Jel"
0 0 m 0(t) C1 2o , 0 C1 1

0ot t CC IAtt)CIc1

We recall the following result (see Lemmas 1.2.5 and 1.2.6):

Lemma 2.1 Assume that (1.9) holds. Then for each fixed t e I/E one has

(2.3) (Lu,v)t + (uLv)t = at(u,v), Y u,v e Y,

(2.4) ((Lu,v))t + ((u,Lv))t = et(uv), v u,v e z.

In particular

(2.5) (Lu + Bu,u)tt 0 A (t)lul, Vu e Y,

(2.6) I((Lu + Bu,u))t I < 0(t)IuIt, u e Z.

Lemma 2.2 Assume that (1.9), (1.10) and (1.11) hold. Then for each t e

I/E one has

(2.7) L(t) e L[z;y), B(t) e Lyy].

Hence estimates (2.1) and (2.2) hold with y and Z replaced by

Y and Z respectively.

Finally we need some results on the operator D introduced in

(1o2.27). By definition Dk(t)f Eh - div(hkVI); here *(x) is a real

function defined in R and the operators divergence and gradient concern

only the x variable. The time variable can be viewed as a parameter. Hence

Dlt) D (t) 0

0 ~ D (t)

is a differential operator acting on n-dimensional vector fields in Rm; this

operator is well defined for each t e I/E.

-9-



Lemma 2.3 For each t e I/E the operator Dlt) is a homeomorphism from Z

onto X. Moreover for each pair t,s e I/E one has

(2.8) ((u,v))t M (u,D(t)v), V u e Y, v v e z,

(2.9) ID(t)I) L[Zix l clh(t)l I
Ihlt) I1

(2.10) ID(t)-ILxz] I 0 t)[1 + m0Ct)

Ih(t) l Ih(s)lc Ih(t)l

(2.11) ID(t)D(s) 1 1 x1., C _0 [ + _0( )  _ 0

L(X,X] m 0 (s) [i+ ];O-S + C

Proof. Equation (2.8) was proved in Lemma 1.2.9. The proof of (2.9) is

obviox.s. Let now * e x and let z e Z be the solution of D(t)z = *. By

the definitions (5)

(2.12', hz - div(hVz)

consequently (1-A)z = h- (* + Vh * Vz). well known results for the

Dirichlet and the Neumann boundary value problems for the operator I -A

yield (see [7])

(2.13) IzI ( * (14 ' + EhI Izi).
z m 0  Cl1

Now by multiplying both sides of (2.12) by z and by integrating on Rm

one easily gets Izl C m 3 ll-l. Using this estimate in Equation (2.13) one

proves (2.10).

The above estimate

(2.14) IzI 4 m 0(t)1 ID(t)zl, Vz e z, Vt e I/E,

will also be useful in Section 3.

(5)For convenience we drop the index k and the parameter t.

-10-



Finally let t,s 0 E, * e X and z - D(s) l1. By the definitions one

easily gets z - Az- h(s) 1 (* + Vh(s) * Vz). Hence D(t)z = h(t)h(s)-1(* +

Vh(s) I Vz) - Vh(t) * Vz, consequently

Ih(t)i 0

(2.15) ID(t)zl ( C0is)  111 + Ih(s)l c+ Iz] + Ih(t)tc z l.

By using now (2.14) at the point s one easily gets (2.11). 0

For the reader's convenience we also state the following result:

Lemma 2.4. Let u be an X-valued measurable function on I and let a and

8 be non-negative integrable functions on I. Assume that for all t e I

and for almost all s e I one has

(2.16) Iu(t) - u(s)l 4 Ift C(T)dTI + It-sIB(s).
5

Then u e AC[I;X).

