		A115 34 LASSIFI	ED	DAVI THE MAY DTNS	D W T DESIG 82 N RDC/S	AYLOR N N OF A R STAR PD-1020	IAVAL SI FIXED- K -01	HIP RES PITCH S	EARCH A Kewed P	ND DEVE	LOPMEN	T CEE A CABLE	TC F/C LAYIN	13/10 ETC()	C)
		1 or 1 ∡(: A 1532)													
														END DATE FILMED 107-182 OTIC	
	_													•	
. 1															
								-	-						4

	\sim (12)
ND A 1 1 5 32 DTNSRDC/SPD-1020-01	DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER Bethesda, Meryland 20084
4	THE DESIGN OF A FIXED-PITCH SKEWED PROPELLER FOR A CABLE LAYING REPAIR SHIP (T-ARC)
	ВҮ
FOR A	APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
R FIXED-PITCH SKEWED PROPELLER PAIR SHIP (T-ARC)	SHIP PERFORMANCE DEPARTMENT
FILE COPTINE THE DESIGN OF A CABLE LAYING RE	MAY 1982 DTNSRDC/SPD-1020-01
DW-DTNSRDC 5602/30 (2-80) (supersedes 3960/46)	82 06 09 0 59

.....

GPO 866 987

NDW-DTNSRDC 5002/21 (2-00)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DTNSRDC/SPD_1020_01		
TITLE (and Subilile)		5. TYPE OF REPORT & PERIOD COVERE
The Design of a Fixed-Pitch Skew	ed Propeller	Departmental/Final
for a Cable Laying Repair Ship (T-ARC)	6. PERFORMING ORG. REPORT NUMBER
• • • • • •		DTNSRDC/SPD-1020-01
AUTHOR()		8. CONTRACT OR GRANT NUMBER(+)
Nicholas R. Stark		
PERFORMING ORGANIZATION NAME AND ADDHES	\$	10. PROGRÀM ELEMENT, PROJECT, TASP AREA & WORK UNIT NUMBERS
David W. laylor Naval Ship Kesea	rcn and	1544-338
Bethesda, Marvland 20084		1544-343
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Sea Systems Command, Code	521	May 1982
Washington, D.C. 20362		51
MONITORING AGENCY NAME & ADDRESS(II differ	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
		{ Unclassified
		154. DECLASSIFICATION/DOWNGRADING
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Dis	tribution Unlimit	ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE
5. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Dis 7. DISTRIBUTION STATEMENT (of the abetract enterd	tribution Unlimit	ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE
5. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Dis 7. DISTRIBUTION STATEMENT (of the abetract entere 8. SUPPLEMENTARY NOTES	tribution Unlimit	ISe. DECLASSIFICATION/DOWNGRADING SCHEDULE
5. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Dis 7. DISTRIBUTION STATEMENT (of the abstract enterd 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse aide if necessary	tribution Unlimit of In Block 20, 11 different for and identify by block number	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE :ed Den Report)
Approved for Public Release: Dis Approved for Public Release: Dis DISTRIBUTION STATEMENT (of the abstract entered B. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary Propeller, Lifting Line, Lifting	tribution Unlimit of In Block 20, 11 different for and identify by block number Surface, Stress	15e. DECLASSIFICATION/DOWNGRADING SCHEDULE :ed
Approved for Public Release: Dis Approved for Public Release: Dis DISTRIBUTION STATEMENT (of the abotract entered B. SUPPLEMENTARY NOTES B. KEY WORDS (Continue on reverse side if necessary Propeller, Lifting Line, Lifting 0. USTRACT (Continue on reverse side if necessary	tribution Unlimit of in Block 20, 11 different for and identify by block number Surface, Stress and identify by block number;	(15e. DECLASSIFICATION/DOWNGRADING SCHEDULE ced
Approved for Public Release: Dis Approved for Public Release: Dis DISTRIBUTION STATEMENT (of the abstract entered B. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary Propeller, Lifting Line, Lifting USTRACT (Continue on reverse elde if necessary The design process is present Laying Repair Ship (T-ARC). The sufficient thrust be provided at and that the endurance speed at on performance of various design	tribution Unlimit d in Block 20, 11 different for and identify by block number Surface, Stress and identify by block number ed for a fixed-pi design specifica bollard and othe 80-percent power parameters are a	itch propeller for a Cable- trions required that er low-speed conditions be 15 knots. The effects liso considered
Approved for Public Release: Dis Approved for Public Release: Dis DISTRIBUTION STATEMENT (of the abetract entered DISTRIBUTION STATEMENT (of the abetract entered Supplementary notes KEY WORDS (Continue on reverse side if necessary Propeller, Lifting Line, Lifting USTRACT (Continue on reverse side if necessary The design process is present Laying Repair Ship (T-ARC). The sufficient thrust be provided at and that the endurance speed at on performance of various design	tribution Unlimit od in Block 20, 11 different for and Identify by block number Surface, Stress and Identify by block number; ed for a fixed-pi design specifica bollard and other 80-percent power parameters are a (Con	itch propeller for a Cable- titons required that er low-speed conditions be 15 knots. The effects also considered atinued to next page)
Approved for Public Release: Dis Approved for Public Release: Dis DISTRIBUTION STATEMENT (of the abetract entered B. SUPPLEMENTARY NOTES C. KEY WORDS (Continue on reverse elde if necessary Propeller, Lifting Line, Lifting Distract (Continue on reverse elde if necessary The design process is present Laying Repair Ship (T-ARC). The sufficient thrust be provided at and that the endurance speed at on performance of various design D 1 JAM 73 1473 EDITION OF 1 NOV 65 15 088	tribution Unlimit d in Block 20, 11 different fro and identify by block number Surface, Stress and identify by block number; ed for a fixed-pi design specifica bollard and other 80-percent power parameters are a (Con	ise DECLASSIFICATION/DOWNGRADING SCHEDULE

こうちょう しょうしん ないない ないない ないない ないない ひんしょう シート・シート かいていたい ないない ないない ないない ないない たいしょう

Children and the second s

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

The propeller is 13 feet (3.936 m) in diameter and is designed to turn at 145 rpm at full power and 135 rpm at endurance speed. Calculations indicate that this propeller will perform satisfactorily at all required conditions. However, cavitation will be present at both endurance and full-power conditions and, if more than 6-percent margin in effective power is required, 15 knots will not be attainable at 80-percent power. Nearly twice the required thrust will be available at the low-speed conditions.

Model experiments with the final hull and appendages, and the design Propellers 4761 and 4762, indicated a reduction in EHP and wake fraction and an increase in thrust deduction compared to the data from the original powering tests with a preliminary hull shape and stock propellers. Comparison of the predicted performance of the design propeller with its experimental performance showed agreement within 2.2 percent for speed at the same rpm.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TABLE OF CONTENTS

raue	p	aq	e
------	---	----	---

LIST	0F	FI	SUR	RES	5.	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•			•	•	•	•	•	•	•	•	•	iii
LIST	OF	TAI	BLE	S		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•		•	•	•			•	•	•	•		iv
NOTAT	ION] .				,	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•		•		•				v
ENGLI	SH/	SI	E(QU 3	[V/	٩L	EN	ITS	\$	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	•	•	•	x
ABSTR	AC1	•	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				1
ADMIN	IST	'RA'	۲I۱	/E	I	F	OR	M	T	[0]	ł			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
INTRO	DUC	TI	DN				•	•	•	•	•	•	•	•	•	•	٠	•		•	•		•	e	•	•	•	•	•	•	•	•	•	1
DESIG	N C	F	PR()Pl	ELI	3.	R		•	•	•	•	•	•		•	•				•			•				•	•	•	•	•	•	3
PR	ELI	MI	NAF	۲Y	DE	ΞS	IG	iN	•	•	•	•	•	•		•	•		•	•	•	•	•		•	•	•	•	•	•	•	•		4
RE	้รบเ	TI	NG	GI	EOI	1E	TR	Y	•	•	•	•	•		•	•				•	•				•	•	•				•	•		8
ST	REP	IGT	H (CAI	LCI	JL	A	1	DN:	S	•				•			•	•	•	•		•	•	•		•			•	•			8
COMPA	RIS	SON	01	FI	DES	SI	GN	• /	ANC	ו	EX	PEI	RI	ME	NT/	AL	P	ERI	FOI	RM/		CE	PI	RE	DI	CT.	IO	NS	•	•	•	•		9
SUMMA	RY		•			•							•	•	•					•	•		•	•	•	•	•	•	•				•	10
RECOM	MEN	IDA	TIC) DN:	S.	•		•	•	•	•	•			•	•	•	•	•	•				•	•	•	•				•		•	12
REFER	EN	ES		•	•	•				•		•			•	•		•	•	•			•		•	•					•		•	13
APPEN	DI)			M	DDI	EL	F			FUI	_L·	-Si	CAI	LE	G	EOI	ME.	TR'	YI	DII	FFI	ERI	EN	CE	s.				•	•	•	•	•	14

LIST OF FIGURES

1 -	-	Body Plan and Bow and Stern Profiles of Revised T-ARC Contract Design	15
2 -	-	Contour Map of the Longitudinal Velocity Components in the Starboard Propeller Plane of HSMB Model 7809-2	16
3 -	-	Chord-Diameter Ratio Distribution as a Function of Radius and Blade Area Ratio for the Troost Series Propellers	17
4 -	-	Initial Thickness-Chord Ratio Distribution	18
5 -	-	Propulsive Coefficient as a Function of RPM for the Preliminary Design	19
6 -		Propulsive Coefficient and Ship Speed as a Function of Blade Area Ratio	19
7.	-	Cross Plot of Available and Required Thrust to Determine the 80-Percent Power, Ship Speed, and RPM	20

