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In this dissertation we discuss the numerical solution of systems of hyperbolic partial

differential equations with lower order terms and step function initial data. These equations

arise in modeling the propagation of a signal with loss, such as a signal in a resistive

co-axial cable, or the flow of neutrons in a reactor. Majda and Osher have shown that

dissipative finite difference approximations to such problems display a numerical artifact

which is not encountered for scalar equations. Namely, noise from an initial discontinuity

propagates into a large region behind the discontinuity. Their results do not apply in

the vicinity of a discontinuity, and our goal is to discover the detailed behavior in this

region. This information will be of use in constructing algorithms that attempt to accurately

approximate solutions with discontinuities or shocks.

We analyze the behavior of finite difference approximations to a particular model

problem with step function initial data. We use Fourier transforms to express the solution

of the difference approximation as a Fourier integral. The behavior of this integral is then

examined by using the theory of uniform asymptotic estimation of integrals. We show that

the solution of the difference approximation is modeled by a particular class of integrals,

which we call generalized Bessel functions. With these results, we are able to show that

there is a "smearing" of the discontinuity which is the same as that which one obtains

when approximating the scalar wave equation. Thus, the behavior near the discontinuity is

qualitatively similiar to the near-front behavior of the scalar wave equation. These results

show that the artifact discovered by Majda and Osher is overwhelmed near the discontinuity

by the numerical dispersion and/or dissipation introduced by the difference approximation.

Graphs of the generalized Bessel functions are provided. Finally, we discuss the relevance

of our results to automatic mesh refinement and give an example.
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1. Introduction

In this dissertation we consider the numerical solution of the telegrapher's equation

9u 49V
9t (1.1)

ai OX

with step function initial data. This equation models wave propagation in a system of

equations with coupling caused by the presence of undifferentiated or lower order terms.

(If the lower order term were not present, it would be possible to diagonalize the system

with a linear change of variables.) This equation is of interest because the solution to

this equation is smooth away from discontinuities in the solution (Birkhoff and Lynch

[19661) but numerical approximations are not (Majda and Osher [1977). Also, as we show

below, the equation itself can be considered a model for transport phenomena, so that a

better understanding of the behavior of approximate solutions to it will help in interpreting

numerical results and in constructing numerical methods.

In this section we will first discuss some examples from engineering and physics of

equations with coupling through lower order terms. These examples will help develop an

intuition about what the exact solutions should look like. We will then give a brief historical

overview of material on both the telegrapher's equation and on techniques for analyzing

the behavior of approximations to hyperbolic partial differential equations (to which class

the telegrapher's equation belongs). Finally, we will discuss in more detail the methods

which we shall use to find the behavior of approximations to (1.1) near the discontinuity.

The following is an overview of this dissertation. The theoretical results are presented

in sections 2, 3, and 4. In section 2, we find an asymptotic representation to the solution of

(1.1) near the step discontinuity. The purpose of this section is to both show the behavior

of (1.1) to which the approximate solutions will be compared and to illustrate the methods
which will be used is later sections to analyze difference approximations to (1.1). In section

h3, we analyze a semidiscrete second order centered difference approximation to (1.1). We

first show that the width of the front in the approximation is O(h 2 /3 ). We then derive

a form of integral (a generalized Bessel function) which represents the solution near the

front. Finally, we compare the behavior of the approximation to (1.1) with the same type
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of approximation to the scalar wave equation. In section 4, we analyze a model equation

which represents a general difference approximation to (1.1). This section generalizes

the results from section 3. Section 5 contains numerical results. We consider here four

different difference approximations to (1.1). Graphs of the computed solutions and the

observed widths of the front for each method are presented. These are followed by graphs

of the generalized Bessel functions which we show in section 4 to represent the solution

to a difference approximation to (1.1) near the front. Finally, an application of the results

is made to a computation using mesh refinement.

Examples of Equations with Lower Order Terms

We begin with a brief discussion of a few examples of equations with lower order

terms to show where the problem we address arises. The basic physical feature of all of

these equations is a finite speed of propagation combined with decay of signal through,

for example, absorption.

Perhaps the most familiar example is transmission along a resistive coaxial cable. This

equation is usually written as

az 2  c2 -5t 2 + c 2 Ot

(see Morse and Feshbach [1953], pp. 218-9). Here, it, c, and a are physical constants of

the cable, and c is the speed of light. V) is a potential for the fields, t is time, -and z is

length along the cable. This equation may be rewritten as

Ot Oz
'c 2 ao a-0 4c2rC2 at = Z C2-

where 0 is introduced only to convert the single second order equation into two first order

equations. Another example is transmission of heat in one dimension in a gas. Here the

equation is
O2 , _ 24 1 (324

*aX2 a

(see Morse and Feshbach [1953], pp. 865-9). In this equation, 0' is absolute temperature, a

is a property of the medium and c is the velocity of sound in the medium. This equation may

disturb some who are used to the equation for transmission of heat being the traditional

Heat Equation: ipt - (1/a 2 )0==. The usual heat equation implies that heat moves infinitely
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fast (John [1978], ch. 7), which is not physical. The equation given here has the property

that heat can move no faster than the sound speed of the material (as is easily seen by

writing the equation in characteristic form). The reason the heat equation is such a good

approximation to the heat transmission problem is that it is the limit as c --+ 0o of the correct

equation. That is, the transmission of heat is so slow relative to c that the finite speed of

propagation has little effect on the solution.

We note that Morse and Feshbach [19531 provide a solution to this equation by means

of Green's functions. This solution is not, however, very enlightening or generally useful.

Neutron transport provides another source for these equations. The actual equations

are complicated integral equations; see Bell and Glasstone [1970] and Richtmyer and

Morton [1967], chapter 9. A typical approximation to these equations assumes that the

neutrons are confined to a small discrete set of energies. In this case, a coupled system of

equations similiar to the telegrapher's equation arises. The lower order terms in this case

model the loss of neutrons due to absorption.

Historical Background

The historical background for this thesis consists of two parts. First is a review

of the work on lower order terms in constant coefficient hyperbolic partial differential

equations. Second is an outline of some methods for studying the approximate solution to

these equations analytically. As an introduction, we discuss the two main effects that the

presence of lower order terms can have on the solution.

The first effect of a lower order term is the obvious one: changing the equation. In

problems from physics, the lower order term represents a form of dissipation. For example,

consider the equation ut = u, + au. It is easy to see that the solution to this is V(X, t) -

u(x + t, O)e"t. Thus, if a < 0, the lower order term damps the solution.

Another possible effect of lower order terms is the coupling that they provide among

equations. Consider the hyperbolic system

=A- t + Bu . (1.2)
a o ox

Here, A and I) are constant matrices, and u is the vector of dependent variables. For (1.2)

to be hyberbolic, the eigenvalues of A must be real. This is the general constant coefficient

case, since by the assumption of hyperbolicity, any matrix multiplying the du/9t term can

be inverted and moved into A and Ri. Further, we assume that A is diagonalizable with
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real eigenvalues so that the system will be hyperbolic. Now, if A and I1 do not commute,

so that they are not simultaneously diagonalizable, this will cause coupling. (If A and 11 do

commute, the coupling is apparent but not real. This will be clear in the following.) To see

this, make a change of variable 7'u v, where 7'AT-1 = D, 1) a diagonal matrix. Then

we are left with
dv _D v
0t = - + a lT-v"

This equation is as simple as possible while still exhibiting coupling. The TIT- term is

not diagonal if A and 11 do not commute and thus couples the components of v.

There has not been much interest in the effect of lower order terms in approximations

to constant coefficient hyperbolic partial differential equations until recently. A major

reason for this is that, for the continuous problem, well-posedness is independent of the

presence of lower order terms (Thom~e [1969], sec. 2). This is also true for difference

approximations. The lower order terms are unimportant in the question of stability of finite

difference schemes, both for the Cauchy problem (Thom~e [1969], sec. 5) and for the initial

boundary value problem (Gustafsson, Kreiss, and Sundstrom [1972], Thm. 4.3).

There has been some work on equations with lower order terms. Early work by

Apelkrans [1968] on scalar equations of the form

= p( t i-- + O(X, t)u

provides bounds on the size of errors made by difference approximations at a step

discontinuity. These bounds are sharp for the general problem, but may be somewhat

pessimistic for specific problems. The results are based on some concepts from stability

theory for difference approximations to hyperbolic problems (see Kreiss and Lundqvist

[19681), and are difficult to extend to systems of coupled equations. Apelkrans' results

show quite generally that for scalar (or uncoupled) equations, lower order terms have little

effect on the accuracy of difference approximations. Later work by Brenner and Thome

[1971] sharpened these results; their arguments are also based on stability theory (Brenner

and Thom~e [19701).

Recent work by Majda and Osher [1977] shows that lower order terms can have an

enormous effect on the error in difference approximations by providing the kind of coupling

discussed above. They analyze the problem
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Ou(U2 0o -+(U 0 U2

tI, if z > 0 (1.3)
o, it X <0

u 2 (X, O) = 0.

Note that the matrices in this equation do not commute. They show that if U is a dissipative

finite difference approximation to (1.3) which is at least second order accurate and satisfies

certain technical conditions (which are satisfied by common methods), then for all 6 > 0

there exists a (6 > 0 such that

max IU- ul < C6h2

z,tERj

where R6 = {(x,t) : Ix < t and Ix I tl/t > 6)} and 0 < 5 < t < To, 7'" the maximum

time for the problem. This result is the best possible for arbitrarily accurate dissipative

schemes. It is this fact, that the estimate is sharp, which is the interesting feature. This

shows that over a large region, any reasonable dissipative method of order at least 2 is

only second order accurate. Note that the solution to the continuous problem is smooth

(C') away from the fronts (at z = -t and x = t) since the initial data is smooth. The

results of Majda and Osher [1977] do not hold in the vicinity of the step discontinuity.

We now discuss some of the methods for studying the behavior of difference ap-

proximations to hyperbolic partial differential equations: stability theory, Fourier transforms

of the difference approximation, model equations, and an ad hoc approach. Methods using

stability theory are very powerful. General estimates on the accuracy of the solution can be

found for a wide range of problems with this method. Examples are Lax [1961] for Cauchy

problems and Gustafsson [1975] for initial-boundary value problems. The only drawback of

this methocd is that it requires the solution to be sufficiently smooth. These methods do not

say anything about the behavior of the difference scheme near a discontinuity. The results

of Apelkrans [19681 and Brenner and Thom~e [19711 mentioned above are an exception.

Most work on the behavior of difference approximations to hyperbolic problems by

Fourier transform techniques has been restricted to scalar problems (see Hedstrom [19751

and Apelkrans [1968]). This is in contrast to stability theory for difference approximations,

where general systems of linear equations can be treated (see Richtmyer and Morton

[1967], ch. 4 and Coughran [1980]). The advantage of the Fourier technique is that it can

treat nonsmooth solutions (such as step discontinuities).

5
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For constant coefficient problems, methods using Fourier transforms of the difference

scheme are practical. The inverse Fourier transform is then evaluated by the method of

steepest descent. Hedstrom and Osterheld [19801 present a nice example of this procedure

for a different problem. Pearson [1969], using a slightly different approach, studies the

behavior of difference schemes for u_ =- c 2 UX.

The model or modified equation approach is another way to study the behavior

of difference approximations to partial differential equations. In this method, a partial

differential equation whose solutions model those of a difference approximation to a ':impler

differential equation are constructed. The model equation is then studied, rather thall 4)e

original difference equation. This approach is discussed by Warming and Hyatt [19741 and

in a review by Chin and Hedstrom [unpublished]. As we will use this approach to study the

behavior of general difference schemes for (1.1), we will outline it below.

The form of the model equation for a hyperbolic problem ut + [,i =- 0, where I is a

differential operator, is

du ) - i)q-U
- + Lu = cph -- h . .... (1,4)OtOx q i)Xq '

where p is odd and q is even. Given a hyperbolic differential equation u t- t- 0 and a

difference scheme, expand the finite differences in a formal Taylor series to get

i)t u h,/'n IU
+/±LU= Z hm l m+tU. (1.5)

Here, I,. is a homogenous differential operator in d. and ,t of order Pi. Use the ansatz

(3 u oo a~m+ I U+ u r,, = (1 6)
'rn, n[

m~t

to replace all derivatives with respect to t in (1.5) with x-derivatives, and then match up the

terms in (1.4) and (1.6), dropping higher order terms, to find the cm in (1.4). This gives the

model equation.

The behavior of the model equation can be studied with Fourier transform techniques.

By using the model equation approach, we can avoid some of the algebra required when

using the discrete Fourier transform. More important, the model equation approach allows

us to identify the key features of the approximation, allowing us to consider general

difference approximations. This approach has been taken by a number of authors. t ising the

model equation formulation, Hedstrom [1975] analyzed the behavior of step discontinuites

6



for the equation 'ut u . Work by Chi 1 [975] analyzes the detailed behavior near the

front for the wave equation. Serdjukova [1971] considers the behavior near a step of a

general scalar difference scheme for both explicit and implicit methods.