Proof. Let E be the exceptional set of points s and let t. e ]t,s[, to

E. Then lu(t) - u(s)l 4 (Iu(t) - u(t0 )I + tu(t 0 ) - u(s)I and by the
to

hypothesis Jult) - u(s)l 4 f (r)dT + (t0-t0(t0 ) + f a(T)dT + (s - t0 M(t0
t to 0

hence

Ju(t)-u(s)l fsa(T)dT + (s - t)B(t 0).
t

Integrating with respect to to over [t,s] one easily gets Ju(t) - u(s)l

SfIs (a(T) + O(T)]dT. 0
t

-11-



3. The homogeneous problem. In the following the expressions "differentiable

solution" and "strong solution" will be used in the following senses:

let f e L (I;X) and u0 e X. A function u is a differentiable solution of

problem (1.1), (1.2) if: Mi u e c (XY) n ACCI;X); (ii) u solves

equation (1.1). Recall that u'(t) exists and is in LI(I;X). A function

u is a strong solution of problem (1.1), (1.2) if: (i) u e C0 (I;X);

( 1) 1 Mt(ii) for every pair of sequences f e L (I;Y), u0  e Y such that

(it) 1 ( i C)
f() f in L(IX) and u ) * u0  in X there exists a classical

(1) (1) (1)solution u of problem (1.1), (1.2) with data f , uO such that

U() + u in C0 (I;X). We will use indifferently the notations du

and dtu. We begin with the uniqueness result:

Proposition 3.1. Let f e LI(I;X), U0 e X and let u e L1 (I;X) be a

solution of (1.1), (1.2) in the following sense: there exist sequences

(1) 1 (1) (1)1 i)
f e L (IPX) and u, e x such that f(L) * f in L (I;X), u0  + u0

in X and the problem d u ()(t) + (L+B)u t) - f (1)(t), U() (0) - M
t U

has a solution u(A) e LI (IY) n AC(I;X) such that u() + U in LI(I;X).

Then u is the unique solution (in the sense described above) of problem

(1.1), (1.2).

Proof: Let u and v be two solutions and let f(, u () and

g() v0  , v be as in the above statement. By putting w u - v

by multiplying scalarly in Xt both sides of dw(1) + (L+B)w f - g

by w , and by using (2.5) one easily gets

1/ A ) 12 4 X (t)lw() 2 + f(A) g() 1  () 1lW ) 2

Cit t 0 t t t + 2 h(t) 1

-12-



By using Gronwall's lemma and by passing to the limit when L +, the

proposition follows.

we now prove the existence of a differentiable solution.

TheoLdm 3.2. Assume that the conditions described in section I concerning the

operators L and B hold. Let u0 e Y and f e L1(IiY) be given. Then

there exists a (unique) differentiable solution u e C0 (IIY) n AC(I;X) of

problem (1.1), (1.2). Moreover for each t e I

I ft[X0l(T) + 1/2 m0 [) - 1 Ih'(T)Ic0] dTI

(3.1) Iu(t)It  4 e 0 C * jiul + i nlL I,t L1 (0,tgYt )

hence in particular

|h(0)I It0 (T) + m0 (T) 
- h'(T)I 0dT

,u(t), 4- [, ]1/2 &

(3.2) 
0(t)

•{Iu l + IfiL }
0 + L (0,t;Y)

Finally if f e L1 (IiY) n Lq(,;X), 1 4 q 4 +", then u e wl q(I;X);

if f e LI(I;Y) n C0 (I;X) then u e C1 (I;X). The corresponding estimates are

obvious.

For convenience some lemmas will be stated during the proof. Denote by

(a), s e a base of Z and put

(3.3) u (t) - 1 ( ) as t 8 U

SSelect the real functions c( (t), s = 1,'**,t, as the solutions of
5

the linear non-homogeneous system of I ordinary differential equations

((dt u()(t),a r))t + (((L+B)u (t),a ))t M ((f,a r)) , r -,.*,A, with

initial data ((u ()(0),ar )) 0 ((u0 ,ar))0  or equivalently

-13-



_Cs)(t) + S (((L+B)a sa r))t c (t) ((f,a r))

(3.4)

I ((a sar))0 C ( (0) - ((u0 a a))0' r -

r ((asar)t belong to C0(I;R), the corresponding matrix is

invertible and (((L+B)a ear)) e L1 (I;R). Consequently problem (2.5) is

uniquely solvable in I and the solution (c 1)(t),**.,ct (0) is an

R t-valued absolutely continuous function in I. By multiplying (3.4) by

Cr 00t) and by adding in r one gets

:r

dt U1) (1)(3.5) (uuc u + (((L+B)u ,U ))t  ((f,u t

for each I e m. On the other hand
-d ( () 2 (d u(t) ),(.)