	Page
8 - Propulsive Coefficient as a Function of RPM for a Five-Bladed Propeller with the Preliminary Design Characteristics	. 21
9 - Cavitation Performance of Propeller Designs at Full Power with Respect to the Burrill Diagram	. 22
10 - Thrust Breakdown at Bollard Condition	. 23
11 - Hydrodynamic Pitch Distribution From Lifting Surface Calculations Compared with Lifting-Line Calculations	. 24
12 - Camber Distributions From Lifting-Surface Calculations Compared with Lifting-Line Calculations	. 25
13 - Schematic Drawing of Propeller Design	. 26
14 - Results of Finite Element Stress Analysis	. 27

LIST OF TABLES

1 - Ship and Mode) Particulars for Revised T-ARC Cable Repair Ship Contract Design	29
2 - Final Resistance Data for T-ARC Derived From HSMB Model Tests and NAVSEA Calculation (10/16/78)	30
3 - Design Parameters and Results for a 13-ft Diameter Propeller	
for the Various Design Requirements	31
4 - Lifting-Line Calculations at Full-Power Condition	33
5 - Lifting-Line Calculations at Endurance Condition	34
6 - Lifting-Surface Calculations at Full-Power Condition	35
7 - Experimental and Lifting-Line Performance Predictions	36
8 - Final Lifting-Line Calculations at Full-Power Condition	37
9 - Final Lifting-Line Calculations at Endurance Condition	38
10 - Final Lifting-Surface Calculations at Full-Power Condition	39

iv

NOTATION

A	Area of blade section
AE	Expanded area, Z ∫ ^R r cdr
A ₀	Disk area of propeller, πR^2
C _A	Correlation allowance
C _D	Drag coefficient of section
с _L	Lift coefficient of section at ideal angle of attack, $L/[(1/2) \rho V_r^2 c]$
C _{PS}	Power coefficient based on ship speed
C _{PSI}	Inviscid power coefficient based on ship speed
Cpt	Thrust power coefficient, ∫x _h (1-w _x)(1-εtanβ _I)(dC _{TSi} /dx)dx≃(1-w _T){T/[(ρ/2)πR ² V ²]}
C _{PTI}	Inviscid thrust power coefficient, see equation for $C_{\mbox{PT}}$ with ϵ = 0
C _{Pmin}	Minimum pressure coefficient
с _{тн}	Thrust loading coefficient, $T/[(1/2) \rho V_A^2 A_0]$
CThS	Thrust loading coefficient based on ship speed, $T/[(1/2) \rho V^2 A_0]$
^C ThSI	Inviscid thrust loading coefficient based on ship speed
с	Section chord length (subscript indicates the nondimensional radius)

D	Propeller diameter
EAR	Expanded area ratio, A _E /A _O
F	Factor for estimating local angles of attack, 1/[1 + 2#tan(B _I -B)/C _L]
f	Camber of section
f _{2D}	Camber required to produce specified lift coefficient at ideal angle of attack in two-dimensional flow
G	Nondimensional circulation, $\Gamma/\pi DV$
g	Acceleration due to gravity
н	Hydrostatic head at shaft centerline minus vapor head
J	Advance coefficient, V _A /nD
κ _Q	Torque coefficient, Q/on ² D ⁵
κ _τ	Thrust coefficient, T/on ² D ⁴
L	Local effective lift per unit area, $(1/2)_{\rho}V_{r}^{2}C_{L}$
n	Propeller revolutions per unit time
(P/D) _I	Propeller section hydrodynamic pitch ratio, π xtan β_{I}
Ρ	Propeller section pitch

1Ì

- P_D Delivered power at propeller, 2mnQ
- P_E Effective power, R_TV
- P_S Power delivered to shaft aft of gearing and thrust block
- p Local pressure
- P_V Vapor pressure
- Q Propeller torque
- R Propeller radius
- R_n Reynolds number of propeller, at 70 percent radius, $c_{0.7} [V_A^2 + (0.7\pi nD)^2]^{1/2}/v$
- R_T Total resistance of hull
- r Radial distance
- rh Radius of hub
- T Propeller thrust
- t Maximum total thickness of blade section
- t Thrust deduction fraction, $(T-R_T)/T$
- U_A Axial induced velocity at lifting line
- U_T Tangential induced velocity at lifting line
- V Ship speed

V _A	Speed of advance of propeller, $V(1-w_T)$
٧ _r	Resultant circumferential average inflow velocity to blade section
٧ _x	Local longitudinal wake velocity, positive aft
۷ _T	Local tangential wake velocity, positive counterclockwise looking upstream
^w т	Taylor wake fraction determined from thrust identity
w _x	Local wake fraction
x	Nondimensional radial distance, r/R; correlation factor for EHP
x,y,z	Coordinate axes along which bearing forces and moments are resolved
Z	Number of blades
a	Section equivalent angle of attack in two-dimensional flow
۵I	Ideal angle of attack required for shock-free entry in two-dimensional flow
β	Circumferential mean advance angle, $tan^{-1}{V(1-w_{\chi})/(\pi xnD)}$
β _I	Hydrodynamic flow angle
r	Circulation about blade section
۲c	Burrill thrust coefficient
η	Estimated propeller efficiency, C _{PT} /C _{PS}
۳D	Propulsive efficiency, P _E /P _D
	viii

- n_I Estimated inviscid propeller efficiency, C_{PTI}/C_{PSI}
- We wake position angle about propeller axis in propeller plane, measured from vertical upward, positive counterclockwise looking upstream
- Skew angle in the projected plane measured from a radial line through the midchord of the section at the hub to the radial line through the midchord of the section at the local radius, positive in direction opposite to ahead rotation
- Mass density of water
- Pp Mass density of propeller
- v Kinematic viscosity

σ Cavitation number based on vapor pressure, $2gH/V_r^2$ σ_{HVM} Hencky-Von Mises Stress, $\sqrt{[(\sigma_{P1} - \sigma_{P2})^2 + \sigma_{P1}^2 + \sigma_{P2}^2]/2}$

 σ_{L} Cavitation number based on vapor pressure, local wake and head, $2gH_{I}/[V_{X}^{2} + (2\pi nr + V_{T})^{2}]$

σ_p Maximum principal stress

Subscripts:

E Value at endurance condition (80 percent of full power)

FP Value at full-power condition

Superscripts:

- Time-average value

~ Unsteady value

1x

ENGLISH/SI EQUIVALENTS

_

ENGLISH	SI
1 foot	0.3048 m (meters)
1 knot	0.5144 m/sec (meters per second)
1 pound (force)	4.4480 N (Newtons)
1 horsepower	0.7457 kW (kilowatts)
l long ton	1.016 tonnes, 1.016 metric tons, or 1016 kilograms
1 pound (force) per square inch	6.895 kPa (kilopascals)

ABSTRACT

The design process is presented for a fixed-pitch propeller for a Cable-Laying Repair Ship (T-ARC). The design specifications required that sufficient thrust be provided at bollard and other low-speed conditions and that the endurance speed at 80-percent power be 15 knots. The effects on performance of various design parameters are also considered.

The propeller is 13 feet (3.963 m) in diameter and is designed to turn at 145 rpm at full power and 135 rpm at endurance speed. Calculations indicate that this propeller will perform satisfactorily at all required conditions. However, cavitation will be present at both endurance and full- power conditions and, if more than 6-percent margin in effective power is required, 15 knots will not be attainable at 80-percent power. Nearly twice the required thrust will be available at the low-speed conditions.

Model experiments with the final hull and appendages, and the design Propellers 4761 and 4762, indicated a reduction in EHP and wake fraction and an increase in thrust deduction compared to the data from the original powering tests with a preliminary hull shape and stock propellers. Comparison of the predicted performance of the design propeller with its experimental performance showed agreement within 2.2 percent for speed at the same rpm.

ADMINISTRATIVE INFORMATION

The work reported herein was funded by the Naval Ship Engineering Center (NAVSEC 6144 now NAVSEA 521), NAVSEC Work Request N65197-78 WR82286 and WR92009. The work was performed under David W. Taylor Naval Ship Research and Development Center (DTNSRDC) Work Unit Numbers 1544-338 and 1544-343.

The English system of units was used in the original calculations presented in this report. Therefore, all data are presented in English units. However, the International System (SI) of metric units is shown in the text in parentheses following the English units.

INTRODUCTION

The Naval Sea Systems Command (NAVSEA) tasked DTNSRDC to design a fixedpitch propeller for a Cable-Laying Repair Ship (T-ARC). The preliminary design for the propeller had been performed by Hydronautics, $Inc.^{1*}$, using the ship particulars and hull lines presented in Table 1 and Figure 1, respectively.

*References are listed on page 13.

The wake developed from this hull configuration is presented in Figure 2. The lack of symmetry is the result of the strut and stern thrusters, while the velocity deficit is the result of the enclosed inclined shaft and the strut arrangement.

The propeller design at DTNSRDC was to be based upon conclusions established by Hydronautics, Inc., and was to provide final propeller offsets for construction. The basic design variables such as number of blades, diameter, and area ratio were to be evaluated for expected ship design variation and the related changes in the design specifications.

