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Based on the solution of a simplified canonical problem, -the possible
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margin of error on the predicted coupling length according to the coupled
mode theory as applied to fiber and integrated optical guides is inferred.

It was found that coupling length obtained according to the coupled mode
theory is usually accurate to within 20% of the actual value provided that the

frequency of operation is above the cutoff frequency of the antisymmetric mode

of the coupled structure.
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Coupled mode theory has been used extensively in recent years in the
analysis of many important problems in integrated optics and fiber optics.1-3
It 18 therefore of extreme interest to learn the region of validity for
which the coupled mode theory will yield accurate results. Since exact solu-
tions for most practical probleﬁs are not available, we shall therefore deal
specifically with a canonical problem whose exact solution, as well as.approxi-
mate solution based on the coupled mode theory, is obtainable. Comparison of
the results may then provide an indication of the accuracy of the coupled mode
theory approach. It is shown that when the coupled mode theory is used
properly, the prediction of coupling distances 1s surprisingly accurate even
wvhen the separation between the guides is relatively small. However, as far
as the field configurations of coupled guides are concerned, significant
inaccuracy is observed when the separation distance becomes emall.

The geometry of the problem is shown in Fig., 1. Two identical dielectric
slab waveguides are located in the regions d/2 S.le < a+d/2. The permittivity
of the slab guides is € and that of the regions outside‘the guides is €93
The permeability is assumed to be ﬁo everywhere. A

furthermore, €, > €

1 2°
perfectly conducting plane covers the surface z = 0 eicept for the region
d/2 < x < a+d/2. 1In that aperture, the tangential electric field is Eo;x':
All electromagnetic field quantities are independent of the coordinate y and
the time dependence exp(jwt) is assumed and suppressed.

The electromagnetic field has components E‘, Ez and By. which are

related as
an.
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* ! where ki2 = uzuoei. 4 =1,2. Now it is necessary to specify that all field
components have the same z-dependence, i.e., exp(-j8z). Thus if Ex(x.z) =

Ex(x)exP(-jsz) and similarly for I-:z and H , we have
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3 + (ki -B8)H =0 (3c)
dx y .
i . We are concerned with the excitation by the aperture field of the guided
modes on this structure; the guided-wave field will be the dominant portion
of the total field for large 2. Solutions of Eq. {3c) corresponding to the
guided-wave field are
- <x € ~a-d/z: H ) (x) = A_ explv_(x+a+d/2)) (48)
- - . yn n n .
-—a- -d/2: 8 @) = |
a-d/2¢xg-4d/2: nyn (x) Bn sin un(x-MIZ) +C_ cos un(x*dIZ) (4b)
-d/2€x<€d/2: ﬁ (3)(::) ® D_sinh v.x + E_ cosh v x | . (4c)
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d/2€x<a+4d/2: Hyn (x) = F sinu (x-d/2) + G cosu (x~d/2) (4d)
s+ le €x€=: H (5 (x) = B expl-v (x-a-d/2)) (he)
) yn n n . :
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in vhich “nz = klz -8 n * Vn - ﬁn - kz s and the coefficients An - lln are
to be determined. The "n" subscripts refer to the nth guided-wave mode.
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e s e O R Y R T ¢ e Ww“m*w-:m




—

-~y - = Y —— ad L
. AN~ - . Camer b w.aee s omartine . s S8 - we D e e - O T Sn—

ETTTR o

The characteristic equation from which the values of Bn may be determined

is found by forcing the tangentical field components Ez and Hy to be
continuous at the four dielectric interfaces. By virtue of the symmetry of
the configuration about x = 0, the electromagnetic field may be separated into
two parts whose axial electric field Ez has either even or odd symmetry

about x = 0. For the even modes, Hn = Ah’ Gn --Cn, Fn = Bn, and En = 0;

for the odd modes, . = A , G_. = C , F =-B , and D = 0. Thus considering
n n’ n n’ 'n n n

the two cases separately, one matches 'the boundary conditions at x = d/2

and x = a2 + d/2, and obtains
2qunvn
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7 3,2 -0 (5)
qQu vy -(q u .

in which q = :zlcl. The roots of the first factor in square brackets yield
the even modes; those of the second factor, the odd modes.

