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This research effort describes the preliminary hardware
design of an improved Universal Network Interface Device
(UNID II). The concept of a universal network interface was
studied in previous Air Force Institute of Technology re-
search investigations. This report further defines and
clarifies the concept of a network interface and uses the
state-of-the-art 8086 family of microprocessors to give
UNID II increased performance capabilities.
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Abstract

This research describes the design of a Universal
Network Interface Device (UNID II) which is intended for use
in a computer communications network. The II distinguishes
UNID II from the original UNID which was also designed and
developed at the Air Force Institute of Technology.
UNID II's purpose is to 1lessen the time delays and
development costs incurred by custom-designing network
interfaces for each application. UNID II is a programmable
interface; and although different applications réquire
different device dependent programming, OUNID II hardware
remains essentially unchanged. A requirements study shows
that to handle a wide variety of interfacing situations,
UNID II must perform node functions which include
concentration, switching and routing, front-end processing,
and user-terminal interfacing. The performance of these
functions relieves network hosts from communication-specific
software.

The key design concept is the subdivision of UNID II
into two independent subsystems which communicate through an
area in shared memory. The Network Subsystem handles high-
speed network links while the Local Subsystem handles net-
work peripherals. This modular approach reduces bus conten-

tion and allows the effect of an error or change to be

isolated.
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For high performance, the Network Subsystem includes
the Intel 8089 I/O processor; and for flexibility, the Local
Subsystem uses a Multibus-compatible communications board
which contains serial or parallel interfaces and may be

interchanged depending on user needs.




PRELIMINARY DESIGN OF A COMPUTER
COMMUNICATIONS NETWORK INTERFACE USING
INTEL 8086 AND 8089 16-BIT MICROPROCESSORS

I. Introduction

In response to increased data communications require-
ments on a typical Air Force Base, Rome Air Development
Center (RADC) specified a need for a small and economical
network interface device to connect various base computers
and terminals to a computer communications network. Several
Air Force Institute of Technology (AFIT) research efforts
have studied this need and produced a prototype Universal
Network Interface Device (UNID) (Refs 3,6,31).

Using 16-bit microprocessor architecture, this research
effort develops a new network interface design (UNID II)
which 1is capable of performing the functions of a network
node, Since it is designed for flexibility, UNID II can
handle a wide variety of network interfacing applications.
The first prototype of UNID II will be used as a node for

AFIT's Digital Engineering Laboratory.

Motivation for Computer Networks

A computer network is an interconnected set of host
computers and peripherals which communicate with each other
and share resources such as goftware, data bases, memory
space, and user terminals (Ref 9:111). By eliminating the
need to duplicate facilities, computer networks can greatly
reduce the cost of computing facilities. For example, in-

stead of hard-wiring two adjacent user terminals to separate

computers, a network can alloﬁ the use of one terminal with
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either computer (Ref 40:137). The combined resources of a

computer network give the user convenient access to more
( processing facilities than are available at any individual
computer site. Since the failure of one remote component

will not disable'the entire network, a network is more

reliable than a single computer. When a system's capability
v needs to be expanded, adding small and relatively inexpen-
sive components to a network is more economical than repla-~
| cing an entire mainframe computer with a larger mainframe
(Ref 11:108). Some popular uses of a computer networks are E

shown in Table I.

Network Iopologies and Node Functions

This section provides introductory information for
Chapter II, Requirements Analysis. Since UNID II is designed
to act as a network node capable of handling many different
topologies and functions, these attributes are briefly
described.

The topology discussions demonstrate environments which
use a network node and outline the general requirements
: imposed by different topologies. For example, some

' topologies may require higher nodal transmission rates or
] ' more communication 1links per node than other topologies.
Depending on the topology, failure of a single node could
disable the entire network or only part of the network.

(Although a network node is sometimes considered to consist iy

5 of both a network communications interface and a host
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Table I

Typical Uses of Computer Networks (Ref 8:11)

VS0 13 AR e

" e e S

USE

APPLICATION EXAMPLE

Data Collection

Airline Reservations

Remote Job Entry

Local Access to Remote
Computing Facilities

Information Retrieval

Credit Checking

Conversational
Time-Sharing

Many Simultaneous
Users Allowed Interactive
Computer Use

Message Switching

Electronic Mail

Resource Sharing

Several Computers Allowed
Access to the Same Database,
Printer, or Peripheral

Distributed Processing

Several Remote Computing
Facilities Cooperating to
Solve the Same Problem
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computer, this paper considers a network node (UNID II) to :
be separate from host computers, Node functions include
switching, concentration, and buffering and are described in
detail immediately following the topology discussions.)
Although five basic network topologies, star
(centralized), 1loop (ring), tree, mesh (distributed), and
bus are defined, many networks use combinations and varia-
tions of these basic topologies. They may be 1limited to
small local areas or span global distances providing
worldwide communication. Examples of long distance networks
include the SITA worldwide airlines reservation network and
the widely studied Advanced Research Projects Agency (ARPA)
network. Small distance 1local networks such as Xerox
Corporation's Ethernet and Net/One by Ungermann-Bass 1Inc.
are becoming increasingly popular. Current users of local

networks include General Motors, Citibank, and various

government agencies (Ref 15:115). Network computer size may
range from large main-frame computers to small
microcomputers. User peripherals which have no direct
association to a particular computer may be connected to the

network.

Star Topology

Since overall control in a star network (Figure 1-1)

takes place at the central processor, controlling the net-

<P S TP LIy

work and insuring that the network's resources are fully

shared and utilized are easier than in other topologies. The

; main disadvantage is that each remote site requires its own




communication link. All node-to-node communication must pass

through the central processor, and failure of the central

i s et e A

processor will disable the entire network.

A S

Node )
e’
Central
Communications Processor gs;;inals
Link e
"
Node

Figure 1-1 Star Topology

Loop Topology
The 1loop configuration (Figure 1-2) works very well

W ke i i aex acosat

when the nodes are relatively close to each other (Ref
2:113) . They minimize the amount of required communication

links and are very popular in local networks. Each message

circulates around the 1loop and is repeated by each node
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until the message reaches its destination. Since the 1loop ‘i
simultaneously carries traffic from many nodes, 1loop topol-

ogies require high capacity transmission links and nodes.

b
User
Host ._\\\ Terminals
1 7/
[Node ) ( (ﬁ%/(
~_./ 7

~
J

Communications
Link

Host

Host

Host d O

Figure 1-2 Loop Topology (Refs 33:4; 17:84)

The loop concept can be extended to extensive multiloop
configurations (Figure 1-3),. Each of the loops can act as a
relatively self-sufficient building block (Ref 30:564), and

with sufficient original planning, the network size can be

increased as needed by incrementally adding loops. The costs
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of switching nodes and transmission links increase

approximately in proportion to the number of added user

Va3 £SO i 7 i it i BRI R & Wt e gl kP

e * —
e e —— g

terminals.
Host
Node Node
Host
Node Node ' Node
Host | Node Node Node
Host Node Node
Host Node Node
Host Nod Noée User
oSt ode rminals
Node
Hos Communication
Link
Host

Figure 1-3 Multiloop Configuration




Multiloop topologies have two main advantages; they
require no sophisticated common control and the network cost
is distributed among the various equipment connected to the
network. Since all users on the same loop are connected to
the same communications link, communication costs are rela-
tively low. The multiring topology has been recommended for
interconnecting computing facilities on a typical Air Force
Base (Ref 34:4).

Iree Iopology

Similar to a star network, a tree network (Figure 1-4)
can be centrally controlled by a main computer. Since
communication 1links close to the central computer are
shared, a tree topology requires a lesser net 1length of

communication links than a comparable star network.

Communications
Link

dser
Terminals

Fiqure 1-4 Tree Topology (Ref 33:4)

s T AR e )
1




Alternatively, a tree topology may be arranged in
a hierarchical structure (Figure 1-5) or in a combination of
the centralized and hierarchical structures. In the hierar-
chical configuration, components high in the hierarchy are
often more general while the lower-level components are more
specialized (Ref 4:33). Since most processing is done close
to the endpoints, data communication costs are kept low and
the system is fairly modular. Due to their flexibility,

hierarchical tree networks are very popular (Ref 4:32).

Communications

Host Link

SP . I8P

Node

User
Terminal

SP-Satellite Processor

Figure 1-5 Hierarchical prology (Ref 4:32)




Distributed Topology 1
Distributed topology (Figiure 1-6) is typical of inter-

state networks. Due to their high connectivity, multiple
source~-to-destination paths often exist. Communication link
redundancy increases reliability but makes controlling the

network more diffulcult., Nodal interfaces need to be more

complex.
|
Host Host 5
User :
Terminal
Node
Host
Node
Host
Communications !
' Link
Host Host

Figure 1-6 Distributed Topology (Ref 33:4)
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Due to their relative simplicity, bus architectures

(Figure 1-7) are very popular in local networks. Previously
discussed topologies briefly store and retransmit messages
at each nodal point along the route from source to destina-
tion. 1In bus topologies, messages are sent by broadcasting
over a common transmission channel connected to each network
node. Since all messages are broadcast to all nodes, this
topology does not allow messages to be specifically routed
from one point to another as is possible in store-and-

forward topologies.