NAVSEA set the following specifications for the design of the propeller:

- 1. The T-ARC will have two propellers with outboard rotation to reduce the risk of fouling with the cable even though inboard rotation gives higher efficiency.
- 2. The propellers will be driven by electric motors with a torque limit of 260,000 ft-lbs for each propeller.
- 3. The number of propeller blades shall be four or five.
- 4. The diameter, D, will be 13 ft (3.963 m) unless it is advantageous to change it. The maximum submergence of blade tips placed at the baseline of the ship results in a tip clearance from the hull of 0.23D.
- 5. The propeller shall turn nominally at 150 rpm at full power.
- 6. The full power, or maximum available delivered power, will be 5000 horsepower per shaft. The ship must make 15 knots at 80 percent of full power.
- 7. Thrust breakdown due to cavitation shall not occur at design draft and trim conditions at full power, based on resistance predictions including still air drag and specified margin on effective power. No margin above this full-power point is specified for thrust breakdown, and this requirement can be changed, if necessary, to obtain 15 knots at 80-percent power.
- 8. The propeller shall provide a minimum of 50,000 pounds of thrust in the range of 0 to 1 knot.
- 9. The thickness of the propeller blades shall meet the requirement of American Bureau of Shipping (ABS) Class C Ice Strengthening. The blade mean and unsteady stresses shall be below 12,500 psi and 6,250 psi, respectively, based on beam theory.

- 10. The model resistance data, with a correlation allowance, C_A , of 0.0005, shall be used (see Table 2); this includes revisions to the model effective horsepower to account for still air drag and a 6-percent power margin.
- 11. The model wake data in Reference 2 are to be used (see Figure 2). The propeller drag coefficient used shall be based on the blade section Reynolds number and the ITTC friction line.

This report describes the design process for the propeller, including consideration of thrust breakdown at full power in the free running and bollard conditions, time-average and fluctuating stresses, and propeller-excited vibratory forces. The report also presents the geometry of the model propeller. Appendix A presents the final geometry as corrected to meet ABS Class C Ice Strengthening Requirements.

The design detailed herein was evaluated for propulsion performance by model experiments. The results of these model experiments were reported in Reference 3. The final geometry reported in Appendix A was not evaluated at model scale.

DESIGN OF PROPELLER

The propeller preliminary design was completed by Hydronautics, Inc.¹, before the detailed design was undertaken at DTNSRDC. This preliminary design yielded approximate values of diameter, rpm, delivered power, and margin to thrust breakdown at both free-running and bollard conditions.

The major characteristics considered in the final design of the propeller were:

<u>Radial Distribution of Loading</u>: The radial distribution of loading corresponds to the Lerb's optimum distribution, which results from lifting-line theory calculations for minimum shaft horsepower, taking into account blade section viscous drag. The low inception speeds for tip-vortex and hub-vortex cavitation that result from the use of Lerb's optimum load distributions were not considered to be objectionable.

<u>Skew</u>: The magnitude and distribution of skew were selected from considerations of propeller-induced vibration/excitation. Calculations were performed, using unsteady lifting-surface theory and the wake measured behind the model hull, to determine the pertinent components of unsteady bearing forces and moments.

<u>Rake</u>: The magnitude and distribution of rake were selected to provide the blade adequate clearance relative to the shaft strut and rudder.

<u>Blade Width</u>: The magnitude and distribution of blade area were determined from the standpoint of blade surface cavitation and consideration of propeller-induced vibration/excitation. Blade area is sufficient to ensure that thrust breakdown does not occur at full power. Blade area was also used to reduce the propeller-induced vibration/excitation in lieu of additional skew.

<u>Thickness, Camber, and Pitch</u>: The magnitude and distribution of blade thickness were determined by ABS Class C Ice Strengthening Requirements. The final camber and pitch distributions were determined using lifting-surface calculations for NACA 66 thickness form and an NACA a = 0.8 mean line. The stresses in the final blade configuration were calculated by finite element methods.

Design calculations were performed to determine the effect on propeller performance of the major variables listed above. However, most of the areas are closely interrelated, making iterations between steps necessary. These are discussed in more detail in the following sections.

PRELIMINARY DESIGN

In the preliminary design, the major propeller parameters, such as diameter and rotational speed, are determined from considerations of vibration and efficiency so the propeller will be compatible with the ship's performance requirements and installed propulsion machinery. The preliminary design was conducted by Hydronautics, $Inc.^1$, before the start of the current detailed design. Based on the results of Reference 1 and the design requirements, the design was considered to be straightforward. DTNSRDC, therefore, chose the following initial blade geometric characteristics:

- The chord-diameter ratio distribution of the Troost series propellers (Figure 3) was used.
- 2. The initial thickness-chord ratio distribution was that defined in Eckhardt and Morgan⁴ (Figure 4, where the dashed line is dimensional and the solid line, nondimensional). The required ABS rule for ice strengthening was applied only to the final design.
- 3. The skew and rake were set at zero. These were to be adjusted later if necessary.

The propeller design was begun using the above blade characteristics. The design point was chosen to be that determined in the preliminary design investigation and the experimental powering data was used as input to the lifting-line calculations.⁵

However, during the detailed design process, modifications were made to the ship afterbody and appendages to improve maneuverability, which resulted in a 7-percent reduction in the EHP. Only the final data are shown in Table 2. This and the need to reduce the predicted unsteady forces to less than 1 percent for both the unsteady thrust and torque for the present design configuration combined to cause the following changes from the initial simple geometry:

- 1. Linear skew was added to reduce the unsteady forces.
- 2. The blade area ratio was increased to aid in reducing the unsteady forces.
- 3. The chord distribution at the root was modified to keep the hub size to a minimum to prevent shafting problems with regard to propeller weight.
- 4. Rake was added to position the blades clear of both rudder and hull.

During the first phase of the design process, the preliminary design point was re-evaluated to define the sensitivity of the design to the various parameters and as a check of Hydronautics, Inc., results. The parameters varied were rpm, area ratio, diameter, and blade number. The results of these variations are presented in Table 3. The design variations were investigated for the maximum shaft-horsepower (including the 6-percent margin) condition, rather than 15 knots, 80-percent power condition. The hydrodynamic pitch distribution was that corresponding to Lerbs' optimum.

The rpm was varied to establish the maximum with the chosen geometric and preliminary design characteristics. The variation of propulsive coefficient is presented in Figure 5 as a function of rpm. The optimum rpm is 150, which is in agreement with preliminary design results; therefore, 150 rpm was used when investigating other design variations. Figure 5 shows that the design is relatively insensitive to variation of rpm.

The results of the blade area ratio variation study for the 150-rpm propeller design are presented in Figure 6, where the dashed line represents speed and the solid line, propulsive coefficient. As expected, both speed and

the propulsive coefficient decrease linearly with increasing blade area ratio, for a fixed rpm. Increasing the blade area ratio improves the cavitation performance.

Design No. 1 of Table 3 was then run at 80-percent power to ensure that the 15-knot requirement could be met. The result, presented in Figure 7, was obtained by fixing the hydrodynamic pitch, then calculating the required thrust and propeller available thrust over a range of rpm. The 80-percent power design point is where the thrust based on available power equals the calculated thrust available from the propeller.

The propeller diameter was then varied between 12 and 14 ft. The area ratio was held constant and the thickness-chord ratio was corrected to keep the stress constant for the new chord lengths. The resulting 12-ft optimum propeller was 0.15 knot slower at a higher rpm than the 13-ft propeller. The cavitation performance was worse, and if it had been improved by adding area, the speed would have been further reduced. The 14-ft propeller design results were nearly opposite to those of the 12-ft design; however, the predicted improvements in speed (0.18 knot) and cavitation performance were not considered sufficiently better than those of the 13-ft propeller to justify allowing the propeller to protrude below the baseline of the ship.

The last parameter varied was the number of blades. The baseline propeller was again used, but with five blades rather than four, with the same blade area ratio and t/c and c/D distribution as with four blades. The results showed a 0.1-knot increase in speed, a higher propulsive coefficient (Figure 8), and a possible weight reduction at 145 rpm compared to 150 rpm of the baseline.

The basic characteristics of the designs have been presented in Table 3, along with various cavitation parameters. The diameter variation was eliminated from consideration because there was insufficient performance increase to warrant changing the diameter from 13 ft. Figure 9 shows where the propeller designs of Table 3 fall on the Burrill Diagram⁶. Designs 1 and 6, with an area ratio of 0.55, will have approximately 8-percent back cavitation at full power. The other designs show that the amount of cavitation can be reduced by increasing the blade area ratio and/or the rpm. According to Burrill's⁶ work, loss of thrust begins to occur when the back cavitation exceeds 15 percent. Thus, designs 7 and 8 are eliminated from consideration because they are predicted to have back cavitation over at least

15 percent of their surface; designs 2, 3, 4, and 5 are satisfactory, but are eliminated due to a) increased cavitation at a reduced speed, and b) at reduced speed no substantial improvement to cavitation performance. These designs might be acceptable if a reduced rpm or increased speed were required. The designs for primary consideration are designs 1 and 6.

The bollard condition, for which each propeller must supply 50,000 lb of thrust, was then considered. The non-cavitating bollard thrust was approximated using the appropriate Troost open water curve to estimate, by extrapolation, the K_T and K_Q of the propeller design at J = 0. These parameters for all designs have been presented in Table 3. The calculated thrust and torque available, assuming no effects of cavitation, are also presented. Designs 1, 2, 4, 5, and 6 can provide the required thrust without exceeding the torque limit of 260,000 ft-lbs. The torque limit is slightly exceeded by design 3 at full power.

The thrust and torque values presented in Table 3 do not account for the effects of cavitation. Therefore, a check must be made for cavitation, as was done for the free-running condition, to ensure that thrust breakdown will not occur at the bollard conditions of 50,000-lb thrust and full power.

