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This research effort describes the preliminary hardware

design of an improved Universal Network Interface Device

(UNID II). The concept of a universal network interface was

studied in previous Air Force Institute of Technology re-

search investigations. This report further defines and

clarifies the concept of a network interface and uses the

state-of-the-art 8086 family of microprocessors to give

UNID II increased performance capabilities.
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expert guidance proved to be invaluable. Dr. Lamont, my

thesis advisor, provided this research topic which enabled

fulfillment of a long-time desire to study state-of-the-art

microprocessors. His comments kept me motivated and helped
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though I broke the hand I write with during the time I was

preparing this paper, I found that modern word-processing
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and pencil and paper.

ii



Cn1

Page

Preface . . . . . . . . . . . . . . . . . . . . ... ii

List of Figures . . ........... vi

List of Tables ... ............... viii

Abstract ... .... ............ . ix

I0 Introduction I.. . . . . . . .

Motivation for Computer Networks ...... 1
Network Topologies and Node Functions . . . . 2

Star Topology . . . . . . . . . . 4
Loop Topology . ....... . . . . 5
Tree Topology . o . . . . .... 8
Distributed Topology . . ... ... . 10
Bus Topology ..... , ........ 11

Network Node Functions . . .. . .... 12

Concentration .......... 12
Switching and Rutig ......... 13
Front-End Processors .......... 13
Terminal Interface .. .. . .. . . . . 14

Purpose ...... . 14
Approach and Overview of the'Thesis ..... 15

II. Requirements Analysis .... . . . . . .. 17

Requirements Background . . . . .C . o 17
Requirements Approach ........... 17
Requirements Observations . .. .. .. 18
Input Requirements ............. 18

Interfacing Capabilities . . .... 20
Transparency Requirements . ...... 21
8086 and 8089 Microprocessors ..... 21

Practical Constraints .. ......... . 22

Testability o Co .C C ....... 22
Modularity . . . . . . . . 22
Economic * 9 o . a C 0 * 0 C C 23

iii



Page

UNID II Model . . . . . . . . I, . . . . . . . 23

UNID II Overview . . . . .. . . 26
Input Local Information ; 26
Format According to Outgoing Protocol * 29
Transmit Network Message . 0 . 0 . 0 29
Input Network Information . II II . . . . 32
Transmit Local Message . .. . 32

Requirements Analysis Summary . . . . . . . . 35

III. tTNID II's Hardware Design . . . . . . . *. 36

Basic Hardware Configuration . . . . . I, . . 36
Private CPU Bus I . . ..... 38
Another CPU Local to the"'I/O*ProcesoW 40
UNID II's Overall Design . . o a 9 9 1,.. 42

Network I/O Subsystem . . . . . . . . . 42

Local1/0Subsystem II. .. . .. . .. 48

CPU-8089 Communication Protocol . . . . . . . 49

Intel 86/12A SBC Memory Addressing . . . 53

Special I/O Hardware ... ... ... 55

Number of I/O Ports . . . . . . . . . . 56

Local I/O Subsystem It . It . * o . It 58
Network I/O Subsystem . . 0 4 0 0 58

Communications Inteface . . o o 59

Summary of Design Philosiphy . . . . . . . o 61

IV. Reasons For UNID II's Design . . . . . . . . . 63

Reasons for Using the 8089 .. .. . . 63
Why the 8089 is not Used in the Remote*Mode 64
Previous Design iterations ....... . 66
UNID II's Final Prototype Design ... 68
Function Allocation . . . e . a . e o . * o 71
Summary . a . It . a 0 0 . . . . . 11 . 0 . * 0 74

V. Conclusions and Recommendations o II . . . . . . . 75

Recommendations o o . . o . 11 o 111... 75

iv



r

4Page

Bibliography . . . . . . . . . . . . . . . . . . . . . 78

Appendix A: The 8086/8089 Software Development Process. 82

Relocatable Object Code Segments . . . . 83
PLM-86 Object File Sections . . . . . . 84
PLM-86 Size Control .. .. . . . . . . 84

SMALL Case ............ 86
MEDIUM Case . ........... 86
LARGE Case ............ 87

LINK-86 ................ 87
LOC-86 ........... . 88
OH-86 . . . . . . . . . . . . . . . .. 88

Using the Intel Universal PROM
Programmer for 8086/8089 Development . . 89

Caution for Assembly
Language Programmers .......... 90

Appendix B: 8089 DMA Transfers . . . . . . . . . . . . 91

8089 Channel Program. . ...... 91
8089 DMA Terminate Conditions . . . . . 91
Code Translation Option . . . . . . . . 92
Data Source and Destination Options . . 92
Data Synchronization . . . . . . . . . . 93

Confusion Between Channel Control Byte
and Channel Control Register . . . . . . 93

Vita . . . . . . . . . . . . . . . . . . . . . . . . . 94

i v



i~I ato Ficures

Figure Page

* 1-1 Star Topology . . . *....... . . . .. .. 5

1-2 Loop Topology . ............... 6 2

1-3 Multiloop Configuration . . . . . . . . . . . . . 7

1-4 Tree Topology 8

1-5 Hierarchical Topology . . . . . . . . . . . . . . 9

1-6 Distributed Topology . . . . . . . . . . . . . . . 10

1-7 Bus Topology ................... 11

2-1 Data Flow Diagram Symbols . . . . . . . . . . . . 23

2-2 UNID II Supporting Both a
Network and Local Protocol. . . . . . . . . . . . 25

2-3 UNID II Overview ................. 27

2-4 Input Local Information ............. 28

2-5 Format According to Outgoing Protocol ...... 30

2-6 Transmit Network Message ............. 31

2-7 Input Network Information ............ 33

2-8 Transmit Local Message . . . . . . . . . . . . . . 34

3-1 Basic 8086/8089 Processor Configuration . . . . . 37

3-2 8086 CPU With Resident Bus . . . . . . . . . . . . 39

3-3 An 8086 CPU Local to the I/O Processor . . . . . . 41

3-4 UNID II Block Diagram .............. 43

3-5 Network Subsystem ................ 44

- 3-6 Bus Interface Logic ............... 45

3-7 CPU-IOP Communication Protocol . . . . . . . . . . 50

3-8 UNID II Memory Map . . . . . . . . . . . . . . . . 54

3-9 Overall Structure of UNID II ......... .. 62

vi



Figure Page

L 4-1 Single 8089 In the Remote Mode . . . . . . ... 65

4-2 Design Iteration No. 1 . . . . . 67

4-3 Design Iteration No. 2 . . . . . . . . . . . . . . 69

4-4 Final Prototy eign. . . .. .. .. . .. .. 70

A-i 8086/8089 Software Development . . . . . . . . . . 82

vii



1.6= of Tabl en

Table Page

I Typical Uses of Computer Networks . . . . . . . . 3

II UNID II Input Requirements ............ 19

III UNID II Data Flow Diagram Outline . . . . . . . . 24

IV Popular Link Protocols .............. 56

V Comparison of Communication ICs . . . . . . . . . 57

VI Local Subsystem Functions . . . . . . . . . . . . 72

VII Network Subsystem Functions . . . . . . . . . . . 73

VIII PLM-86 Generated Segment, Class, and Group Names . 85

IX UPP Programming of four Intel 2716 EPROMs . .. 89

v

_ viii



AFIT/GCS/EE/81D-9

This research describes the design of a Universal

Network Interface Device (UNID II) which is intended for use

in a computer communications network. The II distinguishes

UNID II from the original UNID which was also designed and

developed at the Air Force Institute of Technology.

UNID II's purpose is to lessen the time delays and

development costs incurred by custom-designing network

interfaces for each application. UNID II is a programmable

interface; and although different applications require

different device dependent programming, UNID II hardware

remains essentially unchanged. A requirements study shows

that to handle a wide variety of interfacing situations,

UNID II must perform node functions which include

concentration, switching and routing, front-end processing,

and user-terminal interfacing. The performance of these

functions relieves network hosts from communication-specific

software.

The key design concept is the subdivision of UNID II

into two independent subsystems which communicate Vhrough an

area in shared memory. The Network Subsystem handles high-

speed network links while the Local Subsystem handles net-

work peripherals. This modular approach reduces bus conten-

tion and allows the effect of an error or change to be

isolated.

ix
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For high performance, the Network Subsystem includes

the Intel 8089 I/O processor; and for flexibility, the Local

Subsystem uses a Multibus-compatible communications board

which contains serial or parallel interfaces and may be

interchanged depending on user needs.
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PRELIMINARY DESIGN OF A COMPUTER
COMMUNICATIONS NETWORK INTERFACE USING

INTEL 8086 AND 8089 16-BIT MICROPROCESSORS

I. Introduction

In response to increased data communications require-

ments on a typical Air Force Base, Rome Air Development

Center (RADC) specified a need for a small and economical

network interface device to connect various base computers

and terminals to a computer communications network. Several

Air Force Institute of Technology (AFIT) research efforts

have studied this need and produced a prototype Universal

Network Interface Device (UNID) (Refs 3,6,31).

Using 16-bit microprocessor architecture, this research

effort develops a new network interface design (UNID II)

which is capable of performing the functions of a network

node. Since it is designed for flexibility, UNID II can

handle a wide variety of network interfacing applications.

The first prototype of UNID II will be used as a node for

AFIT's Digital Engineering Laboratory.

Motivation _Q ompute Newok

A computer network is an interconnected set of host

computers and peripherals which communicate with each other

and share resources such as software, data bases, memory

space, and user terminals (Ref 9:111). By eliminating the

need to duplicate facilities, computer networks can greatly

reduce the cost of computing facilities. For example, in-

stead of hard-wiring two adjacent user terminals to separate

computers, a network can allow the use of one terminal with



either computer (Ref 40:137). The combined resources of a

computer network give the user convenient access to more

processing facilities than are available at any individual

computer site. Since the failure of one remote component

will not disable the entire network, a network is more

reliable than a single computer. When a system's capability

needs to be expanded, adding small and relatively inexpen-

sive components to a network is more economical than repla-

cing an entire mainframe computer with a larger mainframe

(Ref 11:108). Some popular uses of a computer networks are

shown in Table I.

