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Numerical Solution of Transport Equations

William D. Gropp, Ph.D.
Stanford University, 1982

In this dissertation we discuss the numerical solution of systems of hyperbolic partial
differential equations with lower order terms and step function initial data. These equations
arise in modeling the propagation of a signal with loss, such as a signal in a resistive
co-axial cable, or the Hiow of neutrons in a reactor. Majda and Osher have shown that
dissipative finite difference approximations to such problems display a numerical artifact
which is not encountered for scalar equations. Namely, noise from an initial discontinuity
propagates into a large region behind the discontinuity. Their results do not apply in
the vicinity of a discontinuity, and our goal is to discover the detailed behavior in this
region. This information will be of use in constructing algorithms that attempt to accurately
approximate solutions with discontinuities or shocks. .

We analyze the behavior of finite difference approximations to a particular model
problem with step function initial data. We use Fourier transforms to express the solution
of the difference approximation as a Fourier integral. The behavior of this integral is then
examined by using the theory of uniform asymptotic estimation of integrals. We show that
the solution of the differeni:e approximation is modeled by a particular class of integrals,
which we call generalized Bessel functions. With these results, we are able to show that
there is a ‘““smearing” of the discontinuity which is the same as that which one obtains
when approximating the scalar wave equation. Thus, the behavior near the discontinuity is
qualitatively similiar to the near-front behavior of the scalar wave equation. These results
show that the artifact discovered by MajJa and Osher is overwhelmed near the discontinuity
by the numerical dispersion and/or dissipation introduced by the difference approximation.
Graphs of the generalized Bessel functions are provided. Finally, we discuss the relevance

of our results to automatic mesh refinement and give an example.
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1. Introduction

in this dissertaticn we consider the numerical solution of the telegrapher’s equation

ou  Ov
at o6z

1.1
dv 6u_v (1.1)
o Oz

with step function initial data. This equation models wave propagation in a system of
equations with coupling caused by the presence of undifferentiated or lower order terms.
(If the lower order term were not present, it would be possible to diagonalize the system
with a linear change of variables.) This equation is of interest because the solution to
this equation is smooth away from discontinuities in the solution (Birkhoff and Lynch
[1966]) but numerical approximations are not (Majda and Osher [1977]). Also, as we show
below, the equation itself can be considered a model for transport phenomena, so that a
better understanding of the behavior of approximate soiutions to it will help in‘interpreting
numerical results and in constructing numerical methods.

In this section we will first discuss some examples from engineering and physics of

equations with coupling through lower order terms. These examples will help develop an

intuition about what the exact solutions should look like. We will then giveé a brief historical
overview of material on both the telegrapher’'s equation and on techniques for analyzing
the behavior of anproximations to hyperbolic partial differential equations (to which class
the telegrapher's equation belongs). Finally, we will discuss in more detail the methods
which we shall use to find the behavior of approximations to (1.1) near the discontinuity.
The following is an overview of this dissertation. The theoretical results are presented
in sections 2, 3, and 4. In section 2, we find an asymptotic representation to the solution of
(1.1) near the step discontinuity. The purpose of this section is to both show the behavior
of (1.1) to which the approximate solutions will be compared and to iliustrate the methods
which will be used in later sections to analyze difference approximations to (1.1). In section
3, we analyze a semidiscrete second order centered difference approximation to {1.1). We
first show that the width of the front in the approximation is O(h%/%). We then derive
a form of integral (a generalized Bessel function) which represents the solution near the
front. Finally, we compare the behavior of the approximation to (1.1) with the same type
1
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of approximation to the scalar wave equation. In section 4, we analyze a model equation
which represents a general difference approximation to (1.1). This section generalizes
the results from section 3. Section 5 contains numerical results. We consider here four
different difference approximations to (1.1). Graphs of the computed solutions and the
observed widths of the front for each method are presented. These are followed by graphs
of the generalized Bessel functions which we show in section 4 to represent the solution
to a difference approximation to (1.1) near the front. Finally, an application of the results

is made to a computation using mesh refinement.

Examples of Equations with Lower Order Terms
We begin with a brief discussion of a few examples of equations with lower order
terms to show where the problem we address arises. The basic physical feature of all of
these equations is a finite speed of propagation combined with decay of signal through,
for example, absorption.
Perhaps the most familiar example is transmission along a resistive coaxial cable. This
equation is usually written as
Fp _ pedy | Anuo 09
922~ 2 o ¢z at
(see Morse and Feshbach [1953], pp. 218-9). Here, u, ¢, and o are physical constants of
the cable, and ¢ is the speed of light. 1 is a potential for the fields, t'is time,-and z is

length along the cable. This equation may be rewritten as

oy 94
8t a8z
ped¢p 0y Ampo
TR PR I

where ¢ is introduced only to convert the single second order equation into two first order
equations. Another example is transmission of heat in one dimension in a gas. Here the
equation is

%y 20y 1 %y

a2 - Tt
(see Morse and Feshbach [1953], pp. 865-9). In this equation, ¥ is absolute temperature, a
is a property of the medium and c is the velocity of sound in the medium. This equation may
disturb some who are used to the equation for transmission of heat being the traditional
Heat Equation: ¢, = (1 /a%)¥... The usual heat equation implies that heat moves infinitely
2




fast (John [1978], ch. 7), which is not physical. The equation given here has the property
that heat can move no faster than the sound speed of the material (as is easily seen by
writing the equation in characteristic form). The reason the heat equation is such a good
approximation to the heat transmission problem is that it is the limit as ¢ — oo of the correct
equation. That is, the transmission of heat is so slow relative 10 ¢ that the finite speed of
propagation has little effect on the solution.

We note that Morse and Feshbach [1953] provide a solution to this equation by means
of Green’s functions. This solution is not, however, very enlightening or generally useful.

Neutron transport provides another source for these equations. The actual equations
are complicated integral equations; see Bell and Glasstone [1970] and Richtmyer and
Morton [1967], chapter 9. A typical approximation to these equations assumes that the
neutrons are confined to a small discrete set of energies. In this case, a coupled system of
equations similiar to the telegrapher’'s equation arises. The lower order terms in this case

model the loss of neutrons due to absorption.

Historical Background

The historical background for this thesis consists of two parts. First is a review
of the work on lower order terms in constant coefficient hyperbolic partial ditterential
equations. Second is an outline of some methods for studying the approximate solution to
these equations analytically. As an introduction, we discuss the two main effects that the
presence of lower order terms can have on the solution.

The first effect of a lower order term is the obvious one: changing the equation. In
problems from physics, the lower order term represents a form of dissipation. Faor example,
consider the equation u, = u, + au. It is easy to see that the solution to this is u(z,t) =
u(z + t,0)e**. Thus, if @ < 0, the lower order term damps the solution.

Ancther possible effect of lower order terms is the coupling that they provide among

equations. Consider the hyperbolic system

du ou
—_ = A . 1.
ot oz + Bu 1-2)

Here, A and I} are constant matrices, and u is the vector of dependent variables. For (1.2)

to be hyberbolic, the eigenvalues of A must be real. This is the general constant coefficient

case, since by the assumption of hyperbolicity, any matrix multiplying the du/dt term can

be inverted and moved into A and 3. Further, we assume that A is diagonalizable with
3
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real eigenvalues so that the system will be hyperbolic. Now, it A and I} do not commute,
so that they are not simultaneously diagonalizable, this will cause coupling. {if A and 17 do
commute, the coupling is apparent but not real. This will be clear in the following.) To see
this, make a change of variable T'u == v, where T'AT~! = D, D a diagonal matrix. Then

we are left with

ov v
= )— 4l /“—l .
gy l Ep +TBT v

This equation is as simple as possible while still exhibiting coupling. The 7T'BT~! term is
not diagonal if A and /3 do not commute and thus couples the components of v.

There has not been much interest in the effect of lower order terms in approximations
to constant coefficient hyperbolic partial differential equations until recently. A major
reason for this is that, for the continuous problem, well-posedness is independent of the
presence of lower order terms (Thomée [1969], sec. 2). This is also true for differ_ence
approximations. The lower order terms are unimportant in the question of stability of finite
difference schemes, both for the Cauchy problem (Thomee [1969], sec. 5) and for the initial
boundary value problem (Gustafsson, Kreiss, and Sundstrom [1972], Thm. 4.3).

There has been some work on equations with lower order terms. Early work by
Apelkrans [1968] on scalar equations of the form

= oz, 050 + gla,

provides bounds on the size of errors made by difference approximations at a step
discontinuity. These bounds are sharp for the general problem, but may be somewhat
pessimistic for specific problems. The results are based on some concepts from stability
theory for difference approximations to hyperbolic problems (see Kreiss and Lundqvist
[1968]), and are difficult to extend to systems of coupled equations. Apelkrans' results
show quite generally that for scalar (or uncoupled) equations, lower order terms have little
effect on the accuracy of difference approximations. Later work by Brenner and Thomée
[1971] sharpened these results; their arguments are also based on stability theory (Brenner
and Thomee [1970}).

Recent work by Majda and Osher [1977] shows that lower order terms can have an

enormous effect on the error in difference approximations by providing the kind of coupling

discussed above. They analyze the problem
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i) = D5t + (G o)
at\ua) T\ —1/ 9z \uz -1 0/\uz
1, ifz >0
uy(z,0) = (1.3)
0, fz <0
UQ(Z, 0) = 0.
Note that the matrices in this equation do not commute. They show that if U/ is a dissipative
finite difference approximation to (1.3) which is at least second order accurate and satisties
certain technical conditions (which are satisfied by common methods), then for all 6 > 0
there exists a (s > 0 such that

max |U —u| < Csh?
z,tER;

where R; = {(z,¢) : |z| < tand [z £ t}|/t > 6} and 0 < 6§ < t < To, To the maximum
time for the problem. This result is the best possible for arbitrarily accurate dissipative
schemes. It is this fact, that the estimate is sharp, which is the interesting feature. This
shows that over a large region, any reasonable dissipative method of order at least 2 is
only second order accurate. Note that the solution to the continuous problerﬁ is smooth
(C*) away from the fronts (at £ =— —¢ and z = t) since the initial data is smooth. The
results of Majda and Osher [1977] do not hold in the vicinity of the step discontinuity.

We now discuss some of the methods for studying the behavior of difference ap-
proximations to hyperbolic partial differential equations: stability theory, Fourier transforms
of the difference approximation, model equations, and an ad hoc approach. Methods using
stability theory are very powerful. General estimates on the accuracy of the solution can be
found for a wide range of problems with this method. Examples are Lax [1961] for Cauchy
problems and Gustafsson [1975] for initial-boundary value problems. The only drawback of
this method is that it requires the solution to be sufficiently smooth. These methods do not
say anything about the behavior of the difference scheme near a discontinuity. The resuits
of Apetkrans [1968] and Brenner and Thomée [1971] mentioned abave are an exception.

Most work on the behavior of difference approximations to hyperbolic problems by
Fourier transform technigues has been restricted to scalar problems (see Hedstrom [1975]
and Apelkrans [1968]). This is in contrast to stability theory for difference approximations,
where general systems of linear equations can be treated (see Richtmyer and Morton

[1967], ch. 4 and Coughran [1980]). The advantage of the Fourier technique is that it can

treat nonsmooth solutions (such as step discontinuities).

5




For constant coefficient problems, mcthods using Fourier transforms of the difference

scheme are practical. The inverse Fourier transform is then evaluated by the method of
steepest descent. Hedstrom and Osterheld [1980] present a nice example of this procedure
for a different problem. Pearson [1969], using a slightly different approach, studies the
behavior of difference schemes for u,, = ¢%u, .

The model or modified equation approach is another way to study the behavior
of difference approximations to partial differential equations. In this method, a partial
differential equation whose solutions model those of a difference approximation to a ~impler
differential equation are constructed. The model equation is then studied, rather than the
original difference equation. This approach is discussed by Warming and Hyatt [1974] and
in a review by Chin and Hedstrom Junpublished]. As we will use this approach to study the
behavior of general difference schemes for (1.1), we will outline it below.

The form of the model equation for a hyperbolic problem w, + Lu = 0, where [. is a

differential operator, is

du artly 09ty
— w=c hP— e 4 ¢ hT - — 1.

gr Tlum el ek (1-9)
where p is odd and ¢ is even. Given a hyperbolic differential equation u, + L.u == 00 and a

difference scheme, expand the finite differences in a formal Taylor series to get

(,) oo
51; + Lu = Z I LTS (1.5)

m=1
Here, I’,, is a homogenous differential operator in ), and ¢, of order . Use the ansatz
?)1—: + Lu = Z e h™ ()"izf (1.6)
m

to replace all derivatives with respéct to t in (1.5) with z-derivatives, and then match up the
terms in (1.4) and (1.6), dropping higher order terms, to find the ¢,, in (1.4). This gives the

model equation.
The behavior of the model equation can be studied with Fourier transform technigues.
By using the model equation approach, we can avoid some of the algebra required when
using the discrete Fourier transform. More important, the model equation approach allows
us to identify the key features of the approximation, allowing us to consider general

difference approximations. This approach has been taken by a number of authors. Using the

model equation formulation, Hedstrom [1975] analyzed the behavior of step discontinuites

6




for the equation v, = u,. Work by TChin [1975] analyzes the detailed behavior near the

front for the wave equation. Serdjukova [1971] considers the behavior near a step of a
general scalar difference scheme for both explicit and implicit methods.

Finally, we mention an approach taken by Orszag and Jayne [1974). They consi.er
u, + u, = 0 and look for solutions with continuous derivatives of order up to » and
discontinuous derivative of order n + 1. Through a clever choice of initial data with these
properties, the difference between the appoximation and the true solution can then be
estimated. Chin {1974] shows that this analysis is similiar to the Fourier analysis above and

that their results are explained by model equation analysis.