Enkvist and Johanson⁷ have compiled data on numerous propellers operating in the bollard condition and have developed a boundary for occurrence of thrust breakdown. The results of this prediction were reduced for comparison with the propeller of this design and are presented in Figure 10. The three designs (1, 6, and the final) presented here are for the full-power condition. It can be seen that no thrust breakdown (loss of thrust) should occur. The actual values of the plotted points are provided in Table 3. Though not presented here, Prishchemikhin^{8,9} also gives data on thrust breakdown in the bollard condition. His results were extrapolated and showed that there was little chance of thrust breakdown occurring. Therefore, the previously chosen designs, designs 1 and 6 of Table 3, will meet the specified propulsion requirements.

Designs 1 and 6 were then modified to include 30 degrees of linear skew and an increased area ratio to reduce the high level of unsteady force which, as determined by reference 10, resulted from the high shaft angle, the shaft housing, and centerline skeg. The results of an overall vibration analysis conducted by DTNSRDC Code 1962 favored the four-bladed skewed design over the five-bladed skewed design because of the rpm for longitudinal

resonance relative to the design propeller rpm. The longitudinal resonance occurred at 192 rpm for the four-bladed design and at 156 rpm for the five-bladed design which also required additional machinery stiffening.^{*} The final design was therefore the four-bladed propeller with a blade area ratio of 0.78 operating at 145 rpm.

RESULTING GEOMETRY

The final lifting-line calculations were performed for the full-power condition using the final value of all the pertinent design parameters. This computation shows that the total absorbed power, $P_{D_{FP}}$, at V = 15.95 knots is 10,000 hp (7,457 kW) for the two propellers. The endurance power, $P_{D_{E}}$, was specified to be 0.80 times full power, P_{D} ; thus, $P_{D_{F}}$ = 8,000 hp (5,966 kW).

Lifting-line computations were also performed for the endurance condition assuming that the distribution, but not the total magnitude, of the loading at endurance power is the same as it is at the full-power condition (see Tables 4 and 5). This is a reasonable assumption because the advance coefficient changes minutely between the full-power and endurance conditions, assuming that the interaction coefficients are the same as obtained in the model experiments of Reference 2 with stock propellers. Computations based on the above assumptions indicate that V = 14.9 knots will be obtained at endurance power.

The model pitch and camber distributions were determined using the lifting-surface procedure of Kerwin¹¹ (see Table 6) and are compared in Figures 11 and 12 to the lifting-line values of pitch and two-dimensional camber. These computations were made for the full-power condition. The model propeller characteristics are presented in Table 4; a schematic drawing of the propeller is presented in Figure 13.

STRENGTH CALCULATIONS

The final stress analysis of the propeller blades was made using finite element procedures. Stresses calculated by finite element methods are considered more accurate than stresses calculated by modified beam theory as in

^{*}Defined informally by memorandum from Code 6144R, Ser 134, Res 1970. Subject "T-ARC, Propeller Design Status Report Based on Propulsion System Vibration Analysis."

Reference 4. The finite element calculations were conducted for the time-average loading on the blade at the full-power condition. The radial distribution of hydrodynamic loading was calculated by lifting-line theory (see Table 5), and the centrifugal loading was calculated during the finite element computations, using uniform chordwise load distribution.

Figure 14 presents the distribution of time-averaged stresses calculated by the finite element procedure. The maximum value of the Hencky-Von Mises Stress, $\overline{\sigma}_{HVM}$, for this propeller is 2,720 psi (18.76 MPa) and occurs, at mid-chord, on the face of the blade at r/R = 0.30. This is substantially less than the maximum stress calculated by the modified beam theory (σ_p = 6,692 psi) (42.12 MPa). The low values of stress are probably due to the abnormally large thickness introduced for ice strengthening, and are far below the maximum allowable principal stress of 12,500 psi for the steady condition and 18,750 psi based on the unsteady condition. Thus, the blade stresses are acceptable.

COMPARISG& 0.º DESIGN AND EXPERIMENTAL PERFORMANCE PREDICTIONS

Hydronautics, Inc. Model 7809-9, modified to conform with References 12 and 13, was fitted with DTNSRDC model Propellers 4761 and 4762. The hull modifications and the experimental results are reported in Reference 3. A summary of the experimental data is given in Table 7. Those modifications, which would influence the propeller design and which change the model from that used for the original propulsion tests of Reference 2, are:

- 1. Increasing the diameter of the exposed shaft to equal the diameter of the strut barrel and hull bossing.
- 2. Thinning and lengthening the skeg.
- 3. Fairing the stern transom/underbody intersection.
- 4. Decreasing the inside diameter of the thruster openings.
- 5. Increasing the rudder area by increasing the chord length at the top.

These modifications reasonably account for the 6.4 and 5.1 percent reduction in P_E and $(1-w_T)$, respectively and the 4.1 percent increase in (1-t), shown in Table 7, columns 1 and 2.

The lifting-line code was used with the final estimation of EHP, $(1-w_T)$, and (1-t) from Reference 3 to revise the full-scale performance predictions of the designed propeller, and for comparison to the model test

results. These calculations were done by fixing the shape and magnitude of the hydrodynamic pitch, then calculating the required thrust and propeller available thrust (for fixed power) over a range of rpm's for fixed (1-t) and P_E variable with speed. The rpm at which the two thrust values are equal is approximately the operating point. (These calculations are similar to the design computations previously shown in Figure 7.) The results of these calculations, presented in Table 7 (columns 3 and 4), predict an increase in speed of 0.68 knots, an increase in propulsive efficiency of 0.05, and a reduction of 1 rpm for the existing design, operating at full-scale conditions relative to the design predictions.

Correlation of predictions and the model test results requires that the performance prediction calculations be made using blade drag coefficients, which account for the large difference in Reynolds Number between model tests and full scale. This effect is not accounted for in full-scale predictions using experimental data. In this case, the model blade drag coefficient at 0.7R is 0.011 compared to 0.005 for full-scale operation. Calculations made, as above, using the model blade drag coefficient show reductions in speed of 0.3 knots, a reduction in rpm of 3, and a reduction in propulsive efficiency of 0.05 relative to design predictions (comparing columns 4 and 5 in Table 7). Comparing these results (column 5) with the final model test results (column 2) shows the predicted speed 2.2 percent less at practically the same rpm, and the propulsive efficiency reduced by 7 percent.

Considering the large change in P_E , $(1-w_T)$, and (1-t), and assuming the scale effect on the propeller wake is negligible, the predicted performance is in acceptable agreement with the experimental results.

SUMMARY

The design process was presented for a fixed-pitch propeller of a Cable-Laying Repair Ship (T-ARC). The primary requirement was to provide a minimum of 50,000 pounds thrust per propeller at bollard (and low speed) to overcome the cable drag. A simple sensitivity study was done on the various design parameters.

The resulting propeller design is 13.00 feet (3.963 m) in diameter and turns at 145 rpm at full power and 135 rpm at endurance power. Calculations indicated that this propeller will perform satisfactorily, but that there will be about 2-percent cavitation at full power, and if the

included 6-percent margin is required, endurance speed for 15 knots may not be attainable at 80- percent power. However, the required thrust at low speed will be attainable.

Comparison of lifting-line predictions, revised by the results of Reference 3 and the experimental results show the lifting-line predictions to be reduced in speed by 0.3 knots and increased by 1 rpm, and the propulsive efficiency to be reduced by 0.05. These results are considered acceptable, taking into account the large changes in P_E , $(1-w_T)$, and (1-t) due to hull modifications and the use of the design propellers rather than stock propellers.

Prior to full-scale construction, it was found that the shaft diameter and propeller blade thickness did not meet the design specifications. The new shaft diameter and proper ABS thickness rules were then used to recalculate the blade thickness. Details of the change are given in Appendix A. An example of this change is that the thickness was increased by 0.5 inch at the mid-chord of the 0.7 radius. The thickness increase results in an insignificant reduction in ship speed and n_D at the endurance condition of 0.003 knot and 0.005, respectively. There will be no effect on the cable-laying operations.

RECOMMENDATIONS

It is recommended that trials be conducted to evaluate performance, considering propulsion, cavitation, strength and propeller-induced vibration as compared to the lifting-line and experimentally predicted performance. Due to the large changes in hull performance, it is recommended that a wake survey be conducted on the final hull configuration and that the propeller design be evaluated with respect to these new data.

Recommendations with respect to the design procedures include the following:

- 1. Better methods are needed for predicting changes in P_E , (1-t), and (1- w_T) due to hull and appendage changes, or additional tests should be conducted. Using two stock propellers during propulsion tests would be advantageous with regard to potential changes in (1-t) and (1- w_T) due to propeller-induced velocities.
- Improvement is needed in the prediction of the required power and the prediction of propeller blade drag coefficient for both model and full-scale.
- 3. Cavitation tests in the bollard condition should be conducted to expand the limited data base in this area for future designs.

REFERENCES

1. Wendel, A.H. and Poquette, G.M., "Initial Propeller Performance Calculations for T-ARC," Hydronautics, Inc., Technical Report TR 7809.02-1, Sep. 1977.

2. Kirkman, K. et al, "Cable Repair Ship (T-ARC) Contract Design Resistance and Powering and Related Tests," NAVSEC Report 6136-78-28, Oct. 1978.

3. Ternes, T., "Cable Repair Ship (T-ARC-7) Revised Contract Design Resistance and Design Propeller Powering Tests," NAVSEA Report 3213-79-33, Nov. 1979.

Eckhardt, M.K., and Morgan, W.B., "A Propeller Design Method," Trans.
 SNAME, Vol. 63, pp. 325-374, 1955.

5. Caster, E.B. et al, "A Lifting Line Computer Program for Preliminary Design of Propellers," DTNSRDC Report SPD-595-01, Nov. 1975.

6. Burrill, L.C. and Emerson, A., "Propeller Cavitation: Further Tests on 16-Inch Propeller Models in the King's College Cavitation Tunnel," NECI, 1962-1963.

