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Based on the solution of a simplified canonical problem, the possible

margin of error on the predicted coupling length according to the coupled

mode theory as applied to fiber and integrated optical guides is inferred.

It was found that coupling length obtained according to the coupled mode

theory is usually accurate to within 20Z of the actual value provided that the

frequency of operation is above the cutoff frequency of the antisymmetric mode

of the coupled structure.
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Coupled mode theory has been used extensively in recent years in the

1-3
analysis of many important problems in integrated optics and fiber optics.
It is therefore of extreme interest to learn the region of validity for

which the coupled mode theory will yield accurate results. Since exact solu-

tions for most practical problems are not available, we shall therefore deal

specifically with a Ianonical problem whose exact solution, as well as approxi-

mate solution based on the coupled mode theory, is obtainable. Comparison of

the results may then provide an indication of the accuracy of the coupled mode

theory approach. It is shown that when the coupled mode theory is used

properly, the prediction of coupling distances is surprisingly accurate even

when the separation between the guides is relatively small. However, as far

as the field configurations of coupled guides are concerned, significant

inaccuracy is observed when the separation distance becomes small.

The geometry of the problem is shown in Fig. 1. Two identical dielectric

slab vaveguides are located in the regions d/2 < lxi < a+d/2. The permittivity

of the slab guides is £1 and that of the regions outside the guides is c2;

furthermore, e1 > C2" The permeability is assumed to be i0 everywhere. A

perfectly conducting plane rovers the surface z - 0 except for the region

d/2 1 x < a+d/2. In that aperture, the tangential electric field is Eo a

All electromagnetic field quantities are independent of the coordinate y and

the time dependence exp(jwt) is assumed and suppressed.

The electromagnetic field has components Ex, Ez and Hy, which are

related as

z -= -. (Is)
x jWC az



V satisfies

82HY + k2H 0 2
+-k (2)-

2 , 2 i y
ax2. z2

where k 2 P o, - 1,2. Nov it is necessary to specify that all field

components have the same z-dependence, i.e., exp(-JBz). Thus if Ex (xz) -

E x(x)exp(-Jlz) and similarly for Ez and Hy. we have

H (3a)
x we y

I dHy (3b)

z jwc d

dx2 + (k 2  - )H y -0 (30)

We are concerned with the excitation by the aperture field of the guided

modes on this structure; the guided-wave field will be the dominant portion

of the total field for large z. Solutions of Eq. (3c) corresponding to the

guided-wave field are

- x <-a-d/z: H yn()(x) - An exp[v (x+a+d/2)] (4a)

a -d/2!5 x: - d/2: Eyn(2)(x) - B sin u n(x+d/2) + C cos u n(x4d/2) (4b)

(4)b

d/2 5 x !5 a + d/2: H (x) F sin u (x-d/2) + C cos u (x-d12) (4d)

a +.d/2 S x S -: Byn()(x) - Hn exp[-v (x-a-d/2)(4)

In wh:ich u2 kl 2  In l2, #v 2 . 2 _ k 2 2", and the coefficients A - R are

to be determined. The "" subscripts refer to the nth uided-wave mode.



The characteristic equation from which the values of $n may be determined

is found by forcing the tangentical field components Ez and Hy to be

continuous at the four dielectric interfaces. By virtue of the symmetry of

the configuration about x - 0, the electromagnetic field may be separated into

two parts whose axial electric field E has either even or odd syummetry
z

about x - 0. For the even modes, Hn =- An , G n-C n , Fn - Bn , and En -O;

for the odd Nodes, Hn w An, Cn - Cn , Fn -- Bn , and D - 0. Thus considering

the two cases separately, one matches 'the boundary conditions at x - d/2

and x a + d/2, and obtains

2qu v~
tan 2u 2-v 2+(q2u v 2 )exp(-v d)

Itn n n n n

rtan u a - 2qun2n1 - 0 (5)

t 2 un 2 - _(q 2u n +v n2)exp(-v nd)n nn nnJ

in which q = ,2/-1 . The roots of the first factor in square brackets yield

the even modes; those of the second factor, the odd modes.

We may also evaluate the coefficients An - Hn in terms of any single one

of them, say A n . The relationship is expressed as Bn  n n n A n in

which b - h are given by
n n

even modes: b f -1  cosh (6a)
n a ;Ue C2  2

e e 1 n vn
c n aB--s inh 2 (6b)

d:- n e - 0, he -- 1 (6)

n e C1 n n

ve n vd U vd
A - cosh -- in ua - sinh cosua (6d)
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h fv r vd
odd modes: bi f sin(7)

A o2

u vdI
oo 0 1 a ()11 - cosh 2

d - 0, •° -  h_-  0 w 1 (701 :

i e n 0.

v0 vd I u vd

-m si - sin ua -- cosh cosua7d)
E2  2 En

This completes the formal analysis of the guided-mode electromagnetic field on

the dual slab waveguide structure.