Network Tplgies Alnl Node Functions

This section provides introductory information for

Chapter II, Requirements Analysis. Since UNID II is designed

to act as a network node capable of handling many different

topologies and functions, these attributes are briefly

described.

The topology discussions demonstrate environments which

use a network node and outline the general requirements

imposed by different topologies. For example, some

topologies may require higher nodal transmission rates or

more communication links per node than other topologies.

Depending on the topology, failure of a single node could

disable the entire network or only part of the network.

(Although a network node is sometimes considered to consist

of both a network communications interface and a host

2



Table I

Typical Uses of Computer Networks (Ref 8:11)

USE APPLICATION EXAMPLE

Data Collection Airline Reservations

Remote Job Entry Local Access to Remote
Computing Facilities

Information Retrieval Credit Checking

Conversational Many Simultaneous
Time-Sharing Users Allowed Interactive

Computer Use

Message Switching Electronic Mail

Resource Sharing Several Computers Allowed
Access to the Same Database,
Printer, or Peripheral

Distributed Processing Several Remote Computing
Facilities Cooperating to
Solve the Same Problem

3



computer, this paper considers a network node (UNID II) to

be separate from host computers. Node functions include

switching, concentration, and buffering and are described in

detail immediately following the topology discussions.)

Although five basic network topologies, star

(centralized), loop (ring), tree, mesh (distributed), and

bus are defined, many networks use combinations and varia-

tions of these basic topologies. They may be limited to

small local areas or span global distances providing

worldwide communication. Examples of long distance networks

include the SITA worldwide airlines reservation network and

the widely studied Advanced Research Projects Agency (ARPA)

network. Small distance local networks such as Xerox

Corporation's Ethernet and Net/One by Ungermann-Bass Inc.

are becoming increasingly popular. Current users of local

networks include General Motors, Citibank, and various

government agencies (Ref 15:115). Network computer size may

range from large main-frame computers to small

microcomputers. User peripherals which have no direct

association to a particular computer may be connected to the

network.

Since overall control in a star network (Figure 1-1)

takes place at the central processor, controlling the net-

work and insuring that the network's resources are fully

shared and utilized are easier than in other topologies. The

main disadvantage is that each remote site requires its own

4



communication link. All node-to-node communication must pass

through the central processor, and failure of the central

processor will disable the entire network.

Node Node

Communications Processor TerminalsLinkTemnl

Node - iNode

Figure 1-1 Star Topology

The loop configuration (Figure 1-2) works very well

when the nodes are relatively close to each other (Ref

2:113). They minimize the amount of required communication

links and are very popular in local networks. Each message

circulates around the loop and is repeated by each node

5



until the message reaches its destination. Since the loop

simultaneously carries traffic from many nodes, loop topol-

ogies require high capacity transmission links and nodes.

Host eUser Terminals

(Node

Communications~Link

II

Figure 1-2 Loop Topology (Refs 33:4; 17:84)

The loop concept can be extended to extensive multiloop

configurations (Figure 1-3). Each of the loops can act as a

relatively self-sufficient building block (Ref 30:564), and

with sufficient original planning, the network size can be

increased as needed by incrementally adding loops. The costs

6f



of switching nodes and transmission links increase

approximately in proportion to the number of added user

terminals.

NodeNod

Node Node

Node Node

Hot Node Node •User

Host Communication

Link

Figure 1-3 Multiloop Configuration
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Multiloop topologies have two main advantages; they

require no sophisticated common control and the network cost

is distributed among the various equipment connected to the

network. Since all users on the same loop are connected to

the same communications link, communication costs are rela-

tively low. The multiring topology has been recommended for

interconnecting computing facilities on a typical Air Force

Base (Ref 34:4).

Similar to a star network, a tree network (Figure 1-4)

can be centrally controlled by a main computer. Since

communication links close to the central computer are

shared, a tree topology requires a lesser net length of

communication links than a comparable star network.Host
User

Terminals -- /

Figure 1-4 Tree Topology (Ref 33:4)
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Alternatively, a tree topology may be arranged in

a hierarchical structure (Figure 1-5) or in a combination of

the centralized and hierarchical structures. In the hierar-

chical configuration, components high in the hierarchy are

often more general while the lower-level components are more

specialized (Ref 4:33). Since most processing is done close

to the endpoints, data communication costs are kept low and

the system is fairly modular. Due to their flexibility,

hierarchical tree networks are very popular (Ref 4:32).

Hos Communications• H os IL ink

SP-Satellite Processor Terminal

Figure 1-5 Hierarchical Topology (Ref 4:32)
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Distributed topology (Figiure 1-6) is typical of inter-

state networks. Due to their high connectivity, multiple

source-to-destination paths often exist. Communication link

redundancy increases reliability but makes controlling the

network more diffulcult. Nodal interfaces need to be more

complex.

User

~Terminal

Communications
Link

Figure 1-6 Distributed Topology (Ref 33:4)
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Due to their relative simplicity, bus architectures

(Figure 1-7) are very popular in local networks. Previously

discussed topologies briefly store and retransmit messages

at each nodal point along the route from source to destina-

tion. In bus topologies, messages are sent by broadcasting

over a common transmission channel connected to each network

node. Since all messages are broadcast to all nodes, this

topology does not allow messages to be specifically routed

from one point to another as is possible in store-and-

forward topologies.

Repeater

Tran ciever

Common
Bus

Repeater

User
Terminals

Figure 1-7 Bus Topology (Ref 2:92-96)[1



'Network Fd unctiona

,ks a prelude to the Requirements Analysis (Chapter II),

the node functions which UNID II will be required to handle

are briefly described. The nodes shown in the previous

figures perform four main network interfacing functions, (1)

concentration, (2) switching and routing, (3) front-end

processing, and (4) terminal interfacing. Since nodes

handle the actual network information transfer (Ref 40:139),

they need to be flexible and efficient. The speed,

capability, and reliability of a network is largely deter-

mined by the performance of its nodes.

Concentration

Although time-division multiplexing (TDM) could be

used, concentrators usually employ asynchronous time-

division multiplexing (ASTDM). While TDM alternately allo-

cates each transmission line a time segment for transmis-

sion, ASTDM dynamically allocates time segments only to

currently active lines. Since TDM may allocate time segments

to transmission lines not presently requiring service, ASTDM

is more efficient and increases overall throughput. Unlike

TDM, ASTDM uses a buffer to allow the input rate to vary

from the output rate which smooths message flow and accomo-

dates different transmission rates within the network.

Messages are buffered until outgoing links become available

and a copy of the outgoing message is often retained until

an acknowledgement is recieved that the outgoing message was

12
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successfully transmitted. Concentrators edit messages,

format messages according to network protocol, append

message headers, and perform code conversion.

Switching And~ Routin

At each intermediate node, messages are routed to the

next node in route to their destination. Routing is often

considered part of the concentration function but the GE

Information Services Network is an example of a network

which uses computers for the sole purpose of directing

messages to a particular central concentrator. The GE Infor-

mation Services Network is the world's largest commercial

data processing network and provides service to over 500

cities worldwide (Ref 33:15-16).

Fr ont-End P_ oce sorg

Front-End Processors are used to interface host compu-

ters to the communications network. Even though a general

purpose host computer can handle both data processing and

communications functions, this approach is often inefficient

or economically unattractive. The use of a separate front-

end processor prevents communication tasks from seriously

degrading the performance of the host. Similar to a concen-

trator, typical communication tasks include message

formatting, editing, and buffering.

Data communication is often bursty meaning that message

traffic is very intense for short intervals, and the average

time between messages is much larger than the time needed to

13



transmit a single message. Often, general purpose computers

do not handle message traffic efficiently. Network access

software does not require the full processing power of a

scientific computer yet can consume a substantial amount of

the host computer's time and memory space. Using a small

separate front-end processor or network-to-host interface as

a parallel computer improves the network cost/performance

ratio. The network becomes more modular since either the

host or front-end processor can be modified or replaced

without directly affecting the other device (Ref 1:3-7).

T erminal Tnefc

The terminal interface allows access to the network,

and from one terminal location, the user can access data and

use programs that run on various network computers. Similar

to other network interfaces, the terminal interface provides

data editing, formatting, and error control. Since the user

often inputs data slower than the network transmission rate,

the terminal interface employs a buffer to temporarily store

data until it can be output at the network transmission

rate.

The purpose of this research effort is to design a

general-purpose network interface capable of handling all

the functions which were defined in the previous section.

These functions include concentration, switching and

routing, front-end processing, and interfacing user

terminals to the network. UNID II should be capable of

14



accommodating a wide variety of network topologies and pro-

tocols. In the past, most local network interfaces were

custom designed for each application (Ref 7:102). To lessen

the large hardware and software development costs incurred

by custom design, UNID II must be designed with enough

flexibility to handle a wide variety of network interfacing

needs. UNID II should also use modern architecture to keep

energy costs low and allow relatively high data-transmission

rates.

A secondary objective is to study a state-of-the-art

microprocessor family and incorporate newer technology in

the hardware design. Since more than one processor may be

required to accommodate UNID II's processing requirements,

UNID II will be prototyped using the 8086 microprocessor

family whose hardware is designed to support

multiprocessing.

ad O i f he Thesis

Chapter I deals with the concept of a network interface

and includes discussions describing various node functions

and topologies. Since UNID II is designed to handle the

different node functions and topologies as defined by these

discussions, Chapter I provides background information for

Chapter II which defines the functional requirements of a

network interface. Chapter II uses the information obtained

in an extensive literature search to develop a Data Flow

Diagram (Ref 38) model of UNID II. From this model,

Chapter III develops the overall hardware design of UNID II.