7. Enkvist, E. and Johanson, B.M., "On Icebreaker Screw Design," European Shipbuilding No. 1, pp. 2-14 and 18-19, 1968.

8. Prishchemikhin, J.N., "Some New Experimental Data on Cavitating Propellers and the Interaction Between These and the Hull," Proceedings of 12th ITTC, Rome, 1969.

9. Prishchemikhin, J.N., "A Study of the Cavitating Propeller and Ship Hull Interaction in Cavitation Towing Tank," Proceedings of 14th ITTC, 1975.

10. Breslin, J.P., "Theoretical and Experimental Techniques for Practical Estimation of Propeller-Induced Vibratory Forces," Trans. SNAME, Vol. 78, pp. 23-40, 1970.

11. Kerwin, J.E., "Computer Techniques for Propeller Blade Section Design," Proceedings, Second Lips Propeller Symposium, Drunen, Holland, pp. 7-31, May 1973.

12. Naval Sea Systems Command Drawing No. 5171279, "Cable Repair Ship T-ARC Lines and Molded Offsets."

13. Naval Sea Systems Command Drawing No. 5171290, "Cable Repair Ship (T-ARC) Contract Design Rudder and Appendages."

APPENDIX A MODEL AND FULL-SCALE GEOMETRY DIFFERENCES

The specifications of the T-ARC model and the full-scale propeller geometry are slightly different. The difference between the propellers is the maximum section thickness. Prior to full-scale construction, it was determined by ABS inspection that the propeller did not meet the thickness requirement of Class C ice strengthening and that the propeller shaft did not meet the required ABS diameter.

The propeller thickness was not acceptable because the most recent of the ice strengthening rules had not been incorporated. Instead, the rules for a previous year had been applied. In addition, the shaft was undersized because the ABS rules for standard shaft arrangements were followed rather than those for enclosed shafting and oil lubricated strut bearings. Each item independently would have required recalculation of the propeller thickness. These deficiencies were not appreciated during the initial design process because the propeller thickness distribution and shaft diameter were already quite sizeable by conventional standards.

The use of the proper thickness equations as well as the new shaft diameter produced an increase in the maximum blade-section thickness values (e.g., 0.5 inch at the 0.7 radius). The resulting change in predicted performance is insignificant, as can be seen by comparison of the revised lifting-line calculations for both the full-power and endurance conditions, Tables 8 and 9, respectively, with Tables 4 and 5 in the text. The revised lifting surface computation is presented in Table 10 for comparison with Table 6 in the text.

Figure 1 - Body Plan and Bow and Stern Profiles of Revised T-ARC Contract Design (Fig. 1 of Ref. 2) a

Figure 4 - Initial Thickness-Chord Ratio Distribution

Figure 5 - Propulsive Coefficient as a Function of RPM for the Preliminary Design

Figure 6 - Propulsive Coefficient and Ship Speed as a Function of Blade Area Ratio

Figure 7 - Cross Plot of Available and Required Thrust to Determine the 80-Percent Power, Ship Speed, and RPM

20

Figure 10 - Thrust Breakdown at Bollard Condition

	1962	3,007	16.68	
Ship Model				
Rotation	н я Н		L.H.	
	80.0		0000	
B.T.F.	0.041		0.041	
<mark>6.A.</mark>	629:0		0.623	ļ
Proj. Ares	31.608 2021.9		31.608 20381.9	
M.W.R.	0.3865		986.0	
64	0.790		0.790	
Area Area	38.706 76615.8		20.706	
Number Blader	-			1
Pitch Ratio	, i		1981.1	
Per per	100.250		140.250 25.051	
Plech Model M PCT.	42 G		8.2M	
25	156,000		168.000	
2	88	10.12		
]]		19.500	1	
2]		1915	1	ł
	Inches	ł	N	

Figure 13 - Schematic Drawing of Final Propeller Design

Hendry-Von Mieue Strees, ⁰ HVM (PSI)	12	411	8	88	1280	1570	1860	2150	2430	2720
Number	-	2	e	4	ß	9	7	œ	ŋ	10

PROPELLER 4763 VON MISES STRESS FACE

Figure 14 - Results of Finite Elements Stress Analysis

TABLE 1 - SHIP AND MODEL PARTICULARS FOR REVISED T-ARC CABLE REPAIR SHIP CONTRACT DESIGN

k

		DIMENS	SIONS	
	Full	Load	Light Condition (No Cable Load)
	Ship	Model	Ship	Mode 1
Length, LWL	464.0 ft (141.4m)	23.79 ft (7.25m)	442.0 ft (134.7m)	22.67 ft (6.91m)
Length, LBP	464.0 ft (141.4m)	23.79 ft (7.25m)	464.0 ft (141.4m)	23.79 ft (7.25m)
Beam at AX (MLD)	73.0 ft (22.3m)	3.74 ft (1.14m)	73.0 ft (22.3m)	3.74 ft (1.14m)
Draft at AX (MLD)				
Pwd	23.72 ft (7.23m)	1.22 ft (0.37m)	19.11 ft (5.82m)	0.98 ft (0.30m)
Aft	24.10 ft (7.35m)	1.24 ft (0.38m)	20.39 ft (6.21m)	1.05 ft (0.32m)
Displacement	499985.0 ft ³ (14159.0m ³)	67.43 ft ¹ (1.91m ¹)	390319.0 ft ¹ (11053.0m ³)	52.64 ft ³ (1.49m ³)
Wetted Surface	43117.0 ft ² (4006.0m ²)	113.4 ft ² (10.54m ²)	38424.0 ft ² (3569.8m ²)	101.0 ft ² (9.39m ²)
Trim (by stern)	0.38 ft (0.12m)	0.02 ft (0.006m)	1.28 ft (0.39m)	0.066 ft (0.02m)
	Coefficients			
ۍ ت	0.617		0.613	
υ٩	0.650		0.660	
ى× v	0.941		0.929	
L/B _x	6.356		6.356	
Propeller Diameters (twin acrew)	13.0 ft (3.96m)	0.667 ft (0.203m)		
Linear Scale Ratio		19.5		

Ship S	peed, V	Effective Por Air Drag and	wer, P _E with d 6% Margin
knots	m/s	hp	k₩
6	3.09	284	212
7	3.60	448	334
8	4.12	668	498
9	4.63	942	702
10	5.14	1303	972
11	5.66	1794	1338
12	6.17	2404	1793
13	6.69	3133	2336
14	7.20	3994	2978
15	7.72	4931	3677
16	8.23	6075	4530
17	8.75	7582	5654

TABLE 2 - FINAL RESISTANCE DATA FOR T-ARC DERIVED FROM HSMB MODEL TESTS AND NAVSEA CALCULATION (10/16/78)

Note 1: These effective power values are 7.14% lower than the initial values provided.

Note 2: New estimates for the following were also provided.

1 - t = 0.830 $1 - w_T = 0.970$

TABLE 3 - DESIGN PARAMETERS AND RESULTS FOR A 13-FT DIAMETER PROPELLER FOR THE VARIOUS DESIGN REQUIREMENTS

		Design No.	-	2	е П	4	5	6	4	8	Final
<u>بر</u>	DESIGN	z	4	4	4	4	4	5	2	5	4
PA	RAMETERS	EAR	0.55	0.55	0.55	0.50	09.0	0.55	0.45	0.40	0.78
ur T)	d Q are for pronallar)	M	150	140	130	150	150	145	145	145	145
5		>	16.059	16.045	16.004	16.093	16.022	16.142	16.200	16.228	15.947
		+	81,071	80,935	80,474	81,469	80,673	82,017	82,668	82,981	73,983
	To Provide	c	80.9	1.1	74.9	80.9	1	78.0	F	1	78.8
	5000 1bs	0	106,414	116,505	128,991	106,414	,	112,410	ı	ı	107,080
NO. Gi	Thrust/Shaft	SHP	1,639	1,724	1,840	1,639	1	1,669	•	1	1,607
		E	121.1	114.4	107.9	121.1		116.0		•	115.0
CON	Full-Power Condition	-	112,090	108,297	103,694	112,090	•	110,050	•	•	106,603
)		ð	238,535	252,505	267,717	238,535	•	248,888	•	ı	228,255
		SHP	5,500	5,500	5,500	5,500	ı	5,500	·	ı	5,000
		ر.	0.781	0.836	0.898	0.782	0.779	0.812	0.815	0.816	0.831
	Design Values	Ť	0.228	0.262	0.302	0.229	0.227	0.247	0.249	0.250	0.223
N	(Free Running	× ×	0.0417	0.0513	0.0640	0.0417	0.0461	0.0461	0.0461	0.0461	0.0420
011	ar Full Power)	r	0.236	0.273	0.319	0.262	0.215	0.256	0.315	0.355	0.163
ATIV		°0.7	0.555	0.627	0.714	0.555	0.555	0.589	0.588	0.588	0.585
AD L CA	Estimated for	7	0.484	0.524	0.564	0.484	0.484	0.520	0.520	0.520	0.510
44 1185	J = 0	κ.	0.0792	0.0940	0.1120	0.0792	0.0792	0.0900	0060.0	0060.0	0.0840
BUR	Bollard	۲ د	0.561	1	•		•	0.611		•	0.422
	Conditions	°0.7	2.16	•	4		•	2.32	•	•	2.27
	Full Power	t C	0.560	£		•	0.603		ı	•	0.422
		°0.7	0.96	•	•	•	1.05	•	•	•	1.07
Data	Used for	c0.8R/D	0.292	*	•	ı	0.234	4	•		0.425
Figu	re 10	0/4	1.06	•	ı	ı	1.09	•	ı		1.07
•		PD/A0	446	ı	•	ı	446	8	ı	•	405

TABLE 3 (Continued)

Equations and Calculations used for Table 3

- (1) RPM Required to Provide 50,000 pound Thrust at Bollard Condition (J = 0) $n = (T/\rho D^{4} K_{T})^{1/2} \cdot (60)$
- (2) Torque at 50,000 pound Thrust at J = 0

$$Q = K_Q \rho D^5 n^2$$

(3) Shaft Horsepower at 50,000 pound Thrust at J = 0

$$\mathsf{SHP} = 2\pi \mathsf{Qn} / 550$$

(4) RPM at Bollard for Full Power

$$n = (550 \cdot SHP / 2\pi \rho D^5 K_0)^{1/3} \cdot (60)$$

(5) Thrust at Bollard for Full Power

$$\Gamma = K_{T} \rho n^2 D^4$$

(6) Torque at Bollard for Full Power

$$Q = 550 \cdot SHP/2\pi n$$

TABLE 4 - LIFTING-LINE CALCULATIONS AT FULL-POWER CONDITION

.

