AD-A115 558 AIR FORCE INST OF TECH WRISHT~PATTERSON AFS OM SCHOO==ETC F/G 9/2 ° I

DESIGN AND IMPLEMENTATION OF A BACKEND MULTIPLE=PROCESSOR RELAT==ETC(U)
C 81

DE R W FONDEN
UNCLASSIFIED AFIT/GCS/EE/810-6

N

-—

e
L
LS
(e

DEPARTMENT OF THE AIR FORCE
AR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

anh' Patterson Air Force Base, Ohio
I DISTRB0TION STATEMENT

Whpﬂhﬂetﬂ-—.

82 06 14

160

AFIT/GCS/EE/81D-6

DESIGN AND IMPLEMENTATION
OF A
BACKEND MULTIPLE-PRGCESSOR
RELATIONAL DATA BASE COMPUTER SYSTEM

THESIS
AFIT/GCS/EE/81D-6 Robert W. Fonden =7
Captain USAF g

Approved for public release; distribution unlimited.

L g mblic release;
Appraved for ¥ '_,c ole
—patnontion Jniimit

DISTRIB! TON ﬁ‘@ \
—"""‘"—..'M—

————

AFIT/GCS/EE/81D-6

DESIGN AND IMPLEMENTATION
OF A
BACKEND MULTIPLE-PROCESSOR
RELATIONAL DATA BASE COMPUTER SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by
Robert W. Fonden, B.A.
Captain USAF
Graduate Computer Science

December 1981

Approved for public release; distribution unlimited.

Preface

This work presents a feasibility study, a requirements
analysis, an initial design, and a first stage
implementation of a backend multiple-processor relational
data base computer system for the Digital Engineering
Laboratory which I hope will provide a sound basis for
follow on implementation efforts to fully implement this
data base system,

I would like to express my deep appreciation to Dr.
Thomas C. Hartrum, who as my research advisor gave me
valuable guidance and encouragement. Also, I thank my
thesis readers, Dr. Gary B. Lamont, Major Charles W. Lillie
and Captain Richard L. Conn whose constructive comments
helped to improve the clarity of this thesis. In this
vein, thanks are also due to Dan Zambon, an AFIT/ENE
technician, for his many hours of help with the computer
systems I used.

Finally, I wish to thank my wife, Carol, for her help
and encouragement during these past 18 mouths.

Robert W. Fonden

Acgegsion For o
UTIS GRAGL
DTIC TaA2
Unanasunesd ‘
Justificatic .

By e et
Distritution/
DT, B -~ .
© Availacility Coues
copy ———— . Lo
INSPECT Availa S ol
3 Tist Speeind

Contents

Preface. . . v v v ¢« ¢ o« « o« o &

List of Figures. « . .

Abstract . ¢ & ¢ ¢ e v e e v e W

I.

II.

Introduction,

Background
Statement of the Problem
Scope. ¢ v v ¢ e e e . W
Approach .
Overview of the The51s

Background

Introduction . . .

Backend Data Base Computer

Concepts .

Advantages and Dlsadvantages

Performance. . « . .
Additional Resources
Specialization ., .
Modularity .

Security and Integrlty

Reliability . . .
Cost . ¢« ¢« « o « &

Summary. .

The Relational Data Model.

Systems

Data Base Computer Architectures

Categorization

Single Processor Indlrect Search
Single Processor Direct Search

CAFS Architecture

Multiple Processor Direct Search

CASSM Architecture .

Multiple Processor Indirect Search

RAP Architecture . .
DIRECT Architecture

iii

.

Page
ii

vii

III.

IvV.

Multiple Processor Combined Search
DBC Architecture
Comparisons .« . 4 & « o o & o o
SuMMary. « o« « « o o o o o o o o o o
System Development

Introduction . .
Longterm Requlrements and Goals
System Design. « . .+ .

General Description. . . «
System Functions
System Hardware Arﬂhltecture .
System Support Software. . .

System Development Plan.

General Description.
Development Stages . . . + « « . .
Resource Requirements.

SUMMAry. + + 5 s o s o o s o o o o
Subsystem Design+ .« .« + . .+ o

Introduction . . . o e e e e e s
Query Operation Formats o s s
Subsystem Data Tables

Domain Name Table « . . .
Attribute Name Table . e e e
Relation Table . . . e e e e .
Relation Attribute Table . e e

Relation Page Table

Query Processor Table o o e
Intermediate Memory Module Table
Query Packet Wait Queue

Query Packet Operation List
Query Packet Execution List
Query Operation State Table
Transmit Queue . . « . +« . .

Subsystem Functions.

Initialization
Setup .« ¢« ¢« . o v .
CheckQueues . . .
Service Host Request .
Assign a Query Processor .

iv

e e e o o s o o

61
61
64

Su
In

Su
V. Subs
In
Im

Re
Te

Te
VI. Conc
Ov
Re
Fi
Bibliograp

Additional

Appendix A:

Appendix
Appendix
Appendix
Appendix
Appendix
rAppendix
Appendix

Volume II:

Tz O T m O O w

Service a Query Processor . e e .
Answer a Host Request
Backup the Data Base . « e et e e
Wrapup o s & s s s s e s+ e o e e o

bsystem Logic Flow . . . e e e e e
terprocessor Communlcatlon v e . s

Host / BCP Communication
BCP / QP Communication

MMArY o o & o o o o o o o o
ystem Implementation and Testing
troduction . ., . . e e e
plementation and Test Approach . e e e
sources and Constraints . e e e
st Support Software. . . . ¢« ¢« ¢ ¢ ¢ &
Host Processor Software
Query Processor Software
IMM Processor Software
st Results and Evaluation. .
lusions and Recommendations.
eerew L] Ll - .
commendatlons e e e o s e s

nal Comment

hy « « & ¢ ¢ v o v o W

Readings . « « ¢« ¢ ¢ o« ¢« v o « o o«

BCP Structure Chart Documentation .

BCP System Table Formats
BCP System Data Base File Formats
Inter-processor Architectural Specs.
Channel Link Software Specifications
HOST Structure Chart Documentation
QP Structure Chart Documentation . ,

Program Documentation (Available from

. . 106

.. 108

A o)
. e oo 117

e .« . 18
. . . 118

. . 119
. . 121
.. 121
s .. 122
oo ow oW 125
. . . . 127

... 134
C .. 136
138

142

Relational Algebra Query Operation Formats . 184

196
204

o

o o oo o 210
o o .o« 212
e . . . 222
e e 23
AFIT/EN)

Vita

vi

List of Figures

Backend Data Base Computer System .

Software Organization of Backend DBC System .,
The Relation COURSE

Levels of Normalization

A "Selection" on the Relation COURSE

A "Projection" on the Relation COURSE

The Relation QNS « + « « « . &

A "Join" of the Relations QNS and COURSE

The Medical Database « ¢« « & .« .+ .

The Relational Algebra Hierarchy for a Query
The MADMAN System Architecture .

The CAFS Incorporated Retrieval System .,

The CAFS Architecture « . . « « + « .
The MPDS ARchitecture «

The CASSM System Architecture

The CASSM Query Processor Architecture

The MPIS Architecture . .,

The RAP System Architecture

The RAP Query Processor Architecture .

The DIRECT System Architecture
The DBC System Architecture
The Conceptual Design Approach

The Physical Design Approach

The BCP Subsystem Functions

Page
11
13
21
24
27
28
30
31
35
36
43
46
47
49
52
53
55
57
58 \
60
63
T4
75

101

Figure
25
26

The BCP Test Hardware Configuration

The Inter-processor Architectural Specs

viii

Page
126
211

x Abstract

\§QA backend multiple-processor relational data base
computer system was designed with the goal of implementing
a data base management system using state-of-the-art
technology. The objective was to overcome the traditional
limitations of data base management systems implemented on
conventional type computer architectures. Hopefully this
would solve the ever-growing problem of information systems
becoming obsolete in supporting the growing information
needs of the corporate industry.=—

Toward this goal, investigaZ?ghﬁ\were made into
studies in the literature involving béckend data base
computer systems, the relational data model, and data base
computers using specialized architectures. The advantages
and disadvantages of these three areas were explored and
then, after having defined the longtefm requirements and
goals for che development of such a system, the beneficial
characteristics from each of these areas were merged
together to produce a system design. Central to this
design is the use of a set of processors, managed by a
backend controller processor, to take full advantage of
three levels of parallelism in processing relational algebra
query requests against relations.

Due to the complexity and size of this development
effort, a top-down structured detailed design and only a
partial implementation of the backend controller processor

was achieved in this research effort. A detailed

ix

development plan has been defined, consisting of several
projected follow-on development efforts, to complete the

entire development of this data base computer system.

L. INTRODUCTION

Background

In recent years, a substantial increase in the amount
of information processing involving the use of database
management systems (DBMS) has occurred. There has been a
growing need for the availability of very large amounts of
information as well as an equally growing need to acquire
and access such information at a much faster rate. In many
situations, due to this increase in demand, installations
have reached the point of resource saturation and system
degradation. Those installations supporting such DBMSs are
developing into very serious bottlenecks in the overall
function of the organizations they were built to serve.

The faltering performance of these installations must be
remedied, and remedied to a level of sufficiency so as to
remain a suitable service for many years to come, The
approach to rectifying this problem consists of two main
endeavors. The first deals with the improvement of computer
software and the second deals with the improvement of
computer hardware,

In the area of computer software, effort is being
spent on the improvement of DBMS designs. Research in the
area of algorithm and file structure improvements are being
conducted to increase the level of efficiency, and
therefore, to speed up processing. Related to this research

are studies being done to optimize the performance of

information query processing. Of the three major DBMS
design approaches (hierarchical, network, and relational),
the relational approach has lately received an extra amount
of attention, Many advantages exist in the relational
approach as compared to both the hierarchical and network
approaches, making the relational approach a very promising
DBMS for the future. Some of the most relevant advantages
are listed below:

(1) it provides a simpler, more unified user data
model, resulting in systems that are easier to use and
maintain;

(2) it is much more data~independent and consequently
results in systems that are generalized, having databases
that are easier to alter, e.g., when new data relationships
are discovered;

(3) it is much easier to express data semantic
integrity constraints;

(4) data retrieval and modification requests are
easier to express;

(5) since information is represented in one and only
one way in a relational database, only one operator is
needed for each of the basic functions to perform;

(6) the emphasis is on the use of sets, rather than on
the handling of one record at a time;

(7) sharing and protection requirements are more
easily satisfied, due primarily to the simplicity of the

underlying data base model and absence of highly

distributed access paths; and

(8) implementation issues are isolated from the
logical database model - this results in increased
intersystem compatibility and, most significantly,
encourages a structured approach to implementation,

In the area of computer hardware, until recently, the
obvious solution to the problem of system saturation was to
upgrade the mainframe. This is now becoming an
increasingly unappealing and/or insufficient solution to
the problem. Upgrading to a new machine is not only very
expensive, dollar wise; it may also require an extensive
manpower expenditure to have programs and data transferred
and possibly modified. One alternative to such an upgrade
is the offloading of the data base management functions
from the existing mainframe computer to an attached mini-
computer, Such a configuration is known as a
frontend/backend DBM computer system. Such an alternative
can be up to an order of magnitude cheaper, in terms of
hardware costs, than replacing the mainframe with a larger
machine. Added to that is the fact that only the DBMS
software need be moved over, In its most elementary form,
a frontend/backend DBM computer system consists of a
locally connected pair of computers. The application
programs are executed by the frontend (Host computer),
while the backend (DBMS) computer controls access to the
database. The addition of the backend computer, if using an

operating system supporting multiprogramming, can go as far

-

as permitting the application program execution, the DBMS
execution, and the secondary storage access, all to occur
simultaneously. More complex frontend/backend DBMS forms
consist of having multiple backend processors in a
configuration tied to a host or even multiple host
computers. Also, a number of multiple-processor backend
DBMS configurations are being considered, such as having a
set of processors distributed by data, distributed by
function, or pipelined,

To date, relational DBMSs in general have been
criticized because of their inefficiency and comparative
slowness when actually implemented. But the positive
attributes characteristic in a relational DBMS clearly show
that this is still the best approach to take. Therefore,
it is clearly a must to continue to improve on these few
unfavorable qualities.

By seeking the best of two worlds, the use of backend
multiple-processor computer architectures and relational
DBMS concepts, a longterm solution to this information

processing problem can definitely be reached.

Statement of the Problem

The purpose of this thesis is to solve four problems.
First is to determine the feasibility of applying multiple-
processor techniques to the implementation of a relational
DBMS within a mini/micro-computer system environment.

Second is to determine the system requirements, to include

-

both long-term requirements and goals as well as short-term
goals (thesis timeframe). Third is to develop a
structured, modular system design (software and hardware
using current state-of-the-art technology) for implementing
the required system over the longterm, identifying
experimental tradeoffs. Fourth is to implement a first
stage system model to show feasibility and to investigate

tradeoff alternatives.,

Scope

The original scope of this thesis was to fully
accomplish the four problems/goals defined within this
thesis. After the design phase was completed, it became
apparent that the implementation and testing phase would
exceed the available time. Therefore, it was decided to
pursue the implementation and testing of the software in a
top-down manner, completing entire functions at a time, for
as far as time would permit. However, due to the top-down
modular design of the subsystem, and the fact that all of
the software is already in clean compile form,
implementation and testing of the remaining untested

software should be an easy task to accomplish,

Approach

The first step consisted of an extensive literature
search to determine what research and development had
already been done in the area of frontend/backend DBMS

configuration approaches as well as in the area of

relational DBMS parallel processing approaches. An effort
was made to collect information from all areas pertaining
to backend and relational database systems: backend
computer architectures, data base machines, state-of-the-
art memory technology, relational DBMSs, storage
structures, query processing, and interprocessor coupling
(communication)., Existing backend data base machine
architectures were studied in particular,

Once a sufficient background nad been gained, a
feasibility study of the application of current
frontend/backend system configuration concepts to a
mini/micro-computer and relational DBMS environment was
subsequently made.

Upon completion of the feasibility study, a
requirements analysis was then accomplished. Longterm
requirements and goals were identified in preparation for
the development of a backend relational DBM computer
system. These longterm requirements and goals were
specified in detail to ensure that the system would be
developed using the latest state-of-the-art hardware and
software capabilities.

An approach to achieving these longterm requirements
and goals was then developed. First, an initial general
design of the backend system was accomplished. An
investigation of design alternatives for each of the sub-
systems of the general design was then performed. Choices

were then made in specifically how each subsection's design

would be developed. Then the system functions and
interrelationships, the hardware architecture, the support
software, the overall system logic flow, and the
experimental tradeoffs were defined. Upon completion of
the systems design, a system development plan was
developed. Specific development stages were identified,
specifying exactly what capabilities would be developed at
each stage. Stages which could be accomplished in parallel
were then identified. Finally, the resources required for
each stage of development were specified so as to enable
the future scheduling of the procurement and/or development
of such required resources,

Once the longterm system was identified and its
development approach specified, the backend controller
processing subsystem was selected and pursued in greater
detail - its analysis, detailed design, and implementation,
A top-down modular design was used to allow for a
straightforward implementation of this thesis effort as
well as to provide for future ease in testing alternative

subsection designs.

Overview of the Thesis

The structure of this thesis basically follows the
approach that was taken in the investigation. Chapter II
presents a background review of the concepts for the
following: (1) Backend data base computer systems, (2) The
relational data model and, (3) Data base computer

architectures., 1In Chapter III, the system requirements are

first identified, then the general design is presented, and
finially the development plan is presented., Chapter IV
describes the detailed design of the master-control sub-
system of the backend computer system. Chapter V describes
the entire effort of the subsystem's implementation and
testing. Finally, Chapter VI summarizes this investigation
and gives recommendations for the follow-on thesis research

efforts,

II. BACKGROUND

Introduction

To ensure that the reader will understand the
reasoning process behind the numerous decisions made in the
architectural design of the backend multiple-processor
relational data base computer system developed in this
thesis effort, a background chapter has been included in
this thesis., Three major sections are presented in this
background chapter. Due to the importance of the many
factors which all contribute to the overall design
justification of a backend multiple-processor relational r
data base computer system, a degree of detail will be given
in each of these sections. L

In the first section, backend data base computer
systems are discussed. The general concepts and the
advantages and disadvantages of using a backend database
computer system are presented to show the initial
potential of using such a system in the field of
information management.

In the second section, the relational data model is
discussed. A detailed description is first given and then 1
the advantages in using the relational data model for
implementating a DBMS within a backend computer system are
given. It is important that the reader firmly grasp the

information in this section before proceeding on to the

next section of this background chapter or, for that
matter, all remaining chapters in this thesis.

The third and last section of this background chapter
presents the details of database computer architectures
built especially for the implementation of relational
DBMSs using specialized state-of-the-art technology.
Specific implementations are presented identifying their
design specifications and their advantages and
disadvantages of such architectures, Again, the level of
detail is felt to be a necessity in order to properly
orient the reader for the following chapters presenting the

design approach chosen for this thesis effort.

Backend Data Base Computer Systems

Concepts. The basic concept of the backend data base
computer (DBC) system is to remove all or part of the DBMS
from the host and put it on a backend computer system
(Maryanski, 1980: 3). 1In principle, this backend DBC may
be either a general-~ purpose computer, for example, a
mini/micro-computer, or a special-purpose computer designed
specifically for data base management., A backend DBC
system, in its most elementary form, is shown in Figure 1.
The application programs are executed by the host computer,
while the backend machine controls access to the database.

In this thesis, the term "backend DBC system™ is used
instead of the term "backend data base processor™ because
more than just a single processor may be involved, Modified

mass storage devices and controllers, parallel processors,

10

Host
(Apvlication
Function)

Inter
Prccessor
Link

Backend
{Databhasge I

Function)

Fiqure 1 Baclkland Data Base Computer System
(Maryanskl, 1080:i4)

1

and memory devices may all be included in what is actually
a computer system for data management.

In this frontend/backend DBC system, there is
relatively tight coupling between the host and backend.
This is essentially a master-~slave configuration in which
the backend database system fullfills the data requests
passed to it from the host. The backend system can reject
requests, however, which do not conform to the DBMS access
controls., The connection between the host and the backend
is usually through an I/0 channel, This link should be of
at least channel speed if interprocessor communication is
not to become a bottleneck, Simulation studies have shown
that intermachine links with speeds of 1 Mbaud or greater
will produce only minimal communication delays (Canaday,
1974; Maryanski 1976). Configurations with the host and
backend computers sharing common memory are recommended
for situations in which quick response is absolutely
necessary.

In order to form a backend DBC system, communication and
interface software modules must be added to each computer.
Figure 2 illustrates the software organization of a basic
backend DBC system. The communication software must
provide the facilities for the transmission of commands,
data, and status information between the host and the
backend machines., The interface routines are the
processes that exchange the information via the

communication system,

12

Host
Apnlication Progran K
Work Ares
Avvlication Program 1
Work Area Cpematirg
Svstem
Host Interface (Hint)
Communication Svstem
” Baglenrd

Communication Syster

Backrend Interfece (3irt)

Operating

NRM
DEVS System
Jata Data
bun-[sun | B2 | B
Schama Behema|Schemal £
1 K
Buffers
1
i
Fieurae 2 Softwa~s Orgarization of Backend DRBS Svsten

(Maryanglry, 1980:1F)

13

e

Figure 2 shows a number of database tasks (query
requests) residing in the backend machine, If a backend is
to operate efficiently, the DBMS residing within the
backend should function in at least a multiprogrammed
environment, if only a single processor exists in the
backend computer (Canaday, 1974; Maryanski, 1976).

The major architectural distinction between backend
DBC systems is whether the implementation is on a general-
purpose single processor computer or a special-purpose
multiple processor computer.

One common assumption is that the DBMS functions are
I1/0 bound and therefore could be performed on a less
powerful processor, such as a mini-computer, more
efficiently that by a large general-purpose host.

Advantages and Disadvantages. Backend DBC systems

have received considerable attention due to their

potential for improving the performance of installations
with heavy database requirements, The research into these
systems has identified several important areas in which

the utilization of backend machines may provide
considerable advantages. However, there are also potential
drawbacks and problems that can arise if the backend
concept is not properly realized.

Performance. The prime benefit of a backend DBC

system is performance. This is obtained through
concurrent processing, associative addressing, dedicated

hardware, faster components, and other techniques applied

14

to the data base management task,.

By just moving the DBMS over to a backend computer,
concurrent operation of the host (application software
execution) with the backend computer (DBMS software
execution) and the secondary storage devices (secondary
storage access) is achieved. Further concurrent
processing can then be achieved if the backend computer is
composed of a multiple number of processors,.

By using associative (content-addressable) storage,
data can be addressed/searched in parallel, thereby further
improving the performance of the system,

Performance is also improved by reducing the volume of
data that must be moved between the host and the data
storage devices. This can be accomplished by using the
relational operations 'selection' and “projection'; and
data compression or encoding. Using selection, the backend
computer sends only those records actually needed by the
application program, In a typical case in today's standard
DBMSs, a thousand records may be read to find the few that
answer the user's query. Projection can then be used to
reduce the data volume for those cases where only a few
fields in the record are needed. In this case, the backend
computer selects only the desired records and the extracts
(projects) and converts only the required fields.

By removing the DBMS from the host, the overhead of
interrupt handling of 1/0 generated by the DBMS is alsc

removed from the host, further improving the system's

15

performance.

It must be emphasized that in order to achieve a real
performance improvement, a highspeed link between the host
and backend must be used, and a substantial demand for
database access must exist. If the gains due to
concurrency do not outweigh the losses caused by
communication overhead (interface and communication
software, and the transmission time of the interprocessor
link), then the move to a backend DBC system would be a
fruitless effort.

Additional Resources. By off-loading part of

the processing from the host to the backend computer,
additional processing time and memory on the host is
released and can be used by the application programs. This
benefit alone can be critical if the host is approaching
saturation. If the interface and communication software do
not require all of the released space, then additional
application programs can reside on the host machine,
resulting in an increase in concurrency and throughput.

Specialization, Specialization also provides

certain benefits in the hardware area. If special-purpose
hardware is used for the backend computer, certain features
and their corresponding costs are eliminated, For example,
a backend computer does not need such features as fast
multiply and divide logic, floating-point hardware, and the
long-word-size registers necessary to obtain high precision

in complex arithmetic calculations. It does, however, need

16

a powerful set of byte manipulation instructions and a high-

speed I/0 capability to a wide variety of storage devices.

Modularity. The principle of modular design is
generally applied in the creation of both hardware and
software in order to produce well defined, reliable, and
correct devices and programs., A backend DBC system is an
example of modular design at the computer system level.
This seperaticn of functions provides for allowing
multiple hosts to interface with a single data base or
distributed database network. Once the data base and the
corresponding DBMS are on the backend computer, the data
base can then be made available to other types of host
computers by prcviding an interface so that the new host
can communicate with and receive data from the backend
computer. This is a much simpler task than modifying the
entire DBMS or developing methods to allow two independent
DBMSs to concurrently access the same data base.

Security and Integrity. Another backend DBC

system benefit is the improvement of the security and
integrity of the data base. Because both are related to
access control, security and integrity are considered
together. A backend DBC system provides a single access
path to the data base. If the data base devices are
connected only to the backend computer, then any operation
on the data base must go through the backend computer,
Since the backend computer is a system resource and

therefore is not programmable by the applications

17

programmers, it is now impossible for an application
program to circumvent the DBMS and access the data files
directly. This effectively isolates the application and
the host from the data base and thus increases its security
and integrity. In order to gain unauthorized access to daﬁa
in a backend DBMS, the intruder must appear to the DBMS as
a valid user., Thus the backend DBMS causes the intruder to
concentrate penetration efforts on defeating the password
mechanism or monitoring the behavior of the r~ommurication
interface, a much more difficult and lengthy effort.

Reliability. Improved backup and recovery is

another possible benefit of a backend DBC system. With a
separate host and backend computer, the two machines can
provide a check on each other, In fact, Canaday proposes
two separate logs for recovery (Canaday, 1974). In one,
the host records all transactions or requests sent to the
backend computer., Thus if the backend computer fails, the
data base can be restored using this log. Similarly, the
backend computer would keep a record of all changes to the
database. If the host fails, then the recovery can be
performed using the backend computer's log. In each case,
the recovery is done with an audit trail from the machine
that did not fail in order to minimize the chance that the
audit trail was contaminated. Moreover, by having one
processor check on the other, failures can be detected
sooner, Thus there will be less chance of the resulting

errors being propogated to other parts of the data base,

18

CLost. As mentioned earlier, a primary motivation
for the backend DBMS work is the development of an economic
alternative to the upgrading of a large mainframe. The
attachment of a dedicated conventional mini-computer to an
existing mainframe is an order of magnitude cheaper, in
terms of hardware costs, than replacing the mainframe with
a larger machine, But other factors must be considered in
the evaluation of the economic alternatives, The media
used for the storage of the database on the existing
mainframe and the backend machine must be compatible in
order to avoid a substantial conversion cost. Backend DBMS
communication and interface scftware must also be included
in the pricing. When all factors are considered, the great
difference in price between that of a mainframe to replace
the entire existing system and of a minicomputer to assume
the database function is the_factor that makes a backend
DBMS a viable economic alternative to a mainframe upgrade.

