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SECTION 1
INTRODUCTION AND BACKGROUND

The extensive use of on-board radars in both aircraft
and missiles requires an equally extensive knowledge of the
capabilities and limitations of the materials and designs
used in the construction of radomes. The armed services have
collaborated to fabricate and evaluate these materials. The
program described in this report was conducted by the University
of Dayton Research Institute (UDRI) to provide materials
characterization data required for radomes being evaluated
under the JANAF (Joint Army, Navy, Air Force) laser study.
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SECTION 2
APPROACH

The objective of this program was to determine mechanical,
physical, and thermophysical properties of various types of
glass reinforced composite materials used in radome construction.

2.1 MATERIALS

The Air Force Weapons Laboratory (AFWL) supplied UDRI with
a series of glass reinforced composites that were representative
of both flat and curved radome materials. The materials were:

(1) Cordopreg (flat) (5) SG/Epoxy Type I
(2) Cordopreg (curved) (6) SG/Epoxy Type II
(3) EG/Epoxy Type I (7) Quartz/Polyimide (curved)
(4) EG/Epoxy Type 1I (8) Stypole (curved)

In addition to these eight materials, UDRI also fabricated eight
flat laminates of Quartz 581/Polyimide (PMR 15). Five of these
laminates were shipped to AFWL for further evaluation. The
remaining three were used for this program. Fabrication pro-
cedures for the Quartz 581/Polyimide are described in Appendix A.

2.2 SPECIMEN PREPARATION AND TEST METHODS

Two physical properties of each type of composite material
were measured; specific gravity and laminate resin content.
Three types of thermophysical property measurements were
conducted on the subject materials; specific heat, thermal
conductivity, and thermogravimetric analysis (TGA). One other,
heat of pyrolysis, was desired. A suitable method for deter-
mining this property was not available. Appendix B discusses
some of the problems in measuring heat of pyrolysis. Two types
of mechanical property tests were conducted; tensile and flexure.
The test matrix followed for the characterization of composite
materials is listed in Table 1.
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2.2.1 Laminate Physical Properties

The specific gravity of the laminates was measured
in accordance with ASTM D792, Specific Gravity and Density
of Plastics by Displacement, Method A-1.

The method employed to determine resin content
was through ignition weight loss. The procedure used is in
accordance with ASTM D2584, Ignition Loss of Cured Reinforced
Resins.

2.2.2 Specific Heat

The samples were microtomed into thin pieces from
which approximately 5 mg. samples were taken. Care was taken
to assure that the samples tested had the same homogeneity
as the overall composite. The specific heat was determined
using a differential scanning calorimeter (DSC). This tech-
nique compares the rate of heat input required to maintain a
constant rate of temperature rise in an unknown sample to that
required to maintain the same rate of temperature rise in a
known reference material. A Perkin-Elmer, Model DSC-2
instrument was used for these determinations. The specific
heat of the composites was measured over the range of 100°C
(212°F) to 300°C (572°F) in a nitrogen atmosphere, with a
scanning rate of 10°C (18°F)/minute.

2.2.3 Thermal Conductivity

A thermal conductivity sample 2.5 inches (6.35 cm)
square was machined from each flat composite panel. The tech-
nique used to determine the sample“éhgrmal conductivity is to
sandwich the sample between two reference materials of known
conductivity (Figure 1). These, in turn, are held firmly
between a heater and a heat sink. The heat flux through this
stack establishes a temperature gradient which is measured with
thermocouples placed on the upper and lower surfaces of both
reference plates and the specimen plate in small precisely
machined grooves. Radial heat flow to and from the test stack
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is minimized with a cylindrical guard heater in which a linear
temperature gradient, closely matching that of the test stack,
is maintained. A Dynatech Model TCFCM-N20 thermal conductivity
instrument was used for these measurements. Data points were
taken at approximately equal temperature intervals over the
range of interest and a "best-fit" curve (quadratic) was plotted
through these data points.

2.2.4 Thermal Gravimetric Analysis

Thermal gravimetric analysis (TGA) required a
specimen of 0.5 to 0.8 mg. in weight. Figure 2 shows the
Chevenard TGA instrument used in this evaluation. A sample,
of known initial weight, is suspended in a balance pan inside

a furnace. The temperature is increased at a constant rate

Sadalioshibaath i

of 3°C (5.4°F)/min., and the weight is continuously recorded.
As the temperature increases, the samples thermally degrade.

Weight versus temperature graphs were obtained in both air and
nitrogen atmospheres for each of these materials. The tem-
perature at which the weight starts decreasing rapidly indicates
the onset of material degradation.

2.2.5 Mechanical Properties

The materials were tested for tensile and flexural
strength and modulus at room temperature and 350°F (177°C) for
the epoxy resin systems. The polyimide resin system was tested
at room temperature, 350°F (177°C), and 600°F (316°C).