-

T-AMC CUT40A4D TURNING PROP **** FINAL RESIGN ****

1.3808+01 1.+8886 41 1.5838541 1.643.541 1.7882541 1.5665647 1.49786+03 2.46556+03 3.23756+23 3.79156+03 V RONDEN -PE CART -Z

~									
;:	1 0000		404.42 1.35	8.4100 - (SI	148 3 4 4 8 2 LIE/FT ³) = 1.9906				
94		5	•16	tan P	tem a	•	•		J
INNI	TUGNI	INFUT	TUPUT	(IMET)	CAL PULATED	(8 89)	1		THFUT
.231	1 JBri - Gi	3. 175BE-11	2.839LE-L1	3.647654.	\$ 1.2927E+13	-5.68436-14	•	1.1655+60	6. 640 0 F-A3
-25-	1.12056440	3,30686-21	9.773.6-52		8E+34EF75 81	7.44225-41	•	3+1364E+00	F . 5488E-83
	1.11495.46	J. 5968c-61	8.698üc-ü2	1.2807E+2	10 9.3004E-J1	2.69146+08	3	1.1316F+C0 1	5-2488E-03
	いいー35 フィディテ	4.13285-61	E.486 .E-12	0.9.44E-4	1 0.85AAE-61	6. 5 93CE +8 u		1.11936+09	5 . 77 COE-B 3
	4.744Ac-c1	4.54605-01	5.473(E-02	7.6146-3	1 5.33396-01	1.04945401	•	1.10925+00	5.44085-03
.666	5.6 Fi 75- LL	4.75 BRC-31	4. 2696E-J2	5. A+57E -J	12 *****	1.4395€+01	-	1.1019E+_C	5.2388E-A3
.746	9.5447-41	4.62 86-11	3.472.5-62)- 36766 **	1 3.7763E-J1	1.82966+01	•	1.64765+00	5 • 8968F-83
999-	4.0.555-61	4.2466F- ¥1	2. 463.5-12	4.3695E-9	1 3.33405-31	2.21986+61	•	1.09A2E+60	5. 0300E-83
866.	4.34345eu1	3.41365-31	. 2.520 LE-LZ	1. 8797E	11 2.9334E-01	2.6099E+01	•	1.09706+03	5 . 1C COE-03
.950	4.5732F-61	2.4659f-51	2.730-E-62	3.6734È	1 2.77635-11	2.83496+61		2.79F3E+C5	5
1.442	4->62361	.;	20-946にとし	3"48796 -	1 2.63456-01	3. COC DE +C1	•	1.09 57 6+ 33	5 .56086-0 3
м	tion F.	tion 6	ų	2	V/4U	d(Cares)	d(C)	>	6
	1 74645	1. 9902 CC 1		- 22645 -	. 7 64315-97		150	T ATERCATE	
						1.165575-61			
									0043M6401 .
						2.0014C-11			
	5.44.7f=u1		1.66906-12		1 2.14615-11	1.2175410		5.48 716 11	1 . 18 725 - A1
.796	10-3-2	3-74605-01	3.756.26-42	1.27.175-0	1 2.54776-11	1.459BF+20	1.06517460	6. AX22Fect	Lange-nt
	10-29695**	3.20321-01	3.54156-12	1. 1047E-	1 2,66946-01	1.59186+00	2.83495+60	7. 70 31F . 1	1-30164
996.	3.57476-01	2.911AF-01	2. A5346-42	1.07345-	1 2.75935-01	1.453AE+00	1.45645+60	R.58 6E+11	3.90426-01
954 .	3.67346-12	2.75546-01	2+14566-12	1.0316E-1	1 2.81136-11	1.15736+.0	2.6769E+4P	9.1 7395+11	3.41.66-01
2.8.4	3.40745-63	č. E147č~~1	;	4° 4243E - 3	12 2.84695-31	•	•	9.4579E+C1	3. 87 A5F-81
×	ط	ť	f/c	C-/C		2.2	R C_re/	a/+	ہ ص
	م م ;	•		۔ م	- -		34 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-94 - E975-F	7177 C C
			A.5116-1 5	. 2176-12		17.1			
	2 - 38 E - 1	3. (396 - 1)	1.3466-2 3	2625-12 2		225+03 -3.360	15-01 T.AGAF	-01 F.079F-0	11-34-6-01
	2.5355-01	3,5926-01	1.5446-42 2	474E-42	.22351 2.4	32E+L3 -3.514	E-01 4.7455	-01 5.352E-C	2 3. C23E-01
.564	2.2.85-41	5.401E- 11	1.+94E-u2 2.	63E-02 2	.215E-11 3.W	JE+33 -3.436	1E-01 5.6ALE	-81 4.624E-0	2 2.5%F-M
-69.	2	3 . 14 26 - il	1.345E-02 2	.3446-02 2	1.211E-J1 4.4	£46°2- £2+355	E-01 A.LASE	-01 3.926E-0	2 2.267E-01
.748	1.672c-41	2. AB3F-J1	1.2715-42 2	.7195-92 2	.2156-31 5.2	3-2+23 -2-130	E-01 7.127E	-61 3.166E-01	7 1.9A1E-01
	1.7695-11	2.632E-i1	1.1615-12 2	.4+3E-(2 2	22 6E - 01 5.5	72E+03 -4.643	E-02 7.679E	-3624-2 16-	2 1.743F-01
	1.538F-L1	2.5646-31	1. JA4E-CZ 3	.3166-92	.136E-91 5.8	02E+13 9.837	E-82 7. A11E	-01 1.72CE-D	2 1.5556-01
	1.3226.1	2.3445-42	134E2 3	5.28E-12 2	:-2526-J1 3.9	22E+03 2*M04	12-81 7.421E	-01 1.3465-0	2 1.5985-11 2 2007-02
	:			•			E-01 9.345E	- 11 0.	20-1850°/
تل	1 - 7.4966E-0)	- - - - - - - - - - - - - - - - - - -	0-9361E-01	n ₁ = 7.5427	E-01 CThS1 -	7.7453E-01	CThSt/Cpst	7.79286-01	
ځل	- 7.37936-01	ן יייייייייייייייייייייייייייייייייייי	1.0515E+00	n - 7.0181	E-01 CThe -	7.6247E-01	Crisc/Cae	7.2514E-01	
	. P_(•		!		2		

Copy available to DTIC dong not permit fully legible reproduction

67 - 9 - **2**

!

TABLE 5 - LIFTING-LINE CALCULATIONS AT ENDURANCE CONDITION

T-ARC OUT BO 40 TURNING PROP **** FINAL RESIGN ****

P.807 = 5.461.6403. DENSITY OF PROPILON/FT3) = 468.2303

1.346.3E+01 1.4000E+01 1.5600E+01 1.6601E+01 1.7000E+01 1.9605E+03 1.99766+03 2.4655E+03 3.754.01 3.794.0E+03 V (100078) -