Finally, we mention an approach taken by Orszag and Jayne [1974]. They consi,;er

ut + u1 = 0 and look for solutions with continuous derivatives of order up to 11 and

discontinuous derivative of order n + I. Through a clever choice of initial data with these

properties, the difference between the appoximation and the true solution can then be

estimated. Chin [1974] shows that this analysis is similiar to the Fourier analysis above and

that their results are explained by model equation analysis.

Brief Introduction to Asymptotic Estimation of Integrals

We present here a brief outline of the method of steepest descent, on which most of

our results are based. More complete and rigorous descriptions of this method can be

found in Bleistein and Handelsman [1975], Erd(lyi [1956], and Olver [1974]. Erd& yi [1956]

in particular is a good first introduction to this material. We will first introduce the method

of stationary phase because it may be more familiar.

We will need to find approximations to integrals of the form

I -(,
Y(X)41(T1'1X(1.7)

when t is large. If ,k(r.) if,(x), and ,(x) is real then we can use the method of staticnary

phase. The reason for this name will become clear in what follows.

We can think of V)(z) as a frequency of oscillation of the integrand, if we assume that

y(x) is slowly varying. Now, look for the extrema of ,(x.) (these are points of stationary

phase). Assume there is only one extremum, x0 . Expand both g(.r) arnd V(x) around x0 :

g(x) =g(x,) + (x - Xu) ,(X) +...

V(X) =V)(X 0 ) + (x - r) + ". " (

Using these expansions, we can rewrite (1.7) as

( ++ ..
C(21 ()t ( y(Xo) ( eX p(it(x - r())2 V'"(xu))dx +

The integral in the formula above can be evaluated exactly.

This works because, away from xn, the integrand oscillates rapidly (since t is large)

and hence nearly cancels out. Only near .r0 does the integrand oscillate slowly in xr. We

7
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can get more terms in the expansion simply by keeping more terms in the expansions (1.8)

of g and 4. There are, however, a number of restrictions to remember. First, it is very

important that g vary slowly on the scale of exp(i-0(x)t). For example, if g has a pole near

an extremum of O(x), the expansion (1.8) will be inaccurate. Also, in the case where O(x)

has several extrema, they must be well separated. Otherwise, there may be an interval,

rather than a point, where the integrand oscillates slowly.

What if O(x) or xo is not real? Then we must go to the method of steepest descent.

We extend O(x) (we will not use V'(x) again) to be a complex valued function O(z) over the

complex plane. This is usually a trivial step in practice. Since O(z) is now complex valued,

it is not possible to say that eO(z)t oscillates at all in general. Further, if 0(z) is analytic, it

has no minima or maxima (by the maximum modulus principle).

We consider the following. If we could find a path of integration I' such that

]e0J1/ axzEPJe1 ] > c only along a few short intervals, then, just as before, We could

expand g and 0 about points on those intervals. Let us assume that there is only one such

point, and call it zo. We can then use the Cauchy integral theorem to deform the original

path of integration to the new path F. Then as t increases, the contribution to the integral

from points away from z0 will decay exponentially.

A good way to look at this is in terms of a topographical map. Let x + iy = z be the

map coordinates, and let R(O(z)) = real part of O(z) be the height of the "ground." This

map will normally have lots of valleys, hills, and, most importantly, saddle points (maybe

only one). A simple saddle point is like a mountain pass - at the saddle point, you can

either go downhill (along the pass) or uphill (at right angles to the pass). In our application,

the path typically starts in a valley at x = -oo, proceeds over one or more mountain

ranges, and ends in a valley at x = oo. When going over the mountain range, the best

path to take is one going through the saddle points. The path then stays low except for

a few peaks where it rises quickly to go though a pass (saddle point) and then falls again

quickly. This is what we want, since the exponential will have small magnitude everywhere

except in a small neighborhood of each pass (saddle point). This explains why the method

is called the method of steepest descent, as the path descends as quickly as possible from

each pass.

Given this geometric viewpoint, it is easy to find conditions for the passes and for the

direction of the path. These conditions are derived in Bleistein and Handelsman [1975],

8



chapter 7. Basically, an n-th order saddle point zo is a point where the first n derivatives of

O(z) are zero and the n + 1st derivative is non-zero. This condition is the same as for the

method of stationary phase discussed above. Then it can be shown (see, e.g., Bleistein and

Handlesman [1975], Thm 7.1) that the direction of the path of steepest descent from an n-th

order saddle point at the saddle point is given by the following rule: If d +lO(zo)/dz " + -

aeil , then the directions of steepest descent are given by 0 = (-a + (2p + 1)7r)/n, for

p = O,,...,n- 1.

The above sketch of the method of steepest descent ignores a number of possible

difficulties. Most important for our purposes is what happens if g is not slowly varying

or if several saddle points come together. The proper way to handle this is discussed in

section 2; basically it amounts to using better expansions for g and 0. The difficulty with

these more accurate expansions is that the integrals in the expansion may no longer be

recognizable as known special functions. Instead, they may define new special functions

whose behavior must be investigated. We will encounter a new class of special functions

in sections 3 and 4.

9



2. The Exact Solution

In this section we find the exact solution to the model problem

Ut = -VsC

vt = -UZ - V

1, if z < 0 (2.1)
U(,0) = V(X, 0) -- , if X=o0

u0, ifz > O.

We are only interested in u near the front (x = t). Our solution will be valid only in this

region.

Our purposes for finding the exact solution to the model problem are manifold. First,

we will need the exact solution to compare with the solutions of approximations to the

problem. Second, in finding an asymptotic expression for the exact solution we will

demonstrate many of the techniques that we will use in later sections. Most important, we

will use the analysis in this section to motivate definitions and analysis in later sections.

We point out that for x > t, u(z, t) = v(x, t) = 0 from the theory of characteristics

(John [1978]). Unless otherwise stated, all limits x/t -+ I are from the left in the z-t plane.

The analysis will proceed as follows. First, we Fourier transform (2.1) in space to get

a system of two ordinary differential equations. As these are linear constant coefficient

equations, it is easy to solve for the inverse transform of the solution. The inverse transform

does not represent any known special function, so we will use techniques from saddle point

analysis to represent the inverse transform near the front x - t as an asymptotic series in

terms of modified Bessel functions.

Integral Form of the Solution

The Fourier transform of (2.1) is

ft = -it
(2.2)

where is the dual variable. In matrix form, this is

10k ,o.



The eigenvalues X of the matrix are given by X(X + 1) + f
2  0, or

2 2

The branch cut for the square root is the interval (- , ] in the plane. This is the

standard branch. The unnormalized eigenvectors of the matrix are

Therefore, the solution to (2.2) is

(:) =.,,,(, +X + +_,(1 et

where a,(f) are determined by the Fourier transform of the initial conditions.

Now that we have the solution to the transform of (2.1), we can compute u and v by

inverting the transform. The solution for u is thus

u(Z, t) = f f [a+(f)(1 + X+)e X+t + a(1)(1 + X-)e'-'] '"e dC; (2.3)

Here we choose the path of integration to pass over the branch cut between -1/2 and 1/2

(an arbitrary choice).

To determine a, we apply the initial conditions to the solution of the differential

equation. At t = 0, we have

O+(f)(1 + x+) + a ()(1 + X-) = 1(c)

-ik+(f)f - ia_(C)C = (C)

where a(C, 0) = 6(f, 0) - j(C). These imply

akiC= )( -1 (1 + X+))

CA J ) = - _ _ a _M .
(2 .4 )

For the initial data given by (2.1), we have 1(C) - 4 + 16(C).

Solution near the Front

We have now completely specified the solution to (2.1). We need only evaluate the

integral (2.3) in order to determine the solution. However, there is no known special

11



function that this integral represents. To uncover the solution, we will turn to asymptotic

evaluation of the integral by the method of steepest descent outlined in the introduction.

We will outline the steps again, as we will see that there are new complications: converging

saddle points and a pole in g. We write (2.3) as the sum of two integrals of the form

Here, g does not contain an exponential factor in t or z.

The analysis of (2.3) takes place in five steps. First, the saddle points of 4) are found.

Next, the path of integration is deformed to the steepest descent path through some of the

saddle points. We will call these the important saddles. This path will not necessarily pass

through all of the saddle points. Care must be exercised at this point if the original path of

integration passes through any singularities of the integrand. If the original path does pass

through some simple poles and the new path does not, half the residues at those points

will have to be added to the integral. Third, a change of variable is made to map 4) onto

a simpler function ?k that has the same number of important saddle points as 4) has. Next,

g is expanded in a power series about the saddle points of 0 and any critical points of g

(in our case, we expand only about the critical points of g; this will be discussed later).

Finally, the resulting integral is evaluated. In this section, these integrals can be evaluated

in terms of known special functions. If this is not the case, as in the next section, then the

integrals represent a new special function which must be examined. The result we now

prove is:

Theorem 1: For z < t and x/t 1, the solution for u in (2.1) has the asymptotic

representation

u(x,t) = ---- -e I.( t W2). (2.5)
"=O 2 G +WO

Proof:

We first find the saddle points. Let uw -- t, and define 0,( ) = X.(E) + iwe. Then

(2.3) can be written as
f g+e +td + fg-e -td .

Each of these is in the form discussed above. The condition for the saddle points of 0, is

( + = o. (2.6)

12



The saddle points are

(2.7)

It is easy to show that d2o,/df2 3 0 for w 3 1, so these saddles are simple for w 3 1.

At w = 1, the saddle points are both at infinity, and are of infinite order.

Now, we must be careful here as the formula (2.7) is the result of solving a quadratic

formed by squaring (2.6). This means that we must check to see which choice of sign, if

any, is a solution to the equation (2.6). This is equivalent to determining on which side of

the branch cut of the square root the solutions (2.7) lie. Note that there are four conditions

to check - f, in both 0- and 0+.

By substituting (2.7) into (2.6), we can show that for w > 0, .0+ has no saddle points

and 0- has two saddle points. For w < 0 the situation is reversed.

It is thus natural to break the integral (2.3) into two parts

f+00
=+1= a+(1 + \+)e#+t d

u 27(2.8)

U~. - a_(1 + X_)et dC.

We show in Appendix A that u+ = 0 for w > 0. We therefore concentrate on the behavior

of u-, in particular for w 1.

From (2.7), we see that as w -- 1, the saddle points go to +ioo. The major contribution

to the integral will come from two places. One is the region of the saddle points; the other

is the pole in the integrand at - 0. The path may be deformed away from the (± 1)-1/2

singularities in a_( + X-) without changing the value of the integral, as these singularities

are weaker than poles.

We first deform the path away from the pole at the origin. To correct for this (since the

integral is the Cauchy Principle Value) we add 7ri times the residue at E = 0. From (2.4)

and (2.8) it is easy to see that the residue is i/47r (for the path of integration passing over,

rather than under, the branch cut), yielding a term of - 1/4 to be added to the integral over

the new path.

We can now consider the effects of the saddle points. Since there are two saddle

points, we will need to consider a uniform approximation to the integral which models

the confluence of two saddle points to a saddle point of infinite order. Such a case is

considered by Bleistein and Handlesman [19751 in section 9.5. We will use essentially the

same approach as they use for this problem.

13



To make the analysis easier, we first map C onto I/z, and work in the z-plane. In the

z.plane, the saddle points are converging to the origin as W -- 1.

Expanding 0_(I/z) about z = 0, we see that

~1~ -z T -

2 z 8

Using this as motivation, we define a change of variables p = p(z) by
i I2

O,(p) = p + b + a- = (- I). (2.9)
p z

Here, a and b are numbers independent of p but perhaps depending on W. It is important to

note that this form is the simplest form which has the requisite properties. The requirements

that 4 have exactly two saddle points which come together to a single saddle point of infinite

order completely determines the simplest form of 4'.
To find a and b, let z* = 1/C, C, the saddle points of 4'(C), and let p, - p(z,) be

the saddle points in the p-plane. Since p(z) is locally 1-1 (see Guillemin and Sternberg

[1977], page 441-2), we have
do-

dp _ do-.~ /dVk _ z ____

dz dzi_ dp a2
8 p2

The fact that p(z) is locally one-to-one everywhere means that, in particular, it is one-to-one

at the saddle points. Thus we must have dz/dp 3 0 at the saddle points. Since by

definition do-/dz = 0 at the saddle points, we must have

i- a2

8 p(z,)'

or p2(z) - -8ia 2 Applying these two equations to (2.9) gives 12V6/78a + b 4-(C.) or

b = -(C*) + (C-
2

a =-*)- O-(W)

Being careful with the branch of the square root, it is easy to show that _(C€) = -j -

vrw- , and hence that 1
b=-

2

a2 i(w2-l)
2

14



Thus (p), the canonical form, is

i- 1 i W2 )1 (2.10)
8 2 2 p

Note that for w ; 1, this is very close to the z - 0 limit of _.

The unexponentiated part of the integral has three components. First is the 3(1 + X-)

from (2.3). Second is a -l/z 2 term coming from the change of variables = l/z. Finally,

there is the dz/dp term coming from the change of variables p = p(z). To determine these

in terms of p, we need to find a representation for p = p(z). We also need to find dzfdp.