Summary. In summary, the cost/performance benefits of
a backend DBC system and the increased functional
capabilities that it may offer are its prime advantages.
The backend computer can be used to extend the useful life
of an existing general-purpose host and to reduce the
costs and complexity of the conversion when the host is
replaced. Finally, a backend computer makes it easier and
cheaper to integrate a heterogeneous network into an
existing data base system., Potential trouble spots include

multivendor coordination in dealing with ambiguous

19

failures of hardware and software, and the proper sizing
of the backend computer to ensure that the host-backend
system remains balanced in handling a system load having

projected growth,

The Relational Data Model

A relation has a precise mathematical definition.

Definition 2.1: Given sets S1, 82,'..., Sn (not
necessarily distinct), R is a relation if it is a subset of
the Cartesian product S1 x S2 x ... x Sn, That is, R is a
set of ordered tuples s1, s2, ..., sn such that s1 belongs
to 31, s2 belongs to 82, ..., and sn belongs to Sn. The
sets S81, S2, ..., Sn are called domains of R; the value of
n is called the degree of R (Date, 1977: 73).

A relation, as shown in Figure 3, is a two dimensional
table with the following properties: (1) no two rows are
identical (2) the ordering of the rows is insignificant,
(3) the ordering of the columns is insignificant, and, (4)
all table entries are atomic (nondecomposable) data items.

Each row of the relation is called a tuple., If a
relation has n columns (i.e., degree n), each row is
referred to as an n-tuple. For example, each tuple of
Figure 3 is referred to as a 6~ tuple.

Each column is called an attribute; each attribute has
a domain. The domain is the set of values which can appear
in that column. For example, in Figure 3, the domain of

the attribute NUMBER is EE550, EE646, EE692, MAS80, MAS31,

20

(1511idol ‘®3Ed)

VBAN0D W LBLEYL Syl ¢ I«wusld

66 0 1 1 SEsayy, bLLVI
P 0 4 1 UO L3S Tuboy SwelsSAg 94EM] JOS SHGHE
ot Z Z 4 Aaojeaoqe] svensueT [c3181d 06 Y%
0z 0 Y Y UY[se(Wyl faos1y O odzuf SHhvi
60 0 i 4 550y, (o1eYACK:Y
0% 0 1 U 80US [0 usjndWoy JO SPOY49d UIBU TE5 v
0% 0 € € 50[3S13%36 Puw A3TLIuBqO4d UYs Vil
o€ 0 4 14 8403093 [UOdY JA83NAWODH PEOULADPY 209nH
62 0 4 4] Sue}sAs 88U wlB(CAIPLCICH
$¢€ 4 1 S ugse(Ofw0OT O] 043Ul (R

w«EﬁA SJU0H | SAN0H Sanoy T4t woquny

9z1S8 g1 T HO

|

21

EET99, and others.

A relation resembles a file, a tuple a record
(occurance, not type), and an attribute a field (type, not
occurance). A relational system contains several different
relations just as a CODASYL system contains several
different files. Relations may also be used to indicate a
relationship between different types of entities in
addition to describing a particular entity type., For
example, a data base may contain a COURSE relation and a
QUARTER relation as well as a explicit COURSE-QUARTER
relation linking the two types of entities, Different
relations are linked together or related through common
attributes.

An attribute (or combination of two or more
attributes) whose domain contains vélues which uniquely
identify the n- tuples of the relation is called the
primary key. For example, in Figure 3, the primary key is
NUMBER. A primary key is said to be nonredundant if it is
either a simple domain (not a combination) or a combination
such that none of its constituents is superfluous in
uniquely identifying the tuple. For example, in Figure 3,
(NUMBER,TITLE) would not be a nonredundant primary key for
COURSE. A relation can contain more than one nonredundant
primary key; in that case, one of these candidates is
arbitrarily selected and called the primary key of that
relation,

A normalized relation is one in which each attribute

22

contains only atomic (nondecomposable) values. Three
levels of normalization have been defined., All normalized
relations are in first normal form; some of the first
normal form relations are also in second normal form; and
some of the second normal form relations are also in third
normal form. See Figure U4,

In order to discuss the differences in these three
forms, the terms "functional dependence" and "full
functional dependence" must be defined.

Definition 2.2: Given a relation R, the attribute Y of
R is functionally dependent on attribute X of R if and only
if each X- value in R has associated with it precisely one
Y- value in R at any one time (Date, 1977: 154).

ror example, in Figure 3, TITLE, CKHOURS, LHOURS,
LBHOURS and SIZELIMIT are functionally dependent on NUMBER;
that is, given a particular®NUMBER value, there exists
precisely one corresponding value for each of TITLE,
CRHOURS, LHOURS, LBHOURS and SIZELIMIT. Note that
functional dependence can be applied when either X or Y or
both are composite domains.

Definition 2.3: Attribute Y is fully functionally
dependent on attribute X if it is functionally dependent on
X and not functionally dependent on any subset of the
attributes of X (X must be composite) (Date, 1977: 155).

For example, in Figure 3, the attribute CRHOURS
is functionally dependent on the composite attribute

(NUMBER,TITLE), but is not fully functionally dependent on

23

(todul ‘Pdud) UOE4BL [LBULON 40 S[pART 4 ealldfd

SUOT48I8Y Wdo,] [eWdon PuiUl

SUO[4BIOY WU0, [BUWAO) PUODSE

SUo {48194 W10 [BWULON 3S4id

(Pe2 [BUAOUU[] puE pozileudop) SU0 {4619 40 @Saohaluy]

24

(NUMBER, TITLE) since it is functionally dependent on the
subset NUMBER,

With the above definitions in mind, three normalized
relation forms can now be defined,

Definition 2.4: A relation R is in first normal form
if and only if all underlying attributes contain atomic
values only. A relation R is in second normal form if it
is in first normal form and every non-key attribute is
fully dependent on the primary key. A relation R is in
third normal form if it is in second normal form and every
non-key attribute is nontransitively dependent on the
primary key (Date, 1977: 157).

By restricting relations to third normal form,
relational systems can eliminate the occurance of
redundancy and update anomalies. Thus, when a tuple is
modified, added, or deleted, normalization will ensure that
changes are made only to that single tuple.

Operations on a relational database may be specified
in either a relational algebra or a relational calculus,
corresponding to a low- or high~level query language. The
relational calculus specifies the desired output of the
query and allows the DBMS to select the appropriate method
to obtain the results. A relational algebra must specify
not only the output, but also the method (steps) to obtain
it.

Relational operations may be classified by their

handling of a single relation or by more complex treatment

25

of multiple relations, The basic operations on a single
relation include selection, projection, modification,
addition, and deletion, Selection identifies the desired
tuples in a relation by specifying the values of certain
attributes within the relation. If a value of the primary
key domain is specified, only a single record or no records
are selected. If the primary key is not one of the
attributes specified, however, many records may be
selected. For example, Figure 5 is a selection result of
"List COURSES where CRHOURS equals 4."

Projection identifies the attributes of interest
within the selected tuples. When multiple records are
selected, the elimination of some attributes by the
projection operation may leave duplicate entries among the
partial tuples that remain., Therefore, there are two types
of projection - one in which the duplicates have been
eliminated, and one in which they are included. Figure 6
shows a projection of the relation COURSE (Figure 3) on the
attributes TITLE and CRHOURS. Note that only 9 tuples
appear in the projection; the tenth tuple, THESIS, has been
omitted since it is a duplicate of the sixth tuple.

A modification operation changes the value of an
attribute in an existing tuple. Additions and deletions
are relatively simple because the relation's tuples are of
a fixed length and are not maintained in any {(sorted)
order.

Division, intersection, union, and difference are four

26

O8AN0Y UOT4BLOE B U 4, U i}josles, VvV § vattdi g

—_—

o0 J 0 1 S {soy] LOL VI
A 0 4 1 UO [4 [STULOY SWo4sAy odulijjug § sl
V34 v U 4 Us [So(WYY 40d Ty O Oudjuf S HhVi
66 0 f f 5§59y LLLEL
0§ U 4 1 60UL [OG 4e3nduwod JO SpOyYIslf UIoi 1€6 I
0L 0 4 H Gdl4 08 [YUdy JLo4liduo) poOULAPY 2oyuH
19 0 1 4 SWe3sAg usky 638U 9HYEY

27

c3a

Title Hours
Intro Mo Logic Nasion 5
Nata Base Syqtamg L
Advancad Comonter Architactnre b
Prohahility and Statisties 3
Math Methods Of Comoutaer Scisnce 4
™asis 2
Intro To Algorithm Dasgiun o4
NMigital Tanouace Lahoratory 2
Software 3vstems Acauisi*+ion 4

Figure A A "Prolection" On The Relation Courss

28

other operations that are sometimes included in relational
data base processing. Division is a binary operation on
two relations that results in a new relation. It is useful
for answering such queries as "List all QUARTERS that offer
both COURSE MAT46 and COURSE EE692." The remaining
operations are set theory operations that also operate

on two relations to produce a third., In each case, the
relations used as operands must have at least one common
domain.

The primary operation on multiple relations, the
"join", is the relational equivalent to the set definition
in the CODASYL databases. Given two relations which have a
common attribute, the jeoin combines the tuples of each
relation where the values of the common attribute are
equal. The result is a third relation in which each tupie
consists of a tuple from the first relation concatenated
with a tuple from the second relation which contains the
same attribute~ value (except that one of the two identical
attribute~ values is eliminated). 1If a value in the common
attribute appears in one relation and not the other, tuples
containing that value do not participate in the join, For
example, consider the relation QNS as shown in Figure 7,
The relation QNS is joined with the relation COURSE (Figure
3) on the attribute NUMBER as shown in Figure 8. Note that
several of the COURSE tuples do not appear in the join
because there was no match on the NUMBER attribute value.

In the above paragraphs, the relational operations

29

ot

Anarter Numher Stndant
31 3709 Allen
SASESN IT709 Kl=in
TARY CTTAUR Sanrisg
T899 TT799 All=an
37121 MARQQ Allen
31721 32690 Jones
TAQ1 MA70Q York

Figure 7 The Jelation QNS

30

G8IU0) PUY SNY SUOEIB[EY Y3 JO LUIOpL, V gy eundiyg

6o 0 0 1] siseyy HA0X | vOLVH TyVd

66 0 0 4 sisayy Usity (| oodad lyvd

6z 0 1 f Swa3sdg osegd wvIBY |STdasy 9H9EE Tyvd

ot Z Z r4 £40381048T BsEUNUBT 1wl (diQ Ssuor | voyad 1508

0§ 0 4 f1 poustlog aejnduod Jo spoyizel yieW | usLTv | TES VR lyns

00 0 0 i SiHoYL | ufeld |ould8y Lgiis

o014} 0 0 h sisayy], Us {1V [ouldad 1yNs

Jfuwi T} sdnopn|sanoy| sanoy 9131, Juepudgldoquu Molddeud
9Z\8 H7T T 40

31

have been seperately discussed, However, it is also
possible to select from joins or projections, join
selections, join projections, project on a selection or
joined relation, etc.

The relational algebra and relational calculus based
retrieval languages are very powerful, They are in fact
relationally complete. Relational completeness means that
any derivable relation can be retrieved from the database,.
It means to the user that, if the information wanted is in
the database, then it can be retrieved. In lower-level
languages the user must write quite complicated procedures
to answer all but the simplest questions,

The most obvious distinction between CODASYL and
Relational systems is that CODASYL data items can be
repeated but relational domains cannot. For example, a
CODASYL QUARTER record may have a repeating item
identifying the COURSES offered. The relational equivalent
is a separate QUARTER-COURSE relation with one tuple for
each QUARTER- COURSE pair. The disadvantage of this
approach is that some of the data, that is, QUARTER, are
repeated in each tuple. On the other hand, one advantage
is that the relation's length is fixed and, therefore,
usually easier to process., Relations may be thought of as
highly disciplined files - the discipline concerned being
one that results in a considerable simplification in the
data structures the user has to deal with, and hence in a

corresponding simplification in the operators needed to

manipulate them.

The relational structure is very easy to understand,
But simplicity of data representation is not the end of the
story. Observe that the uniformity of data representation
leads to a corresponding uniformity in the operator set:
Since information is represented in one and only one way,
only one operator is needed for each of the basic functions
that one wishes to perform. This contrasts with the
situation with more complex structures, where information
may be represented in several ways .and hence several sets
of operators are required. For example, the network-based
DBTG system provides two "insert"™ operators: STORE to
create a record occurance, and CONNECT to create a link
between an "owner" and a "member",

A simple query to a large relational database may take
a prohibitively long time to process due to the overhead of
having to use a very large pointer structure within the
data base files. To decrease this time in applications
requiring fast response, parallel processing is necessary.
It just so happens that relational algebra queries are very
conducive to being processed with a high degree of
parallelism, Specifically, three levels of parallelism are
capable of being performed on relational algebra queries:
independent parallelism, pipelining, and node splitting.
Under certain conditions, the exploitation of these levels
makes highly parallel processing and short response times

possible.

33

Independent parallelism includes the parallelism
between separate queries and the parallelism between
independent operations in a single query. Pipelining
parallelism includes the parallelism between succeeding
operations of a relational algebra query applied to
different portions of data. Node splitting parallelism
includes the parallelism between duplicate copies of an
operation in a relational algebra query applied to
different portions of a relation's data.

For example, consider a query of the following
database of three relations shown in Figure 9. Rt and R2
contains information about hospitals and doctors
respectively. R3 contains information about the
"employment" relationship between hospitals and doctors
(including the distance between a hospital and the
residences of the doctors it employs). The query is "Find
all the hospitals in New York city which have emergency
treatment facilities (STATUS > 20) and heart specialists
living within 30 miles." The relational algebra query for
the above consists of the following steps.

S1: Select R1 where CITY = 'NY' ~ STATUS > 20 giving TR1.

S2: Select R2 where SPECIALTY = 'HEART' giving TRZ2.

33: Select R3 where DISTANCE < 30 giving TR3,

J1: Join TR1 and TR3 over H# giving TRY4.

J2: Join TR2 and TRU4 over D# giving TRS.

The relational algebra hierarchy reflecting the above

steps is shown in Figure 10, First notice that all three

34

g# UName City Status | Jthers
The Relation Hospital (R1)

D# DName |[Specizlty | Address Other
The Relation Doctor (R2)

D# H# Distance| Salary O+thar

The Qelation =mvloyment (R3)

Figire O The Medical Database

35

ouv

wa
b =

[:::><:::] Join

[:] Selection

g4 ararchy Tor 4 MeTy

l

. Figwwe 10

The Qalational
(Chang,

Algebra
19781315)

36

SELECTION branches S1, S2, and S3 are independent (i.e.
there is no precedence relationship among them), and so
they can be processed in parallel. R1, R2, and R3 have to
be stored in different storage modules so that parallel
access without contention is possible., The parallel
processing of the three SELECTIONS can be finished in
maximum of [time(S1), time(S2), time(S3)]. J1 and S2 are
also independent and can be processed in parallel; The
total execution time with parallel processing of the
independent nodes is: time(J2) + maximum([time(S2), time(J1)
+ maximum<time(S1), time(S2), time(S3)>].

To further improve the response time, the inherant

parallelism between adjacent nodes in the relational
algebra hierarchy must be explored. Note that J1 does not
have to wait for the completion of either S1 or S3 to
perform its operation. J1 can use the outputs of S1 and S3,
one tuple at a time, while S1 and S3 still keep producing
tuples one by one. Therefore J1 and S1,S2 can be processed in
parallel and form a "pipeline". The same logic can be
applied with J2 and T2,T4.

Next, note that the SELECTIONS of different portions
of a large relation are in fact independent processes. To
further improve response time, the relations 31 and S2 can ﬂ
be separated into several groups of tuples and have several
SELECTION (S1 and S2) processes applied to these groups
concurrently. This is to "split" a node into several

parallel sub-nodes. If S1 and S2 were each split into four

37

nodes, the execution time of either process would become one-
fourth of it's original time.

Response time of an urgent query can be shortened
significantly by utilizing this parallelism. The
identification and exploitation of parallel processable
subtasks in queries has other advantages also, for
example, better system utilization and simultaneous
services to a large number of users,.

While the logical structure and the mathematical basis
of the relaticnal data model are very appealing, it should
be noted that the implementation, using a conventional Von
Neumann computer, results in many of the same problems that
current DBMSs try to overcome by using data models with a
link structure. That is, the two dimensional table becomes
a one dimensional string of data with pointers to link
related data items. This results in the creation of a
software interface from the logical data model to the
physical storage structure. This relatively simple
relational data model can be as complex as the traditional
logical data models when implemented on the Von Neumann
machine. This leads to the investigation of an alternative

computer architecture to support the relational data model.

38

bt

Data Base Computer Architectures

Categorization., As presented earlier, a lot of

research has been directed toward the implementation of
DBMSs on backend computer architectures, Initial work
dealt with conventional backend architectures only, mostly
to prove feasibility, while more recent work has dealt with
the use Of specialized architectures., Before discussing
both in further detail, consider the following
classification scheme proposed by Olin Bray (Bray, 1979a:
89). The two criteria established for this classification
scheme are the number of processors involved in the data
base processing and the type of hardware organization used
to search for the data directly on mass storage devices or
indirectly in some buffered or intermediat: storage area.
The five categories comprising this classification scheme
are

1) Single processor indirect search (SPIS)

2) Single processor direct search (SPDS)

3) Multiple processor direct search (MPDS)

4) Multiple processor indirect search (MPIS)

5) Multiple processor combined search (MPCS)

In the indirect search approach the data is first
staged from permanent storage to local memory and then
searched, Implementations may use either conventional
memory/storage or associative memory/storage. In the
direct search approach the data is searched directly at the

location where the data is stored. These implementations

39

use only associative memory/storage.

The number of parallel processors used is important
because it directly relates to performance. The types of
requests that typically occur in a data base management
operation involving the search of an entire file/relation
or database lend themselves very well to parallel
processing. In these cases, if the file/relation or
database were divided into separately accessable blocks of
data, a set of parallel processors could perform the search
much faster than a single processor. In addition, with the
cost of hardware dropping by a factor of 20 to 30 percent a
year, microprocessors are a very cost-effective means of
implementing parallel processing.

Where the database is searched also affects
performance., The search may be perforged directly on the
mass storage unit where the data is permanently stored or
indirectly in scme intermediate storage area. The
objective is to perform the search as close to the source
as possible to avoid the delays due to data movement.
Because of the rotational speeds and transfer speeds of
mass storage devices today, however, most of the direct
searches can involve only very simple selections. Complex
boolean expressions just cannot be evaluated without
skipping records, thus requiring one or more disk
revolutions. The result is a tradeoff between query
complexity and performance, and the choice between a

direct-~search database computer and an indirect one may

10

depend on the applications involved.

Single Processor Indirect Search. The single

processor indirect search (SPIS) corresponds to the
conventional general-purpose processor. In this
traditional approach, part of the database is read from
its permanent storage on moving head disks into the
intermediate staging storage of random access memory
(RAM). Index tables and pointers are used (file
management system or hierarchical DBMS or network DBMS in
which data are requested by application programs a tuple-
at-a-time) to determine which parts of the database are
staged into the system's main memory. This block of data
is then processed to determine the records that are to be
retrieved or modified. Although the implementation details
may differ, all current file management systems and DBMSs
operate essentially in this fashion.

A backend computer architecture system would be
inefficient for low-level, record-at-a- time requests
because a request message and response message would have
to be passed between host and backend for each and every
record to be retrieved. For record-at-a-time operations,

this approach would actually degrade the system's

o

performance.

This is not true for high-level queries because the
backend can relieve the host of a significant amount of
work between the time it receives a request and the time it

returns an answer, an answer which may consist of up tc

U1

hundreds of records,

Initial research efforts of backend computer
architectures all consisted of approaches in the SPIS
category. The approaches of interest were XDMS (Bell
Laboratories), IDMS (Cullinane Corporation), KSU (Kansas
State University), and MADMAN (General Electric). They all
used mini-/micro- computers for the backend processor. The
first three used very slow communication links (less .than
or equal to 4800 baud) while MADMAN used a shared memory
link (see Figure 11). The first three used commercially
developed and marketed DBMs packages loaded completely on
the backend computer while the MADMAN approach developed

its own DBMS package and loaded only the CPU activities of

the DBMS on the backend machine, leaving the DBMS disk

I/0 operations on the host (see Figure 11). The main
question regarding these research efforts had to do with
the feasibility of efficient communication between the host
software and the backend DBMS software, If the
communication between the machines became a bottleneck,
then such an approach would be fruitless. Such was
determined not to be the case and sc¢ its feasibility was
proven, A much faster communication link (approximately 1M
baud) would be required, to eliminate processor delay
caused by waiting on inter-processor communication
transmission, out such capability is within current
technology.

With the recent development of the following two

42

Main Hogt
Mamory " =08
DMA Control
\ Bagltand Shared
HMermory
Figure 11 Thae Madman Svstem Architecture

(Entchison, 1978:R3)

43

technoleogies, an ability to now quite easily take advantage
of the relational model was brought about. They consist of
the following.

1) Solid-state (LSI and VLSI technology) content
addressable memory devices (parallel and serial) which
permit the construction of longer words, minimize the cross-

talk problem, require less energy and permit the use of
components with loose tolerances, and

2) Intelligent memory devices such as disk, bubble and
CCD having search capabilities similar to associative
memory, an ability to now quite easily take advantage of
the relational model, which bears a 1:7 relationship with
associative storage.

The result has been new efforts which proceeded on to
replace these conventional backend computers witn backends
using specialized architectures; the goal in sight of
boosting the capability and speed of information prccessing
systems. These special architectural approaches are
described in the following discussions covering the
remaining four classification categories,

Single Processor Direct Search. In this approach, the

data are searched by the backend, and only the desired
records or their specified parts are sent to the host (the
relational data model is used). This reduction in data
volume, using selection and projection operations,
significantly reduces the work load on the host by

eliminating many relatively simple tests on large amounts

44

of data that were normally performed by the host (tuple-at-
a-time processing). This approach is classified as a
direct search because intermediate storage is not used for
the data search, By not having this intermediate storage,
however, only a limited set of relational DBMS query
operations and not a complete set can be supported.

CAFS Architecture. CAFS (Content Addressable

File Store) was designed as a highspeed search device and
is an example of the SPDS approach (Bray, 1979a: 101).
Figure 12 shows the overall architecture of the system and
Figure 13 shows the major components within the CAFS
architecture itself., CAFS also is classified under the SISD
category. Data from the disks stream through the backend
W“here the selection is performed. Records which meet the
selection criteria are then passed to the host.

Sixteen key registers are used in the comparisions as
the data are streamed through the system. These results
are passed to the search-evaluation unit to evaluate the
complete logical expression of the query. Multiple 64K
bit array buffers are incorporated in CAFS for joins and
the elimination of duplicates following projections and
may be used to hold input data for the search evaluation
unit, The retrieval unit is used to buffer records to be
sent to the host.

The essential problem that CAFS addressed was the
rapid location and retrieval of records when the selection

criteria are based on data values within the record rather

45

(201304ul *Acdy) ws)SAgG H:>wnppwm,xwwmpoapcoch SdV¥D 9yl

¢l wansiyd

wsBy

vy edq

osey

178 °7¢ |

oswvy

d8xoTd T3 T
Touusy)

wesdl1s s38B(J

¥ B(

oswy

By B(]

3 bl

pexerd iy tuy

S4vO

SpPL008Y

petdiLeud

150H

46

Host

Kev Registers

Name Valn ::,1
Search
4 Zvalnation " I‘T
Unit s
Al11 Name
Value Pairs
m
0C 1 In Tuple
HC 2 -
Address Joining ¢
. Filter Indexes T
’ o
r_ HC N

Retrieval
Unit

.- -

Fimire 13 The CAFS Architecture (Bray, 1979:103)

47

than the record's position. The problem is even more
severe when any of the fields in the record or parts of a
field in the record can be used as search keys. CAFS was
designed to cvercome these problems through the use of
pointers to large blocks of data, for example a track,
rather than individual records. This blcck is then scanned
serially to locate the desired records.

CAFS is strictly a retrieval system and does not allow
on- line updating of data. Higher-level functions such as
sum and average are left for the host to calculate. Being
an SISD machine, the backend can only process one query at
a time.

Multiple Processor Direct Search. Figure 14

illustrates the basic characteristics of the multiple
processor direct search (MPDS) approach, of using a
processor to directly search each_track of the database.
As the storage devices (CCDs, MBMs, drums, or head-per-
track disks) rotate, data are read into the corresponding
track processor, which then examines the records to
determine which ones should be selected or modified. The
data "stream" (transfer) off the track, through the
processor and are then written back to the same track
within the same revolution., The amount of processing that
can be performed on a single revolution, therefore, is
limited by the speed of the track processor and the speed
of the rotating device. If processing is not completed in

a single revolution, then flags must be set in each record

48

TP1

1 TP2

D
\ —

+
o
n
r

Cortrollaer

-ae

)
v
\~_____T___,,/’
N—]

TP=Track Processor

Figure 14 Thae Mnltiple Processor Direct Search
(Bray, 1970:107)

49

to indicate its selection and the degree of processing
completed.

Using a MPDS approach, the entire database can be
searched in a single revolution. In fact, by having
multiple compare registers with each processor, it may be
possible to answer several requests in a single
revolution. Multiple flags would be needed in each record
for each request being processed.

The tradeoff that has been made with the direct-search
approach is to minimize the response time rafher than the
storage costs, Since all tracks of the database are read
and processed in parallel, response time is independent of
the size of the database and is simply a function of the
time to read a single track. The penalty for this constant
response time is the cost of storage. Storage costs grow
at a rate equal to the amount of data being stored. As
more tracks/disks are required, more track processors must
also be added.