We may also evaluate the coefficients Ah - Hn in terms of any single one
of them, say An. The relationship is expressed as Bn - bnAn,.... Bn = hnAn in
which bn - hn are given by
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This completes the formal analysis of the guided-mode electromagnetic field on

C e e i

k ‘ the dual slab waveguide structure.

We now consider the boundary condition at £ = 0, i.e., that Ex(x,o) = l-:o
for d/2 € x < a + d/2 and l-:x(x.o) = 0 elsevhere. Equating the excitation

field to the total field Ex for > 0 at z = 0 yields
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’. EO[U(x-dIZ) - U(x-n—d/Z)]-;Z ue(x) H (x) (8)
i n
' + (radiated field) |
x=0
where U is the unit step function. The sum is taken over the guided modes for
which Bn is a proper root+ of Eq. (5). By virtue of the orthogonality relation
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The integrals in Eq. (10) are easily evaluated and yield a relation between Eo

and A_. We find that
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in which the lower (-) sign is taken for the even modes, and the upper (4)

sign for the odd modes. Anz is either A:2 or A:g ds gpptopriate, as are

fn and 8,° This completes the formal solution for the excitation of the guided-
wave field by the aperture electric field at z = 0. Here we have assumed

f'that ibe contribution of the exciting f£ield ;o tﬁé radinted field 1s néﬁli-

" gible as compared vith:tﬁe guided field.

" We nov consider the special case which is of particular interest foi the

purposes of this paper, that in which only a single mode is possible on each

of the dielectric slabs in isolation. We shall further require that the

'lowclt-order even and odd modes will propagate on the dual-guide atructure,
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We may now calculate the total power per unit width carried in each of the

x = a-d/2 to x =-d/2. Denoting these povers by l’A and P_, we obtain,

L iime o

Thus,

&<u¢unu<-

qd

where 0 < ua < 1/2, Ve now evaluate the z-component of the Poynting vector
in each of the slab waveguides under the assumption that only these lowest-
order modes exist; their propagation.constants are denoted B e and 80,

and the associated fields Hy(x) are denoted Hye(x) and Byo (x) respectively. i
[}

In the "upper" guide (d/2 < x < 84+d/2) or "guide A", we have

: 1. |1 - -
Poa(x2) = mke’q [Be'ﬂye“)(")'z + B«:oluyc(l.)(")l2

~ ~ ®
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In the "lower" guide, or "guide B",

P p(x,2) = i—,‘; Re { %1- [8¢|ﬁye(2)(x)|2 + so|ﬁyo(2)(x)|2
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/.
slab waveguides by integrating P . from x = 4/2 to x = a+d/2 and P from

gA

*‘l'hc pover carried outside the slab guides is not included in the calculation.

. VA e - 00+ o P - s dt——— 2 + o ——

Thus P, and Py vwill not reduce to the total power carried in a single slad
waveguide mode in the limit @ + =,
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assuaing that €y €5 B.. and ‘o are purely. real,

at+d/2 -d/2

PA(z) - f Pu(a_:.z)dx. Pn(’) -f P:B(x.z)dx
d/2 -a-d/2

Now we are in a éosition to compute evactly how the input power is
transferred from one guide to the other. (the only assumption is that no
radiated pover is present.) We must first determine the propagation
constants of the guided modes along the slabs from Eq.. (5). Results for
the two lowest order modes are displayed in Fig. 2 for the .-yuetric
wodes and in Fig. 3 for the anti-symmetric modes. In these figures, the
normalized propagation constant Blko is plotted against the normalized
thickness of the slad kol for various values of the normalized separation
of the slabs kod. The constant ko’ the free-space wave number, is defined
as uVTa:_o'. 1t can be seen that there exists no cutoff frequency for the
lowest order symmetric mode while a cutoff frequency does exist for the lowest
order anti-symmetric mode. - Of course, all higher oi-der symmetric and anti-
symmetric modes possess cutoff frequencies.

