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ABSTRACT
Positive definite and semidefinite matrices are characterized in

terms of positive definiteness and semidefiniteness on arbitrary closed
convex cones in R". These results are obtained by generalizing Moreau's
polar decomposition to a conjugate decomposition. Some typical results
are: The matrix A is positive definite if and only if for some closed
convex cone K, A is positive definite on K and (A+AT)'] exists and is
semidefinite on the polar cone K°, The matrix A is positive semidefi-
nite if and only if for some convex polyhedral cone K or some general
closed convex cone satisfying a certain condition, A 1is positive semi-

definite on both K and the conjugate cone KA = {stT(A+AT)s;p, VxeK},
and (A*AT)x = 0 for all x in K such that x'Ax = 0.

AMS (M0OS) Subject Classifications: 15A63, 10C25, 90C20
Key Words: Positive definite matrices, convex cones, optimization

Work Unit Humber 5: Mathematical Programming
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SIGNIFICANCE AND EXPLANATION

:’Positive definite matrices are those which give rise to positive
values of the associated quadratic forms for all nonzero values of
the variables. In optimization problems very often the variables are .
restricted by inequalities, typically nonnegativity requirements. In
this work we characterize positive definite matrices in terms of
pbsitive definiteness over restricted variables. This has useful

implications for optimization prob]ems.\\ A
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CONJUGATE CONE CHARACTERIZATION OF POSITIVE
DEFINITE AND SEMIDEFINITE MATRICES

S.-P. Han & 0. L. Mangasarian

1. INTRODUCTION

In deriving local duality results for nonlinear programs in [4] the
following characterization of symmetric positive definite matrices was
established: An nxn real symmetric matrix A is positive definite if
and only if A is positive definite on some arbitrary subspace of the
n-dimensional Euclidean space R" and A" exists and is positive semi-
definite on the orthogonal complement of the subspace. It is the purpose
of this paper to generalize this result by replacing the subspace by a
closed convex cone and dropping the symmetry of A. In particular we will
show in Theorem 3.6 that A is positive definite if and only if A {s pos-
itive definite on some arbitrary closed convex cone in R" and (A+AT)'1
exists and is positive semidefinite on the polar cone. The algebraic proof
employed in [4] breaks down in attempting to replace the subspace by a
closed convex cone and a completely different proof is given here based on

the concept of a conjugate decomposition of a vector in R", which is an

extension of the polar decomposition of Moreau [8], and which are define now.

1.1 Definition (Conjugate decomposition) Let K be a closed convex cone

in R' and let A be an nxn real matrix. A point a in R" is said to

have a conjugate decomposition with respect to K and A if there exists

x and y such that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work supported by the National Science Foundation
under Grants ENG-7903881 and MCS-7901066.




-2-

(1.1) a=x+y, xekK, ye KA:= {sle(A+AT)s§p, ¥xeK}

xT(A+AT)y = 0.

The closed convex cone KA is called the conjugate cone to K with

respect to A,

Note that for an arbitrary A and K it is in no way assured that-
! a conjugate decomposition exists for each point a in R". If A is

' taken to be the nxn didentity matrix then KA degenerates to the polar

cone
KO:= {slsTxgp. VxeK}

and the polar decomposition of any vector a in R" defined by

a=x+y, with xek, yek®, xTy= 0

? ' is assured by Moreau's theorem [8]. One of the principa) results of this .
paper will be to establish in Theorem 2.3 the existence of a conjugate
decomposition for any a ‘in R" when the matrix A is not necessarily

i positive definite nor even positive semidefinite. We shall do this by

showing that the existence of a conjugate decomposition is equivalent to

finding a stationary point of the following constrained optimization

problem

(1.2) minimize f(2):= (z-a)TA(z-a) subject to zeK.
z

Note that if x 1is any local minimum solution of (1.2) then by the minimum

principle [6) it must satisfy the conditions
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xeK, (z-x)T(A+AT)(x-a) > 0, ¥z e K.
By taking z =0 and 2z = 2x these conditions are equivalent to
xeK, 2 (A+AT)(x-2) 2 0, Yz K, x (A+AT)(x-a) = 0
which in turn are equivalent to
(1.3) xeK, a - Xe KA, xT(A+AT)(x-a) = 0.

Upon setting y:=a - x we get a =x +y and see that (1.3) is
equivalent to the conjugate decomposition (1.1). Hence we have the

following preliminéry result.