Unfortunately, a serious problem exists due to this
continuous read from and write to the database for every
revolution - backup and recovery. Constant rewriting of
the entire database significantly increases the number of
errors as compared to a conventional system, The ability
to issue a rewrite due to a write error does not exist in
this architecture,

CASSM Architecture. CASSM (Context Addressable

Seqment Sequential Memory) was developed at the University

50

of Florida (Su, 1979) and is an example of the MPDS
approach (see Figure 15). CASSM, a SIMD machine, performs
parallel processing of the database so that the time
required to perform many of the database functions is
independent of the size of the database. Head~per-track
disk devices were used for the database storage units, The
track processors all process the same function assigned at
the same time thus enabling the entire database to be
processed in one revolution. Within each track processor, a
set of operating modules operate in a pipelined parallel
fashion in processing the instruction (see Figure 16).
CASSM's design assumes that the entire database resides
online and is available to all N track processors. The
storage could be implemented using CCD, MBM, etc. such that
the data appear to be rotating past some fixed point (bit
serialized associative storage). Then, as the data rotate,
every word is read, processed, and written back to this
storage device. Being a SIMD architecture, CASSM only
processes one query at a time.

Unlike conventional rotating storage, a CASSM track
processor contains separate read and write heads for each
track (see Figure 16). Every word of storage then can be
read, and, if not deleted, written back on each revolution.
Word insertions cause every word thereafter to be shifted
down one position on the track while word deletions cause
every word thereafter to be shifted forward one position on

the track. CASSM was designed to be used in conjunction

51

Host

Cell 1

I i N
3us

¢ * Controllen

Data
Basge

Cell N

Figire 158

The CASSM System Architecture
(Bray, 1972:109)

52

Garhoge Collection

-

Compara*tors ‘
Delimitar !
Y Coint- —-ih qAM
f ar Bic
S ®it | i Map
T Q0 Bit

Genaral Ragiaters

Bus

Figonre 16 The CASSM Jdnery Processor Architecture
(Bray, 1979:110)

53

with a general- purpose host processor issuing high- level
data management queries. It was one of the first attempts
to construct a special architecture for general non-numeric
processing.

Multiple Processor Indirect Search. The multiple

processor indirect search (MPIS) approach is very similar
to the MPDS approach in that multiple processors are used
to process the database in parallel. The main difference
is that not all of the database is processed in parallel.
Instead, a part of the database is staged into an
intermediate storage device and then searched there. This
approach is shown in Figure 17.

For this approach to be feasible, the capability must
exist to be able to quickly identify those parts of the
database which must be processed and to load them into the
intermediate storage. Quick identification will still
require pointers, but pointers only to large blocks of
data, for example, tracks or cylinders, rather than
individual records. Rapid loading of the intermediate
storage will require a high data transfer rate and
buffering within the intermediate storage. For the MPIS
approach, the time to process a transaction is indirectly
dependent on the size of the database,

The following two subsections describe two systems
using the MPIS approach. RAP (Relational Associative
Processor) is a SIMD type approach and DIRECT is a MIMD

type approach. Both were specifically designed for non-

58

Irtermediate

Storage
Processor IS :
]
|
!
— Processor Is 1

Host '
¢+——Lontroller

1
N Data Rasg-

Processor IS

Processor ' IS

Pigure 17 The Mnltivnle Processor Irdirect Search
(BRravy, 1070:121)

55

numeric data management,

RAP Architecture., RAP was developed at the

University of Toronto in the mid 1970s (Ozkarahan, 1975;
Schuster, 1976). The overall RAP architecture is illustrated
in Figure 18. The host is responsible for compiling the
high~ level user queries into RAP commands, scheduling the
operations for RAP, transmitting the RAP instructions to
RAP, handling all database integrity and security, and
maintaining all the relation and domain tables. RAP
consists of a controller, a set function unit (SFU), and a
number of cell processors, each connected to its two
adjacent neighbors.

The design is composed of a controller, an arithmetic
set function unit, and a parallel organization of cell
processors (Figure 19). A cell processor consists of a memory
component and a logic component, The memory unit is one
track of a rotating device such as a disk, drum, circular
shift register, etc. The logic component is a
microprocessor which acts as a "search machine" on data,
directs manipulation, and performs limited numeric
computations required by database processing. The set
function unit is used to combine cell processor results to
obtain a value computed over the total memory contents, The
controller is responsible for overall coordination and
sends control sequences to the cell processors, controls
the set function unit, and executes decision commands and

other RAP primitives that can be accomplished directly in

56

Jost

—. :
i
I
|
|
Cell 2 |
& |
Con+*roller |
}
o
. |
Sat ¢ '
Function |
nit |
13 g l
'L el | !
I
L] ‘
| i
I |

Data Basge

Data Basge

Data Base

Pignre 18 The RAP System Architecture
(Brav,

1G70:126)

57

(921306} *ABlg) sduge]iiody LOBBUDLL] Adull

dVl PUul, ol wdloiyd

mmmpof% sgui

1

Aaous)y

Jajjn

|

3 {un Teolwo]
B 0[3ouy3 1Ay

Fiun
uo 3eIndyusy
» {o4EDG
uo [3Budoguy

¥

2481038 SSBY

N t1=2D

T+N 1180
4
3Luq)
| uofjouny
| 128
o] 1 043U0D
=N LI

58

itself,

RAP is based on the relational data model, with the
data stored in normalized relations. Only one type of
relation can be stored on a single track., If there are
too many tuples for a single track, then any number of
additional tracks can be used. Neither contiguous tracks
nor ordered tuples are required, If the RAP database is
small enough, it can be stored completely within the cell
processor's memcries and operate as a direct- search system
because staging is not required. The more general case is
that the database is too large and must be stored on a
conventional moving-head disk.

Intermediate storage within each RAP cell processor
contains the equivalent of one disk track of roctating
m;mory, for example, disk, CCD, or MBM. Like CASSM, the
data, rotating through the intermediate storage, are read
into the cell processor's buffer, processed, and written
back to intermediate storage., The tuple size is limited to
the buffer in the cell, for example, RAP's buffer size was
1024 bits.,

DIRECT Architecture. DIRECT was developed at the

University of Wisconsin (DeWitt, 1979) and is currently in
the stage of implementation refinement (Boral, 1980; Boral,
1981). The overall DIRECT architecture is illustrated in
Figure 20. Where RAP is a SIMD approach only able to
process one instruction at a time, DIRECT is an MIMD

approach and so is capable of simultaneous execution of

59

(9o€roldoT *313tMoU)

U] OYY [YOdY We3SAG 308A5(0 BYL 02 @4udlyg

XTagq ey

U0 T3 09UU0DIB3UT

u Jdosseooad
Ausnd

2 40LSToud
Adsudy

1 4088869004
Lasnp

r

jedva03 ¢
ssely

—

938103 G

STupon
Aaousy
aoo

d9TT0Jd3U0D
pua=-xjo8g

4SO

—— 2 498[)
—— 1 498

60

query instructions from different users. DIRECT is very
similar in operation to RAP with the exception that the
intermediate storage units are not specifically assigned to
a query processor., Through the use of an interconnecticn
matrix, any intermediate storage unit is accessible by any
query processor. The controller makes dynamic
determination of the number of processors assigned to each
query to be processed.

Using DMA data transfer, the controller stages tracks
from main storage to the intermediate storage units and
informs the query processors of which intermediate storage
unit to access in order to process that information, As
with RAP, only one relation is stored per track., The
intermediate storage units were constructed using CCD
chips., The relations are not assigned to a query
processor, but instead, a data flow technique is used in
which the query steps are assigned and processed by the
whole set of query processors.

Multiple Processor Combined Search. The multiple

processor combined search (MPCS) approach combines several
of the best features of both the direct- and indirect-
search approaches. This approach handles the
complexity/performance tradeoff issue by directly searching
the data with track processors for simple queries and
staging the data in buffers for more complex evaluations.

DBC Architecture, DBC (Data Base Computer) is an

example of the MPCS approach (Banerjee 1979). It is under

61

development at the Ohio State University. It has three
major objectives: 1) to support very large databases of 10
to 100 billion bytes, 2) to support multiple data models,
including hierarchical, network, and relational, and 3) to
use current technology and not rely on significant
technological breakthroughs,

Modified moving~head disk technology is used in order
to support the very large on-line database storage. DBC
employs two forms of parallelism. An entire cylinder's set
of tracks can be processed in parallel by a processor
assigned to each track within the disk pack. DBC uses a
pipeline architecture which provides a separate unit to
proéess each step of an instruction. The basic
architecture is conceptionalized in Figure 21, The DBC
makes use of two loops of processors and memories in
executing the commands. The data loop, which consists of
the database command and control processor (DBCCP), mass
memory (MM), and security filter processor (SFP), is used
for storing and accessing the database, for post processing
of retrieved records, and for enforcing record field level
security. The structure loop, which consists of the
database command and control processor (DBCCP), keyword
transformation unit (KXU), structure memory (SM),
structure memory information processor (SMIP), and index
translation unit (IXU), is used for limiting the mass
memory search space (through the determination of cylinder

numbers), for determining the authorized records for

62

PN

Structurs
Memary Stracture
Information Memory
Procassor
3
Structure /
’ Looo /
Index Keyword
Translation Transformatioh
it Unit
Data Basge
Comrand &
Control
Procescor
Se;;;iﬁz Data Mass
> Loop Memory
Procesgsor

~— -

Fign»e 21 The DBC System Architecture (RBanerjee, 1070:415)

63

accesses, and for clustering records received for insertion
into the database. The system was designed completely
around the security design to enable full security
capability for this system. This system can process
multiple queries at a time.

Comparisons, Note that each of the categories!

architectures presented have been built upon the
architectural design of the previously presented
category. It so happens that the ranking of these
categories correspond to the sequence of events in the
research and development in this field of computer
science, Each of these research efforts have produced
respectable results as well as insights and questions
bringing on further investigation and development of yet
more sophisticated architectural designs. As comparisons
are made and discussed in these next paragraphs, the
motivations behind these successive developments will come
to light.

In terms of response time, the MPDS architecture
offers the best performance by allowing the entire
database to be searched in one mass storage revolution.
As in CASSM's case, since the data definition is carried
with the data on mass storage, no indexes of any kind are
required - the data may reside anywhere on disk - all
within reach of the query processors within one mass
storage revolution, The drawbacks to this system are 1)

such a system is currently only effective for small

6u

databases, because of its higher storage costs, and 2) due
to the constant rewrite of the entire database, recovery
becomes a nightmare, Such an architecture is an excellent
advancement over rrevious efforts, in terms of using a
direct access mechanism along with a set of processors, but
there was plenty of room for improvement.

The next logical step was to use a data-staging
technique and stage organized blocks of data from mass
storage into an intermediate storage. This approach solves
the growth/cost penalty problem substantially and now also
enables convertional recovery techniques to be used since
instantancous rewrite is no longer being accomplished.

Thus an #®S architecture is created. But there is concern
regarding the reduction in response time due to the
additiongl process of staging blocks of data to and from
mass storage. Whether or not a reduction does occur boils
down to whether a SIMD or MIMD architecture is used. RAP,
though dealing with an organized database (relations stored
on separate mass storage tracks), only processes one
instruction at a time. Relations whose total number of
blocks is less than the number of query processors
available, and relations whose total number of blocks
divided by the number of query processors available yeild a
large remainder, will render the remaining available query
processors useless for all or part of the duration of that
query processor instruction. In this case, response time

would be reduced - all other factors being equal. By

65

adding more intelligence to the controller processor, and
making use of an already existing relation block index
structure, query processors found to be idle could begin
processing another query instruction of the same or a
different query, and thus boost the performance of the
system, as in DIRECT's case. Thus another step forward
has again taken place, in this case, from a MPIS (3IMD)
architecture to a MPIS (MIMD) architecture. Again, each
development has produced excellent results over previous
efforts and agreeably, without these valuable stepping
stones, progress would not have come this far at this time,
There is plenty of agreement that excellent benefits
exist in both the MPDS and MPIS architectures, so why not
put to use the best of both architectures. Instead of just
transferring the blocks of data from mass storage to the
intermediate storage units, why not perform some level of
direct search processing on that data as it streams off the
track over to intermediate storage, and then proceed with
the more complex query processing on the staged blocks of
data, Thus the MPCS architecture, specifically DBC's
case, is created. Where one goes from here in terms of new
architectural approaches is yet to be conceived, But in
the mean time, by concentrating on improving the building
blocks themselves that will make up these present
approaches, much can still be accomplished. By
incorporating more sophisticated CAM, CCD, MBM, etc, into

these architectures, both in terms of quality and quantity

66

(VLSI), query processing response time for la.ge database
systems using the relational model, will easily be

achieved.

Summarz

The first of four problems identified in the purpose
of this thesis effort was to determine the feasibility of
applying multiple processor techniques to the
implementation of a relational DBMS within a micro-/mini-
computer system environment. Based on the information
brought to light within this background chapter, the
feasibility of such an architecture is now a certainty.
The remaining chapters in this thesis address the last
three problems identified in the purpose of this research

effort,

67

III. System Development

Introduction

This chapter covers the initial system development for
an AFIT Backend Relational DBM computer system. In the
first section, the longterm requirements and goals are
identified, first in general terms and then in more
specific terms. Justification of these requirements and
goals is given. In the next section, at the overview
level, the system design is presented. The system
functions and interrelationships, the system hardware
architecture, and the system support software are defined,
In the next section, a system development plan is
presented. Based on the system design, a set of subsystem
development stages are identified., The resources and
constraints for each stage are also identified so as to
specifical.y define what functions will be implemented
or must be simulated for each stage of the system

development. A summary concludes this chapter,

Longterm Requirements and Goals

The longterm requirements and goals for the
development of an AFIT Backend Multiple-Processor
Relational DBM computer system have been determined to
consist of the following items,

(1) Permit a multiple number of users to share the
database as a common resource (i.e.: a network member).

(2) Use a MIMD approach to permit a high level of

68

parallel processing of useré' queries,

(3) Design a multiple processor system which does not
waste a large percentage of its processing potential by
permitting processors toypg idle, particularly in a multi-
user environment. -

(4) Considerably improve on the system response time,
system throughput, and cost of database storage in
comparison with existing software laden DBMS's run on
general purpose computers,

(5) Provide complete modularity in both the software
and hardware design of the system in order to enable it to
(a) be easily modified throughout its initial development
and (b) be used as an easily modifiable AFIT research test
bed for investigating and implementing alternative state-of-
the-art architectures.

(6) To be used in both an AFIT pedagogical environment
and an actual AFIT supportive information processing
environment,

Let it be emphasized that the central goal is to
develop a DBMS that can provide a very respectable online
response time to a very large variety of queries generated
by a multiple number of users against a large database,
From the background material presented in Chapter II, it
should be clearly evident that to accomplish this central
goal, the use of the relational data model, a backend
computer system composed of a set of processors, and some

type of intermediate associative memory storage is, to

69

date, the only real route to take in order to achieve the
speed and size qualities desired.

Based on an analysis made of all the key features of
backend computer systems, the relational data model, state-
of- the-art memory technology, and the different relational
DBMSs implemented on special purpose hardware, a set of
functional and architectural features were selected for
their inclusion in the development of a backend DBMS in
this thesis., Specifically, the design of the backend
multiple- processor relational DBM computer system, as
currently envisioned, will include the following features.

(1) A complete set of relational algebra based
operations will be provided. Having a complete set means
that any derivable relation can be derived from the
database. Therefore, if the information wanted by the user
is in the database, it can be retrieved,

(2) A set of N query processors in the backend
computer architecture will be provided to support the
parallel processing of a single relational query. Three
levels of parallelism are capable of being performed on
relational algebra queries - independent parallelism,
pipelining, anud node splitting. Exploitation of these
levels using multiple processors will make highly parallel
processing and short response times possible,

(3) One or more mass storage devices to contain the
entire relational database will be used, This will require

using moving- head disk devices.

70

(4) A multiple access path to the database will be
provided so as to fully support the parallel processing of
a single relational query. Having simultaneous access tc
the database by the N query processors will provide a
complete parallel processing capability (data access and
data processing).

(5) A set of M (where M >> N) intermediate memory
modules will be provided to enable the pnysical concurrent
access of the relational database. By staging relations to
separately accessable memory modules, the query processors
can then concurrently access and process the data,

(6) Enable the size of a relation to surpass the size
of the memory module device. By dividing the relation into
logical pages and staging these pages to the intermediate
memory modules, the size of a relation need not be
restricted.

(7) A dynamic determination of relation page
assignments to query processors will be provided., An
entire relation does not have to be processed by a single
query processor for a given relational query operation, but
can be paged out to N processors and processed in parallel.

(8) A dynamic determination of the number of
processors assigned to process a relational query will be
provided,

(9) A set of N query processors, each executing the
same query step, will be permitted to simultaneously search

different pages of a common relation,

71

(10) A set of N query processors, each executing
different queries, will be permitted to simultaneously
search the same page of a relatioh.

These are the longterm requirements and goals, both
broad and specific, for the development of the backend
relational DBM computer system., While the capabilities of
this system are quite clearly defined, the method of
implementation of certain parts of the architecture leaves
room for several alternative approaches, They are as
follows.

(1) Type of intermediate storage modules to use,

(2) Hardware configuration and method of data
transmission in the staging of relation pages from the mass
memory device to the intermediate memory modules (IMM).

(3) Hardware configuration and method of data
transmission in the accessing of relation pages from the
IMMs by the query processors,

(4) Hardware configuration and method of data
transmission between the query processors and the backend
controller processor, and between the host computer and the
backend controller processor.

Random access memory, associative memory, charge-
coupled memory, magnetic bubble memory, hard disk memory,
or floppy disk memory could be used for the intermediate
memory modules. To handle data transfer between the main
storage and the IMMs, and the IMMs and the query

processors, either multiport memory modules or a cross-

72

point matrix switch could be used. Programmed I/0, direct
memory access (DMA), or memory module continuous data
broadcasting could theﬁ be used for actual data transfer.
For the initial design, multiport memory modules will
be used. Figure 22 shows the conceptional design approach,
This configuration will lend itself to easy modification in
many areas of the hardware architecture. These details
will be specifically discussed in a later section of this

chapter.

System Design

General Description. This Backend Multiple-Processor

Relational DBM computer system will consist of five main
components: a host computer, a backend controller
processor, a set of query processors, a set of dual-port
intermediate memory modules (IMM), and one or more mass
storage devices, A diagram of these components and their
interconnections is shown in Figure 23.

The host computer will handle all communications with
the users of the DBMS. Users will log onto a modified
version of Roth's Relational DBMS (Roth, 1979), and proceed
in the normal manner, When a user wishes to execute a
query, Roth's DBMS will format the already optimized user
query into a sequence of relational algebra operation
steps, called a "query packet", and then send it to the
backend controller processor over a communication link,

Query responseé are received by the host computer from the

73

yoveouaddy udiss(q [euo(idaduod syj,

e vandlg

asuvy
N -{¢f

0044
NHI £aond

108$88204d
Jo [T0L3U0D
pusyoeg

! o0ad
| fasnd

oouad
Aasud

Jejud
-wo
350H

T4

Uoeodudy Ud|ss(1uof(SAyd o9yl (¢ odudiy
@\ [
Nd®
———\WWI
N4
WHI “:II!J -
e ﬂ edd dod »—{ 3SOH
WHI
(g
8l B(J
WHT
qy

75

backend controller processor via DMA data transfer from
the BCP's disk storage. The query responses are then
subsequently passed back to the awaiting user,

The backend controller processor is responsible for
interacting with the host computer, controlling the query
processors, and handling the transfer of data between the
mass storage and the IMM devices. When the backend
controller processor receives a query packet from the host
computer, it will determine the number of query processors
that should optimally be assigned to the query packet,.
Before distributing the query packet to the selected query
processors, the backend controller processor will page, via
DMA data transfer, portions of the required relations into
the proper IMMs. During execution of the query packet steps
by the query processors, the backend controller processor
Wwill continue to supply needed relation pages for ?
processing in response to query processors's requests.

The function of each query processor is to execute the
steps of the query packet assigned by the backend
controller processor. The query packet is received from
the backend controller processor over a communication link
to the query processor(s). The query processors then
receive from the backend controller processor the address
of which IMM to access to process the query step (multiple
IMMs can either be permanently dedicated to each query
processor or dynamically assigned by the backend controller

processor). Intermediate query results (temporary

76

relations) are written by the query processor out to
another IMM, also specified by the backend controller
processor.

To enable the support of both intra- and inter-query
concurrency of processing, the approach taken was to divide
each relation into fixed size pages and also divide the
memory into separately addressable memory modules having
the same size as a relation page. These relation pages are
then staged from the mass memory to the IMM modules and
also written back if updates were performed, Each query
processor will search an assigned page (staged in an IMM)
of a relation referenced in the query packet step. When a
query processor finishes searching one page of a relation,
it will then make a request to the backend controller
processor for the address of an IMM containing the next
pag% it should search. Once the address has veen received,
the query processor must be able to rapidly switeh to that
IMM device,

A relatively small page/IMM size shall be chosen. By
choosing a small page size, and having a large number of
IMMs, one will have a higher potential for concurrency of
processing. If the page size were too large then many of the
relations might fit on just a couple of pages. This would
limit the potential concurrency to just inter-query
concurrency instead of a mix of intra- and inter-query
concurrency. Another important reason for choosing a small

page size is to minimize the amount of internal

77

Y

fragmentation which occurs when a relation does not fit all
of the pages it occupies. This could result when N query
processors, each processing the same query operation,
generate a partially filled page for the resulting
temporary relation. On the other hand, one must realize
that by having relatively small page sizes, many more pages
Wwill have to be staged, resulting in a higher level of page
staging overhead for the backend controller processor.
Both the specific configuration of the system's
architecture (number of query processors) and the
characteristics of the database (size of relations) will be
determining factors in choosing a page size.

It is recommended that eight query processors and 48
IMMs be used in this implementation. Since both intra- and
inter-query processing is to be supported, anything less
than eight query processors would be insufficient in
supporting the concurrency concepts as described in the
Relational Data Model section of Chapter II. The
requirement of the number of IMMs is directly based upon
the number of query processors to be used. Forty- eight
IMMs are required for the following reasons. Eight IMMs
would always be under current access (one per query
processor); eight more modules would contain the next
page ready to be processed (anticipatory paging); 16 more
modules would be required in readiness to accept temporary
relation pages, and finally, 16 more modules (8 for current

pages and 8 more for next pages) would be required to

78

contain a page of a relation which is to be joined with the
current page being accessed.

The bandwidth of the intercommunication scheme must be
very high. Dual-port intermediate memory modules (each
connected to a single query processor and to the backend
controller processor) would be suitable for a medium-scale
implementation, but for a very large configuration a cross-
point switch (each query processor is connected to all the
intermediate memory modules) looks to be the only feasible
interconnection scheme. Traditionally, the use of cross-
point switches.has been limited because of their high cost
and complexity due to the following requirements,

(1) High bandwidth between processors and memories for
addresses and data.

(2) Extremely fast switches to minimize the delay time
introduced by the switch in each memory access.

(3) Contention detection and resolution hardware to
handle simultaneous access of two or more processors to the
same memory bank.

However, recent research in the design of cross~point
switches specially built for use in backend multiple-
processor database computer systems is occurring, in which
these traditional limitations are being overcome (Dewitt,
1979: 398). These new designs are now making such an
approach a very viable solution for large scale

implementations; i.e. 64 processors x 384 memory modules.

79

System Functions. The following three sections

identify the backend multiple-processor relational DBM

computer system's functions as they relate to the three

ma jor system components,

(1)
(a)

(b)
(c)

(d)

(e)

(f)

(2)

(a)

(b)

(c)

(d)

Host Processor

Convert the optimized query into a sequence of
relational algebra operation steps.

Construct a query packet message

Place the query packet message into a query
packet queue within priority of query.

Recieve query response messages from the backend
controller processor.,

Format query responses for shipment to the user.

Ship the query response to the awaiting user.

Backend Controller Processor

Access thc query packet queue and move the query
packet message into a query packet execute table,
Perform a security access rights check on the
user request. If access is unauthorized, reject
the user query.

Perform a validation check on the query. If the
query is incorrectly formatted, reject the

user query.

Examine a query packet and estimate the optimal
number of processors to allocate for processing
the packet; update the query packet execute
table.

80

(e)

(f)
(g)

(h)

(1)

(3)

(k)

(1)

(m)

(n)

(p)

(3)
(a)

Perform staging of relation pages from mass
memory into the intermediate memory modules.
Assign a query packet to query processors.
Transmit query operations and relation's tuple
format to the query processcr,

Perform anticipatory staging of relation pages
from mass memory to the intermediate memory
modules.

Control the locking and unlocking of relations
to enable the updating of a relation.

Resbond to a "next-page"” request from a query
processor,

Respond to a "get-page m" request from a query
processor,

Perform the rewrite of relation pages from the
intermediate memory modules to mass memory.
Create new relations as a result of temporary or
permanent relations generated by the query
processors,

Delete relations which are no longer needed.
Print relations, i.e. access an entire relation
for its subsequent transmission back to a host's
user,

Perform a compaction/reorganization on a relation

to minimize page segmentation.

