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ABSTRACT

Positive definite and semidefinite matrices are characterized in

terms of positive definiteness and semidefiniteness on arbitrary closed

convex cones in Rn. These results are obtained by generalizing Moreau's

polar decomposition to a conjugate decomposition. Some typical results

are: The matrix A is positive definite if and only if for some closed

T I
convex cone K, A is positive definite on K and (A+A exists and is

semidefinite on the polar cone K0 . The matrix A is positive semidefi-

nite if and only if for some convex polyhedral cone K or some general

closed convex cone satisfying a certain condition, A is positive semi-

definite on both K and the conjugate cone KA = {six T(A+A T)s<O, VxcK},

and (A+A T)x = 0 for all x in K such that x TAx = 0.
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SIGNIFICANCE AND EXPLANATION

'Positive definite matrices are those which give rise to positive

values of the associated quadratic forms for all nonzero values of

the variables. In optimization problems very often the variables are

restricted by inequalities, typically nonnegativity requirements. In

this work we characterize positive definite matrices in terms of

positive definiteness over restricted variables. This has useful

implications for optimization problems.
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The responsibility for the wording and views expressed in this descriptive
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CONJUGATE CONE CHARACTERIZATION OF POSITIVE
DEFINITE AND SEMIDEFINITE MATRICES

S.-P. Han & 0. L. Mangasarian

1. INTRODUCTION

In deriving local duality results for nonlinear programs in [4] the

following characterization of symmetric positive definite matrices was

established: An nxn real symmetric matrix A is positive definite if

and only if A is positive definite on some arbitrary subspace of the

n-dimensional Euclidean space Rn and A-1 exists and is positive semi-

definite on the orthogonal complement of the subspace. It is the purpose

of this paper to generalize this result by replacing the subspace by a

closed convex cone and dropping the symmetry of A. In particular we will

show in Theorem 3.6 that A is positive definite if and only if A is pos-

itive definite on some arbitrary closed convex cone in Rn and (A+AT) "l

exists and is positive semidefinite on the polar cone. The algebraic proof

employed in [4] breaks down in attempting to replace the subspace by a

closed convex cone and a completely different proof is given here based on

the concept of a conjugate decomposition of a vector in Rn, which is an

extension of the polar decomposition of Moreau [8), and which are define now.

1.1 Definition (Conjugate decomposition) Let K be a closed convex cone

in Rn and let A be an nxn real matrix. A point a in Rn  is said to

have a conjugate decomposition with respect to K and A if there exists

x and y such that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work supported by the National Science Foundation
under Grants ENG-7903881 and MCS-7901066.
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(1.1) a - x y, xc K, y KA:= (sIx (AAT)s<O, VxcK}

xT(A+AT)y * 0.

The closed convex cone KA is called the conjugate cone to K with

respect to A.

Note that for an arbitrary A and K it is in no way assured that-

na conjugate decomposition exists for each point a in R . If A is

taken to be the nxn identity matrix then KA degenerates to the polar

cone

Ko:- (sIsTx<O, vXeK)

and the polar decomposition of any vector a in Rn defined by

a -ax +y, with xeK, ycK, xTy= 0

is assured by Moreau's theorem [8]. One of the principal results of this

paper will be to establish in Theorem 2.3 the existence of a conjugate

decomposition for any a in Rh when the matrix A is not necessarily

positive definite nor even positive semidefinite. We shall do this by

showing that the existence of a conjugate decomposition is equivalent to

finding a stationary point of the following constrained optimization

problem

(1.2) minimize f(z):= (z-a)TA(z-a) subject to zcK.

z

Note that if x is any local minimum solution of (1.2) then by the minimum

principle [6] it must satisfy the conditions

. . .. . . .. . . . ." ' - '
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x c K, (z-x) T(A+AT )(x-a) >0, Vz K.

By taking z = 0 and z - 2x these conditions are equivalent to

xE K, zT(A+AT)(x-a) 4 0, Vz e K, xT(A+AT)(x-a) '= 0

which in turn are equivalent to

(1.3) xE K, a - x KA, xT(A+AT)(x- a) = 0.

Upon setting y:= a - x we get a = x + y and see that (1.3) is

equivalent to the conjugate decomposition (1.1). Hence we have the

following preliminary result.