(3.6) '/2 -lu (t) t . (- u1 (t),u (t))) +1/2 ((u() tlu(1llt)))dt t dt t h~)

Moreover

-12(3.7) ((uu))h(t)I 4 m0 (t)- Ih'(t)I 0lul
2
, v u e Y.

From (3,5), (3.6), (3.7) and (2.6) one finally gets

(3.8) 1A. Iu(1)(t)ItI (/2 m-(t)"'Uh'(t)I + - W) Eu W1 2 +
dtt0 0 t

+ If(t)ItIul (01 t

Hence by comparison theorems

Ih'(r)l0

Ift 110 (T) + 1/2 A ]dTI

(3.9) lu()t)it  e0 e0 
{lu 030 + IfIL1 (Ot;Y )

for every t e 1; note that lu ( (0)10 4 u0 10 . Let L be the linear

operator defined by (Lu)(t) = L(t)u(t) a.e. in 1. By (2.1), it follows

that L is a bounded operator from L (IY) into L (UIX). Hence (3.9)

implies the existence of a subsequence u (V)and of elements u e L (I;Y) and

W e L (I;x) such that

-14-
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u(v ) + u weak-* in L (IiY),

(3.10)

(L+B)uM ) + w weak-* in L (I;X).

We utilize above a well known result on functional analysis, see for instance

(81, Chap. V, Section 1, Theorem 10. Recall also that LI(1;V)' = L (I;X),

where X' is the dual of the Hilbert space X . We remark that if we replace

LI by L2  in the assumptions (1.7), (1.8) concerning h(t) and h'(t) then

in (3.10) it suffices to sise the weak convergence in L2 ,

On the other hand from (3.4), and (2.8) it easily follows for each r v

and each t e I, that

(3.11) ((u(V) (t),ar))t ((u(V l(0),ar))0 + ft ((u(V)(T),a )h,(T)dT -
0

- ft((L+B)u (V)(),D()a r)dT + ft ((f(r),a r) dr.

0 0
By passing to the limit in (3.11) one gets

(3.12) lim ((u(V)(t),a r))t m ((u,a r))0 + ft((u(T),ar)) hIM dT -
V AD 0

- ft((w(T,D(T)a r ))dT + ft((f(T),a r)) TdT,

0 r 0

for each r e v and each t e I. Recall that D(t)ar e L (IX) thanks to

(2.9) and (1.7). From (3.12) and (3.9) it follows that

(3.13) u (V)(t) + u(t) weakly in Y , for every t e I.

Hence by (2.1) (L(t) + B(t))u t) + (L(t) + B(t))u(t) weakly in X,

for each t e I, consequently w - (L+B)u.

Since the left hand side of (3.12) is equal to ((u(t),ar))t  a density

argument in Z shows that

-15-



(3.14) ((u(t),Z))t -(u 1 ) 0 + ft((u(z),z)) hT )dT-
0

- ((L+B)U(r[), D(T)z)dCl + ft((f(T),Z)) T V z e z.
0 0

Note that u(0) - uO by (31) 342 moreover (3.13) and (3.9) yields

(3.1).