Query Processors

Recieve a query packet from the backend

81

{(b)

{(c)

(d)

(e)
(f)

(g)

(h)

(V)
(2)
(3)
(4)
(52
(6)
(1)
(8)
(9)

controller processor.
Retrieve the "nexi-page'" address from the backend
controller processor.
Request the "next-page" address from the backend
controller processor.
Request a “get-page m" address from the backend
controller processor.
Switch to address of intermediate memory module
Access the contents of the intermediate memory
module,
Write temporary relation tuples into the
intermediate memory module.
Perform the following relational algebra
operations,

Select

Project

Join

Union

Modify

Add

Delete

Maximum Value

Minimum Value

(10) Count Value

(11

) Average Value

System Hardware Architecture. The architecture of

this backend DBM computer system is categorized in Bray's
classification scheme under the category entitled
"Multiple Processor - Indirect Search" and is also
categorized in Flynn's classification scheme under the
category entitled "Multiple Instruction Stream - Multiple
Data Stream (MIMD)." An architecture using a set of
processors and a data staging methodology enables the
system to be functionally designed to accomplish
concurrent processing of individual query operations from
one or more user queries, thus providing a greatly reduced
and now respectable response time to user queries made
against a large online data base.

The host computer, containing the user's application
software and, if a network member, containing the network
interface software, will be responsible for passing and
receiving queries to and from the backend controller
processor. To handle such a workload and not be a
bottleneck in communicating with the backend controller
processor, the host computer needs to support a
multiprogramming environment and be directly coupled to
the backend controller processor by sharing memory and
using direct memory access (DMA) data transfer. By using
DMA having a high bandwidth and using interrupt circuits,
a much greater speed of I/0 operations between these
computers can be achieved while at the same time freeing up

both CPUs to do more important processing instead of

83

having to be tied up with executing routines that
determine I/0 device status.

The backend controller processor will contain the
major portion of the software written for the backend
system. The relationship between the backend controller
processor and the query processors will be a Master - Slave
relationship: the backend controller processor is the
master and each query processor is the slave. Since the
master has eight slave processors to keep busy,
instructions and data must be supplied to the processors
very quickly in order to uphold the high degree c¢f
parallelism desired. In order to quickly satisfy the query
processor requests for relation pages, the backend
controller processor will (a) be connected to each of the
query processors in an indirectly coupled fashion by using
channel-to~channel adapters having a high bandwidth, and
(b) be connected to each of the intermediate memory modules
in a directly coupled fashion using DMA transfer between
the mass storage device(es) and the IMMs. Since messages
between the backend controller processor and the query
processors, though frequent in nature, will be quite small
in size, programmed I/0 (from BCP to QP) and interrupt I/0
(QP to BCP) using a channel connection (one for each QP)
will be quite sufficient. On the other hand, relation
pages being staged to and from mass storage and the IMMs
will be both frequent and relatively large in size, thus

requiring the use of DMA transferring. A number of the

84

AD~A115 558 AIR FORCE INST OF TECH WRIGHT~P

ATTERSON AFS OM SCHOO==ETC F/G 9/2

DESI6N AND !N:hgl(NTATION OF A BACKEND MULTIPLE=PROCESSOR RELAT==ETC(U)
EN

DEC 81 R w
UNCLASSIFIED AFIT/GCS/EE

20

F
/810=6

primary software functions will be interrupt driven by the
query processors.

The query processors will be responsible for the
processing of existing relations and the generation of new
relation pages (for both temporary and final relations),.

A microprocessor will be used for each of the query
processors, each containing enough local memcry to contain
its software plus working storage.

Since the query processors and the backend controller
processor both require access to the IMMs, a dual-port IMM
device will be used. Each query processor will have access
to six of these dual-port IMMs. Since the query processors
will function as slaQe processors to the backend controller
processor, the case will never occur where a query
processor and the backend controller processor both
concurrently try to address the same IMM, The query
processor will always be told in advance which IMM to
access,

The intermediate memory modules may be built using
content-addressable memory (CAM), charge-coupled memory
(CCD), magnetic-bubble memory (MBM), random-access memory
(RAM), or disk memory. The requirement of having dual-port
access to the IMM is the only requirement which must be
net,

System Support Software. The system software for

these three computers should be written using both a high-

level programming language and an assembly language. A

€5

high-level language such as PASCAL should be used for the
major part of the software because it is a block structured
language which is very compatible with top-down pseudo-
code written design documentation, An assembly language
Will be required for writing the low level program/hardware
interface routine modules.

UCSD PASCAL, which consists of an operating system,
the PASCAL-language, a screen-oriented editor, a linker,
and a debugger, will be used for this development effort
(ucsp, 1979). This is a very capable development system and
is used by a wide variety of micro- and mini- computers.

Selection of an assembly language will solely depend
on the choice of computers used for each of the processors

to be implemented in this development effort.

System Development Plan

General Description. Due to the complexity and size

of this computer system, a plan of attack has been
formulated as to specifically what the sequence of
development must be to effectively design, build, and test
this system. This sequence has been carefully grouped into
development stages.

It is imperative that the documentation for each stage
of this development effort be accomplished in a thorough
manner, and that a top-down structured design and coding
approach be taken, If this is not rigorously followed,
development effort in succeeding stages of the plan may

suffer.

86

Development Stages. The stages of development for the

construction of this computer system are as follow.

tage (1) Design and implement the functions of the

backend controller processor.

(a)
(b

(e)
(d)
(e)
(f)

(g)

design and write the software for the BCP
simulate a DMA interface to/from the host
computer by using a parallel link

simulate the host computer and software
simulate the QP and its software

simulate the IMM and its software

simulate a DMA interface from the mass
storage device to the IMMs using a set of
serial links

simulate a parallel interface to the query

processors using a set of serial links

Stage (2) Design and implement the functions of the

query processor.

(a)
(b)

(c)

design and write the software for the QPs
talk to the backend controller processor

using the current interface

simulate access to the IMMs using serial

links

Stage (3) Design and implement the modifications to

Roth's Relational DBMS.

(a) design and write the software

(b)

interface with the backend controller

processor

87

(¢) interface with the AFIT local network
Stage (4) Design and implement the following.
(a) the DMA link between the hcst and backend
controller processor
(b) the set of parallel links between the backend
controller processor and the query processors
(¢) the dual-port IMMs and the DMA and parallel
communication links to the processors
Stage (5) Develop and test alternative parallel
processing optimization algorithms.
Stage (6) Develop and implement the IMM devices using one
of the following technologies.
(a) MBMs
(b) CCDs
(c) CAMs
(d) head-per-track disks
Stage (7) Develop and test a cross-point matrix device.
Stage (8) Simulate alternative system configurations
in search of an optimized system configuration
i.e. numbers and ratios of query processors
and IMMs; sizes of IMMs; connection scheme
between query processors and IMMs; mix of
simple and complex relational queries.
Note that this sequence of development stages does not
have to be accomplished in a totally serial fashion.
Stages one ,two and three may be accomplished in parallel,

and stages five and eight, six and eight, or seven and

88

——

eight may be accomplished in parallel. Stage seven would
be dependent upon whether or not stage six was

accomplished.,

Resource Requirements., The resource requirements must

be outlined as to what equipment will be required for each
stage of the development effort as well as the time frame,
otherwise the work to be done will be not only difficult to
accomplish, but would eventually come to a halt. The

resources required for each stage of the development effort

are as follows.

(1) Stage 1

{a) The microcomputer to be used as the backend
controller processor,

(b) a micro-computer to simulate the host

(¢) a micro-computer to simulate a query
processor(s)

(d) a serial interface to the query processor(s)
and a parallel interface to the host computer

(e) a micro-computer to simulate an IMM(s)

(f) a serial interface to the "IMMs™ from the

BCP and the QPs

(2) Stage 2

(a) The microcomputer to be used as the query
processor.,
(b) items 1a, 1b, 1d, te, 1f.

(3) Stage 3
(a) The computer to be used as the host system

89

s

(5)

(6)

(7

(8)

(b) the local network interface communication

link.

(¢) items 1a, 1d.

Stage 4

(a) items 1a, 2a, 3a.

(b) DMA boards and links for the host/backend

interface and backend/IMM interfaces

(c) Parallel port boards and link for the

backend/query processor interfaces and the

query processors/IMM interfaces.

(d) dual-port IMM devices

Stage 5

(a) A completely functioning system composed of

eight query processors and 32 IMMs,

Stage 6
(a) The
(b) the
Stage 7
(a) The
(b) the
Stage 8

complete system

dual=-port IMMs chosen to implement

complete system

parts to construct a cross-point matrix

(a) access to QGERT, SLAM, or other capable

simulation language.

(b) access to a computer system which supports

the

chosen simulation language.

90

Summary

The second and third problems identified in the
purpose of this effort were to 1) determine the system
requirements, both the longterm and shortterm requirements
and goals, and 2) develop a structured, modular systém
design (software and hardware using current state-of-the-
art technology) for implementing the required system over
the longterm, identifying experimental tradeoffs., Both of
these problems have now been fully addressed. The system
requirements were thoroughly defined, and then, based on
these requirements, a system design was developed. A
general description was given, its system functions
defined, its hardware configuration defined (including
alternative tradeoffs) and the development support software
specified.

Toward the end of this development process, it became
fully evident that the time necessary to accomplish the
detailed design, implementation and testing of this system
design would indeed span several thesis eftorts worth of
work. Thus a system’development plan was created; a plan
of ﬁttack specifying an organized sequence of development
stages (thesis efforts) for designing, building and
implementing this system; each stage building upon the
accomplishments of the previbus stage.

The remaining chapters of this thesis address the
fourth and final problem defined in this thesis: the

detailed design and implementation of the backend

91

controller subsystem (the heart of the backend data base
computer system), thus establishing the initial stage and

cornerstone of this system.

92

IV. Subsystem Design

Introduction

This chapter describes in more detail the design of
the software developed for the backend controller processor
subsystem of the backend multiple-processor relational data
base computer system,.

For ease of discussion and reader comprehension, the
relational query operation formats will first be described,
next the BCP subsystem data tables shall be identified and
discussed; then the BCP subsystem functions and logic flow
Will be presented; and finally the message formats for

inter-processor communication will be described,

Query Operation Formats

As identified earlier, the relational operations to be
supported in this implementation are: select, project,
join, union, modify, add, delete, maximum, minimum, count,
and average. The relational algebra (RA) data base
sublanguage was chosen to be used because in being an
algorithmic approach rather than a mathematical non-
procedural approach, (as in relational calculus), the RA
data base sublanguage is both easier to learn and easier to
implement and use,

The operands for each of these RA operations consist
of variable byte length fields, in order to avoid wasting
space. Delimiters are used to indicate the end of each

operand field. Appendix B contains the detailed formats for

93

each of the RA operations when transmitted from the host to

the BCP.

Subsystem Data Tables

The subsystem data tables are the foundation upon

which the subsystem functions are constructed and are able

to accomplish their tasks. Since this is a relational
data base system, care has been given to minimize the
number, size, and use of system tables in support of the
data base processing operation,

Twelve BCP subsystem data tables, maintained in main
memory in linked list form (built via dynamic memcry
allocation), are used to accomplish the functions within
the BCP subsystem. These data tables consist of the
following.

1) domain name table

2) attribute name table

3) relation table

4) relation's attribute table
5) relation's page table

6) query processor table

7) query processor's IMM table
8) query packet wait queue

9) query packet operation list
10) query packet execute list
11) query operation state table

12) transmit queue

94

The specific formats for each of the above subsystem
data tables are described in Appendix C.

Domain Name Table. The domain name table consists of

a complete dictionary list of all domains contained in the
entire relational data base. Attributes contained in
relation tuples are defined by specifying a "domain" of
values which they may take on. Each entry consists of a
domain name and a linked list of attribute name entries
currently defined against this domain set. This table is
used to support the validation editing of all attributes
referenced in query operation "join" steps of a query
request submitted to the BCP.

Attribute Name Table. The attribute name table

consists of a complete dictionary list of all attributes
contained in the entire relational data base. Each entry
consists of an attribute name, the number of bytes long the
attribute value may consist of, and the data type the
attribute represents, This table is used to support the
validation editing of all attributes referenced in each
query operation step of a query request submitted to the
BCP.

Relation Table. The relation table cconsists of a

list of all relations making up the relational data base.
Each relation entry consists of a relation name, a
relation code number, a pointer to its relation attribute
table, a pointer to its relation page table, a lock

indicator, a lock owner identifier, the byte size of its

95

tuples, and the number of attributes which make up each
tuple. The relation table is used for validation editing
of query requests and for processing the query processor
requests from the QPs which process the query operation
steps. It is through this table that access is made to
the relation's attribute table and page table, to
accomplish preparation of query requests for submittal to
the QPs and later to accomplish the location, creation,
staging and rewriting of relation pages.

Relation Attribute Table. A relation attribute

table exists for each of the relations within the

relational database. Each relation attribute table

consists of a list of all the attributes which make up

each tuple of the relation, Each relation attribute table

is accessed through a pointer which exists within each

ent?y in the relation table. Each entry of the relation
attribute table consists of an attribute name, its byte
offset within the tuple, the byte length of the attribute,
the data type that the attribute represents, and a key

member indicator., These tables are used for query validation
editing and query format preparation for submittal to the query
processors,

Relation Page Table. A relation page table

exists for each of the relations within the relational
data base. Each relation page table consists of a list of
the page addresses for all the pages which make up the

relation's tuples stored in mass storage. Each relation

96

page table is accessed through a pointer which exists
within each relation entry in the relation table. Each
relation page table entry consists of a page number and an
address of where to access the page with mass storage. For
this initial implementation, each page of a relation will
consist of a PASCAL file residing on mass storage. These
relation page tables are used to support all QP requests
to locate, create, stage, and update relation pages being
concurrently processed by the QPs in processing the query
request(s).

Query Processor Table., The query processor table

consists of a list of all the query processors assigned to
the BCP to be used to process the query packet's
operations. This table is used to maintain the state of
each query processor, either in use, idle, or not on-
line, It is through this table that the BCP can assign
idle QPs to process a query request., Each query processor
entry consists of a QP number identifier, a state
indicator, and a pointer to its IMM table,.

Intermediate Memory Module Table. An

intermediate memory module table exists for each of the
query processors assigned to the BCP, Each IMM table
consists of a list of all IMMs assigned to a each QP. Each
IMM table is accessed through a pointer which exists in
each QP table entry. Each IMM entry consists of an IMM
address and the name of the relation page currently staged

to that IMM.

97

Query Packet Wait Queue. The query packet wait

queue (QPWQ) consists of a list of query requests, queued
in a FIFO manner, which are waiting to be processed. Each
QPWQ entry consists of an execution indicator, the query
request's message number, host-id, program-id, CRT-id, and
priority, and a pointer to its query packet operation
list. This table is accessed whenever another query
request can begin being processed by one or more QPs.

Query Packet Operation List. A query packet

operation list (QPOL) exists for each of the query
requests queued in the QPWQ. Each QPOL consists of an
entry containing a query operation step of the query
request, Each QPOL is accessed through a pointer which
exists within each query request entry in the QPWQ. Each
QPOL entry consists of an operation entry and a query
operands entry. The QPOL is generated upon successful
validation editing of the query request. It is this list
which is transmitted to the QPs assigned to process this
query.

Query Packet Execution List. The query packet

execution list (QPEL) consists of all query requests
currently being processed by one or more query processors.
Each entry in the QPEL consists of a pointer to its twin
entry remaining in the QPWQ (to enable access to the QPOL),
the query request message number, the optimal number of

QPs calculated to be used to process this query, the

current number of QPs processing this query, a pointer to

98

the query operation state table, a completion-of-
processing indicator, and the name of the relation
containing the answer to the query. This table is used to
determine what query request to assign to an idle query
processor, If all query requests currently in the QPEL are
being processed by each of their optimum number of QPs,
then a new query request is selected from the QPWQ, its
query operation state table is created, and the idle QP is
then assigned.

Query Operation State Table. A query operation

state table (QOST) exists for each of the query request
entries in the QPEL. Each QOST consists of a list of
entries, one corresponding to each entry in the QPOL. Each
entry consists of the name of the relation being processed
by its corresponding query operation step, a pointer to the
relation entry in the relation table (used to access its
page table for QP processing), a relation page currency
counter pointer, and count, total, maximum, and minimum
buffers (used to gather values generated by N QPs
processing COUNT, AVERAGE, MINIMUM, and MAXIMUM query
cperations). It is through this table that proper currency
is maintained, as a multiple number of QPs process a query
operation step in parallel.

Transmit Queue. The transmit queue is used to

queue up, in a FIFO manner, responses to query requests
for subsequent transmission back to the host computer.

Responses consist of immediate answers to requests

99

(accepted or rejected) and also answers to previously
accepted requests. Each entry in the transmit queue
consists of the query request's originating message

number, host-id, program-id, CRT-id, and priority, the
final relation name containing the answer or the immediate
response answer, and a relation page transfer counter (used
when the relation answer contains a multiple number of
pages and may possibly require a multiple number of
transmissions to the nost to send the complete relation

answer).

Subsystem Functions

The BCP subsystem is composed of nine specific
functions: six major functions and three minor functions.
The major functions are 1) check queues, 2) service a host
request, 3) assign a query processor, 4) service a query
processor, 5) answer a host request, and 6) backup the data
base. The minor functions are 1) initialization, 2) setup,
and 3) wrap up. A hierarchical tree diagram of the BCP
subsystem's functions is shown in Figure 22. The
discussions for each of these nine functions are presented
in the following sections ip a sequence which follows the
diagram of Figure 22 from top down, left to right. As each
of these functions are described, additional elements of
this design will be brought to light.

Initialization. 1Initislization, a minor function, is

responsible for establishing a newly created database

state; a state in which the database contains no relations,

100

SUO 30Ul We}sAsquy douy @Yy, ¢ wanadfy

J.sty
988y IS0k nm@ nm@ Pm@m mwu—mzd
e3B(v v v 3SOH ®ooeyn
dunoegy densu 8AIB g uygssy oAdo
r=—"=-- 1
! |
. ! |
dudedpm | Ss89%044 dugjeg Ul
Lo -
dod

101

At startup time for the BCP, the operator specifies

whether or not a data base currently exists. When
initialization is requested, the system will proceed to
request the volume-id identifying where the system tables
(attribute name table, relation table, relation's attribute
tables, and relation's page tables) are to be saved

when a save or wrapup is requested. These tables are
subsequently used to accomplish the setup function the next
time the system is started up. Upon receipt of a valid
volume-id, a relation file and an attribute name file will
be created and initialized.

Setup. Setup, a minor fuction, is responsible for
establishing a state of readiness to process query requests
against an already existing data base. Setup accesses the
relation file, the domain name file, the attribute name
file, the relation attribute file, and the relation page
file from the previously specified volume-id and creates
and builds the following linked lists in main memory
(using dynamic memory allocation): the domain name table,
the attribute name table, the relation table, the
relation's attribute table, and the relation's page table
(see Appendix D for more detail regarding these system
files). Next the query processor table and its IMM tables
are created and then configured for the current state of
processing (number of QPs online for the current session).
Then the volume-ids are specified, identifying where the

data base relaticns reside. At completion of bringing the

102

BCP subsystem intoc a state of readiness, a message is sent
to the host indicating a state of readiness to process

query requests.,

CheckQueues. Checkqueugs, a major function, is
responsible for the decision making as to which process
function (service a host request, assign a QP, service a
QP, answer a host request, backup the database, or exit to
Wwrapup) to accomplish next. Since this function is
mecdularized into a single PASCAL procedure, different
selection algorithms can easily be substituted and used.
Obviously, the process-functions 'assign a query processor!'
and 'service a query processor' will require much more
selection service by checkqueues than the other functions
since this is where the vast majority of the query
processing work will occur, Special condition checks are
made to ensure that 1) the query input queue does not
overflow, and 2) that a database request or wrapup request
is not accomplished until all the QPs become idle,

The initial approach taken for the selection algorithm
was to create a predetermined selection sequence and
step through this selection sequence table., The table was
carefully weighted with selection entries to perform query
processor assignment and query processor service
functions. For each of these functions, additional checks
were then made to determine if indeed this function
requires processing at the instance of selection. If not,

than the next entry in the selection table is accessed and

103

checked.

Service Host Request. Service host request, a major

function, is responsible for accepting a new query request
from the host computer, and preparing the request for
subsequent processing. By using the UCSD PASCAL intrinsics
UNITREAD, UNITWRITE, and UNITBUSY, messages can be routed
between processors in the background while the BCP software
executes in the foreground "uninterrupted" (UCSD, 1979).
This being the case, a query request will already be
waiting in the BCP's input buffer when this function is
called.

First the query's access right (password and security
level) is verified, If a rejection occurs, a response
message is built and added to the host response queue
(transmit queue). If the access right is approved, then

the query content is validated to ensure proper format.

.If the format is not correct, the request is rejected and

a response message is queued. Since a query request is
composed of relational algebra query operations (see
Appendix B) which generate intermediate relations, as a
query packet is edited, temporary entries must be created
in the attribute name table, the relation table, and the
new relation's attribute table in order to 1) edit
successive query operations and 2) eventually process those
query operations. If at any point in the editing an error
is detected, all the temporary entries are deleted and a

error response message is queued, When an error-free edit

104

results, the temporary relations are permanently added to
the above referenced tables. Within the relation table,
the temporary (intermediate result) relations are kept
track of to enable their deletion (table entries and
relation pages) when they are no longer required in the
processing of the query.

A new.entry for this query request is then added to
the query packet wait queue (QPWQ) and its query packet
operation table (QPOT) is then created., A response
indicating acceptance of the query request is then added to
the transmit queue.

The decision was made to limit the length of a query
request to 1000 bytes (size of input buffer) and also limit
the length of each query operation step to 100 bytes (size
of an entry in the QPUL). These size limitations can
easily be modified merely by changing a single constant
declaration,

Upon completion of handling this query request, the
input buffer is cleared and a new UNITREAD to the host
processor is issued.

Assign a Query Processor. Assign a QP, a major

function, is responsible for assigning a query request
packet to an idle query processor(s). When a new query
packet is to be processed, the entry in the QPWQ is
transfered to the QPEL and a QOST is created, At this
time, an estimation is made as to the optimal number of QPs

it will take to process this query. This estimate is added

105

to the QPEL entry. Each entry in the QPEL is examined to

see if another QP could be assigned to this query packet.

When one is found, the number of QPs in use is updated in

the chosen QPEL entry and the QPOL is then formatted into a
message and sent to the selected QP. If all QPEL entries

are using their full allocation of QPs, then a new query
packet from the QPWQ is transferred to the QPEL., If the

QPWQ is empty then a query packet in the QPEL will be assigned
more than its QP allocation in order not to waste QP usage.

Service a Query Processor. Service a QP, a major

function, is responsible for servicing a query processor
request. Those requests to be serviced include 1) get next
page, 2) get page n, 3) update page n, 4) add page, 5)
destroy relation, and 6) query processing completed. Since
relations consist of N fixed length pages, in order to
process a query request operation for a specific relation,
the QP has to process these pages one at a time,

'Get next page' requests are used in processing
selects, projects, joins , unions, deletes, and max, min,
ave, and count. For these operations, 'get next'! rather than
'get page m' is used since a multiple number of QPs may be
processing this operation in parallel.

'Get page n' requests are used in processing join and
union operations (relation B of the pair of relations being
either joined or unioned). In this case each QP must join
all pages of relation B to the page of relation A received

as a result of the 'next page' request.

106

e

'Update page n' requests are used for add, change and
delete operations performed on tuples within a page of a
relation previously fetched.

'Add page' is used to add a new page to a relation
generated as a result of a select, project, join, or union.

'Destroy relation' requests are used to tell the BCP
to delete a relation (a temporary relation in most cases)
from the data base.

'Query processing completed' tells the BCP that this
query packet has been completely processed and that now the
QP is idle.

A response message is formatted and sent back to the
QP indicating what action was taken for that request. Each
time a request is serviced, the QOST relation currency
indicator entry is updated., For a ‘next page' and 'get
page n' request, if there is another page yet to be
processed, it is staged into that QP's IMM, and then a
response indicating the action taken is given., For the
'‘update page n', 'add page', and 'destroy relation'
requests, a response indicating the accomplished action is
all that is necessary to be given. 'Query processing
completed' messages receive no response from the BCP since
the QP automatically goes into a state of wait for a new
query packet assignment.

Answer a Host Request. Answer a host request, a major

function, is responsible for communicating response

messages back to the host computer., To ensure coordinated

107

transmission between processors, the BCP responds with a
message back to the host computer for each message request
sent to the BCP, An immediate response message is sent to
the host indicating acceptance or rejection of a request,
and then at a later time the answer to the processed
request is sent back to the host.

Backup the Data Base, Backup the data base, a major

function, is responsible for saving the relaticn table, the
attribute name table, the relation's attribute table and
the relation's page tables, residing in main memory, back
to the predesignated mass storage device. This function is
accomplished when either a data base save request or a
Wwrapup request is submitted.

Wrapup. Wrapup, a minor function, is responsible for
calling the function "backup the data base" and then
performing a shutdown of the BCP software. This function

is accomplished when a wrapup request is submitted.

Subsystem Logic Flow

An overview of the system logic flow is defined in
this section, It is presented in three parts, each
corresponding to the processing performed by the host
computer, the backend controller processor, and the query
processor. Each part's logic flow is presented in a top-
down tabular format. The subsystem logic flows for the
host and the query processors have been included in this

section to give the reader a clearer picture in

108

understanding the subsystem logic flow for the backend
controller processor.

Note that this system's logic flow is designed to
accomplish all three levels of parallelism in the
processing of queries: independent parallelism, pipelining,
and node splitting; processes which will be easily
accomplished due to the utilization of the paging of

relations.