In a general case, we can find this information from (2.9); however, in this case, we can

find the map explicitly.

Now, (2.9) may be thought of as a quadratic equation in z, whose coefficients depend

on p:
ip i( w-) iw i [ _2

+ 4--- - ---
8 2p z z 4

or

With some algebraic manipulation, we may rewrite this as

Z 8p(w T 1)
p2 + 4(w F 1)2

To pick between the two solutions for z, we insist that for w near 1, z ; p, with both p and

z near 0. This requirement just says that p = p(z) is one-to-one in the neighborhood of

the saddle points near z = 0. This is satisfied by the + choice in :F, and we have finally

= 2p I
+ I

It will be useful to expand this about p = 0; the result is:

2p 0: P--- - (2.11)
W+ o I F2(w + 1)

Differentiating (2.11), we find that

dz 2 00 P )2dp- 27- E (- I)v(I +1 2M)2( )

(+ 2+ + 1)o

2 ( 3P + O4)).
I + Wt 4(w +0,

+
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This is the appropriate form of dz/dp, since the saddle points are converging to the origin,

and the unexponentiated term has a pole at p = 0. (We have used the form recommended

by van der Waerden [1951] for saddle points near a pole. Other expansions are possible;

see Bleistein [1966] and Olver [1974].)

Next, we find the unexponentiated part of the integrand. It is convenient to consider

a_(l + )_)(-l/z 2 ) h(p) together. Neglecting the 6-function term in a_(1 + X+), this is

4

Now, we need to convert this to the p variable. We handle the square root first.

2z 1- 16p2 (w + 1)2

4 (p2 + 4(w + 1)2)2

4(w + 1)2 p2

4(w + 1)2 + p2

where the b ech ot the square root was chosen for p small. Using this formula, we find

after some manipulation that

h(p) p2 + 4( + 1)p 2i(w + 1)8(4(w + 1) -p2"

Multiplying this by the last part of the unexponentiated term, dz/dp, we get

I1(1 2i(w + 1))
4( + 1) Pp

4(w + 1)2

Finally, as a power series, this is

4(w 1 .= (2ip)) (2.12)

We are now ready to write u as an asymptotic series. Combining (2.10) and (2.12), we

have

U(X, t) --- )"- exp p - t) dp.
8r(w + 1) 00 2i(J( + 1) 8 2 2p

Again, we have deformed the path of integration. The 6(C) term in f which we have been
neglecting cancels the - 1 term from the pole at - 0 (which is z 0o). This pole is not

16
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present in our expansion of the unexponentiated term because we broke the integral tu- in

(2.8) into two parts: one part about the saddle points near z 0 0, and the other part near

the pole at z = oo. We can deform the path away from the pole at z = oo, including the

contribution from the pole. This leaves us with just the integral above. (Note that there is

also a pole at p =0 . This pole is handled as part of the integral - see the second integral

identity in Appendix A.)

The first term in this expansion is

2w 2p ((8p2 2p )t)

The second integral identity in Appendix A tells us that this is

O -C -.-t121 ,--W2),Uo= e' 1 Io( -Vil-~)

where I, is the regular special Bessel function of order v. This is a good approximation

for w less than and near 1.

The next term is just

1t f4 0  1- (( 1 W 2 )~ ~
S. +I4(+) exp 2 2p )t) dp

From the formula in Appendix A, this is

u,(z, t) = Ie't/2 1 - w t
2 +w 2

This process may be carried out repeatedly; this completes the proof. I

It is interesting to consider the behavior of the first few terms in the approximation

(2.5) near the front (w r 1). First we note that for w = 1, the v > 0 terms are all zero

since 1,(0) = 0 for P > I (see Abramowitz and Stegun [19721). In general, at w = 1, the

L,> k terms are 0 for u(z, t) and its first k derivatives in z. Thus, the first k terms give u

and its first k - 1 derivatives in z exactly at t = z. We expect, therefore, that the first few

terms would give us a good approximation to the solution for z % t.

Asymptotic Behavior near the Front

We can get a better idea of behavior of the solution near the front z = t by looking

at.the small argument behavior of I,(z). Using the small argument form, (2.5) gives
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I t/2 -z t 2 - X2  (t-X) 2

U(zt) =--( + - + - + +

- e v( + - +..

It is clear from the power series for 1,, that u,- = b (t - x)" exp(-t/2) + O((t -

X)"+2)exp(-t/2) for w % 1. At t = l and x = I these give u = le- 1/2 and u,

-- e -
1

/2 exactly. We can compare these with the computed solution given in figure 1.

The method used for computing the exact solution is given in Appendix B.

0.5 . I . I I I '. . . . '

0.4

0.3

0.2

0.1

0.0 0 . . . 0 1 . . I . . . . . .. . . . .

0 0.2 0.4 0.6 0.8 1 1.2

Figure 1:' Exact solution for u for t = 1.

As we can see from figure 1, these match our results. In particular, note that the height

of the front is roughly 0.3, which agrees with the computed value of e 1 /2  0.303.

Also, the slope near the front can be estimated as 0.3 - 0.41 = -0.11, which matches the

calculated value of -3c-1/ 2/16 -0.114.

Finally, we discuss the range of validity of the expansion (2.5). The limitation comes

from the fact that the expansion (2.12) is valid only for Izi < 2. Thus, as w decreases from

1, we can expect the (z ± 2)1/2 terms to have an increasing effect. As a rule of thumb,

since 1z, I = 2 at w = (1/2)1/2 0.707, the approximation will be valid for a range of w

18



near 1, such as 1/2 + 1/2(1/2)1' / < w < 1. If we wanted an expansion that was valid

over a greater range of w, we would have to either use an expansion of (x(l + X-) with

a greater radius of convergence or use the method of matched asymptotics. In this case,

the method of matched asymptotics would be the more fruitful approach. In this approach,

as the saddle points approach the branch cut, the path of steepest descent begins to be

affected by the branch cut. At the same time, the saddle points are moving apart and

hence interacting less and less strongly. Thus we could use an expansion valid for two

saddle points approaching a branch cut. In the transition region, we would match these

two asymptotic expansions. Since we are interested in the solution only near the front

w = 1, we will not consider either of these further.
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3. Behavior of Difference Approximations near the Discontinuity:

Second Order Method of Lines

In this section we analyze a particular difference approximation to the model problem.

For simplicity in the discussion, we consider the method of lines (or semi-discrete) second

order centered difference approximation

dUj Vj+j - Vj-1

dt 2h
dV, Uj+ 1 - U.-1

dt 2h i

if j < 0 (3.1)

jo, fj=o

-1, ifj> 0.

This is a second order non-dissipative difference approximation to our model problem.

The space step size is h. The grid is not staggered. For simplicity of analysis, the

undifferentiated term is not averaged. Also for simplicity of analysis, the initial conditions

are slightly different from those in the previous section. However, this will not affect the

behavior of the difference scheme, since both the equation and the difference scheme are

linear. Of course, this change in initial data changes the solution everywhere by for U

and by 1e -t for V for both the continuous and the semi-discrete problem, but we can

ignore this since the change is the same for all x.

Our analysis will illustrate the behavior of the approximate solution to U,(t) near the

front x = t. We are particularly interested in the asymptotic behavior of the width of the

front as h -. 0. In addition, we will show that the behavior of the difference scheme near

the front is very similiar to that of the wave equation.

Since this section is the longest, we will provide a more detailed summary of it. We

first find the inverse Fourier transform which represents the solution to (3.1). We will see

that the inverse transform is more complicated than that in section 2; in fact, its canonical

form represents a new special function. At this point the analysis diverges from that in

the previous section. We take up the question of the width of the front in (3.1) (since the

discontinuity in the solution to (2.1) is smeared out by the approximation (3.1)). First we

discuss the behavior of the exponential in the inverse transform integral. This leads us to
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a definition for the width of the front. We then go on to state and prove a theorem that the

width of the front is 0(h 2/ 3 ). After the proof is complete, we turn to the canonical form of

the inverse tranform. From the canonical form, we can show the behavior of the solution

to (3.1) near the front (mostly through graphs displayed in section 5). We close with a few

secondary issues which may be skipped on a first reading. The first is the behavior of the

solution away from the front. The other discusses the size of a term that was neglected in

the analysis.

Integral Form of Solution

We start with the discrete Fourier transform of (3.1):

dU
- - sin(hC)1'

dt -h (3.2)

dt h

where e is the dual variable. Let 0 -- h C. In matrix form, this is

d o ~:sin o)QY )dt\V -sillO -1

The eigenvalues X of the matrix are given by X(X + 1) + sin 2 0/h 2 
= 0, or

I i [4sin2 o
\(M = 2 h2

The branch cut for the square root is the interval f-Arcsin(h/2)/h, Arcsin(h/2)/h] in the C

plane. This is the standard branch. The unnormalized eigenvectors of the matrix are

• "' t,- sin 01

Therefore, the solution to (3.2) is

(, sin I in

where a,( ) are determined by the discrete Fourier transform of the initial data. The

solution for U is then just the inverse transform

U(z, t) = I - /h ,,()(i + X,)e X t + a_(o)(l + X )e. -lei' dE. (3.3)

As in section 2, the path of integration passes above the branch cut. Let 0, = X, + i(X/t).

We will write the two terms in (3.3) corresponding to and as U+ and U respectively,
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as in (2.8). We note that this formula defines U for all real x, even though U was originally

defined only for x = jh for integer j. The inverse transform (3.3) provides, however, a

natural interpolation to real x, and we will use this in the rest of this section.

To determine a,~ we apply the initial conditions to the solution of the differential

equation (3.2). At t = 0, we have

a'(0)1 + X J + Wo)( + x4 i

+ ,sinO Is_()in 0

where CJ~0) =1 1(,0) f).These imply

V'-W ~ - I- -(I (1 X+

ihf
sinG 0 E

or

if ___ 2i siO 4 sin

27 h h2 l)

__2 -h iincs + h2 . 35
4 si in2B

wieo)fo (.)The soluition for the saddle pointsO, is te

3 2 sin 2 o, 2W 2 (W 2 ) 2 +W 2 h 2 . (3.6)
2

There are clearly eight solutions C to this equation in the rectangle (-7r/h, ir/hI x (-oo, oo).

Let 0il = sin t -1.1,k with 0 < 0, < 7r/2 and RO- = 0, 0-/i > 0. (Rz is the real part of

z.) Then the other six roots are -0,, 7r - 0,, -7r+O0+,--,7r +OV, and 7r-- To see

which of these solutions are zeros of 0' ( ) and which are zeros of we plug (3.6)
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into (3.5). Again, we must be careful with the branch of the square root. We first note that

sign(Osin 0) = sign(O(4 sin 2 0/h 2 - 1)1/2). Thus, by considering the sign of Rcos0, we see

that 0'_(C) has roots he = ±O+ and ±0-, and /.(C) has roots +tr :F 0+ and 7r -±- 0_.

Note that the location of the saddle points is substantially more complicated than for

the integral in section 2. This complication makes it impossible to obtain an asymptotic

expansion for (3.3) in terms of known special functions. We will have to be content with

some estimates of its behavior. Note also that the integral of the '0+ term is not zero, in

contrast to the continuous case. However, we will show later that it is of the same size

as the first neglected term in the asymptotic expansion. For the moment, though, we will

ignore the 4+ term.

Width of the Front

Perhaps the most interesting information that we can look for is the width of the front.

Serdjukova [1971] and Hedstrom [1975] have shown that for the scalar wave equation, the

width of the approximation to a step discontinuity by a difference method of order p is

O(hP/(P+')). This smearing out of the front can be thought of as the result of numerical

dispersion or dissipation or both, introduced by the approximation. In this section we will

show that the same relation holds for the second order method (3.1) under consideration.

We show this as follows. First, we study the path of steepest descent. This will show us that

the saddle point 0- controls the width of the front. Next, we use perturbation techniques

to find 0- and 0-(0-) ", .r z/t = w 1 + ch" . By studying the behavior of 0_(0-) as a

function of y, we will see that the width of the front is indeed O(h 2 / 3 ).

In passing, we note that the width of the front is not a well defined concept. This is

because there are a number of other phenonema which interfere with any measurments

of a width of the front. For example, the oscillations which are present in almost any

difference approximation can mask the width of the front. Despite this, it is sometimes

possible to define a width for the front that matches the observations. For the scalar wave

equation (Hedstrom [19751), dimensional analysis reveals the width of the front. We can

not use the same technique here. Thus, we must motivate a "definition" of width of front

which matches what we observe when we look at a graph of the solution. We will show

that 0-(0-) provides us with a definition for the width of the front.

We will start by presenting some computations of the path of steepest descent and the

height of that path for a particular value of h. These computations are only used to provide

23



motivation for both a definition of width of the front and the theorem that follows, and are

not used for proof. However, the geometry of the surface OZO- is complicated enough that

a specific example will help in understanding the proof.

