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In this letter, the relationship between the characteristic function for two arbitrary noncommuting observables and a
generalized Wigner distribution function is established. This distribution function is shown to have no simple interpretation
in the sense of probability theory but, in lieu of its special properties, can be used directly for calculating the expectation

values of observables.

Whereas classical transport physics is based on the
concept of a probability distribution function which
is defined over the phase space of the system, in the
quantum formulation of transport physics, the con-
cept of a phase space distribution function is not pos-
sible inasmuch as the noncommutation of the posi-
tion and momentum operators (the Heisenberg uncer-
tainty principle) precludes the precise specification of
a point in phase space. However, within the matrix
formulation of quantum mechanics, it is possible to
construct a *“‘probability” density matrix which is of-
ten interpreted as the analoy of the classical distribu-
tion function.

There is yet another approach to the formulation
of quantum transport, based on the construction of
the Wigner distribution function {1]. As we shall
show, this distribution function has no simple inter-
pretation in the sense of probability theory [2] but,
in lieu of its special properties, can be used directly
for calculating expectation values [3~5) of observ-

} Partially supported by the Army Research Office.
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ables in a manner quite analogous to that of classical
theory, i.c. by integrating the product of the observ-
able and the Wigner distribution function over all

phase space.
This letter, in part, reviews the salient features of

the Wigner distribution function. Although the Wigner
function is generally defined in terms of all the gener-
alized coordinates and momenta of the system in
question as

l -
Pw(x,...x,,,pl...p,,)=mf dy;... dy,

XU (xy +5 ¥y, X, +1Y,) @
X \l’(Xl —;yl, ...x,, —%yn)
X expli(pyyy +... +poy,)R],

we will discuss the properties of the Wigner function
in terms of a single coordinate and momentum. In
this case, we let

145

82 o 1

j
|
il
!
!




T4
Rarn

B e L - O,

——- -

Volume 87A, number 4

Pyte.p)=50s [ dy V@ HNVE- byeiorh,
mh
— (2)
where ¥(x) refers to the state of the system in the co-
ordinate representation. '

The distribution function of eq. (2) has interesting
properties in that the integration of this function over
all momenta leads to the probability density in real
space; conversely, the integration of this function over
all coordinates leads to the probability density in mo-
mentum space. In mathematical terms,

[ Py io= v v ()
and

[ Putz.p) dx=0'G0(a), (30)
where

¢(p)= ai)y~Y? [ e~ipx/hy(x)dx .

It follows immediately from eq. (3) that, for an
observable W(x, p) which is either a function of mo-
mentum operator alone or of position operator alone,
or any additive combination therein, the expectation
value of the observable is given by

wy= [[wpy(x,p)dx dp, @

which is analogous to the classical expression for the
average value. Herein lies the interesting aspect of the
Wigner distribution function; the result of eq. (4)
suggests that it is possible to transfer many of the re-
sults of classical transport theory into quantum trans-
port theory by simply replacing the classical distribu-
tion function by the Wigner distribution function.
However, unlike the density matrix, the Wigner dis-
tribution function itself cannot be viewed as the quan-
tum analog of the classical distribution function since
it is generally not positive definite and nonunique
[Py (x, p) of eq. (2) is not the only bilinear expres-
sion {1,3-5] in V¥ that satisfies eq. (3)].

Further resemblance of the Wigner distribution

146

PHYSICS LETTERS

4 January 1982

function to the classical distribution function is appar-
ent by examining the equation of time evolution for
Py(x, p). Upon assuming that ¥(x) in eq. (2) satisfies
the Schrédinger equation for a system with hamilto-
nian H = p2[2m + V(x), it can be readily shown that
Py(x, p) satisfies the equation

3Py [0t + (p/m)dPylox +8 - Py =0, (5)
where

. 2 (/)31
8-P, = Z) oy

aznﬂy(x) 32""?\‘,(1 »)

6
axZn#] ap2n¢l ( )

It is evident that in the limit A+ 0,0 * Py, in eq. (6)
becomes

8 - Py = —(3V/ax)(3Py, /3p) )

so that eq. (5) reduces to the classical collisionless
Boltzmann equation.

The Wigner distribution function defined in eq. (2)
is derivable [6] from the Fourier inversion of the ex-
pectation value (with respect to state ¥ (x) of the op-
erator ei(TP*+0%) (here, % and p satisfy the commuta-
tion relation [x, p] = ik). As such,

Py(x,p) = 4_,1,—2— fwa('r, 8)e=ilrp*0x4r 49 , (8a)
where

Cw(r,0)= [ W (x)citrp*ou(x) dx (8b)
and the interval of integration is (—°, ©) unless other-
wise specified. In order to show that the right-hand

side of eq. (8a) is indeed the Wigner distribution func-
tion as defined in eq. (2), note, from the Baker—

Hausdorff theorem [7], that e'75+65) can be written as

eilrp+0X) = oitP/24i0Xith/2 o)

in which case Cy/(r, 8) of eq. (8b) becomes

Cw(r,6) = j Ie‘"”/’\l'(x)l‘e"”‘le“”’”\l'(x)l(d;)
1

which further reduces to

-
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Co(r,0)= [ W (x ~rh)eioxw(x + }rh) dx . (11)

Then, by inserting Gy (7, 8) of eq. (11) into the right.
hand side of eq.(8a), integrating over the variable 6
by using the relation

f eif(x'~x") 4§ = 2n5(x" — x"),

and letting 7 = —y/h, the desired result is obtained.