Host Computer Logic Flow
(1) If a new query has been submitted by Roth's System
(a) convert the query into a sequence of relational
operaﬁion steps
(b) constfuct a query packet message
(e¢) place the query packet message on the query
packet wait queue within priority
(2) If an interrupt request from the BCP has occurred
(a) receive the response message
(b) format the response for shipment to awaiting
user

(¢) ship the response to the user

Backend Controller Logic Flow
(1) If ready to begin a new processing session
(a) if requested, perform initialization for a new
data base information system

(b) perform a setup of the database system tables

109

(2)

(3)

(4)

If ready to begin processing a new query packet

(a) validate the user's access right; if fail, reject

the query back to the host computer
(b) validate the query; if unable to answer, reject
the query back to the host computer
(¢) estimate the optimal number of QPs to be
utilized
(d) add the gquery packet to the execute table
If a query processor is available
(a) select a query packet for processing
(b) if not already done, create a query operation
state table (QOST)
(¢c) determine next page(s) of relation(s) to stage
(d) if not already staged, stage page(s) to IMM(s)
(e) if required, lock the relation
(f) construct message to be sent to QP
(g) update the QOST
(h) send message to the QP
If a query processor issued an interrupt request
(a) accept the QP's message
(b) if an update page request
(1) get page m address
(2) switch to IMM address
(3) write page back to mass storage
(4) send update response back to QP
(¢) else if it is a next-page request

(1) add count, total values to QOST entry

110

(2) update max, min values in QOST entry
(3) if another page can be processed by this QP
(a) if required
(1) switch to IMM address
(2) stage the page to the IMM
(b) update the QOST
(c) send next-page response to QP
(4) else since no more pages for this QP to
process
(a) update the QOST
(b) send next-page (NUL) response to QP
(d) else if it is a get-page m request
(1) if another page exists to be processed
(a) if required
(1) switch to IMM address
(2) stage page m to IMM
(b) update the QOST
(¢) send the get-page m response to the QP
(2) else since Relation B has no more pages
(a) update the QOST
(b) send a get-page m (NUL) response to QP
(e) else if it is an add-page request
(1) determine a new page address
(2) switeh to IMM address
(3) write page to mass storage
(4) update system tables

(5) send add response back to QP

(5)

(6)

(7)

(f) else if it is a destroy relation request
(1) destroy all relation page entries
(2) update system tables
(3) send destroy relation response to QP
(g) else since it is a query-completed response
(1) update the system tables
(2) unlock any locked relations
(3) move query request to the response queue
(4) set the QP into an available status
If a response is queued for transmission to host
(a) if an immediate response type message
(1) build message
(2) send message to host
(b) else since it is an answer type message
(1) retrieve the answer relation
(2) for each page of the relation
(a) build the message
(b) send message to host with indicator that
more of the answer is contained in the
next message
If a new query has arrived from the host
(a) queue the query request in the wait queue
If a database save request has arrived
(a) set indicator so no more requests may arrive
(b) when all existing queries have been serviced
(1) perform a save of all system tables

(2) reset indicator to now allow new requests in

112

(8) If a wrapup request has arrived

(a) set indicator s¢ no more requests may arrive

(b) when all existing queries have been serviced and
answers have been transmitted
(1) perform a database save

(2) inform host that BCP is terminating session

Query Processor Logic Flow

(1) At power up, initialize and wait for message from BCP

(2) Accept message from BCP
SELECT or PROJECT

(3) If operation

initial message

(a) if state
(1) initialize
(2) 3witch to IMM address
(3) SEL or PRO tuples, write into local memory
(LM)
(4) if LM becomes full
(a) switch to destination IMM address
assigned
(b) write LM contents into IMM
(c) request BCP to add the page
(5) else if page processing completes
(a) request BCP for next page to process
(b) if state = response to add request
(1) go to step 3a3
(c) else since state = response to next-page request

(1) if received a next-page address to process

113

(a) switch to IMM address given
(b) go to step 3a3
(2) else since no more pages to process
(a) switch to destination IMM address given
(b) write LM contents to IMM
(c) request BCP to add page
(4) if operation = JOIN
(a) if state = initial message
(1) initialize
(2) switch to IMM address
(3) read page of Relation A into LM
(4) switch to IMM address given for Relation B
(5) perform JOIN storing tuple results in LM
(6) if LM becomes full
(a) switch to destination IMM address
(b) write LM contents into IMM
(c) request BCP to add page
(7) else if processing of page has finished
(a) request BCP for Relation B page m+1
IMM address
(b) if state = response to add request
(1) go to step 4ad
(c) else since state = response to get-page m+1
of relation B request
(1) if received a page IMM address
(a) switch to IMM address

(b) go to step 4as

114

(5)

(6)

(2) else since no more pages (NUL) to process
(a) switch to destination IMM address
(b) write LM contents into IMM

(¢) request BCP to add page

(d) else if state = response to next-page request
(1) if received a next page address to process
(a) gc to 4a2
(2) else since no more pages to process
(a) go on to next instruction
If operation = UNION
(a) request next page of relation A
(b) if get another page,
(1) request add page to relation C
(2) go to 5b
(c) else since no more pages in relation A
(1) request next page of relation B.
(2) if get another page,
(a) request add page to relation C
(b) go to 5ci
(3) else since no more pages in relation B

(a) go on to next instruction

If operation = MODIFY or DELETE
(a) if state = initial state
(1) initialize
(2) switch to IMM given

(3) read tuples in page

115

(6)

(7)

(a) if key match occ:
(1) modify or delete the tupie
(b) go to 6a3
(4) request update of page and next-page
(b) else since a response to next-page
(1) if received a page
(a) go to 6a2
(2) since are no more pages
(a) go on to next instructicn
If operation = ADD
(a) switch to IMM address given
(b) search for an empty tuple position
(c) if there is sufficient room
(1) add the tuple to the page
(2) request the BCP to update the page
(d) else since sufficient room exists
(1) add the tuple to a new page (different IMM)
(2) request the BCP to add the new page
else since operation = MIN, MAX, COUNT, or AVERAGE
(a) if state = initial message
(1) initialize
(2) switch to IMM address given
(3) read tuples and calculate MIN, MAX, COUNT,
TOTAL
(4) request the next-page IMM address and also
at the same time, return current values

calculated

116

-—

(b) else since state = response to next-page request

(1) go to step 7a2

Note that a query request, which desires to perform
tuple adds, can only contain tuple add operations. The BCP
will then generate an individual query packet for each
tuple add operation. This process will ensure full
utilization of all query processors and not have to be
concerned with multiple adds occurring for the same tuple

add operation.

Inter-proc¢cessor Communication

Communication between the processors within this
system consists of the following activities.

(1) Host to BCP communication transmission

(2) BCP to Host communication transmission

(3) BCP to QP communication transmission

(4) QP to BCP communication transmission

In the initial stage of the development of the
backend multiple-processor relational data base computer
system, parallel and serial bit transmission channel
communication links are used in connecting the processors
together. Data transmission through these channel links is
accomplished using UCSD PASCAL intrinsics UNITREAD and
UNITWRITE which reference packed array buffers containing
the messages to be transmitted. This method provides a
foreground / background multiprogramming environment

resulting in a savings for the software residing within

117

each processor of not having to perform programmed I/0 for
data transmission,

Host / BCP communication. Two packed array buffers

are reserved in both the host and the BCP software, one for
sending requests to the BCP / receiving requests from the
host, and another for receiving responses from the BCP /
sending responses to the host. By having a paired set of
communication buffers, and using the UNITREAD, UNITWRITE,
UNITBUSY, and UNITWAIT instructions within UCSD PASCAL,
unsupe}vised I/0 can simultaneously occur between the host
and BCP,
C

C
BCP / QP communication. Since the QPs are slaves to

the BCP, they must wait for response messages to their
requests sent to the BCP before continuing their
processing. Thus, only one communication buffer is
required within each QP's software to perform I/0 with the
BCP. Since the BCP is the master to a multiple number of
QPs, it must maintain a separate communication buffer for
each QP with which it communicates. The BCP uses the
UNITREAD, UNITWRITE and UNITBUSY instructions when
communicating with the QPs. A UNITREAD instruction is
issued for each of the busy QPs in anticipation of an
upcoming QP request. When Checkqueues so dictates, a
check is then made (using the UNITBUSY instruction) to see
if the UNITREAD for a particular QP has been satisfied., If
the request was satisfied, then the request is processed,

a response using a UNITWRITE is made (with wait), and then

118

a new UNITREAD is accomplished. If the request is still
outstanding, then the next QP's corresponding UNITREAD
state is checked.

The specific message formats for communication from
the BCP teo the QPs, and from the QPs back to the BCP are
contained in Appendix C. A set of comments
appear with each communication format for eack type of QP

request and BCP response.

Summary

Within this chapter, the detailed design of th backend
controller processor subsystem and its interprocessor
interfaces have been defined. Defined and described were
the subsystem functions, the subsystem data tables
necessary to support the BCP functions, the subsystem logic
flow, the query operation specifications and, finally, the
interprocessor communication details., With this
information defined in detail, a top down structured
modular design of the BCP subsystem was then accomplished.
This design, shown in structure chart form in Appendix A,
was then coded into UCSD PASCAL program code, each
structure chart module corresponding to a PASCAL procedure
(subroutine). Before any testing of the BCP software took
place, the entire BCP subsystem design had been completely
coded and thoroughly reviewed.

The next chapter will now address the planning and

accomplishment of the implementation and testing of the BCP

119

subsystem, the heart of this backend computer system.

120

V. Subsystem Implementation and Testing

Introduction

This chapter covers the implementation and testing of
the software and inter-processor communication hardware
interfaces for the backend controller processor subsystem
of the backend multiple-processor relational data base
computer system. In the first section, the approach chosen
for accomplishing the implementation and testing of the BCP
subsystem is presented. Resources and constraints directly
affecting the implementation and testing are then
identified. 1In the next section the support software,
designed and implemented for the purpose of supporting the
implementation and testing of the BCP subsystem software,
is identified and presented. The final section presents
the implementation and testing results and then gives an
evaluation summary.

The fourth and final goal of this thesis project was
to fully implement the BCP subsystem, within a first stage
environment, as specified in the system development plan
identified in Chapter III. As a result of underestimating
the overall size of the BCP subsystem, a partial
implementation and testing could only be completed
Wwithin the time frame given for this thesis effort. Within
the content of this chapter, qualification will be given of
what was planned and indeed accomplished verses what was

planned but couid not be accomplished.

121

Implementation and Test Approach

Once the BCP subsystem's software was fully designed,
pseudo-coded, and programmed in the UCSD PASCAL language,
the next step taken was to create an implementation and
test plan. Within this plan, several activities for the
total implementation effort were identified. These
activities are listed below.

(1) Using a top down approach strategy for testing,
create a module test plan specifying the sequence of tests
anticipated. If top-level modules are implemented before
lower-level modules, the need for driver programs is
eliminated, and major interface problems are exposed before
they affect the logic of lower-level modules,

(2) Perform an incremental top down testing of the
program modules using program "stubs", Incremental testing
is an essential aspect of the top down testing
philosophy. Instead of unit-testing a large number of
modules and linking/compiling them together in one test
(only to discover that the system does not work and the
error is hard to find), systems should be tested in a more
controlled fashion., A small, high-level subset of the
system should be tested until it works. Since the high-
level subset calls lower-level modules, the lower-level
modules should be simulated using program "stubs"
containing real module linkage logic, but not actually

performing any of the lower-level detailed work., Program

122

stubs could return a message or a constant output, or
simulate the timing of the lower-level work before
exitting. Once a high-level subset of the system is
working, testing continues by substituting program stubs
one at a time until the last module of the system has been
added.

(3) Create the test data for each module/function
based on the following module testing approaches.

(A) Insure that all program sc<gments of code are
executed. This is done by choosing test data to cause each
decision branch to be taken. Also, if a branch is
dependent upon a compound logical expression, test data
must be chosen for each of the possible logical
combinations,

{B) Insure that all equivalence classes for
input data are tested. This procedure entails breaking the
input into its components and testing combinations of wvalid
components until all equivalence classes of valid
components have been converted. Then the invalid
components from each equivalence class are tested
individually.

(C) Insure that all boundary values are tested.
This procedure entails testing the values at the borders of
the equivalence classes to detect ¥off by one™ errors,

The test plan for stage one of this project was sub-
divided into seven phases of testing. The creation of a

seven phase test plan was necessary since a multiple number

123

of independent processors, each containing its own
subsystem software (developed software or test software),
were required to fully test the BCP subsystem. The seven
phases of software testing consist of the following.

(1) Test the newly created operating systems, for
each processor, containing the channel driver software for
interfacing multiple processors together., (Appendix F
contains all the necessary information to accomplish the
task of creating these new operating systems).

(2) Test the front-end host software in preparation
for interfacing the front-end and BCP processors.

(3) Test the BCP software up to a point where
interfacing to the query processors is required for further
testing.

(4) Test the query processor software in preparation
for interfacing the BCP and query processors.

(5) Test the BCP software up to a point where
interfacing to the IMMs is required for further testing.

(6) Test the IMM test software in preparation for
interfacing the BCP and IMM, and the QPs and IMM.

(7) Complete testing of the BCP subsystem.

One factor that significantly increased the
implementation effort was the need for complete error and
detection recovery as earlier described., Every module had
to be protected to withstand any user input regardless of
its likelihood. This is because a process, in any one of

the backend's processors, aborting due to an out-of-range

124

variable or other invalid input could result in a
contamination of the data base. Therefore, every module
was implementated to validate the inputs first and issue
error messages to be transmitted back to the user in lieu
of the normal response if an invalid input was detected.
This greatly increased the size and complexity of the
modules and yet did succeed in making the modules

impervious to invalid user inputs.

Resources and Constraints

The specific hardware configuration used to accomplish
the implementation and testing of the BCP software is shown
in Figure 25, Five processors were determined to be
necessary and sufficient to fully accomplish the Stage I
testing. Since dual-port IMMs were not available at the
time of this stage of development, a processor was used to
simulate the IMM. Appendix E presents the specific hardware
interface details. Future upgrading in the follow-on stages
of this development effort are outlined in the system
development plan section of Chapter III.

Constraints encountered or foreseen in this stage of
the development consist of the following items.

(1) Each time a modification (correction, medification,
or module addition) is made, the entire subsystem's software
package must be recompiled. Compiles currently take 15
minutes to accomplish, thus making developmental testing a

slow process. Compile times are expected to take longer as

125

UofJBIUD[4UOD BAELMPABH 389, doyd 62 suLuastd

WAL !
HINT

1dd

) KN

d0o4d

e £

—

ToLleded

350

126

more and more modules are added to the subsystem.

(2) The UCSD PASCAL system, while allowing for the
dynamic allocation of memory, does not have a mechanism to
enable the release of dynamically allocated memory. Since
the BCP subsystem makes heavy usage of temporary table
entries (for the validation editing of new query requests
and for the creation of temporary "intermediate result
relations" table entries), its own internal memory
management system will have to be developed.

(3) The UCSD PASCAL system limits the number of
UNITNUMBERS to just'12 entries; a number sufficient
to interface, (in addition to the host and IMM), only
two query processors to the BCP. The operating system will
require modification before more query processors can be added.

(4) Only 56 K bytes of memory are available on an
LSI-11/02 in which to contain the BCP software, all its
interface communication buffers, the space for the
dynamically growing and shrinking subsystemAtables, and the
driver software (one copy per UNITNUMBER). More memory
Wwill be required as the configuration and/or data base is

expanded; snould consider going to a LSi-11/23 computer,

Test Support Software

To fully test the BCP subsystem requires the
development of a set of "“processor test support software
stubs", Specifically, software stubs had to be written to
test the front-end host processor interface, the query

processors interfaces, and the IMM (processor simulated)

127

interfaces. Each are described below.

Host Processor Software. The host processor software,

(designed, implemented and tested within this thesis
effort), was required in order to test the query request /
query response interfaces between the front-end host
processor and the BCP., Inputs generated by this test
package and sent to the BCP consist of the following
listed items.

(i) A sign-on request

(2) A relational query request

(3) A data base save request

(4) A wrapup request
Through the host's console, a text command is entered to
specify which of the above actions to accomplish. For
query requests, the operator simply specifies a pre-created
query disk file as the request to be submitted. Outputs
received from the BCP (immediate responses or query answer
responses) are displayed on the operator's console. Answer
responses containing multiple message blocks are easily
handled by the host software using a predefined protocol.
Through the use of UNITREAD and UNITBUSY instructions, all
I/0 communication overhead for the host and BCP is
eliminated. The front-end host software design is shown in
structure chart form in Appendix G. Its program code is
contained in Volume II of this thesis.

Query Processor Software. The query processor

software (conceived and shown in structure chart form in

128

Appendix H), not yet designed in detail, would be required
to test the BCP / QP interface in which the BCP assigns
query packets to a QP, receives query operation requests,
performs internal answer formulation and actions, and
supplies responses to the QP(s). Software would be
required to accept the query packet messages and display
them on the QP's console for operator inspection, accept
and transmit operator formulated QP requests, and then
accept and display the BCP responses to those requests.
In this way, the QP dependent functions accomplished by
the BCP for staging and updating of relations to the QP's
IMMs could be fully tested.

IMM Software. The IMM, simulated by a processor whose

software design has not yet been formulated, would be
required to test the BCP / IMM interface and the QP / IMM
interface. Software would be required to accept commands
from both the BCP and the QP to accomplish receiving /
supplying relation pages. The commands are necessary since
direct addressing to the IMM cannot yet be accomplished.
Due to a shortage of UNITNUMBERS, only one IMM could be
included in this configuration, so both QPs had to be
supported by a single IMM., For the full implementation,

multiple IMMs will be assigned to each query processor,

Test Results and Evaluation

Within the BCP software, the following functions were

completely developed and tested.

129

(1)
(2)
(3)
(4)
(5)
(6)
(7)

For

Initialization and Setup of the database system.
Receipt of query requests from the host.
Validation of query requests.

Message responses to the host,

Assignment of query requests to QPs.

Performance of data base saves,

Performance of wrapup and shutdown.

that testing which could be accomplished in the

available time, no problems were encountered, The

detailed design has proven, thus far, to be very complete,

having no inconsistencies or failures., Continued

development and testing of this subsystem should prove to

be a smoothly accomplishable task.

130

IV. Conclusions and Recommendations

Overview

At the outset of this investigation, four problems /
goals were identified. The first problem was to determine
the feasibility of applying multiple-processor techniques
to the implementation of a relational DBMS within a
micro/mini-computer system environment, The second problem
was to determine both the long range and short range system
requirements and goals., The third goal was to develop a
structured, modular system design (software and hardware
using state-of-the-art technology) for implementing the
reqired system over the longterm, identifying experimental
tradeoffs. The fourth and final goal was to implement a
first stage system model to show feasibility and to
investigate tradeoff alternatives.

The first problem was met to a great extent based on
the information brought to light within the background
chapter (Chapter II) of this thesis. Through the merging
of three relatively new concepts (backend data base
computer systems, the relational data model, and data base
computers having specialized architectures), the
feasibility of applying multiple-processor techniques to
the implementation of a relational DBMS within a mini/micro-
computer system environment became a certainty.

The second problem was clearly defined and addressed

in the system development chapter (Chapter III) of this

131

thesis. The longterm requirements and goals for the
development of this data base computer system were
specifically defined, drawing from the data gathered in the
feasibility study the best approaches in each of the three
researched areas, A system design, at the overview level,
was next accomplished, The system functions and inter-
relationships, the system hardware architecture, the system
support software, and the architectural alternatives were
defined, Due to the complexity and size of this system, a
system development plan was then developed in order to
effectively organize the development of this system over
several thesis research efforts, into its final
configuration,

The third goal was also clearly accomplished, and is
addressed in the subsystem design chapter (Chapter IV) of
this thesis. A fully detailed design of the BCP subsystem
and its interfaces to the front-end , query processors, and
IMMs was accomplished.

The fourth and final goal was, due to a time shortage,

only partially accomplished.

Recommendations

As specified in the system development plan section of
Chapter III, this thesis effort is only the initial stage
of a multiple stage effort to construct a full state-of-the-
art implementation of this backend multiple-processor
relational data base computer system,

Because of the modular design of this system's

132

architecture, several of the follow-on stages to this
implementation can be accomplished through concurrent
research efforts,

‘There is a large amount of very interesting research and
development to be pursued in this area of computer science.
The following recommendations are given concerning what
specifically needs further work/investigation.

(1) Expand the front-end host into a real front-end.
Perhaps design and implement modifications to Roth's
relational data base system (Roth, 1979),

(2) Interface the front-end to the AFIT digital
engineering laboratory computer network for the subsequent
implementation of a distributed data base system.

(3) Improve the mass storage technology from floppy
disk to moving-head or fixed-head hard disk devices,
Establish DMA linkages from mass storage directly to thne
IMMs and also to the front-end computer. Then offload all
staging and front-end communication to a separate processor
(a little brother to the BCP).

(4) Implement the IMMs using bubble memory, CCD
memory, hard disk associative memory, or integrated circuit
associative memory within either a multi-port memory access
or cross-point matrix access configuration.

(5) Transition the entire system to an
alternative system architecture., Consider implementing all
the processors on a single or set of common busses,

Consider using the new Intell 432 micro-processor.

133

(6) Implement a full backup and recovery capability
for the system.

(7) Implement a distributed data base system, storing
databases at multiple computer sites, using either the DEL
network, a mini-network of micro-computer systems, or the
ARPANET or AUTODIN II.

(8) Establish a set of performance evaluation tools
for measuring, fine-tuning, and comparing alternative
configuration implementations,

(9) Consider transitioning from PASCAL tc an
alternative high-order language such as PL/Z, C, or ADA.

(10) Consider alternative data storage techniques and
access techniques to the "sequential tuple access within a
page / sequential page access within a relation®

techniques.

Final Comment

Backend multiple-processor data base computer systems
using both the relational data model and state-of-the-art
associative storage devices have great potential for
revolutionizing the information industry. By now solving
the efficiency problem, using multiple-processors and state-
of-the-art associative storage devices, the relational
view promises a simple, flexible approach to the
industry's information retrieval problem. Incredible
effort has been expended on the improvement of software

efficiency for DBMSs based, unfortunately, on conventional

134

computer architectures. With the advent of state-of-the~
art associative storage devices, and the use of multiple
micro-processors, it is now time to channel some of this
effort where even larger improvements can now be attained;
improvements just no longer reachable through software

improvements.

135

10.

11.

12'

Bibliography

Baner jee, Jayanta and David K. Hsiao, "DBC - A
Database Computer for Very Large Databases," LEEE
Transactions on Cumputers,C-28(6):414=-429 (June
1979).

Boral, Haran and David J. DeWitt, Implementation of
the Database Machine DIRECT, Mathematics Research
Center, Computer Sciences Technical Report #442,
University of Wisconsin, Madison, August 1G681.

Bray, Olin H. and Harvey A, Freeman, Data Base
Computers, Lexington, D.C, Heath and Co., 1979.

Canaday, R.E. et al. "A Backend Computer for Data Base
Management," Communications ACM 17, 10 (Oct 1974): 575
- 582,

Chang, Philip Y.,"Parallel Processing and Data Driven
Implementation of a Relational Data Base System,"
Proceedings of the ACM:314-318 (Oct 1978).

Date, C.J., An Introduction to Database Systems
(Second Edition), Reading: Addison-Wesley, 1977.

DeWitt, David J., "DIRECT - A multiprocessor
Organization for Supporting Relational Database .
Management Systems," IEEE Transactions on Computers, C-
28,(6):395-406 (June 1979).

Hutchison, J.S. and W.G. Roman,"MADMAN Machine,"
Computer Architecture News,7,(2) , (August 1978).

Maryanski, Fred J., "Backend Database Systems,"
Computing Surveys, 12 (1):3-25 (March 1980).

Maryanski, Fred J. and V.E. Wallentine, "A Simulation
model of a backend DBMS," Pittsburgh Modeling and
Simulation Conference, April 1976 : 243 -~ 248,

Ozkarahan, E,A. and K.C., Sevcik,"Analysis of
Architectural Features for Enhancing the Performance
of a Database Machine," ACM Transactions on Database
Systems,2,(4):297- 316 (Dec 1977).

Ozkarahan, E.A, et al.,"RAP - An Associative Processor
for Data Base Management," AFIPS Conference
Proceedings, 44:379- 387 (1975).

136

13.

14,

15.

16.

17.

18.

Ozkarahan, E.A. et al.,"Performance Evaluation of a
Relaticnal Associative Processor,"” ACM Transactions on
Database Systems,2,(2):175-195 (June 1977).

Roth, Mark A., The Design and Implementation of a
Pedagogical Relational Database System, Masters
Thesis, Air Force Institute of Technology, Dayton,
Ohio, 1979,

Schuster S, and E.A., Ozkarahan,"A Virtual Memory
System for a Relational Associative Processor," AFIPS
Conference Proceedings,45:855-862 (1976).

Schuster, Steward A. et al,,"RAP.2 - An Associative
Processor for Databases and its Applications," IEEE
Transactions on Computers, C-28,(6):446-458 (June
1979).

Su, Stanley Y,W. et al.,"The Architectural Fearutes
and Implementation Techniques of the Multicell CASSM,"
IEEE Transactions on Computers,c-28,(6):430-445 (June

1979).

UCSD (Mini-Micro Computer) PASCAL, Version II.O
Institute for Information Systems, University of
California, San Diago (March 1979). (Available from
AFIT/ENE).

137

10.

1.

12.

Additional Readings

Adiba, M. et al.,"Issues in DPistributed Data Base
Management Systems: A Technical Overview," Issues in
Data Base Management, Proceedings of the Fourth
International Conference on Very Large Data Bases:127-
153 (1978).