Repeater

Common -
Bus

Repeater

Terminals

Figure 1-7 Bus Topology (Ref 2:92-96)




Network Node Functions

hs a prelude to the Requirements Analysis (Chapter II),
the node functions which UNID II will be required to handle
are briefly described. The nodes shown in the previous
figures perform four main network interfacing functions, (1)
concentration, (2) switching and routing, (3) front-end
processing, and (4) terminal interfacing. Since nodes
handle the actual network information transfer (Ref 40:139),
they need to be flexible and efficient. The speed,
capability, and reliability of a network is largely deter-

mined by the performance of its nodes.

Concentration

Although time-division multiplexing (TDM) <¢ould be
used, concentrators usually employ asynchronous time-
division multiplexing (ASTDM). While TDM alternately allo-
cates each transmission line a time segment for transmis-
sion, ASTDM dynamically allocates time segments only to
currently active lines. Since TDM may allocate time segmeﬁts
to transmission lines not presently requiring service, ASTDM
is more efficient and increases overall throughput. Unlike
TDM, ASTDM uses a buffer to allow the input rate to vary
from the output rate which smooths message flow and accomo-
dates different transmission rates within the network.
Messages are buffered until outgoing links become available
and a copy of the outgoing message is often retained until

an acknowledgement is recieved that the outgoing message was




successfully transmitted. Concentrators edit messages,
format messages according to network protocol, append

message headers, and perform code conversion.

At each intermediate node, messages are routed to the
next node in route to their destination. Routing is often
considefed part of the concentration function but the GE
Information Services Network is an example of a network
which wuses computers for the sole purpose of directing
messages to a particular central concentrator. The GE Infor-
mation Services Network is the world's 1largest commercial
data processing network and provides service to over 500

cities worldwide (Ref 33:15-16).

Eront-Epd Processors

Front-End Processors are used to interface host compu-
ters to the communicaﬁions network. Ewen though a general
purpose host computer can handle both data processing and
communications functions, this approach is often inefficient
or economically unattractive, The use of a separate front-
end processor prevents communication tasks from seriously
degrading the performance of the host., Similar to a concen-
trator, typical communication tasks include message
formatting, editing, and buffering.

Data communication is often bursty meaning that message
traffic is very intense for short intervals, and the average

time between messages is much larger than the time needed to




transmit a single message. Often, general purpose computers
do not handle message traffic efficiently. Network access
software does not require the full processing power of a
scientific computer yet can consume a substantial amount of
the host computer's time and memory space. Using a small
separate front-end processor or network-to-host interface as
a parallel computer improves the network cost/performance
ratio, The network becomes more modular since either the

host or front-end processor can be modified or replaced

without directly affecting the other device (Ref 1:3-7),

Terminal Interface

The terminal interface allows access to the network,
and from one terminal location, the user can access data and
use programs that run on various network computers., Similar
to other network interfaces, the terminal interface provides
data editing, formatting, and error control. Since the user
often inputs data slower than the network transmission rate,
the terminal interface employs a buffer to temporarily store
data until it can be output at the network transmission

rate,

Burpose

The purpose of this research effort is to design a
general-purpose network interface capable of handling all
the functions which were defined in the previous section,

These functions 1include concentration,  switching and

routing, front-end processing, and interfacing user

terminals to the network. UNID II should be capable of
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accommodating a wide variety of network topologies and pro-
tocols. In the past, most local network interfaces were
custom designed for each application (Ref 7:102). To lessen
f.# the 1large hardware and software development costs incurred
by custom design, UNID II must be designed with enough

flexibility to handle a wide variety of network interfacing

needs. UNID II should also use modern architecture to keep
i energy costs low and allow relatively high data~transmission
'L' rates.

A secondary objective is to study a state-of-the-art
microprocessor family and incorporate newer technology in
the hardware design. Since more than one processor may be
§ required to accommodate UNID II's processing requirements,
; UNID II will be prototyped using the 8086 microprocessor
family whose hardware is designed to support

multiprocessing.

Approach and Qverview of the Thesis

Chapter I deals with the concept of a network interface
and includes discussions describing various node functions
and topologies. Since UNID II is designed to handle the
different node functions and topologies as defined by these
discussions, Chapter I provides background information for
Chapter II which defines the functional requirements of a
network interface. Chapter II uses the information obtained
in an extensive literature search to develop a Data Flow
Diagram (Ref 38) model of UNID II. From this model,
Chapter III develops the overall hardware design of UNID II.

15
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Chapter 1V enhances the information presented in
Chapter III. While Chapter III develops UNID IXl's design as
a logical sequence of steps, Chapter IV discusses why the
particular hardware configuration was selected rather than a
number of other possible configurations. The relative advan-
tages and disadvantages of previous design iterations are

discussed. Chapter V presents conclusions and recommenda-

”& tions.
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I1. Reguirements Apalysis

The purpose of this research is to design a flexible
network interface (UNID II) capable of handling all the

‘“% general topologies and interfacing functions reviewed in

Chapter I. Chapter II uses the background information
presented in Chapter I as a basis for determining UNID II's

¥ functional requirements.

ﬂ A Structured Analysis and Design Technique (SADT) model
for the original UNID was developed by Sluzevich (Ref 34).
These diagrams provide excellent insight to the functions of
F 1 a network intérface and are recommended for reference. After
Sluzevich completed his research in 1978, two more graduate
research efforts resulted in a prototype UNID (Refs 3,5). In
1981, William Hobart completed his research effort which
designed a local computer network utilizing the UNID
developed by earlier efforts (Ref 17). Having the benifit of
research following Sluzevich's original report, it seemed
worthwhile to re-evaluate the original requirements model.

This research develops a set of Data Flow Diagrams

(Ref 38) which outline UNID II's functional requirements and

3 provide a basis for the design. The inputs for developing

i the Data Flow Diagrams are presented in the following sec-

tions and consist of input requirements and practical

constraints., The input requirements are an expanded defini-
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tion of what capabilities a user would expect a network
interface to have and were obtained from an extensive

literature search.

Requirements Observations

UNID II can be considered a protocol processor which
allows network components using otherwise incompatible pro-
tocols and transmission rates to operate on the same
network. Although UNID II is a programmable device whose
functions vary for different applications, UNID II's Data
Flow Diagrams provide a general model invaluable for
describing essential functions. Specific applications will
v require additional software functions, but the hardware
Qt remains essentially unchanged. Ideally, the software should

L be 1layered so only lower-level modules need to be altered

for specific applications.,

Input Requirements
The primary emphasis of UNID II is flexibility. Since

designing custom hardware for each épplication costs too

much money and development time, UNID II is a programmable
interface. Depending on its programming, it can be
configured to handle a wide variety of interfacing
applications, The input requirements outlined in Table II
were obtained from an extensive literature search of network
interfacing applications and requirements (Refs 17:28;
22:152; 27:3-39; 33:42; 34:12; 35:195; 40:139).




: Table II

UNID II Input Requirements

,% UNID II Input Requirements

I. Interface a wide variety of network components
and handle various topologies

A. Accommodate dissimilar computing equipment
1) Accomplish code conversion
2) Perform data-rate speed conversion

B. Interface peripherals and user
terminals to network

Rl -

C. Interface host computers to network

D. Provide a network-to-network
interface (gateway)

II. Perform independently of network components

A, Handle network data transmission
and reception

1) Accommodate network throughput
requirements

a) Provide flow control

2) Adaptable to different protocols

a) Handle both synchronous and
asynchronous communication

b) Edit and pack characters
into a formatted message

¢) Unpack a message

d) Perform Serial to parallel
data conversion

e) Bandle error control functions such
as Message Acknowledge, No Ack-
nowledge, Repeat, and Timeout

3) Have error checking and 1
recovery capability J
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B. Relieve host computers from network
specific functions

1) Provide a buffer to smooth
message traffic

2) Poll communication lines if
they are multidropped

3) Handle interrupts
4) Route messages to desired destination

5) Collect performance, traffic, and
error statistics

Table I1I

UNID II Input Requirements

Interfaci capabiliti

UNID II should be able to interface a wide variety of
different network components. Each component is connected to
the network via communication links and an interface is
required at every junction of two or more links. Within a
single network, the number of interfaces required can be
numerous and each interface may be programmed differently
depending on the kinds of components interfaced and the
amount of of communication links connected to each inter-
face. UNID II should also be capable of handling a variety
of different topologies and acting as a2 network-~to-network
interface. When dissimilar computing equipment is used,
UNID II may be required to perform code conversion before
messages are retransmitted out on the network. Since
different network components operate at different speeds,

data must be buffered and retransmitted at varying speeds.

20




Iransparency Reguirements
UNID II should not be dependent on network components

to perform its interfacing functions; and ideally, UNID II
should be able to perform its communications functions even
with one or more host computers completely shut down.
UNID II should be capable of handling various data-
communication protocols and able to recover from data-
transmission errors. It should provide a buffer to smooth
message traffic and cperate fast enough not to impede the
performance of network components. Each node should route

messages to the next node.