15



Chapter IV enhances the information presented in

Chapter III. While Chapter III develops UNID II's design as

a logical sequence of steps, Chapter IV discusses why the

particular hardware configuration was selected rather than a

number of other possible configurations. The relative advan-

tages and disadvantages of previous design iterations are

discussed. Chapter V presents conclusions and recommenda-

tions.

16



fl. Requirements Anlyis

The purpose of this research is to design a flexible

network interface (UNID II) capable of handling all the

general topologies and interfacing functions reviewed in

Chapter I. Chapter II uses the background information

presented in Chapter I as a basis for determining UNID II's

fur.ctional requirements.

Requirements Backroun

A Structured Analysis and Design Technique (SADT) model

for the original UNID was developed by Sluzevich (Ref 34).

These diagrams provide excellent insight to the functions of

a network interface and are recommended for reference. After

Sluzevich completed his research in 1978, two more graduate

research efforts resulted in a prototype UNID (Refs 3,5). In

1981, William Hobart completed his research effort which

designed a local computer network utilizing the UNID

developed by earlier efforts (Ref 17). Having the benifit of

research following Sluzevich's original report, it seemed

worthwhile to re-evaluate the original requirements model.

Requirements Approach

This research develops a set of Data Flow Diagrams

(Ref 38) which outline UNID II's functional requirements and

provide a basis for the design. The inputs for developing

the Data Flow Diagrams are presented in the following sec-

tions and consist of input requirements and practical

constraints. The input requirements are an expanded defini-

17



tion of what capabilities a user would expect a network

interface to have and were obtained from an extensive

literature search.

Reguirements Observations

UNID II can be considered a protocol processor which

allows network components using otherwise incompatible pro-

tocols and transmission rates to operate on the same

network. Although UNID II is a programmable device whose

functions vary for different applications, UNID II's Data

Flow Diagrams provide a general model invaluable for

describing essential functions. Specific applications will

require additional software functions, but the hardware

remains essentially unchanged. Ideally, the software should

be layered so only lower-level modules need to be altered

for specific applications.

InuLt Requirements

The primary emphasis of UNID II is flexibility. Since

designing custom hardware for each application costs too

much money and development time, UNID II is a programmable

interface. Depending on its programming, it can be

configured to handle a wide variety of interfacing

applications. The input requirements outlined in Table II

were obtained from an extensive literature search of network

interfacing applications and requirements (Refs 17:28;

22:152; 27:3-39; 33:42; 34:12; 35:195; 40:139).

18



Table II

UNID II Input Requirements

UNID II Input Requirements

I. Interface a wide variety of network components

and handle various topologies

A. Accommodate dissimilar computing equipment

1) Accomplish code conversion

2) Perform data-rate speed conversion

B. Interface peripherals and user
terminals to network

C. Interface host computers to network

D. Provide a network-to-network

interface (gateway)

II. Perform independently of network components

A. Handle network data transmission
and reception

1) Accommodate network throughput

requirements

a) Provide flow control

2) Adaptable to different protocols

a) Handle both synchronous and
asynchronous communication

b) Edit and pack characters

into a formatted message

c) Unpack a message

d) Perform Serial to parallel
data conversion

e) Handle error control functions such
as Message Acknowledge, No Ack-
nowledge, Repeat, and Timeout

3) Have error checking and
recovery capability

19
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B. Relieve host computers from network
specific functions

1) Provide a buffer to smooth
message traffic

2) Poll communication lines if
they are multidropped

3) Handle interrupts

4) Route messages to desired destination

5) Collect performance, traffic, and
error statistics

Table II

UNID II Input Requirements

IntrfaingCapabilities

UNID II should be able to interface a wide variety of

different network components. Each component is connected to

the network via communication links and an interface is

required at every junction of two or more links. Within a

single network, the number of interfaces required can be

numerous and each interface may be programmed differently

depending on the kinds of components interfaced and the

amount of of communication links connected to each inter-

face. UNID II should also be capable of handling a variety

of different topologies and acting as a network-to-network

interface. When dissimilar computing equipment is used,

UNID II may be required to perform code conversion before

messages are retransmitted out on the network. Since

different network components operate at different speeds,

data must be buffered and retransmitted at varying speeds.

20



Transparenc Reauirements

UNID II should not be dependent on network components

to perform its interfacing functions; and ideally, UNID II

should be able to perform its communications functions even

with one or more host computers completely shut down.

UNID II should be capable of handling various data-

communication protocols and able to recover from data-

transmission errors. It should provide a buffer to smooth

message traffic and operate fast enough not to impede the

performance of network components. Each node should route

messages to the next node.

8086 And 3M89 Microorocessgrs

Since several processors may be required to accommodate

UNID II's processing needs and the 8086 family of processors

includes bus support circuitry which makes implementing a

multiprocessing system relatively easy, the 8086 family was

considered a good choice for the UNID II prototype. This

design decision has many merits. The 8086 family includes

the 8089 I/O processor which can give UNID II the ability to

perform high-speed message transfers (Refs 12; 36). Since

the 8086 can address one megabyte of memory, UNID II is very

capable of relieving hosts from network-specific software

tasks. A six-byte instruction queue allows the 8086 to pre-

fetch object code instructions and largely eliminates the

instruction fetch time (Ref 32:7-33). The instruction queue

also allows a longer time for memory devices to recieve an

address and return data which allows the use of relatively
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inexpensive memories (Ref 20:1-17).

The 8086 is a well supported processor. Hardware sup-

port includes specially designed bus controllers, bus

arbiters, and slave processors. The wide variety of

8080/8085 support chips is also compatible with the 8086.

Software support includes PLM-86, a structured language

similar to PASCAL. (The software development process for an

8086/8089 system is overviewed in Appendix A.) Since the

8089 I/O processor can translate code or perform

Mask/Compare tests during a DMA transfer, it is ideal for

UNID II's message processing functions. (Appendix B

discusses 8089 DMA transfers.)

Pra~tical Constraints

Since UNID II is a complex device, testing is a time-

consuming activity. Development of a test plan should pro-

ceed in parallel with other UNID II development efforts, and

ease-of-testability should be built into UNID II. For

debugging software, UNID II's hardware configuration should

allow a Monitor program to access all memory areas.

Diagnostic programs which exercise critical timing and

program paths are also valuable.

UNID II hardware should be designed in a modular

fashion that permits an error in one subsystem to be

isolated from other subsystems. Each subsystem should be

relatively independent, and interfaces between subsystems
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should be simple.

Economic

The original UNID cost approximately $3,000 (Ref

17:58), and the cost of a microcomputer development system

for software support is approximately $10,000. To maximize

the advantage of developing an improved network interface

(UNID II), the cost should be kept within these limits.

UNID 11Model

This section presents and explains the Data Flow Diagrams

(DFDs) which describe UNID II's functional requirements. DFD's

are a graphical tool which use labeled circles (transforms) and

arrows to model the logical flow of data in a system (Ref 38:55).

Arrows represent data streams while transforms convert input data

streams into output data streams. Files or data bases are repre-

sented by a straight line (Figure 2-1).

InpDaaOtut Data

Flows TransformOuptDa

File Name

Figure 2-1 Data Flow Diagram Symbols
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Data Flow Diagrams are done in levels; the first

diagram presented is an overview of the system while succes-

sive lower-level diagrams give a more detailed description

of a selected transform in the next higher-level diagram.

The process of of developing lower-level diagrams

(decomposition) continues until each transform or process

has been described in sufficient detail.

Table III is an outline for UNID II's DFDs and shows

that each transform of the parent DFD was decomposed one

level. This amount of detail is sufficient to serve as a

guide for selecting UNID II's hardware configuration. To

avoid making UNID II application dependent, lower-level

functions which represent application-specific software are

specified by the user.

Transform Number Transform Title

0 UNID II Overview

1 Input Local Information

2 Format According to Outgoing Protocol

3 Transmit Network Message

4 Input Network Information

5 Transmit Local Message

Table III UNID II Data Flow Diagram Outline

UNID II connects local network components to the rest

of the network. Since local devices rarely use the same

protocol as the inner network, Figure 2-2 shows two separate

24



link control protocols, local and network. A network may be

divided into two conceptual areas, an inner area which must

follow network protocol and an external area where a local

protocol is used. If UNID II is used as a gateway or

network-to-network inerface, two different network data-

transmission protocols are supported rather than a network

and local protocol.

UNID IIUNID IITerminal 1

Figure 2-2

UNID II Supporting Both a Network and Local Protocol
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2ID I Overview (Figure 2-3)

Messages are processed in three stages; they are input

into UNID II from either a local or network source (trans-

forms 1 or 4), edited and formatted according to the out-

going protocol (2), and transmitted to their next immediate

destination (3 or 5). The Format-According-to-Outgoing-

Protocol function routes messages to their next local or

network destination , and allows several local devices con-

nected to the same UNID to communicate without accessing the

inner network.

Inpi LocalInformation (Figure 2-4)

The Input-Local-Information process places incoming

local messages into memory. As information flows into

UNID II, control information such as Start/End-of-

Information, frame check, and parity check must be

distinguished from message text. If a transmission error

should be detected, an error message is reported to the

local component which sent the message. UNID II monitors

incoming links to determine when they begin transmitting and

converts incoming messages into bytes or words compatible

with UNID II's memory. Incoming messages are buffered,

scanned for correction characters, and edited. When the

message which is identified by starting address and length

is moved into the processing queue, the previously used

input buffer space is deallocated. Routing information such

as source and ultimate destination is determined and sent to

the processing queue as part of the message.
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Format A tgo Protocol (Figure 2-5)

Stored network and local information is edited and

formatted according to outgoing protocol rules which are

stored in UNID II's memory. Since incoming message frames

may be interleaved with frames from other messages, the

Assemble-Frames function (2.1) is needed to recognize the

frames which belong to each message. Incoming local

information may use a different code than the rest of the

network and require translation. The Determine-Next-

Destination function (2.4) uses a file of routing rules to

determine next destination information which is appended to

the message.