1.2 Theorem Let A be an nxn real matrix and let K be a closed
convex cone in R". A point a in R" has a conjugate decomposition
(1.1) a=x+y if and only if x is a stationary point of (1.2),
that is x satisfies (1.3), and y = a - x.

It is convenient to introduce now the following.

1.3 Definition Let K cR" and let A be an nxn real matrix. Then:

T

(i) A is positive semidefinite on K «=({x e K=x Ax > 0

T

(ii) A is positive definite on K «+(0 # xeK=x Ax > 0

X ¢ Kmx Ax >0

(iii) A is positive semidefinite plus on K={( T
X' Ax = 0, xe K=(A+A }x =0
Note that if K = R2:= {x|x>0, xeR"}, the above three classes of matrices

in Definition 1.3 become respectively the classes of copositive, strictly

copositive and copositive plus matrices [1,5]. Note that (ii) does not in

general imply the strict convexity of xTAx on K unless K -is a subspace.
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With the above preliminaries at hand we can outline the principal
thrust of the paper. In Section 2 we shall establish by means of the
equivalence between (1.1) and (1.3) the existence of a conjugate decom-
position of arbitrary points in R"  for special types of cones and .
matrices in R". In Theorem 2.3 we show that if K is a convex
polyhedral cone, or K is a general closed convex cone satisfying a
certain condition, and A is positive semidefinite plus on K then
each point in R" has a conjugate decomposition with respect to K
and A. In Corollary 2.2 we show that if K 1is any general closed
convex cone in R", and if A is positive definite on K then each
point in R" has a conjugate decomposition with respect to K and A.
Theorem 2.9 establishes the uniqueness of this conjugate decomposition
under the added assumption that A 1is positive definite on the affine
hull of K. 1In Section 3 we utilize the conjugate decomposition results
of Section 2 to characterize positive definite and semidefinite matrices.
In Theorem 3.1 we show that for any convex polyhedral cone or for a
special closed convex general cone, the matrix A is positive semi-
definite if and only if A 1is positive semidefinite plus on K and
positive semidefinite on KA. In Corollaries 3.3 and 3.4 we characterize
positive semidefinite matrices in terms of copositive and copositive plus
matrices. In Theorem 3.5 we characterize a positive definite matrix A
by being positive definite on K and KA, or by being positive definite
on K and (l\+I\T)'1 being positive semidefinite on K°. Finally
Corollary 3.9 characterizes positive definite matrices in terms of

copositive and strictly copositive matrices.

s
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A brief word about notation. We shall denote the 2-norm and «-norm
of a vector x in R" by lIx|l, and [Ix]|, respectively. For an nxn
matrix A, ker A:= {x|Ax=0}. For a subspace S of R", S* will denote
the orthogonal complement {nyTy=0, vxeS}. For a set S in R", c1(S),
will denote the closure of S. For f: R" + R, Uf will denote nx1
gradient vector. R2 will denote {xlx_>=0. xeR"} while R:' will denote

{x]x<0, xeR™).

R 1t TR, W17 A P T O PO T M W S 15 A T PN PR G WL, v g



T

2. CONJUGATE DECOMPOSITION

We shall establish in this section a number of results which
guarantee the existence of a conjugate decomposition of any vector in

R". We begin with a simple existence result.

2.1 Lemma Let K be a general convex cone in R" and let A be an
nxn real matrix. If A s positive definite on K, then (1.2) has a

solution.
Proof By assumption, there exists y > 0 such that

xTAx 3,y”x“§ Vxe K

Define

.
' [| (A+A" Ya ]|
s:= (x| llxll, s ———2,

xeK

Then, for any x in K but not in S we have that
£(x) = (x-a)TA(x-a) 2 vlIx||3 - x"(a+a")a + £(0)
2 Ixll,(vlixll, - 1 (a+aTYall ) + (0)
> (0)
Since 0 is in S it follows that

inf f(x) = inf f(x)
xekK xeS

Therefore the existence of a solution to (1.2) follows from the

compactness of S. 0
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Combining Lemma 2.1 and Theorem 1.2 gives the following.

2.2 Corollary Let K be a general convex cone in R" and let A be
an nxn real matrix which is positive definite on K. Then each vector

in R" has a conjugate decomposition with respect to K and A.

We next give a useful sufficient condition for conjugate decomposi-

tion in terms of positive semidefinite plus matrices.

2.3 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in R" satisfying
(2.1) ' K n ker(A+A1) c -K

or let K be a convex polyhedral cone in R". If A is positive semi-
definite plus on K then each vector in R" has a conjugate decomposi-

tion with respect to K and A.