Copy available to DTIC does not permit fully legible reproduction

N									
ş	- 1.75	195-61							
	000 J - H -	60E+12 9700 ,1 -	t=.8300 "H (F	T) = 49.4100 .0	(9.06/F1 ³) = 1.9	506			
×	K.	6,5	• (-	ten B.	tan a	•	I		£
INPUT	INPUT	INPUT	INPUT	(PREL)	CALGULATED		7 H		Twent
.231	1. 5 43 M 9 00	3.17C00	1 1.63916-	1 1.667464.0	1.235E+34	-5- 604 H-14		1 .1665E+2 8	6 - 64 C 66 - 83
-25	1.12.56438	3+3000E-0	1 9.77626-0	2 1.44645+08	1.05536 +06	7.41226-01		1.15646464	6. 54106-13
102 .	1.01495460	3.54066-6	1-3196-19	2 1.2647E+68	8.72J4E-41	2.69146 +88	•	1.1316E+F3	6.24006-13
	9-37256-61	3-30864.4	1 6.48366-0	2 3.9646F-41	6. 3951E - JL	6.5938E+63	•	1.11986+86	5.77 alt-13
	オヨーショナのノード		1 5.67JuE-1	2 7.8616E-U1	5.02756-01	1.34946+01	•	1-10925+05	5.4400E-A3
	3.87.45.41			2 5. 9457E-01	4-13425-J1	1.4395E+01	•	1.16196+03	5. 23 896-83
				2	3, 519 W - 01	1. 82 965 401	•	1.89766400	r • 99 00E • 33
	1.00.355.401			2 4.38956-J1	3.07995-01	2.21906411	•	1.0 9A2E+0C	5. 03 COE-03
				2 3° 97 97 5 - 31	2.73151-31	2.60995401		1.69736400	5. 10 COE-03
1-202	9.56235-41	6. • • • • • • • • • • • •	11 2.0966E-C	2 3.48785-31	2. 58485-51	2.000 900 900 900 3.000 800 900		1.146364[] 	
		:					:	NN 43/3 40+7	
×	5	-	ن ت	۲	<u>ک</u> ۲	d(C _{ThSI})	d(C _{me1})	> ⁴	0
165.	2.00.74E46	1.27 95E40		1.2429E-u1	7.79426-32			3.6AZAE4C1	2.7345488
.259	1.459.44.5	1.1219240	9-3111 E-F	3 1.38125-31	9. A0 32E - 32	1.13526-01	1.50575-01	3.68616461	2.244414
300.	3.435.85.495	9.27125-3	1 1.74936-	2 1.4583E-61	1.2587E-C1	2.67005-01	3. 52 746 - 61	4.113454.1	1.75 356+10
	5.J.44.6.5	P-30552-3	1 2.72566-	2 1.51765-11	1.7369E-J1	5.7346E-C1	7.689AE-61	4.7393E+C1	1.34366+08
		3•302424		2 1.47356-11	2.11696-01	3.00695-41	1-16606+68	5.555AE+C1	9.62A1E-01
	14-3/640*1			2 1.3864E-J1	2.3917E-31	1.2174E+68	1.565 F + 64	6.42736401	7. 48765-01
					2.97916-01 2.40495-01	1.47985400	1.8947E+08	7.33525011	5-36216-01
40.6.	3.87976-01	2-30406-2	1 2.48446-0	2 1. 0 0. 00 - 01	2.7991F-01	1.4716F480		10+34 0.42+01	4.15M6E-01
.956	3.0734E-41	2.74616-0	1 2.1606c-L	2 1.64276-11	2.64.46-41	1.17266.10	1.58855488	10-14-14-14 0-64ABFect	
1.8.0	J.+87AF-42	2.6677E-4		1.06316-41	2.47736-01	0.	. .	t. C1 A7E+02	2.06.97 5-81
×	ى	·	fame/c	ر د را	-	ر. د]		ى
.23.	:		2			-3.176	2021-1 10-1	- 34 E . 5 E . 6	
-256	1.267E-51	1.9516-01	A.682E-63	5.162F-J2 1.	40.6-JL 7.34	E+12 -3.241		-31 6.4446-9	2 3.946Febt
. 3	2.j34f=u1	3.17161	2+394E-42	3.011E-12 2.	-2.E-11 1.53	66+_3 -3-3621	-01 3. nede	- 11 F. 17 9F - C	2 3 361 F-M
105.	2.375F-61	3.6272-21	1.5996-62	2.450E-42 2.	223E-11 2.82	6E+03 -3.514	-01 4.746E	-01 5.35E-0	2 3.0376-01
	2.2245-41	3.4325-31	1.51 16-22	2.441E-J2 2.	215E-31 4.85	8E+63 -3.439	-01 5.6ALE	-01 4. E24E-C	2 2.63AE-C1
720.			1.3976-42	2.541E-32 2.	2115-01 5.13	16+83 -2+9731		-01 3.926E-0	2 2.27AF-01
		2.454541	1.1746-02	2.0185-12 2.	2156-UI 0.07 2346-11 6.07	+E+85 -Z.130	3421 4 10-3	-91 7.166E-0	2 1.991F-61
	1.551E-61	2.3046-41	1. 4536-12	3.269E-12 2.	1965-11 5.81	64 1 - 0 - 0 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4		-3624°2 18-	2.1.527-01
. 350	1	2.3646-01	1.1426-62	3.4796-02 2.	252E-01 1.59		-01 7.4216	-01 1.346F+D	2 1.505E-01
1.052	•,	e.	•			5.545	-01 5.5456		7.3535-32
£	- 7.5951E-01	- Ise	1.0097E+00	n ₁ = 7.5226	-01 Crissi -	7.84696-01	Cher/Caer -	7.77196-01	
₹	- 7.47726-01	عق عل	1.0676E+00	n = 7.0035E	-01 Sur	7.725 8E- 01	• 54)/SUL	7.2364E-01	
	é Pa(A	P) = 4.5996F		. 8.588 E . W.	414 144 -	151 - 15.941	neve		
~		M)=145.40			- 7759 VIET	SEC1 = 26.91	CALCULATE	2 / 2 (1) / 1) / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	
		•		ΩΞ.					

TABLE 6 - LIFTING-SURFACE CALCULATIONS AT FULL-POWER CONDITION

PROPFLLED FLACE SECTION DESTGN FOR POFSCRINED LOAD DISTRIBUTION WIT-FBD-9

3 21 79 T-&PC 001779ARF TUPNING PPCP 7=4 AR=,7759 RPM=145 PFINAL

56 CHORDWISE PANFL	A RAJIAL S-V LINE	ITH 2 JEG SPACT	WAKF ANGLE RATIO=1.	66 HUR TNAGE IS APSEN
CHORD LOAN TYPF	NACA A = .AC		THICKNESS FORM	NSEDC MON NACA
156.60	36.62	Ł	145.00	15.95
17 AM ET 5 R- 14	1UR DTA4-TN	IC.OF RLANES	VENS DER MIN	PEED-US-KTS

U/RO AK/PI	3623 C.0 00	05AA 0.6001	0214 0-0 00)	000-0 5444	DAL C.J DO	0304 9-000	C234 0.0031	0170 6.0001	0132 C.0001		
UA\$/VS T	.1155 .	. 8481.	. 1853 .	.2169 .	.2417 .	. 2593 .	.2768 .	. 2834 .	.2843 .		
VA /VS	1.022	1.014	. 993	.977	. 965	. 460	.960	. 95.8	. 95 7		
G COFFES		33358 E	• 000 246	100000.	. 0 ú0 28 F	0.000030	0.053000	6.00006	0.000000		
マルナマじ	.0 15 A	- 02 0 d	. 6 2 9 C	19190	£ 2E 0°	.037A	.6351	-02AC	.0212		
57 / B()	.3618	.4151	.4973	.5843	.6575	.7125	.7634	-7466	.7384	• 5545	
SLIAN	1626	3416	3526	3378	2R67	- 1 4 GA	1270	12.000	27 6 2 .	•5245	
TAN R	1022		.405	.5136	.4241	.3581	.3245	708~°	.2745		
TAN RS	1.2916	1.0972	39 ⊌	.678.	•5c94	3164.	• # 32 4	.346.	.3665		
2918	Ld Ze"	• 32 69	.4231	.5192	. 61 54	.7115	. 20 77	AF AF .	6136.	1.36.0	

) a/a	U/d	17 J	Fn/C	10/01	AHQ J	p- [e	P-JN	C- IN	F0-IN	T0-TN	RK - T
.27.84	1.314	. 347	-031A	. 0A9A	11.39	21.75	215.55	54.12	1.722	4.85	C • 0
.3269	1.264	.373	.3216	. 674R	1J . 6F	25.53	197.21	54.24	1.552	4.59	10.0
. 42.31	1.2.5	• 425	.1205	.1610	9.57	10 ° K K	1AA. 05	66.28	1.357	40.4	0.01
. 5192	1.191	. 461	.6196	. 6487	A.95	4 1 .5C	1 85. 7A	20.11	1.412	3.50	0.21
.6154	1.174	.472	.0234	• 040 3	10 10 10 10 10 10 10 10 10 10 10 10 10 1	44.00	1A 3. 0A	73.65	1.502	2.97	0.0
.7115	1.151	. 459	.3215	.(335	7.63	55 . 5C	179.51	71.63	1.542	7.6.	0.0
. 40 77	1.130	.418	.C22M	. "280	6.01	63.86	176.34	65.17	1.499	1.83	9.6
. a () 3A	1.0.47	.337	4020.	. 3253	4.41	72.50	169.54	52.55	1.233	1.33	0.0
.9519	1.457	. 241	9759.	. 3274	4.12	74.25	164.92	37 . 54	1.647	1.03	0.0

Copy available to DTIC does not permit fully legible reproduction

TABLE 7 - EXPERIMENTAL AND LIFTING-LINE PERFORMANCE PREDICTIONS

	Experimental Predi	ctions	ITI	ting-Line Predictio	50
			Design Propeller Heine Dreliminary	Revised Prediction Data and Design	Using Final Hull Propeller tanß _i
	Preliminary Hull with Stock Propellers (Propeller Design Information)	Final Hull with Design Propellers	Rull with Stock Propeller Data and Full-Scale Blade Drag	Using Full-Scale Blade Drag	Using Model-Scale Blade Drag for Comparison to Tests
V (knots)	≈16	16.7	15.95	16.63	16.33
P _D per shaft	5,000	5,000	5,000	5,000	5,000
P _E per shaft (at design speed)	2,950	3,250	3,065	3,280	3,045
4	≈152	140	145	144	141
ę	≈.59	0.65	0.608	0.656	0.609
(1-t)	0.83	0.864	0.83	0.864	0.864
(1-w_)	0.97	0.921	0.97	0.921	0.921
c _{00.7}	I	1	0.005	0.005	110.0
P _E per shaft ^E (at 16 knots)	3,038	2,844	3,038	2,844	2,844
Reference Column	1	2	3	4	ſ