Transmit Network Messae (Figure 2-6)

Once messages are formatted according to network

protocol, they are moved into the output buffer where error

control information is generated and appended to the

message. When the appropriate outgoing link is available,

the message is transformed into a serial bit stream and

transmitted according to outgoing protocol. For the longer

distance network links, parallel links were considered to be

too expensive since they require a separate transmission

channel and associated hardware such as line drivers and

recievers for each parallel bit. Transmit-According-to-

Outgoing-Protocol (3.7) sends the message at the correct

speed and inserts synchronization bits or other information

required by the outgoing protocol. Message acknowledge or

no-acknowledge signals are used to determine if a message

needs to be retransmitted.
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Lnput etwork I.f matin (Figure 2-7)

The error control information sent along with the

incoming network information is used to detect transmission

errors. Depending on network protocol, positive or negative

acknowledgement messages are forwarded to the sending node

to indicate whether or not the message was successfully

recieved. The serial bit stream is converted into bytes (or

words) which are placed into an input buffer. Routing

information such as message source and ultimate destination

queue.

Trni Local M (Figure 2-8)

The Message-Formatted-According-to-Local-Protocol is

moved to the output buffer allowing the space previously

occupied in the processing queue to be deallocated. Error

control information is generated and; if the outgoing link

is serial, the parallel information contained in UNID II's

memory must be transformed into a serial bit stream. Routing

information contained within the message is used to

determine the recieving peripheral which must be monitored

to determine when it is available. Transmit-According-to-

Local-Protocol sends the message at the correct speed and

inserts start/stop bits or other information required by the

outgoing protocol.
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Reguirements Anaysis Summary

The requirements analysis began with a list of input

requirements (Table II) which were obtained from a literary

study of network interfacing functions and applications.

Using Data Flow Diagrams (Ref 38), these input requirements

were used to generate a functional requirements model for

UNID II. This model categorizes UNID II functions into two

main groups; one group of functions handles Local messages

while the other group handles Network messages. The

functional requirements developed in this chapter will be

used as a basis for developing the design of UNID II in

following chapters.
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II*..U. I Ul'z Hardware Design

The most critical design decisions affecting UNID II's

cost and performance are the allocation of each functional

requirement to either hardware or software components. Since

the capabilities of available components should be

determined before establishing function partitions, this

chapter examines the basic hardware configurations supported

by the 8086 microprocessor family and determines which

features should be used to maximize UNID II's performance.

Basic Hardware Configuration

The basic hardware configuration supported by the 8086

CPU and 8089 I/O processor (IOP) is shown in Figure 3-1

(Ref 36). Since the I/O subsystem allows data to be input

into an I/O buffer without use of the system bus, UNID II's

word storage function may proceed in parallel with CPU

processing. The 8089 has two address spaces, a one megabyte

system space shared with the CPU and a private 64K byte I/O

space. Both memory and I/O ports may be placed in either

system or I/O space, but the system bus responds to memory

commands while the I/O bus responds to I/O commands. A tag

bit is used to distinguish between memory and I/O addresses.

The IOP fetches data from a source and transfers it to a

destination identified by an address which allows data tran-

sfers between the system bus and I/O bus, between components

on the I/O bus, or between components on the system bus.
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Application
Programs

Data

SYSTEM BUS

N 01

8089 I/O 8086
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1/0 Private
I/O Bus

I/O Programs

Data Buffer

Figure 3-1

Basic 8086/8089 Processor Configuration
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The 8086 CPU is normally limited to IO instructions

when referencing I/O space, but some additional hardware can

give the CPU its own private bus. Intel literature calls a

private CPU bus a resident bus (Ref 18:A-127). Since two bus

controllers and two sets of bus transcievers are used to

support this configuration, both memory and I/O commands may

be used on either the system or resident bus. An EPROM or

decoder is used for address mapping which allows only the

resident bus to access a portion of the system address

space. Similar to the I/O subsystem, the resident bus gives

the CPU its own private resources creating a modular,

relatively self-sufficient CPU subsystem.

For UNID II, the extra hardware required to implement a

resident bus was considered well worthwhile. This

configuration frees system memory from applications programs

which reduces bus contention and allows system memory to be

used soley for interprocessor communication and the transfer

and buffering of network messages. Since both the CPU and

I/O subsystems have memory space for applications programs

unaccessible by the other subsystem, errors in one subsystem

are less likely to affect the other subsystem. The ability

to isolate errors is considered to be a critical part of

helping to satisfy UNID II's requirement for testability. A

generalized block diagram demonstrating the concept of a CPU

resident bus is shown in Figure 3-2.
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Shared

Memory

SYSTEM BUS

80 89 1/0 8086
Processor CPU

0 Private Private
I/0 Resident I/O
Bus Bus

1/0 Programs CPU Programs

Data Buffer Data Buffer

I/O Subs-'stem CPU Subsystem

Figure 3-2 8086 CPU With Resident Bus
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AoherCPU ocal P ro esso

Although the 8089 I/O processor is well suited to high-

speed data transfers and may operate independently, it lacks

many general-purpose data-processing instructions. It may

not be capable of handling all UNID II's functional

requirements for editing and formatting messages and for

generating and verifying error control words. The variety of

instructions available in the high-speed network I/O

subsystem may be increased by allowing another CPU to share

the same local or private bus as the I/O processor

(Figure 3-3). This configuration was chosen to allow the

network I/O subsystem to completely process messages without

accessing the system bus. In the local mode, one processor

is idle while the other is active, and the IOP acts as a

slave processor which increases the number of instructions

available to the local CPU giving the network subsystem

specialized I/O instructions. Together, the 8086 and slave

8089 IOP act Independently of the system bus. Since

8086/8089 architecture uses logic contained within the

processor chips to handle local arbitration, no additional

arbitration circuitry is required to allow a CPU to share

the 8089 IOP local bus.
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Figure 3-3 An 8086 CPU Local to the I/O Processor
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Figure 3-4 is a block diagram of UNID II's final proto-

type design which consists of two independent subsystems

that communicate through a block of shared memory. The high-

speed Network I/O subsystem handles Network communication

links whose service is time-critical while the Local I/O

subsystem handles lower-speed local or peripheral links. To

allow UNID II to be implemented as quickly and easily as

possible, commercially obtained cards were used for the

Local Subsystem. Since the control signals the 8086

processor family uses for multiprocessing are identical to

Intel Multibus control signals, the Multibus structure was

chosen for UNID II's shared system bus.

For flexibility, an interchangeable I/O card is allowed

to connect directly to the shared Multibus. Since the I/O

card is part of the Local Subsystem, the I/O card should

connect to a Local Subsystem private bus. The I/O card

connection to the Multibus is an implementation compromise

caused by the use of commercial cards; but to reduce bus

contention, future modifications may include placing all

Local I/O on a Local Subsystem private bus.

Network Sbte

Ideally, the Network I/O subsystem should also be im-

plemented using a single board computer, but no commercial

cards containing 8089 I/O processors are presently
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available. UNID II's Network I/O subsystem was designed for

prototyping on a Multibus-compatible wire-wrap card. The

Network I/O subsystem contains an 8086 CPU, a slave 8089 I/O

processor, and private memory and I/O resources. With the

exception of supervisory commands and message transfers, the

entire Network Subsystem operates in parallel with and inde-

pendent of the system Multibus.

Figure 3-5 shows the Network Subsystem in more detail.

A multiplexed Primary bus is connected to the local

processors. Address latches within bus interface logic are

used to demultiplex the Primary bus for communica-tion with

either the Multibus or Private bus (Figure 3-6). Bus inter-

*face logic also contains an 8288 Bus Controller which de-

codes memory and I/O commands from the processors' status

lines (SOS1,S2) and enables the Primary bus to communicate

with either the Multibus or Private bus. (If the Private bus

used only I/O commands, the 8288 in the Private bus inter-

face would not be needed. The second bus controller allows

the processors to use both memory and I/O commands in the

Private address space.) To map some of the local CPU memory

space onto the Private bus, an EPROM decoder enables the

Command Enable (CEN) input of either bus controller which

allows the bus controller to enable its data buffers.

Depending on the address, memory instructions will access

either the Multibus or Private bus. To allow the EPROM on

the private bus to control the CEN input of both bus

controllers, the address latches on the Private bus are

permanently enabled.
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Now

The 8289 Bus Arbiter determines whether to grant a

request to use the Multibus and controls the Address Enable

(AEN) input of the bus controller attached to the Multibus.

The 8289 uses standard Multibus control signals and allows

parallel or daisy-chained arbitration between component

boards connected to the Multibus (Ref 28:6-18 to 6-20).

The 8089 IOP does not support interrupts in the recog-

nized sense (Ref 28:2-22). However, I/O may be synchronized

by using the DMA request input of each channel (Ref 18:4-5).

Since each of the two I/O channels is dedicated to a single

Network transmission link, no polling is necessary.

To support UNID II's functional requirement for a mes-

sage timer to keep track of time elapsed before receiving an

acknowledgement (Figure 2-6), the Network Subsystem also

contains a Programmabe Interval Timer (PIT) and a

Programmable Interrupt Controller (PIC). The PIT allows the

generation of time delays under software control. After a

specified time interval, the PIT will interrupt the local

8086 which can handle the initiation of message retransmis-

sion itself or direct the 8089 IOP to the interrupt service

routine.

A decoder is used to determine the addresses of the

communication ICs and the PIT counters. The decoder may also

be used to decode the 8089 IOP Channel Attention and Select

signals from an address generated by the local CPU (Ref

18:4-46).

