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In this letter, the relationship between the characteristic function for two arbitrary noncommuting observables and a
generalized Wigner distribution function is established. This distribution function is shown to have no simple interpretation
in the sense of probability theory but, in lieu of its special properties, can be used directy for calculating the expectation
values of observables.

* Whereas classical transport physics is based on the ables in a manner quite analogous to that of classical
concept of a probability distribution function which theory, i.e. by integrating the product of the observ-
is defined over the phase space of the system, in the able and the Wigner distribution function over all
-luanturn formulation of transport physics, the con. phase space.
cept of a phase space distribution function is not pos- This letter, in part, reviews the salient features of
sible inasmuch as the noncommutation of the posi- the Wigner distribution function. Although the Wigner
tion and momentum operators (the Heisenberg uncer- function is generally defined in terms of all the gener-
tainty principle) precludes the precise specification of alized coordinates and momenta of the system in
a point in phase space. However, within the matrix question as
formulation of quantum mechanics, it is possible to
construct a "probability" density matrix which is of-
ten interpreted as the analog of the classical distribu-
tion function. -

There is yet another approach to the formulation X q* (XI + " y1..- Xn + Yn)()
of quantum transport, based on the construction of
the Wigner distribution function I I]. As we shall X ,(XI - lyl, "" X. - lYn)
show, this distribution function has no simple inter- X expji(ply1
pretation in the sense of probability theory [2] but,

in lieu of its special properties, can be used directly we will discuss the properties of the Wigner function
for calculating expectation values [3-51 of observ- in terms of a single coordinate and momentum. In

this case, we let
'Partially supported by the Army Research Office.
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function to the classical distribution function is appar-

-) dy 1(x+4y)1(x - y) eiPY /A ent by examining the equation of time evolution for

1. 2) Pw(x, p). Upon assuming that * (x) in eq. (2) satisfies
the Schr6dinger equation for a system with hamilto-

where 4'(x) refers.to the state of the system in the co. nian H = p 2/2m + V(x), it can be readily shown that
ordinate representation. Pw(x, p) satisfies the equation

The distribution function of eq. (2) has interesting
properties in that the integration of this function over apWi/a + (P/r) aPt/ax +9 PW -0 (5)

all momenta leads to the probability density in real where
space; conversely, the integration of this function over
all coordinates leads to the probability density in mo- 0 P : - (-1)"

mentum space. In mathematical terms, R . (2n + 1)!

f Pw(, p) dp = *(x)*(x) (3a) X a2 ,t'V(x) 82 n'pW(Xp) (6)

_ ar2n p2n+l

and It is evident that in the limit A -. 0, 9 PW in eq. (6)
becomes

f Pw(xp) dx = 0*(p)O(p), (3b) *. Pw = -(a Vl/x)(Pw lap) (7)

so that eq. (5) reduces to the classical collisionless
where Boltzmann equation.

The Wigner distribution function defined in eq. (2)

)(2r )1 I e-ixl *(x) dx. is derivable [6) from the Fourier inversion of the ex-
_ pectation value (with respect to state *'(x) of the op-

erator ei(TP+ e ) (here, x and A satisfy the commuta-
It follows immediately from eq. (3) that, for an tion relation [i, fi] = ih). As such,

observable W(x, p) which is either a function of mo-
mentum operator alone or of position operator alone, Pw(X" p) = L_ ff Cw(, 9)e-i(tp+exdT dO
or any additive combination therein, the expectation 4n
value of the observable is given by where

(W) = ff WPw(X,p) dx dp , (4) Cw(r, 9) = f *Jt(x)ci(TP+X)*(x) dx , (8b)

which is analogous to the classical expression for the and the interval of integration is (_0% *) unless other.
average value. Herein lies the interesting aspect of the wise specified. In order to show that the right-hand
Wigner distribution function; the result of eq. (4) side of eq. (8a) is indeed the Wigner distribution func.
suggests that it is possible to transfer many of the re- tion as defined in eq. (2), note, from the Baker-
suits of classical transport theory into quantum trans- Hausdorff theorem 171, that eitP4peX) can be written a!
port theory by simply replacing the classical distribu- ei+9 ) eifp/2eieiei2 (9)
tion function by the Wigner distribution function.
However, unlike the density matrix, the Wigner dis- in which case Cw(r, 9) of eq. (8b) becomes
tribution function itself cannot be viewed as the quan-

turn analog of the classical distribution function since Cw(7, O) -d ,
it is generally not positive definite and nonuniqueJ ')J ux dx
IPw(x, p) of eq. (2) is not the only bilinear expres- - - (10)

sion [1 ,3-51 in ' that satisfies eq. (3)]. which further reduces to
Further resemblance of the Wigner distribution
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- observables destroys the convenient probability inter-
Cw(T, 0) = f *"(x - 4h)eix4(x + 1rh) dx. (11) pretation of the characteristic function implicit in

eq. (15).
In order to demonstrate this point, assume the char-

Then, by inserting CW(r, 0) of eq. (11) into the right- acteristic function for two noncommuting observables,
hand side of eq. (8a), integrating over the variable 0 1 and A, to be
by using the relation CAB(I 2) = ('ei(hA+t2h)lq,). (16)

eif(x.x) dO = 21rS(x' - x-) Observibles A and A are assumed to have eigenvalue
_. spectra

and letting 7 = -y/h, the desired result is obtained. 4IA') =A'IA') , I =B')B#IB'), (17)
The method outlined above to arrive at the Wigner and are chosen so that V,, [1, h I [ ,1, h) I = 0.