TABLE 8 - FINAL LIFTING-LINE CALCULATIONS AT FULL-POWER CONDITION

THE OTHER MANAGEMENT

T-44C PADPELLER ENCREASED THICKNESS 11/27/00

P_(HP) = 9.307JE+C3. DENSITY OF PROPILENVET3) = 468.2900

W(WD) - 1.30000.01 1.40000.01 1.50000.01 1.60000.01 1.70000.01 W(WD) - 1.50000.01 1.90100.02 2.40500.03 3.07000.03

•1.7000, 1 - 4, • .9700, 1 - t • .6300, H(FT) = 49.4100, 0(SLUG/FT³) = 1.9905 0

د

..... . • 7

DESIGN TH(LBF)=7.3849F+84 CALCULATED TH(LBF)=7.3973E+84

TABLE 9 - FINAL LIFTING-LINE CALCULATIONS AT ENDURANCE CONDITION

T-ARC PROPELLER INCREASED THICKNESS 11/27/88

D_(HP) = 4.05886483, DEMSITY OF PROP(LEW/FT3)= 468.2966

1.30006401 1.40006401 1.50006401 1.60006401 1.70006401 1.56666403 1.99706403 2.46556403 3.02756403 3.79106403 V(101075)-PE(14P) -

= 13.0000, 1 - W_T = .9700, 1 - t = .8300, H(FT) = 49.4100, p(SUG/FT³) = 1.9905 0

با	UMMI TUMMI	6.996.0E- 3	6.7700E-n3	6.41806-01	5.88685-03	5.51 06- 3	6. 240 AF -0 1					5.59005-03			6		00	91				10		1						-						20	č 9	20	05		
	rxtan B ₁													0	2.87756+1	2.60966+	2.198 25 41	1. 5471F +				9.10175						•				7.634C	6.69EF	5.5625+	+. 71 9E -	3.7956-	2.88 E	1.9126-	1.480E-		
	ZR 1			•	.0			5	5.			ē	;	> ^L	. 7 7356+01	43706+01	.74145+01	44666401	1 1 2 3 2 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4		10430186.	10+36128.	1043628/.	10+34195.	. 4 67 AF 40 1				4.4			5.55 /E-01		5.6816-61	6.465E-01	7.1276-01	7.6296-01	7.8116-01	7.4216-01	5.5456-81	
		:	01 C.		- 0 - 0 -					61	01 C.			(c,,)		AGAF - RI T.	AAIF-DI T.	Dest-R1 h			(#37e+_E >	676F+08 6	13785040 7	1575E+00 b	6 A.+16171		= 7.7909E-01	= 7.2462E-01	a/		3.1705-01	-J.2436-01		1.4795-61	2. 973F-01	2.1305-01	A. 6435-02		2.4695-01	5.5456-01	
a	(deg)	:	7.4122E-0	2.69105+1	6.5038F+1	1 - C + O + E + E			1.307.30.1	+ 395 I 2 · 2	2 • 61 99E •	2.614954		(1) (1)	-	1. P. 1. P.					250.0 1.5			35+00 1-0	*********	;	CThSI/CpSI	Crec/Coc		רוב/א רוב/א		- 10-3214		- 1925-00 -		A305+01 -	- 29	- 5105 - 01	P055+01	.0006+01	
	tan B Neculater	10276 41 -		10-90 - 01	16446-11				7765E-01	38885-11	93365-11	77635-01	13 - 46 + 63	د (د					11 3.6794	20. 0 10	CL 1.2.34	01 1-4614	01 1.5931	01 1.454	1.1.1574	• • • •	1544E-01	1324E-01		، ب		401402 7.					746443	10+360	SAFAD? 2	en en	
	ני ב)	F+83 1.1	Feñ.							5E-11 J.	E-61 2.	F-01 2.	11-36	۷/۳	Q. LARSEN				1. 71.895 -	2,00575-	2.35726+	2.55006~	2.67195-	2.77196-	2.0129E~	24448.2	CThes - 7.7	5 J.	SAL			6-01 6-3							DE-DI 3.6		
5 84 8 8 6 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4	184	1. 1.6176		1.2007			1103. 2	1618.6 2	5666.4 2	2 4.3599	2 3.6797	2 3.6734	2 4.6R76	۲-/۷	CEASE-C+					.45876-01	13-34 245.	1.27195-91	.16-34591.	1.07445-01	1.6326E-11	9.9335-02	106-		- 376	ہے.	:		20°2 20•3	22.2 20-3		1-4C C.C.	1-13 3-33 1-13 3-33	101 C. C. C.			
886+82 1.	INC.	- 24 UNE - 0					9-3000E-C	2°31 (0E -u	4- 10 00E -0	3.40 00E -0	2.00385~	3. 00 COE -0	9.5800F-0		•				1 20-3251	1575-02 1	5495-62 1	5346-02 1	136E-07 1	548E-02 1	654E-02 1	•	n, = 7.54)			ح	U	13 5.379E	3*1346	3416.2 28		3026"7 28		167713 30			
E+82 1.48	c/D IMPUT						16-3069	1986-91	2256-01	466E-01	1º6E-01	6595-01		_					E-01 2.7	E-01 1.9	E-61 3.69	F-41 3.73	E-01 3.54	E-81 7.65	E-61 2.34	F-01 0.	532E-01	0043623				9.5466-1	-3686-1	1.588E-				-3101.1			
2 1.35001	7						-01 10-		-91 4.6	-61 4.2		-01 2.4	-01 0.					5552°5 Li	11 6.4156	11 5.3581	11 +++(61	1 3.7471	11 3.2824	1116.2 11	11 2.754	11 2.6141	9.9		ې د د	9		1-9365-11	3-1565-01	1.602E-01		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2.6891E-94	2.6337 - U			;
7.75896-C 1.36666+0					1.01995	9-216-6	3865.4.6	30049.6	9.59475	9.68555	9.58396	9.57315	9. 56236	ean B.			1.49646.4	1 . 20. 7E . U	8.98446-6	7.96166-6	5.9457E-G	J-36-66*4	4.76956-1	3.8797E-L	3.67346-1	3.48786-0	157E-01			لى		.259E-C1	.0465-01	.3396-01	. 211E-61	18-3240	.8735-01	. 71 05- 03	.5386-41	18-3224*	
en e	X ZMPUT			1	19-38668-6	10-31969.4	5.00000-01	6.066CE-11	7.8484E-81	9.0C0CE-01	1-32070-6	9.568CE- 1	1.858CE+08	3			10-30065.	\$C#BCE-51	.00106-01	.00006-91	. CJ666-C1		. 00006-01			. 00006+06	C 7.56			×	3106-C1 8.	5086-61 14	1006-01 24	0006-01 2	9646-C1 2	12 - 13 - 300 - 21				1 11-3 11 5	

То-<u>36054°4=</u>М 7**6**-3**6056**-07

P₀(MP)=4.96616+07 1 - t=8.38086-01 N(RPH)=1.3500E+02

Maes.6142E-61 2* 4

TABLE 10 - FINAL LIFTING-SURFACE CALCULATIONS AT FULL-POWER CONDITION

T-AFC PROPELLER INGURASED THICKNERS FOR PAD9 12/11/85

56 CHORDWISE PANELS 48 Rajial S-V Lines With 2 deg Spacing 4ake angle ratid=1.0 Huy iyage is agsent
СНОЕГ _040 ТҮРЕ NACA 4= .80 Thickvess form NSF0C 400 NACA 66
156.00 36.06 4 165.00 15.94
DIAMETER-IN Hub DIAM-IN No.df Pladés Révs Per Min Spefn-VS-KTS

									00/01	
2120	TA4 65		2 1/ -0		0 1.1.7 9	SLA 100 C	on van		04 202	
. 2761		1 7h	1415-	.3619	.153	. 037303	1.130	.1113	.0755	0.0009
1202			- 3415	.4851	F021.	003561	1.316	.1400	.0714	0.0333
. 4233		.6400	1526	. 4973	0230	. 003249	.993	.1834	.0630	0.0000
5194	.6767	5133	- 3378	.5443	543	966630.	116.	.2169	. 554	
	5623	4279	- 2867	. 6575	.0373	. 050293	. 365	.2418	. 0458	0.0000
7116	4609	.3679	- 1975	.7146	.0374	0.000000	. 460	• 526 •	.0369	0.0000
2708.	4327	.3244	67 21	. 7634	.0351	0.000000	.360	. 2709	1120.	0.0000
90.39		26874	1231	7 41 8	- 265	1.96529.	•359	. 26 ; 5	. 2189	C.C.C.J.
6756.	• 3 6 6 E	.2744	. 2576	. 7304	212		.957	4482.	.0145	0.0009
1.0030			• 5545	• 5545						

00/3	0/0	070	F.7.C	70/0	ALFHA	N 1 - 8	N1-d	C-1N	F0-IN	10-IN	FK - 1 N
1010	122.4	347	.0315	. 109A	11.56	21.77	208.65	54.12	1.736	5.89	0.00
.3271	1.772	373	.0264	. 0457	10.85	25.52	198.45	5 4.24	1.539	5.57	0.00
. 4233	1.213	.425		741	9.75	33.61	149.19	66.29	1.346	4.91	
1912	1.196	461	-1195	. 586	9.68	40.51	166.63	71.92	1.400	4.21	0.00
. 515.	1 - 1 7 7	. 472	- 0203	. 0495	6.17	40.03	183.68	73.65	1.495	3 • 5 2	
7116		150		40 2	7.13	55.51	179.96	71.63	1.540	2. 88	, , , ,
. 8 0 7 7	1.132	. 418	. 922A	.0332	6.07	63.06	176.52	65.17	1.438	2.16	0.00
9039	1.048	. 337	. 0234	. 0281	4.83	70.50	169.73	52.55	1.229	1.47	0.06
.9513	1.058	.241	.0279	.0301	4.14	74.25	165.04	37.54	1. U46	1.13	

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMUHANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

DATE ILME