47



Lol Subsystem

The Intel 86/12A Single Board Computer (SBC) was

selected to prototype the Local I/O subsystem and shared

system memory. This printed circuit card contains an onboard

bus for private EPROM and I/O resources, an Intel Multibus

interface, and a system bus clock. A dual-port controller

allows onboard memory to be used for either shared system

memory or private CPU memory. Jumper connections are used to

dedicate a portion of onboard memory for exclusive CPU use

while the remaining memory is shared system memory. 32K of

onboard memory is supplied with the 86/12A SBC but is expan-

dable to 64K with the aid of a special expansion board which

mounts directly on top of the 86/12A board. Similarly, the

16K EPROM capacity may be expanded to 32K.

The 8086 SBC contains one RS-232-C serial interface and

24 programmable I/O lines which, by themselves, are not

sufficient to handle UNID II's peripheral requirements.

Figure 3-4 shows a 4-channel serial I/O board which plugs

directly into the system Multibus. The capability to plug

commercially-obtained I/O interfaces directly into the

Multibus gives UNID II the capability to quickly and easily

alter or add local I/O interfaces for different applica-

tions. If more I/O interfaces are required for a specific

application, another I/O board may be plugged into the

Multibus. Some applications may require a parallel interface

card while situations with heavy throughput and many I/O

interfaces would require another independent I/O subsystem
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containing another processor and private memory resources

rather than the slave 4-channel board. When UNID II is used

as a gateway or network-to-network interfacet two high-speed

Network I/O subsystems are required instead of one Local and

one Network subsystem.

CPj-8089 Communication Protocol (Figure 3-7)

The CPU and 8089 I/O processor (IOP) communicate

through a block of shared memory. Figure 3-7 illustrates the

communication scheme which uses control blocks connected in

a linked structure (Ref 12:50). This section applies stan-

dard CPU-IOP protocol to UNID II's Network side which con-

tains the IOP. Standard Intel terminology is delimited by

quotation marks.

Each IOP has two independent channels and two indepen-

dent sets of registers. Since the two channels share the

same internal bus, only one channel is active at a time. The

IOP may be programmed to give one channel a higher priority

than the other or to allow equal priority between its two

channels. If the two channels are programmed to interleave

bus cycles, applications programs can treat the IOP as two

simultaneously operating and independent I/O channels.

Figure 3-7 shows that the "channel control block" in shared

memory allows the CPU to communicate with either of the

IOP's channels. Through the "channel control word", the CPU

may stop, start, or suspend either channel. The CPU prepares

the "channel control word" and pulses the IOP's "channel
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attention" (CA) input pin which is similar to a CPU inter-

rupt. The state of the IOP's channel select (SEL) input

directs the CA to either of the two channels (Ref 18:3-4).

After a channel has completed its task, it signals the CPU

by setting its busy/done flag in the "channel control

block" or activating its interrupt request output, SINTRl

(SINTR2 for channel 2) to send an interrupt request to the

CPU.

I/O device driver programs (object code) are stored in

private IOP memory in a "task block" while data and

variables are stored in a relocatable "parameter block"

located within shared memory. The parameter block contains a

pointer to the entry point in the "task block".

After an 8089 reset, the 8086 signals the 8089 CA input

which causes the 8089 to execute its internal ROM initiali-

zation program. During the first CA following a reset, the

state of the SEL input determines whether the 8089 will act

as a master or slave. For UNID II, the CPU acts as a master

and normally has bus control while the slave 8089 recieves

bus control only on request. The 8089 IOP reads the "system

configuration pointer" to determine the physical width of

the system data bus and the beginning address of the "system

configuration block". This block determines the private bus

width (8 or 16 bits), and defines shared-bus protocol

between master and slave processors. The set of conditions

under which transfer of local bus control occurs is speci-

fied by bit 1 of the "system operation command" (SOC) byte
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contained in the *system configuration block". If bit 1 is

set to 1, bus transfers occur only if the IOP is idle on

both channels; but if bit 1 is set to 0, bus transfers occur

when the IOP is idle, waiting for a DMA transfer, or has

just completed execution of an unchained instruction (Ref

28:3-2). For a hardware configuration similar to UNID II's

where the 8089 IOP is used as a slave to a local 8086, Intel

literature states that bit 1 of the SOC byte must be 0 (Ref

18:3-35). After the 8089 has been intialized, subsequent CA

signals issued by the CPU are used to start I/O operations

in either channel (depending on the level of the 8089 SEL

input). Prior to initiation of I/O operations, the CPU

prepares the "channel control block" and loads the

"parameter blocks".

Each I/O channel both executes programs and performs

DMA-like data transfers. (8089 DMA transfers are discussed

in Appendix B). Since only one channel may be active at any

time instant, DMA transfers normally have priority over

channel program execution which could cause a very long

delay to one channel's program execution if the other chan-

nel is performing DMA transfers. If desired, one channel's

program execution can be "chained" so that it has the same

priority as the other channel's DMA transfers. Now, IOP

hardware alternately allocates bus cycles to each inde-

pendent channel. This interleaving of bus cycles causes no

additional time delay or overhead.
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Following a reset, both the 8089 IOP and 8086 jump to

the same area of shared system memory. The 8089 reads the

contents of the System Configuration Pointer located at

location FPPF6H, and the 8086 jumps to EPROM location FFFFOH

which contains a jump instruction to the start of the 8086

program.

For the UNID II prototype, shared memory resides on the

86/12A Single Board Computer. The upper memory that the 8089

(and second 8086) in the Network subsystem must access upon

a reset is reserved for the 86/12A monitor and cannot be

addressed from the shared system bus. To resolve this con-

flict, 86/12A shared memory (locations 0 to 7FFFH) is

configured to appear as upper memory (locations F8000H to

PFFFFH) to the Network Subsystem (and other Multibus boards

connected to the system bus) (Ref 21:3; 45). Using this

offset, the 86/12A CPU sets up the 8089 System Configuration

Pointer at memory location 7FF6H which corresponds to the

system location FFFF6H that the 8089 will jump to upon a

reset. Similarly, the 86/12A address 7FFOH which corresponds

to system address PFFFOH is initialized with a jump instruc-

tion for the 8086 in the Network Subsystem. Figure 3-8 is a

memory map for UNID II which and shows both 86/12A addresses

and the address offset for Multibus access.
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7FFF H FFFFF H
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Conf'ig. Pointer
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CPU Reset Jump

FEOO

Shared Memory

Shared Memory

Shared Memory

0 H F8000 H

Figure 3-8 UNID II Memory Map
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Sgil 0Hardware

I/O functions such as parallel-to-serial data

conversion or maintaining bit and character synchronization

are handled most efficiently with a specialized integrated

circuit such as an Universal Synchronous/Asynchronous

Reciever/Transmitter (USART) or a multiprotocol chip.

Without these specialized communication ICs, processor

software would have to transmit data bits at precisely the

right time which would monopolize the processor during

transmission of each bit.

On UNID II's Local side, specialized I/O hardware is

contained on the 4-channel serial I/O board which plugs into

the system Multibus. (Some applications may instead require

a board containing both serial and parallel or other

interfaces). Most of UNID II's lower-speed Local peripherals

will use a standard USART to handle specialized communicaton

functions.

UNID II's high-speed Network side is likely to use a

protocol similar or identical to one of the major link

protocols shown in Table IV. Standard USARTs are not well

suited for these sophisticated protocols and a multiprotocol

IC should be used. The Signetics 2652 was chosen in

preference to other multiprotocol chips for three major

reasons; (1) the 2652 supports all the protocols listed in

Table IV (2) both 8 and 16 bit word lengths can be accommo-

dated, and (3) the 2652 supports transmission rates up to 2
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Megabytes/Sec. Table V lists several features of the

multiprotocol chips considered while a much more exhaustive

list of features is presented in the June 8, 1978 issue of

Electronics magazine (Ref 39:112).

~Company or
Standards Organization Protocol

IBM Binary Synchronous
Communications (BISYNC)

IBM Synchronous Data Link
Control (SDLC)

ANSI Advanced Data Communication
Control Procedure (ADCCP)

ISO High-Level Data Link
Control (HDLC)

DEC Digital Data Communications
Message Protocol (DDCMP)

Table IV Popular Link Protocols

Number Qf I= Ports

Depending on the network topoloy and number of

peripherals connected to each UNID, the number of I/O ports

required will vary. To allow maximum flexibility, UNID II

allows an additional I/O board to be plugged into the system

Multibus. This section determines the number of I/O ports

that UNID II's basic design can easily accommodate without

resorting to additional hardware.
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Sig-
netics SMC Zilog Fairchild

Feature 2652 5025 SIO 3846

Maximum Data 550K/
Rate (Bits/Sec) lM/214 500K 880K im

Data Bus Pins 8/16 8/16 8 8/16

Multiprotocol
(Bisync, DDCMP) Yes Yes Yes Yes

Western
Motorola Intel Digital

Feature 6854 8273 1933

Maximum Data
Rate (Bits/Sec) 660K/lM 64K iM

Data Bus Pins 8 8 8

Mul tiprotocol
(Bisync, DDCMP) No No No

Table V Comparison of Communication ICs
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Local I/O ystem

On UNID II's Local side, the basic number of I/O ports

is the number of ports on the commercial I/O board which

plugs into the system Multibus. Four ports on a single board

is common, but the number may vary. (The single serial port

and I/O ports present on the 86/12A SBC are also available

for Local peripherals). Intel research (Ref 19:1-12) has

determined that an 8085A CPU with 40% of its time devoted to

user programs and 60% of its time devoted to I/O can handle

4 simultaneously operating 12,000 baud full duplex channels.