We now consider the boundary condition at z - 0, i.e., that E%(x,o) Eo

for d/2 S x S a + d/2 and E (xo) - 0 elsewhere. Equating the excitation
X

field to the total field E for z 0 at z - 0 yields

Eo[IU(x-d/2) -U(x-s-d/2)]Z Bcx i -

+ (radiated field) I
zO

where U is the unit step function. The sum Is taken over the guided modes for

which oi is a proper root' of :q. (5).By virtue of the orthogonality relation

t.e., a root for hch Re(vN ) Z 0.

U ..- nO
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s+d/2 -a-d/2 -d12

-~ E 0  f (4) * ( L1 I m ~(x)rdxdx +.- ynf lB yn ()Id
a d/2 2 -a-d/2

d/2 ai+d/2

+ 1_ ( (x)1 2 dx + f (4) d12dx
1 / Iy d/2 (xD

2 a l/yI (5 ) (x) 12 dx + (radiated fields) (10)

The Integrals in Eq. (10) are easily evaluated and yield a relation between E0

and A . We find that
n

A = i [f-(I + 8n ua) sin u-n u nv fl ( C 2 (11)

+ [Ign2(uai In U a) + IfI 2  I. i21a + sin 2 +(ua - s in 2ua)

S nn)sin n -1

un] 2A 2 vnci 2c2 vd

in which the lower (-) sign is taken for the even modes, and" the upper (+)
2

sign for the odd modes. An is either or A 0 uappropriate, as are

f and gn This completes the formal solution for the excitation of the guided-

wave field by the aperture electric field at z - 0. Here we have assumed

that the contribution of the exciting field to the radiated field Is negli-

gible as compared with the guided field.

We nov consider the special case which is of particular interest for the

purposes of this paper, that in which only a single mode is possible on each

of the dielectric slabs in isolation. We shall further require that the*

lowest-order even and odd modes wll propagate on the dual-guide structure.
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Thus,

2a2a < us tan us < ,
qd

where 0 < ua < w/2. We now evaluate the 2-component of the Poynting vector

In each of the slab waveguides under the assumption that only these lowest-

order modes exist; their propagation, constants are denoted 8e and 00,

and the associated fields H (x) are denoted H (x) and H (x) respectively.
y ye yo

In the "upper" guide (d/2 < z < a+d/2) or "guide A", we have

1 (4)x12 + (4)x12
2w 1 C feyl;e 0yo

+ BeH e 4 ) (x) (4)*(x)z(Be-8o)z
+0e Bye yo) YO (C-joe- 0

te"oe"(4) ()ye(4)*(xlej(Be*-o)Z+ 0 Ryo Hye W e '~zI(2)

In the "lower" guide, or "guide B",

I t lr)  (2) (x) + 1 (2) 2

(2) ((2)* -i(B-0 )z
e aVye WE f740 Wse a a

(2 %( (2) ~j~ ~)g
+ 0R 0 (z)HI Wze a cio (13)

We may now calculate the total power per unit width carried in each of the

/ tslab vaveguides by integrating P&A from z - d/2 to x - ad/2 and Ps from

a - a-d/2 to x -- d/2. Denoting these powers by PA and Paq we obtain,

tThe power carried outside the slab guides is not included in the calculation.

Thus PA and P3 will not reduce to the total power carried in a single slab
wjvesuide mode in the liit d m.

6M
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assuming that ci1 s2' *e* ad are purely real,

&+d/2 -d12

, -(z P (xz)dx, P (z) P,(x, )dx

d/2 -a-d/2

Nov ye are in a position to compute erectly how the input power is

transferred from one guide to the other. (The only assumption is that no

radiated power is present.) We must first determine the propagation

constants of the guided modes along the slabs from Eq. (5). Results for

the two lowest order modes are displayed in Fig. 2 for the symmetric

modes and in Fig. 3 for the anti-symetric modes. In these figures, the

normalized propagation constant B/ko is plotted against the normalized

thickness of the slab k a for various values of the normalized separation0

oi the slabs k d. The constant k,0 the free-space wave number, is defined

as w c . It can be seen that there exists no cutoff frequency for the

lowest order symetric mode while a cutoff frequency does exist for the lowest

order anti-symmetric mode ,-Of course, all higher order symmetric and anti-

symmetric modes possess cutoff frequencies.