Brief Introduction to Asymptotic Estimation of Integrals

We present here a brief outline of the method of steepest descent, on which most of
our results are based. More complete and rigorous descriptions of this method can be
found in Bleistein and Handelsman [1975], Erdélyi [1956], and Olver [1974]. Erdélyi [1956]
in particular is a good first introduction to this material. We will first introduce the method
of stationary phase because it may be more familiar.

We will need to find approximations to integrals of the torm

+oo
/ g(z)e* Pt dr (1.7)

when tis large. If ¢(r) = ¢¢{x), and () is real then we can use the method of staticnary
phase. The reason for this name will hecome clear in what follows.

We can think of (x) as a frequency of oscillation of the integrand, if we assume that
g(z) is slowly varying. Now, look for the extrema of '(x) (these are points of stationary
phase). Assume there is only one extremum, zo. Expand both ¢(r) and () around zg:

g(z) =g(zp) + (z ~ Io)gg(;r(,) e
(1.8)

¥(z) =(z0) + (z — z0)* -
Using these expansions, we can rewrite (1.7) as
) + 00
(:”"("’)'(g(xo)/ explit(z - ro)? " (z0))dz + )
—o0
The integral in the formula above can be evaluated exactly.

This works because, away from xy, the integrand oscillates rapidly (since ¢ is large)

and hence nearly cancels out. Only near .r does the integrand oscillate slowly in r. We

7
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can get more terms in the expansion simply by keeping more terms in the expansions (1.8)

of g and ¢. There are, however, a number of restrictions to remember. First, it is very
important that g vary slowly on the scale of exp(i¥(z)t). For example, if g has a pole near
an extremum of ¥(z), the expansion (1.8) will be inaccurate. Also, in the case where 1(z)
has several extrema, they must be well separated. Otherwise, there may be an interval,

rather than a point, where the integrand oscillates slowly.

What if ¢(z) or zp is not real? Then we must go to the method of steepest descent.
We extend ¢(z) (we will not use ¥(z) again) to be a complex valued function ¢(z) over the
complex plane. This is usually a trivial step in practice. Since ¢(z) is now complex valued,
it is not possible to say that e®(#)t oscillates at all in general. Further, if ¢(z) is analytic, it

has no minima or maxima (by the maximum modulus principle).

We consider the following. If we could find a path of integration I' such that
le®|/ max,er|e?| > ¢ only along a few short intervals, then, just as before, we could
expand ¢ and ¢ about points on those intgrvals. Let us assume that there is only one such
point, and call it zy. We can then use the Cauchy integral theorem to deform the original
path of integration to the new path I'. Then as ¢ increases, the contribution to the integral

from points away from z; will decay exponentially.

A good way to look at this is in terms of a topographical map. Let z + iy = 2 be-the
map coordinates, and let R(¢(z)) = real part of ¢(z) be the height of the “‘ground.” This
map will normally have lots of valleys, hills, and, most importantly, saddie points (maybe
only one). A simple saddle point is like a mountain pass — at the saddle point, you can
either go downhili (along the pass) or uphill (at right angles to the pass). In our application,
the path typically starts in a valley at z = —oo, proceeds over one or more mountain
ranges, and ends in a valley at z = oco. When going over the mountain range, the best
path to take is one going through the saddle points. The path then stays low except for
a few peaks where it rises quickly to go though a pass {saddle point) and then falls again
quickly. This is what we want, since the exponential will have small magnitude everywhere
except in a small neighborhood of each pass (saddle point). This explains why the method
is called the method of steepest descent, as the path descends as quickly as possible from

each pass.

Given this geometric viewpoint, it is easy to find conditions for the passes and for the

direction of the path. These conditions are derived in Bleistein and Handelsman [1975],
8
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chapter 7. Basically, an n-th order saddle point z; is a point where the first n derivatives of

#(2) are zero and the n + 1st derivative is non-zero. This condition is the same as for the
method of stationary phase discussed above. Then it can be shown (see, e.g., Bleistein and
Handlesman [1975], Thm 7.1) that the direction of the path of steepest descent from an n-th
- order saddle point at the saddle point is given by the following rule: If d”t!1¢(zy)/dz" ! =
ae'®, then the directions of steepest descent are given by 0 = (~a + (2p + 1)7)/n, tor
p=01..,n—1.

The above sketch of the method of steepest descent ignores a number of possible
difficulties. Most important for our purposes is what happens if g is not slowly varying
or if several saddle points come together. The proper way to handle this is discussed in
section 2; basically it amounts to using better expansions for g and ¢. The difficulty with
these more accurate expansions is that the integrals in the expansion may no longer be
recognizable as known special functions. Instead, they may define new special functions

whose behavior must be investigated. We will encounter a new class of special functions

in sections 3 and 4.




2. The Exact Solution

In this section we find the exact solution to the model problem

U = —v,
V= —Uy —V
1, ifz<0 2.1)
u(z,0) = v(z,0) =4{L, ifz=0
' 0, ifz>0.

We are only interested in u near the front (z = t). Our solution will be valid only in this
region. ‘

Our purposes for finding the exact solution to the model problem are manifold. First,
we will need the exact solution to compare with the solutions of approximatioﬁs t6 the
problem. Second, in finding an asymptotic expression for the exact solution we will
demonstrate many of the techniques that we will use in later sections. Most inriportant. we
will use the analysis in this section to motivate definitions and analysis in later sections.

We point out that for z > ¢, u(z,t) = v(z,t) = 0 from the theory of characteristics
(John [1978]). Unless otherwise stated, all limits z/t — 1 are from the left in the z-t plane.

The analysis will proceed as follows. First, we Fourier transform (2.1) in space to get
a system of two ordinary differential equations. As these are linear constant coefficient
equations, it is easy to solve for the inverse transform of the solution. The inverse transform
does not represent any known special function, so we will use techniques from saddle point
analysis to represent the inverse transform near the front £ = ¢ as an asymptotic series in

terms of modified Bessel functions.

Integral Form of the Solution
The Fourier transform of (2.1) is
ty = —1€P

(2.2)
By = —1€G—D

where £ is the dual variable. In matrix form, this is

1®=" 796

10
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The eigenvalues ) of the matrix are given by A\(A + 1) + £2 =0, or
(6 =—14ivaEoT,
* 272

The branch cut for the square root is the interval (1, 1] in the ¢ plane. This is the

standard branch. The unnormalized eigenvectors of the matrix are

a; = (l :'2*)'

Therefore, the solution to (2.2) is

T 1+ 142
(:-:) = a+(€)( _"£+)e)‘+‘ + a—(f)( —i¢ )ex~t
where a,(£) are determined by the Fourier transform of the initial conditions.

Now that we have the solution to the transform of (2.1), we can compute u and v by

inverting the transform. The solution for u is thus

+oco )
u(z,t) = 51; /_w [ (€)1 + Xp)er+t + a_(€)(1 + A_)e*-t]e*=¢ d¢. (2.3)

Here we choose the path of integration to pass over the branch cut between ~1/2 and 1/2
(an arbitrary choice).
To determine a, we apply the initial conditions to the solution of the differential

equation. At ¢t = 0, we have
@, (61 +Xy) + a (€)1 +2) = f(€)
—ia,(£)¢ —ia_(§)¢ = J(¢)

where (£,0) = #(¢,0) = f(£). These imply

ooy MO (3
(0= =19 (s €(1+x+>). v

_idte_,
a,(§) = ¢ -(€).

For the initial data given by (2.1), we have f(¢) = 77 + 56(¢)-

Solution near the Front
We have now completely specified the solution to (2.1). We need only evaluate the
integral (2.3) in order to determine the solution. However, there is no known special
11
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function that this integral represents. To uncover the solution, we will turn to asymptotic
evaluation of the integral by the method of steepest descent outlined in the introduction.
We will outline the steps again, as we will see that there are new complications: converging

saddle points and a pole in g. We write (2.3) as the sum of two integrals of the form

/ g(€) e* € dg.

Here, g does not contain an exponehtial factor in ¢ or z.

The analysis of (2.3) takes place in five steps. First, the saddle points of ¢ are found.
Next, the path of integration is deformed to the steepest descent path through some of the
saddle points. We will call these the important saddles. This path will not necessarily pass
through all of the saddle points. Care must be exercised at this point if the original path of
integration passes through any singularities of the integrand. If the original path does pass
through some simple poles and the new path does not, half the residues at those points
will have to be added to the integral. Third, a change of variable is made to map ¢ onto
a simpler function 3 that has the same number of important saddle points as ¢ has. Next,
g is expanded in a power series about the saddle points of ¥ and any critical poinfs of g
{in our case, we expand only about the critical points of g; this will be discussed Iater?.
Finally, the resulting integral is evaluated. In this section, these integrals can be evaluated
in terms of known special functions. If this is not the case, as in the next section, then the
integrals represent a new special function which must be examined. The result we now

prove is:

Theorem 1: For z < t and z/t =~ 1, the solution for » in (2.1) has the asymptotic

representation

u(z,t) = i u, = %e"” i (ﬂ)’lv(%\/l - w?). (2.5)

v=0 v=0 l+w

Proof:
We first find the saddle points. Let w = z/t, and define ¢,(£) = X ,(£) + iw€. Then

(2.3) can be written as
/g+e‘+'d£+/g_e¢“‘d£.

Each of these is in the form discussed above. The condition for the saddle points of ¢, is

ddy o _ L HE
TO=to r= =0 (26)
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The saddle points are

€, =t— . (2.7)

2\/0)5 -1

It is easy to show that d%¢, /d¢? 7 0 for w 7# 1, so these saddles are simple for w 7# 1.
At w = 1, the saddle points are both at infinity, and are of infinite order.

Now, we must be careful here as the formula (2.7) is the result of solving a quadratic
formed by squaring (2.6). This means that we must check to see which choice of sign, if
any, is a solution to the equation (2.6). This is equivalent to determining on which side of
the branch cut of the square root the solutions (2.7) lie. Note that there are four conditions
to check — £+ in both ¢- and ¢+.

By substituting (2.7) into (2.6), we can show that for w > 0, ¢, has no saddle points
and ¢_ has two saddle points. For w < 0 the situation is reversed.

It is thus natural to break the integral (2.3) into two parts
1 +o00
U, = o, (l+ x4»)e‘+t d¢§

=/

t + 0o
u_ = 5;/_00 a_(1 4+ 2_)e*-t d¢.

We show in Appendix A that u, = 0 for w > 0. We therefore concentrate on the behavior

(2.8)

of u_, in particular for w == 1.

From (2.7), we see that as w — 1, the saddie points go to +100. The major contribution
to the integral will come from two places. One is the region of the saddle points; the other
is the pole in the integrand at { = 0. The path may be deformed away from the (¢ + %)“/ 2
singularities in a_(1 + X\_) without changing the value of the integral, as these singularities
are weaker than poles.

We first deform the path away from the pole at the origin. To correct for this (since the
integral is the Cauchy Principle Value) we add =1 times the residue at £ = 0. From (2.4)
and (2.8) it is easy to see that the residue is 1/4x (for the path of integration passing over,
rather than under, the branch cut), yielding a term of —1/4 to be added to the integral over
the new path.

We can now consider the effects of the saddle points. Since there are two saddle
points, we will need to consider a uniform approximation to the integral which models
the confluence of two saddle points to a saddle point of infinite order. Such a case is
considered by Bleistein and Handlesman [1975] in section 9.5. We will use essentially the

same approach as they use for this problem,

13




To make the analysis easier, we first map £ onto 1/z, and work in the z-plane. in the

z-plane, the saddle points are converging to the origin as w — 1.

Expanding ¢_(1/z) about z = 0, we see that

Using this as motivation, we define a change of variables p = p(z) by

a? _
p
Here, a and b are numbers independent of p but perhaps depending on w. It is important to

) 1
¥p) = gp+b+ —=¢.(;). (2.9)

note that this form is the simplest form which has the requisite properties. The requirements
that ¢ have exactly two saddle points which come together to a single saddle point of infinite
order completely determines the simplest form of . .

To find a and b, let z, = 1/¢,, €, the saddle points of ¢(£), and let p, = p(z,) be
the saddle points in the p-plane. Since p(z) is locally 1-1 (see Guillemin and Sternberg
[1977]), page 441-2), we have

d¢_

dp _d¢_ [dy _  "d»

dz  dz dp"i_gf_’éo'
8 p?

The fact that p(2) is locally one-to-one everywhere means that, in particular, it is one-to-one
at the saddle points. Thus we must have dz/dp # 0 at the saddle points. Since. by
definition d¢_/dz = 0 at the saddle points, we must have
i &
8 pz,)?
or p*(z,) = —8ia®. Applying these two equations to (2.9) gives 5:2\/{'/_841 +b=¢_(§,)or

b _¢_(&)+o_(E)
- 2
_¢-(&) - ¢_(E_).

Wi

Being careful with the branch of the square root, it is easy to show that ¢_(¢,) = -4 +
§Vw? — 1, and hence that




Thus ¥(p), the canonical form, is

Wlp)= 2p— -2 "2IC (2.10)

Note that for w =s 1, this is very close to the z ~ 0 limit of ¢_.

The unexponentiated part of the integral has three components. First is the (1 +)_)
from (2.3). Second is a —1 /z"’ term coming from the change of variables £ = 1/2. Finally,
there is the dz/dp term coming from the change of variables p = p(z). To determine these
in terms of p, we need to find a representation for p = p(z). We also need to find dz/dp.
In a general case, we can find this information from (2.9); however, in this case, we can
find the map explicitly.