(9600 baud would be the maximum standard rate). Since the

8086 has a higher performance than the 8085A, the Local 8086

CPU should be able to comfortably handle the number of I/O

channels on the Local I/O board. Data-communications are

often "bursty", and it is unlikely that all Local I/O ports

will simultaneously require service.

Network ILQ Subsm

Although the 8089 IOP has an advertised DMA transfer

rate of 1.25 Megabytes/Sec (0.625 Megabytes/Sec for 8-bit

bus widths), UNID II is designed for only two high-speed

ports in the Network I/O subsystem. (DMA transfers must be

preceded by execution of a channel program whose instruction

speeds range from 1.4 to 12.2 microseconds). Each port is

dedicated to an I/O channel which greatly simplifies appli-

cations programs. After initialization, on-chip logic trans-

parently handles any required time-multiplexing between I/O

channels. If more high-speed ports are desired in the Net-
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work Subsystem, application programs must poll the various

ports.

Communications terfa

Line driver and receiver ICs will be used to allow the

actual transmitted signal to meet RS-232-C, RS-422, or RS-

423 electrical specifications. Technically, all new devices

procured by federal agencies should meet the RS-449 standard

(Ref 13:72) which includes both RS-422/RS-423 electrical

specifications and the mechanical and functional character-

istics of the interface between data terminal equipment

(DTE) and data circuit terminating equipment (DCE) (Ref

24:409). Some of the limitations of the older RS-232-C

interface are an upper data rate of only 20 Kbits/Sec and a

maximum cable length of about 15 meters. The newer RS-423-A

standard has a transmission capability of up to 100

Kbits/Sec and is operable with both RS-232-C and RS-422-A.

The RS-422-A standard allows data rates up to 2 Mbits/Sec

but is not compatible with RS-232-C devices.

Despite the greatly enhanced performance of the newer

standards, many manufacturers have been reluctant to change,

and most lower-speed peripherals are likely to use RS-232-C.

It seemed most benificial for UNID II's lower-speed Local

links to use the RS-232-C interface. Even though RS-232-C is

operable with RS-423-A, the newer standard uses a larger

connector due to an increased number of functional circuits.

If all lower-speed peripherals interfaced by UNID II use the

RS-232-C interface, the 37-to-25 pin mechanical adapter
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required for RS-232-C and RS-423-A interoperability would be

an unnecessary inconvenience. UNID II's high-speed Network

links will use the maximum performance RS-422-A standard.

Early data-communication peripherals were often elec-

tromechanical devices which used current pulses to transmit

data. Due to the large number of Teletype machines produced,

they are still a dominant type of user terminal (Ref

37:254); and for longer distances, current loops provide

greater noise immunity than the popular RS-232-C interface.

Unfortunately, circuit resistance, capacitance, and

inductance create a lag in the rise and fall of current

pulses which greatly limits transmission rates. Current

loops tend to create noise in nearby circuits and should be

used with caution. Since newer equipment usually uses a

voltage interface, UNID II does not directly support a

current-loop interface. Commercial RS-232-C to current-loop

adaptors may be used if desired. (On UNID II's local side,

the iSBC 530 Teletypewriter Adapter may be used to provide

an optically isolated 20 mA current-loop interface for the

86/12A board) (Ref 18:B-174).

Similarly, the common-bus type of network architecture

is not directly supported. In a bus architecture (Figure I-

7), all messages are simultaneously broadcast to all nodes.

If a transciever is designed for the connection between

UNID II and the common transmission channel, UNID II may be

used to support bus oriented protocols such as the popular

carrier-sense multiple-access/collision-detection (CSMA/CD)
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protocols. To support Ethernet, a popular CSMA/CD local

network, Intel has released a single-board Ethernet

controller (iSBC 550) (Ref 14). The iSBC 550 is Multibus-

compatible and can be used as UNID II's Network Subsystem.

Summary f Deign Philosophy

UNID II is partitioned into two subsystems, the Network

Subsystem which handles Network transmission links and the

Local Subsystem which handles peripheral links. To allow

concurrent processing of Network and Local messages, each

subsystem possesses its own processor(s) and memory. Inter-

subsystem communication and message transfer occur through a

block of shared memory.

In the Network Subsystem, the 8089 I/O processor allows

high-speed DMA transfers; but to insure independence from

other processors on the system bus, the Network Subsystem

also has its own CPU. The Network CPU provides general-

purpose instructions for message editing and formatting and

arithmetic instructions which may be necessary for genera-

ting and verifying error-control words. For maximum perfor-

mance, the Network Subsystem will use the RS-422 communica-

tions standard.

The single-processor Local Subsystem has the capability

to quickly and easily add or alter its I/O interfaces. For

example, parallel and/or serial I/O boards may be plugged

into the system Multibus. (Figure 3-9 demonstrates the

overall structure of UNID II). To use UNID II as an inter-

network interface, the Local Subsystem should be replaced

with a second Network Subsystem.
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Figure 3-9 Overall Structure of UNID II
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v.Reasons =o uN Desig

This chapter presents a more detailed description of

the reasoning behind UNID II's hardware design which was

developed in Chapter III. To illustrate the advantages of

the final prototype design, the relative advantages and

disadvantages of earlier (and eventually discarded) designs

are also discussed. This chapter culminates in the alloca-

tion of the functional requirements developed in Chapter II

to either the Local or Network subsystem.

Reasons Uin the 8089

Although UNID II's 8089 I/O processor is part of the

independent Network subsystem, the 8089 is used as a slave

to a local CPU. Since the local CPU is idle whenever the

8089 is using the local bus, it may seem easier to allow the

local CPU to execute I/O programs and replace the 8089 IOP

with a less complicated DMA controller. This is a viable

alternative if it is desired to compromise some of UNID II's

flexibility requirements; but to allow maximum flexibility

for handling a wide variety of interfacing applications, the

8089 is a better choice. During a DMA transfer (explained in

Appendix B), the 8089 can translate network codes and check

for end-of-message or other control information using its

translate and Mask/Compare options. 8089 on-chip logic

transparently handles any necessary word assembly/

disassembly required for using 8-bit peripherals with

UNID II's 16-bit data bus. DMA transfers can occur between

components (memory or I/O ports) on the private bus, between
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components on the system bus, or between system components

and private components. The 8089 has two independent I/O

channels; and although only one channel may be active at a

time, the 8089 supports a multitude of programmer-specified

priorities for alloation of bus cycles between channels. If

one channel is idle, the other channel operates at maximum

capacity even if the idle channel has been initialized and

is waiting for information. If both channels are

simultaneously active, the interleaving of bus cycles

between channels is handled by on-chip logic which does not

slow overall throughput. (Depending on channel priorities,

one channel's operation may temporarily block the other

channel.)

One of the more significant advantages of the 8089 is

its ability to execute its own channel programs. This capa-

bility modularizes software design. Similar to a mainframe

computer, the I/O channels are programmed separetly from CPU

programs (Ref 36:301). If a DMA controller is used, the CPU

must execute both-I/O and CPU programs.

1 thA MMft ii = Ro d in the Remote Mde

In the Remote mode (Ref 28:3-3), the 8089 acts as an

independent processor and operates in parallel with the CPU.

For example, a CPU used for predominately arithmetic

processing can use an 8089 to handle I/O functions and

prevent slow-speed I/O from wasting the CPU's time (Figure

4-1). Even though using the 8089 in the Remote mode takes

maximum advantage of the 8089's capabilities, the 8089 was
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used as a slave processor in UNID II's Network Subsystem.

The following examples of previous design iterations used

the 8089 in the Remote mode and illustrate why an 8089 slave

is instead advantageous for UNID II.

Peiu Design Tteu aton

One of the earlier design considerations (Figure 4-2)

consisted of two Remote 8089 processors and an- area of

shared memory for inter-processor communication. Since an

8089 system must contain a CPU to set-up and initiate DMA

transfers, an 8086 CPU was included. The problem with this

configuration is that it consists of three hardware

subsystems while UNID II's Data Flow Diagrams model only two

logical subsystems (Network and Local). If one 8089

processes Local messages and the other 8089 processes

Network messages, the CPU contributes no processing

capability and the added complexity of the CPU interface and

arbitration circuitry is not worthwhile. Since the 8089 does

not have a lot of general-purpose instructions, this scheme

may not be capable of handling UNID II's functional require-

ments. If the two 8089s are allowed to share the single CPU,

bus contention would be unreasonably high. Since both 8089s

would require continual use of the system bus during message

processing, the advantages of giving each hardware subsystem

its own private memory and I/O resources are lost. In

comparison, UNID II's final prototype design (described

below) contains the same number of processors and less

arbitration circuitry than Desin Iteration No. 1 but allows
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the Network and Local subsystem to operate relatively

independently.

Design Iteration No. 2 (Figure 4-3) is less complex

than the previous design iteration, but it has the same

problem. The CPU is shared by both subsystems. Even though

the two 8089s give the system four independent I/O channels,

all channels share the same bus which may be overloaded by

high-speed network components.

VNIQ LI' .j Final. QotoQtyPe Desgn

UNID II's final prototype design evolved from Design

Iteration No. 2, which has two hardware subsystems. Instead

of using a single subsystem for all I/O, Network I/O is

handled by one subsystem while Local I/O is handled by the

other subsystem (Figure 4-4).

To allow the Network Subsystem to be relatively

independent of the system bus, the Network Subsystem con-

tains an 8086 CPU a - slave 8089. To allow the flexibiliy of

plugging commercial cards into the system bus, the Local

Subsystem does use the system bus. Depending on application

needs, the commercial I/O card may consist of only I/O ports

and USARTs or can consist of an intelligent communications

controller board similar to the Intel iSBC 544 (Ref

19: 1-112 to 1-173) which has its own rnboard processor and

memory in addition to USARTs and buffers. (The final proto-

type design illustrated in Figure 4-4 is the same design

illustrated in Figure 3-4, but Figure 3-4 shows the details

of the 86/12A SBC used to prototype the Local Subsystem.)
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Fun n AIoaion

Having determined that UNID II will consist of two

hardware subsystems, all Network functional requirements can

be allocated to the Network Subsystem and all Local

functional requirements can be allocated to the Local

Subsystem (Tables VI and VII). (UNID II's functional

requirements are developed in Chapter II.) The two following

examples illustrate the concept of separating Network and

Local functions.