Since we are interested in the behavior in the vicinity of z = t, we look at contour

plots of Ro_ for w near 1. From the topographical interpretation of saddle points, we define

!_ as the height of &_, since ieo1 =ew.

Figure 2: Contour plot of 4_ for w = 0.085 and h 0.05. Boldface

lines are lines of steepest descent (constant 5_, others are lines

of constant height (_).
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Figure 3: Contour plot of _ for w = 0.086 and h = 0.05. Lines

have the same meaning as the previous figure.
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Figure 4: Surface plot corresponding to figure 2. The direction

of view is from the upper right corner of figure 2 to the lower left,

viewed from above. Note the branch cut in the center of the plot.

Note how the path of steepest descent changes between figures 2 and 3. The path

in figure 2 has three components. Two parts of the path pass through the saddle points

on the real axis, and the other part loops around the branch cut at [-2, ]. In figure 3,

the path of steepest descent passes only through the principal saddle on the imaginary

axis (the paths through the other saddle points are forbidden because they pass on the

wrong side of the branch cut). What we are seeing here is a complicated interaction of four

saddle points. Well behind the front, the path of steepest descent has two features. First is

the part of the path that mimics the path for the continuous problem. This is the part that

26



loops around the branch cut. The other part consists of the paths that pass through the

two saddle points on the real line. Thes explain the oscillations that are known to extend

well behind the front (see the subsection, 'Behavior Away from the Front').

As we near the front, the paths come closer together, eventually crossing at a value of

w of about 0.985. It Is interesting to look at the height of the path in this critical region. If

the path has humps at each saddle point, then the saddle points may be treated separately.

If not, then we must consider all the saddle points together. The next two figures answer

this question.
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1

-4 -3 -2 "1 0 1

-0.40

-0.45

-0.50

-0.55

0 50 100 150 200
Figure 5: Plot ot the left side of the path from the principal saddle

and the height of the path for w = 0.985 and h = 0.05. Note

how the height of the path flattens out in the neighborhood of the

saddles -0+, -0-, and 0. The abscissa in the second graph is an

arclength along the path.
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Figure 6: Plot of the left side of the path from the principal saddle

and the height of the path for w = 0.986 and h = 0.05. Note how

quickly the height falls as the path moves away from the saddle

points.
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These figures show that we must consider all of the saddle points simultaneously in

the neighborhood of the front. However, note that the principal saddle point 0- is always

higher than the other saddle points. This means that the principal saddle controls the gross

features of the solution. In particular, we expect the width of the front to be reflected in

the behavior of the principal saddle. The next figure shows the behavior of the height of

the principal saddle.

0.0

VI-0.5 -i

U,

Cj -1.0

C6

. -1.5

-- -2.0

0 0.25 0.5 0.75 2 1.25

Figure 7: Height of the principal saddle 0- as a function of w;

h = 0.05. Note how rapidly the height falls as w increases past 1.

Since R-_(O_) falls off so quickly, we can expect that by considering how R_(_)

behaves ahead of the front, we should be able to find the width of the front. This leads to

the following definition:

Definition 1: Given c > 0 and some -7c > 0, IF the height of the principle (highest) saddle

point tends to -oo for w = I + ch", for -/ < -1,, and the height of the principle saddle is

bounded below for w = I + ch'" , for -y > -y,, THEN the width of the front is O(h").

This definition is based on the following estimate of the inverse transform integral.

Under the conditions in the definition, we can write the inverse transform integral as
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fg(C)e#M dC - Ae -f(h) f eB(J- Co)2 d

where 1/1(h) o(1), Rf(h) > 0, and Co is the principal saddle point. Then, as h -. 0, the
integral vanishes (discarding contributions from poles near the path; these give the - 2 in

the solution ahead of the front). We do not need to consider the effects of the other saddle

points because of the exponential importance of 4i at the principal saddle point. Note that

this definition does not say that the width of the front is asymptotically equal to hl , only

that the width of the front is at most h"'-.

The restriction in definition 1 to c > 0 is based on the before-mentioned difficulty in

defining a width of the front. For c < 0, we have w < 1 and hence we are looking behind

the front. But behind the front there is no clear way to measure the width of the front (see

the graphs of the computed solution in section 5).

For more detail of the behavior of the solution near the front we must take into

consideration the interaction of all four saddle points. This is discussed below in the

subsection on the canonical form. We proceed below to find the width of the front, proving

the conjectures above about the behavior of the path and the height of the principal saddle.

Theorem 2: The width of the front in the solution to (3.1) is O(h 2 /3), where h is the spatial

step size.

Proof:

First, we need to know something about the path of steepest descent (henceforth

path). We actually will need only qualitative information on the behavior of the path. For

this, we look at 0"'(C) for a saddle point. Now,

m 2ih 2(1 - 2sin2 O) + 8isin' 0
h" 4 sin 2 o 3/2

_h2~

Since 4 sin2 (0)/h2 - 1 is negative for 0 = 0- and positive for 0 = 0+, we can easily evaluate

4" at the saddle points. At the upper saddle, O, it is negative. At the lower saddle, -0-, it

is positive, and at the left and right saddles, TO,, it is Fi'-, for some real positive 7. These

facts allow us to determine the direction of the path of steepest descent at the saddle

points; see, for example, Bleistein and Handelsman [1975], ch. 7.
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Figure 8: Saddle points of /)_. Arrows point downhill. The branch

cut is indicated by the shaded line.

Figure 8 shows the behavior of Ro in the neighborhood of its saddle points. Recall

that the domain is the strip [-7r/h, 7r1h] X [-co, co] in the E plane. Clearly, the path of

steepest descent is one of three forms in the next figure.
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1- 1

Figure 9: Possible paths of steepest descent for _ Arrows show

the direction of integration.

We first study the possible paths of steepest descent illustrated in the previous two

figures. Determining which of these three choices is correct for all values of h and w is

very difficult, and we will not do it. Fortunately, by purely geometric considerations, we can

show that the saddle point at 0-_ dominates all of the possible paths.

Recall that the definition of the height of a saddle point at 0 is gRO(O). Figure 9a shows

the path which passes only through 0-; this is the correct path if Ro(4_) is less than the

heights of the right and left saddle points. Of course, figure 9a may be the right path even

if this is not the case, but we will see in a moment that that is not important to us here.

In the other cases (figures 9b and 9c), the saddle at 0- must be higher than the other

saddle points, for otherwise the path in figure 9a would be a lower, and hence better, path.

Therefore, because the heights of the saddles enter as e'(), the saddle at 0- is always the

most important term. We will call this saddle Point the principal saddle point. This is not to

say that the other saddle points are unimportant; we will see that the left and right saddle

points lead to the oscillations that are observed in the solution of (3.1). The lower saddle

point -0- is also important to the detailed behavior of the solution.
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We will have to deform the path of integration to pass through the principal saddle

point before we proceed. In doing so, we will pick up a term from the singularities along

the path of integration. In deforming the original path of integration passing along the

real axis above the branch cut to the path of steepest descent, we move the path off of

singularities at 0 and ± sin--'(h/2)/2. Only the pole at zero contributes anything. As with

the continuous problem, we must add iir times the residue of this pole to the integral. It

is easy to see that this is just - 1 by making a Taylor expansion of the integrand. We will

ignore this constant term in what follows.

We now find the behavior of 0 and 0(0-) for w = I + ch", as functions of -y and as

t goes to zero. To discover what sort of perturbation expansion we will need, we consider

an expansion for w = 1. We have sin 2 O_ = - h, or h_= 0_ /2. Thus we see

that as h -* 0, _ is large and 0- is small. We thus proceed by making expansions with

large and 0 small. We will use the notation O(h"; ... ; hw) to mean 0(in"ifl .. ,. W)).

Using this result as a guide, we let w = I + ch-1, where c and -y are positive. In

addition, we will assume that -y < 1. It is easy to show that 0- (0-) tends to -I ash - 0

for -y > .

We start with (3.6):

2 1

sin -- + -1 1+ I+ h 2
2 2 (1-wLd2 )2

= +w)ch"~ - (I + w)CIO I + Iw h2 +2 0(+

To simplify the notation, we will replace (I + w)c with c. Then we have

sin 2 0_ = -ch(1 + W2 h 2
- + (h4-4)

or

sin0- = iV'-- I 1 + -72  + h (h

Since 0- is small, we may expand the inverse sine to get

0= + 8 w 2  
- i + 0(h 4 7 "1 2 ; ,5"/2) (3.7)

Now, we can find 0-(0-). First, we need to know
4 sin 2 0h_ ,ht2 I !w 2h.2-y 2 - 3,y)

S-4 1 + 4 - ) + 0(h-

4 sin 2 o I 2 2 -h4 " 2 )).
--- = 2 - --  + 8 c 2 )\ + 2-
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I I I I l . ... . . . . -_ ... ..

Thus, for 4(0 ), we plug these in to get

010, L 2 /,2 - 2-1)

2 2 + 8 C2

.i,--h-1( 2 w 2h7. c i(cl')6/ 2 h '1

+ wict7~,l+ 8 2 - 6

+ O(h: 7 "7/2 ;hI -/2; h 5 "-'/)

Collecting terms, this is

2 - + (/- 2 2 + 2+ - 3 . . .

+ O(h 3 - 7-/ 2; h'-1/2; h 5-/2-I)

Now, we replace I - w by -chl/(I + w) (since we redefined r above) and get

_ / 3_1/2- 1(h', 7-/2; - - / ; 1)

4~O) -1 - C'h 3 ' + 0 + h ;h' h
) 3 I + )8)

=-- - (positive quantity) 3
- 2 - 1 + 0(h :

l 717/2 ;h -1/2; h5-1/2- I)
2

From this we can see that for -y > 2/3, 4(0-) - as h -, 0. For - < 2/3, (0_)--

-oo as h - 0. Thus, for -y < 2/3, U -* - as h -+ 0 (-. comes from the pole;

the contribution from the path tends to zero, as does the 0, term). For -1 > 2/3 the

contribution from the path does not tend to zero. I

Note that we have not shown that U is different from - 1 for - > 2/3, since we would

need a lower bound on the integral. Thus we can only say that the width of the front

is 0(h '2 / 3 ) rather than the stronger statement that the width is asymptotically proportional

to h2 / 3 . Section 5 will present computations that demonstrate that the width is indeed

proportional to h2 / 3 . Also, this result is good for t small and positive as well, since the

behavior is so strong.

The limited form of this result is caused by the complicated behavior of the saddle

points and is not an inherent limitation of the method. With better information about the

location of the saddle points and the path of steepest descent, we coulo describe the

behavior of the front in more detail. In particular, for any given h and W, we could work

out the detailed behavior. Since we are interested in general results, however, we will not

do this.

This sort of analysis may seem contrary to the analysis in section 2, where great

care was exercised to get the contributions from all of the saddle points along the path of
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steepest descent. This is because this section and the previous one have somewhat different

objectives. In the previous section, it was important both to introduce the techniques of

uniform asymptotics and to show the solution to the continuous problem. Here, we are

interested in finding the width of the front as a function of h. To compute the solution

near the front, we would have to determine the correct path of steepest descent and use a

uniform expansion to calculate the behavior near the front. Using the canonical form, we

do this computation in section 5.

The Canonical Form

In section 2 we saw that the integral representing the solution of the continuous

problem could be transformed into an integral with a simpler form. We did this by simplifying

the argument of the exponential in the integral into a form which represented the saddle

point behavior. This form is the canonical form, and by studying these integrals we can

gain a better understanding of the exact solution to the difference equations.

For the difference approximation of -this section, we will use the canonical form to

discuss the behavior of the principal terms in the asymptotic expansion near the front.

The canonical form chosen depends on the region of interest. Near the front, we

know from above that R4O-0_) P -- !. It is easy to see that Ro_(k+) = -+= -1

everywhere. Therefore, we expect the path of steepest descent to be more like figure 9b

or 9c than 9a. In this case, we will need to consider the interaction of four saddle points.

As in the continuous problem, we will be guided to a canonical form by considering an

expansion of 0-. We recall that the saddle points are 0, - 0(h1/ 2 ) near the front. Thus,

in contrast to the derivation in section two, we will remain in the 0 plane (rather than going

to the 1/C plane).

The small h, small 0 expansion of 0- (in terms of ) is

1 i i 3h
OAO + + i -O + 6 + O(C 5 h (3.9)

(In this expansion, it is important to expand the sine inside the square root, rather than

expanding the square root and then the sin, because the first term in sin 2 O/h2 is large,

while the succeeding terms are small.)

Note that since for w zI, C ;. h-
1/

2 , and hence the h2 C3 term is not smaller than

the first two terms. However, the next term. Ch 4 , is smaller. This suggests the canonical
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form

,(p)=- + b + cp + dp3  (3.10)
P

Here we have already applied the requirement of symmetry of the saddle points to eliminate

the p2 term. By setting b - , we do not affect the saddle points of b. We may also

normalize the mapping by setting one of the remaining parameters; we set a = i/8 so

that d /dp ; 1. We are then left with the two parameters c and d. To determine these,

we need two and only two conditions. These two conditions are provided by the fact that

the mapping (3.10) is locally one-to-one at the saddle points. This means that the saddle

points correspond. That is, if is a saddle point, then so is p( ). Since, by symmetry, the

saddle points are described by two parameters, we have the two conditions that we need

to determine (3.10).