Now, (2.9) may be thought of as a quadratic equation in z, whose coefficients depend

on p:
ip  i(wP—-1) dw ¢ l—f
8 2p z oz 4
or 2
of P, W-1) w z?
P W Y o122
"(8+ 2 12 1

With some algebraic manipulation, we may rewrite this as

- 8p(w F1)
T pt 4+ 4w F 1)
To pick between the two solutions for z, we insist that for w near 1, z = p, with both p and
z near 0. This requirement just says that p = p(z) is one-to-one in the neighborhood of

the saddle points near z = 0. This is satisfied by the + choice in ¥, and we have finally

2p , 1

It will be useful to expand this about p = 0; the result is:

_ 2P [ . p 2v
z = m Z(—l) (m) . (2.11)

v=0

Differentiating (2.11), we find that

dz 2 00 . . P 2v
#=or1 50+ i55)

. 2 3p?
1+ w(l - 4w +1)2 + O(p‘)).
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This is the appropriate form of dz/dp, since the saddle points are converging to the origin,
and the unexponentiated term has a pole at p = 0. (We have used the form recommended
by van der Waerden [1951] for saddle points near a pole. Other expansions are possible;
see Bleistein [1966] and Olver [1974].)

Next, we find the unexponentiated part of the integrand. It is convenient to consider

a_{1 + X_)(—1/2%) = h(p) together. Neglecting the §-function term in a_(1 + X,), this is

o= ——(1-%(1+y-3))
8y/1 — 22 ¢

Now, we need to convert this to the p variable. We handle the square root first.

/1_52__ | 16p?(w +1)?
4 (p? + 4(w + 1)2)?

_Aw+1)?-p?
T 4w+ 1)2 +p?

where the b.avich ot she square root was. chosen for p small. Using this formula, we find

after some manipulation that

_PPHAw+1)?P (2w +1)
h(p) ———————)(l —-———)

- 8(4(w + 1) — p? P

Multiplying this by the last part of the unexponentiated term, dz/dp, we get

4(“,1“)(1_2;((.;; 1)) ,,21

4w + 1)2

+1

Finally, as a power series, this is

1 had -p v
w1 y;_l (2i(w+ 1)) : (212)

We are now ready to write u as an asymptotic series. Combining (2.10) and (2.12), we

87r(w+ 8w+ 1) Z /+m(2z(w+ 1))ve"P ((%P- % - “—lgi,w—a))t)dp.

v=—1

have

u(z, t) =

Again, we have deformed the path of integration. The 6(£) term in f which we have been

neglecting cancels the —} term from the pole at £ = 0 (which is z = oo).. This pole is not

16




present in our expansion of the unexponentiated term because we broke the integral «_ in

{2.8) into two parts: one part about the saddle points near z = 0, and the other part near
the pole at : = oo. We can deform the path away from the pole at z = oo, including the
contribution from the pole. This leaves us with just the integral above. (Note that there is
also a pole at p = 0. This pole is handled as part of the integral — see the second integral
identity in Appendix A.)

The first term in this expansion is

1 [t i1 i(1-w?)
=—— — —p— = — ——— |t |dp.
U == ug vl 2pexp((gp 3 % ))dp
The second integral identity in Appendix A tells us that this is
1 t
ug = Ee'—‘nk)(a\/ 1- w’),

where |, is the reéular special Bessel function of order v. This is a good approximation
for w less than and near 1.

The next term is just

1 [ i1 i1-w?)
"""_Ea_r/_w 4(w+1)e"p((§”_§' 2p )t)d”'

From the formula in Appendix A, this is

_l—t/ﬂf.l____“’ i_\/ <3
ul(z,t)—ze l+wh(2 1~ w?).

This process may be carried out repeatedly; this completes the proof. }

it is interesting to consider the behavior of the first few terms in the approximation
(2.5) near the fromt (w = 1). First we note that for w = 1, the v > 0 terms are all zero
since 1,(0) = 0 for v > 1 (see Abramowitz and Stegun [1972]). In general, at w = 1, the
v > k terms are 0 for u(z,t) and its first k derivatives in z. Thus, the first k terms give u
and its first k — 1 derivﬁtives in z exactly at ¢t = z. We expect, therefore, that the first few
terms would give us a good approximation to the solution for z =~ ¢,

Asymptotic Behavior near the Front

We can get a better idea of behavior of the solution near the front 2 = ¢ by looking

at.the small argument behavior of 1,(z). Using the small argument form, (2.5) gives

17
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t2 -z2 (t-2z)?
+
16 32

1 t—
u(z, t) = ée_'/z(l + * 4+

Ou l —t/2( T )
v _ 2 14+ = 4...).
oz~ 8° tat

It is clear from the power series for |, that u, = b,(t — z}" exp(—t/2) + O((t —

—1/2 and Uy =

z)**2)exp(—t/2) for w =~ 1. Att ==1 and z = 1 these give u = }e
— e /2 exactly. We can compare these with the computed solution given in figure 1.

The method used for computing the exact solution is given in Appendix B.
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Figure 1: Exact solution for u for t = 1.

As we can see from figure 1, these match our.results. In particular, note that the height
of the front is roughly 0.3, which agrees with the computed value of {e~!/2 ~ 0.303.
Also, the slope near the front can be estimated as 0.3 — 0.41 = —0.11, which matches the
calculated value of —3¢~!/2/16 =~ —0.114.

Finally, we discuss the range of validity of the expansion (2.5). The limitation comes
from the fact that the expansion (2.12) is valid only for |z| < 2. Thus, as w decreases from

1, we can expect the (z + 2)“/2 terms to have an increasing effect. As a rule of thumb,

since |z,| = 2 at w = (1/2)'/2 = 0.707, the approximation will be valid for a range of w
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near 1, such as 1/2 + 1/2(1/2)'/? < w < 1. If we wanted an expansion that was valid
over a greater range of w, we would have to either use an expansion of a_(1 + \_) with
a greater radius of convergence or use the method of matched asymptotics. In this case,
the method of matched asymptotics would be the more fruitful approach. In this approach,
as the saddle points approach the branch cut, the path of steepest descent begins to be
affected by the branch cut. At the same time, the saddle points are moving apart and
hence interacting less and less strongly. Thus we could use an expansion valid for two
saddle points approaching a branch cut. In the transition region, we would match these
two asymptotic expansions. Since we are interested in the solution only near the front

w=1, we'will not consider either of these further.

19




ey

3. Behavior of Difference Approximations near the Discontinuity:

Second Order Method of Lines

in this section we analyze a particular difference approximation to the model problem.
For simplicity in the discussion, we consider the method of lines (or semi-discrete) second

order centered difference approximation

av; __ Vini— Vi
dt 2h
gﬁ __ Ujr1 ~Uj— -V
dt 2h ’ a1
Liti<0 1)
Uj(0) =Vv;(0) =4 0, ifj=
-1 >0

This is a second order non-dissipative difference approximation to our model problem.
The space step size is h. The grid is not staggered. For simplicity of ahalysis. the
undifferentiated term is not averaged. Also for simplicity of analysis, the initial conditions
are slightly different from those in the previous section. However, this will not affect the
behavior of the difference scheme, since both the equation and the difference scheme are
linear. Of course, this change in initial data changes the solution everywhere by % for U
and by %e“ for V for both the continuous and the semi-discrete problem, but we can
ignore this since the change is the same for all z.

Our analysis will illustrate the behavior of the approximate solution to U,(t) near the
front z = t. We are particularly interested in the asymptotic behavior of the width of the
front as A — 0. in addition, we will show that the behavior of the difference scheme near
the front is very similiar to that of the wave equation.

Since this section is the longest, we will provide a more detailed summary of it. We
first find the inverse Fourier transform which represents the solution to (3.1). We will see
that the inverse transform is more complicated than that in section 2; in fact, its canonical
form represents a new special function. At this point the analysis diverges from that in
the previous section. We take up the question of the width of the front in (3.1) (since the
discontinuity in the solution to (2.1) is smeared out by the approximation (3.1)). First we
discuss the behavior of the exponential in the inverse transform integral. This leads us to
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a definition for the width of the front. We then go on to state and prove a theorem that the
width of the front is O(h%/3). Atter the proof is complete, we turn to the canonical form of
the inverse tranform. From the canonical form, we can show the behavior of the solution
to (3.1) near the front (mostly through graphs displayed in section 5). We close with a few
secondary issues which may be skipped on a first reading. The first is the behavior of the
solution away trom the front. The other discusses the size of a term that was neglected in

the analysis.

Iintegrat Form of Solution

We start with the discrete Fourier transform of (3.1):

Eidﬁ = - %sin(hf){/

dlf/ ; 2
. N N

Tk sin(h&)U — V

where £ is the dual variable. Let § = A€, In matrix form, this is

dipY_[ 0 —isind)(p
dt\v )  \—}sind -1 v)

The eigenvalues X of the matrix are given by A\ + 1) + sin®0/42 = 0, or

1 1 [4sin?0
Mm:"gﬂ\/Tz -t

The branch cut for the square root is the interval [—~Arcsin(h/2)/h, Arcsin(h/2)/h] in the €

plane. This is the standard branch. The unnormalized eigenvectors of the matrix are

_ L+
@r = —rsind [
Therefore, the solution to (3.2) is

AR 14+ X, +:‘ L+ -t
(V) = cu(ﬁ)(__%s-mo)ex + ““(6)(—{1 sin O)CX

where «,(€) are determined by the discrete Fourier transform of the initial data. The
solution for U is then just the inverse transform .

+nfh

' . [ (61 +X,)e M + a_(6)(1 +_)e*-t)e'*¢ de. (3.9)

Ulz, t) = —

(z’ ) 2ﬂ' _”/
As in section 2, the path of integration passes above the branch cut. Let ¢, = X\, +i(z/t).
We will write the two terms in (3.3) corresponding to ¢, and ¢ . as [/, and U_ respectively,
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as in (2.8). We note that this formula defines U for all real z, even though U was originally
defined only for z = jh for integer j. The inverse transform (3.3) provides, however, a
natural interpolation to real z, and we will use this in the rest of this section.
To determine a, we apply the initial conditions to the solution of the differential
equation (3.2). At ¢t = 0, we have
a, (E)(1+X,)+a ()t + X)) = f(€)

sin @ sin @

o, (§) == + (€)= =if(e)

where U(£,0) = V(£,0) = f(€). These imply

N P 1(1-“‘ (1+.))

[4sin?9 4 sin 0
v UR
ihf
a,(€) =% —a-(¢)
or
‘A A - . 0 l. 2
a_()(1+X)= ’f__w l_?.zsm —i\/E
24/ 4550 -1 h h
(3.4)
if %isin® _ [4sin%0
9,/4sin?8 _
h3

For the initial data given by (3.1), we have J(€£) = ihcot(0/2)/2.
We need now to investigate the behavior of (3.3) with (3.4) in the vicinity of z = t. We
start by defining w = z/t and ¢,(£) = X,(€) + iwé. (Where it is more convienent, we will

write ¢(0) for ¢(€).) The condition for the saddle points is then

‘%ﬁi(e) oy 2isinfeost =0 (3.5)
3 h 451:\:9__1

The solution for the saddle points 0, is

' . | — w? 1 ;
si =sin®0, = 5 + 5\/(1 — w?)? + w2h?, (3.6)

There are clearly eight solutions ¢ to this equation in the rectangle (—x /h, 7/ h] X (—00, 00).
Let 0, = sin~'s,, with 0 < 0, < /2 and R0_ = 0, 0_/i > 0. (Rz is the real part of
2.) Then the other six roots are —0,, n —0,, —x + 0+, —0_, 7+ 0_, and 7 — 0_. To see
which of these solutions are zeros of ¢’ (£) and which are zeros of ¢’ (§), we plug (3.6)
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into (3.5). Again, we must be careful with the branch of the square root. We first note that

sign(R sin 8) = sign(R(1sin® /A2 — 1)!/2). Thus, by considering the sign of R cos 0, we see
that ¢’ (¢) has roots h{ = +0, and +0_, and ¢/, (£) has roots +7 ¥ 0, and = £ 0_.

Note that the location of the saddle points is substantially more complicated than for
the integral in section 2. This complication makes it impossible to obtain an asymptotic
expansion for (3.3) in terms of known special functions. We will have to be content with
some estimates of its behavior. Note also that the integral of the ¢, term is not zero, in
contrast to the continuous case. However, we will show later that it is of the same size
as the first neglected term in the asymptotic expansion. For the moment, though, we will

ignore the ¢, term.

Width of the Front

Perhaps the most interesting information that we can look for is the width of the front.
Serdjukova [1971] and Hedstrom [1975] have shown that for the scalar wave equation, the
width of the approximation to a step discontinuity by a difference method of order p is
O(hP/(P+t1)), This smearing out of the front can be thought of as the result of numerical
dispersion or dissipation or both, introduced by the approximation. In this section we will
show that the same relation holds for the second order method (3.1) under consideration.
We show this as follows. First, we study the path of steepest descent. This will show us that
the saddle point 0_ controls the width of the front. Next, we use perturbation techniques
to find 0_ and ¢_(0_) *.r z/t = w = 1 + ch?. By studying the behavior of ¢_(f_) as a
function of v, we will see that the width of the front is indeed O(h?/3).

In passing, we note that the width of the front is not a well defined concept. This is
because there are a number of other phenonema which interfere with any measurments
of a width of the front. For example, the oscillations which are present in almqst any
difference approximation can mask the width of the front. Despite this, it is sometimes
possible to define a width for the front that matches the observations. For the scalar wave
equation (Hedstrom [1975]), dimensional analysis reveals the width of the front. We can
not use the same technique here. Thus, we must motivate a “definition” of width of front
which matches what we observe when we look at a graph of the solution. We will show

that ¢_(0_) provides us with a definition for the width of the front.