Furthermore an easy computation shows that

(3.15) ((v,z))t =((v,z)) 8+ ft ((v,z)) hIT)dT, v v,z e Y,

for every t,s e i, consequently (3.14) yields the following statement:

Lemma 3.3. Let u be the function obtained above. Then for every pair s,t

ezI one has

(3.16) ((u(t),z))s - ((u(s),z))5 = It ((u(T),z)) h.(T) dr -
88

ft((u(t),z)) hI(T) dr - ft((L4B)u(r),D(T)z)dT +ft((Tz) d,

for every ze Z.

Corollary 3.4. The function u is a Y-valued weakly continuous function

in 1(6).

Proof. From (3.16) one has lim((u(t),z)), - ((U(s),z)),, v z e z.
t+S B

Moreover Z is dense in Y5  and u(t) is uniformly bounded in YB * Hence

when t + s one has u(t) 'u(s) weakly in YB. hence in Y.

(6 )Actually U is strongly continuous; see Lemma 3.7 below.



Proposition 3.5. The function u is an X-valued absolutely continuous

function in I, i.e.

(3.17) u e AC(I;X).

Proof. In the sequel we denote by K0 different constants which will not be

specified. Since u e L(I;Y) one easily gets, by using (2.14), that for

each s e i/E:

(3.18) Ift ((u(T),z)) hl) dTl ( K 0ftlh'(TcI 0 drl ID(s)zl,
s0

a a C

(3.19) Ift ((u(t),z)) h()dTj K0 Iftlh'(vll 0d [ (D(s)zl,
a S C

(3.20) Ift((f(T),z)) Tdtl 4 K0lft If(T)EdTl ID(s)zl.
S S

Moreover

Ift ((L+B)u(T),D(T)z)dTI 4 3(L+B)ul IftD(TIDls-lL[ xl I IO(s)zl.

a L (I;X) s

Hence by preceding estimates and (2.11)

(3.21) Ift((L+B)u('i)'D(T)z)dTl 4 (K0(t-s)[1 + Ih(s)I 3 +
0C

+ K 0Itlh(T) dTl} ID(s)zl,
a C

for each 9 e i/E. From (3.16) and from the above estimates it follows that

(3.22) ((u(t)-z(s),z)) a 1 {Ii t Q(T)dTI + It-slO(s) ID(s)zl, Vt e I, v s e l/E,

where C and 0 are real non-negative integrable functions in I. On the

other hand a classical result on functional analysis yields

Iu(t)-u(s)l - u Is(u(t)-u(s)',(s)z) , v s e i/E,
zez ID(s)zl

since D(s)Z - X. Since ((u(t)-u(s),z))5 = (u(t)-u(s),D(s)z) one gets lu(t)

- u(s)I 4 Ift a(T)dtl + It-sl(s); by Lemma 2.4 the statement follows.
a

0
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Lemma 3.6. The function u verifies equation (1.1) 1 almost everywhere.

Proof. By (3.17) the derivative ul(t) exists and is in L1(IiX). Hence it

suffices to verify that there exists a subset Elc I of zero Lebesgue

measure such that for each z e Z

(3.23) urn ( ut-us F D(s)z) - ((L+B)u(s)-f~s),D(s)z), v t e I/E1

Let us verify (3.23). From the definitions one has

(3.24) 1 f ((u(t),z)) dT -(u~rt), -j- fthl(T)dr :Z)
t-s hv(T) -

a a

+ I ( u~(tj.. ft h(T)dT %az
ax1 J 8 3

where for convenience a:z is the vector with components (a:z)k = a kvk,

k - ,,. on the other hap-J~ u(t) is X-valued weakly continuous in

I since u~t) is Y-valued weakly continuous and axie L[YX]. Moreover by

(1.8) and by a well known generalization of a Lebesgue's theorem there exists

a subset E1 c I of zero measure such that

liii -I ft h'(T)dT - h'(s), v s e lIE1,
t~s t-

where the limit is in the C C r) norm. Hence by passing to the limit in

(3.24) one gets

(3.25) lrn j-L It((u(t),z)) ,TdT - ((u~s),z))hI) v a e I/E1

Now by dividing both sides of (3.16) by t-s, by using (Cu(t)-u(s),z)),

-(U(t)-u(s),D(s)z) and by passing to the limit when t + s one gets

(3.23). Note that the functions in the first, third and fourth integrals on

the right hand side of (3.16) are integrable on 1. 13



Lemma 3.7. The function u is in C(I;Y).