This example consists of a Local terminal communicating

with a remote host. UNID II inputs the incoming terminal bit

stream into a buffer contained in the Local Subsystem. After

a complete message or packet is assembled, it is moved into

the shared memory buffer until it can be serviced by the

Network Subsystem. The Network Subsystem translates the

shared memory packet into the network code and message

format as it moves the packet into the Network Subsystem

buffer. Once the packet is located within the Network

Subsystem, it may be transmitted at a high rate of speed by

the 8089 IOP as soon as the appropriate network link(s) are

available.

The second example consists of a terminal communicating

with a host connected to the same UNID II. In this situa-

tion, neither UNID II's Network Subsystem or network links

are accessed. (Network links are accessed when local

peripherals communicate with remote network components.) The

incoming terminal characters are buffered in the Local
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Table VI

Local Subsystem Functions

1. Input Local Information

1.1 Check for Transmission Errors

1.2 Transform Serial Data into Bytes or Words

1.3 Store Information in Input Buffer

1.4 Move Information Into Processing Queue

1.5 Correct Input Errors

1.6 Recognize Control Information

1.7 Append Source/Destination Information

2. Format According to Outgoing Protocol

2.1 Assemble Frames

2.2 Translate Code if Necessary

2.3 Identify Routing Information

2.4 Determine Next Destination

2.5 Format Message According to Outgoing Protocol

5. Transmit Local Message

5.1 Transmit According to Local Protocol

5.2 Transform Bytes or Words into Serial Data

5.3 Generate Error Control Information

5.4 Move Message to Output Buffer

5.5 Determine if Local Peripheral is Available

Note: The Above Numbers Correspond to the Data
Flow Diagram Nodes Developed in Chapter II
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Table VII

Network Subsystem Functions

2. Format According to Outgoing Protocol

2.1 Assemble Frames

2.2 Translate Code if Necessary

2.3 Identify Routing Information

2.4 Determine Next Destination

2.5 Format Message According to Outgoing Protocol

3. Transmit Network Message

3.1 Move Message to Output Buffer

3.2 Generate Error Control Information

3.3 Determine if Outgoing Link is Available

3.4 Transform Bytes or Words Into Serial Information

3.5 Deallocate Output Buffer Space

3.6 Set Message Timer

3.7 Transmit According to Outgoing Protocol

4. Input Network Information

4.1 Move into Processing Queue

4.2 Store Information in Input Buffer

4.3 Transform Serial Data into Bytes or Words

4.4 Check for Transmission Errors

4.5 Recognize Control Information

Note: The Above Numbers Correspond to the Data
Flow Diagram Nodes Developed in Chapter II
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Subsystem memory where they are assembled into a format

acceptable to the host. If the Local Subsystem buffer be-

comes full, some messages can be temporarily stored in

shared memory, but shared memory is intended primarily for

inter-subsystem message transfer and buffering. When the

host link is available, messages buffered locally may be

transmitted.

Summary
This chapter began with the reasoning behind the selec-

tion of the 8089 rather than a DMA controller. Discussions

of previous design iterations demonstrated the value of

UNID II's final prototype design which uses one hardware

subsystem for Local I/O processing and a second hardware

subsystem for Network I/O processing. Two examples describe

hypothetical message processing using the constraint that

Network messages are processed by the Network Subsystem and

Local messages are processed by the Local Subsystem. This

constraint serves to minimize UNID II bus contention.
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C. onclion And Recommendations

This investigation designed a suitable hardware config-

uration for a programmable network interface. The design was

configured to allow maximum flexibility and to accommodate

the functional requirements developed in Chapter II.

UNID II's flexibility allows it to be used in a wide variety

of applications and helps to eliminate the lag time required

to custom design hardware for each new application or

requirements change to an existing application.

UNID II's design was modularized by allocating Network

and Local functions to separate subsystems. The specialized

8089 I/O processor allows the Network Subsystem to transmit

and receive data at DMA rates. The 8089's ability to execute

its own I/O (channel) programs allows modularization of

Network Subsystem software. The Local Subsystem's

interchangeable I/O card allows lower-level I/O hardware

such as USARTs or I/O ports and line drivers to be easily

interchanged.

Recommendations

This investigation indicates that a flexible network

interface is a viable project, and the recommendation is to

implement the UNID II prototype. The large size of the

project suggests implementing UNID II in several stages

which are described below.

1) The first step is to write or purchase software to

download programs developed on a microcomputer

development system to the 86/12A. The 86/12A contains
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UNID II's shared memory and forms the basis of the

Local Subsystem. Once UNID II software is downloaded to

shared memory, UNID II's processors can download

appropriate software to private memory areas.

2) The Network Subsystem containing the 8089 can be

developed and tested. A complete chip-level schematic

and chip-layout diagram is described in Intel

Application Note AP-89 (Ref 21) for an 8089 system

without private memory or onboard 8086. Similar to

UNID II's Network Subsystem, the sample design is

intended for wire-wrapping on a Multibus-compatible

wire-wrap card. A sample 8089 program and debugging

flowchart are also included. Since this example

schematic solves a lot of the timing and current-

loading problems that occur in a chip-level design, it

can be used as the basis for UNID II's Network

Subsystem chip-level design.

3) By first operating UNID II using only shared memory,

both 8086 and 8089 programs can be examined with the

aid of the 86/12A monitor. Private 80 89 (Network

Subsystem) memory can be designed as an expansion

capability.

4) When writing application programs, it is suggested

that PLM-86 be used in preference to ASM-86. PLM-86 is

a high-level language similar to Pascal. Under some

circumstances, the 8086's memory segmentation scheme
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tends to make 8086 assembly language confusing. For

example, the offset the 8086 uses to address its one

megabyte of memory (Ref 18:2-10) can be confusing when

assigning an absolute address to an I/O port.

5) After applications programs have been developed and

tested, EPROMs can be used to make UNID II independent

of a microcomputer development system.

The 8086 family of microprocessors can be quite com-

plex. It is hoped that, in addition to designing a flexible

network interface, this investigation served to summarize

8086 multiprocessing circuitry and protocols.
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A~iindix A

The 8086/8089 Software Development Process
(Refs 41, 42, 18:3-63 to 3-86)

Appendix A outlines the software development process

for an 8086/8089 system using Intel development software

which runs on an Intellec 800 or Series II Microcomputer

Development System. Although the 8089 I/O processor requires

its own assembly language (ASM-89) and assembler which is

separate from the 8086 assembly language (ASM-86) and

assembler, the 8086 Link and Locate programs operate on

segments from both 8089 and 8086 source-code translations

(object files). PLM-86 is is a high-order language which is

very similar to Pascal. Figure A-i briefly outlines the

8086/8089 software development steps.

Source Code

Written In: PLM-86 Compiler
SI PLM-86 'ASM-86 Assembler

Text Editor ASM-86 ASM-89 Assembler

Be Usrit,

S Object Code SystemI

Figure A-I 8086/8089 Software Development
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Reloata~l&Obj*ect Codg e agnts~

An object file consisting of relocatable segments

results from the use of the appropriate compiler or

assembler on a source code module. Segments are the basic

elements for linkage and relocation, and segment addresses

are relative to the beginning of the segment. (External

references may be specifically declared to allow separately

compiled modules to reference each other).

Segments are related to the 8086 addressing scheme.

Even though the 8086 has a 20-bit (one megabyte) address

space, its registers are only 16 bits wide. Four segment1registers each which point to a 64K block of memory are used
for memory addressing. If more than 256K (4 X 64K) of memory

is needed, the program must alter the values of the segment

registers. A 20-bit segment address is constructed by appe-

nding four lower-order zeros (Ref 26:14) to the 16-bit value

in the segment register which allows segments to be placed

on any memory boundary that is a multiple of 10 Hex. If

desired, segments may be overlapped.

Programs are divided into segments according to certain

attributes. For example, a program's object code, stack

space, and data are often placed in different segments. ASM-

86 allows the programmer to name segments while ASM-89

produces a single logical segment and PLM-86 generates its

own segment names.
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Table VIII demonstrates how PLM-86 generates segment,

class and group names depending on the compiler option

SMALL, MEDIUM, or LARGE (described below). (Experience has

shown that the PLM-86 Version 2.1 compiler generates the

segment names modname_CODE and modnameDATA rather than

modname.CODE and modname.DATA as specified in the "MCS-86

Software Development Utilities Operating Instructions For

ISIS-II Users" manual (Ref 41:C-1). These names must be

correctly specified when the program is being located or

LOC-86 will be unable to find the specified segment(s).

The object file consists of five sections which are

combined into memory segments according to the compiler's

size control (discussed below). (1) The CODE section con-

tains the program's object code. If the LARGE control is

used, the CODE section also contains constants. (2) The

CONSTANT section contains variables initialized with the

PLM-86 DATA statement, REAL constants, and constant lists.

(3) The DATA section consists of program variables. (4) The

STACK section is temporary storage used during program exe-

cution, but its size is automatically determined by the

compiler. (5) The MEMORY section is an area in memory which

is referenced by the built-in PLM-86 identifier MEMORY, a

BYTE array of unspecified length for uninitiated 8086

storage (Ref 44:12-13).