We will start by presenting some computations of the path of steepest descent and the

height of that path for a particular value of h. These computations are only used to provide
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motivation for both a definition of width of the front and the theorem that follows, and are
not used for proof. However, the geometry of the surface N¢_ is complicated enough that
a specific example will help in understanding the proof.

Since we are interested in the behavior in the vicinity of z = ¢, we look at contour
plots of R¢_ for w near 1. From the topographical interpretation of saddle points, we define

Ré_ as the height of ¢_, since |e?| = e®¢.

TADNL

’ 4 7

i .0-10’\ i
} L 2

| i =50\ \ i/

Figure 2: Contour plot of ¢_ for w = 0.985 and A = 0.05. Boldface

lines are lines of steepest descent {constant Q¢ _), others are lines

of constant height (R¢_).
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Figure 3: Contour plot of ¢_ for w == 0.986 and k = 0.05. Lines

have the same meaning as the previous figure.
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Figure 4: Surface plot corresponding to figure 2. The direction
of view is from the upper right corner of figure 2 to the lower left,

viewed from above. Note the branch cut in the center of the plot.

Note how the path of steepest descent changes between figures 2 and 3. The path
in figure 2 has three components. Two parts of the path pass through the saddle points
on the real axis, and the other part loops around the branch cut at [—%, %] In figure 3,
the path of steepest descent passes only through the principal saddle on the imaginary
axis (the paths through the other saddle points are forbidden because they pass on the
wrong side of the branch cut). What we are seeing here is a complicated interaction of four

saddle points. Well behind the front, the path of steepest descent has two features. First is

the part of the path that mimics the path for the continuous problem. This is the part that
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loops around the branch cut. The other part consists of the paths that pass through the
two saddle points on the real line. These explain the oscillations that are known to extend
well behind the front (see the subsection, ‘Behavior Away from the Front’).

As we near the front, the paths come closer together, eventually crossing at a value of
w of about 0.985. It is interesting to look at the height of the path in this critical region. It
the path has humps at each saddle point, then the saddle points may be treated separately.
It not, then we must consider all the saddle points together. The next two figures answer
this question.
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Figure 5: Plot of the left side of the path from the principal saddle
and the height of the path for w = 0.985 and h = 0.05. Note
how the height of the path flattens out in the neighborhood of the
saddles -0,, —0_, and 0_. The abscissa in the second graph is an
arclength along the path.
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Figure 6: Plot of the left side of the path from the principal saddle

and the height of the path for w = 0.986 and h = 0.05. Note how
quickly the height falls as the path moves away from the saddle
point;.




These figures show that we must consider all of the saddle points simultanegusly in
the neighborhood of the front. However, note that the principal saddle point 8_ is always
higher than the other saddie points. This means that the principal saddle controls the gross
features of the solution. In particular, we expect the width of the front to be reflected in
the behavior of the principal saddle. The next figure shows the behavior of the height of

the principal saddle.
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Figure 7: Height of the principal saddie 0_ as a function of w;

h = 0.05. Note how rapidly the height falls as w increases past 1.

Since R¢_(0_) fails off so quickly, we can expect that by considering how R¢_(0_)
behaves ahead of the front, we should be able 1o find the width of the front. This leads to

the foliowing definition:

Definition 1: Given ¢ > 0 and some ¢, > 0, IF the height of the principle (highest) saddle
point tends to ~oo for w == 1 4 ch7, for v < 7., and the height of the principle saddle is
bounded below for w = 1 + ch7, for v > 7., THEN the width of the front is O(h™).

This definition is based on the foliowing estimate of the inverse transform integral.

Under the conditions in the definition, we can write the inverse transform integral as
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: /g(f)e‘“) dE ~ Ae—f(h)/eﬂ(ﬁ--eo)’ de¢

where 1/ f(kh) = o(1), Rf(h) > 0, and &, is the principal saddle point. Then, as h — 0, the
integral vanishes (discarding contributions from poles near the path; these give the —% in

the solution ahead of the front). We do not need to consider the effects of the other saddle

points because of the exponential importance of ¢ at the principal saddle point. Note that
this definition does not say that the width of the front is asymptotically equal to h7<, only
that the width of the front is at most h7<.

The restriction in definition 1 to ¢ > 0 is based on the before-mentioned difficulty in
defining a width of the front. For ¢ < 0, we have w < 1 and t‘lence we are looking behind 1

the front. But behind the front there is no clear way tc measure the width of the front (see ! |

the graphs of the computed solution in section 5).

For more detail of the behavior of the solution near the front we must take into
consideration the interaction of all four saddle points. This is discussed below in the
subsection on the canonical form. We proceed befow to find the width of the front, proving

the conjectures above about the behavior of the path and the height of the principal saddie.

Theorem 2: The width of the front in the solution to (3.1) is O(h?/3), where h is the spatial

step size.

Proof:

First, we need to know something about the path of steepest descent (henceforth
path). We actually will need only qualitative information on the behavior of the path. For

this, we look at ¢”(£) for ¢ a saddle point. Now,
20h%(1 — 2sin? 0) + 8isin' 0

B2 Asin®0 ) 32
e

Since 4sin’(0)/h% — 1 is negative for 0 = 0_ and positive for 0 = 0, , we can easily evaluate

¢2(¢) =

¢” at the saddle points. At the upper saddle, 6_, it is negative. At the lower saddie, —0._, it
is positive, and at the left and right saddles, F¥0,, it is Fiv, for some real positive 7. These
facts allow us to determine the direction of the path of steepest descent at the saddle
points; see, for example, Bleistein and Handelsman [1975), ch. 7.
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Figure 8: Saddle points of ¢_. Arrows point downhill. The branch
cut is indicated by the shaded line.

Figure 8 shows the behavior of R¢_ in the neighborhood of its saddle points. Recall

that the domain is the strip [—n/h, n/h] X [~00,00] in the £ plane. Clearly, the path of

steepest descent is one of three forms in the next figure.




(@) (b) ©

Figure 9: Possible paths of steepest descent for ¢_. Arrows show

the direction of integration.

We first study the possible paths of steepest descent illustrated in the previous two
figures. Determining which of these three choices is correct for ail values of h and w is
very difficult, and we will not do it. Fortunately, by purely geometric considerations, we can
show that the saddle point at _ dominates all of the possible paths.

Recall that the definition of the height of a saddle point at # is R¢(0). Figure 9a shows
the path which passes only through 6_; this is the correct path if R¢_(0_) is less than the
heights of the right and left saddle points. Of course, figure 9a may be the right path even
if this is not the case, but we will see in a moment that that is not important to us here.
in the other cases (figures 8b and 9c¢), the saddle at 0_ must be higher than the other
saddle points, for otherwise the path in figure 9a would be a lower, and hence better, path.
Therefore, because the heights of the saddles enter as e*(*), the saddle at §_ is always the
most important term. We will call this saddle point the principal saddle point. This is neot to
say that the other saddle points are unimportant; we will see that the left and right saddie
points lead to the oscillations that are observed in the solution of (3.1). The lower saddle
point —0_ is aiso important to the detailed behavior of the solution.
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We will have to deform the path of integration to pass through the principal saddle
point before we proceed. In doing so, we will pick up a term from the singularities along
the path of integration. In deforming the original path of integration passing along the
real axis above the branch cut to the path of steepest descent, we move the path off of
singularities at 0 and + sin~'(h/2)/2. Only the pole at zero contributes anything. As with
the continuous problem, we must add ix times the residue of this pole to the integral. It
is easy to see that this is just —é by making a Taylor expansion of the integrand. We will
ignore this constant term in what follows.

We now find the behavior of 8_ and ¢_(0_) for w = 1 + ch7, as functions of v and as
h goes to zero. To discover what sort of perturbation expansion we will need, we consider
an expansion for w = 1. We have sin?0_ = —;l,-h, or hé. =0_ =~ z\/ﬁﬁ Thus we see
that as h — 0, £ _ is large and 0_ is small. We thus proceed by making expansions with £
large and 0 small. We will use the notation O(h®;...; h*) to mean O(h™irleww)),

Using this result as a guide, we let w = 1 + ch”, where ¢ and ~ are positive. In
addition, we will assume that v < 1. It is easy to show that ¢ _(0_) tends to —.ﬁ ash—0
for v > 1.

We start with (3.6):

1 —w? w?-1 w2h?
.2

5in 0_ = - 1

sin 2 2 + (1 - w?)?

1 1 w?h?-%y
= _{-(1 R —(1 ML+ R*17) .
. 2[ (1 +w)e (1 + w)ch ( +2(l+w)2c2+o( ))]
To simplify the notation, we will replace (1 + w)c with ¢. Then we have

1 2h2—2'1
sin® 0. = —ch’(l + Zw—ﬁ— + O(h“”))

or
o 1 w2h2-27
sind_ = 1\/ch7(l + gw__. g + O(h““v)).
c
Since 0_ is small, we may expand the inverse sine to get

- 1 w?h2-27 iVelh3y
0_=icm( ____)

Vg ) g PO AN, (37)

Now, we can find ¢_(0.). First, we need to know

sin? 25,227
—— 2p2-24
2iv/eri3(1+ FED N o))
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Thus, for ¢ _{0 )}, we plug these in to get

Ui, el TwRRE
¢_(0 ) = —-‘2 -_ 521%?’1’7 -([ + g, _;:2_;)
viwfiverr e 4 LI e A
8 c? 6

+ O(h15—77/2;hl —-7/2; h.')'y/'z ~l)
Collecting terms, this is

. 2,2—‘2—7 ,3/2h3‘7/2”|
TR BT v e

+ 0(h3—7'1/2; hl—7/2; h5‘7/2-~1)

Now, we replace 1 — w by —ch?/(1 + w) (since we redefined ¢ above) and get

¢-(0.) = b e3/2p3a/2- 1 e + O(hS T/t posE
h 2 l+w 6 ’ 38)

‘

i . . 9 Lk
= —_. — (positive quantity)h37/271 4 O(#® T2 p1 /2 p5/20 T

From this we can see that for vy > 2/3,¢_(0_) — —5 as h — 0. For v < 2/3, ¢ (0.) —
—oo as h — 0. Thus, for v < 2/3, U — ~% as h - 0 (~.L comes from the pole;
the contribution from the path tends to zero, as does the ¢, term). For v > 2/3 the

contribution from the path does not tend to zero. §

Note that we have not shown that U is different from —3 for v > 2/3, since we would
need a lower bound on the integral. Thus we can only say that the width of the front
is O(h*/?) rather than the stronger statement that the width is asymptotically proportional
to h%/3. Section 5 will present computations that demonstrate that the width is indeed
proportional to h%/3. Also, this result is good for t small and positive as well, since the
behavior is so strong.

The timited form of this result is caused by the complicated behavior of the saddle
points and is not an inherent limitation of the method. With better information about! the
location of the saddle points and the path of steepest descent, we coula describe the
behavior of the front in more detail. In particular, for any given h and w, we could work
out the detailed behavior. Since we are interested in general results, however, we will not
do this.

This sort of analysis may seem contrary to the analysis in section 2, where great
care was exercised to get the contributions from all of the saddle points along the path of
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steepest descent. This is because this section and the previous one have somewhat different
objectives. In the previous section, it was important both to introduce the techniques of
uniform asymptotics and to show the solution to the continuous problem. Here, we are
interested in finding the width of the front as a function of h. To compute the solution
near the front, we would have to determine the correct path of steepest descent and use a
uniform expansion to calcuiate the behavior near the front. Using the canonical form, we

do this computation in section 5.

The Canonical Form

In section 2 we saw that the integral representing the solution of the continuous
problem could be transformed into an integral with a simpler form. We did this by simplifying
the argument of the exponential in the integral into a form which represented the saddle
point behavior. This form is the canonical form, and by studying these integrals we can
gain a better understanding of the exact solution to the difference equations.

For the difference approximation of this section, we will use the canonical form to
discuss the behavior of the principal terms in the asymptotic expansion near the front.

The canonical form chosen depends on the region of interest. Near the front, we
know from above that R¢_(0_) ~ —3. It is easy to see that Rp_(0,) = Re_(-0,) = —}
everywhere. Therefore, we expect the path of steepest descent to be more like figure 9b
or 9c than 9a. In this case, we will need to consider the interaction of four saddle points.
As in the continuous problem, we will be guided to a canonical form by considering an
expansion of ¢_. We recall that the saddle points are 0, = O(h!/?) near the front. Thus,
in contrast to the derivation in section two, we will remain in the @ plane (rather than going
to the 1/¢ plane).

The small h, small § expansion of ¢_ (in terms of £) is

¢_(6) ~ —% + 5% +i(w—1)E+ % + 0(&5%hY). (3.9)

(In this expansion, it is important to expand the sine inside the square root, rather than
expanding the square root and then the sin, because the first term in sin® a/h"’ is large,
while the succeeding terms are small.)

Note that since for w = 1, £ &~ h~'/2, and hence the h2£3 term is not smaller than
the first two terms. However, the next term, £3h*, is smaller. This suggests the canonical
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¥(p) = s +b+cp+dp® = ¢_(€). (3.10)

Here we have already applied the requirement of symmetry of the saddle points to eliminate
the p? term. By setting b = —%, we do not affect the saddle points of 3. We may also
normalize the mapping by setting one of the remaining parameters; we set a = 1/8 so
that d€/dp =~ 1. We are then left with the two parameters ¢ and d. To determine these,
we need two and only two conditions. These two conditions are provided by the fact that
the mapping (3.10) is locally one-to-one at the saddle points. This means that the saddle
points correspond. That is, if £ is a saddle point, then so is p(€). Since, by symmetry, the
saddle points are described by two parameters, we have the two conditions that we need

to determine (3.10).