Proof. From (3.1) one gets lim suplu(t)lt C Iu(O)l 0 and by (3.26) below it
t+O

follows that lim suplu(t)l0 4 lu(O) 0; hence Corollary 3.4 yields u(t) + u(O)
t+0

strongly in YOO hence in Y. Now from the uniqueness of the solution it

follows the strong continuity of u(t) in every point t e I. 1

The last statement in Theorem 3.2 follows directly from equation (1.1),

as well as the corresponding estimates. Hence it remains only to show (3.2).

This estimate follows easily from (3.1) and from the estimates

2 m 2(t)" , 2 2 h(0 and

t0 0ft mo0()- I h'(Tl 0 cdTl

(3.26) Ivl s • Ivl2  V v e Y.
t S

To verify (3.26) use the estimate

dh (t) 0

'dIl ~ molt) t
0 Wt

Note by the way that (3.26) also holds with Ivit  and IvIs replaced

by Iv t and 1v1 s respectively. Theorem 3.2 is proved. 3

Remark 3.8. If h is not time dependent a shorter proof of Theorem 3.2 is

obtained by showing that (notation of Part I)

((u(t),ar))h = ((u0,ar))h + ft (f(T)-(L+B)u(T),Da r)dT, V r e R;
0

from this equation one easily sees that u is a solution because it verifies

the integral equation

ut) - u0 + f't f(T) - (L+B)u(T)jd'r, V t e 1.

0
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The existence result for this particular case can also be utilized to get

the existence for the general case; to this end one extends it succes-

sively to the following cases: (i) h(t) is a piecewise constant function

1 M n 0(respect to t) with values in (C (R-)]n; (ii) h(t) e C0 (I [(R)]n),

(iii) h(t) e LI(I (C1( r]n).

We now prove the existence of strong solutions for the homogeneous

boundary value problem.

Theorem 3.9. Let f e L (I;X) and uo e X. Then there exists a unique

strong solution u of problem (1.1), (1.2). Moreover u satisfies the estimate

It (' (T) + 1/2 O Ml' h'()IoIdTl

(3.27) lu(t)lt  4 e 0 flu + II (Ot: X ,

and also the estimate (3.2) with Iu(t)I, uOI and Ifril replaced
L(O,tY)

_ lu(t)i, luol and I1f1 respectively.
LI(O,tIX)

(2) (2) 1I (2) U
Proof. Let u0  e Y and f e L(Y), L e N, be such that u0

strongly in X and f(M + f strongly in L(I(X). Let u ( 1 ) e c0 (1y) n
dt()() () (2.)

AC(I;X) be the solution of d u + (L+B)u( f) u ()(0) u u0•

By multiplying both sides of the last equation (scalarly in Xt) by u

one gets (dtu (itt), u (it))t+ ((L+B)u (1)(t), u ()(t))t

" (f() (t),u (t)) t. On the other hand

1/ (. (t. 2 d 1  1  )/lt (lt)ul
l2 l jIu 1 t) t 2 ( -1 --- , U+ 1/2 ( M O 1

th'(t)
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moreover 1(u~u) hl, m(tr lh'(t1l 0IIC OVu i, , Y. Hence, as for (3.9),

one easily gets the estimate (3.27) for the approximating solutions u ()W.