£086 and 8089 Microprocegssors

Since several processors may be required to accommodate
UNID II's processing needs and the 8086 family of processors
includes bus support circuitry which makes implementing a
multiprocessing system relatively easy, the 8086 family was
considered a good choice for the UNID II prototype. This

design decision has many merits. The 8086 family includes

the 8089 I/0 processor which can give UNID II the ability to
perform high-speed message transfers (Refs 12; 36). Since
the 8086 can address one megabyte of memory, UNID II is very
capable of relieving hosts from network-specific software
tasks, A six-byte instruction gqueue allows the 8086 to pre-

fetch object code instructions and largely eliminates the

instruction fetch time (Ref 32:7-33). The instruction queue

also allows a longer time for memory devices to recieve an

address and return data which allows the use of relatively




e 120 & SR B L mae e ek e A m et IR R TR

inexpensive memories (Ref 20:1-17).

The 8086 is a well supported processor. Hardware sup-

1 b port includes specially designed bus controllers, bus
k arbiters, and slave processors. The wide variety of
8080/8085 support chips is also compatible with the 8086.
Software support includes PLM-86, a structured language
similar to PASCAL. (The software development process for an
8086/8089 system is overviewed in Appendix A.) Since the
8089 I/0 processor can translate code or perform
Mask/Compare tests during a DMA transfer, it is ideal for
UNID II's message processing functions. (Appehdix B

discusses 8089 DMA transfers.)

P tical C traint
Testabilit
Since UNID II is a complex device, testing is a time-
consuming activity. Development of a test plan should pro-
ceed in parallel with other UNID II development efforts, and

ease-of-testability should be built into UNID II, For

debugging software, UNID II's hardware configuration should
allow a Monitor program to access all memory areas.
Diagnostic programs which exercise critical ¢timing and
program paths are also valuable.,

Modularity

UNID II hardware should be designed in a modular
& fashion that permits an error in one subsystem to be
isolated from other subsystems. Each subsystem should be

relatively independenﬁ, and interfaces between subsystems

- G 22
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should be simple.

Economic
The original UNID cost approximately $3,000 (Ref

17:58), and the cost of a microcomputer development system
for software support is approximately $10,000. To maximize
the advantage of developing an improved network interface

(UNID II), the cost should be kept within these limits.

UNID II Model

This section presents and explains the Data Flow Diagrams
(DFDs) which describe UNID II's functional requirements. DFD's
are a graphical tool which use labeled circles (transforms) and
arrows to model the logical flow of data in a system (Ref 38:55).
Arrows represent data streams while transforms convert input data
streams into output data streams. Files or data bases are repre-~

sented by a straight line (Figure 2-1).

Input Data

Flows OQutput Data

Flows

Transform

File Name

Cata Flow Diagram Symbols




Data Flow Diagrams are done in 1levels; the first
diagram presented is an overview of the system while succes-
sive 1lower-level diagrams give a more detailed description
of a selected transform in the next higher-level diagram.
The process of of developing lower-level diagrams
(decomposition) continues until each transform or process
has been described in sufficient detail.

Table 1III is an outline for UNID II's DFDs and shows
that each transform of the parent DFD was decomposed one
level. This amount of detail is sufficient to serve as a
guide for selecting UNID II's hardware configuration. To
avoid making UNID II application dependent, 1lower-level
functions which represent application-specific software are

specified by the user.

Transform Number Transform Title

UNID II Overview

Input Local Information

Format According to Outgoing Protocol
Transmit Network Message

Input Network Information

1 e W NN = O

Transmit Local Message

Table III UNID II Data Flow Diagram Outline

UNID II connects local network components to the rest
of the network. Since local devices rarely use the same

protocol as the inner network, Fiqure 2-2 shows two separate
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link control protocols,

divided into two conceptual areas,

local and network. A network may be

an inner area which must

follow network protocol and an external area where a

protocol is

network-to-network inerface,

If UNID II 1is used as

local

a gateway or

two different network data-

W e —y———

transmission protocols are supported rather than a network
and local protocol.
Host Host Host
/’
/
Local
\\ Protocol
// Network 4
Protocol i ~
. \ J )
_
- /
Host . USer
Host Terminalsg
UNID II ‘

Figure 2-2

UNID II Supporting Both a Network and Local Protocol
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UNID II Overview (Figure 2-3) ~
Messages are processed in three stages; they are input |

into UNID II from either a local or network source (trans-

forms 1 or 4), edited and formatted according to the out-
going protocol (2),;, and transmitted to their next immediate
destination (3 or 5). The Format-According-to-Qutgoing-
. Protocol function routes messages to their next 1local or
; network destination , and allows several local devices con-
» nected to the same UNID to communicate without accessing the
inner network.

Input Local Information (Figure 2-4)

The‘ Input-Local-Information process places incoming
t- local messages .into memory. As information flows into
UNID II, control information such as Start/End-of-
Information, frame check, and parity check must be
distinguished from message text. If a transmission error
should be detected, an error message is reported to the
local component which sent the message. UNID II monitors

incoming links to determine when they begin transmitting and

converts incoming messages into bytes or words compatible
with UNID II's memory. Incoming messages are buffered,
scanned for correction characters, and edited. When the
message which is identified by starting address and 1length
is moved into the processing queue, the previously used
input buffer space is deallocated. Routing information such

3 as source and ultimate destination is determined and sent to

the processing queue as part of the message. |
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Eormat According to Qutgoing Protocol (Figure 2-5)

Stored network and local information is edited and
formatted according to outgoing protocol rules which are
stored in UNID II's memory. Since incoming message frames
may be interleaved with frames from other messages, the
Assemble-Frames function (2.1) is needed to recognize the
frames which belong to each message. Incoming local
information may use a different code than the rest of the
network and require translation, The Determine-Next-
Destination function (2.4) uses a file of routing rules to
determine next destination information which is appended to
the message. |

Iransmit Network Message (Figure 2-6)

Once messages are formatted according to netwock
protocoi, they are moved into the output buffer where error
control information 1is generated and appended to the
message. When the appropriate outgoing link is available,
the message 1is transformed into a serial bit stream and
transmitted according to outgoing protocol. For the longer
distance network links, parallel links were considered to be
too expensive since they require a separate transmission
channel and associated hardware such as line drivers and
recievers for each parallel bit. Transmit-According-to-
Outgoing~Protocol (3.7) sends the message at the correct
speed and inserts synchronization bits or other information
required by the outgoing protocol. Message acknowledge or
no-acknowledge signals are used to determine if a message

needs to be retransmitted.
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Input Network Information (Figure 2-~7)

L The error control information sent along with the
{ incoming network information is used to detect transmission
v errors. Depending on network protocol, positive or negative

acknowledgement messages are forwarded to the sending node
to indicate whether or not the message was successfully
recieved. The serial bit stream is converted into bytes (or
ﬂ# words) which are placed into an input buffer. Routing
information such as message source and ultimate destination
is transferred along with the message to the processing
queue,
) | Transmit Local Message (Figure 2-8)

The Message-Formatted-According-to-Local-Protocol is
moved to the output buffer allowing the space previously
occupied in the processing queue to be deallocated. Error
control information is generated and; if the outgoing 1link
is serial, the parallel information contained in UNID II's
memory must be transformed into a serial bit stream. Routing

information contained within the message is used to

determine the recieving peripheral which must be monitored
to determine when it is available. Transmit-According-to-
Local-Protocol sends the message at the correct speed and

inserts start/stop bits or other information required by the

outgoing protocol.
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Requirements Analysis Summary

The requirements analysis began with a list of input
requirements (Table II) which were obtained from a literary
study of network interfacing functions and applications.
Using Data Plow Diagrams (Ref 38), these input requirements
were used to generate a functional requirements model for
UNID II. This model categorizes UNID II functions into two
main groups; one group of functions handles Local messages
while the other group handles Network messages, The
functional requirements developed in this chapter will be
used as a basis for developing the design of OUNID II in

following chapters.




The most critical design decisions affecting UNID II's

cost and performance are the allocation of each functional
requirement to either hardware or software components. Since
the capabilities of évailable components should be
determined before establishing function partitions, this
chapter examines the basic hardware configurations supported
by the 8086 microprocessor family and determines which

features should be used to maximize UNID II's performance.