Now, ¥(p) has four saddle points p, and —p, which satisfy

/ 3id
—c i C2 + ——
2 2

Pe = 6d

(3.11)

We expect (3.11) to have two real and two imaginary solutions. This. will be the case if
c? + 31d/2 < 0. There are many ways to satisfy this condition; it is clearly satisfied if c
and d are pure imaginary and d is small enough or has positive imaginary part. This is just
the case for ¢_. Also note that the behavior of the saddle points follows that of ¢_(£) as
h — 0. In particular, the saddle points of ¥(p) go toward infinity for w = 1 as h tends to
zero. All we have to do is to determine ¢ and d such that ¥(p,) = ¢_(£,).

Unfortunately, it is too difficult to analytically determine ¢ and d. We can solve for
them numerically, however, and compare them to (3.9). A fixed point iteration suggested

by Hedstrom [1979] for the scalar wave equation can be adapted for this problem:

1 Pick ¢(® and d(®. Set n = 0. Define 4™ (p) by (3.10), with ¢{™) and d(™) replacing ¢
and d.

2 Repeat steps 3-4 until ¢(™ and d(™) converge.

3 Find the saddle points ot ¥(™). Find a correspondence between these saddle points

and the saddie points of ¢ _.

4 Solve the two (linear) equations ¥+ (p,) = #_(¢,) for the coefficients ¢**+! and

dY) Setn —n + 1.
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We use this algorithm to find ¢ and d for w in a neighborhood of 1. Good choices of

¢© and d© are needed. We can start at w = 1 by taking ¢ and d from (3.9). With the
— 1 values of ¢ and d, we can proceed to nearby values of w by continuation.

This canonical form defines a new special function, which is a generalized regular
special Bessel function. Graphs of this function are displayed in section 5. The following
two figures show ¢/ and d/ih? for h = 0.001. The figures compare these to the values
from (3.9) for ¢ and d.

Map
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Figure 10: Comparison of coefficients for model equation with co-
efficients for map. Curved line is ¢/1 for h = 0.001. Straight line is

the value from (3.9).
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Figure 11: Comparison of coefficients for mode! equation with co-
efficients for map. Curved line is d/ih? for h = 0.001. Horizontal

line (at 1/6) is the value trom (3.9).

These figures show that near the front the form in (3.9) (really a model equation) is a
good approximation. Away from the front the neglected terms in the Taylor series in (3.9)
become important, and (3.9) is no longer as good an approximation. Fortunately, we are
interested only in the near-front behavior, so we will use the (3.9) form of the mapping.

We can use the above result to look at the behavior of the canonical form near
the discontinuity. Because the form in (3.9) is so close to the canonical form near the
discontinuity, we will look only at the form in (3.9).

Written with (3.9), the form of the integral for the solution to (3.1) is

o i i€3h?
‘/—wlhgexp{(S—£-+1(w—l)+ 5 )t}df.

We now consider various scalings of £ which reveal the importance of the terms in the

exponential. If we define h®n = £, the integral is

wh—o"? . .
i . o lh3°+2q3 o
,/__,,,,_..-. gexp {(81&"1} +i(w— 1)h%n + ——B——)t}h dn.
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If (3.1) were the scalar wave equation, a = —1 would be the natural scaling (see Hedstrom
[1975]). Writing the above with a = —1, we have
r % in3\t
— +t{w—-1 —— )= thVdn. .12
/_,ge"p{(sn“(“’ )n + G)h} n (3.12)

The integral (3.12) is useful when we may neglect the 1h2 /87 term, for then (3.12) may
be written in terms of the well understood Airy functions. For that term to be negligible,
we must have |h?/n| < |(w — 1)y} and |h?/7n) < |n%| at the saddle points. We may rewrite
these conditions as

2
|w— 1] >

n? (3.13)
In] > Vh.
Now, near the front we know that £ = 1/v/h, so n = ¢ = v/h and the condition || > vk
is not satisfied. Thus (3.12) is not useful near the discontinuity. As we move away from
the front, » = h§ ==constant (from (3.6)), and both of the conditions (3.13) are satisfied.
in particular, (3.12) and (3.13) show that the term in the integral due to the coupling
(the 1h% /87 term) becomes less and less important away from the front. From this, we can
conclude that in a region near (near for expansion (3.9) to be valid) but bounded away from
the discontinuity, the behavior of the {/_ term is similiar to the behavior of the centered
difference approximation to the scalar wave equation.
It is important to note that the U, term is important away from the front (Majda anA
Osher [1977]), so we may not exclude it in discussing the behavior of the solution to (3.1).
Another useful scaling of € is a = —1/2. With this scaling, the positions of the saddle

points stay nearly fixed in the n-plane (as functions of h) for w near 1. The integral then

/ﬁﬁ exp {2 4 e =n in’ t\/ﬁ}h"*d (3.14)
_n/\/iug P13y h 6 " ’

looks like

For (3.14), we want the term i(w — 1)n/h to be unimportant and tv/ large. For this,
we have |1/7] > |(w — U)n/k] and |n3| > |(w — 1)n/k|, or

3

(w—t)l_

1
77-2 >

(3.15)

2
lnl>>| h

From (3.7) and n = £/Vh, we have n == h(7=1)/2 at w — | = ch". Inserting these into

(3.15) shows (3.15) satisfied for v < 1 ((3.7) is valid only for v < 1). Note that the argument
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of the exponential (dropping the i(w — 1)/h term) has 4 saddle points equally distributed

about the unit circle. This shows us that very near the discontinuity, all four saddle points
are important.
Note also that this scaling makes asymptotic analysis difficult, as we would need tvh ‘i

to be large as h tends to zero.

Behavior away from the Front

We may use the integral representation (3.3) to get some information about the behavior
of the solution away from the front as well. Let us consider the effect of the two real saddle
points in figure 7. There is some w, < | such that for v < w,, the two saddle points on
the real line are isolated; the path of steepest descent through each of these two saddles
starts at infinity and passes through only one of them before going back out to infinity (cf.
figure 8c). Thus, we may use classical saddie point theory to estimate the ~ontributions of

these terms. Considering just the contributions from these terms, we have

\ 1
Upse = g(0+)__~_e¢_(0*)tc + g(_0+)

VOCAA VS (=0,

where g is the unexponentiated part of the integral in (3.3). We may use the fact that 6, is

- (00 4 ...

real to relate g(0,) to g(—0,) and ¢_(0,) to ¢_(—0 ). The leading term in g(0,) is h /8, so

to leading order, ¢ is odd in . We also have

4sin’0
6. (28,) = -t w0y e,
2 h?

Combining these, we may write U,,. as

0,)C Asin 0
Usse = ——g(—f_)_—:eft/2 sin \/ an'zr—f— —t-wo, It}
NOCAUA] h
This shows where the oscillations in the solution to (3.1) come from. They are artifacts
caused by the presence of the spurious saddle points on the real line (spurious in the

sense that they are not present in the continuous problem in section 2).

NP Y

While the above analysis shows where the oscillations come from, it does not give the
frequency of those oscillations. Since 0, is a function of w and hence ot z and t, both
j g(0,) and ¢”(0.) contribute to the oscillations. Still, this does show where the oscillations

in the solution come from, and a more careful analysis, such as those in Hedstrom [1975]
and Pearson [1969] for the scalar wave equation, would show the observed frequency.
: 41
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Size of the U, term

In closing this section, we show that the U, term in (3.3) is asymptotically negligible
as we have claimed. For the region away from the front (w bounded away from 1), we can
use the same basic techniques as before. First, we determine the path of steepest descent.
Second, we determine the appropriate canonical form. The canonical form near the front
will be different from the canonical form away from the front. Finally, we get estimates on
the size of the terms in the resulting integrals. For the region near the front, the situation
is more complicated. In this region, we will show that the U, term is of the order of the
first neglected term in the U_ expansion.

First, for the region away from the front, we look at the saddle points. .1scover
the path of steepest descent, we consider the relation between ¢_(¢,) and ¢,(€,). Let
0 = 0 + . Clearly,

i [4sin®(0)

! 1414 0
2V "2 Wi

1
T2
=L, i\/4———(_8in0)2 1 4iwd 4wt
T2 2 h? h h
é_(0)

since the sign of the sine changes the sign of the square root. Hence, m¢+(6) = R¢_(0).
Thus the behavior of the saddle points and the path of steepest descen:\t is the same as
that for ¢_ found earlier in this section.

There are then two cases to consider: w away from 1, where the saddle points are
well separated, and w near 1, where the saddle points are coming together (at infinity). We
will first consider the simpler case of w away from 1.

In this region of w, we can use classical saddle point analysis to get an estimate on
U, . Following Erdélyi [1956] we have that

. 1 -
U, = g(0.)————e*+-)C + asymptotically smaller terms.

Ve @)l

Here, g(6_) = a(0_)(1 + X, ) (see (3.3)). We can investigate the small & behavior of this by
making Taylor expansions in h of g and ¢'|. We already know that m¢+(b_) ~ —1. The

first terms in the expansions for g and ¢/ are (h§ =0, 0 =0+, ¢is O(1) away from the
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h%(l ¥ 2i€ — i\/1E? —T)
8\/4€% — 1

~ 21
¢, 00) ~ —.
(162 —1)%/2

g(0) ~

Thus, U, is O(h%). This is just what we would expect, since the method that we are

considering is second order accurate. Note also that the exponential is like

e¢*(‘-’-)‘ —eb-(0 )t+izn/h

=slowly varying part X e**"/*

S Y Er—

so we would expect [/, to have a wavelength of 24 in z. These oscillations are observed

in practice.

As a demonstration of this analysis, the following table presents the results of computing

U, numerically for h =27", n =15,6,...,15.
y n U, ratio
5 1.44E-2 NA
6 3.88E-3 1.89727
7 9.49E-4 2.03098
8 2.32E-4 12.03180
9 571E-5 202369 |
1‘ 10 1.41E-5 2.01370
‘ 1 3.52E-6 2.00731
' 12 8.77E-7 2.00377
13 2.19E-7 2.00191
14 547E-8 2.00096
15 1.37E-8 2.00048

Table 1: Uy for h =:27" and z = 2t = }. Ratio column is the

log of the ratios of success’'e rows divided by log(1/2). Note how
o ' quickly U/, approaches O(h%). The value for U, was taken as the
maximum over two periods (each period is 2h long) and a constant
factor was divided out. Of course, there is no ratio for the first

entry.

It is instructive to note that as w goes to 1, ¢ becomes O(h"‘/z). Thus, as w nears 1,
it is no longer sufficient to consider just the effect of the principal saddle point. We look

then at the canonical form (3.10). By the above analysis, ¢, (0_) and ¢_(0_) are essentially




" —————

the same (they differ by a term constant in 0). Thus we can use the same canonical form
for estimating the size of th U/, term.

The behavior of the canonical form integral is very complicated for w == 1. The best
that we can do with it is to show that it is comparable to the first neglected term in the
previous analysis. Define g, to be the unexponentiated part of the U/, integral in (3.3)
and ¢_ to be the unexponentiated part of the U_ integral. Because of the behavior of the
saddle points of ¢, and ¢ . near the front, we need to know the behavior of gf(b) for 0

near = and the behavior of y (0) for 0 near 0. Let 0 = 7 + 0, 0 small. This gives us:

g.(0) _1o) " (O)[ 1+ Bget

2 2 \/ 4sinZ0 _ |
h3

_io)  Jof -

2 2 / ;inz
\ﬁ:h_l_e 1

Now, f(0) = ihcot(0/2)/2, so f(0 + 7) = —ihtan(0/2)/2. From this we can see that

g*(é) is smaller than ¢_(0), since both are J X similiar tunctions, and tan 6 < cot 9 for 0
small.

We have not shown that this term is small; indeed we will not. It is a recognized
problem in asymptotic analysis that estimating the higher order terms:- in an expansion
for arbitrary & and w can be very difficult. For specific h and w, however, these terms
could be estimated by preforming the integration numerically with a method with a known
error bound. See Wong [1980] for a clear discussion of error estimates for asymptotic
expansions of integrals.

To get a good estimate of U, , we would need to know bath the location of the saddie
points and the path of steepest descent. Since both the computations of the path of
steepest descent and the integral (3.14) show that all of the saddle points are important,
we must be able to estimate the canonical form integral corresponding to these features.
As the canonical form integral represents a new special function, this analysis reduces to
tabulating the integral which the canonical form (3.10) represents and using the resulting
tables to estimate U/, .

We can, however, provide computations to show that the term is in fact as inconse-
guential as claimed. For this specific problem, we can look at the following table:
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n Ug ratio
5 2.02E-4 NA
, 6 9.77E-5 1.04968
} 7 2.57E-5 1.92524
' 8 8.09E-6 1.66781
9 4.34E-6 0.89907
10 1.61E-6 1.42923
1 5.00E-7 1.66131
12 2.26E-7 1.17489
13 8.16E-8 1.46689
14 3.19E-8 1.35582
15 1.28E-8 1.31484

Table 2: U, for h=2"",t =1, and w = 1 + h%/3. Columns
have the same meéning as in the previous table. The lack of an
obvious limit in the ratio column is due to the need to average over
the oscillations. Unfortunately, the predicted ratio changes over the

length of one oscillation, thereby contaminating the results.