By applying this last estimate to ua ()M - u ()(t) one shows that u() is

a Cauchy sequence in CO (IMX. Hence there exists u e C0(IX) such that

U a + in CO (IMX. Clearly (3.27) holds for u(t). Finally the last

statement in Theorem 3.9 follows from (3.27) by using formulae (3.26) with

lVI and lvIa replaced by IvIt and 1v15  respectively. 03
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4. The non-homogeneous problem. We recall some usual notations and results. If

* e H I(R) we denote by y0 the trace of * on Rl- 1. If * e H2 (R) we

denote by y the trace of the normal derivative of * on 10- 1 . It is well

known that Y0 e L[H (R0); H1/2(R7-1)], Y0 e LH 2(R); H 3/2(R-1)Y, 1 e
2 (Rl )]. It is also well known that there exists (non unique)

-1 -1
linear continuous right inverses Y0  and II in the above spaces.

In the sequel, boundary values are always to be understood in the trace

sense.

We start by studying the existence of strong solutions for the non-

homogeneous problem (1.1), (1.3). Assume that w (w,'1 1 °,w ) e LI(I;H /2)
p p

is the trace on the boundary of a function w = (Wl'',w ) such that

( e LI(I;[Hl(R1)]P),
(4.1) ' L

e L (I, [L2 (3r)]P).

We also denote by w the n-dimensional vector field w = (Wl, p,w ,O,°,O);

clearly w e L I(I;Y) and w' e L I(;X). Note that from (4.1) it follows that

; e C (lIX), consequently w(0) e X. By carrying out the change of vari-

ables u - v + w in (1.1), (1.3) our problem is equivalent to proving the

existence of a strong solution v of the homogeneous boundary value problem

v' + (L+B)v = f - Ew' + (L+B)w] with initial condition v(O) = u0 - w(O).

Since f - +w' 4 (L+B)w] e L (1IX) and u0 - w(O) e x this problem has a

unique solution, due to Theorem 3.9. Consequently the non-homogeneous problem

(1.1), (1.3) has a strong solution u - v + w in the above sense. Clearly

this solution satisfies the following property:

(S) There exist sequences f(i) e LI(lIX), u 0  e X and u e L1 CI;y) n

AC(IX) such that u -w on I x R!-, dtu(i) + (L+B)u f

()(A) () (1) 1 MA
U (0) -O U ( u0  in X, f + f in L (IPX) and u + u in C (IiX).
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Note that from Proposition 3.1 it follows that a strong solution of prob-

lem (1.1), (1.3) in the sense (S) is unique. Hence we proved the following

result:

Theorem 4.1. Let u0 e X, f e L (I;X) and w e L I(I;H 1/2 ). Moreover assume
0 p

that w verifies the regularity assumption (4.1). Then there exists a unique

strong solution u of the non-homogeneous boundary value problem (1.1), (1.3).

Moreover u e C 0(I;X).

We leave to the reader the deduction of the estimate of Iu(t)j in terms

of the data.

We are looking now for differentiable solutions for the non-homogeneous

problem. For the sake of simplicity we assume from now on that for each index

i,k,J,

J1
(4.2) k F aik e L7(i;C(Rm)).

We start by remarking that a statement similar to Theorem 4.1 fails for

differentiable solutions. In fact besides the usual compatibility condition

(4.7) between u0 and w also a compatibility condition between w and the

boundary values of f is needed (for any time t). For, assume that u0 e y,

f e L2 (11y) and w e L2 (I;H 3 / 2 ) with w' e L2 (I;HI/2 ). Let u be a differ-
p p

entiable solution of problem (1.1), (1.3) and assume u smooth in the following

sense: u e L 2 (I;Z) with u' e L 2 (I,). Define
m

(4.3) F w] w' + I R J  + W.
J=2 P J +  2 w.

F is a bounded linear operator from A 2 {w:w e L2(I; fp/2 ), w' e

L2IH /2 )1 into L 2(I,;H 2). By restricting equation (1.1) to the
p p

boundary, by applying PN to both sides and by using (1.4.3) one gets

(4.4) H1 IM(!!2-, FauE,w)
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where by definition
(7 )

(4.5) F((f,w)] - P f - F[w].
N

Hence if there exists a smooth solution u of problem (1.1), (1.3) the

equation

(4.6) H1 M(gp+ 1 °,g) = F[(f,w)],

admits at least one solution g e L2 (I;H I/2 ). Conversely, one has

Theorem 4.2. Let u0 e y and f e L2 (I;Y) verify

(4.7) P14u 0  v w(O) on R ,

and let w e A, i.e.