The method outlined above to arrive at the Wigner
distribution function is based on the notion of a char-
acteristic function. The characteristic function of an
observable, 4, with respect to state |¥) (here, the
Dirac notation is utilized for purposes of generality)
is defined as

Cy(B)= (WieitA|¥) , (12)

where £ is a real parameter. As§uming/f to possess an
eigenvalue spectrum given by A14') =4'14"), C4(¥)
can be evaluated in the A'-representation as  ~

Ca®)= faa' [ aa" w142’ (et 147”1 0) .

R 13)
Since (4|cit4)4") = ¢it4'5(A4’ — A") in the A'-rep-
resentation, C 4 (£) in eq. (13) reduces to

Ca®)= [ad’eita' 1w .12, (14)

where | W42 = [(4'|¥)|2 = P(A"), the probability
distribution function for measuring A’ while in state
|¥). Hence, the characteristic function for A is the
Fourier transform of the probability distribution
function P(A4'). Subsequent inversion of eq. (14)
above leads to

P(A) =5 [Cu@eita at . (15)

The Wigner distribution function was derived by
taking the Fourier transform of the characteristic
function for ei(P*9X) In view of the connection be-
tween the probability distribution function and the
characteristic function for a given observable, this ap-
proach seems to be a natural way of obtaining a dis-
tribution function for momentum and position. Un-
fortunately, the noncommutative nature of the two

observables destroys the convenient probability inter-
pretation of the characteristic function implicit in
eq. (15).

In order to demonstrate this point, assume the char-
acteristic function for two noncommuting observables,
A and B,to be

Cupltby) = (Wieltad Bl gy (16)
Observibles A and 3 are assumed to have eigenvalue
spectra
A|A"y=4'14"y, BIB"»=B'IB), a7
and are chosen so that [4, [4,3]] = [B,I4,8]] =0.
This assumption is imposed so that the identity
eilt1A+t28) = gitsd eifzﬁ e-tital4.B}/2 (18)
may be used.

Inserting eq. (18) into eq. (16) while obtaining the

matrix elements of eif14 in the A'-representation and
¢it2B in the B'-representation results in

Cyplrfp)=e"hit2 14812  aq' [ ap )

X eih14"+02B ) (W |A' WA |B'HB' | W) .

In eq. (19), it is assumed that [/f ,B) is a c-number in-
dependent of the eigenvalues A’ and B’. We define
F(A’', B'), the generalized Wigner distribution func-
tion *!, to be

F(A',B")=(¥|A"YA'|B'YB' V), (20)
so that

PR | s a
F(4 .B)-(—Z"desl [ ag; etrtald 112

X Cqplky, §p)e~ {4+ t2BY) (1)
It is evident from egs. (20,21) that

*1 The form of the generalized distribution function derived
is sensitive to the manner in which expli(§, 4 + t28)) is
expanded. For example, if instead of eq. (18), we used the
forms exp(it2B) exp(iti ) exp(tr &2 14, B)/2), explit4/2)

. X exp(it2B) exp(it 1 4/2), or exp(it3 B/2) exptit, A) explit;
X B/2), all of which are equivalent, we would indeed ob-
tain a diffcrent form of the generalized distribution func-
tion, yet one which obeys the sum rules of eq. (22).
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Jra .y =i~ fa, (222)

X C,4p(0, §y)e 128"
and

’ L ’ 2=_L
fF(A ,B')dB' =[4’ W) 2,,fd$1 (22b)

X Cyp(ty,0)eit1a’

Thus, eq. (21) establishes the relationship between the
characteristic function for two arbitrary noncommut-
ing observables and the generalized Wigner distribution
function. The generalized distribution function has
the essential properties of the conventional Wigner
function in that an integration of the generalized
function over the eigenvalue spectrum of one observ-
able leads to the probability density in the canonically
conjugate observable [eq. (22)].

There is no simple probability interpretation of
F(A', B')in egs. (20, 21) because of the necessary
overlap between the states of the noncommuting ob-
servables. However, if A and B are made to commute
so that |A4’) and |B') are a common set of eigenvec-
tors, then F(A', B') reduces to the probability distri-
bution function for 4 and B.

Finally, it is noted that the conventional Wigner
distribution function for observables A and B is Qb-

tained from
]
— fa, [a

X Cygly, fp)e0id 0B, @3)

with C, p(¢; £5) defined in eq. (16), whereas the alter-
native distribution function, F(A4', B'), introduced in

Pw(A:Bq=
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egs. (20, 21) differs from the Wigner function due to
the presence of the phase factor et1 &2 (48102 in the
integrand of eq. (21). ForA=x and B = p,Pw(x.p)
in eq. (23) reduces to the Wigner function of eq. (2),
whereas F(x, p) defined from eq. (20) becomes

F(x,p)= 5%5 f dy ¥* (x)¥(x - y)cipy/h

=(2nh)~ Y29 (x)eirx /M ¢ (p), @49

where ¢(p) is defined in eq. (3b). It is evident that
there is a family of functions which are bilinear in ¥
yet satisfy the sum rules of egs. (3a, b).

There are some interesting questions to be resolved
concerning the uniqueness and positive definiteness
of Wigner-type quantum distribution functions. Never-
theless, these distribution functions serve a useful
purpose for calculating quantum mechanical observ-
ables in transport [5] studies and numerous solid-
state {8,9] problems.
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