For more general problems (such as the next section), we can look at the graphs of

the appropriate canonical form which are presented in section 5.




4. Behavior of Difference Approximations near the Discontinuity:

General Difference Schemes

In this section we analyze a model equation for the model problem. This approach

was discussed in section 1. Our model equation is

gp+1 1
il AT SR B
+1 +1
3_:] = g_: +""’3:p+1f + qg:ﬁ? B
Loifz<o (4.1)
u(z,0) =v(z,0) =4 0, ifz=0
-1, ifz >0
1 <p<aqg.

Here, p and q are integers, and one of p and q is even, the other is odd. For example, for
p=2a=—1/6, p=1, and b = 0, this equation models the nondissipative sécond order
scheme studied in section 3. We will use p 10 allow us to see what ettect the lower order
term has near the discontinuity. For p = 0, (4.1) is just the model equation for difference
approximations to the ordinary wave equation; p = 1 is the telegrapher’s equation, and it
is this case that should be kept in mind for most of the analysis.

That this model equation is a good model can be proved by techniques similar to those
in section 3. In fact, section 3 can be taken as proof of this model equation for the case
of the second order difference approximation in (3.1).

Averaging of the undifferentiated term has not been included in order to simplify the
analysis. The techniques used here can be used to find the behavior of difference schemes
which average the undifferentiated terms.

Our analysis will proceed along the same lines as in the previous section. We represent
the solution to (4.1) as an inverse Fourier integral. We then study the behavior of the saddle
points of this integral, and show that the width of the front is O(h?/(P*1)). The calculations
for this are very similiar to those in section 3 and we will compare the results there to
the results in this section. We then use p to show in which regions near the front the

undifferentiated term is important. Finally, we present a generalization of (4.1) which shows

exactly what dimensionless quantity must be small for our analysis.
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Integral Form of the Solution

We start with the Fourier transform of (4.1):

i = €0+ aiElihePh ¢ big(ine)"s
jf (4.2)
-d—’t’ = —i€i + aib(ihE)PR | bi(ih€)%a — pb

where £ is the dual variable. In matrix form, this is

% (:) _ (_iﬂl ) a(mg)v ine) —i(1 - u(ih_ézl’ ~ b(,~hg)q))(g),

Then the eigenvalues of this matrix are
Ny = =0 & VAE( — a(ihE)r - b(ih€)) = p

Let ¢, = A, +iwé, where w = z/{. The branch cuts (there are many of them) are chosen
so that the A = 0 limit has saddle points with the same behavior as for the continuous
problem. The other branch cuts are chosen to be well away from the origin (the region of

interest) for w = 1. If we let a, be the unnormalized eigenvectors of the matrix, we can

write the solution to (4.2) as

(1?) = {Y*(E)‘ch‘t + (L(E)(l,c)‘*‘

v

where a (&) are determined by the Fourier transform of the initial data. Then the solution

of (4.1) is the inverse transform

1

+ oo
u(z, t) = o 100 [(t,(f)a“cx*t + a ,({)al-cx"]e”fdf (4.3)

where aq, are the first components of a,.

It is possible to express o, (£) in terms of the initial data and X, , but it shows nothing
new. We will therefore assume that o_{£) = 1/2€ for £ near 0, and t+.. the X, term is
negligible compared to the M\_ term for £ == {. The arguments for these assertions follow

the same pattern as those in the previous section, and they will not be repeated here.

Width of the Front
To determine the asymptotic behavior of the width of the front, we will follow the
procedure used in the previous section. Specifically, we first find the saddle points of

¢_(€). We then show that the saddle point corresponding to the principal saddle of the
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continuous problem controls the width of the front. Finally, we show how ¢ (£_{w + ch7))
behaves as a function of v.

Consistency of the difference approximation will be used to guide and justify the steps
in the analysis. We require that the h -~ 0 limit of the equations below must give the
respective equations from the continuous problem. In particular, we will use our knowledge

of the behavior of the principal saddle point to pick an appropriate perturbation expansion.

Theorem 3: The width of the front, as defined by definition 3.1, under a general difference

scheme with model equation (4.1) is AP/(P+1),

Proof:

The saddle points satisfy the equation

0 — gy 11 GGBEP — BRGN1 (1 + phaihe) — (L ablibe))
VAL = a(ih€)p — b(1hE)9)?2 — p?

Now, from section 2 we expect that while £ tends to infinity as w approaches '1, hf will

remain bounded. We define a new variable n = A, including the 7 to simplify the notation.

We are now looking for solutions n to (4.4), where 7 is small for w near 1. Expanding

(4.4) as a polynomial by moving the iw term to the left hand side and then squaring both

sides, we can now drop the terms in the polynomial from (4.4) with 7 to powers greater

than ¢ + 2. This leaves us with:
8(2+p—wan®t? +8(2 + g — BT 4 AnP(wf — 1) + h2wPp? = o(n?t?).  (4.5)

This equation is clearly too complicated to solve analytically. We thus turn to perturbation
techniques. Our interest is in h = 0 and w = 1. Starting with a perturbation series in h

for the solutions 7 to (4.5), we have as the equation for the zeroth order term
82+ p—w)andtP + 8(2 + p— wA)bnit + 4n3(w? — 1) = 0.

The first p + 2 roots of this are

0 twice

0 = \p roots of y’ l-_——w—z— o=y E“+hi her order terms
! 2a(2 +p—w?)  \Va(l +p) g
The remaining ¢ — p roots we may ignore because they do not approach zero as w — 1.

We can make an identification of these saddle points by comparing with the scalar

wave equation case (Serdjukova [1971] and Hedstrom [1975]). in that problem, there are
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p saddle points due to the difference approximation about the origin; they correspond, to

first order, to the p sad-lle points found above. The other two saddle points correspond to
the two saddle points in the continuous problem discussed in section two. We will need to
know more precisely the location of these last two saddle points, as we use the behavior
of the height of the principal saddle point as our definition of width of front. To get the
next term in the perturbation expansion for n =~ 9y = 0, we let == —dh®. Here, d has
been chosen real and positive {so that ¢ = idh® ! will be the principal saddle point). Also,
since we are interested in the width of the front, we need to know how 7 changes as a

function of w, with w = 1 + ch”. Making both of these substitutions in (4.4), we get

8(2 + p — w?)a(—d)?*PRETPIE 4 8(2 + g — WP)b{—d)I PR e)e

+ 4w+ 1)e{=d)?R** T 4 h20%p% = 0.
Now, since ¢ > p, we may drop the A2+ term. This leaves us with
8(2 + p — w)a(—d)2tPAZHPIa | 4w + 1)e(—d)? R + K2w2p? = 0. (4.6)

There are three cases.

case condi!ibn ,,?,’59@‘1”'3 ‘ @ . 7~ - —d
1 |Pety<2ZHpa= 2‘,1:__7,11 o i

2 2+ > 2 (2 + pla = 2

|
T R
3 2a +y =2 all equal J 2%;’ = 2—;—7 * J

Table 3: Three cases for n. The condition column gives the

condition for that case to hold. The terms column gives the powers
of h in (4.6) for that case, and the iast two columns give o and —d
for that case. The * value of —d is the solution to a p + 2-th nrder

polynomial, and is omitted.

Each of the cases in table 3 is valid for a range on 1, or, equivalently, for a region near
the front. Case 1 is valid for v < 2/(1 + 2/p). Since this bounds « from above, the region
where case 1 is valid is asymptotically further from the front than cases 2 or 3. Note from

(4.6) that in case 1, the h2w?%p? term may be dropped, and hence this is the - ~gion where

the undifferentiated part of (4.1) does not affect the solution (to first order) Case 2 is valid
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for v > 2/(1 +~ 2/p). Since this bounds 7 from below, this region is asymptotically closer
to the front than the region in case 1. In this case, the 4(w + 1)c(—d)*h%**7 term in (4.6)
(the term from the convective or z-derivative) is less important than the p term. We note
that this case is for w very near the discontinuity, closer than we expect the approximation
to the front to be. Case 3 is the transition region between cases 1 and 2. In this region,

all parts of (4.1) are equally important.

Now that we know something about the behavior of the principal saddle points for
w == 1, we can look at the path of steepest descent. As in the previous section, we will
need very little information about the path in order to find the width of the front. The

following figure shows the situation for the methods in this section.

(a) (b) ()

Figure 12: Possible paths of steepest descent for ¢_ near the

saddle points. Arrows show the direction of integration.

As before, the path always passes through the principal saddle point.

We now lock at the value of ¢_ at the principal saddle point n = —dh®. It will be
usetful to expand ¢_ at this point for £ large and 7 small
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b (€)= - : - ;\/45'-'(12 alih€)P = bihE)): — 1 4 dwE

l . IV
==, if\/(l —afthf}P  b(th€)e)? - e + 1wt
Expanding the argument of the square root we get

‘ . |
¢_(§) =~ y if\/l — 2an? — 2by7 — ;1,52

+ C(n"z”)) + twé

t v(’]‘ ) t iw{
—_— ! ; b4 b9 1
= . 16 | arn ] -,

Collecting terms, we have finally

¢ (€)= —é —-7€(1 —w) + iE((n]” + bn? + géz + O(nQ”))

or

|
6.(6) = =5 — i€(1 = w— )+ O(€n"s gin*)

Now we substitute —i7/h for £ and —ch7 for 1 — w to get
¢_(€) = —; —nh”H(—chT —an®)+ O(n*t ' h™1 R332 n%9).
Finally, we have n == —dh°, or
o_(€) = —: — dh® ek + a(—d)PRPe) + O(he(at N1, p2=2as p2poy,

Since d > 0, we clearly need only look at the behavior of h* " !(ch? + ¢(—d)?hP*). We
wish to find the critical v, such that this term (which controls the height of the principal
saddle point for w =~ 1) approaches —oo for v < v, and 0 for v > v.. However, we can
get no further without assuming something about . We will first take case 1 from above.
in this case, pa == v s0 both terms are equally important. We then have

b_(6) = —% - (l(-h(""')"(l - 5(7:::—1’@) 4 (4.7)
where we have used the formula for —d above. The quantity in parenthesis is always
positive, so this term has the critical gamma 7. = | — . From table 3, we see that case 1
implies that (2 + y)a = 2a + ~, so we have finally y. = p/(p + 1).

We need only show that the other two cases in table 3 are excluded. First, we have
pre > v in cases 2 and 3. Since we are looking for the critical v, this means that we
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must have vy = 1 — a. From table 3 we know that in cases 2 and 3, a = 2/(2 + p), so
v = 1/(2 + p) and hence that 2a + v < 2. But for both cases 2 and 3, the condition on

is 2a + v > 2. Hence for v = ~,, case 1 is the only case that applies. §

In the proof, we again expanded about A{ = 0. (Recall that in the continuous problem
we expanded about 1/£ = 0.) If we could not have done this, then we would not have
been able to use the model equation (4.1), since it is essentially an expanssion in h€ for a

difference approximation to (2.1).

Results of Section 3 as an Example

To illustrate the results above, we will briefly sketch out the analysis for the difference
method analyzed in section 3. The parameters for the centered second order difference
method considered there are p = 2, a = —1/6, p = 1, and b = 0. Then for case 1 in

table 3, we have

_ —c(w+1) "
—d= \[2(—1/6)(2 +2-w?) (1 +w)e

since w? =~ 1. With this, we may write (4.7) as

3 1 1 1

‘ (&) = —= —(e(1 3/2pla~t)yf - _

| $-(6) = —5 = (e(1 +w)) =)t

] (Recall that ¢(1 + w) here is ¢ in section 3.) This is the same as (3.8). Finally, case 1 is
valid for v < 2/2 = 1, and the width of the front is O(h%/3).

L The Canonical Form

F As in the previous section, it will be very useful to construct the canonical form for the
solution (4.3) to (4.1). By producing graphs of the canonical form, we will be able to show

the near-front behavior for a wide range of difference approximations.
Near the front, we have the following small k, small 4 expansion for ¢_(§)
| B ) o . aq s
é_(§) =~ -3~ t€(1 —w) + 8¢ + ai€(th€)P + big(she)q.

Following the example in section 3, we expect the canonical form to be

S e
-

Y(r) = g‘*‘b-f't-‘1'+--'+d1""H+er"”".
r

The parameters may be determined by the method outlined in section 3. However, the

exact form of i is less interesting than the simpler approximation
1 ] . -y
YP(r) = —5- ir(l —w) + é + air(ihr)P + bir(ihr)?
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which is just the leading terms in ¢_(r). It is straightforward to show that this form has the

required properties; p + 2 saddle points which converge to a saddle point of infinite order
as h —+ 0 and w — . The ¢ — p saddle points are much further from the origin than the
first p + 1 saddie points and are unimportant 1o first order.

Because of the complexity of even the approximate ¢(r), we will not analyze it here.
Instead, the reader is refered to section 5, where graphs of the canonical form integral
are presented. These graphs show both the behavior of difference schemes that fit the
framework of (4.1) near the front, and the qualitative similiarity between the finite difference

solutions to the scalar wave equation u, = u, and the telegrapher's equation.

The Cell Wave-Coupling Number

Consider the generalization to (4.1)

du _ dv L0 LA

3% = —C(E + ah Jzrti + Y (48
v du grtiy g1ty 8)
3= "5 +ah”a:':,p+l +b "azq“ — pu.