Now, Oi(p) has four saddle points p, and -p, which satisfy

3id

2 - + 2=d (3.11)
6d

We expect (3.11) to have two real and two imaginary solutions. This will be the case if

c2 + 3id/2 < 0. There are many ways to satisfy this condition; it is clearly satisfied if c

and d are pure imaginary and d is small enough or has positive imaginary part. This is just

the case for 0. Also note that the behavior of the saddle points follows that of 0_(6) as

h - 0. In particular, the saddle points of b(p) go toward infinity for W = I as h tends to

zero. All we have to do is to determine c and d such that Ob(pj) = 0_( ).

Unfortunately, it is too difficult to analytically determine c and d. We can solve for

them numerically, however, and compare them to (3.9). A fixed point iteration suggested

by Hedstrom [1979] for the scalar wave equation can be adapted for tt.is problem:

1 Pick c(O) and d(°). Set n = 0. Define 0(1l)(p) by (3.10), with c(") and d(") replacing c

and d.

2 Repeat steps 3-4 until c(") and d(') converge.

3 Find the saddle points of -0("). Find a correspondence between these saddle points

and the saddle points of 0.

4 Solve the two (linear) equations O(fl+l)(p) - q_(EC) for the coefficients c("' ) and

d( '). Set n 4- n + 1.
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We use this algorithm to find c and d for w in a neighborhood of I. Good choices ot

c(° ) and d( ° ) are needed. We can start at w = 1 by taking c and d from (3.9). With the

w = 1 values of c and d, we can proceed to nearby values of w by continuation.

This canonical form defines a new special function, which is a generalized regular

special Bessel function. Graphs of this function are displayed in section 5. The following

two figures show cli and d/ih2 for h = 0.001. The figures compare these to the values

from (3.9) for c and d.

Map

0.2

0.1 -

0.0

-0.1

-0.2

-0.30.7 0.8 0.9 1 1.1 1.2
w

Figure 10: Comparison of coefficients for model equation with co-

efficients for map. Curved line is c/i for h = 0.001. Straight line is

the value from (3.9).
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M~-p0225r ~ I'

0.200 -

J- 0.175

0.150

0.7 0.8 0.9 1 1.1 1.2
W

Figure 11: Comparison of coefficients for model equation with co-

efficients for map. Curved line is d/ih2 for h = 0.001. Horizontal

line (at 1/6) is the value from (3.9).

These figures show that near the front the form in (3.9) (really a model equation) is a

good approximation. Away from the front the neglected terms in the Taylor series in (3.9)

become important, and (3.9) is no longer as good an approximation. Fortunately, we are

interested only in the near-front behavior, so we will use the (3.9) form of the mapping.

We can use the above result to look at the behavior of the canonical form near

the discontinuity. Because the form in (3.9) is so close to the canonical form near the

discontinuity, we will look only at the form in (3.9).

Written with (3.9), the form of the integral for the solution to.(3.1) is

liZ gexp{(+ i(W - 1) + i h2 t d
We now consider various scalings of ( which reveal the importance of the terms in the

exponential. If we define h01i = ? , the integral is

9 exp i + i(w - I)h-77 + a+2 3 " hfdr.
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If (3.1) were the scalar wave equation, a = -1 would be the natural scaling (see Hedstrom

[1975]). Writing the above with a = -1, we have

gcxP + i(w - 1)77 + } h-drl" (3.12)

The integral (3.12) is useful when we may neglect the ih 2 /8i7 term, for then (3.12) may

be written in terms of the well understood Airy functions. For that term to be negligible,

we must have jh 2/i71 < )(w - 1),q/ and lh
2 /,I << 11731 at the saddle points. We may rewrite

these conditions as
1w - 11 > h -3 

. 3

117 2 1(3.13)
11 > vfh-

Now, near the front we know that \/v'- , so 71 = / = v'-i and the condition IiI > \A

is not satisfied. Thus (3.12) is not useful near the discontinuity. As we move away from

the front, q = hC zconstant (from (3.6)), and both of the conditions (3.13) are satisfied.

In particular, (3.12) and (3.13) show that the term in the integral due to the coupling

(the ih 2 / Sr term) becomes less and less important away from the front. From this, we can

conclude that in a region near (near for expansion (3.9) to be valid) but bounded away from

the discontinuity, the behavior of the U- term is similiar to the behavior of the centered

difference approximation to the scalar wave equation.

It is important to note that the U+ term is important away from the front (Majda an,

Osher [1977]), so we may not exclude it in discussing the behavior of the solution to (3.1).

Another useful scaling of is a = -1/2. With this scaling, the positions of the saddle

points stay nearly fixed in the 27-plane (as functions of h) for w near 1. The integral then

looks like
w / V g exp {-+ h + 7-)i,1h h - id,/. (3.14)

For (3.14), we want the term i(w - t)i 7/h to be unimportant and tv'/i large. For this,

we have 11/711 >> 1(w - )i/hl and I 3 l > 1(w - 1),7/hl, or

721 > (3.15)

From (3.7) and 1/ = 7 /-/, we have 17 P h("' - ) /2 at w - I = ch. Inserting these into

(3.15) shows (3.15) satisfied for y < 1 ((3.7) is valid only for -1 < 1). Note that the argument
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of the exponential (dropping the s(w - l)/h term) has 4 saddle points equally distributed

about the unit circle. This shows us that very near the discontinuity, all four saddle points

are important.

Note also that this scaling makes asymptotic analysis difficult, as we would need t'.h

to be large as h tends to zero.

Behavior away from the Front

We may use the integral representation (3.3) to get some inlormation about the behavior

of the solution away from the front as well. Let us consider the effect of the two real saddle

points in figure 7. There is some w, < I such that for w < w, the two saddle points on

the real line are isolated; the path of steepest descent through each of these two saddles

starts at infinity and passes through only one of them before going back out to infinity (cf.

figure 8c). Thus, we may use classical saddle point theory to estimate the c-ontributions of

these terms. Considering just the contributions from these terms, we have

U.. =(+) eJ-I eo-(O + g(-O) I eo(O+)tc +

where g is the unexponentiated part of the integral in (3.3). We may use the fact that 0, is

real to relate g(O+) to g(-0+) and 0-(0+) to 0-(-0 ). The leading term in g(0,) is h//, so

to leading order, g is odd in 0. We also have

= I 4 sin O+ - I wO+.
22

1 ro0(+)= :F W'

Combining these, we may write U... as

in1 jvh 2  
+ JJ*

This shows where the oscillations in the solution to (3.1) come from. They are artifacts

caused by the presence of the spurious saddle points on the real line (spurious in the

sense that they are not present in the continuous problem in section 2).

While the above analysis shows where the oscillations come from, it does not give the

frequency of those oscillations. Since 0, is a function of w and hence of z and t, both

g(O+) and 0"(0+) contribute to the oscillations. Still, this does show where the oscillations

in the solution come from, and a more careful analysis, such as those in Hedstrom 19751

and Pearson [19691 for the scalar wave equation, would show the observed frequency.
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Size of the U+ term

In closing this section, we show that the U+ term in (3.3) is asymptotically negligible

as we have claimed. For the region away from the front (w bounded away from 1), we can

use the same basic techniques as before. First, we determine the path of steepest descent.

Second, we determine the appropriate canonical form. The canonical form near the front

will be different from the canonical form away from the front. Finally, we get estimates on

the size of the terms in the resulting integrals. For the region near the front, the situation

is more complicated. In this region, we will show that the U+ term is of the order of the

first neglected term in the U- expansion.

First, for the region away from the front, we look at the saddle points. iscover

the path of steepest descent, we consider the relation between 0-(C±) and 0+(Cj. Let

-0 + r. Clearly,

-1I i ___in2

2+ 2 h2 1 +i h

1 i 4(-sin9) 2  + i +ir

2+2 h2 h+ 1 + + to

since the sign of the sine changes the sign of the square root. Hence, O+(0) =R_(0).

Thus the behavior of the saddle points and the path of steepest descent is the same as

that for 4- found earlier in this section.

There are then two cases to consider: w away from 1, where the saddle points are

well separated, and w near 1, where the saddle points are coming together (at infinity). We

will first consider the simpler case of w away from 1.

In this region of w, we can use classical saddle point analysis to get an estimate on

U+. Following Erdblyi [1956] we have that

U+ r- g(O-) 1 eO+(O-)tC + asymptotically smaller terms.
/t (9-)lI

Here, g(_) -= a(0_)(1 + X+) (see (3.3)). We can investigate the small h behavior of this by

making Taylor expansions in h of g and . We already know that RO4+(0_) ;-z . The

first terms in the expansions for g and 0 are (hf = 0, 0 = 0+ w-, C is 0(1) away from the
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front)

h(O 24 h 1 + 2 i i4- 1)80) --1

(o 2i
(4 2 

- 1)3/2

Thus, U+ is 0(h 2 ). This is just what we would expect, since the method that we are

considering is second order accurate. Note also that the exponential is like

e0+(0-)t =e 0-(O-)t+ixw/h

=slowly varying part X et '
w/h

so we would expect U+ to have a wavelength of 2h in x. These oscillations are observed

in practice.

As a demonstration of this analysis, the following table presents the results of computing

U+ numerically for h = 2-", n = 5,6,..., 15.

n U+ ratio
5 1.44E-2 NA
6 3.88E-3 1.89727
7 9.49E-4 2.03098
8 2.32E-4 2.03180
9 5.71E-5 2.02369

10 1.41 E-5 2.01370
11 3.52E-6 2.00731
12 8.77E-7 2.00377
13 2.19E-7 2.00191
14 5.47E-8 2.00096
15 1.37E-8 2.00048

Table 1: U+ for h =2 - n and z = 2t = . Ratio column is the

log of the ratios of success!'e rows divided by log(1/2). Note how

quickly U+ approaches 0(h2 ). The value for U+ was taken as the

maximum over two periods (each period is 2h long) and a constant

factor was divided out. Of course, there is no ratio for the first

entry.

It is instructive to note that as w goes to 1, becomes 0(h/ 2 ). Thus, as W nears 1,

it is no longer sufficient to consider just the effect of the principal saddle point. We look

then at the canonical form (3.10). By the above analysis, .+(0) and -(0-) are essentially
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the same (they differ by a term constant in 0). Thus we can use the same canonical form

for estimating the size of th UJ, term.

The behavior of the canonical form integral is very complicated for w . t 1. The best

that we can do with it is to show that it is comparable to the first neglected term in the

previous analysis. Define g, to be the unexponentiated part of the U, integral in (3.3)

and y- to be the unexponentiated part of the U_ integral. Because of the behavior of the

saddle points of 0, and 4) near the front, we need to know the behavior of g,(O) for 0

near T and the behavior of y (0) for 0 near 0. Let 0 = 7r + 0, 0 small. This gives us:

+ ')1 +'

g (0) +()40 1± __

2 h2

f(0) 1__)_

Now, f(0) ih cot(0/2)/2, so f(0 + 7r) = -ih tan(0/2)/2. From this we can see that

g,(0) is smaller than g-(0), since both are f X similiar functions, and tan0 < cot0 for 0

small.

We have not shown that this term is small; indeed we will not. It is a recognized

problem in asymptotic analysis that estimating the higher order terms. in an expansion

for arbitrary It and w can be very difficult. For specific h and w, however, these terms

could be estimated by preforming the integration numerically with a method with a known

error bound. See Wong [19801 for a clear discussion of error estimates for asymptotic

expansions of integrals.

To get a good estimate of U, we would need to know both the location of the saddle

points and the path of steepest descent. Since both the computations of the path of

steepest descent and the integral (3.14) show that all of the saddle points are important,

we must be able to estimate the canonical form integral corresponding to these features.

As the canonical form integral represents a new special function, this analysis reduces to

tabulating the integral which the canonical form (3.10) represents and using the resulting

tables to estimate U1+.

We can, however, provide computtions to show that the term is in fact as inconse-

quential as claimed. For this specific problem, we can look at the following table:
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n U___ratio
5 2.02E-4 NA

6 9.77E-5 1.04968
7 2.57E-5 1.92524
8 8.09E-6 1.66781

9 4.34E-6 0.89907
10 1.61E-6 1.42923

11 5.09E-7 1.66131
12 2.26E-7 1.17489
13 8.16E-8 1.46689
14 3.19E-8 1.35582

15 1.28E-8 1.31484

Table 2: U+ for h 2 ' , t = 1, and w = 1 + h2 / 3 . Columns

have the same meaning as in the previous table. The lack of an

obvious limit in the ratio column is due to the need to average over

the oscillations. Unfortunately, the predicted ratio changes over the

length of one oscillation, thereby contaminating the results.