To illustrate how the guided power exchanges between the two guiding

structures, Figs. 4-5 are introduced. The operating frequency is so selected

that only the dominant symmetric mode and the lowest order antisymmetric mode

may exist along the guiding structure. It is interesting to note that although

the Initial exciting field exists only at the entrance of the core region of

guide A, according to our computed results there exists a small amount of guided

power in guide B. The reason for this is that to satisfy the initial given

field configuration at the entrance of the guiding structure, radiation mode

as well as guided modes must be taken into account. Since we have 'a priori

Ignored the radiation mode in our calculation, we can only satisfy approximately

i7.



the given initial field. The quantity PB at z = 0 represents the power calcu-

lated from the field that extends from guide A into the core region of guide B.

It can also be seen from these figures that guided power exchanges from one

guide to the other in a periodic fashion as expected. The distance for which

maximum guided power is transferred from one guide to the other is called the

coupling length. It is noted that the coupling length becomes shorter as the

separation distance between the guides is shortened. To correlate the maximum

power contained in the core region of guide A with the normalized separation

distance k d, we have performed the computation at the entrance of the coupled

guide. Results are shown in Fig. 6. It can be seen that the normalized maximum

power in the core region of guide A varies in a rather unusual fashion for small

separation distances. At large k d, the maximum power contained in the core

region approaches that for the case of an isolated slab guide, as expected.

To further understand the behavior of the transverse fields in the guides when

the separation distance is small, we have plottmd in Fig. 7 the quantity IEXI

vs. the transverse distance. The complexity of the evolution of the transverse

electric field as the separation distances are changed indicates the complex

nature of the curves in Fig. 6 when the separation distances are small.

Recall that the primary purpose of our investigation is to determine how

accurate the coupled mode theory is in its treatment of the coupled dielectric

maveguide problem. We have carried out the cases treated above according to

the coupled mode theory described by Marcuse1 and by N= researchers.2 The

"exact" normal mode results are then compared with those obtained according

to the vartous coupled-mode theories. Displayed in Fig. 8 are the curves for

the coupling length as a function of the normalized separation distance be-

tween two parallel dielectric guides as shown for two different k a values in

Vig. 1. One notes that as the separation distance Is increased, the agree-

"6.



sent between the results based on coupled mode theories and our normal mode

results becomes better, and that closer agreement is obtained for larger

k0 a values or when more power is confined within the core of the guide. This

is because large koa corresponds to more tightly-bounded field; hence, the

coupling field is weaker and the coupled mode theory which is based on

perturbation concept tends to be more accurate. It is worthwhile to point

out that for certain combinations of k a and kod values such as for koa - 1
00

and k d < 7.0 only the dominant symmetric mode exists, so according to the

exact normal mode theory, no back and forth exchange of propagating power takes

place between guide A and guide B. On the other hand the approximate coupled-

mode theory continues to predict the power exchange phenomenon. Another way

of expressing the differences for the results based on different theories is

shown in Fig. 9 where the percent differences between different coupled-mode

theories and the normal mode theory are plotted against the normalized

separation distances.

It can be seen that the coupled mode theory is surprisingly good (within

20Z) in predicting the coupling length of two parallel dielectric slab guides

even when the separation distance is relatively small and the confinement of

guided power is relatively weak. Extrapolating our present results to other

geometrics involving optical fibers or integrated optical guides, it is

inferred that the coupling distances predicted according to the coupled mode

theory are accurate to within 201 of the actual values if .the symetric and

antisymetric modes are both above cutoff. Finally, it should be noted that

when the separation distance Is small the transverse field configurations of

the coupled guides (see Fig. 7) are significantly different than those assmed

In the coupled sode theory.
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FIGURE TITLES

Fig. 1. Geometry of the canonical problem.

Fig. 2. Normalized propagation constants as a function of
normalized frequencies. The lowest order mode n - 1
has zero cutoff frequency.

Fig. 3. Normalized propagation constants as a function of
normalized frequencies. All antisyaetric modes have
cutoff frequencies.

Fig. 4. Normalized power in the core region of guides A and B
as a function of the normalized longitudinal distance.
The coupling length (defined as the length for which
complete exchange of power in the cores of Guide A and
Guide B occurs) is longer for less tightly bounded-fields.

Fig. 5. Normalized power in the core region of guides A and B as
a function of the normalized longitudinal distance. PC
is the power in the core region of guide A or guide B as
appropriate. PT is the total guided power.

Fig. 6. Maximum normalized power in the core region of guide A as
a function of separation distance of the two guides.

Fig. 7. Transverse electric field distribution across the two
coupled guides.

Fig. 8. Normalized coupling length as a function of the normalized
separation distance. Note that the coupling length ceases
to exist for kod < 7.0 when k0a - 1.0 according to the normal
mode theory.

Fig. 9. Percent coupling length differences between normal mode
theory and coupled mode theory as a function of normalized
separation distance.
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