(4.8) weL2 (I H3 / 2 ) with w' e L2 (I;H 2 ).
P P

Assume that (4.6) has at least one solution g e L2(1; H1 ) satisfying the

additional regularity assumption: there exists g such that

(4.9) 9 - t

ax1I

with

(4.10) g e L 2(I;[H2 ()]'P), g' e L 2(I;[HI (e)]-P) ( a )

Then problem (1.1), (1.3) admits a (unique) differentiable solution u e

c0 (x;y) n AC(I;X), ul e L2 (I;X) and additionally

(7)Note by the way that the map (f,w) + FE(f,w)3 is linear-continuous from
L2(Ily) x A to L2 aH1/2

p
(8)Note that for every g e L2 ( I/2 ) there exists g such that (4.9) and
(4.10)1 hold. Hence the additional regularity assumption is only (4.10)2.
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Ih(O) 10 Ift(7o(T)+mo (T) Ih'(T)IcO JdTI

(411 u(t)I + W 1/2 ._ 0 -
* t) ] 2 e}

(nu01 + Iu(o)I + t /2 [IfI 2 + G 1 1' 2(O +

+c(nAn + IBI 1 un 2
L (O,t;c ) L (0,t;C ) L (O,tZ)

The function u depends only on the data (see below) and its norms can

be estimated from those of the data.

Proof. Define u by u j YO wi3 if J - ,**,p, and uj - gj if

1-
J - p+1,000,n. Clearly PNu = w on the boundary, moreover

,u, 2 (IZ+ ,u'l L Iy c[,w, A + IoL2MH21np)+ 'g " 2 MC II'-(|1~2z+' L2(ly I g|L~+ ~ 2(I H21 n ' P) + L (I, (HI5 n - )

(4.12)

Iu(O)l 4 c(Ig(O)I I + flu I).

IH I

By carrying out the change of variabl.j u = v + u our problem can be

written as v' + (L+B)v = f - Cu' + (L+B)u], with the initial condition

v(0) - u0 - u(O) and the boundary condition PN v = 0. By using (1.4.3),

(4.9) and the definition of u one easily gets

1 cf u + (L+B)u)] = P f- ,H- I(g *,.,gn ) +

Mw aw aw-i
+ I HR 3 -+ B w+ w] on R ,

J-2 p x IX a@t

for almost all t e I. Recalling definitions (4.3), (4.5) and Equation (4.6)

i - - 2one gets P Nf - (u' + (L+B)u)] = 0. Hence f - [U'+ (L+B)u] e L I;Y) and

by Theorem 3.2 there exists a (unique) differentiable solution v for the

above homogeneous problem, v e C 0(IY) n AC(I;X) with v' e L2 (I;X).
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Clearly u u u ,, Is a differentiable solution of the non-homogeneous prob-

lems (1.1), (1.3). Since Iu(t)I c Iu(O)I + t 1/2 L 2(0t and Iv(t)I
L 2(0,tly)

verifAes (3.2) with Iv(O)I 4 lu 01 + Iu(0)l and with

(4.13) If- (u' + (L+B)UlIL2 Ifl2 + lU'L 2 +
L(IjY) L(Isy) L (Iy)

L (IAI . I+ BI )UL2 ,(1

oae easily' gets (4.10). 0

Consider nuw the matrix M(t,x). We say that rank M=p uniformly on

M-1
I x R if the sum of the squares of the determinants of order p con-

tained in M(t,x) is bounded below by a positive constant d2  independent of

rn-i
(t,x) e I A R . We prove the following result:

Corollary 4.3. Let u0 e y, f e L 2(I;y) with f' e L2 (IX) and

(4.14) w e [H3/2(I x R ] .