Proof By Theorem 1.2 we need only show that (1.2) has a solution. Let
L:= ker(A+AT) and let P(x) denote the projection on the subspace L'
using the 2-norm. For any x in R" let «x = y+z with ye t* and

zZel. Then

£(x) = (x-a)TA(x-a)

(y+Z)TA(y+Z) - aT(A+AT)(y+z) +alfa

T

yTAy + yT(A+AT)z +zZAz - aT(A+AT)(y+z) +alha

y'Ay - aT(a+aT)y + a'ha (Since zel)

f(y)

Therefore

PG AR

kA




inf {f(x)|xek} = inf {f(y)|yeP(K)}
If ¥y solves the problem

(2.2) minimize (y-a)TA(y-a) subject to y e P(K)
y

then any x in K with P(X) =y is a solution of (1.2). Hence we
need only show that (2.2) is solvable for any a.

Clearly since K is a convex cone and P(-) is a linear operator,
then P(K) is also a convex cone. We want to show that P(K) is also
closed. When K is polyhedral, P(K) 1is closed because for any point
of closure ¢ of P(K) the linear program inf {[lx-c||WIXeP(K)} =0
has a solution [2,7] x in P(K) and hence ¢ = xeP(K). When K is a

general closed convex cone then since

ker(P) = {z|P(2) =0} = L = ker(A+A)
the closedness of P(K) follows from

K n ker(P) = K n ker(A+AT) < (-K) n K

and from Theorem 9.1 of Rockafellar [9].
Let 0 # yeP(K) and let x be any point in K such that P(x) = y.
It follows from y # 0 that x¢ ker(A+AT). Consequently since A is posi-

tive semidefinite plus on K, yTAy = xTAx > 0. By Lemma 2.1, (2.2) has a

. solution, which in turn implies that (1.2) has a solution. 0

s e - WD S -

Note that condition (2.1) can be replaced by the more general condi-
tion that A(K) 1is closed and which is implied by (2.1).

We note here that in the polyhedral case, Theorem 2.3 can also be
established by using Eaves’ existence results for quadratic programming

[3, Corollary 4].
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It is important to note that condition (2.1) is essential when K

is not polyhedral as shown by the following example.

2
2.4 Example Let K = {{x{,x,,X3)|2xx32 x5, %, 20, xsiq}
1 00
A=10 1 0, a-=|
0 00
(1+¢)2
Since a is not in K, since for any € > 0 the point z = (e,1+e,-—§g—-)
is in K and (z-a)A(z-a) = 252, it follows that problem (1.2) has no
solution. If a =.x +y is a conjugate decomposition of a with respect
to K and A, then it follows from the semidefiniteness of A and
Theorem 1.2 that x 1is a minimum solution of (1.2), which is a contradic-
tion. Hence such a decomposition cannot exist even though A is positive
semidefinite plus on K.

A

Under certain circumstances the roles of K and K~ may be inter-

changed. This is a consequence of the following.

2.5 Lemma Let A be an nxn real matrix and let K be a general
closed convex cone in R" satisfying (2.1) or let K be a convex poly-

hedral cone in R". Then

AA

KPR = K+ ker(A+AT)

T

Proof Llet A:= A+ A and for any set S in R" define

AT(s):= {x|BxeS)

Note that K'](S) is well defined even if A is not invertible. Since
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Kt = {y]yAx<0, ¥xeK} = {y|Ayek°®} = A1 (ke)
it follows that
Avoe _ (5-V(voyyo - Afvoo '
(K™)° = (A7 (K°))° = c1(A(K®°)) .
where the last equality follows from Rockafellar's Corollary 16.3.2 [9].
Hence
(Kh)e = a1 (A(x))
When K 1is a convex polyhedral cone, as seen in the proof of Theorem 2.3
c1(A(K)) = A(K). When K is a general closed convex cone satisfying
(2.1) it follows from Theorem 9.1 of Rockafellar [9] that c1(A(K)) =A(K).
Hence
KM 2 B (k(a)°) = ATTAK)) = (y|Ayeh(K))
Consequently .

ye gAA

«' Ay = Ax for some xeK
e y - xeker(A) for some xeK
« yek + ker(A). 0

A

Lemma 2.5 cén now be used to replace K by K" 1in Theorem 2.3.