Basic Hardware Configuration

The basic hardware configuration supported by the 8086
CPU and 8089 I/O processor (IOP) is shown in Figure 3-1
(Ref 36). Since the I/O subsystem allows data to be input
into an I/0 buffer without use of the system bus, UNID II's
word storage function may proceed in parallel with CPU
processing. The 8089 has two address spaces, a one megabyte
system space shared with the CPU and a private 64K byte I/0
space., Both memory and I/O ports may be placed in either
system or I/0 space, but the system bus responds to memory
commands while the I/O bus responds to I/0 commands. A tag
bit is used to distinguish between memory and 1/0 addresses.
The IOP fetches data from a source and transfers it to a
destination identified by an address which allows data tran-
sfers between the system bus and I/O bus, between components

on the I/0 bus, or between components on the system bus.
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Figure 3-1

Basic 8086/8089 Processor Configuration
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Brivate CPU Bug

The 8086 CPU is normally limited to I/0O instructions
when referencing 1/0 space, but some additional hardware can
give the CPU its own private bus. 1Intel literature calls a
private CPU bus a resident bus (Ref 18:A-127). Since two bus
controllers and two sets of bus transcievers are used to
support this configuration, both memory and I/0 commands may
be used on either the system or resident bus. An EPROM or
decoder 1is used for address mapping which allows only the
resident bus to access a portion of the system address
space. Similar to the I/0 subsystem, the resident bus gives
the CPU its own private resources creating a modular,
relativelybself-sufficient CPU subsystem.,

For UNID II, the extra hardware required to implement a
resident bus was considered well worthwhile. This
configuration frees system memory from applications programs
which reduces bus contention and allows system memory to be
used soley for interprocessor communication and the transfer
and buffering of network messages., Since both the CPU and
I/0 subsystems have memory space for applications programs
unaccessible by the other subsystem, errors in one subsystem
are less likely to affect the other subsystem. The ability
to 1isolate errors is considered to be a critical part of
helping to satisfy UNID II's requirement for testability. A

generalized block diagram demonstrating the concept of a CPU

resident bus is shown in Figure 3-2,

ot
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Figure 3-2 8086 CPU With Resident Bus
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Another CPU Local to the I/O Processor
Although the 8089 I/0 processor is well suited to high-

Speed data transfers and may operate independently, it lacks

many deneral-purpose data-processing instructions., It may
not be capable of handling all ONID II's functional
requirements for editing and formatting messages and for
generating and verifying error control words. The variety of
instructions available in the high-speed network I/0
subsystem may be increased by allowing another CPU to share
the same 1local or private bus as the 1I/0 processor
(Figure 3-3)., This configuration was chosen to allow the
network I/0 subsystem to completely process messages without
accessing the system bus. In the local mode, one processor
is idle while the other is active, and the IOP acts as a
slave processor which increases the number of instructions
available to the 1local CPU giving the network subsystem
specialized I/0 instructions. Together, the 8086 and slave
8089 IOP act independently of the system bus, Since
8086/8089 architecture uses 1logic contained within the
processor chips to handle local arbitration, no additional
arbitration circuitry is required to allow a CPU to share

the 8089 IOP local bus.
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Figure 3-3 An 8086 CPU Local to the I/0 Processor
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UNID II's Overall Desian
Figure 3-4 is a block diagram of UNID II's final proto-

type design which consists of two independent subsystems

that communicate throuch a block of shared memory. The high-

speed Network 1I/0 subsystem handles Network communication

links whose service is time-critical while the Local 1I/0

subsystem handles lower-speed local or peripheral links. To

allow UNID II to be implemented as quickly and easily as
the

cards were used for

possible, commercially obtained

Local Subsystem. Since the control signals the 8086

daeses 4, gttty -

processor family uses for multiprocessing are identical to

Intel Multibus control signals, the Multibus structure was

chosen for UNID II's shared system bus,.

For flexibility, an interchangeable I/0 card is allowed

to connect directly to the shared Multibus. Since the 1I/0

card is part of the Local Subsystem, the I/O card should

connect to a Local Subsystem private bus. The I/0 card

connection to the Multibus is an implementation compromise

caused by the use of commercial cards; but to reduce bus

‘ ' contention, future modifications may include placing all

Local I/0 on a Local Subsystem private bus,

Network I/0 Subsystem
the Network I/O subsystem should also be im-

Ideally,

but no commercial

plemented using a single board computer,

cards containing 8089 I/0 processors are presently
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available. UNID II's Network I/O subsystem was designed for
prototyping on a Multibus-compatible wire-wrap card. The
Network I/O subsystem contains an 8086 CPU, a slave 8089 I/O
processor, and private memory and I/0 resources., With the

exception of supervisory commands and message transfers, the

entire Network Subsystem operates in parallel with and inde- -

pendent of the system Multibus.

Figure 3-5 shows the Network Subsystem in more detail.
A multiplexed Primary bus 1is connected to the local
processors. Address 1latches within bus interface logic are
used to demultiplex the Primary bus for communication with
either the Multibus or Private bus (Figure 3-6). Bus inter-
face 1logic also contains an 8288 Bus Contrcller which de-
codes memory and I/0 commands from the processors' status
lines (S0,S1,S2) and enables the Primary bus to communicate
with either the Multibus or Private bus. (If the Private bus
used only I/0 commands, the 8288 in the Private bus inter-
face would not be needed., The second bus controller allows
the processors to use both memory and 1/0 commands in the
Private address space.) To map some of the local CPU memory
space onto the Private bus, an EPROM decoder enables the
Command Enable (CEN) input of either bus controller which
allows the bus controller to enable its data buffers.
Depending on the address, memory instructions will access
either the Multibus or Private bus. To allow the EPROM on
the private bus to control the CEN input of both bus
controllers, the address 1latches on the Private bus are

permanently enabled.




The 8289 Bus Arbiter determines whether to grant a
request to use the Multibus and controls the Address Enable
(AEN) input of the bus controller attached to the Multibus.
The 8289 uses standard Multibus control signals and allows
parallel or daisy-chained arbitration between component
boards connected to the Multibus (Ref 28:6-18 to 6-20).

The 8089 IOP does not support interrupts in the recog-
nized sense (Ref 28:2-22). However, 1/0 may be synchronized
by using the DMA request input of each channel (Ref 18:4-5).
Since each of the two I/0 channels is dedicated to a single
Network transmission link, no polling is necessary.

To support UNID II's functional requirement for a mes-
sage timer to keep track of time elapsed before receiving an
acknowledgement (Figure 2-6), the Network Subsystem also
contains a Programmabe Interval Timer (PIT) and a
Programmable Interrupt Controller (PIC}). The PIT allows the
generation of time delays under software control. After a
specified time interval, the PIT will interrupt the local
8086 which can handle the initiation of message retransmis-
sion itself or direct the 8089 IOP to the interrupt service
routine,

A decoder is used to determine the addresses of the

communication ICs and the PIT counters., The decoder may also

be used to decode the 8089 IOP Channel Attention and Select

signals from an address generated by the 1local CPU (Ref

18:4-46).
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Local I/0 Subsystem
The Intel 86/12A Single Board Computer (SBC) was

selected to prototype the Local I/0 subsystem and shared
5# system memory. This printed circuit card contains an onboard

bus for private EPROM and I/0 resources, an Intel Multibus

interface, and a system bus clock. A dual-port controller
allows onboard memory to be used for either shared system
memory or private CPU memory. Jumper connections are used to
dedicate a portion of onboard memory for exclusive CPU use
while the remaining memory is shared system memory. 32K of
onboard memory is supplied with the 86/12A SBC but is expan-
dable to 64K with the aid of a special expansion board which
4 mounts directly on top of the 86/12A board. Similarly, the
16K EPROM capacity may be expanded to 32K.

The 8086 SBC contains one RS-232-~C gserial interface and
24 programmable I/0 lines which, by themselves, are not 1

| sufficient to handle UNID II's peripheral requirements.

Figure 3-4 shows a 4-channel serial I/0 board which plugs

|
directly into the system Multibus. The capability to plug ‘
commercially-obtained I/0 interfaces directly into the 1
Multibus gives UNID II the capability to quickly and easily J
alter or add local I/0 interfaces for different applica-~ i
tions. If more I/0 interfaces are required for a specific !
application, another 1I/0 Aboard may be plugged 1into the

Multibus. Some applications may require a parallel interface !
card while situations with heavy throughput and ~many /0 |

interfaces would require another independent I/0 subsystem
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containing another processor and private memory resources
rather than the slave 4~channel board. When UNID II is used
as a gateway or network-to-network interface, two high-speed
Network I/O subsystems are required instead of one Local and

one Network subsystem.

CPU-8089 Communication Protocol (Figure 3-7)

The CPU and 8089 I/O processor (IOP) communicate
through a block of shared memory. Figure 3-7 illustrates the
communication scheme which uses control blocks connected in
a linked structure (Ref 12:50). This section applies stan~
dard CPU-IOP protocol to UNID II's Network side which con-
tains the IOP, Standard Intel terminology is delimited by
quotation marks,

Each IOP has two independent channels and two indepen-
dent sets of registers. Since the two channels share the
same internal bus, only one channel is active at a time. The
IOP may be programmed to give one channel a higher priority
than the other or to allow equal priority between its ¢two
channels, If the two channels are programmed to interleave
bus cycles, applications programs can treat the IOP as two
simultaneously operating and independent 1I/0 channels,
Pigure 3-7 shows that the "channel control block" in shared
memory allows the CPU to communicate with either of the
IOP's channels. Through the "channel control word", the CPU
may stop, start, or suspend either channel. The CPU prepares

the "channel control word"” and pulses the 1IOP's "channel
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attention®™ (CA) input pin which is similar to a CPU inter-
rupt. The state of the IOP's channel select (SEL) input
directs the CA to either of the two channels (Ref 18:3-4).
After a channel has completed its task, it signals the CPU
by setting its busy/done flag in the "channel control
block"”™ or activating its interrupt request output, SINTR1
(SINTR2 for channel 2) to send an interrupt request to the
CPU,

I/0 device drive; programs (object code) are stored in
private IOP memory in a "task block" while data and
variables are stored in a relocatable "parameter block"
located within shared memory. The parameter block contains a
pointer to the entry point in the "task block".