Anderson, Donald R.,"Data Base Processor Technology,"
AFIPS Conference Proceedings,45:811-818, (June 1976).

Anderson, G.A. and E.D. Jensen,"Computer
Interconnection Structures: Taxonomy, Characteristics
and Examples," ACM Computing Surveys,7,(#4):197-213
(Dec 1975).

Artwick, Bruce A., Microcomputer Interfacing,
Englewood Cliffs, Prentice-Hall Inc., 1980,

Astrahan, M.M. et al.,"System R: Relational Approach
to Database Management," Transactions on Data Base
Systems, 1(6):93-133 (June 1976).

Babb, E.,"Implementing a Relational Database by Means
of Specialized Hardware," ACM Transactions on Database
Systems,4,(1):1-29 (March 1979).

Banerjee, Jayanta and David K, Hsiao, "Concepts and
Capabilities of a Database Computer," Transactions on
Data Base Systems,3,(4):281-318 (Dec 1978).

Baum, Richard I. and David K. Hsiao,"Database
Computers - A Step Towards Data Utilities,” IEEE
Transactions on Computers, C-25,(12):1254-1259 (Dec
1976) .

Boral, Haran and David J. DeWitt, Design
Considerations for Data Flow Database Machines,
Mathematics Research Center, University of Wisconsin,
Madison, 1980 (AD A086374).

Bray, Olin and Kenneth J. Thurber,"What's Happening
with Data Base Processors?," Datamation,25,(1)146-156
(Jan 1979).

Chamberlin, D.D.,"Relational Data-Base Management
Systems,"™ ACM Computing Surveys,8,(1):43-66 (March
1976) .)

Champine, George A.,"Four Approaches to a Data Base
Computer," Datamation,24,(13):101-106 (Dec 1978).

138

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Colon, Fernando C.,"Coupling Small Computers for
Performance Enhancement,™ AFIPS Conference
Proceedings,45:755-764, (1976).

Cullinane, J. et al., Commercial Data Management
Processor Study, Cullinane Corporation,
Wellesley,1975,(AD A035790).

DLV11-J User's Guide, (4 Channel Asynchronous SLU
Interface), Digital Engineering Corporation, 1978.

Enslow, Philip H. Jr., Multiprocessors and Parallel
Processing, New Yourk, John Wiley and Sons, 1974.

Foster, Caxton C., Content Addressable Parallel
Processors, New York, Van Nostrand Reinhold, 1976.

Freeman, Harvey A., "A Bibliography of Local Computer
Network Architectures," Computer Architecture
News,T7,(5):22- 27 (Feb 1979).

Hayes, John P., Computer Architecture and
Organization, New York, McGraw-Hill, 1978.

Hobart, William C. Jr., Design of a Local Computer
Network for the Air Force Institute of Technology
Digital Engineering Laboratory, Masters Thesis, Air
Force Institute of Technology, Dayton, Chio, 1981.

Holland, Robert H., "Improve Information Access with
the Database Machine," Data Communications: 95-101
(March 1980).

Hutt, A.T.F., A Relational Data Base Management
System, Chichester: John Wiley and Sons, 1979,

Katzan, Harry Jr., An Introduction to Distributed Data
Processing, New York, A Petrocelli Book, 1978.

Kim, Won,"Relational Database Systems," ACM Computing
Surveys,11,(3):185-211 (Sept 1979).

Lin, Chyuan Shiun, et al,,"The Design of a Rotating
Associative Memory for Relational Database
Applications,"™ ACM Transactions on Database
Systems,1,(10:53-65 (March 1976).

Liuzzi Raymond A., The Specification of a Data Base
MAchine Architecture Development Fac;l'y and
Methodology for Developing Special Purpose Function
Architectures, Rome Air Development Center, 1980 (AD

A090826) .

139

27.

28.

29.

30.

3.

32.

33.

34,

36.

37.

39.

40.

Lorin, Harold, Parallelism in Hardware and Software:
Real and Apparent Concurrency, Englewood Cliffs,
Prentice-~Hall Inc., 1972.

LSI-11 / PDP-1103 Processor Handbook, Digital
Engineering Corporation, 1975.

Martin, James, Computer Data-Base Organization (Second
Edition), Englewood Cliffs: Prentice-Hall, 1977.

Meldman, Monte Jay, et al., RISS: A Relational Data
Base Management System for Minicomputers, New York:
Van Nostrand Reinhold Company, 1978.

Microcomputer Interfaces Handbook, Digital Equipment
Corporation, 1980.

Microcomputers and Memories, Digital Equipment
Corporation, 1981.

Mohan, C.,"An Overview of Recent Data Base Research,"
Data Base,10,(2):3=-24 (Fall 1978).

Muklopadhyay, Amar,"Hardware Algorithms for Nonnumeric
Computation," IEEE Transactions on Computers,C-
28,(6):284- 394 (June 1979).

Oliver, Ellen Jane, RELACS, An Associative Computer
Architecture to Support a Relatlonal Data Model,
Doctoral Dissertation, Syracuse University, 1979

Sehan, Amrun and Timbul Maruap Sihombing, Data Base
Management System for Minicomputers, Masters Thesis,
Naval Postgraduate School, Monterey, California, 1979.

Selinger, P. Griffith et al., Access Path Selection in
a Relational Database Management System, Research
Report, IBM Research Laboratory, San Jose, 1979.

Thurber, Kennith J., "Computer Communication
Techniques," Computer Architecture News,7,(3):7-16
(October 1978).,

Ullman, Jeffrey D., Principles of Database Systems,
Rockville, Computer Science Press, Inc., 1930

Wallentine, Virgil E., Project Report For Functionally
Distributed Computer Systems Development : Software
and Systems Structure, Department of Computer Science,
Kansas State University, Manhattan, Kansas, 1977 (AD
A052751) .

140

b1,

42.

Weitzman, Cay, Distributed Micro/Minicomputer Systems =
Structure, Implementation, and Application, Englewood
Cliffs, Prentice-Hall Inec., 1980,

Yau, S.S. and H.,S, Fung,"Associative Processor
Architecture - A Survey," Computing Surveys,9,(1):3-27
(Mar 1977).

141

-

Appendix A

BCP Structure Chart Documentation

This appendix consists of two sections documenting the
modular design of the backend controller processor's
software, The first section is a list identifying all the
modules in the software design. The '*' that appears to
the right of the module's title identifies that module as a
‘common' module called by more than one calling module.

The second section is a set of structure charts showing the
interrelated structure of the modules within the subsystem.
Hote that the filled~in bottom right corner of the module
box indicates that it is a 'common' module. The module
numbers in each section are used as a cross-reference

between bcth documentation sections.

BCP Module List

1.0 Backend Control Processor
1.1 Initialization

1.2 Setup

1.2.1 Build Domain Name Table
1.2.2 Build Attribute Name Table
1.2.3 Build Relation Table

1.2.4 Build Attribute Tables
1.2.5 Build Page Tables

1.2.6 Build QP Table

142

1.2.7
1.2.8
1.2.9

1.3

1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.3.1
1.3.2.3.1.1
1.3.2.3.2
1.3.2.3.3
1.3.2.3.4
1.3.2.3.5
1.3.2.3.6
1.3.2.3.7
1.3.2.4
1.3.2.4.1
1.3.2.5
1.3.2.5.1
1.3.2.6
1.3.2.6.1
1.3.2.7
1.3.2.8
1.3.3
1.3.3.1

Build IMM Tables
Setup Configuration
Contact Host Computer
Process
Check Queues
Service QP Request
Access QP Request Queue
Read QP message
Process "Next-Page" Request
Determine Next-Page
Increment String Value
Switch to IMM Address
Stage Page to IMM
Build Response Message
Update System Tables
Send Message to QP
Reset for next QP Request
Process "Get Page M" Request
Get Page M Address
Process "Update Page M" Request
Write Page to Mass Storage
Process "Add Page" Request
Add a New Page Address
Process "Destroy Relation" Request
Process "Process-Complete" Response
Service Host Request

Read Host Request

143

————————

———

1.3.3.2
1.3.3.3
1.3.3.3.1
1.3.3.3.2
1.3.3.3.2.1
1.3.3.3.2.2
1.3.3.3.2.3
1.3.3.3.2.4
1.3.3.3.3
1.3.3.3.3.1

1-3'30303-101

1'3-3-30302

1-303-3-3-2.1

1'303-3-”‘
1.3.3.3.484.1

1.3.3.3.4.1.1
1.3.3.3.4.1.2
1.3.3.3.4.1.2.1
1.3.3.3.4.1.3

1.303-3.5
1.303'305.1
1.3.3.3.5.2

1.3-30305.2.1
1.3.3-305.2.1.1

1-30303-5-3
1.3.3.3.5.4

1.3.3.3.5.4.1

Validate User Access Right
Validate Query Contents
Validate Operation Command
Validate operation Format
Increment KK Counter
Scan Operand Field
Validate Comparators
Validate Boolean Operators
Validate Relation Name
Position to Next $ delimiter
Increment K1 Counter
Compare with Relation Table
Compare with Relation Entry
Validate Attribute Membership
Compare with Attribute Table
Compare with Attribute Entry
Validate Attribute Membership
Validate Attribute Entry
Validate Constant Field
Create Temporary Rel Table Entries
Save Off Relations
Build Temporary Relation Table
Find Unused Relation Code
Check Temporary Relation Table
Build Temporary Attr-Name Table
Build Temporary Rel-Attr Table

Find Attribute Match

144

1.3.3.3.5.4.1.1
1.3.3.3.5.4.2
1.3.3.3.5.4.3
1.3.3.3.6
1.3.3.3.7
1.3.3.4
1.3.3.5
1.3.3.5.1
1.3.3.5.1.1
1.3.3.5.1.2
1.3.3.5.1.3
1.3.3.5.1.4
1.3.3.5.1.5
1.3.3.5.1.6
1.3.3.5.2
1.3.3.5.2.1
1.3.3.6

1.3.4

1.3.4.1
1.3.4.2
1.3.4.3
1.3.4.4
1.3.4.4.1
1.3.4.4,2
1.3.4.5
1.3.4.6
1.3.4.7

Build Attribute Work List
Delete Attribute Work List
Add Bytes
Add Temporary Table Entries
Delete Temporary Table Entries
Add QPKT to QPWQ
Build a QPOL
Prepare the Operation Step
Hold the Relation
Load the Relation
Load through $ Delimiter
Hold the Attribute
Convert Attribute to Offset,lLength
Load the Attribute
Insert the Destroy Operation Steps
Add Operand to Operation Entry
Add QPKT to XMIT Queue
Assign a QP
Determine if a QP is Available
Dtrmn if QPKT in QPEL needs a QF
Dtrmn if QPKT in QPWQ awaiting service
Update the QPEL entry
Estimate Optimal QP Usage
Create the QOST
Build Initial Message for QP
Send Initial Message to QP

Move QPKT from QPWQ to QPEL

145

I T

——

1.3.5

1.3.5.1
1.3.5.2
1.3.6

1.3.6.1
1.3.6.2
1.3.6.3
1.3.6.4
1.3.6.5

1.4

Transmit to Host
Load Relation's Attribute Description
Load Relation's Tuples
Backup the Relational Data Base
Save the Domain Name Table
Save the Attribute Name Table
Save the Relation Table
Save the Rel's Attribute Tables
Save the Rel's Page Tables

Wrapup

BCP Structure Charts

(Charts begin on following page)

146

dndeapm

£°1

ssa304g

AN

dnjeg

1°1

Sz118I3 U]

dng

147

st S =

1°1

8zZils{3turl

148

9°'C°1 ¢'Z'1 v°Z°1 £°C°1 z°c1
21qv], safqve]l s914el CAR AN 214k}, awey
R1f) ade g ?INYIAIIY uojleray 23INqIa3IV
PTINY ‘s, 12d prIng °s, 124 prind pLIng PTINY
6°C°1 8°¢°1 L°C°1 1°2°1 I°'1°1
J33ndwo) CET QAR atqelL
ISOl{ uoyIRINGFJUO) Wil JueN ujewoy Ijul
3o0Be3U0) dnjsg p1Ing PTIINg
A |

dnjag

149

9°€"1 A A A
8seqeleqd a1s89u0bsy
Teuo (381ay dt v (v
dmowy udssy 90TAIBG
m.m-.ﬁ ﬁom..ﬁ ﬁ-mo.ﬂ
4SO} asenbay
o 3s0H sanond
Jrususd] 90TAdSG Aoeyo
€1

ss80044d

150

AL AN 9*g et fretetl AR AN
asuodsay 3sonbsy isenuvsy YWESSIY
23 Tduy Lxonpy, w8384 DDV, «l @38d 3eD, d®
§899004g sse00ag §s9004d pwoy
Lo2C RN AI AL gezgre il 1eere
3senvey ,o984 3senbal (i 3senbay enanp
Loaysaq, esed o4ebdq, woded =3x8, 150k
mmmoo&.m S80004d SS900ud AHG mm®00<
ARt
3saubay
dd
80 [AdS8g

151

e e i o+ b e 8 e T &

9rgrererl nretetetl 2T eterett
d® 0L 8desB8aj SSod PPy
DU LSSaf ssuodssay WWI o4
pus g pLity Yol Mg
Legrerett Gegeerert gretetert IR AFATAN!
1Lsby 4Y se1uBl HWI O vbed
1XaN 404 wols4ig on8d 1X9N
1989y 93 wpdn 91836 sutwiejed
gretett
1senvey

woved FASN,

s80004Jd

152

153

1°1°¢2rert
antep
sutalg
QUBWBIOUT

.ﬁom\.-Ncm..ﬁ

oped-3xoN
aufwasjza(d

mmmwm.m.ﬂ wm:mamwm k mmwmvw@m.m
SHBESaY odessol] WHI O%
pusg piing Yojimg
G MR £rererett 1intetetl
LSdY dd sa14s] 5894 PPy
1X9N wogsig WAL og W ed8d
104 3uSoy eqepdp sded opBlg 399
Hezret
1sonvsay
wll @884 18D,
sssoo0ad

154

9*€Tgre 1 UM AR AR AN AR S AS AR
dd od asuodssy SSaJdppy
8dwsSaY 338588} WWI oL
pusg pLling | UoliMg
‘ Ns-m.Nomaﬁ mom-NoMoH HoV:N-moﬂ
Lsby dd se1qws] 94098
1X8N weysig ssey og
I04 939s8y 83epdf eged 83 TJaM

ﬁ.:-Nom\.-ﬁ

S89U ppy

W o3%d
189

moN-moH

3senbey ,U

aded 93wpdn,
sse00ad

155

CQMoN-M\.H om-Nom.H [Ve . -H
1 db o m&Mummz mmwmcm:q.m
a7essal| esuodsay WHI ol
pusg plind Yol [Mg
LrErzrett G zEr T 1°62'el 1°9°2rett
LSty 40 se1qe] 9103 ¢ 8584 PPY
3xeN wolshg ss8y{ 0] vd8d
04 3988y o3updp evsd 93 §apn MON ¥ PPV
@.Noﬁn.ﬁ
1seanuvey
eded VPV
ssaoo0ad

156

157

NN
snfTwp
quial g

quewodour

ﬁimowomoﬂ
ssad ppy
aded

MON ¥V DDV

. A

Legrerel grererect
1sonbay s91UB
dt axaN weqsAg
a0 29S80y e3wpdn
WnMoNamaH \Jom-N-m-H
dd og od6SBI
odessal osuodsoy
puesg pLind
N;-N-ﬁc;—.
3senuay

oI £Loaiyssd,

s880044

158

o.m.m.\o.ﬁ ‘d.m-mo.ﬂ N-ﬁ.ﬂo.ﬁ
enonlt LINX bndd LIPEASS]
o5 IMdd ol IMd® 5500y 498()
pPY 3% elupilen
momcmo.ﬂ mom.m-.ﬂ .ﬂvmom-ﬁ
S$3us3uUo0d qsenbay
1040 Lasnd 1SO0H
¥ pLing S38bi1EA peol
geoeet
1senuay
1SOH
20TAdOS

159

Woﬁnm-m-.ﬁ
S0 fu3ug
soTqel §,19Y
dus], pvvy

RE€'LE
d{ysaoque
@30qiJai3y

93 bV TBA

.ﬂ Nom.m.
W 3 sld Oy

uotjededp
°936PilEA

£t

Legtetert
sejajug
se1qel, S,124
dua] 83919

Gegreeet
sed3jus
§91qel, S,194
dus], @3E84a)

geecee1
auBN
uotasley
93ubllen

1°€e°e"1
puUBWWO
U0 13 81040
938pi A

g €e'1
SQUL4U0D
Lasap
a3upPlleA

160

:.N-Momom.ﬁ

m.N-m-m.m-H NuN-ﬂomom-# H-N-mom-Moﬁ
J03wdodQ Plotd do3UUUD
UBe T00¢ J03ededuo) pusaadQ M
g3ePiTEN 9lepPlilEA NVOS JU UL U]
p—
booerererert
Yo jewWIoyd

L

uo [3eded
93ePl1IBA

161

Knm.m-m-m-ﬂ

s1q8y
uo13e19y

U3k ededuwo)

1°ge g el
o3 TuUiTed
wfn 3XON O
uo [3ysod

geeeete”

swsN
uo (4818l
o3 bTTeA

1

162

ﬁ-H-Mnm-m-m-H
dojuno)
™
JUBULAOUT

1°€gre g1

Je3juired
wfa IXON O
uog3rsod

163

1°cereerert
£aquy
uo (1e1od
Yaip suasdwop

AR RS AT AR AR
sT4s]L
uotjeray
U3TH edwduwop

164

T'7€ € e 1 1°grgeeec1
148l 4o TWETaU
93nqiTa3qy wfu IXON OF
U3 TM aueduoy uo{lgsod
.:-m-m-m-.ﬂ
diysasqualy

9304 [a33y
93 ePTTBA

165

T yereery

AR A M S Sl S ¢

TRE°C el

pletd djusavyuen Kajug
JuUB}SUOD 8314 ta42Y 93Ny TLIY
o3LbiLEA 93 uDTTEA Y3tH sd4eduwo
.Ha‘:cmom-m-ﬂ
s14sBy
a3ng {133y

Yatpm ededwo)

16€

1'ZTqe e et
Lajug
93Ny a3y

93epliTen

AR SE M AR AN
diysasquoiy
{/3nqTIIIY
93ebllen

167

—

Proceci

Je3 [uited
aftu 3XSN OF
uo g3 §sod

(A MRIRIAR
Plold
qUL3 SUOD
918PTTBA

168

4 WHM‘QM €1 €6 € € €1 N.m.m.m.m. ﬂ.m.m.m.m.~
0anaT 233V aTyB], 2ueN aTYed Sucfjelsy
dnes piin @990 I3V uoijelay 330
dws], pring dula], pring sABEG
m-om.m-moH

88 [dqUY STyel
s,uotljelsy
dwe] 83uedd

169

1°2°6°€°€°¢°1
apood
uot31BiaYy
pesnun puUlg

2°6'¢EE1
aTy®Bl
uo tyslay
dws], pring

170

trreestereert
aTqedL

uotjeisy

dus] ®o8ypd

1egeeteere1
Spod
uotjeisy
pesnun puid

171

H-momﬂcm-mMoH
193 Tu | raq
..&“.. IXen oL
Uot3¢sog

€S gegegey
luel suey

8luqgtalygy

dusy plyng

172

s e

T hgreceeet
Yol B}
S30Y{L43Y
putd

gentatecegtt 1*gretere 1 AR M NI
deq3tuiTeq 3STT MAopM
s934g afu IXON OF ajnyqiiy3y
PRy uo g3 (sod sle18d
U RSN A ¢
saiusg]
e3ngTayly
oy duvy pLing

173

T.r.m.m.m.m;

18T HIOM

3Ny TI33Y
pring

SR AR RN
yo3ej
930y TI33yY
putd

174

— —————

HOﬁnMQﬁtﬂh.ﬁ
IoqTuiTed
offn IXSN OL
uo g (sod

NcHo*.m -m-m-m“.H
3S[{T AIOM
93041a33y

pLing

— ——— ~

175

2°6e e 1
uo f3udedQ
foagsag

8y, 348sug

1°6€ el

dojg
uo{jzeaadg
ayJ] sdedsag

mu-m.m.

T040
¥ prind

1

176

e e et e e s

LA R AT
Lajuy
uoggwasd(oJ
pueasdQ ppry

AR R A T ¢
uo fgderado
Koagse(q

ayJ qdesuf

177

mc,ﬁ-m.m.mn‘—. m..ﬂom.m-mo.ﬁ Ho.ﬂ.f.ﬁ-mcﬁ
Yaoue /395440 293 TwiTed uv [1618Y
0], o4uyqlu4qy wia DRUTL UL
11cAU0D peog PLOR
C-H.m.mom- ‘:..ﬁ.m‘.m.MoH NoH-mu-m.m-.H Hoﬁ.ﬁom-m-ﬁ
93nq (I33Y 8309 Ta33Y uo t3eloy o fUiTed
GNP |SyL SUulL wiu IXSN OL
[Scied § V1OoH pe0] uo gz sod

HQV .m.m-ﬁ

degsg
uo3e1sdQ
odudodd

178

Ns-\:.m.ﬂ m-x:om.-ﬂ . :~:-mcﬁ N-\JQMQH
154D o dd og Laquy db v SpeeN
CMdO wouy OSW Twiatul TIdd 9yl Tadd ul INdd
LAJD saol pussg aaepd JI sujuuasilaq
...ll..lﬂ.\lulluﬂy " . . . mo.— .m\.-H .ﬁcicmtﬂ
M@M M@m ! de pow Mmm roﬁ>L¢m mrmwz slusiieAy
* IXaN Tsi3tul ordd ut Iidd SI1 dd ¥ ‘
JOJg 1983y pLEug JI suguaoegda(JI outuwasje(

.:om-.—‘

d®
V usissy

179

NQ\J-4-M¢H ﬂn:-j-mcﬁ
1S0b oBes 40
|y, 1eutadoQ
2qwadd ©3BUTISH

,:-.:.m.._\
Laquy
THdD aul,
o3updn

180

AD=A115 858 AIR FORCE INSY OF TECH WRIGHT=PATTERSON AFB OH SCHOO==ETC F/g 9/2 ° r
8:?1:? l:D !:;LE::NTAYION OF A BACKEND MULTIPLE=-PROCESSOR RELAT==ETC(U) -
W FONO|

UNCLASSIFIED AFIT/GCS/EE/810-6

NL
|

2e60gr1
satdnyg,
§,1s4
peo]

1°6°€°1
uotgdgaoseq
o3ngtai3y

S,4I8L PwO]

et

1804 O
I IWX

181

9°¢°L” y°9'¢ L 9Ll
atqelL a7qel sweN
anany LIWX 2INqIIJIV 2INYTLIIV
03 Ijd0L PPV *s, 19y 9ABS aaeg
§°9°e’1l £°9°¢’l 1°9°¢°1
sa1q¥l 214EL
adey uoyIe[ay aiyel sweN
*s 194 oAEg aaeg uteWO(JAES
9°¢" 1
aseqeavq
{euor3e 3y

ay3l dnyoeg

182

e Wem o+

bt

0 [] m‘.}.ﬂl
sseqel Bl
Teuol3elay
oy, dnyosy

71
dndvap

183

Appendix B

Relational Algebra Query Operation Formats

Each relational algebra operation is described through
the use of three columns of data: a field state, a maximum
byte size length for the field, and a description of the
field content.

In regards to the field state; R = required, and O =
optional. Optional fields grouped together indicate an
optional set which may exist in multiple set occurances.

A '$' indicates the termination of a data field
(fields are variable length with a maximum restriction), a
91" indicates the end of the occurance of optional field
sets, and a '#!' indicates the end of a query operation. A
'1' is used to indicate the end of the entire query

request.