2.6 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in R" satisfying (2.1) or let K be a convex

polyhedral cone in R". If A is positive semidefinite plus on KA
then each vector in R"- has a conjugate decomposition with respect to

K and A.
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' Proof It is evident that KA is a closed convex cone. Furthermore,

ker(A+AT) c kA n KA; Hence KA n ker(A+AT) c -KA. By applying Theorem 2.3

A

: | to the cone KA instead of K we have that for any vector a in R",

there exist §e KR and Re k™ such that a =% + y and ?T(A+AT)£==0. i
? ‘ F
i By Lemma 2.5 there exist x in K.and 2z in ker(A+AT) such that f
: A and

xT(araT)y = (R-2)T(AeaT)(§42) = &T(ARAT)S = 0. O

2.7 Corollary Llet K be any closed convex cone in R". If A is

positive definite on KA then (A+AT)'] exists and each vector in R"

has a conjugate decomposition with respect to K and A.

b S id al .

A

Proof MNote that ker(A+AT) c K® and for any y in ker(A+A'), y'Ay = 0.

A

Since A is positive definite on K

|
|
l
! : X=x+2 Llet y=§+2z, then a=x+y, xekK, yeK
it follows that ker(A+AT) = {0} and con-

sequently (A+AT)'1 exists. Clearly then all the assumptions of Theorem 2.6

hold and any vector in R" has a conjugate decomposition with respect

§ et e e B i P oV A TS
L .

2 : to K and A. 0

|
l
‘ The following example shows that the conjugate decomposition of a

vector need not be unique.

2.8 Example Llet A = [: }], K= RE. Clearly A 1is positive definite

on K. Because the problem (1.2) with a = [';] is here equivalent to

IR TR PR PPET W VY "W W3

o

sk alh

minimize (x]+x2-1)2 subject to x; 20, x, 2 0

it follows that the point x = []}A] with 2e[0,1] is a solution of (1.2).
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Hence for any Ae [0,1], x:= Ale Ky y:= ~1- € KA, xT(A+AT)y =0,
1-A 1+A
and a=x+y.
A sufficient condition for the uniqueness of a conjugate decomposi-

tion is given by the following.

2.9 Theorem Let K be a general closed convex cone in R" and let
the nxn real matrix A be positive definite on the affine hull aff(K)
of K or the affine hull aff(KA) of KA. Then each vector in R" has

a unique conjugate decomposition with respect to K and A.

Proof The existence of a conjugate decomposition follows immediately

from Corollary 2.2 or Corollary 2.7. Suppose now that
a=x+ty=x+y

are conjugate decompositions of a point a in R". Then x-%x=y - y

and

(x-%)T(A+aT) (3-y)
iT

(x-%) T(A+AT) (x-)

xT(A+AT)9 + (A+AT)y

<0

This can hold only if x = X since A is positive definite on aff(K). The

proof is similar for the case when A is positive definite on aff(KA). 0
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3. CHARACTERIZATION OF POSITIVE DEFINITE AND SEMIDEFINITE MATRICES

In this section we utilize the conjugate decomposition results
established in Section 2 to characterize positive definite and semi-

de/nite matrices and we begin with the latter.

3.1 Theorem Let A be an nxn real matrix and let K be a general
closed convex cone in R" satisfying (2.1) or let K be a convex

polyhedral cone in R". A s positive semidefinite if and only if A

is positive semidefinite plus on K and positive semidefinite on KA.

Proof (Necessity) . If A is positive semidefinite then it is obviously

positive semidefinite on both K and KA. Since xTAx = 0 is a global

minimum of xVAx it follows that V(xTAx) = (A+AT)x = 0, and hence A is

positive semidefinite plus on K.

(Sufficiency) If A is positive semidefinite on K and positive

A

semidefinite plus on K~ then it follows from Theorem 2.3 that for each

a in R" we have the conjugate decomposition

a=x+y with xeK, yekP, xT(ataT)y = 0

Hence

T T

a'Aa = xAx + xT(A+AT)y + yT

T

Ay=xAx+yTAy_>=0 0

The following example shows that A merely being positive semi-
definite on K and KA, without being semidefinite plus on KA. is
not enough to ensure that A is positive semidefinite.