After an 8089 reset, the 8086 signals the 8089 CA input
which causes the 8089 to execute its internal ROM initiali-
zation program., During the first CA following a reset, the
state of the SEL input determines whether the 8089 will act
as a master or slave, For UNID II, the CPU acts as a master
and normally has bus control while the slave 8089 recieves
bus control only on request. The 8089 IOP reads the "system
configuration pointer™ to determine the physical width of
the system data bus and the beginning address of the "system
configuration block"™. This block determines the private bus
width (8 or 16 bits), and defines shared-bus protocol
between master and slave processors. The set of conditions
under which transfer of local bus control occurs is speci-

fied by bit 1 of the "system operation command” (SOC) byte
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contained in the "system configuration block". 1If bit 1 is

set to 1, bus transfers occur only if the IOP is 1idle on
both channels; but if bit 1 is set to 0, bus transfers occur
when the IOP is idle, waiting for a DMA transfer, or has
just completed execution of an unchained instruction (Ref
28:3-2). For a hardware configuration similar to UNID II's
where the 8089 IOP is used as a slave to a local 8086, Intel
literature states that bit 1 of the SOC byte must be 0 (Ref
18:3-35). After the 8089 has been intialized, subsequent CA
signals issued by the CPU are used to start I/0 operations
in either channel {(depending on the level of the 8089 SEL
input)., Prior to initiation of I/0O operations, the CPU
prepares the "channel control block" and loads the
"parameter blocks"”.

Each I/0 channel both executes programs and performs
DMA-like data transfers, (8089 DMA transfers are discussed
in Appendix B). Since only one channel may be active at any
time instant, DMA transfers normally have priority over
channel program execution which could cause a very 1long
delay to one channel's program execution if the other chan-
nel is performing DMA transfers, If desired, one channel's
program execution can be "chained" so that it has the same
priority as the other channel's DMA transfers, Now, IOP
hardware alternately allocates bus cycles to each inde~
pendent channel. This interleaving of bus cycles causes no

additional time delay or overhead.
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Intel 86/12A SBC Memory Addressing
Following a reset, both the 8089 IOP and 8086 jump to
the same area of shared system memory. The 8089 reads the
contents of the System Configuration Pointer 1located at
location FFFF6H, and the 8086 jumps to EPROM location FFFFOH
which contains a jump instruction to the start of the 8086
program,

For the UNID II prototype, shared memory resides on the
86/12A Single Board Computer. The upper memory that the 8089
(and second 8086) in the Network subsystem must access upon
a reset 1is reserved for the 86/12A monitor and cannot be
addre#sed from the shared system bus. To resolve this con-
flict, 86/12A shared memory (locations 0 to 7FFFH) is
configured to appear as upper memory (locations F8000H to
FFFFFH) to the Network Subsystem (and other Multibus boards
connected to the system bus) (Ref 21:3; 45), Using this
of fset, the 86/12A CPU sets up the 8089 System Configuration
Pointer at memory location 7FF6H which corresponds to the
system location FFFF6RH that the 8089 will jump to wupon a
reset. Similarly, the 86/12A address 7FFO0H which corresponds
to system address FFFFOH is initialized with a jump instruc-
tion for the 8086 in the Network Subsystem. Figure 3-8 is a
memory map for UNID II which and shows both 86/12A addresses

ana the address offset for Multibus access.
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Special 1/0 Bardware

I/0 functions such as parallel-to-serial data

conversion or maintaining bit and character synchronization

integrated

are handled most efficiently with a specialized

circuit such as an Universal Synchronous/Asynchronous

Reciever/Transmitter (USART) or a multiprotocol chip.

Without these specialized communication 1ICs, processor

software would have to transmit data bits at precisely the

right time which would monopolize the processor during

transmission of each bit.

On UNID II's Local side, specialized I/0 hardware 1is

contained on the 4-channel serial I/O board which plugs into

the system Multibus. (Some applications may instead require

a board containing both serial and parallel or other

interfaces). Most of UNID II's lower-speed Local peripherals

will use a standard USART to handle specialized communicaton

functions,

UNID II's high-speed Network side is likely to use a

similar or identical to one of the major 1link

protocol

protocols shown in Table IV, Standard USARTs are not well

suited for these sophisticated protocols and a multiprotocol

IC should be used. The Signetics 2652 was chosen in

preference to other multiprotocol chips for three major

reasons; (1) the 2652 supports all the protocols listed in

i o

Table IV (2) both 8 and 16 bit word lengths can be accommo- {

dated, and (3) the 2652 supports transmission rates up to 2




Megabytes/Sec. Table V 1lists several features of the

multiprotocol <chips considered while a much more exhaustive
list of features is presented in the June 8, 1978 issue of

Electronics magazine (Ref 39:112),

Company or
Standards Organization Protocol

IBM Binary Synchronous
Communications (BISYNC)

IBM Synchronous bData Link
Control (SDLC)

ANSI Advanced Data Communication
Control Procedure (ADCCP)

IS0 High-Level Data Link
Control (HDLC)

DEC Digital Data Communications
Message Protocol (DDCMP)

Table IV Popular Link Protocols

Number of I/O Ports

Depending on the network topoloy and number of
peripherals connected to each UNID, the number of I/0 ports
required will vary. To allow maximum flexibility, OUNID II

allows an additional I/0 board to be plugged into the system

Multibus. This section determines the number of I/0 ports
that UNID II's basic design can easily accommodate without

resorting to additional hardware. 3
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Sig-
netics SMC Zilog Fairchild
Feature 2652 5025 S§I0 3846
Maximum Data 550K/
Rate (Bits/Sec) 1M/2M 500K 880K 1M
Data Bus Pins 8/16 8/16 8 8/16
Multiprotocol
(Bisync, DDCMP) Yes Yes Yes Yes
Western
Motorola Intel Digital
Feature 6854 8273 1933
Maximum Data
Rate (Bits/Sec) 660K/1M 64K M
Data Bus Pins 8 8 8
Multiprotocol
(Bisync, DDCMP) No No No

Table V Comparison of Communication ICs
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Local I/O Subsystem
On UNID II's Local side, the basic number of I/O ports

is the number of ports on the commercial I/0O board which
plugs into the system Multibus., Four ports on a single board
is common, but the number may vary. (The single serial port
and I/0 ports present on the 86/12A SBC are also available
for Local peripherals). Intel research (Ref 19:1-12) has
determined that an 8085A CPU with 40% of its time devoted to
user programs and 60% of its time devoted to I/O can handle
4 simultaneously operating 12,000 baud full duplex channels,
(9600 baud would be the maximum standard rate). Since the
8086 has a higher performance than the 8085A, the Local 8086
CPU should be able to comfortably handle the number of 1I/0
channels on the Local I/0 board., Data-communications are
often "bursty", and it is unlikely that all Local I/O ports

will simultaneously require service.

Network I/O Subsystem

Although the 8089 IOP has an advertised DMA transfer
rate of 1.25 Megabytes/Sec (0.625 Megabytes/Sec for 8-bit
bus widths), UNID II is designed for only two high-speed
ports in the Network I/O subsystem. (DMA transfers must be
preceded by execution of a channel program whose instruction
speeds range from 1.4 to 12.2 microseconds). Each port is
dedicated to an I/O channel which greatly simplifies appli-
cations programs., After initialization, on-chip logic trans-

parently handles any required time-multiplexing between I/O

channels. If more high-speed ports are desired in the Net-~
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work Subsystem, application programs must poll the various

ports.,

Communications Interface

Line driver and receiver ICs will be used to allow the
actual transmitted signal to meet RS-232-C, RS-422, or RS-
423 electrical specifications. Technically, all new devices
procured by federal agencies should meet the RS-449 standard
(Ref 13:72) which includes both RS-422/RS-423 electrical
specifications and the mechanical and functional character-
istics of the interface between data terminal equipment
(DTE) and data circuit terminating equipment (DCE) (Ref
24:409) . Some of the limitations of the older RS-232-C
interface are an upper data rate of only 20 Kbits/Sec and a
maximum cable length of about 15 meters. The newer RS-423-A
standard has a transmission capability of wup to 100
Kbits/Sec and is operable with both RS-232-C and RS-422-A,
The RS-422-A standard allows data rates up to 2 Mbits/Sec
but is not compatible with RS-232-C devices,

Despite the greatly enhanced performance of the newer
standards, many manufacturers have been reluctant to change,
and most lower-speed peripherals are likely to use RS-232-C,
It seemed most benificial for UNID II's lower-speed Local
links to use the RS-232-C interface. Even though RS-232-C is
operable with RS-423-A, the newer standard uses a larger
connector due to an increased number of functional circuits.
If all lower-speed peripherals interfaced by UNID II use the

RS-232~C interface, the 37-to-25 pin mechanical adapter
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required for RS-232-C and RS-423-A interoperability would be "
i ﬁ an unnecessary inconvenience. UNID II's high-speed Network

links will use the maximum performance RS-422-A standard.

Early data-communication peripherals were often elec-
tromechanical devices which used current pulses to transmit
data. Due to the large number of Teletype machines produced,
they are still a dominant type of user terminal (Ref
37:254); and for longer distances, current loops provide
greater noise immunity than the popular RS-232-C interface.
Unfortunately, circuit resistance, capacitance, and
inductance create a 1lag in the rise and fall of current
pulses which greatly limits transmission rates. Current
loops tend to createinoise in nearby circuits and should be
used with caution. Since newer equipment usually uses a
voltage interface, UNID II does not directly support a
current~loop interface. Commercial RS-232-C to current-loop
adaptors may be used if desired. (On UNID II's local side,

the iSBC 530 Teletypewriter Adapter may be used to provide

an optically isolated 20 mA current-loop interface for the
86/12A board) (Ref 18:B~174).