184

—

1)

field state

v = vli=v iR Joviiec Qo il o0 o)

OQOO0OO0O0O0O0

0 0 o

The SELECT operation format.

max byte size

n
—_ O - O W

n

185

field description
"SELECT" command
n"g" delimiter
relation name
ng" delimiter
attribute name
ngn delimiter
comparator

n"g" delimiter
constant

"g" delimiter

boolean operator
"g" delimiter
attribute name
"gn delimiter
comparator

"g" delimiter
constant

g delimiter

n"gn delimiter
relation name
"g" delimiter
"#n delimiter

2)

field state

o O

=< oy v

The PROJECT operation format.

max byte size

- = - - =

186

field description
"PROJECT" command
ngn delimiter
relation name

ngt delimiter
attribute name
ngn delimiter

attribute name
ngn delimiter

ngn delimiter
relation name
ngn delimiter
ngn delimiter

'3) The JOIN operation format.

field state max byte size field description
R 4 "JOIN" command
R 1 g delimiter
R 20 relation name 1
R 1 ng" delimiter
R 20 relation name 2
R 1 ngn delimiter
R 20 attribute name 1
R 1 ngn delimiter
R 20 attribute name 2
R 1 "gn delimiter
0 20 attribute name 1
0 1 "g" delimiter
0 20 . attribute name 2
0 1 n"gn delimiter
R 1 ngn delimiter
R 20 relation name
R 1 "$" delimiter
R 1 nin delimiter

187

4) The ADD (insert) operation format.

field state max byte size field description
R 3 YADD" command
R 1 wgn delimiter
R 20 relation name
R 1 ng" delimiter
R 20 attribute value
R 1 ng" delimiter
0 20 attribute value
0 1 "g" delimiter
R 1 "gn delimiter
R 1 nir delimiter
188

5)

field state

0o so oMo

OCOO0OO0OO0OO0O0O0

== =

The DELETE operation format.

max byte size

o

o
SO O

189

field description
"DELETE" command
"g" delimiter
relation name
"g" delimiter
attribute name
"$" delimiter
comparator

"g" delimiter
constant

"g" delimiter

boolean operator
mgn delimiter
attribute name
"$" delimiter
comparator

ng" delimiter
constant

"gY delimiter

ngn delimiter
wir delimiter

6)

field state

w0 S0 0 B0 S0 R0 X0 50 0

OCO0O0OOOO0OO0O

=

The MODIFY operation format.

max byte size

- - @ - A

n
_ao._l_.s—to__\w

N

—

190

field description
tMODIFY" command
ngr delimiter
relation name
ngn delimiter
attribute name
ngn delimiter
comparator

ngn delimiter
constant

ngn delimiter

boolean operator
ngn delimiter
attribute name
ngn delimiter
comparator

ngn delimiter
constant

ngn delimiter

ngn delimiter
win delimiter

7)

field state

- - - - . wn =

= o o M SO 0 MO DU 00

0COCOOoOOO0

o X

The COUNT operation format.

max byte size field description

b nCOUNT" command
1 ngn delimiter
20 relation name

1 ngn delimiter
20 attribute name
1 ngn delimiter

1 comparator

1 . ungn delimiter
20 constant

1 ngn delimiter

3 boolean operator
1 ngn delimiter
20 attribute name
1 ngn delimiter

1 comparator

1 ngn delimiter
20 constant

1 ngn delimiter

1 ngn delimiter

1 nin delimiter

191

8) The MAX, MIN, and AVE operations format.

field state max byte size field description
R 3 "MAX,MIN,AVE" cmd ﬁ
R 1 ngn delimiter
R 20 relation name
R 1 ngn delimiter
R 20 attribute name
R 1 ngn delimiter
R 1 mgn delimiter
\
A\
\
1
192

9)

field state

w0 o SU PO S0 SO DO B0 S0 KU 0 D00 X

[eYoYoYoXoRoNoYoR oo

= 0

The CREATE operation format.

max byte size

)]

N
[T RS S g Y o I @]

193

field description
"CREATE" command
ngn delimiter
relation name
ngn delimiter
attribute name
ngh delimiter
domain name

ngn delimiter
attribute length
ngr delimiter
attribute type
ngn delimiter
key member

ngn delimiter

attribute name
ngn delimiter
domain name

ngn delimiter
attribute length
ngnr delimiter
attribute type
"gn delimiter
key member

ngn delimiter

ngn delimiter
ngn delimiter

10) The DESTROY and PRINT operations format.

field state

max byte size

194

field description
"DESTROY,PRINT" cmd
n"gn delimiter
relation name

n"gn delimiter

wir delimiter

11) The UNION operation format.

field state max byte size field description
R 5 YUNION" command
R 1 "gn delimiter
R 20 relation name
R 1 n"g" delimiter
R 20 relation name
R 1 ngn delimiter
R 20 relation name
R 1 "g" delimiter
R 1 njir delimiter

195

Appendix C
BCP System Table Formats
The twelve BCP system tables, the four interprocessor
communication message buffers, and all other work variables
are defined in this appendix. This data is taken directly
from the UCSD PASCAL computer program listing for the BCP
subsystem software, All data entries are described by

comments located to the right hand side of the listing.

196

(*3G+*)

(%gs#*

*)
UNIT
INTER
CONST

TYPE

STG02
STGO3
STGO4
STG20
STG80

)

AUTHOR : CAPT ROBERT W. FONDEN
: GCsS-81D
: 02 DECEMBER 1981

CLASS
DATE

COMMON;
FACE

RELOPRSIZE = 197;
MSGSIZE = 1000;
PAGESIZE = 4096;

HOSTIN
HOSTOT

075
08;

03;
06;

QPO1IN
QPO2IN

QPO10T
QPO20T

09;
10;

IMO1IN
IMO10T

11;
12;

STRING[02];
STRING([03];
STRING[O4];
STRING[20];
STRING[801;

STRINGO2
STRINGO3
STRINGO4
STRINGO5
STRINGO6
STRING10
STRING14
STRING16
STRING20
STRING35
STRING55S
STRING115
STRINGOPER
STRINGMSSG
STRINGPAGE

PACKED
PACKED
PACKED
PACKED
PACKED
PACKED
PACKED
PACKED
PACKED
PACKED
PACKED

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

(1..02]
(1..03]
[1..04]
(1..05]
(1..06]
[1..10]
(1..14]
(1..16]
[1..20]
[1..35]
(1..55]

(* SEGMENT NUMBER 10 #)

(* REL OPERATION SIZE *)
(* HOST MESSAGE SIZE *)
(* PAGE SIZE *

(* HOST I UNITNUMBER VAL ¥)
(* HOST O UNITNUMBER VAL #)

(* QPO1 I UNITNUMBER VAL #)
(* QP02 I UNITNUMBER VAL #)

(* QPO1 O UNITNUMBER VAL ¥)
(* QP02 O UNITNUMBER VAL ¥)

(* IMMO1 I UNITNUMBER VAL *)
(* IMMO1 O UNITNUMBER VAL *¥)

OF CHAR;
OF CHAR;
OF CHAR;
OF CHAR;
OF CHAR;
OF CHAR;
OF CHAR;
OF CHAR;

OF CHAR;
OF CHAR;

PACKED ARRAY [1..115] OF CHAR;

PACKED ARRAY [1..RELOPRSIZE] OF CHAR;
PACKED ARRAY [1..MSGSIZE] OF CHAR;
PACKED ARRAY [1..PAGESIZE] OF CHAR;

197

By

DOMNAMEENTRY = RECORD
NEXTDOMNAME : “DOMNAMEENTRY;
DOMNAME : STRING20;
ATTMBRENTRY = RECORD
NEXTATTMBR : “ATTMBRENTRY;

DOMATTMBRPNTR : “ATTNAMEENTRY;

END;
END;

ATTNAMEENTRY = RECORD
NEXTATTNAME : “ATTNAMEENTRY;
ATTNAME : STRING20;
ATTLENGTH : STRINGO3;
ATTTYPER : CHAR,

DOMPNTR : “DOMNAMEENTRY;
END;

RATTENTRY = RECORD
NEXTRATT : “RATTENTRY;
RATTNAME : STRING20;
BYTEQFF : STRINGO3;
RATTTYPE : CHAR;
RATTLEN : STRINGO3;
KEYMBR : CHAR;

END;

PAGEENTRY = RECORD
NEXTPAGE : “PAGEENTRY;
PAGENBR : STRINGO3;
PAGEADDR : STRING16;
END;

RELENTRY = RECORD
NEXTREL : “RELENTRY;
RELNAME : STRING20;
RELCODE : STRINGO3;.
ATPNTR : “RATTENTRY;
PTPNTR : "“PAGEENTRY;
LOCKIND : CHAR;
LOCKOWNER : STRINGOS;
TUPLELEN : STRINGO3;
ATTNBR : STRINGO2;
END;

IMMENTRY = RECORD
NEXTIMM : “IMMENTRY;
IMMADDR : STRINGO3;
IRELN : STRING20;
END;

QPENTRY = RECORD
NEXTQP : “QPENTRY;

198

(%% DOMAIN NAME TABLE)

(%% DOMAIN NAME 1)
(%% DOMAIN'S ATTRIBUTE TABLE*¥*)

(#% POINTER TO ATTNAMEENTRY ##)

(* ATTRIBUTE NAME TABLE %)

(* ATTRIBUTE NAME *)
(* ATTRIBUTE BYTE LENGTH ¥)
(* ATTRIBUTE TYPE ¥)

(*#% POINTER TO DOMNAMEENTRY #¥)

(* RELATION ATTRIBUTE TAB #)

(* ATTRIBUTE NAME *)
(* BYTE OFFSET ¥)
(* ATTRIBUTE TYPE *)

(* ATTRIBUTE BYTE LENGTH ¥)
(* KEY MEMBER INDICATOR *)
(* RELATION PAGE TABLE *)

(* RELATION PAGE NUMBER *)
(* RELATION PAGE ADDRESS #)

(* DB RELATION TABLE *)
(% RELATION NAME *)
(* RELATION CODE ®)
(* ATTRIBUTE TABLE POINTER *)
(* PAGE TABLE POINTER *)
(* RELATION LOCK INDICATOR ¥)
(* LOCK OWNER -MSGNBM=-)

(* BYTE LENGTH OF TUPLES %)
(* NUMBER OF ATTRIBUTES)

(® A QP'S IMM TABLE ®)
(* PORT ADDRESS OF IMM *)
(* RELATION NAME PAGED *

(% QP TABLE *)

QPNMBR : STRINGOZ;
QPSTATE : CHAR;
IMMPNTR : ~IMMENTRY;
END;

QPKTOPERENTRY = REC

ORD
NEXTQPKTOPER : ~QPKTOPERENTRY ;

OPCCDE : STRINGO3;
OPERANDS : STRINGOPER;
END;

QPWQENTRY = RECORD
NEXTQPWQ : ~QPWQENTRY;
INEX : CHAR;
QPKTMSGNBR : STRINGOS;
QPKTHOSTID : STRINGO6 ;
QPKTPGMID : STRINGO6 ;
QPKTCRTID : STRINGO6 ;
QPKTPRI : CHAR

QPKTOPERPTR : ~QPKTOPERENTRY;

END;

QOSTENTRY = RECORD
NEXTQOST : ~QOSTENTRY ;
QOSTRELNAME : STRING20;
RELPNTR : ~RELENTRY;
QOSTPAGECUR : STRINGO3;
QOSTCNT : INTEGER;
QOSTTOT : INTEGER;
QOSTMIN : INTEGER;
QOSTMAX : INTEGER;
END;

QPELENTRY = RECORD
NEXTQPEL : "QPELENTRY;
QPWQPNIR : ~QPWQENTRY;
QPELMSGNBR : STRINGOS;
OPTALLOC : INTEGER;
CURALLOC : INTEGER;
QOSTPNIR ~QOSTENTRY ;
CMPLTDIND : CHAR;
FNLRELNAME : STRING20;
END;

XMITQENTRY = RECORD
NEXTXMITQ : ~XMITQENTRY;
XMSGNBR : STRINGOS;
XHOSTID STRINGO6;
XPGMID : STRINGOG;
XCRTID : STRINGOS;

XPRI : CHAR;
KFNLRELNAME : STRING20;
XCOUNT : INTEGER;

END;

199

(* QP ID NUMBER
(* STATE OF QP
(% IMM TABLE POINTER

(* QPKT OPERATION STEPS

(* OPERATION CODE
(% SET OF OPERANDS

(% QPKT WALT QUEUE

(% IN EXECUTION INDICTR

(% QPKT MESSAGE NUMBER

(* QPKT HOST IDENT

(* QPKT PROGRAM ID

(* QPKT CRT ID

(* QPKT PRIORITY

(# QPKT OPERATIONS TAB PIR

(* QUERY OPER STATE TABLE

(* RELATION NAME

(* POINTER TO REL ENTRY
(* RELATION PAGE CURRENCY
(* COUNT TOTAL

(* TOTAL VALUE

(* MINIMUM VALUE

(* MAXIMUM VALUE

(% QPKT EXECUTE LIST

(% QPWQ ENTRY POINTER

(# QPKT MESSAGE NUMBER

(% QPTIMUM ALLOC OF QP'S
(% CURRENT ALLOC OF QP'S
(* QOST PQINTER

(* QPKT PROC COMPLETED IND
(* RELATION HOLDING ANSWER

(% TRANSMIT QUEUE FOR BCP

(% MESSAGE NUMBER

(% HOST ID NUMBER

(% PROCRAM ID NUMBER

(® CRT ID NUMBER

(* PRIORITY OF MESSAGE
(% RELATION ANSWER NAME
(* PAGE TRANSFER COUNTER

*)
*)
)
*)
)
*)

*

*)
*)
)
)
%)

b

*
*)
)
*)
*

VAR

*)

*)

*°
K

*

*)

*)

*)

*)

BPDOMNAMTBL : ~DOMNAMEENTRY; (* BASE POINTER OF DOMNAMTBL
BPATTNAMIBL : ~ATTNAMEENTRY; (¥ BASE POINTER OF ATTNAMTBL
BPRELTBL : “RELENTRY; (* BASE POINTER OF RELTBL
BPQPTBL : “QPENTRY; (* BASE POINTER OF QPTEL
BPQPWQ : “QPWQENTRY; (* BASE POINTER OF QPWQ
BPQPEL : ~QPELENTRY; (* BASE POINTER OF QPEL
BPXMITQ : “XMITQENTRY; (* BASE POINTER OF XMITQ
TBPDOMNAMTEL : “DOMNAMEENTRY; (* TBASE POINTER OF DOMNAMTEL
TBPATTNAMTBL : “ATTNAMEENTRY; (* TBASE POINTER OF ATTNAMTEL
TBPRELTEL : ~RELENTRY; (* TBASE POINTER OF RELTBL
CPODNT : “DOMNAMEENTRY;

CP1DNT : “DOMNAMEENTRY ;

CP2DNT : “DOMNAMEENTRY; (¥ WORK POINTERS FOR DOMNAMETBL
CPOAME : “ATTMBRENTRY;

CP1AME : “ATTMBRENTRY;

CP2AME : “ATTMBRENTRY; (* WORK POINTERS FOR ATTMBRTBL
CPOANT : ~ATTNAMEENTRY;

CP1ANT : ~ATTNAMEENTRY;

CP2ANT : “ATTNAMEENTRY; (* WORK POINTERS FOR ATTNAMTBL
CPORAT : “RATTENTRY;

CP1RAT : “RATTENTRY;

CP2RAT : “RATTENTRY; (* WORK POINTERS FOR RATTTEL
CPOPT : "PAGEENTRY;

CP1PT : “PAGEENTRY;

CP2PT : “PAGEENTRY; (* WORK POINTERS FOR PAGTEL
CPORT : “RELENTRY;

CP1RT : “RELENTRY;

CP2RT : “RELENTRY; (* WORK POINTERS FOR RELTEL
CP3RT : “RELENTRY;

CPURT : “RELENTRY;

CPOIT : ~IMMENTRY;

CP1IT : ~IMMENTRY;

CP2IT : ~IMMENTRY; (* WORK POINTERS FOR IMMTBL
CPOQT : ~QPENTRY;

CP1QT : ~QPENTRY;

CP2QT : ~QPENTRY; (* WORK POINTERS FOR QPTEL
CPOQPT : ~QPKTOPERENTRY;

CP1QPT : ~QPKTOPERENTRY;

200

(* FOR MESSAGES GOING FROM

BQANSCODE
BORLNNAME
PQPAGENBR :
BQIMMADDR :

CHAR;
STRING20; (*
STRINGO3; (%
STRINGO3; (*

201

#
#
#

(*ADLNPU A

D
L
N

CP2QPT : “QPKTOPERENTRY; (* WORK POINTERS FOR QPKTOPERLST#)
CPOQPWQ : “QPWQENTRY;
CP1QPWQ : “QPWQENTRY;
CP2QPWQ : “QPWQENTRY ; {* WORK POINTERS FOR QPWQ %)
CPOQOST : “QOSTENTRY;
CP1QOST : ~QOSTENTRY; ,
CP2QOST : “QOSTENTRY; (* WORK POINTERS FOR QOST *)
CPOQPEL : “QPELENTRY;
CP1QPEL : “QPELENTRY;
CP2QPEL : “QPELENTRY; (* WORK POINTERS FOR QPEL #)
CPOXMITQ : “XMITQENTRY;
CPIXMITQ : “XMITQENTRY;
CP2XMITQ : “XMITQENTRY; (* WORK POINTERS FOR XMITQ *)
(* FOR MESSAGES GOING FROM QP'S TO BCP *)
QBMSGCODE : CHAR; (*ACDGNU A= ADD-PAGE REQUEST ¥
QBQPNMBR : STRINGO2; (* # # # # # # C = PROC CMPLT RESPONSE ¥)
GBMSGNBR : STRINGOS; (* # # # # # # D = DESTROY REL REQUEST *)
QBRELNAME : STRING20; (* ¢ # # # # G = GET-PAGE REQUEST %
QBIMMLOC : STRINGO3; (* # # # # N = NEXT-PAGE REQUEST %)
QBPAGENBR : STRINGO3; (* # # U = UPDATE-PAGE REQUEST *)
QBCOUNT : STRING20; (% ¢ *)
QBTOTAL : STRING20; (* # *)
QBMIN : STRING20; (* # *)
QBMAX : STRING20; (» # *)
QBLOCK : CHAR; (* # %)
QBBUFFER : STRING115;
QBO1BUFFER : STRING115;
QBO2BUFFER : STRING115;
QBO3BUFFER ; STRING115;
QBOMBUFFER : STRING115;
QBOSBUFFER : STRING115;
QBOGBUFFER : STRING115;
QBOTBUFFER : STRING115;
QBOSBUFFER : STRING115;

BCP TO QP'S. [ANSWERING QP MESSAGES ONLY} %)

PAGE HAS BEEN ADDED %)
RELATION IS DESTROYED *)
REL LOCKED, TRY LATER %)
ARE NO MORE PAGES %)

oo

(* P = HERE IS ANOTHER PAGE *)
(* U = PAGE WAS REWRITTEN *)
BQBUFFERA : STRING3S;
BQBUFERB : STRINGMSSG;

(* FOR MESSAGES GOING BETWEEN THE BCP AND THE HOST *)
HBBUFFER : STRINGMSSG; (* HOST TO BCP MESSAGE BUFFER *)
BHBUFFER : STRINGMSSG; (* BCP TO HOST MESSAGE BUFFER *)

(% FILE ID'S AND TITLE NAMES FOR THE FILES CONTAINING SYSTEM TABLES %)
PAGEFILE : TEXT; (* FILE-ID TO REFERENCE PAGE FILES %)
TBLFILE : TEXT; (* FILE-ID TO REFERENCE TABLE FILES ¥)
ATTNAMTBL : STG20; (% DBNN:ATTNAMTBL.TEXT *)
RELTBL : STG20; (* DBNN:RELTBL.TEXT *)
RATTTELS : STG20; (* DBNN:RATTTBLS.TEXT)
PAGTBLS : STG20; (* DBNN:PAGTBLS.TEXT *)
TRFILE : STG20; (* DBNN:TR1FILE,TEXT %)

(* MISCALANEOUS STRING VARIABLES ®)
CH : CHAR; (* FOR CONSOLE BYTE/STRING INPUT)
BCPRESP : STG20; (* FUNCTION ANSWER TO QUERY RQST *)
DOLLAR : CHAR, (* A '$' DELIMITER *)
HOLDATT : STRING20; (* ATTRIBUTE NAME HOLD BUFFER *)
HOLDPAGE : STRINGO3; (* RELATION PAGE HOLD BUFFER ¥)
HOLDREL : STRING20; (* RELATION NAME HOLD BUFFER *)
HOSTMSGLEN : STRINGOS; (* BYTE LENGTH OF NEXT HOST MESSAGE *)
KEYBRD : STG80; (* OPERATOR CONSCLE INPUT *)
NQPS : STGO2; (* NUMBER OF QP'S CONFIGURED FOR RUN %)
PAGEBUFFER : STRINGPAGE; (* PAGE STAGING BUFFER TO IMM %)
PAGETOSTAGE : STG20; (% PAGE ADDRESS OF PAGE TO STAGE NEXT#*)
PAGETOWRITE : STG20; (* PAGE ADDRESS OF PAGE TO WRITE BACK®)
PGM : STRING55; (* ALGORITHM FOR SERVICE SELECTION %)
QPVALUE : STRING16; (* QP CONFIGURATION STARTUP TABLE *)
RELVOL1ID : STGO4; (* VOLUME 1 HOLDING RELATION FILES %)
RELVOL2ID : STGO4; (* VOLUME 2 HOLDING RELATION FILES #)
RSPNS : CHAR; (* RESPONSE INDICATOR BEIWEEN PGMS %)
VOLTBLS : STGO4; (* VOLUME # HOLDING DB SYSTEM TABLES %)
VOPCODE : STRINGO3; (* QUERY STEP OP-CODE TEMP-BUFFER *)

(* MISCALANEOUS INTEGER VARIABLES *)

202

(*

CLOCK : INTEGER;

COUNT : INTEGER;
DBSAVE : INTEGER;
DISP : INTEGER;

ER : INTEGER;

FF : INTEGER;

FOUNDIT : INTEGER;
HBYTEPOS : INTEGER;
HOLDIORSLT : INTEGER;
HOLDKQSTIND : INTEGER;
I,J,K,L,M,N : INTEGER;
I1,JJ,KK,LL,MM : INTEGER;
IMMNBR : INTEGER;

LAST : INTEGER;

MAX : INTEGER;

NOTT : INTEGER;
NQPSVALUE : INTEGER;
NVOLS : INTEGER;
PROCIDLE : INTEGER;
QPCHOSEN : INTEGER;
QPWQFULL : INTEGER;
RELRQSTIND : INTEGER;
RESULT : INTEGER;
RESPONSE : INTEGER;

RR : INTEGER;

WRAPUP : INTEGER;

(* PGM COUNTER

(* UTILITY COUNTER

(* 1 = DB SAVE HAS BEEN REQUESTED
(* BYTE DISPLACEMENT COUNT

(* STRING~INTEGER;ERROR INDICATOR
(* FIRST BYTE POSITION POINTER

(* INDICATE IF FILE IS ON-LINE OR NOT*®)

(* INDEX USED FOR SCANNING HBBUFFER
(* SAVE OFF THE IORESULT OF I/O CALL
(* FOR DBSAVE / WRAPUP REQUESTS

(* UTILITY COUNTERS

(* UTILITY COUNTERS

(* IMM TO RECIEVE STAGED REL PAGE

(* LAST QP SERVICED

(* MAXIMUM ALLOWABLE STRING LENGTH
(* A STATUS INDICATOR

(* NUMBER OF QP'S CONFIGURED TO PROC
(* NBR OF VOL'S HOLDING DB RELATIONS
(* PROC IDLE - FOR DBSAVE / WRAPUP
(% QP SELECTED TO BE SERVICED NEXT
(* 1 = QPWQ IS PRESENTLY FULL

(* FOR DBSAVE / WRAPUP RESPONSES

(* DECISION INDICATOR

(% DECISION INDICATOR

(* LAST BYTE (REAR) BYTE POINTER

(* 1 = WRAPUP HAS BEEN REQUESTED

END. (¥ UNIT COMMON [SEGMENT NUMBER 10] ®)

203

*)
*)

*)

)

L

1

Appendix D
BCP System Data Base File Formats

The following six files are used to support this

system.
1D
2)
3)
4)
5)
6)

domain name file

attribute name file
relations file

relation's attributes file
relation's pages file

relation's page files (pages of tuples)

The specific formats for each of these files are

defined in the following paragraphs. These files all store

their data in UCSD text format. Note that the first four

files also contain carriage-return (<er>) delimiters

between each of the records. This is to enable both easy

inspection of these files using the UCSD PASCAL editor, as

well as easy modification, using the UCSD PASCAL editor,

for testing purposes,

(1) Domain Name File Record Format.

01 - 20 domain name

21 - U0 attribute name

Example File:

204

[BOF]
NAME
NAME
SSAN
SSAN
SSAN
GRADE
COURSE
QUARTER
PROGRAM
EDCODE
DEPT
(EOF]

STUDENTNAME
FACULTYNAME
STUDENTSSAN
FACULTYSSAN
EDPLANSSAN
EDPLANGRADE
EDPLANCOURSE
EDPLANQUARTER
STUDENTPROGRAM
STUDENTEDCODE
FACULTYDEPT

(2) Attribute Name File Record Format.

01 - 20 attribute name

21 - 23 byte length

24 attribute type
25 - 44 domain name
45 {er>

Example File:
[BOF]
STUDENTNAME
STUDENTSSAN
STUDENTPROGRAM

020CNAME
009CSSAN
006CPROGRAM

205

<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

<CR>

<CR>
<CR>

<CR>

STUDENTEDCODE OO4CEDCODE
FACULTYNAME 009CNAME
FACULTYSSAN 009CSSAN
FACULTYDEPT 0Q3CDEPT
EDPLANSSAN 009CSSAN
EDPLANCOURSE 005CCOURSE
EDPLANQUARTER OOUCQUARTER
EDPLANGRADE 002CGRADE
(EOF]

(3) Relations File Record Format,

01
21
24
27
29

Example File:
[BOF]

20
23
26
28

STUDENT

FACULTY

EDPLAN

(EOF]

(4) Relation's Attribute File Record Format,.

relation name
relation code

tuple byte length
number of attributes

<CR>

00103904<CR>
00203203<CR>
00302004<CR>

206

<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

<CR>

01 - 20 attribute name
21 - 23 byte offset in tuple
24 attribute type
25 - 27 byte length of attribute
28 key membership indicator
29 <CR>

Example File:
[BOF]
STUDENTNAME 000CO20N<CR>
STUDENTSSAN 021C009Y<CR>
STUDENTPROGRAM 030CO06N<LCR>
STUDENTEDCODE 036CO04NLCR>
$<CR>
FACULTYNAME 000CO20N<KCR>
FACULTYSSAN 021C009Y<CR>
FACULTYDEPT 030CO003N<CR>
$<CR>
EDPLANSSAN 000CO009Y<CR>
EDPLANCOURSE 009COO05N<CR>
EDPLANQUARTER 014COOUN<CR>
EDPLANGRADE 018C002N<CR>
$<CR>
[EOF]

Note that a '$' delimiter is used to group a set of

attributes defined for each relation,

207

Each set of

attributes are sequenced in accordance with the order of

the relations stored in the relation file.