1.2 Theorem Let A be an nxn real matrix and let K be a closed

convex cone in Rn . A point a in Rn has a conjugate decomposition

(1.1) a = x + y if and only if x is a stationary point of (1.2),

that is x satisfies (1.3), and y = a - x.

It is convenient to introduce now the following.

_ _ n
1.3 Definition Let K c R and let A be an nxn real matrix. Then:

(i) A is positive semidefinite on K 4-X e Kx TAx > 0

(ii) A is positive definite on K *( ,t xcK*xTAx > 0

<XK *xTAx> 0
(iii) A is positive semidefinite plus on K~xT

K0, xK(A+A T)x=0

Note that if K = Rn:= fxlx >O, xcR nj, the above three classes of matrices

in Definition 1.3 become respectively the classes of copositive, strictly

copositive and copositive plus matrices [1,5]. Note that (ii) does not in

general imply the strict convexity of xTAx on K unless K is a subspace.SO=
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With the above preliminaries at hand we can outline the principal

thrust of the paper. In Section 2 we shall establish by means of the

equivalence between (1.1) and (1.3) the existence of a conjugate decom-

position of arbitrary points in Rn for special types of cones and

matrices in Rn. In Theorem 2.3 we show that if K is a convex

polyhedral cone, or K is a general closed convex cone satisfying a

certain condition, and A is positive semidefinite plus on K then

each point in Rn has a conjugate decomposition with respect to K

and A. In Corollary 2.2 we show that if K is any general closed

n
convex cone in R , and if A is positive definite on K then each

point in Rn has a conjugate decomposition with respect to K and A.

Theorem 2.9 establishes the uniqueness of this conjugate decomposition

under the added assumption that A is positive definite on the affine

hull of K. In Section 3 we utilize the conjugate decomposition results

of Section 2 to characterize positive definite and semidefinite matrices.

In Theorem 3.1 we show that for any convex polyhedral cone or for a

special closed convex general cone, the matrix A is positive semi-

definite if and only if A is positive semidefinite plus on K and

positive semidefinite on K A. In Corollaries 3.3 and 3.4 we characterize

positive semidefinite matrices in terms of copositive and copositive plus

matrices. In Theorem 3.5 we characterize a positive definite matrix A

by being positive definite on K and KA, or by being positive definite

on K and (A+AT )- being positive semidefinite on KO. Finally

Corollary 3.9 characterizes positive definite matrices in terms of

copositive and strictly copositive matrices.

4



-5-

A brief word about notation. We shall denote the 2-norm and w-norm

of a vector x in Rn by llx112 and llxllj respectively. For an nxn

matrix A, ker A:= {xjAx=O}. For a subspace S of Rn, SI will denote

the orthogonal complement {yxT y=o, VxcS}. For a set S in Rn, cl (S),

will denote the closure of S. For f: Rn - R, Vf will denote nxl
nj

gradient vector. R+ will denote {xj >O, xcRn } while Rn will denote

{xlx.O, xeRn
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2. CONJUGATE DECOMPOSITION

We shall establish in this section a number of results which

guarantee the existence of a conjugate decomposition of any vector in

Rn. We begin with a simple existence result.

2.1 Lemma Let K be a general convex cone in Rn  and let A be an

nxn real matrix. If A is positive definite on K, then (1.2) has a

solution.

Proof By assumption, there exists y > 0 such that

xTAx>yIxII2 YxK

Define

TII(A+A )all2
S:- {xillxI 2< Y xK}

Then, for any x in K but not in S we have that

T2 _T Tf(x) - (x-a) A(x-a) > YIIxll 2 - x (A+A )a + f(O)

> xjI(fl-2 (Y 2  II(A+AT )a112) + f(O)

>f(O)

Since 0 is in S it follows that

inf f(x)= inf f(x)
xEK xeS

Therefore the existence of a solution to (1.2) follows from the

compactness of S. 0

a --. -_
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Combining Lemma 2.1 and Theorem 1.2 gives the following.

2.2 Corollary Let K be a general convex cone in Rn and let A be

an nxn real matrix which is positive definite on K. Then each vector

in Rn has a conjugate decomposition with respect to K and A.

We next give a useful sufficient condition for conjugate decomposi-

tion in terms of positive semidefinite plus matrices.