Ali we have done here is to add a propagation speed ¢ to (4.1). The advantage of this is
that now (4.8) is in dimensional form if a, b, and ¢ have the dimensions of a speed and p
has dimension 1/t. Now, we chose a change of variable to put (4.8) into nondimensional
form. Let ¢ = cx'/p and t = t'[p. Define R = hp/c. We will call this the cell (from the h)

wave-coupling (from the p) number. Then (4.8) may be written as

du v  a ., artly b 91tly
+ -

v 2% 9 % R

at! dz’ c t 9z/PHh c ¢ 9zttt

dv _ du “1p8P+l" b,

EYR W PRl T
oz'? ¢ 9zt

This shows that the appropriate dimensionless quantity which must be small in our analysis
is It, the cell wave-coupling number. This is illuminating, as it shows that if the cellsize
is small or the coupling coefficient is small, then the solution to (4.8) will behave near the

front like the solution to the scalar wave equation (p = 0 in (4.1)).




5. Numerical Results

We present in this section two distinct numerical results. The first set of computations
is used to illustrate the theory. They show that the width of the front is as predicted for a
number of schemes, both semi and fully discrete. The second set of computations presents
graphs of the generalized Bessel functions described in section 4. These show that the
qualitative behavior of approximations to the telegraph equation for small ph/c (recall that
this is the cell wave-coupling number) is the same as the behavior for the scalar wave

equation.

Behavior near the Discontinuity for Various Difference Schemes
The following graphs show the width of the front for two method-of-lines (MOL)
schemes and two fblly discrete schemes. The MOL schemes are the centered second (5.1)

and fourth order (5.2) schemes

du; Vi = Vi
a — 2
5.1
Vi _ U =Uina (5.1)
dt — 2% i
and
dU; — 8(Vigr = Vier) = (Viga ~ Vi)
dt 12h
(5.2)
d‘/j — 8(U|+l — 1 l) (Ui+2 - U"_2) -V
dt 12h :

for: = 0,41,12,... and h the space step size. The fully discrete schemes are Leapfrog
(5.3) and Lax-Wendroff (5.4). Let k and h be the time and space step size respectively,

and let A\ = k/h. Then the schemes are

U?+‘ =]?—l_)‘( |+1—Vt l)

. (5.3)
- VI =V - NUR - UL - 2%V
~' and
‘ UTH =Wy + (k= DVEL) + (1= N)UT + MU +(1 = $k)VE)
| Vet = (W2 + (k= DUR )+ (L= k= 22+ 36%VT (5.4)

| NV + (1= 3RUT )

i 54

R e e T ey




Each method was integrated to t = 1/4 for h = 1/2™ for n = 5,...,10. For each
value of h, the width was determined by finding the value a z where the solution U was
equal to Up. The values of Uy used were .05 and .001. These were chosen to measure the
width in two different areas: inside the front (Up = .05) and in the tail ahead of the front
(Uo = .001). By chosing two different values of /g, we show that the width behaves as
predicted over the entire front. Since U is defined only at discrete points, we used linear
interpolation to find the value of z.

First, we show the computed solution for h = 1/512 and t = 1/4 for each method.
The MOL schemes were integrated with RKF45 (see Shampine, Watts, and Davenport [1976]
for a discussion of the merits of RKF45; Forsythe, Malcolm, and Moler [1977] for the code);

the fully discrete schemes used £k = h/1.25. Following graphs of the computed solution

are eight graphs showing the width of the front for these four schemes.
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The graphs of the width of the fronts verify the predictions of the theory developed in
sections 3 and 4. The second order method of lines calculations verify the resulits in section
3; the others confirm the results in section 4. Notice that for the fourth order method of
lines the width of the front is O(h%/®) as expected. Note also that for the finite difference
methods (Lax-Wendroff and Leapfrog) the rate of convergence to h?/? is slower than for
the semidiscrete approximations. This points out the asymptotic nature of the theory: the

results are applicable only for large t/h.

Graphs of Generalized Bessel Functions

We have seen in previous sections that the behavior of difference approximations to
the telegrapher's equation may be represented by a class of integrals. The most useful
information for our purpose (understanding the behavior of the difference approximations)
is contained in graphs of these integrals, since the solution of a difference approximation
is closely modeled by these integrals.

We will first transform the general canonical form given in section 4 to both bring out
the independent parameters and to place it in a form with convenient limits. Specifically,
we would like to show the scalar wave equation limit as a way of showing the similarities
in the behavior of approximations to the two problems. '

The canonical form integral in section 4 is
1 x/h
- 2—‘; -n/h

£ % exp [(l{—; + 1&{w — 1) + iaf(zhé&)” + ib{(ihf)")t}d{.

We will take p even and ¢ odd, and s = | or 0. After a little bit of algebraic manipulation,

we may write this as

[e o]

t A“ lﬂ . iyp+l ayq+l
= — = +izy+ —r - —— |dy.
)’ 0xp[y AT RPN e

(The limits of integration have been extended to too.) The values for a, 8, and z are

A -




X}
4 .

b= —(q +1)b(~1)
(a corresponds to ¢ and b corresponds to ¢ in Chin and Hedstrom [1978].) Note that /3
is proportional to the square of the cell wave-coupling number /¢ discussed in section 4,
and that only 3 contains any contribution from p. Thus the coupling in the telegrapher's
equation shows up only in the J term. Further, we have dropped leading constants. We
define |1 _,(«, 3, p, q; z) as this integral. The advantage of this form is that I} _,(«,0,p,q; 1)
is equal to the generalized Airy functions tabulated by Chir and Hedstrom [1978] for the
scalar wave equation (our p is their p — 1, our q is their ¢ — 1). This will allow us to both
check our graphs against their published solutions and to see how the 3 term changes the
behavior of ,_,(«a, 8,p, ¢; T).

The graphs are organized as follows. Each page has graphs for fixed «, p and .
The left column shows ly(«, 3,p,q; 2z} for 8 = 0, 0.01, and 0.05. The right column gives
Li(«, B, p, q; z) for the same values of 8. The left column represents the leading term in the
asymptotic expansion for the difference solution.

The last two pages of these graphs show the special case where there is no p term
These represent the odd order methods (such as upstream differencing).

To use these graphs, the following should be kept in mind. First. in comparing the |y
graphs with the computed solutions, the left column should be multiplied by —1 (flipped
over) since the integral for the solution in sections 3 and 4 is the negative ot the form used
here. Second, except for the last two pages (the ‘p-term missing' graphs), these graphs
are appropriate for even order methods with artificial viscosity (or no viscosity if « = 0).

Increasing values of a represent increasing artificial viscosity.
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Explanation and Use of the Graphs

These graphs show the qualitative similarity of the behavior of difference approxima-
tions to the scalar wave equation (represented by § — 0) and the telegrapher’s equation
(8 7% 0) near a discontinuity.

The first thing to notice from these graphs is the qualitative similiarity for graphs that
differ only in 3. The only noticeable change in the graphs as g increases from 0 is, for
lg, a change in slope on the left of the jump and, for I,, a change in the zero level of the
oscillations on the left of the jump. From this we can conclude that near the discontinuity,
oscillations in the approximate solution to (1.1) are qualitatively similiar to those of the wave
equation (§ = 0).

We may also compare these graphs to the calculations of actual methods presented
above. For example, the graph for p = 2, ¢ = 3, @« = 1/2, and 3 = 0.05 and the
Lax-Wendroff solution are very similiar. The graph for p = 2, « = 0, and /# = 0.05 shows
the long trail of oscillations which we see in both L.eapfrog and the second order centered
difference approximation. The graph for p = 4, @ = 0, and 8 = 0.05 for nondissipative
fourth order methods shows both the long trail of oscillations and the small dip ahead of
the front which we observed in the graph of the solution by the fourth order method.

As an Mlustration of the use of these tables, we can see that because the similiarity in
the behavior of the approximate solutions is so strong, the same artificial viscosities shduld
work for the telegrapher’'s equation as for the scalar wave equation (in terms of improving

the solution near the discontinuity).

Application to Mesh Refinement
We present here an application of the results in section 4. We will apply mesh

refinement to the example used by Majda and Osher [1977]. Their problem was

£ R Y = 5 R G ()

1, ifz <0
ir ul(z,O) ={ (5~5)
: 0, ifzr>0

uy(z,0) = 0.
We will use a fourth order method recommended by Apelkrans [1969] in the region
away from the discontinuities, and the second order Lax-Wendroff method around the

discontinuities and at the boundaries.
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The form of mesh refinement that we use is described in detail by Berger, Gropp,

and Oliger [unpublished]; the mesh refinement program is due to Berger [unpublished].
Basically, this form of mesh refinement places refined grids dynamically over the problem

domain. The grids may be refined to an arbitrary degree.

Since we must compute on a finite domain, we must introduce a boundary and a
boundary approximation. From the results in Gustafsson [1975], we know that the boundary
approximation must be at least third order accurate if we want fourth order accuracy for
the computation as a whole. There are two common ways to achieve this: use a third
order uncentered scheme such as that recommended in Cliger [1974] for the scalar wave
equation, or use a second order method and mesh refinement, as recommended in Oliger

[1976]). We have chosen the second approach as it is the easiest to apply in this problem.

Our algorithm for this problem is the following: we apply a fourth order, dissipative
scheme on a grid with mesh size h. except near the boundaries and the discontinuities
at r = +t, and we apply a second order, dissipative method on a grid with mesh size

h; = h? at those places.

The first question which may come to mind is the computational complexity of such
an algorithm. We will first estimate the total number of mesh points, both coarse and fine,
needed by the algorithm. From that result, we will be able to compute the computational
effort required by this algorithm. There are three contributions to the number of mesh
points: the coarse grid, the fine grid at the boundaries, and the fine grid around the
discontinuities. The coarse grid has O(1/h,) mesh points. The fine grid at the b. ~daries
has O(1/hy) X 4h. = O(1/h.) mesh points, since the boundary grid only extends over 4

coarse grid points.

To determine the number of fine grid mesh points around the discontinuity, we must
determine the width of the front. We make the 'two assumptions: the region of refinement
is asymptotically of the same size as the width of the front, and the derivative discontinuity
at z = t is asymptotically no larger than the discontinuity at r = —t. On the fine grid, the
results of section 4 show that the width of the front is O(hi/a). But sinca hy = k%, the
width of the front on the scale of the coarse grid is O(h}/*). Thus, as /i -+ 0, the number
of coarse mesh points that the front is spread across tends to zero. Because of the way

that the mesh refinement program works, there is a minumum of seven coarse grid points

{six cells) which must be refined around the fronts. Thus, the number of fine grids points
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around the discontinuities is O(1/hs) X 6h, = O(1/h.). Combining these gives O(i/h,)

total mesh points.
The computational work is easily derived from the above analysis. To integrate to time

To with time step k. on the coarse grid and time step &y = &* on the fine grid, we need

7'
O(1/he) X k—o on the coarse grid
T
O(l/h) X k-o on the fine grid
f

or O(1/h%) + O(1/h%) work (assuming k./h, = constant). Thus we see that the work on
the fine grid dominates the work on the coarse grid. These estimates are observed in
computations.

These results show that this algorithm is practical in space (it uses no more space
than the coarse grid would alone), but less practical in time. The advantage of this method
is the ability to compute a more accurate solution for a given coarse grid than is possible
without refinement.

For our computational example, we computed the solution to (5.5) at ¢t = 0.5 with
h. = 0.02 and h, = 0.01. The time step k was taken as h. /2. Computations with and
without mesh refinement at the discontinuities were done; their results are presented in the

following table. These choices of ¢ and h were made to facilitate comparisions with the

results in Majda and Osher [1977].




solution MR: MR: no MR: | noMR: |
z uy h=1002 | h=001 |h=0.02]h=0.01
| .08 | 8.775826E-1 39E-7 <1E-7 30E7 | <1E7 |
07 | 8.775826E-1 <1E-7 <1E-7 B31E5 | <1E7 |
.06 | 8.775826E-1 2.5E-6 <1E-7 3.8E-3 21E-5
F;o.é{f 1.224174E-1 | -6.6E-1 -6.6E-1 75?7??11-53;53:
| 0.4 | -9.879886E-2 | -3.8E-3 35E-5 4.2E-2 2.7E-2
0.3 | -7.788613E-2 79E5 | -71E-6 A1E2 | 1263
T .02 | -5.956894E-2 8.0E-5 1.9E-7 24E-3 | 6.2E5
01 | -4377426E-2 | -6.6E-7 26E-7 19E-4 | 30E-6 |
0.0 | -3.044362E-2 2.8E-6 32E-7 99E6 | 20E-6 |
01 | -1.953720E-2 | -49E7 4.9E-7 7.6E-6 2.0E-6
0.2 | -1.103355E.2 | -1.5E-6 51E-7 8.1E-6 2.0E-6
03 | -4929534E.3 | -6.0E-7 26E-8 8.4E.-6 20E-6
0.4 | -1.234040E-3 | -3.1E-9 2.7E-8 86E6 | 15E6 |
05 0.0 41E-7 6.6E-8 13E5 | Q39E6 |
06 0.0 1.0E-11 | -52E-16 1.5E.7 15E9 |
07 0.0 80E-15 | -3.9E-21 41E11 | B.OE-15 |
0.8 0.0 43618 | -33E-28 | 32613 | 1.9E20 |
Table 4: Errors in the computed solution at z = --.8(.1}.8 for

the fourth order method, with and without mesh refinement. The
columns labeled MR are the results of the mesh refinement com-

putations.

It is clear from this table that mesh refinement significantly improves the accuracy of
the results. Further, the rate of converge..ce is higher for the mesh refinement calculation
than for the unrefined calculation.