Similarly, the common-bus type of network architecture
is not directly supported. In a bus architecture (Figure 1-

7), all messages are simultaneously broadcast to all nodes.

If a transciever 1is designed for the connection between

UNID II and the common transmission channel, UNID II may be

used to support bus oriented protocols such as the popular

carrier-sense multiple-access/collision-detection (CSMA/CD)
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protocols. To support Ethernet, a popular CSMA/CD local

network, Intel has released a single-~board Ethernet
controller (iSBC 550) (Ref 14). The iSBC 550 is Multibus-
compatible and can be used as UNID II's Network Subsystem.
Summary of Design Philogophy

UNID II is partitioned into two subsystems, the Network
Subsystem which handles Network transmission links and the
Local Subsystem which handles peripheral 1links. To allow
concurrent processing of Network and Local messages, each
subsystem possesses its own processor(s) and memory. Inter-
subsystem communication and message transfer occur through a
block of shared memory.

In the Network Subsystem, the 8089 I/O processor allows
high-speed DMA transfers; but to insure independence from
other processors on the system bus, the Network Subsystem
also has 1its own CPU. The Network CPU provides general-
purpose instructions for message editing and formatting and
arithmetic instructions which may be necessary for genera-
ting and verifying error-control words. For maximum perfor-
mance, the Network Subsystem will use the RS-422 communica-
tions standard.

The single-processor Local Subsystem has the capability
to quickly and easily add or alter its I/O interfaces. For
example, parallel and/or serial I/O boards may be plugged
into the system Multibus. (Figure 3-9 demonstrates the
overall structure of UNID II). To use UNID II as an inter-
network interface, the Local Subsystem should be replaced

with a second Network Subsystem.
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IV. Reasons For UNID II's Design

This chapter presents a more detailed description of
the reasoning behind UNID II's hardware design which was

?+ developed in Chapter III. To illustrate the advantages of

the final prototype design, the relative advantages and
disadvantages of earlier (and evenﬁually discarded) designs
are also discussed. This chapter culminates in the alloca-
tion of the functional requirements developed in Chapter II

to either the Local or Network subsystem.

Reasons for Using the 8089

Although UNID II's 8089 I/O processor is part of the
independent Network subsystem, the 8089 is used as a slave
to a 1local CPU, Since the local CPU is idle whenever the
8089 is using the local bus, it may seem easier to allow the
local CPU to execute I/0 programs and replace the 8089 1IOP
with a less complicated DMA controller. This is a viable
alternative if it is desired to compromise some of UNID II's

flexibility requirements; but to allow maximum flexibility

for handling a wide variety of interfacing applications, the
8089 is a better choice. During a DMA transfer (explained in
Appendix B), the 8089 can translate network codes and check
for ena-of-message or other control information using its
translate and Mask/Compare options. 8089 on-chip 1logic

transparently handles any necessary word assembly/ }

disassembly required for wusing 8-bit peripherals with

v — -

UNID II's 16~-bit data bus. DMA transfers can occur between

components (memory or I/0 ports) on the private bus, between

'
’
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components on the system bus, or between system components
and private components. The 8089 has two independent 1I/0
channels; and although only one channel may be active at a i
time, the 8089 supports a multitude of programmer-specified
priorities for alloation of bus cycles between channels. If
one channel is idle, the other channel operates at maximum
capacity even if the idle channel has been initialized and
is waiting for information, If both channels are
simultaneously active, the interleaving of bus cycles
between channels is handled by on-chip logic which does not
slow overall throughput. (Depending on channel priorities,

one channel's operation may temporarily block the other

channel.)

One of the more significant advantages of the 8089 is
its ability to execute its own channel programs. This capa-
bility modularizes software design. Similar to a mainframe
computer, the I/0 channels are programmed separetly from CPU

programs (Ref 36:301). If a DMA controller is used, the CPU

must execute both I/0 and CPU programs.

¥hy the 8089 is not Used in the Remoie Mode
In the Remote mode (Ref 28:3~3), the 8089 acts as an

independent processor and operates in parallel with the CPU.
For example, a CPU used for predominately arithmetic
'; processing can use an 8089 to handle I/O functions and
} prevent slow-speed I/0 from wasting the CPU's time (Figure
: 4~1). Even though using the 8089 in the Remote mode takes

maximum advantage of the 8089's capabilities, the 8089 was

: " : 6 4
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used as a slave processor in UNID II's Network Subsystem.
The following examples of previous design iterations used
the 8089 in the Remote mode and illustrate why an 8089 slave

is instead advantageous for UNID II.

Previous Design Iterations

' One of the earlier design considerations (Figure 4-2)
consisted of ¢two Remote 8089 processors and an  area of
shared memory for inter-processor communication., Since an
8089 system must contain a CPU to set-up and initiate DMA

transfers, an 8086 CPU was included. The problem with this

configuration is that it consists of three hardware
subsystems while UNID II's Data Flow Diagrams model only two
i?' logical subsystems (Network and Local). If one 8089
processes Local messages and the other 8089 processes
Network messages, the CPU contributes no processing
capability and the added complexity of the CPU interface and
arbitration circuitry is not worthwhile. Since the 8089 does

not have a lot of general-purpose instructions, this scheme

may not be capable of handling UNID II's functional require-

ments, If the two 8089s are allowed to share the single CPU,

bus contention would be unreasonably high. Since both 8089s

PPN

would require continual use of the system bus during message
processing, the advantages of giving each hardware subsystem

its own private memory and I/0 resources are 1lost. In

comparison, UNID II's final prototype design (described .

ottt 3= e D

below) contains the same number of processors and less

arbitration circuitry than Desin Iteration No. 1 but allows

66 3




T °ON uorjeJeql udrseq Z-4 9an3Td
0/I jaom}aN 0/1 Ted01]
_ _
Jxa3Ing IeIIn
/1 w12 s1eq o/1
Kaouwspy
ndo
aoeJaajul 20BJI93U]I aoeJaajujl
sng sng sng
doI ndo doI
6808 9808 6808
#oBvII93UI sogJaaju]l soeJaajul
sng sng sng
sng we3eks
. Raowsy
paaeys

67

{
'
i
r
$




SR IO

the Network and Local subsystem to operate relatively
independently.

Design Iteration No. 2 (Figure 4-3) is 1less complex
than the previous design iteration, but it has the same
problem. The CPU is shared by both subsystems. Even though

the two 8089s give the system four independent I/0 channels,

all channels share the same bus which may be overloaded by

high~-speed network components.

UNID II's Final Prototype Design

UNID II's final prototype design evolved from Design
Iteration No. 2, which has two hardware subsystems., Instead
of using a single subsystem for all I/0, Network I/O is
handled by one subsystem while Local I/0 is handled by the
other subsystem (Figure 4-4).

To allow the Network Subsystem to be relatively
independent of the system bus, the Network Subsystem con-
tains an 8086 CPU a:.d slave 8089. To allow the flexibiliy of
plugging commercial cards into the system bus, the Local
Subsystem does use the system bus. Depending on application
needs, the commercial I/0 card may consist of only I/O ports
ana USARTs or can consist of an intelligent communications
controller board similar to the Intel isBC 544 (Ref
19: 1-112 to 1-173) which has its own cnboard processor and
memory in addition to USARTs and buffers. (The final proto-
type design illustrated in Figure 4-4 is the same design
illustrated in Figure 3-4, but Figure 3-4 shows the details
of the 86/12A SBC used to prototype the Local Subsystem.)
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Eunction Allocation
Having determined that UNID II will consist of two

hardware subsystems, all Network functional requirements can
be allocated to the Network Subsystem and all Local
functional requirements can be allocated to the Local
Subsystem (Tables VI and VII). (UNID II's functional
requirements are developed in Chapter I1I.) The two following
examples illustrate the concept of separating WNetwork and
Local functions.,

This example consists of a Local terminal communicating
with a remote host. UNID II inputs the incoming terminal bit
stream into a buffer contained in the Local Subsystem. After
a complete message or packet is assembled, it is moved into
the shared memory buffer until it can be serviced by the
Network Subsystem. The Network Subsystem translates the
shared memory packet into the network code and message
format as it moves the packet into the Network Subsystem
buffer. Once the packet 1is located within the Network
Subsystem, it may be transmitted at a high rate of speed by
the 8089 IOP as soon as the appropriate network link(s) are
available.