2.3 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in Rn satisfying

(2.1) K n ker(A+AT) c-K

or let K be a convex polyhedral cone in Rn. If A is positive semi-

definite plus on K then each vector in Rn has a conjugate decomposi-

tion with respect to K and A.

Proof By Theorem 1.2 we need only show that (1.2) has a solution. Let

L:= ker(A+A T) and let P(x) denote the projection on the subspace L

using the 2-norm. For any x in Rn let x = y + z with ycLl and

z L. Then

f(x) = (x-a) TA(x-a)

T T T= (y+z) A(y+z) - a (A+A )(y+z) + aTAa

A yT~y + yT(A+AT)z + zTAz aT(A+AT)(y+z) + TAa

a yTAy -a T(A+AT)y + aTAa (Since z L)

.- f(y)

Therefore

--.. ... .. , m.
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inf {f(x)lxEK} = inf {f(y)jyeP(K)1

If solves the problem

(2.2) minimize (y-a)TA(y-a) subject to yc P(K)

y

then any i in K with P(i) = is a solution of (1.2). Hence we

need only show that (2.2) is solvable for any a.

Clearly since K is a convex cone and P(.) is a linear operator,

then P(K) is also a convex cone. We want to show that P(K) is also

closed. When K is polyhedral, P(K) is closed because for any point

of closure c of P(K) the linear program inf {IHx-cIJJxEP(K)} = 0

has a solution (2,7] x in P(K) and hence c = xEP(K). When K is a

general closed convex cone then since

ker(P) = {zJP(z)=0o = L = ker(A4A T )

the closedness of P(K) follows from

T IK n ker(P) = K n ker(A+AT ) c (-K) n K

and from Theorem 9.1 of Rockafellar [9].

Let 0 t yEP(K) and let x be any point in K such that P(x) = y.

It follows from y t 0 that xi ker(A+AT). Consequently since A is posi-

T T
tive semidefinite plus on K, y Ay = x Ax > 0. By Lemma 2.1, (2.2) has a

solution, which in turn implies that (1.2) has a solution. 0

Note that condition (2.1) can be replaced by the more general condi-

tion that A(K) is closed and which is implied by (2.1).

We note here that in the polyhedral case, Theorem 2.3 can also be

established by using Eaves' existence results for quadratic programming

[3, Corollary 4].



-9-

It is important to note that condition (2.1) is essential when K

is not polyhedral as shown by the following example.

2
2.4 Example Let K = {(xl,x 2 ,x3)12xlX 3 >x2, Xl>O, x3>O}

A= 0 1 0, a=

00

Since a is not in K, since for any e > 0 the point z = (e, lI+c, ( +c- 2

is in K and (z-a)A(z-a) = 2c2 , it follows that problem (1.2) has no

solution. If a =.x + y is a conjugate decomposition of a with respect

to K and A, then it follows from the semidefiniteness of A and

Theorem 1.2 that x is a minimum solution of (1.2), which is a contradic-

tion. Hence such a decomposition cannot exist even though A is positive

semidefinite plus on K.

Under certain circumstances the roles of K and KA may be inter-

changed. This is a consequence of the following.

2.5 Lemma Let A be an nxn real matrix and let K be a general

closed convex cone in Rn  satisfying (2.1) or let K be a convex poly-

hedral cone in Rn. Then

KAA =K + ker(A+A T)

Proof Let A:- A + AT and for any set S in Rn define

A-1 (S):= {xIaxES)

Note that A'(S) is well defined even if A is not invertible. Since
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KA = {ylyAx<O, VxcKI = {yIAyKO} z A'l(KO)

It follows that

(KA)o = (A-'l(K*))o = cl(A(KOO))

where the last equality follows from Rockafellar's Corollary 16.3.2 [9].

Hence

(KA)O = cl (A(K))

When K is a convex polyhedral cone, as seen in the proof of Theorem 2.3

cl(A(K)) = A(K). When K is a general closed convex cone satisfying

(2.1) it follows from Theorem 9.1 of Rockafellar [9] that cl(A(K)) =A(K).

Hence

KAA  A'(K(A)°) = A'I(A(K)) = {ylAyeA(K)}

Consequently

yK AA  " Ay = Ax for some xcK

* y - xcker(A) for some xeK

y K + ker(A) . 0

Lemma 2.5 can now be used to replace K by KA in Theorem 2.3.