This method is not the most efficient way to solve (5.5). (For this problem, front
tracking is more efficient.) It does, however, illustrate the use of mesh refinement, coupled

with knowledge of the behavior of the problem, to get a high accuracy solution.
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6. Conclusion

Summary of Results

We have shown that the asymptotic width of the front is AP/(P+1) where p is the
order of the approximation, for a fairly general class of difference approximations to the
telegrapher’s equation. This behavior is very similiar to the behavior near the front for the
scalar wave equation, and shows that the effects of numerical dispersion and/or dissipation
near the discontinuity overwhelm any other numerical artifacts which may be present, such
as the effect discovered by Maida and Osher [1977].

The canonical forms that we constructed contain a great deal of information on the
detailed behavior of the solution. Given a difference scheme that fits the framework in
section 4, we can use the graphs of the canonical forms dislayed in section 5 to get an
idea of how the solution to the difference scheme will behave near a discontinuity.

The detailed examination of the non-dissipative second order difterence scheme studied
in section 3 shows that the canonical forms displayed in section 5 are actually a good
approximation to the exact canonical form near the front (see figures 10 and 11). These
results also show that the model equation is a good approximation near the front (because
h¢ for the saddle points is o{l) near the front). Finally, the canonical form for the
approximation in section 3 shows that away from the front, the model equation formulation
is not accurate (figure 11).

Another difficulty in determining the solution away from the front is the complicated
behavior of the unexponentiated term in the integral for the solution. Even for the exact
(continuous) problem, this is difficult to deal with,

In section 4 we also investigated the effect of the coupling term. We showed that
the effect of the coupling term is controlled by the cell wave-coupling number, which is
equal to the product of the step size and the coupling strength, divided by the speed of
propagation (hp/c). As long as /¢ is small, the behavior near the front of approximations to
the telegrapher's equation is similar to the behavior of approximations to the scalar wave
equation. This result is remarkable because the results ot Majda and Osher [1977] show
that away from the front, the behavior of approximutions to these two equations is very
different. The analysis in section 4 showed further that the effect of the coupling term is
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noticeable only very near the front (where it aifects the I/ or forward moving term) and
well away from the front (where the noise generated at the front, moving away trom the

front, shows up in the U/, term).

An interesting feature of difference approximations tc the telegrapher’'s problem wharch
we have shown is the different frequency content of the solution of the differentind equation
as compared to the solution of difference approximations. For the differential cquation. s
saw in section 2 that the leading terms in the expansion of the inverse Fourier transform
were at infinite frequency. Specifically, the saddle points were converging on infinity i the
frequency (&) plane as the front was approached. In contrast, we saw in sections 3 anid 4
that the saddle points for the difference approximations conve?ged on zero in the 5 plee
It is thic fact that makes the mode! equations analysis in section 4 work. since the mo el

equation is essentially an expansion in h€.

The computations presented in section 5 support our theory. In every case the
asymptotic width of the front matched the h?/(P11) prediction. The graphs of the canciir 4
forms for various difference schemes matched the qualitative behavior near the front for

those difference schemes.

Implications

The results in this thesis show that the effect of numerical dispersion andd e oo o
near a discontinuity overwhelms the numerical artifact introduced by coupling o
equations. This implies that the effect discovered by Majda and Ostier ma, he g b
if (a) accurate computation of the front is of pnimary importance and (L) socoed o i
accuracy is sufficient in the smooth regions. In this case. mesh relinement gondlod L, un
knowledge of the width of the front, can be used to accurately compute the discontinmt,
Further, artificial viscosities which are good for the scalar wave equation vali > good here
since artificial viscosities are designed 0 reduce certain high trequencies, and oo posgite
show that the frequency of the oscillations near the front are nearly the same for he 0w

wave equation and the telegrapher's equation.

I an accurate solution is needed everywhere, mesh refinement can be Goed a3
above. with the added requirement that the solution near any discontinudy be concelato
accurately enough to prevent the contamination cf the smooth part of the cntution e
was demonstrated in section 5.
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Topics for Further Study

The study of even such a narrow topic as this is never complete; below are a number
of questions that arose during the research into this problem. A

Muttiple time scales — Many transport equations that arise in practice involve two
radically different materials. For example, astrophysical transport problems often involve
the interaction of electromagnetic radiation with gas. The scale of time during which the
radiation moves is orders of magnitute different from the scale of time on which the gas
moves. A current approach to these prablems is to solve seperate equations for the gas
and the radiation, then coupling them together at long {for the radiation intervals). Another
approach fo these problems is to use stiff-integrators to integrate the equations in time,
Questions that arise here are (a) how accurate is this? (b) how do these algorithms behave
in the presence of discontinuities? (c) are there better ways?

Asymptotic solution away from the front — For the general problem we were ,unat_)le to
find an asymptotic -representation for the solution except near the discontinuity. The model
equation approach does not seem poweHul enough to ever provide a way t_o represent
the solution away from the front. Is there a general technique? (Specific methods can be
studied, as we did in section 3, and some specific problems can be studied as in Majda
and Osher [1977].)

Initiai Boundary Value Problem — What is the effect of coupling through boundary
conditions? The methods used in this thesis, with Fourier transforms replaced by Laplace

transforms, would give an answer,
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Appendix A: Two Integral Identities

We prove in this appendix two integral identities that we used in section 2. We first

show that
+o0
. &) exp(é(C)t)de =0 (A1)
] where
o(€) = 1+4/462 -1 -2i¢
46 /467 1
and

#(¢) = %\/45‘-‘ —1 + twé.

As always, the integral is the Cauchy principle value, and we pass above the b}anch cut
[-1/2,1/2]. To make the proof somewhat clearer, we will assume that ¢t = 1. it will be
clear that the proof will hold for any ¢ >-0. _ '

The proof is a simple exercise in using the Cauchy integral thedrem. We close the
contour in the upper haif plane with a semicircle of radius R. The proof consists of showing
that as R — oo, the contribution to the integral over the closed contour from the semicircle
tends to zero. Finally, it is demonstrated that, despite appearances, g(¢) is regular at the
origin and only of the order of (¢ + })~'/? at § and —}.

Along the semicircle, we have £ = Re'®. We will make this substitution in the integral
as we go along in the proof.

We start by finding a bound on R(§+1/4€% — 1). This gives us the magnitude of the
exponential in the integral. First, we see that

1‘ . _- " _ e—2%0 .
!R(z\/4£ l) Re(e \/l iR
where R(z) is the real part of z and 9(z) is the imaginary part of z. This is equal to

in R 8—2“ e—!i'
—R sin I—W —Recos0Q l—m— .

Now, a quick look at Ahifors [1979) shows us that
<)




{ e~0 \l I- )+ \ﬂ”' R T R
T 4R )T 2

e*'“‘) \l SR -1t J‘ + TeRs — 3RS
= 3 .

2 : 2
1 cos 20 1
(“’Tf) 21+ i~ 2@ Z("Tt{f)

—2:0 ] —cos20 4 1 |
at( 1_84122)2‘/ wz WZV]'EI%EE (A2)

for R > 1. Simitiarly, we get a bound on the imaginary part

20 Y i R R 1
023(\/1_432)2‘\/ 2 ~ 2R

for R > }. Thus,

so that

|ekp(¢(£))| < exp (—Rsin0 + ligziﬂ)lexp(iwﬁ)l < 2exp (—-}23(% + w)sin 0). (A.3)

We also need a bound on |g(¢)|.

; 1+ |\/4€2 — 1] +2R
Re¥)| < .
B < rivaE—

We can bound |\/4€2 — 1| = /|[4RR%e2¥ — 1] = |16R* — 812% cos 20 + 1]% by

3R > \[l4R%e** — 1| > R

for R > 1. Thus,
1+3R+2R

" 2
lg(Re ‘)| S 413 S E . (A4)

forR>1.
Now, using (A.3) and (A.4), we can bound the contribution to the integral over the

semicircle by

:
8 /(; e—R(%-‘Fw) Y do (A.5)
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We can bound this integral by dividing it into two parts. The first part is 0 < ¢ < ¢/18.
The part of the integral over this range of 0 is no greater than ¢/2 for R > 1. The second
part is for ¢/16 < @ < x/2. In this range of #, we can pick R to satisfy

Infz
R> max(-*———’———( +w)sin1l,’l)'

Then the integrand is less than ¢/8x, and the contribution to the integral is less than ¢/2.
Thus, by choosing R large enough, we can make the integral (A.5) as small as we want
(for w > —1/2).

Next, we must treat the singularities of g(€). By inspection, it is clear that there are
at most three points of singularity in g(€). We can investigate these by using MACSYMA
(Mathiab Group [1975]) to expand g{€) about the points 1, }, and —}. We have

g(€)=—%~52§—-'€’+--- for £ == 0
: i—1 CERIVIEY
9(¢) ==+ F +.-- for{~F}§

]

%
4 \/-f—::i- 2 . 8
Thus there is no contribution to the Cauchy principle value of (A.1) from any of these, as
they are weaker than simple poles. The relation (A.1) is now proved.

A stronger result can be proved from (A.3) and (A.2) by noticing that the % in (% + w)

is really the (1 — 1/(2R?))"/2 in (A.2). Therefore, as R — oo, the bound on (A.3) is
asymptotically

lexp($(E))l < 2exp(—R(1 + w)sin0)

for w > —1. This matches what we would expect to get from an asymptotic expansion of
¢, since $(&) ~ (1 + w)é for || large.

We next prove that
+oo0 v/e
/_ N zvte P/ 42 =21n'(-1)"(-g) L(2v/B7) (A.6)
for integer v > 0 and and S and 4 pure imaginary. Of course, we show this in the
generalized sense of Gel'fand and Shilov [1964].
We start by assuming

+o00
/ g~ le= 120/ gy = 2xiio(2V/F1). ’ (A7)




We proceed to show that we can get (A.6) from this by formally differentiating each side of
this with respect to «4, passing the derivative through the integral.
First, we note that

+oo +oo dv
/ zvle~1=B/= 4y =(- l)“/ PRy L LY
P dq"

o [T
=(- 1)"2«; 10(2f_ B).

We can evaluate the derivative by an induction argument.

From Abramowitz and Stegun [1972], we have the formula

(i:z)( L(z )) ,,+, hy1(2)

v 1 d 1
_-z—ml,,(z) + mz'u(z) = —z-;‘T‘-|D+1(Z).

or

Now, let z = 2,/B7, and multiply the above by (28)“*!. This leaves us with
»41

_2\;?;(%)#I.,(2\/p_7) + (g)q—l ;—;Iy(z) e = (§)+|,+,(2\/E§). (A8)

Now, we start with the induction proof. The first term, v = 1, we .can get from the

fact that I = |;. This gives us

i
Zl2vEn) =(2) L2

- (s

a=2/Pv

which is the first term in the induction. For the n** term in the induction, we need to show
B
HO) " v = (&) e
We do thls by performing the indicated d:ﬂerentuatnon and then applymg {A.8).
d B\ o B\ T AN
4'1(7) tn-1(2VBy) = - ~__—( ) b1 (7 az"-11%) =257 _

Here we have substituted n — 1 for v in (A.8).
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We need only prove (A.7) to prove (A.6). We make the change of variable z = iu in
(A.7). This gives us
+s00
/ w e f""l * du.

—ico
From page 245 of Erdélyi [1954), this is just an inverse Laplace transform with value
27ilg(24/57). Note that for 8 and v = 0, a singular functional which coincides with zero
for 8 and v 7 0 must be added to (A.6). This completes our proof of (A.6).
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Appendix B: Computing the Exact Solution

This appendix discusses the method used to compute the exact solution to the
continous mode! problem in section 2. From section 2, we know that we need to evaluate

the integral

1 +o00
w=o /—w a {1+ X_)e?-td¢

Foo . o — 7 _
I 1—2¢€ ~1v/4€ 1e¢“‘d£+-1-

271 oo 46167 1 4

We need to perform this integration numerically. First, we will deform the path of integration

to a path “close” to the path of steepest descent. The figures below show the qualitative
behavior of the path of steepest descent; we will use these to guide us in our choice of

path.

i
.
e
t N
o

Figure 13: R(¢_) for w = 0.3.
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Figure 14: R(¢.) for w = 0.9.

From these figures it is clear that the path to take is a circle abt;ut the drigin. in
deforming the path to this circle, we will pick up —} from the pole at the origin. We
can éhow by techniques similiar to those in Appendix A that there is no contribution from
closing the contour in the lower half plane.

The resulting integral is

. 27 YT 2_
_21_?/0 1 — 2t — 1\ /A€ le""dﬂ ' ®.1)

418 1

where £ = re*® and r has been chosen as max(w/2\/1—_wf,§ + ¢), € some small positive
number. This choice of r makes the path pass through the saddle points unless the path
would pass within ¢ of the branch cut [—}, 4], in which case the path is expanded.

This integral has a special form. The integrand is periodic analytic in a strip around
the region of integration. It is well known that the trapezoidal rule converges very quickly
for periodic functions (Davis and Rabinowitz [1975]); in particular, for.periodic analytic
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functions which satisfy certain technical assumptions, the convergence is exponential (see
Rabinowitz [1968] and Lyness and Delves [1967]). Using this fact, the integral (B.1) was
integrated with the trapezoidal rule.

We would like to point out a few features. Along the steepest descent path, the

- imaginary part of ¢_ is constant. This means that the integrand should not have serious

oscillations along the path of integration. Secondly, since most of the effect is concentrated
at the saddle points, we would expect an automatic quadrature routine which places points
adaptively not to be that much less efficient than the trapezoidat rute. Experimentally this
is the case. The routine QAGS (de Doncker [1978]) was roughly as fast as a simple
trapezoidal sum. Finally, the choice of ¢, the minimum distance from the singufarities, can
have a big effect. Since there are singularities at £ = ;t:%, we should keep the path well

away from these points. A choice of % for € seems to work well.
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