The second example consists of a terminal communicating
with a host connected to the same UNID II. In this situa-
tion, neither UNID Il's Network Subsystem or network links
are accessed, (Network 1links are accessed when 1local

peripherals communicate with remote network components.) The

incoming terminal characters are buffered in the Local




3t

N B

Table VI

Local Subsystem Functions

1. Input Local Information

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Check for Transmission Errors

Transform Serial Data into Bytes or Words
Store Information in Input Buffer

Move Information Into Processing Queue
Correct Input Errors

Recognize Control Information

Append Source/Destination Information

2. Format According to Outgoing Protocol

2.1
2.2
2.3
2.4
2.5

Assemble Frames

Translate Code if Necessary
Identify Routing Information
Determine Next Destination

Format Message According to Outgoing Protocol

5. Transmit Local Message

5.1
5.2
5.3
5.4
5.5

Transmit According to Local Protocol
Transform Bytes or Words into Serial Data
Generate Error Control Information

Move Message to Output Buffer

Determine if Local Peripheral is Available

Note: The Above Numbers Correspond to the Data
Flow Diagram Nodes Developed in Chapter II
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Table VII

Network Subsystem Functions

2. Format According to Outgoing Protocol
‘.J 2.1 Assemble Frames

2.2 Translate Code if Necessary

2.3 Identify Routing Information
: 2.4 Determine Next Destination

2.5 Format Message According to Outgoing Protocol

. 3. Transmit Network Message

3.1 Move Message to Output Buffer

3.2 Generate Error Control Information

3.3 Determine if Outgoing Link is Available

3.4 Transform Bytes or Words Into Serial Information
3.5 Deallocate Output Buffer Space

3.6 Set Message Timer

3.7 Transmit According to Outgoing Protocol

4, Input Network Information
;' 4.1 Move into Processing Queue
4.2 Store Information in Input Buffer
1 4.3 Transform Serial Data into Bytes or Words

4.4 Check for Transmission Errors

4.5 Recognize Control Information

ey

Note: The Above Numbers Correspond to the Data
Flow Diagram Nodes Developed in Chapter II

g 1
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Subsystem memory where they are assembled into a format
acceptable to the host. If the Local Subsystem buffer be-~
comes full, some messages can be temporarily stored 1in
shared memory, but shared memory is intended primarily for
inter-subsystem message transfer and buffering. When the
host 1link is available, messages buffered locally may be

transmitted.

Summary

This chapter began with the reasoning behind the selec-
tion of the 8089 rather than a DMA controller. Discussions
of previous design iterations demonstrated the value of
UNID II's final prototype design which uses one hardware
subsystem for Local I/O processing and a second hardware
subsystem for Network I/O processing. Two examples describe
hypothetical message processing using the constraint that
Network messages are processed by the Network Subsystem and
Local messages are processed by the Local Subsystem. This

constraint serves to minimize UNID II bus contention,
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¥. Conclusions and Recommendations
This investigation designed a suitable hardware config-
uration for a programmable nefwork interface. The design was
configured to allow maximum flexibility and to accommodate

j* the functional requirements developed in Chapter II.

UNID II's flexibility allows it to be used in a wide variety .

of applications and helps to eliminate the lag time required
to custom design hardware for each new application or
requirements change to an existing application.

UNID II's design was modularized by allocating Network

and Local functions to separate subsystems. The specialized

8089 I/O processor allows the Network Subsystem to transmit

and receive data at DMA rates, The 8089's ability to execute \

its own 1I/0 (channel) programs allows modularization of
Network Subsystem software. The Local Subsystem's
interchangeable I/0 card allows lower-level I/0 hardware
such as USARTs or I/0 ports and line drivers to be easily

interchanged.

Recommendations

This investigation indicates that a flexible network

interface is a viable project, and the recommendation is to
implement the UNID II prototype. The large size of the
project suggests implementing UNID II in several stages

which are described below.
1) The first step is to write or purchase software to |

download programs developed on a microcomputer

development system to the 86/12A, The 86/12A contains
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UNID II's shared memory and forms the basis of the
Local Subsystem. Once UNID II software is downloaded to
shared memory, UNID II's processors can download

appropriate software to private memory areas.

2) The Network Subsystem containing the 8089 can be
developed and tested. A complete chip-level schematic
and chip-layout diagram is described in Intel
Application Note AP-89 (Ref 21) for an 8089 system
without private memory or onboard 8086. Similar to
UNID II's Network Subsystem, the sample design is
intended for wire-wrapping on a Multibus-compatible
wire-wrap card. A sample 8089 program and debugging
flowchart are also 1included. Since this example
schematic solves a 1lot of the timing and current-
loading problems that occur in a chip-level design, it
can be wused as the basis for UNID II's Network

Subsystem chip-level design,

3) By first operating UNID II using only shared memory,
both 8086 and 8089 programs can be examined with the
aid of the 86/12A monitor. Private 8089 (Network
Subsystem) memory can be designed as an expansion

capability.

4) When writing application programs, it is suggested
that PLM-86 be used in preference to ASM-8. PLM-86 is

a high-level language similar to Pascal. Under some

circumstances, the 8086's memory segmentation scheme
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plex.

tends to make 8086 assembly language confusing. For
example, the offset the 8086 uses to address its one

megabyte of memory (Ref 18:2-10) can be confusing when

assigning an absolute address to an I/0 port.

5) After applications programs have been developed and
tested, EPROMs can be used to make UNID II independent

of a microcomputer development system.

The 8086 family of microprocessors can be quite com-

It is hoped that, in addition to designing a flexible

network interface, this investigation served to summarize

8086

multiprocessing circuitry and protocols.
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Appendix A
The 8086/8089 Software Development Process
(Refs 41, 42, 18:3-63 to 3-86)

Appendix A outlines the software development process
for an 8086/8089 system using Intel development software
which runs on an Intellec 800 or Series II Microcomputer
Development System. Although the 8089 I/O processor requires
its own assembly language (ASM-89) and assembler which is
separate from the 808 assembly language (ASM-86) and
assembler, the 808 Link and Locate programs operate on
segments from boih 8089 and 8086 source~code translations
(object files). PLM-86 is is a high-order language which is
very similar to Pascal, Figure A-l briefly outlines the

8086/8089 software development steps.

Source Code
Written In: PLM~86 Compiler
ISIS-I1 ¥ PLM-86 ——— ASM-86 Assembler
Text Editor ASM-86 ASM-89 Assembler
ASM-89

Relocatable
j LOC-86

Object Code System

OH-86 | PROM
' Programmer

Figure A-l 8086/8089 Software Development
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Relocatable Object Code Segments
An object file consisting of relocatable segments
results from the use of the appropriate compiler or
assembler on a source code module. Segments are the basic
elements for linkage and relocation, and segment addresses
are relative to the beginning of the segment. (External
references may be specifically declared to allow separately

i compiled modules to reference each other).

h Segments are related to the 8086 addressing scheme.

Even though the 8086 has a 20~bit (one megabyte) address

space, its registers are only 16 bits wide. Four Ssegment
registers each which point to a 64K block of memory are used
for memory addressing. If more than 256K (4 X 64K) of memory
is needed, the program must alter the values of the segment
registers, A 20-bit segment address is constructed by appe-
nding four lower-order zeros (Ref 26:14) to the 16-bit value
in the segment register which allows segments to be placed

on any memory boundary that is a multiple of 10 BHex. 1If

desired, segments may be overlapped.

Programs are divided into segments according to certain
attributes. For example, a program's object code, stack
space, and data are often placed in different segments. ASM-
86 allows the programmer to name segments while ASM-89

produces a single logical segment and PLM-86 generates its

own segment names.
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PLM-86 Object File Sections

Table VIII demonstrates how PLM-86 generates segment,
class and group names depending on the compiler option
33 SMALL, MEDIUM, or LARGE (described below). (Experience has

4 shown that the PLM~-86 Version 2.1 compiler generates the

segment names modname_CODE and modname DATA rather than
modname,CODE and modname.DATA as specified in the "MCS-86
Software Development Utilities Operating Instructions Por
%f% ISIS-II Users" manual (Ref 41:C-1). These names must be
e P correctly specified when the program is being 1located or
"LOC-~86 will be unable to £ind the specified segment(s).

The object file consists of five sections which are
combined into memory segments according to the compiler's
size control (discussed below). (1) The CODE section con-~
tains the program's object code., If the LARGE control is
used, the CODE section also contains constants. (2) The
CONSTANT section contains variables initialized with the
PLM-86 DATA statement, REAL constants, and constant lists.

(3) The DATA section consists of program variables. (4) The

STACRK section is temporary storage used during program exe-
cution, but its size is automatically determined by the
:‘ compiler., (5) The MEMORY section is an area in memory which
is referenced by the built-in PLM-86 identifier MEMORY, a
BYTE array of unspecified 1length for wuninitiated 8086

¥ storage (Ref 44:12-13).

4 PLM-86 Size Control

4 The following compiler options affect the manner that
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SMALL compiler option:

Segment Name

Class Name

Group Name

CODE

CODE

CGROUP

CONST
DATA

DATA

STACK

STACK

MEMORY

MEMORY

DGROUP

MEDIUM compiler option:

Segment Name

Class Name

Group Name

F::t
CODE

none

DATA

STACK

|STACK
MEMORY

MEMORY

DGROUP

LARGE compiler option:

Segment Name

Class Name

Group Name

CODE

odname CODE
moaname_DATA

DATA

MEMORY

STACK
MEMORY

Table VIII PLM-86 Generated Segment, Class, and Group Names

(Ref 41:C-1)




different object file sections are combined into contiguous
8086 memory segments. Since memory segments have a maximum
size of 64K, the way sections aré combined into c¢ontiguous
segments 1limits the size of source code modules. (A module
is a section of code separately created and translated to an
object file,)

SMALL Case

When source-code modules compiled with the SMALL
control are linked, the CODE sections from all modules are
combined into a single segment. CONSTANT, DATA, STACK, and
MEMORY sections from all modules are placed in a separate
segment. Since there is only one segment for code and data,
the 8086 Code Segment (CS) and Data Segment (DS) registers
never need to be updated during program execution and the
SMALL control allows the greatest program efficiency. The
SMALL control may be used if the total size of all CODE
sections is less than 64K and if the total size of all data
(CONSTANT, DATA, STACK, and MEMORY) sections is less than
64K. The SMALL case is the default case and must be used
when the PLM-86 compiler compiles PLM-80 programs for use on
an 8086 system.