2 A2 . :
3.2 Example Llet A = 1 ol K =Rj;. Then K" =R". Clearly A is positive

semidefinite on both K and KA, but A is not positive semidefinite.
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A useful charqéterization of positive semidefinite matrices obtains

if we set K =R} 1in Theorem 3.1.
3.3 Corollary Let A be an nxn real matrix. Then

/(a) xgﬁo-oxTAxg_O,
A is positive semidefinite = ( (b) xTAx =0,x20 -»(A+AT)x = 0, and

(c) (A+AT)x > 0 = xTAx > 0

Proof Set K = R2 in Theorem 3.1 and note that

KA = y]yT(a+AT)x < 0, ¥x20) = {y|(A+AT)y < 0}

Hence yTAy = (—yT)A(-y),z 0 for ye kR s equivalent to condition (c)

above. The Corollary then follows from Theorem 3.1. 0

Note that since condition (a) in Corollary 3.3 characterizes
copositive matrices, while conditions (a) and (b) characterize copositive

plus matrices we have the following consequence to Corollary 3.3.

3.4 Corollary Let A be an nxn real matrix. A is positive semi-
definite if and only if:
(a) A 1is copositive and satisfies conditions (b) and (c) of

Corollary 3.3,

_or

(b) A s copositive plus and satisfies condition (c) of
Corollary 3.3.
Just as we established Theorem 3.1 from Theorem 2.3, we can simi-
larly use Theorem 2.6 to obtain the following result wﬁere the roles of

K and KA have been interchanged.




3.5 Theorem Let A be an nxn real matrix and let K be a general

closed convex cone in R" satisfying (2.1) or let K be a convex
polyhedral cone in R". A is positive semidefinite if and only if A
is positive semidefinite on K and positive semidefinite-plus on KA.

We observe that if A is positive definite on K then condition
(2.1) is automatically satisfied because Kr\ker(A+AT) = {0}. Hence we
have the following important characterization of positive definite

matrices.

3.6 Theorem Let A be an nxn real matrix and let K be any general

closed convex cone‘in R". The following statements are equivalent:
(a) A 1is positive definite

(b) A is positive definite on both K and KA

(c) A is positive definite on K, (A+AT)'] exists and is positive

semidefinite on K° = {yleyio, ¥xekK}.

Proof (a) = (b) and (a) =.(c): Trivial.

(b) = (a): By Corollary 2.2, any nonzero vector a in R" has a
conjugate decomposition a = x +y with respect to K and A, with

both x and y not being zero simultaneously. Hence

T

aTAa = (x+y)TA(x+y) = xTAX + yAy >0

(c) = (a): It follows from the existence of (A+AT)°1 that ye A oif

and only if y = (A+AT)'1z and zeK°. Hence if (A+AT)'] is positive

T

semidefinite on K° and ye K then y Ay = %zT(A+AT)']z > 0. Since

A is positive definite on the general closed cone K, then

Kn ker(A+AT) c -K. Hence it follows from Theorem 3.1 that A s




T

positive semidefiniie and so is A + AT. Since A + A is nonsingular,

it must be positive definite and so is A. 0

n

By taking K =R,

in the last theorem we obtain the following
interesting characterizations of po;itive definite matrices in terms of

copositive, copositive plus and strictly copdsitive matrices.

3.7 Corollary Let A be an nxn real matrix. Then

T

Oi‘XeR:-x Ax > 0

A is positive definite <=
X € R2 - xT(A+AT)']x >0
Interchanging the roles of A and (I\+I\T)"I in Corollary 3.7 gives the

following.

3.8 Corollary Let A be an nxn real matrix. Then

T

xeR:',»x Ax > 0

A 1is positive definite e=
0 # xeRT = xT(A+AT) Tx > 0

3.9 Corollary A necessary and sufficient condition that a copositive
(strictly copositive) matrix A be positive definite is that (A«-’I\TY1
exists and is strictly copositive (copositive).

The following characterization of positive definite matrices which
was obtained by entirely different arguments in [4] is a simple conse-

quence of Theorem 3.6 where K 1is taken to be a subspace of R".

3.10 Corollary [4] Let S be any subspace in R", et S' be its
orthogonal complement and let A be an nxn symmetric matrix. A is
positive definite if and only if A is positive definite on S and

A exists and is positive semidefinite on S*.
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ABSTRACT (cont.)

cone K, A is positive definite on K and (A+AT)-1 exists and is semi-

definite on the polar cone K°. The matrix A is positive semidefinite if and

only if for some convex polyhedral cone K or some general closed convex cone
satisfying a certain condition, A 1is positive semidefinite on both K and
the conjugate cone = {sle(A+AT)sgo, YxeK}, and (A+AT)x =0 for all x

in K such that xTAx = 0.