To illustrate how the guided power exchanges between the two guiding
structures, Figs. 4~5 are introduced. The operating frequency is so selected
that only the dominant symmetric mode and the iovest order antisymmetric mode
may exist along the guiding structure. It is 1nt§relt1ng to note thlt although

the initial exciting field exists only at the entrance of fhe core region of

' guide A, according to our computed results there exists a small amount of guided

L 'pqwer. in guide B. The reason for this is that to satisfy the initial given

BT I inarnd

field configuration af the entrance of the guiding structure, radiation mode

 as well as guided modes must be taken into account. Since we have & priori

ignored the radiation mode in our calculation, we can only satisfy approximately
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the given initial field. The quantity PB at z = 0 represents the power calcu-
lated from the field that extends from guide A into the core region of guide B.
It can also be seen from these figures that guided power exchanges from one
guide to the other in a periodic fashion as expected. The distance for which
maximum guided power is transferred from one guide to the other ie called the
coupling length. It is noted that the coupling length becomes shorter as the
separation distance between the guides is shortened. To correlate the maximum
power contained in the core region of éhide A with the norﬁalized separation
distance kbd’ we have performed the computation at the entrance of the coupled
guide. Results are shown in Fig. 6. It can be seen that the normalized maximum
pover in the core region of guide A varies in a rather unusual fashion for small
separation distances. At large kod, the maximum power contained in the core
region approachee that for the case of an isolated slab guide, as expected.

To further understand the behavior of the transverse fields in the guides when
the separation distance is small, we have plotted in Fig. 7 the quantity lEx'

vs. the transverse distance. The complexity of the evolution of the transverse
electric field as the separation distances are changed indicates the complex
nature of the curves in Fig. 6 when the separation distances are small.

Recall that the primary purpose of our investigation is to determine how
accurate the coupled mode theory is in its treatment of the coupled dielectric
waveguide problem. We have carried out the cases treated above according to
the coupled mode theory described by Hnrcuoel and by NELC teoeatcherc.z The
Yexact" normal mode relu1¥l are then compared with those obtained according
to the various coupled-mode theories. Displayed in Fig. 8 are the curves for
the coupling length as a function of the normalized separation distance be-
tween two parallel dielectric guides as shown for two different koa values in

¥ig. 1. One notes that as the separation distance is increased, the agree-
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ment between the results based on coupled mode theories and our normal mode
results becomes better, and that closer agreement is obtained for larger

koa values or when more power is confined within the core of the guide. This
is because large koa corresponds to more tightly~bounded field; hence, the
coupling field is weaker and the coupled mode theory which is based on
perturbation concept tends to be more accurate. It is worthwhile to point
out that for certain combinations of koa and kod values such as for koa =1
and kod < 7.0 only the dominant symmetric mode exists, so according to the
exact normal mode theory, no back and forth exchange of propagating power takes
place between guide A and guide B. On the other hand the approximate coupled-
mode theory continues to predict the power exchange phenomenon. Another way
of expressing the differences for the results based on different theories is
shown in Fig. 9 where the percent differences between different coupled-mode
theories and the normal mode theory are plotted against the normalized
separation distances.

It can be seen that the coupled mode theory is surprisingly good (within
20Z) 4in predicting the coupling length of two parallel dielectric slab guides
even when the separation distance is relatively small and the confinement of
guided power is relatively weak. Extrapolating our present results to other
geometrics involving optical fibers or integrated optical guides, it is
ipferred that the coupling distances predicted according to the coupled mode
theory are accurate to within 20X of the actual values if the symmetric and
antisymaetric modes are both above cutoff. PFinally, it should be moted that
when the separation distance ie small the transverse field configurations of
the coupled guides (see Pig. 7) are significently different than those sssumed

in the coupled mode theory.
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Geometry of the canonical problem.

Normalized propagation constants as a function of
normalized frequencies. The lowest order mode n = 1
has zero cutoff frequency.

Normalized propagation constants as a function of
normalized frequencies. All antisymmetric modes have
cutoff frequencies.

Normalized power in the core region of guides A and B

as a function of the normalized longitudinal distance.

The coupling length (defined as the length for which
complete exchange of power in the cores of Guide A and
Guide B occurs) is longer for less tightly bounded-fields.

Normalized power in the core region of guides A and B as
a function of the normslized longitudinal distance. P
is the power in the core region of guide A or guide B as
appropriate. PT is the total guided power.

Maximum normalized power inm the core region of guide A as
a function of separation distance of the two guides.

Transverse electric field distribution across the two
coupled guides.

Normalized coupling length as a function of the normalized
separation distance. Note that the coupling length ceases

to exist for k d < 7.0 when koa = 1.0 according to the normal

mode theory.

Percent coupling length differences between normal mode
theory and coupled mode theory as a function of normalized
separation distance.
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