For more general problems (such as the next section), we can look at the graphs of

the appropriate canonical form which are presented in section 5.
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4. Behavior of Difference Approximations near the Discontinuity:

General Difference Schemes

In this section we analyze a model equation for the model problem. This approach

was discussed in section 1. Our model equation is

au Ov P+V q+V__- +ah p ~~ v  
b q

at ax dZP+I Oq+ 1

O--t =- + ahP- + bh (9-- l

if z < 0 (4.1)

U(, 0) =v(X, 0) 0, if X = 00) I
-4, if X > 0

1<p<q.

Here, p and q are integers, and one of p and q is even, the other is odd. For example, for

p = 2, a = -1/6, p = 1, and b = 0, this equation models the nondissipative second order

scheme studied in section 3. We will use p to allow us to see what effect the lower order

term has near the discontinuity. For p = 0, (4.1) is just the model equation for difference

approximations to the ordinary wave equation; p =1 is the telegrapher's equation, and it

is this case that should be kept in mind for most of the analysis.

That this model equation is a good model can be proved by techniques similar to those

in section 3. In fact, section 3 can be taken as proof of this model equation for the case

of the second order difference approximation in (3.1).

Averaging of the undifferentiated term has not been included in order to simplify the

analysis. The techniques used here can be used to find the behavior of difference schemes

which average the undifferentiated terms.

Our analysis will proceed along the same lines as in the previous section. We represent

the solution to (4.1) as an inverse Fourier integral. We then study the behavior of the saddle

points of this integral, and show that the width of the front is 0(hP/(P+')). The calculations

for this are very similiar to those in section 3 and we will compare the results there to

the results in this section. We then use p to show in which regions near the front the

undifferentiated term is important. Finally, we present a generalization of (4.1) which shows

exactly what dimensionless quantity must be small for our analysis.
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Integral Form of the Solution

We start with the Fourier transform of (4.1):

.... t - i + ai(ih1L )P'' bi (ih f)(4 )
dt (4.2)

db
dt - i ft + ai (ihC)Pit i bi (ihC)qa -- i

where is the dual variable. In matrix form, this is

-iCi -t - ~h -- "~hCq

Then the eigenvalues of this matrix are

S-~ ± /4 2( h)P -b(ih )q) 2  
p2+ - 2

Let 0, = X, + iw , where w = x/1t. The branch cuts (there are many of them) are chosen

so that the h = 0 limit has saddle points with the same behavior as for the continuous

problem. The other branch cuts are chosen to be well away from the origin (the region of

interest) for w ; 1. If we let a, be the unnormalized eigenvectors of the matrix, we can

write the solution to (4.2) as

( " =ei(ma~e X' + (k(Ewa-eX-

where a ( ) are determined by the Fourier transform of the initial data. Then the solution

of (4.1) is the inverse transform

u(x, t) = 1 +00 [a, ( )aj +& +a ( a -(I,)- elezCd (4.3)

where a,, are the first component$ of a,.

It is possible to express av( ) in terms of the initial data and X,,, but it shows nothing

new. We will therefore assume that a-(j) ; 1/2E for . near 0, and t-.. the X+ term is

negligible compared to the X- term for . - 1. The arguments for these assertions follow

the same pattern as those in the previous section, and they will not be repeated here.

Width of the Front

To determine the asymptotic behavior of the width of the front, we will follow the

procedure used in the previous section. Specifically, we first find the saddle points of

S.We then show that the saddle point corresponding to the principal saddle of the
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continuous problem controls the width of the front. Finally, we show how ¢ (U4w + ch/))

behaves as a function of -1.

Consistency of the difference approximation will be used to guide and justify the steps

in the analysis. We require that the h -# 0 limit of the equations below must give the

respective equations from the continuous problem. In particular, we will use our knowledge

of the behavior of the principal saddle point to pick an appropriate perturbation expansion.

Theorem 3: The width of the front, as defined by definition 3.1, under a general difference

scheme with model equation (4.1) is hp( ft1 ).

Proof:

The saddle points satisfy the equation

:2 _I - a(ihE)P - b(ih )q)(l -(I + p)a(ih )P - (I + q)b(ih ))q)

S+b(ih)) 2  (4.4)

Now, from section 2 we expect that while tends to infinity as w approaches 1, h will

remain bounded. We define a new variable q = ih&, including the i to simplify the notation.

We are now looking for solutions r1 to (4.4), where 7/ is small for w near 1. Expanding

(4.4) as a polynomial by moving the iw term to the left hand side and then squaring both

sides, we can now drop the terms in the polynomial from (4.4) with r to powers greater

than q + 2. This leaves us with:

8(2 + p - w2 )aq7p+ 2 + 8(2 + q - w 2 )b,7q- 2 + 4,12 (w 2 
- 1) + h2w 2p 2 = o(r1,+ 2). (4.5)

This equation is clearly too complicated to solve analytically. We thus turn to perturbation

techniques. Our interest is in h z 0 and w z 1. Starting with a perturbation series in h

for the solutions ?) to (4.5), we have as the equation for the zeroth order term

8(2 + p- -2),,,72 + 8(2 + p- W2)b,7+ + 4172(W 2 _ I) = 0.

The first p + 2 roots of this are

(0 twice of

I/ P roots of V~a( +_ p- w2-V-~ ± }higher order terms
rots a(2 ± p -W

2) (I(I +

The remaining q - p roots we may ignore because they do not approach zero as w --4 1.

We can make an identification of these saddle points by comparing with the scalar

wave equation case (Serdlukova [19711 and Hedstrom [19751). In that problem, there are
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p saddle points due to the difference approximation about the origin; they correspond, to

first order, to the p sadJle points found above. The other two saddle points correspond to

the two saddle points in the continuous problem discussed in section two. We will need to

know more precisely the location of these last two saddle points, as we use the behavior

of the height of the principal saddle point as our definition of width of front. To get the

next term in the perturbation expansion for Y/ z io 0 0, we let 71 -z -dh"'. Here, d has

been chosen real and positive (so that idh"'l will be the principal saddle point). Also,

since we are interested in the width of the front, we need to know how r/ changes as a

function of uj, with w = I + ch'. Making both of these substitutions in (4.4), we get

8(2 + p - W2 )a(-d)2 +Ph(2 +p)- + 8(2 + q - 2)b(-d)q12 h( 2 +9)c

+ 4(uw + I)c(-d)2 h 2
1', + h 2w2p 2 -.

Now, since q > p, we may drop the h 2 +-9 term. This leaves us with

8(2 + p- 2)o(-d)2"+Ph(2+p), + 4(w + )c(-d)2 h 2 a,,, + h 2 W2 p 2 = 0. (4.6)

There are three cases.

case condition exponents -d

1 2a + -7 < 2 (2 + p)a = 2r + - 4 1),

a+ =2 --all- equal 2 2-

Table 3: Three cases for rj. The condition column gives the

condition for that case to hold. The terms column gives the powers

of h in (4.6) for that case, and the last two columns give a and -d

for that case. The * value of -d is the solution to a p + 2-th order

polynomial, and is omitted.

Each of the cases in table 3 is valid for a range on -1, or, equivalently, for a region near

the front. Case 1 is valid for -y < 2/(1 + 2/p). Since this bounds -y from above, the region

where case 1 is valid is asymptotically further from the front than cases 2 or 3. Note from

(4.6) that in case 1, the h 2 W2 p2 term may be dropped, and hence this is the -'gion where

the undifferentiated part of (4.1) does not affect the solution (to first order) Case 2 is valid
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for "/ > 2/(1 + 2/p). Since this bounds -1 from below, this region is asymptotically closer

to the front than the region in case 1. In this case, the 4(W + I)c(-d)
2h 2 ' +

y term in (4.6)

(the term from the convective or x-derivative) is less important than the p term. We note

that this case is for w very near the discontinuity, closer than we expect the approximation

to the front to be. Case 3 is the transition region between cases 1 and 2. In this region,

all parts of (4.1) are equally important.

Now that we know something about the behavior of the principal saddle points for

, 1, we can look at the path of steepest descent. As in the previous section, we will

need very little information about the path in order to find the width of the front. The

following figure shows the situation for the methods in this section.

x ×

Figure 12: Possible paths of steepest descent for q_ near the

saddle points. Arrows show the direction of integration.

As before, the path always passes through the principal saddle point.

We now look at the value of 0- at the principal saddle point 71 - -dh'. It will be

useful to expand 0- at this point for ( large and 71 small
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- _ i '~~( (h- - b(i{ )q)' _ - I
2 2

2---q/(I (?j
1 )P b(jhflq)

2  4-iu-

Expanding the argument of the square root we get

S_ i -I -2ar/P - 2brIq - + j(112p) fjWC

11( = -i _ I - arlp - i +  
(2 ) + i,,

2 'k.2
Collecting terms, we have finally

M I W + - )I a-lP+biTq+ 8+,+ +0(77 2 p )

or

0 W -= - W - ai') + Q(O.1 Iq;

Now we substitute -it/h for and -ch''for I - w to get

0 -(C) I/ ,,- I (-ch" -,ail p) + 0 (7,+ 111- I; IL7-2;,712q

Finally, we have 71 - -dh', or

-1 - ,Ili'- '(.h" + (,-d)lh,,) + O( ,,( I) Ih, -2a ;h 2pa).

Since d > 0, we clearly need only look at the behavior of h'-(ch'y +G(-d)'hP'h). We

wish to find the critical -y, such that this term (which controls the height of the principal

saddle point for w zI) approaches -oo for - < -1, and 0 for -1 > 7-Y. However, we can

get no further without assuming something about ?/. We will first take case 1 from above.

in this case, pa = - so both terms are equally important. We then have

I+w N
0_(C) 2 - (1(.h(" ) +.22 (4.7)

where we have used the formula for -d above. The quantity in parenthesis is always

positive, so this term has the critical gamma -7, = I - a. From table 3, we see that case 1

implies that (2 + -)v a= 2a + -y, so we have finally -y, = p/(p+ I).

We need only show that the other two cases in table 3 are excluded. First, we have

pa > -y in cases 2 and 3. Since we are looking for the critical -y, this means that we
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must have -y = 1 - a. From table 3 we know that in cases 2 and 3, a 2/(2 + p), so

,I = 1/(2 + p) and hence that 2a + - < 2. But for both cases 2 and 3, the condition on "Y

is 2a + -y > 2. Hence for -y = -1,, case 1 is the only case that applies. I

In the proof, we again expanded about h = 0. (Recall that in the continuous problem

we expanded about I/C = 0.) If we could not have done this, then we would not have

been able to use the model equation (4.1), since it is essentially an expanssion in hC for a

difference approximation to (2.1).

Results of Section 3 as an Example

To illustrate the results above, we will briefly sketch out the analysis for the difference

method analyzed in section 3. The parameters for the centered second order difference

method considered there are p= 2, a -1/6, p = 1, and b = 0. Then for case 1 in

table 3, we have

-d + )
-d= V2(-1/6)(2 + 2_ 2 )

since w2 p 1. With this, we may write (4.7) as

1 _ (C(l + j))3/2-h(-')'y +2 1+ w6

(Recall that c(1 + w) here is c in section 3.) This is the same as (3.8). Finally, case 1 is

valid for -/ < 2/2 = 1, and the width of the front is 0(h2 / 3 ).

The Canonical Form

As in the previous section, it will be very useful to construct the canonical form for the

solution (4.3) to (4.1). By producing graphs of the canonical form, we will be able to show

the near-front behavior for a wide range of difference approximations.

Near the front, we have the following small h, small ?I expansion for 0-(C)

I i
O_ 2 - iE(1 - w) + - + aie(ihC)P + biC(ih )'.

Following the example in section 3, we expect the canonical form to be

a
b(r) +cr + +... +dr + ' + er+l

The parameters may be determined by the method outlined in section 3. However, the

exact form of 0 is less interesting than the simpler approximation

Ob(r) -- 2 ir(1 - w) + - + air(ihr)P + bir(ihr)q
2 8r
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which is just the leading terms in 0-(r). It is straightforward to show that this form has the

required properties; p + 2 saddle points which converge to a saddle point of infinite order

as h -* 0 and w - 1. The q - p saddle points are much further from the origin than the

first p + I saddle points and are unimportant to first order.

Because of the complexity of even the approximate 0(r), we will not analyze it here.

Instead, the reader is refered to section 5, where graphs of the canonical form integral

are presented. These graphs show both the behavior of difference schemes that fit the

framework of (4.1) near the front, and the qualitative similiarity between the finite difference

solutions to the scalar wave equation ut = u, and the telegrapher's equation.