distribution function is based on the notion of a char- This assumption is imposed so that the identity
acteristic function. The characteristic function of an ei(Qs,+2 h ) = e' t " ei tl e-t, t2 [1A/2 (18)
observable,A, with respect to state J'I) (here, the
Dirac notation is utilized for purposes of generality) may be used.
is defined as Inserting eq. (18) into eq. (16) while obtaining the
CA (t)= (4leit 1,), (12) matrix elements of etiA in the A'-representation and

' eitail in the B'-representation results in

where t is a real parameter. Assuming,4 to possess an

eigenvalue spectrum given by ,i JA') =A'IA'), CA () CAB(QIt2) = e-t 12 [Ai]/2 f dA' f dB' (19)
can be evaluated in the A'-representation as x ei(tzA +12B)(IIA')(A' IB'(B'14•9

CA( =fdA'f dA"(*lA')(AUjeItAIAW)(A"14) . In eq. (19), it is assumed that V,, h is a c-number in-
(13) dependent of the eigenvaluesA' and B'. We defime

Since (,4'IcitA IA) = ee'6(A' - A") in the A'-rep- F(A', B'), the generalized Wigner distribution func-
resentation, CA () in eq. (13) reduces to tion *", to be

CAQ)fdA'eitA'lA,.12 (14) F(A',B')= (' IA')(A'IB')(B' 1'), (20)

so that
where I 'A' 12 = I[A' [q,)12 E P(A'), the probability
distribution function for measuring A' while in state F(A', B') = fdt1 f d 2 et, t2 [A ,1/2
14'). Hence, the characteristic function forA,[ is the (27r) 2

Fourier transform of the probability distribution
function P(A'). Subsequent inversion ofeq. (14) X CAB(QI, t 2)e-i(tjA '+ 2B') (21)

above leads to It is evident from eqs. (20,21) that

P(A') =_ fCA (t)e- A ' . (15)

The Wigner distribution function was derived by
taking the Fourier transform of the characteristic *3 The form of the generalized distribution function derived
function for ei( rV+"). n view of the connection be- is sensitive to the manner in which expli(IA * t 2h)] is
tween the probability distribution function and the expanded. For example, if instead of eq. (18), we used the
characteristic function for a given observable, this ap- forms exp(i12h) exp(it,i)exp(t[2 IA, # 1/2). exp(it,4/2)
proach seems to be a natural way of obtaining a dis- X exp(it2B)exp(itaAI2).orexpO12Ah1)expitA)expi 2X B/2), all of which are equivalent, we would indeed ob-
tribution function for momentum and position. Un- tain a different form of the generalized distribution func-
fortunately, the noncommutative nature of the two tion, yet one which obeys the sum rules of eq. (22).
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fF(A'1 B') d4'= 1(y 1*)12 22 eqs. (20, 21) differs from the Wigner function due to, 2 d(22a) the presence of the phase factor et ( ( 1,4. 1/2 in the

integrand of eq. (2 1). ForA = i and B = i, Pw(x, p)
X CAB(O, 2)e-i(a5' in eq. (23) reduces to the Wigner function of eq. (2),

and whereas F(x,p) defined from eq. (20) becomes

("'' -2uJ d1  (22b) F(x,p) f dy4,(x)*(x-y)eiPY/A
X CAB( 1, 0) e-It, A ' = (2)-I 2 j,.(x) eipxI 0(p), (24)

Thus, eq. (21) establishes the relationship between the where 0(p) is defined in eq. (3b). It is evident that
characteristic function for two arbitrary noncommut- there is a family of functions which are bilinear in '1
ing observables and the generalized Wigner distribution yet satisfy the sum rules of eqs. (3a, b).
function. The generalized distribution function has There are some interesting questions to be resolved
the essential properties of the conventional Wigner concerning the uniqueness and positive definiteness
function in that an integration of the generalized of Wigner-type quantum distribution functions. Never.
function over the eigenvalue spectrum of one observ. theless, these distribution functions serve a useful
able leads to the probability density in the canonically purpose for calculating quantum mechanical observ-
conjugate observable [eq. (22)]. ables in transport [5] studies and numerous solid-

There is no simple probability interpretation of state 18,9] problems.
F(A',B') in eqs. (20, 21)because of the necessary
overlap between the states of the noncommuting ob- References
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