2.6 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in Rn satisfying (2.1) or let K be a convex

polyhedral cone in Rn. If A is positive semidefinite plus on KA

then each vector in Rn. has a conjugate decomposition with respect to

K and A.

f* ,

II " ° m . . ... . .,...
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Proof It is evident that KA is a closed convex cone. Furthermore,
T  A 'A A T Aker(A+AT c-K nK. Hence K n ker(A+A) c-K. By applying Theorem 2.3

A nto the cone KA instead of K we have that for any vector a in R,threA KAAT T

there exist yeK and ReK such that a = A + 9 and 9T(A+A )R=0.

By Lemma 2.5 there exist x in K and z in ker(A+A such that

A AX= x+ z. Let y= +z, then a = x+y, xeK, and

xT(A+AT )y = (-z)T(A+AT)(9+z) = RT(A+AT)9 = . 0

2.7 Corollary Let K be any closed convex cone in Rn. If A is

positive definite on KA then (A+AT) -l exists and each vector in Rn

has a conjugate decomposition with respect to K and A.

Proof Note that ker(A+AT) c KA and for any y in ker(A+AT), YTAy = 0.

Since A is positive definite on KA it follows that ker(A+A T ) =M and con-

sequently (A+AT)-I exists. Clearly then all the assumptions of Theorem 2.6

hold and any vector in R has a conjugate decomposition with respect

to K and A. 0

The following example shows that the conjugate decomposition of a

vector need not be unique.

2.8 Example Let A = , K= R'. Clearly A is positive definite

on K. Because the problem (1.2) with a = ('J is here equivalent to
minimize (xI+X 2-l)

2  subject to x1 > 0, x2 > 0

it follows that the point x -wi th X cE[0,1) is a sol uti on of (1 .2).

- -

777
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Hence for any X c (0, 11. X:= X K, y:= P KA, xT(A+AT)Y = 0,

and a = x + y.

A sufficient condition for the uniqueness of a conjugate decomposi-

tion is given by the following.

2.9 Theorem Let K be a general closed convex cone in Rn  and let

the nxn real matrix A be positive definite on the affine hull aff(K)

of K or the affine hull aff(KA) of KA. Then each vector in Rn  has

a unique conjugate decomposition with respect to K and A.

Proof The existence of a conjugate decomposition follows immediately

from Corollary 2.2 or Corollary 2.7. Suppose now that

a = x+y = +y

are conjugate decompositions of a point a in Rn. Then x - = - y

and

(x-i) T(A+A T)(x-) = (x-R) T(A+AT)(.y)

= xT(A+A T) + RT(A+AT )y

<0

This can hold only if x = x since A is positive definite on aff(K). The

proof is similar for the case when A is positive definite on aff(KA). 0

a,',w
'
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3. CHARACTERIZATION OF POSITIVE DEFINJITE AND SEMIDEFINITE MATRICES

In this section we utilize the conjugate decomposition results

established in Section 2 to characterize positive definite and semi-

deflnite matrices and we begin with the latter.

3.1 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in Rn  satisfying (2.1) or let K be a convex

polyhedral cone in Rn. A is positive semidefinite if and only if A

is positive semidefinite plus on K and positive semidefinite on KA.

Proof (Necessity). If A is positive semidefinite then it is obviously

positive semidefinite on both K and KA. Since xTAx = 0 is a global

minimum of xTAx it follows that V(xTAx) = (A+AT)x = 0. and hence A is

positive semidefinite plus on K.

(Sufficiency) If A is positive semidefinite on K and positive

semidefinite plus on KA then it follows from Theorem 2.3 that for each

a in Rn we have the conjugate decomposition

a = x +y with xeK, yKA, xT(A+AT)y = 0

Hence

T T T T T T T
aTAa =xAx + xT(A+AT)y + yTAy =xAx + yTAy 0 0

The following example shows that A merely being positive semi-

definite on K and KA, without being semidefinite plus on KA, is

not enough to ensure that A is positive semidefinite.

3.2 Example Let A = R .T K = R T. Clearly A is positive

semidefinite on both K and KA, but A is not positive semidefinite.

......
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A useful characterization of positive semidefinite matrices obtains
, n

if we set K= R+ in Theorem 3.1.