The Cell Wave-Coupling Number

Consider the generalization to (4.1)

9 o+ ahP o + bh q  
I~= -c- +

t +x Y + - p (4.8)09v au ah P+1u+ bhq +1v
Ot ac-x + ax - + b h q

4~

All we have done here is to add a propagation speed c to (4.1). The advantage of this is

that now (4.8) is in dimensional form if a, b, and c have the dimensions of a speed and p

has dimension 1/t. Now, we chose a change of variable to put (4.8) into nondimensional

form. Let x = x'/p and t - t'l/p. Define I? = hp/c. We will call this the cell (from the h)

wave-coupling (from the p) number. Then (4.8) may be written as

au 49v a dp v b aq+ V
P + itp + -Rq

t x' c gXp+ I c gXq+l

c9v au a dP+lu b aq+Iu
-- - + aRP - +b R -- v.at ax, c a Cfp+ I c ozf+t

This shows that the appropriate dimensionless quantity which must be small in our analysis

is It, the cell wave-coupling number. This is illuminating, as it shows that if the cellsize

is small or the coupling coefficient is small, then the solution to (4.8) will behave near the

front like the solution to the scalar wave equation (p = 0 in (4.1)).
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5. Numerical Results

We present in this section two distinct numerical results. The first set of computations

is used to illustrate the theory. They show that the width of the front is as predicted for a

number of schemes, both semi and fully discrete. The second set of computations presents

graphs of the generalized Bessel functions described in section 4. These show that the

qualitative behavior of approximations to the telegraph equation for small ph/c (recall that

this is the cell wave-coupling number) is the same as the behavior for the scalar wave

equation.

Behavior near the Discontinuity for Various Difference Schemes

The following graphs show the width of the front for two method-of-lines (MOL)

schemes and two fully discrete schemes. The MOL schemes are the centered second (5.1)

and fourth order (5.2) schemes

dU Vi+ - Vi-t

dt 2h (5.1)
dV Ui+ - Ui-_ Vi
dt 2h

and
dU. 8(V+, - V 1 ) - (Vi+2 Vi-2)

dt 12h (5.2)

dVi _8(UJ+1 - u-) - (U-+2 Ui- 2) _V

dt 12h

for i = 1, ±2,... and h the space step size. The fully discrete schemes are Leapfrog

(5.3) and Lax-Wendroff (5.4). Let k and h be the time and space step size respectively,

and let X = k/h. Then the schemes are

Vn+' =V' - ' - ( U!') - 2W53

and
UjV+ '  ,X(XUn+, + (-k - t)V; 1 ) + (1 - x2)U,, + IX(xu,, + - )

++ i -,i + I -+ ))lJI1
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Each method was integrated to t - 1/4 for h - 1/2" for n = 5,..., 10. For each

value of h, the width was determined by finding the value a z where the solution U was

equal to U0. The values of Uo used were .05 and .001. These were chosen to measure the

width in two different areas: inside the front (UO = .05) and in the tail ahead of the front

(Uo = .001). By chosing two different values of Uo, we show that the width behaves as

predicted over the entire front. Since U is defined only at discrete points, we used linear

interpolation to find the value of z.

First, we show the computed solution for h = 1/512 and t = 1/4 for each method.

The MOL schemes were integrated with RKF45 (see Shampine, Watts, and Davenport [1976]

for a discussion of the merits of RKF45; Forsythe, Malcolm, and Moler [19771 for the code);

the fully discrete schemes used k = h/1.25. Following graphs of the computed solution

are eight graphs showing the width of the front for these four schemes.
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Width For 4th centered u-.05
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The graphs of the width of the fronts verity the predictions of the theory developed in

sections 3 and 4. The second order method of lines calculations verify the results in section

3; the others confirm the results in section 4. Notice that for the fourth order method of

lines the width of the front is 0(h 4 / 5 ) as expected. Note also that for the finite difference

methods (Lax-Wendroff and Leapfrog) the rate of convergence to h2
/

3 is slower than for

the semidiscrete approximations. This points out the asymptotic nature of the theory: the

results are applicable only for large t/h.

Graphs of Generalized Bessel Functions

We have seen in previous sections that the behavior of difference approximations to

the telegrapher's equation may be represented by a class of integrals. The most useful

information for our purpose (understanding the behavior of the difference approximations)

is contained in graphs of these integrals, since the solution of a difference approximation

is closely modeled by these integrals.

We will first transform the general canonical form given in section 4 to both bring out

the independent parameters and to place it in a form with convenient limits. Specifically,

we would like to show the scalar wave equation limit as a way of showing the similarities

in the behavior of approximations to the two problems.

The canonical form integral in section 4 is

I h ./ki ~ ~ ~ x =[(.-'-P, + iC(w - 1) + ia (ihC)P + ibC(ih ) t d ..

We will take p even and q odd, and s = I or 0. After a little bit of algebraic manipulation,

we may write this as

t 0 0 -,x[ jYP+I ay + 1

I ex-- p- + i zvy + d yj.
2-f.o [ p+1 q+I I

(The limits of integration have been extended to ±oo.) The values for a, /3, and z are

Pi -

X -
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where
ta =P+ I)a(- I)P

b -(q + l)b(-1)

(i corresponds to c and b corresponds to ( in Chin and Hedstrom 119781.) Note that /3

is proportional to the square of the cell wave-coupling number /H discussed in section 4,

and that only 1 contains any contribution from p. Thus the coupling in the telegrapher's

equation shows up only in the /3 term. Further, we have dropped leading constants. We

define Ii_(a, /3, p, q; x) as this integral. The advantage of this form is that 11 _,(o, 0, p, q; r)

is equal to the generalized Airy functions tabulated by Chit, and Hedstrom [19781 for the

scalar wave equation (our p is their p- 1, our q is their q - 1). This will allow us to both

check our graphs against their published solutions and to see how the /3 term changes the

behavior of II-__(o, /3p, q; x).

The graphs are organized as follows. Each page has graphs for fixed (k, p and (I.

The left column shows 1((k, 13, p,q;x) for 03 = 0, 0.01, and 0.05. The right column gives

II (a,/ 3, p, q; x) for the same values of /3. The left column represents the leading term in the

asymptotic expansion for the difference solution.

The last two pages of these graphs show the special case where there is no p term

These represent the odd order methods (such as upstream differencing).

To use these graphs, the following should be kept in mind. First. in comparing the 1l)

graphs with the computed solutions, the left column should be multiplied by -I (flipped

over) since the integral for the solution in sections 3 and 4 is the negative of the form used

here, Second, except for the last two pages (the 'p-term missing' graphs), these graphs

are appropriate for even order methods with artificial viscosity (or no viscosity if a - 0).

Increasing values of a represent increasing artificial viscosity.
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Explanation and Use of the Graphs

These graphs show the qualitative similarity of the behavior of difference approxima-

tions to the scalar wave equation (represented by /3 0) and the telegrapher's equation

(,3 3'4 0) near a discontinuity.

The first thing to notice from these graphs is the qualitative similiarity for graphs that

differ only in /3. The only noticeable change in the graphs as /3 increases from 0 is, for

10, a change in slope on the left of the jump and, for I, a change in the zero level of the

oscillations on the left of the jump. From this we can conclude that near the discontinuity,

oscillations in the approximate solution to (1.1) are qualitatively similiar to those of the wave

equation (/3 - 0).

We may also compare these graphs to the calculations of actual methods presented

above. For example, the graph for p = 2, q = 3, a 1/2, and j3 = 0.05 and the

Lax-Wendroff solution are very similiar. The graph for p = 2, a = 0, and J1 = 0.05 shows

the long trail of oscillations which we see in both Leapfrog and the second order centered

difference approximation. The graph for p = 4, at = 0, and /3 0.05 for nondissipative

fourth order methods shows both the long trail of oscillations and the small dip ahead of

the front which we observed in the graph of the solution by the fourth order method.

As an illustration of the use of these tables, we can see that because the similiarity in

the behavior of the approximate solutions is so strong, the same artificial viscosities should

work for the telegrapher's equation as for the scalar wave equation (in terms of improving

the solution near the discontinuity).

Application to Mesh Refinement

We present here an application of the results in section 4. We will apply mesh

refinement to the example used by Majda and Osher [1977]. Their problem was

atU = (' 1)"( ±0 (0 icU2)
u(,0) 1, if < 0 (5.5)

UI(Z O) --- 0, if X > 0

u2(z, O) = 0.

We will use a fourth order method recommended by Apelkrans [1969] in the region

away from the discontinuities, and the second order Lax-Wendroff method around the

discontinuities and at the boundaries.
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The form of mesh refinement that we use is described in detail by Berger, Gropp,

and Oliger [unpublished]; the mesh refinement program is due to Berger [unpublished].

Basically, this form of mesh refinement places refined grids dynamically over the problem

domain. The grids may be refined to an arbitrary degree.

Since we must compute on a finite domain, we must introduce a boundary and a

boundary approximation. From the results in Gustafsson [1975], we know that the boundary

approximation must be at least third order accurate if we want fourth order accuracy for

the computation as a whole. There are two common ways to achieve this: use a third

order uncentered scheme such as that recommended in Oliger [1974] for the scalar wave

equation, or use a second order method and mesh refinement, as recommended in Oliger

[1976]. We have chosen the second approach as it is the easiest to apply in this problem.

Our algorithm for this problem is the following: we apply a fourth order, dissipative

scheme on a grid with mesh size h, except near the boundaries and the discontinuities

at x = ±t, and we apply a second order, dissipative method on a grid with mesh size

h! = h2 at those places.

The first question which may come to mind is the computational complexity of such

an algorithm. We will first estimate the total number of mesh points, both coarse and fine,

needed by the algorithm. From that result, we will be able to compute the computational

effort required by this algorithm. There are three contributions to the number of mesh

points: the coarse grid, the fine grid at the boundaries, and the fine grid around the

discontinuities. The coarse grid has 0(I/h,.) mesh points. The fine grid at the b.. "'daries

has O(I/hf) x 4lh, = 0(l/h,) mesh points, since the boundary grid only extends over 4

coarse grid points.

To determine the number of fine grid mesh points around the discontinuity, we must

determine the width of the front. We make the two assumptions: the region of refinement

is asymptotically of the same size as the width of the front, and the derivative discontinuity

at x = t is asymptotically no larger than the discontinuity at r = -t. On the fine grid, the

results of section 4 show that the width of the front is 0(h 1 3 ). But since hf = h2, the

width of the front on the scale of the coarse grid is 0(h/ 3 ). Thus, as I --- 0, the number

of coarse mesh points that the front is spread across tends to zero. Because of the way

that the mesh refinement program works, there is a minumum of seven coarse grid points

(six cells) which must be refined around the fronts. Thus, the number of fine grids points
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around the discontinuities is 0(1/h1 ) x 6h, 0(l/h,). Combining these gives 0(I/h)

total mesh points.

The computational work is easily derived from the above analysis. To integrate to time

' with time step k. on the coarse grid and time step kf k' on the fine grid, we need

O(l/h') X on the coarse grid

0(l/hc) X 7, on the fine grid

or o(l/hl) + 0(/h0) work (assuming kc/hc - constant). Thus we see that the work on

the fine grid dominates the work on the coarse grid. These estimates are observed in

computations.

These results show that this algorithm is practical in space (it uses no more space

than the coarse grid would alone), but less practical in time. The advantage of this method

is the ability to compute a more accurate solution for a given coarse grid than is possible

without refinement.

For our computational example, we computed the solution to (5.5) at t - 0.5 with

h, = 0.02 and h = 0.01. The time step k was taken as h,/2. Computations with and

without mesh refinement at the discontinuities were done; their results are presented in the

following table. These choices of t and h were made to facilitate comparisions with the

results in Majda and Osher [1977].
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solution MR: MR: no MR: no MR:
U1 h =0.02 h=O.01 h = 0.02 h=0.01

0 8 8775826E-1 3.9E-7 <1E-7 3.OE-7 < 1E-7
-.7 8.775826E-1 <1E-7 <1E-7 -. - 1-
0.6 8.775826E-1 2.5E-6 <1E-7 -3.8E-3 2.1E-5

-0.5- -1.224174E-1 -6.6E-1 -6.6E- 1 -5.7E-1- - 5.7E-1-
I~-0.4 -9.879886E-2 -3.8E-3 3.5E-5 -4.2E-2 2.7E-2

-0.3 -7.788613E-2 7.9E-5 -7.1 E-6 *1.1E-2 1.2E-3

-0.2 -5.956894E-2 8.OE-5 -1.9E-7 -2.4E-3 j -6.2E-5
-0. 1 --- 4.377426E-2 -6.6E-7 -2.6E-7 -1.9E-4- 3-.0E6
0.0 -3.044362E-2 2.8E-6 3.2E-7 9.9E-6 2.OE-f6

0. -1.953720E-2 -4.9E-7 4.9E-7 7.6E-6 2.OE-6

0.2 -1.103355E-2 -1.5E-6 5.1E 7 j 8 iF 6 2.E-6
0.3 -4.929534E-3 -6.OE-7 2.6E-8 84E-6 2.OE-6
0.4 -1.234040E-3 -3.1 E-9 2.7E-8 I8.6E- 1_15-

0.5 0.0 4.1E-7 6.6E-8 1.3E-5 3. 9E-6
0.6 0.0 iQOE- 11 -5.2E-16 }1.5E-7 -1.5E-9
0.7 0.0 8.OE- 15 -3.9E-21 j4.1 E- 11 6.OE- 15
0.8 0.0 4.3E- 8 -3.3E -28 3.2E-13 _j.1.9E-20A

Table 4: Errors in the computed solution at x = -. 8(.1).S for

the fourth order method, with and without mesh refinement. The

columns labeled MR are the results of the mesh refinement com-

putations.