P=M-_ 8 Z Control

The following compiler options affect the manner that
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SMALL compiler option:

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

MEDIUM compiler option:

Segment Name Class Name Group Name

modnameCODE CODE none
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

LARGE compiler option:

Segment Name Class Name Group Name

mo name-CODE CODE
_dnameDATA DATA none

STACK 
5 TA K

M EMORY MEMORY

Table VIII PLM-86 Generated Segment, Class, and Group Names

(Ref 41:C-1)
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different object file sections are combined into contiguous

8086 memory segments. Since memory segments have a maximum

size of 64K, the way sections are combined into contiguous

segments limits the size of source code modules. (A module

is a section of code separately created and translated to an

object file.)

SHALL Case

When source-code modules compiled with the SMALL

control are linked, the CODE sections from all modules are

combined into a single segment. CONSTANT, DATA, STACK, and

MEMORY sections from all modules are placed in a separate

segment. Since there is only one segment for code and data,

the 8086 Code Segment (CS) and Data Segment (DS) registers

never need to be updated during program execution and the

SMALL control allows the greatest program efficiency. The

SMALL control may be used if the total size of all CODE

sections is less than 64K and if the total size of all data

(CONSTANT, DATA, STACK, and MEMORY) sections is less than

64K. The SMALL case is the default case and must be used

when the PLM-86 compiler compiles PLM-80 programs for use on

an 8086 system.

The MEDIUM control allocates a separate segment for the

CODE section of each compiled module. CONSTANT, DATA, STACK,

and MEMORY sections from all modules are placed within a

single segment allowing this case to be used if the data

sections from all compiled modules fit within a single 64K



segment.

LAR C~ase

The PLM-86 LARGE control places CODE and CONSTANT sec-

tions from each compiled module into a separate segment, and

places the DATA section from each compiled module into a

separate segment. STACK sections from all compiled modules

are combined into a single segment; and similarly, MEMORY

sections from all modules are also combined into a single

segment.

LINK-86 combines separately translated source-code

modules from ASM-89, ASM-86, and PLM-86 and resolves

external references between modules. When first defined, the

relocateable segments that form the translated modules do

not have a fixed size, and if segments from separately

translated modules have identical names, they are combined

into the same segment. (Segments with different names remain

as separate segments.)

LOC-86 assigns absolute addresses to the object code

file. The ADDRESSES control may be used to specify addresses

for particular SEGMENTS or CLASSES. For example, to place

object code contained in the previously-linked file,

8086LNK.OBJ, into EPROM space beginning at location FE000H,

the following series of commands may be used. (The name of

the CODE segment contained in the input filet 8086LNK.OBJ is

PROTOTYPE.CODE.)



LOC86 8086LNK.OBJ TO 8086EPROM.OBJ&
BOOTSTRAP&
ADDRESSES (SEGMENTS (PROTOTYPE-CODE (FEOOB)))
OH86 8086EPROM.OBJ TO 8086EPROM.HEX

After a power-up or reset, the 8086 jumps to the top of its

memory space to location FFFFOH. The BOOTSTRAP control may

be used to place a long jump in locations FFFFOH through

FFFF4H so that program control will be directed to the

beginning of the program code segment. The following LOC-86

memory map would be generated by the above LOC-86 commands:

MEMORY MAP OF MODULE PROTOTYPE
READ FROM FILE 8086LNK.OBJ
WRITTEN TO FILE 8086EPROM.OBJ

MODULE START ADDRESS PARAGRAPH = FEOOH OFFSET = OOAEH

SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

00200H 0032CH 012DH W PROTOTYPEDATA DATA
0032EH 0036FH 0042H W STACK STACK
FE000H FF6BAH 16BBH W PROTOTYPE_CODE CODE
FFFFOH FFPF4H 0005H A (ABSOLUUTE)
FFFF6H FFFF6H OOOOH W MEMORY MEMORY

Since no specific address was specified for DATA and STACK

segments, they are located by default beginning at location

200H. The above number values were taken from a sample

program, but the actual segment lengths are dependent on the

source program,

Before a located object file can be printed in readable

form, it must be converted to HEX by OH-86. Also, the input

to an INTEL Universal Prom Programmer (UPP) must be an 8086

Hex file.
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Z=r DRy.L1.7± (Ref 43:C-9)

8086 Hex files are stored differently than 8080 Hex

files, and the command READ 86HEX FILE must be used. Two

parallel 8-bit wide PROMs are used to form 16-bit words; and

for the same block of PROM memory, one PROM contains even-

address, low-order bytes while a second PROM contains odd-

adress, high-order bytes. Since Intel Universal PROM Mapper

(UPM) software only allows one PROM at a time to be

programmed from a single sequential Hex file, both the high-

order and low-order bytes from the input Hex file must be

separately collected into contiguous sections of memory. The

STRIP command may be used to sequentially read through an 86

Hex file and strip off either high or low order bytes and

place the remaining bytes in a new sequential file. Table IX

is an example of 7 steps for programming four 2716s (Ref

21:4):

Step UPP Command

(1) READ 86HEX FILE 8086EPROM.HEX INTO 2000H

(2) STRIP LO FROM 0 TO 1FFFH INTO 4000H

(3) STRIP HIGH FROM 0 TO 1FFFH INTO 6000H

(4) PROGRAM FROM 4000H TO 47FFH START 0

(5) PROGRAM FROM 4800H TO 4FFFH START 0

(6) PROGRAM FROM 6000H TO 67FFH START 0

(7) PROGRAM FROM 6800H TO 6FFFH START 0

Table IX UPP Programming of four Intel 2716 EPROMs
From an 8086 Hex File
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(1) The entire 86 Hex file is read into the memory of the

Intellec 800 or Series II. (2) The low-order bytes are

stripped away from the input file leaving the high-order

bytes which are stored sequentially beginning at location

4000H. (3) Similarly, the high-order bytes are stripped

away, and the result is stored starting at location 6000H.

(4 & 5) Using the previously created file of high-order

bytes, the high-order byte PROMS are programmed. (6 & 7) The

low-order byte PROMs are programmed.

Caution =Assembl Langage Pggamm

Due to the 8086 six-byte instruction queue which

prefetches instructions when the bus is not busy, code

should not be written within six bytes of physical memory.

The 8086 may attempt to prefetch nonexistent code which will

hang the processor if the 8086 system is configured to wait

for the READY acknowledgement from addressed memory (Ref

18:2-96).
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8089 DMA Transfers (Refs 18:4-47 to 4-51; 28)

Since all 8089 DMA transfers require at least two bus

cycles, one cycle to read a data byte or word from a source

address and one cycle to write the data to a destination

address, the 8089 does not provide standard "DMA" which

transfers a block of data in a single cycle. However, 8089

DMA transfers are very fast. Using a standard 5 Mhz clock,

the 8089 can achieve DMA transfer rates up to 1.25

Megabytes/Sec (Ref 28:1-1).

Chne Prga

The 8089 I/O processor both executes I/O programs and

performs DMA transfers. All I/O operations, including the

transfer of a single byte, are handled as DMA transfers; and

to initiate a DMA transfer, a channel program must be exe-

cuted. The channel program loads the 8089's Channel Control

Register which specifies the source and destination

addresses, data translation option, logical bus widths, type

of data synchronization, and DMA terminate conditions.

Additionally, the channel program sets mask and counter

registers (discussed below) and starts the DMA transfer with

a XFER instruction.

The 8089 can exit the DMA mode and return to the chan-

nel program on one or more of the following conditions. (1)

A single cycle transfer may be specified so that channel
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execution resumes immediately after the transfer of a word

or byte. This mode may be desireable if a single 8089 I/O

channel is polling several lowspeed devices such as CRTs.

(2) The Mask/Compare terminate option allows termination on

either a successful or unsuccessful match of the

Mask/Compare register. This feature can be used to recognize

end-of-message characters in UNID II's incoming bit stream.

(3) DMA can be terminated when the Byte Count register

decrements to zero. (4) Each of the 8089's two channels has

an External Terminate (EXT) input signal to allow external

devices to control the DMA transfer.

The 8089 allows data to be translated during a DMA

transfer. To use this option, a 256 byte translation table

is created in memory. The source byte is used to index the

table, and the indexed byte is sent to the data destination.

Since this option only works for bytes (not words) 8-bit

logical bus widths must be specified.

D=~t Suc And Qastinati= Opions

During a DMA transfer, the 8089 reads from a source

address, latches the data, and transfers the data to a

_ destination address. Both the source and destination address

may be directed toward either the 8089's shared or private

bus, and either bus may be 8 or 16 bits wide. On-chip logic

transparently handles any necessary word assembly/

disassembly. Both the source and destination may be treated

as either an I/0 port or memory, but memory addresses are

automatically incremented after each byte or word transfer
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while I/O port addresses remain unchanged.

fnl&L Synchronization

The 8089 allows unsynchronized, source-synchronized,

and destination-synchronized DMA. Since unsynchronized DMA

transfers allow maximum transfer rates, they are usually

used for memory-to-memory transfers. For I/O transfers,

UNID II must not send or receive data faster than communica-

tion links (and communication ICs) allow. In the synchro-

nized modes, the communications interface (or I/O device

controller) initiates each 8089 data transfer cycle. Source

synchronization is used for I/O reads while destination

synchronization is used for I/O writes. Each of the two 8089

channels has its own DMA Request (DRQ) input. The 8089

acknowledges a DMA Request by placing the I/O port's address

on the bus, and external logic must be used to decode this

address as a DMA Acknowledge (DACK) to the DMA Request (Ref

18:4-51).

Cofso etween CanlControl ytandChannel Control Registr

The Channel Control Register discussed in this appendix

is a register within the 8089 used for specifying DMA op-

tions and should not be confused the Channel Control Byte

located in the Parameter Block within shared memory. The

Channel Control Byte is used by the CPU to stop, start, or

suspend an 8089 I/O channel. To avoid confusion, both Intel

(Ref 18) and Chapter III of this paper use the term Channel

Control Word. Osborne (Ref 28) uses the term Channel Control

Byte.
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