(5) Relation's Page File Record Format.

01
oy
08
09

09

12

15

20

- 03
- 07

19

page number
volume-id

|:l
page file address name

relation code

page number

'.text!

<CR>

Example File:

{BOF]

001DBV1:001001.TEXT<CR>

002DBV1:
003DBV1:

$<CR>

001DBV1:
002DBV1:

$<CR>

001DBV2:
002DBV2:

001002.TEXT<LCR>
001003 .TEXTLCR>

002001 .TEXT<CR>
002002 .TEXT<LCR>

003001 .TEXTKCR>
003002.TEXT<KCR>

208

003DBV2:003003.TEXT<CR>
003DBV1:003004 . .TEXT<KCR>
$<CR>
[EOF]

Note that a '$' delimiter is used to group a set of

pages existing for each relation. Each set of pages are

sequenced in accordance with the order of the relations

stored in the relation file,

(6)

Relation's Page Files Record Format.

0001 '/' BOP delimiter
0002 - NNNN relation's tuples
NNNN + 1 '\' EOP delimiter
NNNN + 2 - MMMM unused space in page

where MMMM = the fixed byte size of the pages.

209

Appendix E

Inter-processor Architectural Specifications

Figure 26 portrays the inter-processor architecture
used to accomplish the testing for stage one of this
development effort, Five processors were used to
accomplish the testing for developing the BLP's software.
The acronyms DLV-11, DLV-11J, DUALPO#T, and DRV~ 11J
respectively identify a single port 38.4 Kbavd serial 1line
channel card, a quad port 38.4 Kbaud serial line channel
card, a dual port 38.4 Kbaud serial line channel with 16
Kbyte RAM card, and a single port parallel line
channel card. Fifty six Kbytes of RAM are resident on
each of the five systems. A CRT is assigned to each
processor subsystem for supporting the subsystem
development., The finalized system will only require a CRT

attached to the BCP.

210

SUO(1%0TJIoady [B3UN303 FYOdY JOuLSuooddaviul yg saud[yg

hAte)

. £49

n;//// p: rAS
h:fo) c11=-p1d
T
ee we) sAg dojufed ARt
—4 11-A1d (20dd)
3404 Teung |
3104 Tsnd
. " .
a ___Acer |
waj3sAg
) LiT-aTd
(WWI)
wz€ |
140 £11-A10
rit-aia I
TT-AHU
As1q L2-H S1d 42-H
o) g
wey sAg weqsAg
(104D) (dod)

2404 Ten
1T-AHd

Astq Lz~

v
WoySAg

(450H)

211

Appendix F

Channel Link Software Specifications

This appendix contains all the necessary information
to construct channel link communication software drivers
and incorporate them into the UCSD PASCAL operating system
software package known as SYSTEM.PDP11.

To add a new channel link communication software
driver, several decisions must first be made. First, a UCSD
PASCAL UNITNUMBER value must be selected and then a chanhnel
number must be selected for the UNITNUMBER to be assigned
to. For example, UNITNUMBER 7 and channel 0 were selected
for the first driver, and UNITNUMBER 8 and channel 2
were selected for the second driver, Since the serial
driver software used in this implementation does not perform
concurrent bidirectional transmission, the inter-processor
architecture must next be considered. If a connected pair
of processors have a master - slave relationship, then only
a single software driver is needed to support both input
and output to/from the other processor, but if both input
and output to/from the other processor can occur
concurrently at any time, then a set of drivers and
channel link lines will be required. Once the channel
number(s) have been selected, the hardware addresses must
next be determined,

The next step is to modify the source code of each

driver to be used, specifically, the UNITNUMBER, and the

212

channel hardware addresses., If multiple drivers are to be
incorporated into the operating system, then each driver
must also have its own unique name ., Once changes have
been made, using the RT-~11 operating system and its
editor, the drivers must next be re-assembled.

The command to re-assemble a software driver is

.R MACRO
* OBJFIL[,LSTFIL]=[{OPTIONS,]MACROS,SRCFIL

For example,

.R MACRO
* DLCHO7=ALL1,MACROS,DLCHOT

The OPTIONS file may set any or all of several
assembly-time options to customize the resulting object to
a particular hardware configuration., If no OPTIONS file is
given, the resulting .0OBJ file will run on any PDP/LSI 11
model computer, The option file may include definitions of

the following symbols:

EIS - Causes code to be generated utilizing MUL,
ASH, DIV, ASHC, and SOB instructions.
LSI - Causes code for MTPS, MFPS, and SOB

213

instructions.

FPI -~ Causes code for FADD, FSUB, FMUL, and FDIV
instructions. (These are 11/40 type floating
point instructions; the 11/45 type instructions
are not supported.)

TERAK - Defines all of the above.

FPI should not be defined unless EIS is defined. For
LSI/11s with EISFIS chip, define all three., For LSI/11s
without the EISFIS chip, define only LSI. For 11/40s with
EIS, define only EIS. For 11/10s, do not define any of
the options. For this implementation, ALL1.MAC contains
the entries 'EIS=0<CR> LSI=1<CR> FPI=0<KCR>'.

Once the new channel link communication software
driver(s) have been re-assembled, the next step is to build
a new UCSD PASCAL operating system., The following RT-11ish
files must be online when the new ~perating system is to be

created (for this particular implementation).

MACROS .MAC Global definitions and macros for the
interpreter sources. These should be
assembled in front of all sources,

except the boot loaders.

MAINOP.MAC Interpreter section for most P-machine
instructions
PROCOP.MAC Interpreter section for procedure call

operators run-time support subroutines,

214

IOTRAP.MAC

RX.MAC
LP.MAC

SOFTFP.OBJ

DLnn,MAC
RXBOOT.MAC

SYSCOM and trap-vector ASECT and
console device driver,

DEC floppy driver.

LP11 line printer driver.

Flocating point package for systems
without FPI instruction set,

DL11 port channel driver(s),

Bootloader for RX01 compatible drives.

The remaining files are optional files for other

micro-computer architectures.

QX.MAC

RK.MAC
TK.MAC
RKBOOT.MAC
QXBOOT.MAC
HARDFP.MAC

DUMYFP .MAC

Driver for REMEX floppies on TERAK 8510
systems.

RKO5 disk driver.

8510a screen emulator.

Bootloader for RKO5 compatible drives.
Bootloader for QX type REMEX drives.
Floating point package for systems with
FPI instruction set,

A dummy floating point package.

The linking instructions to build a new UCSD PASCAL

operating system are as follows.

.R LINK

%SYSPDP[,MAP]=IOTRAP,MAINOP,PROCOP,RX,LP/C/B:0

215

%¥DLCHO7 ,DLCH28,SOFTFP

The first three files must be in the above order,
Drivers may be in any order. The floating point
information should be last,

Now a new UCSD PASCAL operating system file, called
SYSPDP.SAV has been created., The next step is to transfer
this file from the RT-11 floppy it was created on, over to
a UCSD PASCAL floppy. To accomplish this transfer, a
seperate floppy, referred to as the 'transfer floppy', must
be used. This floppy should be 'ZEROED' using the PASCAL
operating system before the transfer procedure is
accomplished. After zeroing the transfer floppy, the
following sequence should be accomplished in order.

(1) Under the RT-11 operating system, transfer the
newly created SYSPDP.SAV file from the floppy it was
created on, over to the transfer floppy.

(2) Request a ,DIR/BLOCKS list of the transfer floppy.
Record on paper the starting block of where SYSPDP,SAV
resides and also the total block size of the file,.

(3) Remove the RT-11 system floppy and insert a UCSD
PASCAL system floppy. Reboot the system,

(4) Enter the command 'MAKE #5:RT11.TEXT[{8]. Since
the directory index files for the RT-11 and the UCSD PASCAL
operating systems reside in different areas of a floppy, a
pascal file must be 'created' over the area where the RT-11

directory resides in order to ensure that the UCSD PASCAL

216

operating system does not write over it.

(5) Enter the command 'MAKE #5:SYSTEM.PDP-11[nn] where
nn equals the recorded size of the SYSPDP.SAV file. This
enables the UCSD PASCAL operating system to access the file
SYSPDP.SAV created by the RT-11 operating system.

Steps five and six produce a transfer floppy
containing dual directories, each having pointers to the
same newly created operating system,

(6) Rename the file SYSTEM.PDP11 on the UCSD PASCAL
system boot floppy to S.PDP11.

(7) Transfer the file SYSTEM.PDP11 from the transfer
floppy over to the system boot floppy.

(8) Reboot the system. The LSI-11 system is now re-
configured containing the serial port channel drivers,

Three PASCAL test programs have been included in this
appendix. These programs were used to test the new channel
drivers.,

The first program was used to test the concurrency of
two channel drivers performing data transmission to
seperate CRTs connected to channels 0 and 2. The
successful test of concurrency in data transmission was
accomplished at 19.2 Kbaud using UNITWRITE instructions.

The remaining two programs were used to test
communication between two LSI-11s connected via a single
serial channel link. This test consisted of a message
transfer being made back and forth (ping-pong fashion) for

100 iterations. One program first issued a UNITREAD to

217

channel 2 UNITNUMBER 8 while the other program first issued
a UNITWRITE to channel 0 UNITNUMBER 7 (link was from
channel 2 of machine A to channel 0 of machine B). Each
time a message was recieved it was displayed on the

machines conscle. Then a response message was sent out.

218

PRCG
TYPE

VAR

BEGI

END.

RAM TEST; (* TO DRIVE DATA THROUGH 2 CHANNELS *)
DATASTR = STRING[40];

SENDBUF = PACKED ARRAY [1..1920] OF CHAR;
I,J,UNITNBR2,UNITNBR7 ,UNITNBRS : INTEGER;
MESSAGE1,MESSAGE2,MESSAGE3 : SENDBUF;
MSSGO1,MSSGO2 : DATASTR;
N

UNITNBR2 := 2; (* CONSOLE *)

UNITNBR7 := 7; (* CHANNEL O *)

UNITNBR8 := 8; (* CHANNEL 2 *)

MSSGO1 := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 '

MSSGO2 := '0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ?';
FOR I := 0 TO 47 DO
BEGIN
FOR J := 1 TO 40 DO
BEGIN
MESSAGE1 [I * 40 + J] := MSSGO1 [J];
MESSAGE2 [I * 40 + J] := MS3Go2 [JI;
END;
END;

UNITWRITE (UNITNBRT,MESSAGE1,1920,0,1);
UNITWRITE (UNITNBR8,MESSAGE2,1920,0,1);

WRITELN;

WRITELN’('AS YOU CAN SEE, THIS MESSAGE HITS THE CONSCLE 1');
WRITELN ('AT THE SAME TIME THE BUFFERED DATA IS SENT TO ');
WRITELN ('THE CRTS CONNECTED TO UNITNUMBERS 7(0) AND 8(2)");
WRITELN;

WRITELN’('NOW, TYPE IN 20 CHARACTERS (CURSER WILL NOT MOVE)');
WRITELN; .

UNITREAD (UNITNBR2,MESSAGE3,20,0,1);
UNITWAIT (UNITNBR2);

WRITELN ('THIS IS THE MESSAGE RECIEVED USING A UNITREAD TO');
WRITELN ('THE CONSOLE:');

WRITELN;

WRITELN (MESSAGE3:20);

WRITELN;
WRITELN ('TESTING IS NOW ADJOURNED!.....ee.... "3

219

PROGRAM TESTA;

TYPE
DATASTR
SENDBUF

STRING[401;
PACKED ARRAY [1..40] OF CHAR;

VAR
BUFF001,BUFF002

MSSGAA ,MSSGBB
RMOT
QUTOUT
I,J
BEGIN
MSSGAA := 'THIS DATA IS COMING FROM SYSTEM A A
MSSGBB := 'THIS DATA IS COMING FROM SYSTEM B B
RMOT = 'REMOUT:’;

FOR J := 1 TO 40 DO
BEGIN
BUFF001 {J] := MSSGAA [J1;
BUFF002 [J] := MSSGBB (J];
END;

WRITELN ('START WITH A UNITREAD TO UNITNUMBER 8
RESET (OUTOUT,RMOT) ;

FOR J := 1 TO 100 DO
BEGIN
UNITCLEAR (8);
FOR I := 1 TO 40 DO
BUFF002[{I] := ' ';
UNITREAD (8,BUFF002,40,0,1);
WHILE UNITBUSY (8) DO

BEGIN
I := I+
I:=z I-1;
END;
WRITELN (J:4,' ',BUFF002);

UNITCLEAR (8);
UNITWRITE (8,BUFF001,40,0,1);
WHILE UNITBUSY (8) DO

BEGIN
I := I+
I:=zI-1;
END;

END;
END.

220

: SENDBUF;
: DATASTR;
: DATASTR;
: FILE;

: INTEGER;

A
B 1

.
’

l);

PROGRAM TESTB;

: SENDBUF;
. DATASTR;

: DATASTR;
: FILE;
. INTEGER;

TYPE
DATASTR = STRING[401;
AR SENDRUF = PACKED ARRAY [1..40] OF CHAR;
BUFF001,BUFF002
MSSGAA ,MSSGBB
AMOT
QUTOUT
1,J
BEGIN
MSSGAA := 'THIS DATA IS COMING FROM SYSTEM A A A
MSSGBB := 'THIS DATA IS COMING FROM SYSTEM B B B
RMOT := 'REMOUT:';
FOR J := 1 TO 40 DO
BEGIN
BUFF001 [J) := MSSGAA [J);
RUFF002 [J1 := MSSGBB [J1;
END;

WRITELN ('START WITH A UNITWRITE TO UNITNUMBER 8
RESET (OUTOUT,RMOT);

FOR J

:z 1 TO 100 DO

BEGIN

I

UNITCLEAR (8);

UNITWRITE (8,BUFF002,40,0,1);

WHILE UNITBUSY (8) DO

BEGIN
I:

I+1;
I :=I-1;
H

END

UNITCLEAR (8);

FOR I := 1 TO 40 DO
BUFFOO1(I] := ' '3

UNITREAD (8,BUFF001,40,0,1);

WHILE UNITBUSY (8) DO

BEGIN
I := I+1;
I :=I<1;
END;

WRITELN (J:4,' ', BUFF001);

END;

END.

221

v);

S 8

Appendix G

Host Structure Chart Documentation

This appendix consists of two sections documenting the
modular design of the host processor's test software. The
first section is a list identifying all the modules in the
software design. The '*' that appears to the right of the
module's title identifys that module as a 'common' module
called by more that one calling module. The second section
is a set of structure charts showing the interrelated
structure of the modules within the subsystem. Note that
the filled-in bottom right corner of the module box
indicates it is a ‘common' module. The module numbers in
each section are used as a cross-reference between both
documentation sections. The program listings for this

subsystem are contained in Volume II of this thesis.

HOST Module List

2.0 Host

2.1 Perform Initial Sign-on to BCP

2.1.1 Clear the Host-to-BCP Message Buffer *
2.1.2 Clear the BCP-to-Host Message Buffer *
2.1.3 Build a Message Header *
2.1.4 Issue a UNITREAD to the BCP *
2.2 Request Command from the Host's Console

2.3 Process the BCP Message Received

222

2.4
2.4.1
2.4.1.1
2.4,1.2

Process the Host Command Received
Send Host Request Message to BCP
Increment the Message Number Ccunt

Issue a UNITWRITE to the BCP

BCP Structure Charts

(Charts begin on following page)

223

7*2

aArdL¥o
858004g

£z

dod DSH
580U

2°¢

auo
3SOH
LEOH

1°¢

uo=-ustg
tetltug

Pt et e e = e i e e b et .

[
.
™

1SOH

224

h'1°e

¥ e s e——

€ruee lﬁm.....ml.m 1°1°*2
ass s s dNdHe dNddH
anssy N pLing 1810 du9TH
12
uo-urgg
I¥TaTur

225

1°1°2

dNd4i
aAvs 1D

€°1°2

HaH DSu
pLing

226

2 i'e

dNHHY
aA651D

712

HNH
aussy

227

_ 1<

HNH
anssyT

£z

OSH
S§9001d

—

228

e T, 0 m-.ﬂ.N HCHO:CN Ht.zoN
errnte 19 psay Joquuy
MOH oPwvssoy adBs80Y 1LSbu
anss] pring JUSWOLOUT pusg
%' e

auWdiud
§8900Xg

229

N-H.#-N m-HoN .ﬁ-.ﬂ.:om
Jd9puajy avquinN
MOH odussay odEsSa
anssy PLIUg Juswsaour
1° ._d- 2
Lsdy

puog

230

e

-—-

Appendix H

QP Structure Chart Documentation

This appendix consists of two sections documenting the
modular design of the query processor's software, The
first section is a list identifying all the modules in the
software design. The '¥' that appears to the right of the
module's title identifys that module as a 'common'! module
called by more that one calling module. The second section
is a set of structure charts showing the interrelated
structure of the modules within the subsystem. Note that
the filled-in bottom right corner of the module box
indicates it is a 'common' module. The module numbers in
each section are used as a cross-reference between both

documentation sections.

Of the twelve relational algebra operations that the
query processor 1s designed to process, only the 'select!'
(3.4.3.1) function module has received further detailed
definition; sufficient enough for this stage of the overall

development effort.

QP Module List

3.0 QP
3.1 Initialize
3.2 Prepare to Accept a Query Packet Message

231

3.3

3.4

3.4.1

3.4.2

3.4.3
3.4,3.1
3.4.3.1.1
3.4.3.1.2
3.4.3.1.3
3.4.3.1.4
3.4.3.1.5
3.4.3.1.6
3.4.3.1.7
3.4.3.1.7.1
3.4.3.1.7.2
3.4.3.1.7.3
3.4.3.1.7.4
3.4.3.2
3.4.3.3
3.4.3.4
3.4.3.5
3.4.3.6
3.4.3.7
3.4.3.8
3.4.3.9
3.4.3.10
3.4.3.11

Accept the Query Packet Message
Process the Query Packet Message Request
Initialize subsystem tables
Extract Next Query Operation Step
Process the Query Operation Step
'Select' Operation Processing
Decompose the 'Select' Operation
Build the 'Get Next Page' Message
Send the Message to the BCP
Prepare to Accept BCP Message *
Read the Response Message *
Switch to specified IMM address *
Process the Relation Page
Read a Tuple *
Perform 'Select' Comparison
Write Tuple into IMM memory *
Build an 'Add Page' Message *
'Project!' Operation Processing
'Join' Operation processing
'Modify' Operation Processing
'Delete' Operation Processing
'Add' Operation Processing
'Maximum' Operation Processing
"Minimum' Operation Processing
'Count' Operation Processing
'Average' Operation Processing

'Union' Operation Processing

232

———

3.4.3.12
3.5

'Destroy! Operation Processing

Build 'Query Processing Completed'

QP Structure Charts

(Charts begin on following page)

233

Message

9*e 1€ 2t

dOod 04, 103908d DSH 19xved

odusSsay Ausud Aavny 34900y

puag $89004d 0], odsdodd
m.m m-m I .ﬂ-m

8dessa 2 2R
wba3e1duo) 383984 . aTu
Lasny, pring Aisnd 9ds00y SZiTstatul
0°¢
dad

234

€' AR M S 1°4°¢€
uotludado uofjededQ seTyBlL
Lasud Lasud xoN wolsAsqug
$88004d 30BA3 XS, ezflei3tur
7'e 1
3949%8d
£asnd
588004

235

rASEAE MY I1°€°4°€ 01°€* '€ PYErTYs
N _ _ _
mwomuoﬁ-m N\-m-.ﬂom Comoﬂom m-m.:-m
NIKW XV aav HidTeU
noetHe € et ARAE S e ng
RJ LUOK NIOf Lo [oud LOATES

Kasng
§89004

uo [3BdadQ

(SRR e

d

236

moﬁom.:-m .:-H.moﬂom N-.H.,m\aﬂom
SSod ppy asuodsoy DS @3ed
WHI oJ, 3devoy wIXON=38D,
yo3TMg 0], sdsdoag pTing
Lrrethte S 1C h€C £e1Ue ye I°I°C ng
8d8d ssuodsay dod ol uo 3 BawdQ
uotj3sisy pBoy o3wBssal ayyg,
ssaooad pusg #sodwoouqg
1'e ¢
LOETHS

237

S T'E /'L AR REAE A4 rAFAR MISE S
ssuodsey nSu uos fuwduwod
3dsvoy oy WD BI-DPV, Wa0 jasd
odudouad Iy
moﬂomo.ﬂcm .moHomozom m-Ns-.H-m.\:om .H-NL-ﬂ-m..:-m
ssuodsay dod odJ HWI ojur aTdnyg,
peoy 88Bs89|] sTdny, v
pusg 93 TdM peay
AR AL
eded
uo 3l wisy
sseooad

238

Vita

Captain Robert W. Fonden was born on November 16, 1952,
in Houston, Texas. In 1971, he graduated from Marion
Senior High School in Marion, Illinois. He attended
Moorhead State University, Moorhead, Minnesota from which
he received a Bachelor of Arts degree with a major in
Computer Science in 1975. He was subsequently commissioned
a 2nd Lieutenant in the United States Air Force Reserves,
On September 6, 1976 he was called to active duty. Between
September 1976 and May 1980, he was assigned to HQ MAC/AD
Data Automation at Scott AFB, Illinois, as a computer
systems analyst for the Consolidated Aerial Port System
(CAPS) development project, He entered the Air Force
Institute of Technology in June 1980.

Permanent Address: 195 Richmond Street

St. Paul, MN 56103

239

[i
v

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When lel‘Enfe'red).
. - __READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER

AFIT/GCS /EE/81D-6 oy /),/(-3’5;57 S '
4. TITLE (and Subtitle) - . S. »T:YPE OF REFORT & PERIOD COVERED

DESIGN AND INPLEMENTATION OF A BACKEND R .

MULTIPLE PROCESSOR RELATIONAL DATA BASE T ‘MS Thesis

COMPUTER SYSTEM oL B e Penronmuaoac REPORTNUMBER
7. AUTHOR(s) — ’ ' — — 1% _con‘rn‘Ac_T OR GRANT NUMBER(s)

Robert W, Fonden

Capt . USAF . '--- T . P . . g . 3 ot . L. +
9. PERFORMING ORGANIZATION NAME AND ADDRESS) 10. PROGRAM ELEMENT PROJECT, TASK
" . - AREA & WORK UNIT NUMBERS
Air Force Institute of Technology. (APIT-EN) S C e
Wright-Patterson AFB, Ohio 45433 R T
B ¥ . e . B R A BN
11. CONTROLLING OFFICE NAME AND ADDRESS 12, ‘REPORT DATE

DECEMBER 1981

13. NUMBER OF PAGES
250

14. MONITORING AGENCY NAME & ADORESS(if ditterent from Controlling Otfice) 15, SECURITY CLASS. (of this report)

UNCLASSIFIED

158, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report)

15 APR 1982

. KEY WORDS (Continue on reverse side i/ necessary and identify by block number)

18. SUPPLEMENTARY NOTES Dean for R:\,:,:,., "h and

Approved—for public release; IAW AFR 190-17 Professional Dovelopment
FRE i i USAF 4 M),QAA/\ Alr Force Institute of Technology (ATC)
£ reB“C-—G—‘t’fc NCH, Mt . 7""‘ Wright-Patterson AFB, OH 45433

Relational Data Base Management Systenm

Backend Computer

Data Base Computer

MIMD Computer Architecture -

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

A backend multiple-processor relational data base computer system was
designed with the goal of imnlementing a data base management system using
state-of-the-art technology. The objective was to overcome the traditional
limitations of data base management systems implemented on conventional
tvrpe computer architectures, Honefully this would solve the ever-growing
problem of information systems becoming obsolete in supporting the growing
information needs of the corporate industry.

DD ':2:'1,3]473 EDITION OF 1 NOV 65 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

INCLASSIFIED e
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Toward this goal, investigations were made into studies in the literature
involving backend data base computer svstems, the relational data model, and
data base computers using specialized architectures., The advantages and
disadvantages of these three areas were exnlored and then, after having
defined the longterm requirements and goals for the. development of such a. ..

system, the beneficial characteristics from each of . these areas.were merged

together to produce a system design. Central to this design is the use of ..
a set of processors, managed by a backend controller processor, to take

full advantage of three levels of parallelism in processing relational
algebra query requests against relations.

I3 fer T .' 4

Due to the complexity and size of this development effort, a top-down tee

structured detailed design and onlv a partial implementation of the

backend controller nrocessor was achieved in this research effort, A
detailed development plan has been defined, consisting of several proiected
follow-on development efforts, to comnlete the entire development ‘of this’
data base computer system,

S SRR R

PR

T 3 SRR REATINTLN 3 TR RIS R N R N s Y i L T s S FPRRY P ACO P P
R N it I e F "): -~ ' vt ey Sre e wen
TrEI-T 2,0 . :\ Sy,
Py Fe ATt AT et y waytte, e dr
I A R Py e N N 15 Trew " 4a A
' go, 00 s N - Yt
- L - 1
3 ot
‘- R Y] R TN Py
i i ’ r c4 - 1
- [N . . - LRI, Y- -
i \ S " Lot e
* e v, - t - 14 - . . ' - - moeaae
.
. - T ¢ [} 4 - -
. v o 4
c UNCLASSIFIED

SECURITY CLASSIFICATION OF Tv'® PAGE(When Deta Entered)