It is clear from this table that mesh refinement significantly improves the accuracy of

the results. Further, the rate of converge..ue is higher for the mesh refinement calculation

than for the unrefined calculation.

This method is not the most efficient way to solve (5.5). (For this problem, front

tracking is more efficient.) It does, however, illustrate the use of mesh refinement, coupled

with knowledge of the behavior of the problem, to get a high accuracy solution.
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6. Conclusion

Summary of Results

We have shown that the asymptotic width of the front is hIP/l ( P1, where p is the

order of the approximation, for a fairly general class of difference approximations to the

telegrapher's equation. This behavior is very similiar to the behavior near the front for the

scalar wave equation, and shows that the effects of numerical dispersion and/or dissipation

near the discontinuity overwhelm any other numerical artifacts which may be present, such

as the effect discovered by Mpida and Osher [1977].

The canonical forms that we constructed contain a great deal of information on the

detailed behavior of the solution. Given a difference scheme that fits the framework in

section 4, we can use the graphs of the canonical forms dislayed in section 5 to get an

idea of how the solution to the difference scheme will behave near a discontinuity.

The detailed examination of the non-dissipative second order difference scheme studied

in section 3 shows that the canonical forms displayed in section 5 are actually a good

approximation to the exact canonical form near the front (see figures 10 and 11). These

results also show that the model equation is a good approximation near the front (because

hE for the saddle points is o(l) near the front). Finally, the canonical form for the

approximation in section 3 shows that away from the front, the model equation formulation

is not accurate (figure 11).

Another difficulty in determining the solution away from the front is the complicated

behavior of the unexponentialed term in the integral for the solution. Even for the exact

(continuous) problem, this is difficult to deal with.

In section 4 we also investigated the effect of the coupling term. We showed that

the effect of the coupling term is controlled by the cell wave-coupling number, which is

equal to the product of the step size and the coupling strength, divided by the speed of

propagation (hp/r). As long as le is small, the behavior near the front of approximations to

the telegrapher's equation is similar to the behavior of approximations to the scalar wave

equation. This result is remarkable because the results of Majda and 0sher [19771 show

that away from the front, the behavior of approximtions to these two equations is very

different. The analysis in section 4 showed further that the effect of the coupling term is
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noticeable only very near the front (wh6re it affects the 1 or forward moving term) aid

well avay from the front (where the noise generated at the front, moving away iroN the

front, shows up in the U, term).

An interesting feature of difference approximations to the telegraphers ptobltu-m ,jji i

we have shown is the different frequency content of the solution of the differ, nl equati)n

as compared to the solution of difference approximations. For the differential (JLitON

saw in section 2 that the leading terms in the expansion of the inverse Fou ir tranform

were at infinite frequency. Specifically, the saddle points were converging on infinity in nh-

frequency ( ) plane as the front was approached. In contrast, we saw in section, an i 4

that the saddle points for the difference approximations converged on zero in the ,

It is thic fact that makes the model equations analysis in section 4 work. since the n, !,

equation is essentially an expansion in h.

The computations presented in section 5 support our theory. In evey case t:,

asymptotic width of the front matched the hlp/UP( 1) prediction. The graphs of the canci,; u

forms for various difference schemes matched the qualitative behavior neair the fres foir

those difference schemes.

Implications

The results in this thesis show that the effect of numerical dispersion ir,! , :

near a discontinuity overwhelms the numerical artifact introduced h, onLIlr r" 'I

equations. This implies that the effect discovered by Majda and Oslier in. t,, , . .

if (a) accurate computation of the front is of primary importance and (i) ,-cc .!

accuracy is sufficient in the smooth regions. In this case. nmesh refinement t;.. . i,,

knowledge of the width of the front, can be used to accurately compute th, ,..' ,t,

Further, artificial viscosities which are good for the scalar wave rquation v,,i' ii ,

since artificial viscosities are designed to reduce certain high trequ'ncie!'s oW r ' , I -

show that the; frequency of the oscillations near the front are nearly the saw, , ' , . .

wave! equation and the telegrapher's equation.

If an accurate solution is needed everywhere, mesh refinement can het L;'id,, A ;

above, with the added requirement that the solution near any utiscontinuili, ho .x n ,,.o

accur;tely enough to prevent the contamination cf the smooth pairt of th,, , l;t,, -

vwa, dan-ionstrated in section 5.
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Topics for Further Study

The study of even such a narrow topic as this is never complete; below are a number

of questions that arose during the research into this problem.

Multiple time scales - Many transport equations that arise in practice involve two

radically different materials. For example, astrophysical transport problems often involve

the interaction of electromagnetic radiation with gas. The scale of time during which the

radiation moves is orders of magnitute different from the scale of time on which the gas

moves. A current approach to these problems is to solve seperate equations for the gas

and the radiation, then coupling them together at long (for the radiation intervals). Another

approach to these problems is to use stiff-integrators to integrate the equations in time.

Questions that arise here are (a) how accurate is this? (b) how do these algorithms behave

in the presence of discontinuities? (c) are there better ways?

Asymptotic solution away from the front - For the general problem we were unable to

find an asymptotic representation for the solution except near the discontinuity. The model

equation approach does not seem powerful enough to ever provide a way to represent

the solution away from the front. Is there a general technique? (Specific methods can be

studied, as we did in section 3, and some specific problems can be studied as in Majda

and Osher [19771.)

Initial Boundary Value Problem - What is the effect of coupling through boundary

conditions? The methods used in this thesis, with Fourier transforms replaced by Laplace

transforms, would give an answer.
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Appendix A: Two Integral Identities

We prove in this appendix two integral identities that we used in section 2. We first

show that

f +00/G g(C) exp(O(C)t) dC = 0 (A. 1)

where

1 + i T4 -- - VC

and

= vC,) + iwC.

As always, the integral is the Cauchy principle value, and we pass above the branch cut

[-1/2, 1/2). To make the proof somewhat clearer, we will assume that t - 1. It will be

clear that the proof will hold for any t > 0.

The proof is a simple exercise in using the Cauchy integral theorem. We close the

contour in the upper half plane with a semicircle of radius R. The proof consists of showing

that as R --+ oo, the contribution to the integral over the closed contour from the semicircle

tends to zero. Finally, it is demonstrated that, despite appearances, g(C) is regular at the

origin and only of the order of (C 1 /21/2 at I and -].

Along the semicircle, we have = Rei*. We will make this substitution in the integral

as we go along in the proof.

We start by finding a bound on *(/iCW1). This gives us the magnitude of the

exponential in the integral. First, we see that

2- •) 4R)

where W(z) is the real part of z and !(z) is the imaginary part of z. This is equal to

-R sinGR 1 ---- 2 RcosO 4  1--- Y .
Now, a quick look at Ahlfors [1979J shows us that
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-2'0 4R + 1

F\ 1  ) 2

We bound - rom below. The argument of the inner square root satisfies

2 > I cos 20 > (2
41?2)16-R4 -f2?12 - 4U

so that

1 4R2 4R - F > 1 >- (A.2)

for R > 1. Simitiarly, we get a bound on the imaginary part

1 -~1+1 +~ 1
0> !a 4R 2  2 2R

for R> ". Thus,

lexp(O( ))l <5 exp -Rsin 0 + 1!!tlexp(iw )l < 2 exp -(_R( +w) sin0 (A.3)

We also need a bound on Ig(t)l.

jg(Re)j 1 + IVe- II + 2R
4 RIV - 11

We can bound [ 42 - 11 = -1I41?2e2i# - 11 = 16R 4 - 8R2 cos20 + Ili by

3R > 4R2 2" - 11 > R

for R > 1. Thus,

AIg(Re)l < 1 + 31+ 2R (A4)

for R > 1.

Now, using (A.3) and (A.4), we can bound the contribution to the integral over the

semicircle by

8 j eR(+w) d9 (A.5)
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We can bound this integral by dividing It into two parts. The first part is 0 < 9 _ /18.

The part of the Integral over this range of 9 Is no greater than c/2 for R > 1. The second

part is for t/16 < 9 < w/2. In this range of 0, we can pick R to satisfy

r > max .

Then the integrand is less than c/Sw, and the contribution to the integral is less than t/2.

Thus, by choosing R large enough, we can make the Integral (A.5) as small as we want

(for w > -1/2).

Next, we must treat the singularities of g(t). By inspection, it is clear that there are

at most three points of singularity in g(t). We can investigate these by using MACSYMA

(Mathlab Group [1975]) to expand g(t) about the points 1, 1, and -1. We have

.. e g9M =-2 t2. ,+- for t =:: 0

2

Thus there is no contribution to the Cauchy principle value of (A.1) from any of these, as

they are weaker than simple poles. The relation (A.1) is now proved.

A stronger result can be proved from (A.3) and (A.2) by noticing that the - in ( + w)

is really the (1 - 1/(2R 2 ))1/ 2 in (A.2). Therefore, as R --+ oo, the bound on (A.3) is

asymptotically
1cxp(.O(t))j < 2 exp (- R(I + w) sin 0)

for w > -1. This matches what we would expect to get from an asymptotic expansion of

0, since 0(t) - i(I + w)C for It1 large.

We next prove that

J z '"P/' dz - 2wi(- )'( )l(2,r--)(A6

for integer v > 0 and and P3 and y pure imaginary. Of course, we show this in the

generalized sense of Gel'fand and ShIlov [19643.

We start by assuming

L z'e13P/dz = 2ilo(2V# ). (A.7)

96



We proceed to show that we can get (A.6) from this by formally differentiating each side of

this with respect to 1y, passing the derivative through the integral.

First, we note that

ZJ-1 e-z-#Pl dx =(-I) ' 1 X-0 Ce DI= # dx

=1-1)" 0 z-le- -YP/ dx

We can evaluate the derivativeby an induction argument.

From Abramowitz and Stegun [1972], we have the formula

I d 1

or
I d _ 1

.--- ,..(Z) + -- ,- (z).

Now, let z = 2v/W, and multiply the above by (20)v + 1. This leaves us with

+2 v ) 4 + '(Z) -=l .+,(2vf#). (A.8)

Now, we start with the induction proof. The first term, v == 1, we .can get from the

fact that 10' = I1. This gives us

d dl(2 V/-I~) d ( 1' -l(z)j.. =() 1(2V~

which is the first term in the induction. For the nth term in the induction, we need to show

We do this by performing the indicated differentiation and then applying (A.8).

Here we have substituted n - I for v In (A.8).
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We need only prove (A.?) to prove (A.8). We make the change of variable x its in

(A.7). This gives us

From page 245 of Erdblyi [1954), this is just an inverse Laplace transform with value

2irilO(2v9'7j). Note that for O and -y = 0,.a singular functional which coincides with zero

for (3and -134 0 must be added to (A.6). This completes our proof of (A.6).
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Appendix B: Computing the Exact Solution

This appendix discusses the method used to compute the exact solution to the

continous model problem in section 2. From section 2, we know that we need to evaluate

the integral

f+00

u.. -- ] a..(l + Q~etd
0r 0-00

1_ /+00 I - 2V - i 4 2'- eo td l
- +

2f 4t-co 2 
7r 4

We need to perform this integration numerically. First, we will deform the path of integration

to a path "close" to the path of steepest descent. The figures below show the qualitative

behavior of the path of steepest descent; we will use these to guide us in our choice of

path.

Figure 13: R(O_) for w = 0.3.
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Figure 14: R(0) for w - 0.9.

From these figures it is clear that the path to take is a circle about the origin. In

deforming the path to this circle, we will pick up -41 from the pole at the origin. We

can show by techniques similiar to those in Appendix A that there is no contribution from

closing the contour in the lower half plane.

The resulting integral is

L 21re I - VC - 4C - dO (BI1

where - reie and r has been chosen as max(w/2VF-- , j + c), c some small positive

number. This choice of r makes the path pass through the saddle points unless the path

would pass within e of the branch cut l-J, in which case the path is expanded.

This integral has a special form. The integrand is periodic analytic in a strip around

the region of integration. It is well known that the trapezoidal rule converges very quickly

for periodic functions (Davis and Rabinowitz [1975]); in particular, for periodic analytic
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functions which satisfy certain technical assumptions, the convergence is exponential (see

Rabinowitz [1968] and Lyness and Delves [1967]). Using this fact, the integral (B.1) was

integrated with the trapezoidal rule.

We would like to point out a few features. Along the steepest descent path, the

imaginary part of 0- is constant. This means that the integrand should not have serious

oscillations along the path of integration. Secondly, since most of the effect is concentrated
at the saddle points, we would expect an automatic quadrature routine which places points

adaptively not to be that much less efficient than the trapezoidal rule. Experimentally this

is the case. The routine QAGS (de Doncker [1978]) was roughly as fast as a simple

trapezoidal sum. Finally, the choice of c, the minimum distance from the singularities, can

have a big effect. Since there are singularities at ± = 1, we should keep the path well

away from these points. A choice of 1 for t seems to work well.
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