3.3 Corollary Let A be an nxn real matrix. Then

IT'(a) X >,O-*xTAx>O,

A is positive semidefinite -' (b) xTAx = 0, x > 0 - (A+AT)x 0 0, and

(c) (A+AT)x > 0* xTAx > 0

n

Proof Set K - R in Theorem 3.1 and note that

KA = {yyT (A+A T)x < 0, Vx>0} - {yI(A+A T)y 1 01

Hence y TAy (-yT)A(-y) > 0 for yc KA is equivalent to condition (c)

above. The Corollary then follows from Theorem 3.1. 0

Note that since condition (a) in Corollary 3.3 characterizes

copositive matrices, while conditions (a) and (b) characterize copositive

plus matrices we have the following consequence to Corollary 3.3.

3.4 Corollary Let A be an nxn real matrix. A is positive semi-

definite if and only if:

* (a) A is copositive and satisfies conditions (b) and (c) of

Corollary 3.3,

or

(b) A is copositive plus and satisfies condition (c) of

Corollary 3.3.

Just as we established Theorem 3.1 from Theorem 2.3, we can simi-

larly use Theorem 2.6 to obtain the following result where the roles of

K and KA have been interchanged.

1 . ..--- s
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3.5 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in Rn satisfying (2.1) or let K be a convex

polyhedral cone in Rn. A is positive semidefinite if and only if A

Ais positive semidefinite on K and positive semidefinite plus on K

We observe that if A is positive definite on K then condition

(2.1) is automatically satisfied because Kn ker(A+AT) = {01. Hence we

have the following important characterization of positive definite

matrices.

3.6 Theorem Let A be an nxn real matrix and let K be any general

nclosed convex cone in R . The following statements are equivalent:

(a) A is positive definite

(b) A is positive definite on both K and KA

(c) A is positive definite on K, (A+AT) "1 exists and is positive

semidefinite on KO = y xTy o, VxEK.

Proof (a) -* (b) and (a) -o.(c): Trivial.

(b) - (a): By Corollary 2.2, any nonzero vector a in Rn has a

conjugate decomposition a = x + y with respect to K and A, with

both x and y not being zero simultaneously. Hence

aTAa - (x+y)TA(x+y) = xT + yTAy > 0

(c) -* (a): It follows from the existence of (A+AT)"1  that yc KA if

and only if y = (A+AT)'lz and ze KO. Hence if (A+AT)"  is positive

semidefinite on KO and ye KA then yTAy = zT(A+AT)'lz > 0. Since

A is positive definite on the general closed cone K, then

K n ker(A+A ) c -K. Hence it follows from Theorem 3.1 that A is
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positive semidefinilte and so is A + AT. Since A + AT is nonsingular,

it must be positive definite and so is A. 0

nBy taking K = R+ in the last theorem we obtain the following

+

interesting characterizations of positive definite matrices in terms of

copositive, copositive plus and strictly cop6sitive matrices.

3.7 Corollary Let A be an nxn real matrix. Then

/0 f x - x TAx > 0

A is positive definite T

xRn xT (A+A T) x 0

Interchanging the roles of A and (A+AT)Y I in Corollary 3.7 gives the

following.

3.8 Corollary Let A be an nxn real matrix. Then

t cR+ -x TAx > 0

A is positive definite *-* T Ti
ex e R+ - xT(A AT) x > 0

3.9 Corollary A necessary and sufficient condition that a copositive

(strictly copositive) matrix A be positive definite is that (A+A T) 1

exists and is strictly copositive (copositive).

The following characterization of positive definite matrices which

was obtained by entirely different arguments in [4] is a simple conse-

quence of Theorem 3.6 where K is taken to be a subspace of Rn.

3.10 Corollary (4) Let S be any subspace in Rn, -let Sl be its

orthogonal complement and let A be an nxn symmetric matrix. A is

positive definite if and only if A is positive definite on S and

exists and is positive semidefinite on SL.

,'r .. -c
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ABSTRACT (cont.)

cone K, A is positive definite on K and (A+A T)-  exists and is semi-

definite on the polar cone K0 . The matrix A is positive semidefinite if and

only if for some convex polyhedral cone K or some general closed convex cone

satisfying a certain condition, A is positive semidefinite on both K and
the conjugate cone KA = {sIxT(A+AT)s<O, VxTK, and (A+AT)x 0 for all x

in K such that xTAx = 0.
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