2.2.5.1 Tensile Properties

Tensile specimens were machined into
0.5 inch (1.27 cm) wide by 4.5 inch (11.43 cm) long rectangular
bars. A reduced section (Figure 3) 0.25 inch (0.63 cm) wide
and 0.63 inch (1.6 cm) long was machined into these bars. The
fabric warp direction was in the length direction of the
specimens. The tests were conducted in accordance with
ASTM D638, Tensile Properties of Plastics.




Figure 2.

Chevenard Thermal Gravimetric Analyzer.
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Figure 3. Tensile Specimens (Before and After Testing).




2.2.5.2 Flexural Properties

Flexure specimens were machined into
0.5 inch (1.27 cm) wide by 2.5 inch (6.35 cm) long rectangular
bars. The fabric warp direction was in the lengthwise direction
of the test specimens. The tests were conducted in accordance
with ASTM D790, Flexural Properties of Plastics and Electrical
Insulating Materials, Method I (three point loading) utilizing
a 16 to 1 span to depth ratio.

Iantidi - - S e T g ————

-~ — e -




SECTION 3
DISCUSSION OF RESULTS

3.1 LAMINATE PHYSICAL PROPERTIES

Table 2 presents the specific gravity and resin content
values obtained on the various reinforced composite materials
used in this program. There was a substantial difference in
the specific gravity of the AFWL supplied curved polyimide/
quartz panel and that of the UDRI fabricated flat polyimide/
quartz laminate. Photomicrographs were obtained on these
two laminates and are presented in Figure 4. It is clear
from the photomicrographs that the AFWL supplied curved panel
was of very poor quality and has a very high void content
while the UDRI fabricated flat panel was essentially void-free.

Figure 5 presents 150X photomicrographs of the seven
materials not illustrated in Figure 4 which were tested in this
program. The following observations can be made from these
photographs.

(a) Both the flat and curved cordopreg laminates were
void-free and of apparent high quality. The white areas in
the photos probably indicate the presence of some sort of
particulate filler.

(b) The stypole curved laminate was void-free but con-
tained numerous cracks.

(c) The SG/epoxy laminates both contained some voids,
with the Type II material having numerous small voids uniformly
distributed throughout, and the Type I material having fewer
voids. In both cases the porosity is within the fiber bundles
rather than being concentrated between the plies. This would
indicate that the most probable source of the porosity is the
release and entrapment of a volatile resin constituent during
processing.

(d) The EG/epoxy laminates both exhibit some porosity
also, although the Type II material is very nearly void-free.

10
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TABLE 2
PHYSICAL PROPERTIES! OF JANAF LAMINATES

. ~ Bpecific ¥ Resin

Materials Gravity Content by Wt.
Cordo 1.97 34.15
(flat)

Cordo 1.93 34.93
(curved)

EG/Epoxy 1.83 36.48
Type 1

EG/Epoxy 1.94 31.86
Type 2

SG/Epoxy 1.90 31.93
Type 1

SG/Epoxy 1.90 29.38
Type 2

Stypole 2.00 33.95
Polyimide/Quartz 1.60 26.65
(curved)

Quartz 581/Polyimide 1.82 27.82
(flat - UDRI)

'Average of three specimens.
11
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(a) AFWL Supplied Curved Panel, Specific Gravity = 1.60

(b) UDRI Fabricated Flat Panel, Specific Gravity = 1.82

Figure 4. Photomicrographs of Quartz/Polyimide Laminates.
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(F) EG/EPOXY, TYPE |

Figure 5.

(G) EGIEPOXY, TYPE 11

Laminate Photomicrographs.
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The same observation regarding void location and probable
source as was made for the SG/epoxy laminates would seem to ﬁ
apply to these as well.

3.2 SPECIFIC HEAT

The specific heat data measured for each material are
presented in Table 3. Figure 6 presents a least-squares
"best-fit" quadratic curve for each of the sets of specific
heat data listed in Table 3.

3.3 THERMAL CONDUCTIVITY

Thermal conductivity was measured on the six flat laminates
evaluated in this program. These results are presented graphically
in Fiqures 7 and 8. A quadratic least-squares fit of each set
of data is plotted for each material in these figures. Table 4
lists thermal conductivity values taken from these curves for

each material at various temperatures.

3.4 THERMAL GRAVIMETRIC ANALYSIS (TGA)

TGA curves were obtained on all nine materials evaluated
in this program. The weight versus temperature graphs obtained
in both air and nitrogen atmospheres are presented in Fiqures
9 through 26.

3.5 MECHANICAL PROPERTIES

Mechanical properties were obtained on the six flat
laminates characterized in this investigation. These materials
were tested for tensile and flexural strength and modulus at
room temperature, 350°F (177°C) and 600°F (316°C), depending
on the resin matrix in the laminates. The tensile and flexural
properties of these materials are presented in Tables 5 and 6,
respectively. Not only are there very marked differences
between the various materials, the relative degree of degrada-
tion at elevated temperatures also varies quite significantly
from material to material.