MERIUM Case

The MEDIUM control allocates a separate segment for the
CODE section of each compiled module, CONSTANT, DATA, STACK,
and MEMORY sections from all modules are placed within a

single segment allowing this case to be used if the data

sections from all compiled modules fit within a single 64K

. .
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segment,

LARGE Case _

The PLM-86 LARGE control places CODE and CONSTANT sec-
tions from each compiled module into a separate segment, and
places the DATA section from each compiled module into a
separate segment. STACK sections from all compiled modules
are combined into a single segment; and similarly, MEMORY
sections from all modules are also combined into a single
segment.

LINK-86

LINK-86 combines separately translated source-code
modules from ASM-89, ASM-8, and PLM-86 and resolves
external references between modules, When first defined, the
relocateable segments that form the translated .modules do
not have a fixed size, and if segments from separately
translated modules have identical names, they are combined
into the same segment. (Segments with different names remain
as cseparate segments.)

LOC-86

LOC-86 assigns absolute addresses to the object code
file. The ADDRESSES control may be used to specify addresses
for particular SEGMENTS or CLASSES. For example, to place
object code contained in the previously=-linked file,
8086LNK.OBJ, into EPROM space beginning at location FEOO0OH,
the following series of commands may be used. (The name of

the CODE segment contained in the input file, 8086LNK.OBJ is

PROTOTYPE.CODE.)
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LOC86 8086LNK.OBJ TO 8086EPROM.OBJ&
BOOTSTRAP&

ADDRESSES (SEGMENTS (PROTOTYPE_CODE (FEOOOH)))

OH86 8086EPROM.OBJ TO 8086 EPROM,REX
After a power-up or reset, the 8086 jumps to the top of its
memory space to location FFFFOH. The BOOTSTRAP control may
be used to place a long jump in locations FFFFOH through
FFFF4H so that program control will be directed to the
beginning of the program code segment. The following LOC-86
memory map would be generated by the above LOC-86 commands:

MEMORY MAP OF MODULE PROTOTYPE

READ FROM FILE 80 86LNK.OBJ

WRITTEN TO FILE 8086 EPROM.OBJ

MODULE START ADDRESS PARAGRAPH = FEOOH OFFSET = 00AEH
SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS
00200H 0032CH 012DH w PROTOTYPE_DATA DATA
003 2EH 0036FH 0042H W STACK STACK
FEO0OOH FF6BAH 16BBH w PROTOTYPE_CODE CODE
FFFFOH FFFF4H 0005H A (ABSOLUUTE)

FFFF6H FFFF6H 0000H W  MEMORY MEMORY

Since no specific address was specified for DATA and STACK
segments, they are located by default beginning at location
200H, The above number values were taken from a sample

program, but the actual segment lengths are dependent on the

source program.,

QH~-86

Before a located object file can be printed in readable
form, it must be converted to HEX by OH-86. Also, the input
to an INTEL Universal Prom Programmer (UPP) must be an 8086

Hex file.
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8086 Hex files are stored differently than 8080 Hex
files, and the command READ 86HEX FILE must be used. Two
parallel 8-bit wide PROMs are used to form 16-bit words; and
for the same block of PROM memory, one PROM contains even-
address, low-order bytés while a second PROM contains odd-
adress, high-order bytes. Since Intel Universal PROM Mapper
(UPM) software only allows one PROM at a time to be
programmed from a single sequential Hex file, both the high-
order and loﬁ-order bytes from the input Hex file must be
separately collected into contiguous sections of memory. The
STRIP command may be used to sequentially read through an 86
Hex file and strip off either high or low order bytes and
place the remaining bytes in a new sequential file. Table IX
is an example of 7 steps for programming four 2716s (Ref

21:4):

Step UPP Command

(1) | READ 86HEX FILE 8086EPROM.HEX INTO 2000H
(2) | STRIP LOW FROM 0 TO 1FFFH INTO 4000H

(3) | STRIP HIGH FROM 0 TO 1FFFH INTO 6000H
(4) | PROGRAM FROM 4000H TO 47FFH START 0

(5) PROGRAM FROM 4800H TO 4FFFH START 0

(6) | PROGRAM FROM 6000H TO 67FFH START 0

(7) PROGRAM FROM 6800H TO 6FFFH START 0

Table IX UPP Programming of four Intel 2716 EPROMs
From an 8086 Hex File

89
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(1) The entire 86 Hex file is read into the memory of the
Intellec 800 or Series II. (2)‘The low~-order bytes are

stripped away from the input file leaving the high-order
bytes which are stored sequentially beginning at 1location
4000H. (3) Similarly, the high-order bytes are stripped
away, and the result is stored starting at location 6000H.
(4 & 5) Using the previously created file of high-order
bytes, the high-order byte PROMS are programmed. (6 & 7) The

low-order byte PROMs are programmed.

Caution for Assembly Languade Prodrammers
Due to the 808 six-byte instruction queue which

prefetches instructions when the bus is not busy, code
should not be written within six bytes of physical memory.
The 8086 may attempt to prefetch nonexistent code which will
hang the processor if the 8086 system is confiqured to wait
for the READY acknowledgement from addressed memory (Ref

18:2-96) .
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Appendix B
8089 DMA Transfers (Refs 18:4-47 to 4-51; 28)

Since all 8089 DMA transfers require at least two bus
cycles, one cycle to read a data byte or word from a source
address and one cycle to write the data to a destination
address, the 8089 does not provide standard "DMA"™ which
transfers a block of data in a single cycle. However, 8089
DMA transfers are very fast., Using a standard 5 Mhz clock,
the 8089 can achieve DMA transfer rates up to 1.25

Megabytes/Sec (Ref 28:1-1),

8089 Channel Program
The 8089 I/O processor both executes I/0 programs and

performs DMA transfers. All I/0 operations, including the
transfer of a single byte, are handled as DMA transfers; and
to initiate a DMA transfer, a channel progrém must be exe-
cuted. The channel program loads the 8089's Channel Control
Register which specifies the source and destination
addresses, data translation option, logical bus widths, type
of data synchronization, and DMA terminate conditions.
Additionally, the channel program sets mask and counter
registers (discussed below) and starts the DMA transfer with

a XFER instruction.

8089 DMA Terminate Conditions
The 8089 can exit the DMA mode and return to the chan-

nel program on one or more of the following conditions. (1)

A single cycle transfer may be specified so that channel
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execution resumes immediately after the transfer of a word
or byte., This mode may be desireable if a single 8089 I/0
channel is polling several lowspeed devices such as CRTs.
(2) The Mask/Compare terminate option allows termination on
either a successful or unsuccessful match of the
Mask/Compare register. This feature can be used to recognize
end-of-message characters in UNID II's incoming bit stream.
(3) DMA can be terminated when the Byte Count register
decrements to zero. (4) Each of the 8089's two channels has
an External Terminate (EXT) input signal to allow external
devices to control the DMA transfer.
Code Iranslation Option

The 8089 allows data to be translated during a DMA
transfer. To use this option, a 256 byte translation table
is created in memory. The source byte is used to index the
table, and the indexed byte is sent to the data destination.
Since this option only works for bytes (not words) 8-bit
logical bus widths must be specified.
Data Source and Destination Options

During a DMA transfer, the 8089 reads from a source
address, 1latches the data, and transfers the data to a
destination address. Both the source and destination address
may be directed toward either the 8089's shared or private
bus, and either bus may be 8 or 16 bits wide. On-chip logic
transparently handles any necessary word assembly/
disassembly. Both the source and destination may be treated
as either an I/0 port or memory, but memory addresses are

automatically incremented after each byte or word transfer

92




while I/0 port addresses remain unchanged.
Data Synchronization

The 8089 allows unsynchronized, source-synchronized,
and destination-synchronized DMA, Since unsynchronized DMA
transfers allow maximum transfer rates, they are usually
used for memory-to-memory transfers, For 1I/0 transfers,
UNID IXI must not send or receive data faster than communica-
tion 1links (and communication ICs) allow. In the synchro-
nized modes, the communications interface (or I/0 device
controller) initiates each 8089 data transfer cycle, Source
synchronization is used for I/0 reads while destination
synchronization is used for I/0 writes. Each of the two 8089
channels has its own DMA Request (DRQ) input. The 8089
acknowledges a DMA Request by placing the I/0O port's address
on the bus, and external logic must be used to decode this
address as a DMA Acknowledge (DACK) to the DMA Request (Ref
18:4-51).
Confusion Between Channel Control Byte
and Channel Control Register

The Channel Control Register discussed in this appendix
is a register within the 8089 used for specifying DMA op-
tions and should not be confused the Channel Control Byte
located in the Parameter Block within shared memory. The
Channel Control Byte is used by the CPU to stop, start, or
suspend an 8089 I/O channel. To avoid confusion, both Intel
(Ref 18) and Chapter III of this paper use the term Channel

Control Word. Osborne (Ref 28) uses the term Channel Control

Byte.
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