Assume that (4.7) holds and that

3-1
(4.15) rank M(t,x) - p, uniformly on 1 x R

Then the non-homogeneous initial-boundary value problem (1.1), (1.3) has

a (unique) differentiable solution u 8 C0 (Ig) n AC(I;X) with u' e

L2(IXI). An estimate for |u(t)I follows from (4.10) and from the explicit

construction below.

Proof. Condition (4.14) means that w is the trace on I x Rm - 1 of a

function w verifying

(4.16) w e L(1;[HIrmPl,

WL e L2 (II 2 )l:).
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Consider for each (t,x) e I x Ir the equation

-P f + -1 + a W )(4.17) H M(g~ ,e#g f H Rj a)p p n t J2 p ax l

where the unknown is the vector field g W (gp &**lgn) defined in

I X R m . In Equation (4.17) the matrix K is extended from the boundary to

the interior by shifting it in the negative xi  direction. In particular

property (4.15) holds uniformly on I x Rm (9)"  To solve system (4.17) in

I xRm we argue as in the proof of Corollary 1.4.4 (see also part I for

notations)j one easily shows that the right hand side F of (4.17) verifies

H 1e L (IH(R)Ip), (H p e L2(I [L (R)] . Hence by using the explicit

formula (1.4.16) one gets ; e Lm ,_ P, ' ,e L(ICL"(R,-)]rp) or

cquivalently g e [H (I x 3 )] '

Clearly g Y0 g verifies equation (4.17) on the boundary, moreover the

right hand side of (4.17) coincides on the boundary with the right hand side

of (4.6)t hence g - Y0g verifies equation (4.6) and the result follows from

Theorem 4.2. Note that the existence of g verifying (4.9), (4.10) follows

from g e [H 12( x n-p. 0

(9)One could also let the coefficients have their original values in the
interior and argue in a neighbourhood of the boundary.
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APPENDIX

5. This section concerns Remark 1.3. For convenience we take in account

the time interval EO,T]i since Theorem 1.3.1, Part I holds for IXJ > 0 a

similar proof is valid for the backward problem in time.

Let D(T) c X denote the domain of L(t), the closure in X of the

operator L(t): Y + X. Clearly Y c D(t). In the sequel we denote by L(t)

both the closure L(t) and the restriction of L(t) to the subspace

(u e Y: L(t)U e Y}. Let us put for brevity L(t) L(t) + B(t).

For convenience we assume in the sequel that
J bk L1,I mN)

(5.2) hk , aik, b e L(OT;c (N)).

It follows that

(5.3) sup A0 (t) 4 C{I - 1I
te(Ou,Tj 'O L (0,TIC

2+ 1- 1A1 hl + 3. 1 }
2 L7(0,T;C ) L (OTIC I L a (0,T;C

where

inf W(t).
teco,T]

Define -1 I

2 3 z 0_Ih! a =° h L (0,TC 0)

L (0,TC 0 )

We shall prove that the family L(t), t e [0,T], is (3,P 0)-stable

in Y and in X. Denote by R(.,t) the resolvent operator of L(t) and let

0 4 k < 000 < t1 4 T (k e Y, arbitrary) and X > 0" Then for every u e

Y one has
k 2 .1 k 2

K2 i3 w R(X,t )ul 4 - w R()ti)u1

i-i i Y m0  -1 tI

and by using (1.3.2)

K2  Q.a -2 k2 R(2Lt.)ul2 t

0 0 i2 ti
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hence by (3.26)

j1 m 0 M_) 11h'(I 0 dT
K2  1 (_)2 t2  C k 2

- X2 < 0 e I V R(X,t i)uIYMa i-2 t2

By repeating this argument one gets

ft1 0 (T)" h'(-) I d,

-2k tk 22 4W 2

K 0 ( t .u 0 )'2k e I

hence

k N
I W R(Ati)Ily+YC] k'
i-i (A-io )

The (M,0 )-stability in X is proved analogously. 0
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