14
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Figure 6. Specific Heat Results.
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Thermal Conductivity Curves on EG/Epoxy Type 1 and 2
and Quartz 581/PMR-15 Laminates.
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Figure 8. Thermal Conductivity Curves on SG/Epoxy Type
1 and 2 and Cordopreg Laminates.
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TABLE 4

THERMAL CONDUCTIVITY OF LAMINATES TESTED
IN JANAF PROGRAM

Thermal Conductivity {w/m-°K)

- a— . -

Temperature | EG/Epoxy | EG/Epoxy | SG/Epoxy | SG/Epoxy | Cordopreg | Quartz/polyimide
(°F) (°C) Type 1 Type 2 Type 1 Type 2 (flat) (UDRI)
77 25 0.312 0.120 0.397 0.334 0.351 0.252
122 50 0.355 0.172 0.416 0.401 0.328 0.271
167 75 0.385 0.209 0.435 0.448 0.319 0.289
212 100 0.405 0.229 0.455 0.474 0.326 0.303
257 125 0.412 0.234 0.474 0.479 0.347 0.315
302 150 0.408 0.223 0.495 0.464 0.383 0.324
347 175 0.393 0.197 0.515 0.428 0.433 0.330

19
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SECTION 4
SUMMARY

Mechanical, physical, and thermophysical properties
required for radome materials being evaluated under the JANAF
laser study have been measured. Nine different composite
systems were tested during the investigation. These materials
contained either glass or quartz reinforcement and either
epoxy or polyimide matrix resins.

"As received" materials in this study represented
those laminates processed by an industry which was still
experimenting with the composite problems of excessive
voids, resin-starved areas, quality-control etc. As the
technology of composite materials handling and processing
matured, those problems were resolved to the point that
composite laminates today can be processed to contain little
or no porosity or as having void content of less than 0.5
percent.




APPENDIX A

CURE AND POSTCURE SCHEDULE FOR QUARTZ 581/PMR-15
FLAT LAMINATES'!

Cure Cycle

1. Apply partial vacuum (approximately 10 inch Hg).
2. Heat to 325°F (163°C) at 5°F (2.8°C)/minute.
3. Apply full vacuum and hold at 325°F (163°C) for 30 minutes.

4. Heat to 490°F (254°C) at 5°F (2.8°C)/minute and i
! apply 200 psi.

i 5. Continue heating to 550°F (288°C) and hold at 550°F
: (288°C) for 1 hour.

: 6. Cool to below 150°F (65°C) under full vacuum and pressure,
; before removing from Autoclave.

Postcure

l. Heat to 650°F (343°C) at 5°F (2.8°C)/minute and hold
for 4 hours.

2. Heat to 700°F (371°C) at 5°F (2.8°C)/minute and hold
for 2 hours.

3. Cool slowly to below 150°F (65°C) (usually overnight)
before removing from circulating air oven.

lprepreg obtained from U.S. Polymeric.

-,

A )




APPENDIX B
HEAT OF PYROLYSIS ON RADOME MATERIALS

A considerable amount of time was spent trying to measure
the heat of pyrolysis on microtomed samples of the radome
Those efforts were unsuccessful

listed below.

materials in this program.
for several reasons,

(1) The pyrolysis reaction occurs over a broad temperature
range (from 225°C to above 550°C);

(2) The reaction is not uniform in nature (this is
probably due to the nature of the sample, i.e., instead of
one peak, many peaks are generated); .

{ (3) The
: (calculations

(4) The
60 percent of

(5) The

sample undergoes weight loss during reaction
are based on a constant weight of sample);

energies measured are small because over
the sample is nonreactive reinforcement; and,

sample gives off volatiles during the reaction,

causing not only the change in weight mentioned above, but
more importantly, causing deposits to form on the furnace

surface. This caused the characteristics of the furnace
to change and thereby influenced the data. In addition,

these deposits proved very difficult to clean off the furnace.

One possible solution may be to put a sample in a
volatile sample pan and using a high heating rate (i.e.,
The heat
evolved at this temperature would be measured as a function

80°C/min) increase the temperature to 490°C.
of time. Data from this experiment may be used with TGA
data to calculate a realistic rate. There is no assurance,

however, that this method will provide valid data.

- —————— - -
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APDENDUM TO INTERIM TECHNICAL REPORT
AFWATL-TR-81-4129

The original report entitled, "Evaluation of Reinforced Plastic
Radome Materials"; neglected to specify how long the specimens rested
tor mechanical properties at elevated temperature were held or
"snaked” at temperature prior to testing. This information should
have bheen included in Paragraph 2.2.5, page 6, as the last sentence.
This sentence should read, "All specimens tested at elevated tempera-
tiuve wore held at the test temperature for 30 minutes bhefore teating
to ainsure thermal equilibrium.”

This information should also be added as a footnote to the test
cojumns for 3I50°F and 600°F in Tables h and 6, pages 38 and 139

respectively.,







